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Preface

The  Internet, as a worldwide communication network, has changed our daily life in

many ways. A new paradigm of commerce allows individuals to shop online. The

World Wide Web (WWW) allows people to share information. The E-mail technology

connect people in far-flung corners of the world. This inevitable evolution has also cre-

ated dependency on the Internet. 

The Internet, as an open forum, has created some security problems. Confidential-

ity, integrity, and authentication are needed. People need to be sure that their Internet

communication is kept confidential. When they shop online, they need to be sure that

the vendors are authentic. When they send their transactions request to their banks, they

want to be certain that the integrity of the message is preserved. 

Network security is a set of protocols that allow us to use the Internet comfortably

without worrying about security attacks. The most common tool for providing network

security is cryptography, an old technique that has been revived and adapted to network

security. This book first introduces the reader to the principles of cryptography and then

applies those principles to describe network security protocols. 

Features of the Book

Several features of this text are designed to make it particularly easy for readers to

understand cryptography and network security.

Structure

This text uses an incremental approach to teaching cryptography and network security.

It assumes no particular mathematical knowledge, such as number theory or abstract

algebra. However, because cryptography and network security cannot be discussed

without some background in these areas of mathematics, these topics are discussed in

Chapters 2, 4, and 9. Readers who are familiar with these areas of mathematics can

ignore these chapters. Chapters 1 through 15 discuss cryptography. Chapters 16

through 18 discuss network security. 
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Visual Approach

This text presents highly technical subject matters without complex formulas by using a

balance of text and figures. More than 400 figures accompanying the text provide a visual

and intuitive opportunity for understanding the materials. Figures are particularly important

in explaining difficult cryptographic concepts and complex network security protocols. 

Algorithms

Algorithms play an important role in teaching cryptography. To make the presentation

independent from any computer language, the algorithms have been given in

pseudocode that can be easily programmed in a modern language. At the website for

this text, the corresponding programs are available for download. 

Highlighted Points

Important concepts are emphasized in highlighted boxes for quick reference and imme-

diate attention.

Examples

Each chapter presents a large number of examples that apply concepts discussed in the

chapter. Some examples merely show the immediate use of concepts and formulae;

some show the actual input/output relationships of ciphers; others give extra informa-

tion to better understand some difficult ideas. 

Recommended Reading

At the end of each chapter, the reader will find a list of books for further reading.

Key Terms

Key terms appear in bold in the chapter text, and a list of key terms appear at the end of

each chapter. All key terms are also defined in the glossary at the end of the book. 

Summary

Each chapter ends with a summary of the material covered in that chapter. The sum-

mary provides a brief overview of all the important points in the chapter.

Practice Set

At the end of each chapter, the students will find a practice set designed to reinforce and

apply salient concepts. The practice set consists of two parts: review questions and

exercises. The review questions are intended to test the reader’s first-level understand-

ing of the material presented in the chapter. The exercises require deeper understanding

of the material. 

Appendices

The appendices provide quick reference material or a review of materials needed to

understand the concepts discussed in the book. Some discussions of mathematical topics
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are also presented in the appendices to avoid distracting those readers who are already

familiar with these materials.

Proofs

Mathematical facts are mentioned in the chapters without proofs to emphasize the results

of applying the facts. For those interested reader the proofs are given in Appendix Q. 

Glossary and Acronyms

At the end of the text, the reader will find an extensive glossary and a list of acronyms.

Contents

After the introductory Chapter 1, the book is divided into four parts:

Part One: Symmetric-Key Encipherment

Part One introduces the symmetric-key cryptography, both traditional and modern. The

chapters in this part emphasize the use of symmetric-key cryptography in providing

secrecy. Part One includes Chapters 2 through 8. 

Part Two: Asymmetric-Key Encipherment

Part Two discusses asymmetric-key cryptography. The chapters in this part show how

asymmetric-key cryptography can provide security. Part Two includes Chapters 9 and 10. 

Part Three: Integrity, Authentication, and Key Management

Part Three shows how cryptographic hashing functions can provide other security ser-

vices, such as message integrity and authentication. The chapters in this part also show

how asymmetric-key and symmetric-key cryptography can complement each other.

Part Three includes Chapters 11 through 15. 

Part Four: Network Security

Part Four shows how the cryptography discussed in Part One through Three can be used

to create network security protocols at three levels of the Internet networking model.

Part Four includes Chapters 16 to 18. 

How to Use this Book

This book is written for both an academic and a professional audience. Interested pro-

fessionals can use it for self-guidance study. As a textbook, it can be used for a one-

semester or one-quarter course. The following are some guidelines.

❏ Parts one to three are strongly recommended.

❏ Part four is recommended if the course needs to move beyond cryptography and

enter the domain of network security. A course in networking is a prerequisite for

Part four. 
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Online Learning Center

The McGraw-Hill Online Learning Center contains much additional material related to

Cryptography and Network Security. Readers can access the site at www.mhhe.com/

forouzan. Professors and students can access lecture materials, such as Power Point

slides. The solutions to odd-numbered problems are provided to students, and profes-

sors can use a password to access the complete set of solutions. Additionally, McGraw-

Hill makes it easy to create a website for the course with an exclusive McGraw-Hill

product called PageOut. It requires no prior knowledge of HTML, no long hours, and

no design skills on your part. Instead, PageOut offers a series of templates. Simply fill

them with your course information and click on one of 16 designs. The process takes

under an hour and leaves you with a professionally designed website. Although Page-

Out offers “instant” development, the finished website provides powerful features. An

interactive course syllabus allows you to post content to coincide with your lectures, so

when students visit your PageOut website, your syllabus will direct them to compo-

nents of Forouzan’s Online Learning Center, or specific material of your own.
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CHAPTER 1

Introduction 

Objectives

This chapter has several objectives:

❏ To define three security goals

❏ To define security attacks that threaten security goals

❏ To define security services and how they are related to the three security
goals

❏ To define security mechanisms to provide security services

❏ To introduce two techniques, cryptography and steganography, to
implement security mechanisms. 

We are living in the information age. We need to keep information about
every aspect of our lives. In other words, information is an asset that has
a value like any other asset. As an asset, information needs to be secured
from attacks. 

To be secured, information needs to be hidden from unauthorized
access (confidentiality), protected from unauthorized change (integrity),
and available to an authorized entity when it is needed (availability). 

Until a few decades ago, the information collected by an organization
was stored on physical files. The confidentiality of the files was achieved
by restricting the access to a few authorized and trusted people in the orga-
nization. In the same way, only a few authorized people were allowed to
change the contents of the files. Availability was achieved by designating
at least one person who would have access to the files at all times. 

With the advent of computers, information storage became electronic.
Instead of being stored on physical media, it was stored in computers. The
three security requirements, however, did not change. The files stored in
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computers require confidentiality, integrity, and availability. The implemen-
tation of these requirements, however, is different and more challenging. 

During the last two decades, computer networks created a revolution in
the use of information. Information is now distributed. Authorized people
can send and retrieve information from a distance using computer net-
works. Although the three above-mentioned requirementsconfidentiality,
integrity, and availabilityhave not changed, they now have some new
dimensions. Not only should information be confidential when it is stored
in a computer; there should also be a way to maintain its confidentiality
when it is transmitted from one computer to another.

In this chapter, we first discuss the three major goals of information
security. We then see how attacks can threaten these three goals. We then
discuss the security services in relation to these security goals. Finally we
define mechanisms to provide security services and introduce techniques
that can be used to implement these mechanisms.

1.1 SECURITY GOALS

Let us first discuss three security goals: confidentiality, integrity, and availability

(Figure 1.1).

Confidentiality

Confidentiality is probably the most common aspect of information security. We need

to protect our confidential information. An organization needs to guard against those

malicious actions that endanger the confidentiality of its information. In the military,

concealment of sensitive information is the major concern. In industry, hiding some

information from competitors is crucial to the operation of the organization. In bank-

ing, customers’ accounts need to be kept secret.

As we will see later in this chapter, confidentiality not only applies to the storage

of the information, it also applies to the transmission of information. When we send a

piece of information to be stored in a remote computer or when we retrieve a piece of

information from a remote computer, we need to conceal it during transmission. 

Figure 1.1 Taxonomy of security goals

Security
Goals

AvailabilityIntegrityConfidentiality
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Integrity

Information needs to be changed constantly. In a bank, when a customer deposits or with-

draws money, the balance of her account needs to be changed. Integrity means that

changes need to be done only by authorized entities and through authorized mechanisms.

Integrity violation is not necessarily the result of a malicious act; an interruption in the

system, such as a power surge, may also create unwanted changes in some information.

Availability

The third component of information security is availability. The information created and

stored by an organization needs to be available to authorized entities. Information is use-

less if it is not available. Information needs to be constantly changed, which means it

must be accessible to authorized entities. The unavailability of information is just as

harmful for an organization as the lack of confidentiality or integrity. Imagine what would

happen to a bank if the customers could not access their accounts for transactions.

1.2 ATTACKS

Our three goals of securityconfidentiality, integrity, and availabilitycan be threatened

by security attacks. Although the literature uses different approaches to categorizing the

attacks, we will first divide them into three groups related to the security goals. Later, we

will divide them into two broad categories based on their effects on the system. Figure 1.2

shows the first taxonomy.

Attacks Threatening Confidentiality

In general, two types of attacks threaten the confidentiality of information: snooping

and traffic analysis.

Figure 1.2 Taxonomy of attacks with relation to security goals

Security Attacks

Threat to
confidentiality

Threat to integrity

Snooping

Traffic
analysis

Masquerading

Replaying

Repudiation

Modification
Denial of
service

Threat to
availability
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Snooping

Snooping refers to unauthorized access to or interception of data. For example, a file

transferred through the Internet may contain confidential information. An unauthorized

entity may intercept the transmission and use the contents for her own benefit. To prevent

snooping, the data can be made nonintelligible to the intercepter by using encipherment

techniques discussed in this book. 

Traffic Analysis

Although encipherment of data may make it nonintelligible for the intercepter, she can

obtain some other type information by monitoring online traffic. For example, she can

find the electronic address (such as the e-mail address) of the sender or the receiver. She

can collect pairs of requests and responses to help her guess the nature of transaction.

Attacks Threatening Integrity

The integrity of data can be threatened by several kinds of attacks: modification, mas-

querading, replaying, and repudiation. 

Modification

After intercepting or accessing information, the attacker modifies the information to

make it beneficial to herself. For example, a customer sends a message to a bank to do

some transaction. The attacker intercepts the message and changes the type of transac-

tion to benefit herself. Note that sometimes the attacker simply deletes or delays the

message to harm the system or to benefit from it.

Masquerading

Masquerading, or spoofing, happens when the attacker impersonates somebody else.

For example, an attacker might steal the bank card and PIN of a bank customer and pre-

tend that she is that customer. Sometimes the attacker pretends instead to be the

receiver entity. For example, a user tries to contact a bank, but another site pretends that

it is the bank and obtains some information from the user. 

Replaying

Replaying is another attack. The attacker obtains a copy of a message sent by a user and

later tries to replay it. For example, a person sends a request to her bank to ask for pay-

ment to the attacker, who has done a job for her. The attacker intercepts the message

and sends it again to receive another payment from the bank. 

Repudiation

This type of attack is different from others because it is performed by one of the two

parties in the communication: the sender or the receiver. The sender of the message

might later deny that she has sent the message; the receiver of the message might later

deny that he has received the message. 

An example of denial by the sender would be a bank customer asking her bank to

send some money to a third party but later denying that she has made such a request. An
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example of denial by the receiver could occur when a person buys a product from a

manufacturer and pays for it electronically, but the manufacturer later denies having

received the payment and asks to be paid.

Attacks Threatening Availability

We mention only one attack threatening availability: denial of service.

Denial of Service

Denial of service (DoS) is a very common attack. It may slow down or totally interrupt

the service of a system. The attacker can use several strategies to achieve this. She might

send so many bogus requests to a server that the server crashes because of the heavy load.

The attacker might intercept and delete a server’s response to a client, making the client to

believe that the server is not responding. The attacker may also intercept requests from

the clients, causing the clients to send requests many times and overload the system.

Passive Versus Active Attacks

Let us now categorize the attacks into two groups: passive and active. Table 1.1 shows

the relationship between this and the previous categorization.

Passive Attacks

In a passive attack, the attacker’s goal is just to obtain information. This means that the

attack does not modify data or harm the system. The system continues with its normal

operation. However, the attack may harm the sender or the receiver of the message.

Attacks that threaten confidentialitysnooping and traffic analysisare passive

attacks. The revealing of the information may harm the sender or receiver of the mes-

sage, but the system is not affected. For this reason, it is difficult to detect this type of

attack until the sender or receiver finds out about the leaking of confidential informa-

tion. Passive attacks, however, can be prevented by encipherment of the data.

Active Attacks

An active attack may change the data or harm the system. Attacks that threaten the

integrity and availability are active attacks. Active attacks are normally easier to detect

than to prevent, because an attacker can launch them in a variety of ways.

Table 1.1 Categorization of passive and active attacks

Attacks Passive/Active Threatening

Snooping 

Traffic analysis

Passive Confidentiality

Modification

Masquerading

Replaying

Repudiation

Active Integrity

Denial of service Active Availability
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1.3 SERVICES AND MECHANISMS

The International Telecommunication Union-Telecommunication Standardization

Sector (ITU-T) (see Appendix B) provides some security services and some mechanisms

to implement those services. Security services and mechanisms are closely related because a

mechanism or combination of mechanisms are used to provide a service. Also, a mechanism

can be used in one or more services. We briefly discuss them here to give the general idea;

we will discuss them in detail in later chapters devoted to specific services or mechanisms. 

Security Services

ITU-T (X.800) has defined five services related to the security goals and attacks we

defined in the previous sections. Figure 1.3 shows the taxonomy of those five common

services.

It is easy to relate one or more of these services to one or more of the security

goals. It is also easy to see that these services have been designed to prevent the secu-

rity attacks that we have mentioned. 

Data Confidentiality

Data confidentiality is designed to protect data from disclosure attack. The service as

defined by X.800 is very broad and encompasses confidentiality of the whole message

or part of a message and also protection against traffic analysis. That is, it is designed to

prevent snooping and traffic analysis attack.

Data Integrity

Data integrity is designed to protect data from modification, insertion, deletion, and

replaying by an adversary. It may protect the whole message or part of the message. 

Authentication

This service provides the authentication of the party at the other end of the line. In

connection-oriented communication, it provides authentication of the sender or receiver

Figure 1.3 Security services

Security
Services
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Access
control
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Data

integrity
Data 

confidentiality

Anti-change

Anti-replay
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Data origin

Proof of origin

Proof of delivery
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during the connection establishment (peer entity authentication). In connectionless com-

munication, it authenticates the source of the data (data origin authentication). 

Nonrepudiation

Nonrepudiation service protects against repudiation by either the sender or the receiver

of the data. In nonrepudiation with proof of the origin, the receiver of the data can later

prove the identity of the sender if denied. In nonrepudiation with proof of delivery, the

sender of data can later prove that data were delivered to the intended recipient. 

Access Control

Access control provides protection against unauthorized access to data. The term

access in this definition is very broad and can involve reading, writing, modifying, exe-

cuting programs, and so on. 

Security Mechanisms

ITU-T (X.800) also recommends some security mechanisms to provide the security

services defined in the previous section. Figure 1.4 gives the taxonomy of these

mechanisms.

Encipherment

Encipherment, hiding or covering data, can provide confidentiality. It can also be used

to complement other mechanisms to provide other services. Today two techniques

cryptography and steganographyare used for enciphering. We will discuss these shortly.

Figure 1.4 Security mechanisms
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Data Integrity

The data integrity mechanism appends to the data a short checkvalue that has been

created by a specific process from the data itself. The receiver receives the data and the

checkvalue. He creates a new checkvalue from the received data and compares the

newly created checkvalue with the one received. If the two checkvalues are the same,

the integrity of data has been preserved. 

Digital Signature

A digital signature is a means by which the sender can electronically sign the data and

the receiver can electronically verify the signature. The sender uses a process that

involves showing that she owns a private key related to the public key that she has

announced publicly. The receiver uses the sender’s public key to prove that the message

is indeed signed by the sender who claims to have sent the message. 

Authentication Exchange

In authentication exchange, two entities exchange some messages to prove their iden-

tity to each other. For example, one entity can prove that she knows a secret that only

she is supposed to know. 

Traffic Padding

Traffic padding means inserting some bogus data into the data traffic to thwart the

adversary’s attempt to use the traffic analysis. 

Routing Control

Routing control means selecting and continuously changing different available routes

between the sender and the receiver to prevent the opponent from eavesdropping on a

particular route. 

Notarization

Notarization means selecting a third trusted party to control the communication

between two entities. This can be done, for example, to prevent repudiation. The

receiver can involve a trusted party to store the sender request in order to prevent the

sender from later denying that she has made such a request. 

Access Control

Access control uses methods to prove that a user has access right to the data or

resources owned by a system. Examples of proofs are passwords and PINs. 

Relation between Services and Mechanisms

Table 1.2 shows the relationship between the security services and the security mecha-

nisms. The table shows that three mechanisms (encipherment, digital signature, and

authentication exchange) can be used to provide authentication. The table also shows
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that encipherment mechanism may be involved in three services (data confidentiality,

data integrity, and authentication)

1.4 TECHNIQUES

Mechanisms discussed in the previous sections are only theoretical recipes to imple-

ment security. The actual implementation of security goals needs some techniques. Two

techniques are prevalent today: one is very general (cryptography) and one is specific

(steganography). 

Cryptography

Some security mechanisms listed in the previous section can be implemented using cryp-

tography. Cryptography, a word with Greek origins, means “secret writing.” However,

we use the term to refer to the science and art of transforming messages to make them

secure and immune to attacks. Although in the past cryptography referred only to the

encryption and decryption of messages using secret keys, today it is defined as involv-

ing three distinct mechanisms: symmetric-key encipherment, asymmetric-key encipher-

ment, and hashing. We will briefly discuss these three mechanisms here. 

Symmetric-Key Encipherment

In symmetric-key encipherment (sometimes called secret-key encipherment or secret-

key cryptography), an entity, say Alice, can send a message to another entity, say Bob, over

an insecure channel with the assumption that an adversary, say Eve, cannot understand the

contents of the message by simply eavesdropping over the channel. Alice encrypts the

message using an encryption algorithm; Bob decrypts the message using a decryption

algorithm. Symmetric-key encipherment uses a single secret key for both encryption and

decryption. Encryption/decryption can be thought of as electronic locking. In symmetric-

key enciphering, Alice puts the message in a box and locks the box using the shared secret

key; Bob unlocks the box with the same key and takes out the message.

Asymmetric-Key Encipherment

In asymmetric-key encipherment (sometimes called public-key encipherment or

public-key cryptography), we have the same situation as the symmetric-key encipher-

ment, with a few exceptions. First, there are two keys instead of one: one public key

Table 1.2 Relation between security services and security mechanisms

Security Service Security Mechanism

Data confidentiality Encipherment and routing control

Data integrity Encipherment, digital signature, data integrity

Authentication Encipherment, digital signature, authentication exchanges

Nonrepudiation Digital signature, data integrity, and notarization

Access control Access control mechanism
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and one private key. To send a secured message to Bob, Alice first encrypts the mes-

sage using Bob’s public key. To decrypt the message, Bob uses his own private key. 

Hashing

In hashing, a fixed-length message digest is created out of a variable-length message.

The digest is normally much smaller than the message. To be useful, both the message

and the digest must be sent to Bob. Hashing is used to provide checkvalues, which were

discussed earlier in relation to providing data integrity. 

Steganography

Although this book is based on cryptography as a technique for implementing secu-

rity mechanisms, another technique that was used for secret communication in the

past is being revived at the present time: steganography. The word steganography,

with origin in Greek, means “covered writing,” in contrast with cryptography, which

means “secret writing.” Cryptography means concealing the contents of a message by

enciphering; steganography means concealing the message itself by covering it with

something else.

Historical Use

History is full of facts and myths about the use of steganography. In China, war mes-

sages were written on thin pieces of silk and rolled into a small ball and swallowed by

the messenger. In Rome and Greece, messages were carved on pieces of wood, that

were later dipped into wax to cover the writing. Invisible inks (such as onion juice or

ammonia salts) were also used to write a secret message between the lines of the cover-

ing message or on the back of the paper; the secret message was exposed when the

paper was heated or treated with another substance.

In recent times other methods have been devised. Some letters in an innocuous

message might be overwritten in a pencil lead that is visible only when exposed to light

at an angle. Null ciphers were used to hide a secret message inside an innocuous simple

message. For example, the first or second letter of each word in the covering message

might compose a secret message. Microdots were also used for this purpose. Secret

messages were photographed and reduced to a size of a dot (period) and inserted into

simple cover messages in place of regular periods at the end of sentences.

Modern Use

Today, any form of data, such as text, image, audio, or video, can be digitized, and it is

possible to insert secret binary information into the data during digitization process.

Such hidden information is not necessarily used for secrecy; it can also be used to pro-

tect copyright, prevent tampering, or add extra information. 

Text Cover The cover of secret data can be text. There are several ways to insert

binary data into an innocuous text. For example, we can use single space between

words to represent the binary digit 0 and double space to represent binary digit 1. The

following short message hides the 8-bit binary representation of the letter A in ASCII

code (01000001). 
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In the above message there are two spaces between the “book” and “is” and between

the “not” and “steganography”. Of course, sophisticated software can insert spaces that

differ only slightly to hide the code from immediate recognition. 

Another, more efficient method, is to use a dictionary of words organized accord-

ing to their grammatical usages. We can have a dictionary containing 2 articles, 8 verbs,

32 nouns, and 4 prepositions. Then we agree to use cover text that always use sentences

with the pattern article-noun-verb-article-noun. The secret binary data can be divided

into 16-bit chunks. The first bit of binary data can be represented by an article (for exam-

ple, 0 for a and 1 for the). The next five bits can be represented by a noun (subject of the

sentence), the next four bits can be represented by a verb, the next bit by the second

article, and the last five bits by another noun (object). For example, the secret data “Hi”,

which is 01001000 01001001 in ASCII, could be a sentence like the following: 

This is a very trivial example. The actual approach uses more sophisticated design

and a variety of patterns. 

Image Cover Secret data can also be covered under a color image. Digitized images

are made of pixels (picture elements), in which normally each pixel uses 24 bits (three

bytes). Each byte represents one of the primary colors (red, green, or blue). We can there-

fore have 28 different shades of each color. In a method called LSB (least significant bit),

the least significant bit of each byte is set to zero. This may make the image a little bit

lighter in some areas, but this is not normally noticed. Now we can hide a binary data in

the image by keeping or changing the least significant bit. If our binary digit is 0, we keep

the bit; if it is 1, we change the bit to 1. In this way, we can hide a character (eight ASCII

bits) in three pixels. For example, the following three pixels can represent the letter M. 

Of course, more sophisticated approaches are used these days. 

Other Covers Other covers are also possible. The secret message, for example,

can be covered under audio (sound and music) and video. Both audio and video are

compressed today; the secret data can be embedded during or before the compres-

sion. We leave the discussion of these techniques to more specialized books in

steganography. 

This book  is mostly about cryptography, not  steganography. 

         

0 1 0 0 0 0 1

A      friend    called     a     doctor. 

0       10010    0001       0      01001 

01010011  10111100  01010101  

01011110  10111100  01100101

01111110  01001010  00010101  
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1.5 THE REST OF THE BOOK

The rest of this book is divided into four parts. 

Part One: Symmetric-Key Encipherment

The chapters in Part One discuss encipherment, both classic and modern, using sym-

metric-key cryptography. These chapters show how the first goal of security can be

implemented using this technique.

Part Two: Asymmetric-Key Encipherment

The chapters in Part Two discuss encipherment using asymmetric-key cryptography.

These chapters also show how the first goal of the security can be implemented using

this technique.

Part Three: Integrity, Authentication, and Key Management

The chapters in Part Three introduce the third application of cryptographyhashing

and show how it can be combined with the materials discussed in Part I and II for

implementing the second goal of security. 

Part Four: Network Security

The chapters in Part Four show how the methods learned in the first three parts of the

book can be combined to create network security using the Internet model.

1.6 RECOMMENDED READING

For more details about subjects discussed in this chapter, the following books and web-

sites are good places to start. The items enclosed in brackets refer to the reference list at

the end of the book.

Books

Several books discuss security goals, attacks, and mechanisms. We recommend [Bis05]

and [Sta06].

WebSites

The following websites give more information about topics discussed in this chapter.

http://www.faqs.org/rfcs/rfc2828.html

fag.grm.hia.no/IKT7000/litteratur/paper/x800.pdf
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1.7 KEY TERMS

1.8 SUMMARY

❏ Three general goals have been defined for security: confidentiality, integrity, and

availability. 

❏ Two types of attacks threaten the confidentiality of information: snooping and traffic

analysis. Four types of attacks can threaten the integrity of information: modifica-

tion, masquerading, replaying, and repudiation. Denial-of-service attacks threaten

the availability of information.   

❏ Some organizations involved in data communication and networking, such as

ITU-T or the Internet, have defined several security services that are related to

the security goals and security attacks. This chapter discussed five common secu-

rity services: data confidentiality, data integrity, authentication, nonrepudiation,

and access control.

❏ ITU-T also recommends some mechanisms to provide security. We discussed

eight of these mechanisms: encipherment, data integrity, digital signature,

authentication exchange, traffic padding, routing control, notarization, and access

control. 

access control masquerading

active attack modification

asymmetric-key encipherment nonrepudiation

authentication notarization

authentication exchange passive attack

availability private key

confidentiality public key

cryptography replaying

data confidentiality repudiation

data integrity routing control

decryption secret key

denial of service security attacks

digital signature security goals

encipherment security mechanisms

encryption snooping

hashing steganography

integrity symmetric-key encipherment

International Telecommunication Union-

Telecommunication Standardization 

Sector (ITU-T)

traffic analysis

traffic padding
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❏ There are two techniquescryptography and steganographythat can imple-

ment some or all of the mechanisms. Cryptography or “secret writing” involves

scrambling a message or creating a digest of the message. Steganography or

“covered writing” means concealing the message by covering it with some-

thing else.

1.9 PRACTICE SET

Review Questions

1. Define the three security goals.

2. Distinguish between passive and active security attacks. Name some passive attacks.

Name some active attacks.

3. List and define five security services discussed in this chapter.

4. Define eight security mechanisms discussed in this chapter.

5. Distinguish between cryptography and steganography.

Exercises

6. Which security service(s) are guaranteed when using each of the following methods

to send mail at the post office?

a. Regular mail 

b. Regular mail with delivery confirmation 

c. Regular mail with delivery and recipient signature

d. Certified mail

e. Insured mail 

f. Registered mail 

7. Define the type of security attack in each of the following cases:

a. A student breaks into a professor’s office to obtain a copy of the next day’s test.

b. A student gives a check for $10 to buy a used book. Later she finds that the

check was cashed for $100.

c. A student sends hundreds of e-mails per day to another student using a phony

return e-mail address. 

8. Which security mechanism(s) are provided in each of the following cases?

a. A school demands student identification and a password to let students log into

the school server.

b. A school server disconnects a student if she is logged into the system for more

than two hours.

c. A professor refuses to send students their grades by e-mail unless they provide

student identification they were preassigned by the professor.

d. A bank requires the customer’s signature for a withdrawal.
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9. Which technique (cryptography or steganography) is used in each of the following

cases for confidentiality?

a. A student writes the answers to a test on a small piece of paper, rolls up the

paper, and inserts it in a ball-point pen, and passes the pen to another student. 

b. To send a message, a spy replaces each character in the message with a symbol

that was agreed upon in advance as the character’s replacement. 

c. A company uses special ink on its checks to prevent forgeries.

d. A graduate student uses watermarks to protect her thesis, which is posted on

her website. 

10. What type of security mechanism(s) are provided when a person signs a form he has

filled out to apply for a credit card?





PART

1
Symmetric-Key Encipherment 

In Chapter 1, we saw that cryptography provides three techniques: symmetric-key

ciphers, asymmetric-key ciphers, and hashing. Part One is devoted to symmetric-key

ciphers. Chapters 2 and 4 review the mathematical background necessary for under-

standing the rest of the chapters in this part. Chapter 3 explores the traditional ciphers

used in the past. Chapters 5, 6, and 7 explain modern block ciphers that are used

today. Chapter 8 shows how modern block and stream ciphers can be used to enci-

pher long messages. 

Chapter 2: Mathematics of Cryptography: Part I

Chapter 2 reviews some mathematical concepts needed to understand the next

few chapters. It discusses integer and modular arithmetic, matrices, and congruence

relations.

Chapter 3: Traditional Symmetric-Key Ciphers

Chapter 3 introduces traditional symmetric-key ciphers. Although these ciphers are not

used today, they are the foundation of modern symmetric-key ciphers. This chapter

emphasizes the two categories of traditional ciphers: substitution ciphers and transposi-

tion ciphers. It also introduces the concepts of stream ciphers and block ciphers.

Chapter 4: Mathematics of Cryptography: Part II

Chapter 4 is another review of mathematics needed to understand the contents of the sub-

sequent chapters. It reviews some algebraic structures, such as groups, rings, and finite

fields, which are used in modern block ciphers.   

Chapter 5: Introduction to Modern Symmetric-Key Ciphers

Chapter 5 is an introduction to modern symmetric-key ciphers. Understanding the indi-

vidual elements used in modern symmetric-key ciphers paves the way to a better under-

standing and analysis of modern ciphers. This chapter introduces components of block

ciphers such as P-boxes and S-boxes. It also distinguishes between two classes of product

ciphers: Feistel and non-Feistel ciphers.
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Chapter 6: Data Encryption Standard (DES)

Chapter 6 uses the elements defined in Chapter 5 to discuss and analyze one of the com-

mon symmetric-key ciphers used today, the Data Encryption Standard (DES). The

emphasis is on how DES uses 16 rounds of Feistel ciphers. 

Chapter 7: Advanced Encryption Standard (AES)

Chapter 7 shows how some algebraic structures discussed in Chapter 4 and some ele-

ments discussed in Chapter 5 can create a very strong cipher, the Advanced Encryption

Standard (AES). The emphasis is on how the algebraic structures discussed in Chapter 4

achieve the AES security goals.

Chapter 8: Encipherment Using Modern Symmetric-Key Ciphers

Chapter 8 shows how modern block and stream ciphers can actually be used to encipher

long messages. It explains five modes of operation designed to be used with modern

block ciphers. It also introduces two stream ciphers used for real-time processing of data.
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CHAPTER 2

Mathematics of Cryptography

Part I: Modular Arithmetic, Congruence, 
and Matrices

Objectives

This chapter is intended to prepare the reader for the next few chapters in
cryptography. The chapter has several objectives: 

❏ To review integer arithmetic, concentrating on divisibility and find-
ing the greatest common divisor using the Euclidean algorithm

❏ To understand how the extended Euclidean algorithm can be used to
solve linear Diophantine equations, to solve linear congruent equa-
tions, and to find the multiplicative inverses

❏ To emphasize the importance of modular arithmetic and the modulo
operator, because they are extensively used in cryptography

❏ To emphasize and review matrices and operations on residue matri-
ces that are extensively used in cryptography 

❏ To solve a set of congruent equations using residue matrices 

Cryptography is based on some specific areas of mathematics, including
number theory, linear algebra, and algebraic structures. In this chapter, we
discuss only the topics in the above areas that are needed to understand the
contents of the next few chapters. Readers who are familiar with these top-
ics can skip this chapter entirely or partially. Similar chapters are provided
throughout the book when needed. Proofs of theorems and algorithms
have been omitted, and only their applications are shown. The interested
reader can find proofs of the theorems and algorithms in Appendix Q. 

Proofs of theorems and algorithms discussed in this chapter can be found 

in Appendix Q.
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2.1 INTEGER ARITHMETIC

In integer arithmetic, we use a set and a few operations. You are familiar with this set

and the corresponding operations, but they are reviewed here to create a background for

modular arithmetic.

Set of Integers

The set of integers, denoted by Z, contains all integral numbers (with no fraction) from

negative infinity to positive infinity (Figure 2.1).

Binary Operations

In cryptography, we are interested in three binary operations applied to the set of integers.

A binary operation takes two inputs and creates one output. Three common binary oper-

ations defined for integers are addition, subtraction, and multiplication. Each of these

operations takes two inputs (a and b) and creates one output (c) as shown in Figure 2.2.

The two inputs come from the set of integers; the output goes into the set of integers.

 Note that division does not fit in this category because, as we will see shortly, it

produces two outputs instead of one.

Example 2.1

The following shows the results of the three binary operations on two integers. Because each

input can be either positive or negative, we can have four cases for each operation. 

Figure 2.1 The set of integers

Figure 2.2 Three binary operations for the set of integers

Add: 5 + 9 = 14 (−5) + 9 = 4   5 + (−9) = −4    (−5) + (−9) = −14

Subtract: 5 − 9 = −4 (−5) − 9 = −14   5 − (−9) = 14    (−5)  − (−9) = +4

Multiply: 5 × 9 = 45 (−5) × 9 = −45   5 × (−9) = −45    (−5) × (−9) = 45

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

a b

c

Operation+ ×−
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Integer Division

In integer arithmetic, if we divide a by n, we can get q and r. The relationship between

these four integers can be shown as 

In this relation, a is called the dividend; q, the quotient; n, the divisor; and r, the

remainder. Note that this is not an operation, because the result of dividing a by n is

two integers, q and r. We can call it division relation. 

Example 2.2

Assume that a = 255 and n = 11. We can find q = 23 and r = 2 using the division algorithm we

have learned in arithmetic as shown in Figure 2.3.

Most computer languages can find the quotient and the remainder using language-

specific operators. For example, in the C language, the operator / can find the quotient

and the operator % can find the remainder. 

Two Restrictions

When we use the above division relationship in cryptography, we impose two restric-

tions. First, we require that the divisor be a positive integer (n > 0). Second, we require

that the remainder be a nonnegative integer (r ≥ 0). Figure 2.4 shows this relationship

with the two above-mentioned restrictions. 

a ==== q ×××× n ++++ r

Figure 2.3 Example 2.2, finding the quotient and the remainder

Figure 2.4 Division algorithm for integers

2 5 5   1 1

2 2

3 5

3 3

2

2 3   q

a

r

n

n

(positive)

r
(nonnegative)

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

q

a = q × n + r

a
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Example 2.3

When we use a computer or a calculator, r and q are negative when a is negative. How can we

apply the restriction that r needs to be positive? The solution is simple, we decrement the value of

q by 1 and we add the value of n to r to make it positive.

We have decremented −23 to become −24 and added 11 to −2 to make it 9. The above relation

is still valid. 

The Graph of the Relation

We can show the above relation with the two restrictions on n and r using two graphs in

Figure 2.5. The first one shows the case when a is positive; the second when a is negative. 

Starting from zero, the graph shows how we can reach the point representing the

integer a on the line. In case of a positive a, we need to move q × n units to the right and

then move extra r units in the same direction. In case of a negative a, we need to move

(q − 1) × n units to the left (q is negative in this case) and then move r units in the oppo-

site direction. In both cases the value of r is positive.

Divisibility

Let us briefly discuss divisibility, a topic we often encounter in cryptography. If a is not

zero and we let r = 0 in the division relation, we get

We then say that n divides a (or n is a divisor of a). We can also say that a is divis-

ible by n. When we are not interested in the value of q, we can write the above relation-

ship as a |n. If the remainder is not zero, then n does not divide a and we can write the

relationship as a n. 

Example 2.4

a. The integer 4 divides the integer 32 because 32 = 8 × 4. We show this as 4 |32.

b. The number 8 does not divide the number 42 because 42 = 5 × 8 + 2. There is a remainder, the 

number 2, in the equation. We show this as 8 42.

−255 = (−23 × 11) +  (–2)          ↔           −255 = (−24 × 11)  +  9 

Figure 2.5 Graph of division algorithm

a ==== q ×××× n 

0 n 2n qn a

Case of 
positive a

Case of 
negative a

0−n−2nqn(q − 1)n a

r

r
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Example 2.5

a. We have 13 |78, 7 |98, −6 |24, 4 |44, and 11 |(−33).

b. We have 13 27, 7 50, −6 23, 4 41, and 11 (−32). 

Properties

Following are several properties of divisibility. The interested reader can check Appen-

dix Q for proofs. 

Example 2.6

a. Since 3 |15 and 15 |45, according to the third property, 3|45. 

b. Since 3 |15 and 3 |9, according to the fourth property, 3|(15 × 2 + 9 × 4), which means 3 |66.

All Divisors

A positive integer can have more than one divisor. For example, the integer 32 has six

divisors: 1, 2, 4, 8, 16, and 32. We can mention two interesting facts about divisors of

positive integers:

Greatest Common Divisor

One integer often needed in cryptography is the greatest common divisor of two posi-

tive integers. Two positive integers may have many common divisors, but only one

greatest common divisor. For example, the common divisors of 12 and 140 are 1, 2, and 4.

However, the greatest common divisor is 4. See Figure 2.6. 

Property 1: if a |1, then a = ±1. 

Property 2: if a |b and b |a, then a = ±b. 

Property 3: if a |b and b |c, then a |c. 

Property 4: if a |b and a |c, then a |(m × b + n × c), where m and n are arbitrary integers. 

Fact 1: The integer 1 has only one divisor, itself.

Fact 2: Any positive integer has at least two divisors, 1 and itself (but it can have more).       

Figure 2.6 Common divisors of two integers

Divisors of 140

Common Divisors

of 140 and 12

Divisor of 12

1
3

2
6

4

12

7
5

35

14

1070

28

20
140
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Euclidean Algorithm

Finding the greatest common divisor (gcd) of two positive integers by listing all com-

mon divisors is not practical when the two integers are large. Fortunately, more than

2000 years ago a mathematician named Euclid developed an algorithm that can find the

greatest common divisor of two positive integers. The Euclidean algorithm is based

on the following two facts (see Appendix Q for the proof): 

The first fact tells us that if the second integer is 0, the greatest common divisor is

the first one. The second fact allows us to change the value of a, b until b becomes 0.

For example, to calculate the gcd (36, 10), we can use the second fact several times and

the first fact once, as shown below.

In other words, gcd (36, 10) = 2, gcd (10, 6) = 2, and so on. This means that instead

of calculating gcd (36, 10), we can find gcd (2, 0). Figure 2.7 shows how we use the

above two facts to calculate gcd (a, b).

We use two variables, r1 and r2, to hold the changing values during the process of

reduction. They are initialized to a and b. In each step, we calculate the remainder of

r1 divided by r2 and store the result in the variable r. We then replace r1 by r2 and r2 by r.

The steps are continued until r2 becomes 0. At this moment, we stop. The gcd (a, b) is r1.  

The greatest common divisor of two positive integers is the largest integer that can 

divide both integers. 

Fact 1: gcd (a, 0) = a

Fact 2: gcd (a, b) = gcd (b, r), where r is the remainder of dividing a by b 

gcd (36, 10) = gcd (10, 6) = gcd (6, 4) = gcd (4, 2) = gcd (2, 0) = 2

Figure 2.7 Euclidean algorithm

b. Algorithm a. Process 

r1 = a r2 = b r

r

gcd (a , b) = r1 

r2r1

r2r1

0

r1 0
}

{

while (r2 > 0)

(Initialization)

gcd (a, b) ← r1

q ← r1 / r2;

r1 ← a; r2 ← b; 

 

r1 ← r2; r2 ← r;

r ← r1 − q × r2;
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Example 2.7

Find the greatest common divisor of 2740 and 1760. 

Solution

We apply the above procedure using a table. We initialize r1 to 2740 and r2 to 1760. We have also

shown the value of q in each step. We have gcd (2740, 1760) = 20. 

Example 2.8

Find the greatest common divisor of 25 and 60. 

Solution

We chose this particular example to show that it does not matter if the first number is smaller than

the second number. We immediately get our correct ordering. We have gcd (25, 65) = 5. 

The Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two integers, s and t, such that 

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time

calculate the value of s and t. The algorithm and the process is shown in Figure 2.8.

As shown in Figure 2.8, the extended Euclidean algorithm uses the same number of

steps as the Euclidean algorithm. However, in each step, we use three sets of calculations

and exchanges instead of one. The algorithm uses three sets of variables, r’s, s’s, and t’s.

When gcd (a, b) = 1, we say that a and b are relatively prime.

q r1                          r2        r

1 2740                     1760      980

1 1760                        980      780

1   980                        780      200

3   780                        200      180

1   200                        180        20

9   180                          20          0

     20                             0  

q r1                          r2 r

0  25                         60      25

2  60                         25      10

2  25                         10        5

2  10                           5        0

    5                           0  

s × a + t × b = gcd (a, b)
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In each step, r1, r2, and r have the same values in the Euclidean algorithm. The variables r1

and r2 are initialized to the values of a and b, respectively. The variables s1 and s2 are initial-

ized to 1 and 0, respectively. The variables t1 and t2 are initialized to 0 and 1, respectively.

The calculations of r, s, and t are similar, with one warning. Although r is the remainder of

dividing r1 by r2, there is no such relationship between the other two sets. There is only one

quotient, q, which is calculated as r1/r2 and used for the other two calculations.

Example 2.9

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t. 

Solution 

Figure 2.8 Extended Euclidean algorithm

r = r1 − q × r2 s = s1 − q × s2 t = t1 − q × t2

b. Algorithm 

a. Process 

r1 = a r2 = b r

r

gcd (a , b) = r1 

r2r1

r2r1

0

r1 0

s1 
= 1 s2 

= 0 s

s

s = s1 

s2s1

s2s1

s

s1 s2

t1 
= 0 t2 

= 1 t

t

t = t1 

t2t1

t2t1

t

t1 t2

}

(Initialization)

(Updating r’s)

r1 ← a; r2 ← b; 

s1 ← 1; s2 ← 0;

t1 ← 0; t2 ← 1;

{

while (r2 > 0)

q ← r1 / r2; 

r1 ← r2;  r2 ← r;

r  ← r1 − q × r2;

(Updating s’s)
s1 ← s2;  s2 ← s;

s  ← s1 − q × s2;

(Updating t’s)
t1 ← t2;  t2 ← t;

t  ← t1 − q × t2;

gcd (a , b) ← r1;   s ← s1;   t ← t1
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We use a table to follow the algorithm. 

We get gcd (161, 28) = 7, s = −1 and t = 6. The answers can be tested because we have 

Example 2.10

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t. 

Solution

We use a table to follow the algorithm. 

Note that we need no calculation for q, r, and s. The first value of r2 meets our termination condi-

tion. We get gcd (17, 0) = 17, s = 1, and t = 0. This indicates why we should initialize s1 to 1 and

t1 to 0. The answers can be tested as shown below:

Example 2.11

Given a = 0 and b = 45, find gcd (a, b) and the values of s and t. 

Solution

We use a table to follow the algorithm. 

We get gcd (0, 45) = 45, s = 0, and t = 1. This indicates why we should initialize s2 to 0 and t2 to 1.

The answer can be tested as shown below:

q   r1     r2     r s1      s2 s t1      t2 t

5  161   28    21   1       0     1  0       1   −5

1    28    21     7   0       1   −1  1     −5      6

3     21     7     0   1     −1     4 −5       6  −23

          7     0      −1      4        6   −23      

(−1) × 161 + 6 × 28 = 7

q r1      r2 r s1      s2 s t1      t2 t

     17        0        1         0         0        1        

(1 × 17) + (0 × 0) = 17

q r1      r2 r s1      s2 s t1       t2 t

0  0       45 0   1       0 1   0       1 0

     45       0        0       1        1       0      

(0 × 0) + (1 × 45) = 45
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Linear Diophantine Equations

Although we will see a very important application of the extended Euclidean algorithm

in the next section, one immediate application is to find the solutions to the linear

Diophantine equations of two variables, an equation of type ax + by = c. We need to

find integer values for x and y that satisfy the equation. This type of equation has either

no solution or an infinite number of solutions. Let d = gcd (a, b). If d c, then the equa-

tion has no solution. If d | c, then we have an infinite number of solutions. One of them

is called the particular; the rest, general. 

Particular Solution

If d | c, a particular solution to the above equation can be found using the following steps:

1. Reduce the equation to a1x + b1y = c1 by dividing both sides of the equation by d.

This is possible because d divides a, b, and c by the assumption. 

2. Solve for s and t in the relation a1s + b1t = 1 using the extended Euclidean algorithm. 

3. The particular solution can be found: 

General Solutions

After finding the particular solution, the general solutions can be found:

Example 2.12

Find the particular and general solutions to the equation 21x + 14y = 35.

Solution

We have d = gcd (21, 14) = 7. Since 7 |35, the equation has an infinite number of solutions.

We can divide both sides by 7 to find the equation 3x + 2y = 5. Using the extended Euclidean

algorithm, we find s and t such as 3s + 2t = 1. We have s = 1 and t = −1. The solutions are 

Therefore, the solutions are (5, −5), (7, −8), (9, −11), . . . We can easily test that each of these

solutions satisfies the original equation. 

Example 2.13

A very interesting application in real life is when we want to find different combinations of

objects having different values. For example, imagine we want to cash a $100 check and get

some $20 and some $5 bills. We have many choices, which we can find by solving the corre-

sponding Diophantine equation 20x + 5y = 100. Since d = gcd (20, 5) = 5 and 5|100, the equation

A linear Diophantine equation of two variables is ax ++++ by ==== c. 

Particular solution: x0 = (c/d)s    and     y0 ==== (c/d)t                      

General solutions: x = x0 + k (b/d)   and    y = y0 −−−− k (a/d)     where k is an integer

Particular: x0 = 5 × 1 = 5    and   y0 = 5 × (−1) = −5             since 35/7 = 5

General: x = 5 + k × 2    and   y = −5 − k × 3                        where k is an integer
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has an infinite number of solutions, but only a few of them are acceptable in this case (only

answers in which both x and y are nonnegative integers). We divide both sides by 5 to get 4x + y = 20.

We then solve the equation 4s + t = 1. We can find s = 0 and t = 1 using the extended Euclidean

algorithm. The particular solutions are x0 = 0 × 20 = 0 and y0 = 1 × 20 = 20. The general solutions

with x and y nonnegative are (0, 20), (1, 16), (2, 12), (3, 8), (4, 4), (5, 0). The rest of the solutions

are not acceptable because y becomes negative. The teller at the bank needs to ask which of the

above combinations we want. The first has no $20 bills; the last has no $5 bills. 

2.2 MODULAR ARITHMETIC

The division relationship (a = q × n + r) discussed in the previous section has two inputs

(a and n) and two outputs (q and r). In modular arithmetic, we are interested in only one

of the outputs, the remainder r. We don’t care about the quotient q. In other words, we

want to know what is the value of r when we divide a by n. This implies that we can

change the above relation into a binary operator with two inputs a and n and one output r. 

Modulo Operator

The above-mentioned binary operator is called the modulo operator and is shown as

mod. The second input (n) is called the modulus. The output r is called the residue.

Figure 2.9 shows the division relation compared with the modulo operator. 

As Figure 2.9 shows, the modulo operator (mod) takes an integer (a) from the set Z

and a positive modulus (n). The operator creates a nonnegative residue (r). We can say

Example 2.14

Find the result of the following operations:

a. 27 mod 5

b. 36 mod 12

c. −18 mod 14

d. −7 mod 10

Figure 2.9 Division relation and modulo operator

a mod n ==== r

r  (nonnegative)

n

(positive)

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Operatormod

a

r  (nonnegative)

n

(positive)

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Relationa = q × n + r

q

a
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Solution

We are looking for the residue r. We can divide the a by n and find q and r. We can then disregard

q and keep r. 

a. Dividing 27 by 5 results in r = 2. This means that 27 mod 5 = 2. 

b. Dividing 36 by 12 results in r = 0. This means that 36 mod 12 = 0.

c. Dividing −18 by 14 results in r = −4. However, we need to add the modulus (14) to make it 

nonnegative. We have r = −4 + 14 = 10. This means that −18 mod 14 = 10.

d. Dividing −7 by 10 results in r = −7. After adding the modulus to −7, we have r = 3. This 

means that −7 mod 10 = 3.

Set of Residues: Zn

The result of the modulo operation with modulus n is always an integer between 0 and

n − 1. In other words, the result of a mod n is always a nonnegative integer less than n.

We can say that the modulo operation creates a set, which in modular arithmetic is

referred to as the set of least residues modulo n, or Zn. However, we need to remem-

ber that although we have only one set of integers (Z), we have infinite instances of the

set of residues (Zn), one for each value of n. Figure 2.10 shows the set Zn and three

instances, Z2, Z6, and Z11. 

Congruence

In cryptography, we often used the concept of congruence instead of equality. Map-

ping from Z to Zn is not one-to-one. Infinite members of Z can map to one member of

Zn. For example, the result of 2 mod 10 = 2, 12 mod 10 = 2, 22 mod 2 = 2, and so on. In

modular arithmetic, integers like 2, 12, and 22 are called congruent mod 10. To show

that two integers are congruent, we use the congruence operator (≡). We add the

phrase (mod n) to the right side of the congruence to define the value of modulus that

makes the relationship valid. For example, we write:   

Figure 2.11 shows the idea of congruence. We need to explain several points. 

a. The congruence operator looks like the equality operator, but there are differences.

First, an equality operator maps a member of Z to itself; the congruence operator

maps a member from Z to a member of Zn. Second, the equality operator is one-

to-one; the congruence operator is many-to-one. 

Figure 2.10 Some Zn sets

2 ≡ 12 (mod 10)          13 ≡ 23 (mod 10)        34 ≡ 24 (mod 10)          −8 ≡ 12 (mod 10)

3 ≡ 8 (mod 5)                8 ≡ 13 (mod 5)          23 ≡ 33 (mod 5)            −8 ≡ 2 (mod 5)

Zn = { 0, 1, 2, 3,  .  .  .  ,  (n − 1) }

Z2 = { 0, 1 } Z6 = { 0, 1, 2, 3, 4, 5 } Z11 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
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b. The phrase (mod n) that we insert at the right-hand side of the congruence opera-

tor is just an indication of the destination set (Zn). We need to add this phrase to

show what modulus is used in the mapping. The symbol mod used here does not

have the same meaning as the binary operator. In other words, the symbol mod in

12 mod 10 is an operator; the phrase (mod 10) in 2 ≡ 12 (mod 10) means that the

destination set is Z10. 

Residue Classes

A residue class [a] or [a]n is the set of integers congruent modulo n. In other words, it

is the set of all integers such that x = a (mod n). For example, if n = 5, we have five sets

[0], [1], [2], [3], and [4] as shown below:

The integers in the set [0] are all reduced to 0 when we apply the modulo 5 opera-

tion on them. The integers in the set [1] are all reduced to 1 when we apply the modulo

5 operation, and so on. In each set, there is one element called the least (nonnegative)

residue. In the set [0], this element is 0; in the set [1], this element is 1; and so on. The

set of all of these least residues is what we have shown as Z5 = {0, 1, 2, 3, 4}. In other

words, the set Zn is the set of all least residue modulo n. 

Circular Notation

The concept of congruence can be better understood with the use of a circle. Just as we

use a line to show the distribution of integers in Z, we can use a circle to show the

Figure 2.11 Concept of congruence

[0] = {…, −15,  −10,  −5, 0,   5, 10, 15, …}

[1] = {…, −14,    −9,  −4, 1,   6, 11, 16, …}

[2] = {…, −13,    −8,  −3, 2,   7, 12, 17, …}

[3] = {…, −12,    −7,  −5, 3,   8, 13, 18, …}

[4] = {…, −11,    −6,  −1, 4,   9, 14, 19, …}

Z = { .  .  .         −8          .  .  .         2         .  .  .         12         .  .  .        22          .  .  . }

Z10 = { 0  .  .  .  2  .  .  .  9 }

10

Congruence Relationship

−8  ≡  2  ≡  12  ≡  22  (mod 10)

mod10 mod10 mod10 mod
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distribution of integers in Zn. Figure 2.12 shows the comparison between the two. Integers

0 to n − 1 are spaced evenly around a circle. All congruent integers modulo n occupy

the same point on the circle. Positive and negative integers from Z are mapped to the

circle in such a way that there is a symmetry between them.

Example 2.15

We use modular arithmetic in our daily life; for example, we use a clock to measure time. Our

clock system uses modulo 12 arithmetic. However, instead of a 0 we use the number 12. So our

clock system starts with 0 (or 12) and goes until 11. Because our days last 24 hours, we navigate

around the circle two times and denote the first revolution as A.M. and the second as P.M. 

Operations in Zn

The three binary operations (addition, subtraction, and multiplication) that we dis-

cussed for the set Z can also be defined for the set Zn. The result may need to be

mapped to Zn using the mod operator as shown in Figure 2.13.

Figure 2.12 Comparison of Z and Zn using graphs

Figure 2.13 Binary operations in Zn

0 11 22 (n − 1)−(n − 1)

(n − 1)

(n − 2)

0
1

2

Zn

Z

a ≡ 2 (mod n)

n

Zn = { 0, 1,  2,  .  .  .  , (n − 1) }

Z  or  Zn

c

a b

mod

+, ×−,

Operations

(a + b) mod  n = c 

(a − b) mod  n = c 

(a × b) mod  n = c 
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Actually, two sets of operators are used here. The first set is one of the binary oper-

ators (+, −, ×); the second is the mod operator. We need to use parentheses to emphasize

the order of operations. As Figure 2.13 shows, the inputs (a and b) can be members of

Zn or Z. 

Example 2.16

Perform the following operations (the inputs come from Zn):

a. Add 7 to 14 in Z15.

b. Subtract 11 from 7 in Z13. 

c. Multiply 11 by 7 in Z20. 

Solution
The following shows the two steps involved in each case: 

Example 2.17

Perform the following operations (the inputs come from either Z or Zn):

a. Add 17 to 27 in Z14.

b. Subtract 43 from 12 in Z13. 

c. Multiply 123 by −10 in Z19. 

Solution
The following shows the two steps involved in each case: 

Properties

We mentioned that the two inputs to the three binary operations in the modular arithmetic

can come from Z or Zn. The following properties allow us to first map the two inputs to

Zn (if they are coming from Z) before applying the three binary operations (+, −, ×).

Interested readers can find proofs for these properties in Appendix Q. 

Figure 2.14 shows the process before and after applying the above properties.

Although the figure shows that the process is longer if we apply the above properties,

we should remember that in cryptography we are dealing with very large integers.

For example, if we multiply a very large integer by another very large integer, we

(14 + 7) mod 15 → (21) mod 15 = 6

(7 − 11) mod 13 → (−4) mod 13 = 9

(7 × 11) mod 20 → (77) mod 20 = 17

(17 + 27) mod 14        → (44) mod 14 = 2

(12 − 43) mod 13       → (−31) mod 13 = 8

(123 × (−10)) mod 19 → (−1230) mod 19 = 5

First Property:   (a + b) mod n = [(a mod n) + (b mod n)] mod n

Second Property: (a − b) mod n = [(a mod n) − (b mod n)] mod n 

Third Property:  (a × b) mod n = [(a mod n) × (b mod n)] mod n 
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may have an integer that is too large to be stored in the computer. Applying the

above properties make the first two operands smaller before the multiplication oper-

ation is applied. In other words, the properties allow us to work with smaller num-

bers. This fact will manifest itself more clearly in discussion of the exponential

operation in later chapters.

Example 2.18

The following shows the application of the above properties: 

1. (1,723,345 + 2,124,945) mod 11 = (8 + 9) mod 11 = 6

2. (1,723,345 − 2,124,945) mod 16 = (8 − 9) mod 11 = 10

3. (1,723,345 × 2,124,945) mod 16 = (8 × 9) mod 11 = 6

Example 2.19

In arithmetic, we often need to find the remainder of powers of 10 when divided by an integer.

For example, we need to find 10 mod 3, 102 mod 3, 103 mod 3, and so on. We also need to find 10

mod 7, 102 mod 7, 103 mod 7, and so. The third property of the mod operator mentioned above

makes life much easier. 

We have 

Figure 2.14 Properties of mod operator

10n mod x = (10 mod x)n mod x Applying the third property n times.    

10 mod 3 = 1 → 10n mod 3 = (10 mod 3)n 
=

 1 

10 mod 9 = 1 → 10n mod 9 = (10 mod 9)n 
= 1 

10 mod 7 = 3 → 10n mod 7 = (10 mod 7)n 
= 3n mod 7
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Example 2.20

We have been told in arithmetic that the remainder of an integer divided by 3 is the same as the

remainder of the sum of its decimal digits. In other words, the remainder of dividing 6371 by 3

is the same as dividing 17 by 3 because 6 + 3 + 7 + 1 = 17. We can prove this claim using the

properties of the mod operator. We write an integer as the sum of its digits multiplied by the

powers of 10. 

Now we can apply the mod operator to both sides of the equality and use the result of the

previous example that 10n mod 3 is 1.

Inverses

When we are working in modular arithmetic, we often need to find the inverse of a

number relative to an operation. We are normally looking for an additive inverse (rela-

tive to an addition operation) or a multiplicative inverse (relative to a multiplication

operation).

Additive Inverse

In Zn, two numbers a and b are additive inverses of each other if  

In Zn, the additive inverse of a can be calculated as b = n − a. For example, the

additive inverse of 4 in Z10 is 10 − 4 = 6. 

Note that in modular arithmetic, each number has an additive inverse and the inverse is

unique; each number has one and only one additive inverse. However, the inverse of the

number may be the number itself. 

Example 2.21

Find all additive inverse pairs in Z10.

a = an × 10n + . . . + a1 × 101 + a0 × 100

For example: 6371 = 6 × 103 + 3 × 102 + 7 × 101 + 1 × 100

a mod 3 = (an × 10n + . . . + a1 × 101 + a0 × 100) mod 3

              = (an × 10n) mod 3  + . . . + (a1 × 101) mod 3  + (a0 × 100) mod 3

              = (an mod 3) × (10n mod 3) + . . . + (a1 mod 3) × (101 mod 3) + 
                 (a0 mod 3) × (100 mod 3)

              = an mod 3 + . . . + a1 mod 3  + a0 mod 3

              = (an  + . . . + a1 + a0) mod 3 

a + b ≡ 0 (mod n)

In modular arithmetic, each integer has an additive inverse. 

The sum of an integer and its additive inverse is congruent to 0 modulo n. 
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Solution

The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5). In this list, 0 is

the additive inverse of itself; so is 5. Note that the additive inverses are reciprocal; if 4 is the addi-

tive inverse of 6, then 6 is also the additive inverse of 4. 

Multiplicative Inverse

In Zn, two numbers a and b are the multiplicative inverse of each other if  

For example, if the modulus is 10, then the multiplicative inverse of 3 is 7. In other

words, we have (3 × 7) mod 10 = 1.

 It can be proved that a has a multiplicative inverse in Zn if and only if gcd (n, a) = 1.

In this case, a and n are said to be relatively prime. 

Example 2.22

Find the multiplicative inverse of 8 in Z10.

Solution

There is no multiplicative inverse because gcd (10, 8) = 2 ≠ 1. In other words, we cannot find any

number between 0 and 9 such that when multiplied by 8, the result is congruent to 1. 

Example 2.23

Find all multiplicative inverses in Z10.

Solution

There are only three pairs: (1, 1), (3, 7) and (9, 9). The numbers 0, 2, 4, 5, 6, and 8 do not have a

multiplicative inverse. We can see that

Example 2.24

Find all multiplicative inverse pairs in Z11.

Solution

We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 9), and (10, 10). In moving from Z10 to

Z11, the number of pairs doubles. The reason is that in Z11, gcd (11, a) is 1 (relatively prime) for

all values of a except 0. It means all integers 1 to 10 have multiplicative inverses. 

The extended Euclidean algorithm we discussed earlier in the chapter can find the

multiplicative inverse of b in Zn when n and b are given and the inverse exists. To show

a × b ≡ 1 (mod n)

In modular arithmetic, an integer may or may not have a multiplicative inverse. 

When it does, the product of the integer and its multiplicative inverse is congruent 

to 1 modulo n. 

 (1 × 1) mod 10 = 1 (3 × 7) mod 10 = 1 (9 × 9) mod 10 = 1

The integer a in Zn has a multiplicative inverse if and only if gcd (n, a) ≡≡≡≡ 1 (mod n)
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this, let us replace the first integer a with n (the modulus). We can say that the algorithm

can find s and t such s × n + b × t = gcd (n, b). However, if the multiplicative inverse of

b exists, gcd (n, b) must be 1. So the relationship is 

Now we apply the modulo operator to both sides. In other words, we map each side

to Zn. We will have 

Note that [(s × n) mod n] in the third line is 0 because if we divide (s × n) by n, the

quotient is s but the remainder is 0. 

Figure 2.15 shows how we find the multiplicative inverse of a number using the

extended Euclidean algorithm. 

Example 2.25

Find the multiplicative inverse of 11 in Z26. 

(s ×××× n) ++++ (b ×××× t) ==== 1

(s × n + b × t) mod n = 1 mod n

[(s × n) mod n] + [(b × t) mod n] = 1 mod n

0 + [(b × t) mod n] = 1                                    

(b ×  t) mod n = 1              → This means t is the multiplicative inverse of b in Zn 

The extended Euclidean algorithm finds the multiplicative inverses of b in Zn when n 

and b are given and gcd (n, b) ==== 1. 

The multiplicative inverse of b is the value of t after being mapped to Zn. 

Figure 2.15 Using the extended Euclidean algorithm to find the multiplicative inverse
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Solution

We use a table similar to the one we used before with r1 = 26 and r2 = 11. We are interested only

in the value of t. 

The gcd (26, 11) is 1, which means that the multiplicative inverse of 11 exists. The extended

Euclidean algorithm gives t1 = −7. The multiplicative inverse is (−7) mod 26 = 19. In other words,

11 and 19 are multiplicative inverse in Z26. We can see that (11 × 19) mod 26 = 209 mod 26 = 1.

Example 2.26

Find the multiplicative inverse of 23 in Z100. 

Solution

We use a table similar to the one we used before with r1 = 100 and r2 = 23. We are interested only

in the value of t.  

The gcd (100, 23) is 1, which means the inverse of 23 exists. The extended Euclidean algorithm

gives t1 = −13. The inverse is (−13) mod 100 = 87. In other words, 13 and 87 are multiplicative

inverses in Z100. We can see that (23 × 87) mod 100 = 2001 mod 100 = 1.

Example 2.27

Find the inverse of 12 in Z26. 

Solution

We use a table similar to the one we used before, with r1 = 26 and r2 = 12. 

The gcd (26, 12) = 2 ≠ 1, which means there is no multiplicative inverse for 12 in Z26. 

q r1      r2 r t1      t2 t

2  26      11 4    0       1   −2

2  11       4 3     1   −2     5

1    4       3 1  −2      5   −7

3    3       1 0    5    −7   26

        1       0       −7    26      

q r1               r2       r t1           t2 t

4 100            23 8      0            1   −4

2   23              8 7       1         −4   19

1     8              7 1    −4            9 −13

7     7              1 0      9        −13 100

         1             0       −13        100      

q r1              r2 r t1             t2        t

2   26             12 2     0            1   −2

6   12               2 0     1          −2    13

         2               0        −2          13      
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Addition and Multiplication Tables

Figure 2.16 shows two tables for addition and multiplication. In the addition table, each

integer has an additive inverse. The inverse pairs can be found when the result of addi-

tion is zero. We have (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5). In the multiplication

table we have only three multiplicative pairs (1, 1), (3, 7) and (9, 9). The pairs can be

found whenever the result of multiplication is 1. Both tables are symmetric with respect

to the diagonal of elements that moves from the top left to the bottom right, revealing

the commutative property for addition and multiplication (a + b = b + a and a × b = b × a).

The addition table also shows that each row or column is a permutation of another row

or column. This is not true for the multiplication table. 

Different Sets for Addition and Multiplication

In cryptography we often work with inverses. If the sender uses an integer (as the

encryption key), the receiver uses the inverse of that integer (as the decryption key). If

the operation (encryption/decryption algorithm) is addition, Zn can be used as the set of

possible keys because each integer in this set has an additive inverse. On the other hand,

if the operation (encryption/decryption algorithm) is multiplication, Zn cannot be the

set of possible keys because only some members of this set have a multiplicative

inverse. We need another set. The new set, which is a subset of Zn includes only inte-

gers in Zn that have a unique multiplicative inverse. This set is called Zn* . Figure 2.17

shows some instances of two sets. Note that Zn*  can be made from multiplication tables,

such as the one shown in Figure 2.16. 

Each member of Zn has an additive inverse, but only some members have a multi-

plicative inverse. Each member of Zn*  has a multiplicative inverse, but only some

members have an additive inverse. 

Figure 2.16 Addition and multiplication tables for Z10

We need to use Zn when additive inverses are needed; we need to use Zn* when 

multiplicative inverses are needed.  

1

0

2

3

4

5

6

10 2 3 4 5 6

Addition Table in Z10

2 40 3 5  61

2 4 73 5 61

2 43 5 6 7 8

94 73 5 6 8

94 7 05 6 8

9 17 05 6 8

9 17 0 2

7

 7

8

9

0

1

2

3

8

8

9

0

1

2

3

4

9

9

0

1

2

3

4

56 8

7 0 28 1 3 4 5 67 9

8 1 39 2 4 5 6 78 0

9 2 40 3 5 6 7 89 1

Multiplication Table in Z10

1

0

2

3

4

5

6

10 2 3 4 5 6

0 00 0 0 00

1 3 62 4 50

0 42 6 8 0 2

83 20 6 9 5

00 2 44 8 6

0 00 50 5 5

8 06 4 6

7

0

7

4

1

8

5

2

8

0

8

6

4

2

0

8

9

0

9

8

7

6

5

40 2

7 1 07 8 2 9 6 30 4

8 4 08 2 8 6 4 20 6

9 7 59 6 4 3 2 10 8



40 CHAPTER 2 MATHEMATICS OF CRYPTOGRAPHY

Two More Sets

Cryptography often uses two more sets: Zp and Zp*. The modulus in these two sets is a

prime number. Prime numbers will be discussed in later chapters; suffice it to say that a

prime number has only two divisors: integer 1 and itself. 

The set Zp is the same as Zn except that n is a prime. Zp contains all integers from

0 to p − 1. Each member in Zp has an additive inverse; each member except 0 has a

multiplicative inverse. 

The set Zp* is the same as Zn* except that n is a prime. Zp* contains all integers

from 1 to p − 1. Each member in Zp* has an additive and a multiplicative inverse. Zp* is

a very good candidate when we need a set that supports both additive and multiplicative

inverse.

The following shows these two sets when p = 13.   

2.3 MATRICES

In cryptography we need to handle matrices. Although this topic belongs to a special

branch of algebra called linear algebra, the following brief review of matrices is neces-

sary preparation for the study of cryptography. Readers who are familiar with this topic

can skip part or all of this section. The section begins with some definitions and then

shows how to use matrices in modular arithmetic. 

Definitions

A matrix is a rectangular array of l × m elements, in which l is the number of rows and

m is the number of columns. A matrix is normally denoted with a boldface uppercase

letter such as A. The element aij is located in the ith row and jth column. Although

the elements can be a set of numbers, we discuss only matrices with elements in Z.

Figure 2.18 shows a matrix. 

If a matrix has only one row (l = 1), it is called a row matrix; if it has only one col-

umn (m = 1), it is called a column matrix. In a square matrix, in which there is the

Figure 2.17 Some Zn and Zn* sets

Z13 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Z13∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Z6 = {0, 1, 2, 3, 4, 5}

Z7 = {0, 1, 2, 3, 4, 5, 6}

Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Z6
* = {1, 5}

Z7
* = {1, 2, 3, 4, 5, 6}

Z10
* = {1, 3, 7, 9}
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same number of rows and columns (l = m), the elements a11, a22, . . . , amm make the

main diagonal. An additive identity matrix, denoted as 0, is a matrix with all rows and

columns set to 0’s. An identity matrix, denoted as I, is a square matrix with 1s on the

main diagonal and 0s elsewhere. Figure 2.19 shows some examples of matrices with

elements from Z. 

Operations and Relations

In linear algebra, one relation (equality) and four operations (addition, subtraction,

multiplication, and scalar multiplication) are defined for matrices. 

Equality

Two matrices are equal if they have the same number of rows and columns and the corre-

sponding elements are equal. In other words, A = B if we have aij = bij for all i’s and j’s. 

Addition and Subtraction

Two matrices can be added if they have the same number of columns and rows. This

addition is shown as C = A + B. In this case, the resulting matrix C has also the same

number of rows and columns as A or B. Each element of C is the sum of the two corre-

sponding elements of A and B: cij = aij + bij. Subtraction is the same except that each

element of B is subtracted from the corresponding element of A: dij = aij − bij. 

Example 2.28

Figure 2.20 shows an example of addition and subtraction. 

Figure 2.18 A matrix of size l × m 

Figure 2.19 Example of matrices
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Multiplication

We can multiply two matrices of different sizes if the number of columns of the first

matrix is the same as the number of rows of the second matrix. If A is an l × m matrix

and B is an m × p matrix, the product of the two is a matrix C of size l × p. If each ele-

ment of matrix A is called aij, each element of matrix B is called bjk, then each element

of matrix C, cik, can be calculated as 

Example 2.29

Figure 2.21 shows the product of a row matrix (1 × 3) by a column matrix (3 × 1). The result is a

matrix of size 1 × 1. 

Example 2.30

Figure 2.22 shows the product of a 2 × 3 matrix by a 3 × 4 matrix. The result is a 2 × 4 matrix. 

Scalar Multiplication

We can also multiply a matrix by a number (called a scalar). If A is an l × m matrix and x

is a scalar, C = xA is a matrix of size l × m, in which cij = x × aij. 

Figure 2.20 Addition and subtraction of matrices

cik = ∑ aij × bjk = ai1 × b1j + ai2 × b2j + . . . + aim × bmj

Figure 2.21 Multiplication of a row matrix by a column matrix

Figure 2.22 Multiplication of a 2 × 3 matrix by a 3 × 4 matrix
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Example 2.31

Figure 2.23 shows an example of scalar multiplication. 

Determinant

The determinant of a square matrix A of size m × m denoted as det (A) is a scalar cal-

culated recursively as shown below: 

Example 2.32

Figure 2.24 shows how we can calculate the determinant of a 2 × 2 matrix based on the determi-

nant of a 1 × 1 matrix using the above recursive definition. The example shows that when m is 1

or 2, it is very easy to find the determinant of a matrix.

Example 2.33

Figure 2.25 shows the calculation of the determinant of a 3 × 3 matrix. 

Figure 2.23 Scalar multiplication

1. If m = 1, det (A) = a11

2. If m > 1, det (A) = (−1)i+ j 
× aij × det (Aij)

Where Aij is a matrix obtained from A by deleting the ith row and jth column. 

The determinant is defined only for a square matrix.

Figure 2.24 Calculating the determinant of a 2 × 2 matrix

Figure 2.25 Calculating the determinant of a 3 × 3 matrix
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Inverses

Matrices have both additive and multiplicative inverses.

Additive Inverse

The additive inverse of matrix A is another matrix B such that A + B = 0. In other

words, we have bij = − aij for all values of i and j. Normally the additive inverse of A is

defined by −A.

Multiplicative Inverse

The multiplicative inverse is defined only for square matrices. The multiplicative

inverse of a square matrix A is a square matrix B such that A × B = B × A = I. Normally

the multiplicative inverse of A is defined by A−1. The multiplicative inverse exists only

if the det(A) has a multiplicative inverse in the corresponding set. Since no integer has

a multiplicative inverse in Z, there is no multiplicative inverse of a matrix in Z. How-

ever, matrices with real elements have inverses only if det (A) ≠ 0.

Residue Matrices

Cryptography uses residue matrices: matrices with all elements are in Zn. All opera-

tions on residue matrices are performed the same as for the integer matrices except that

the operations are done in modular arithmetic. One interesting result is that a residue

matrix has a multiplicative inverse if the determinant of the matrix has a multiplicative

inverse in Zn. In other words, a residue matrix has a multiplicative inverse if gcd

(det(A), n) = 1.

Example 2.34

Figure 2.26 shows a residue matrix A in Z26 and its multiplicative inverse A−1. We have det(A) = 21

which has the multiplicative inverse 5 in Z26. Note that when we multiply the two matrices, the

result is the multiplicative identity matrix in Z26.

Multiplicative inverses are only defined for square matrices.

Figure 2.26 A residue matrix and its multiplicative inverse
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Congruence

Two matrices are congruent modulo n, written as A ≡ B (mod n), if they have the same

number of rows and columns and all corresponding elements are congruent modulo n.

In other words, A ≡ B (mod n) if aij ≡ bij (mod n) for all i’s and j’s. 

2.4 LINEAR CONGRUENCE

Cryptography often involves solving an equation or a set of equations of one or more

variables with coefficient in Zn. This section shows how to solve equations when the

power of each variable is 1 (linear equation). 

Single-Variable Linear Equations

Let us see how we can solve equations involving a single variablethat is, equations of

the form ax ≡ b (mod n). An equation of this type might have no solution or a limited

number of solutions. Assume that the gcd (a, n) = d. If d b, there is no solution. If d |b,

there are d solutions. 

If d |b, we use the following strategy to find the solutions:

1. Reduce the equation by dividing both sides of the equation (including the modu-

lus) by d.

2. Multiply both sides of the reduced equation by the multiplicative inverse of a to

find the particular solution x0. 

3. The general solutions are x = x0 + k (n /d) for k = 0, 1, . . . , (d − 1).

Example 2.35

Solve the equation 10x ≡ 2 (mod 15). 

Solution
First we find the gcd (10 and 15) = 5. Since 5 does not divide 2, we have no solution. 

Example 2.36

Solve the equation 14x ≡ 12 (mod 18).

Solution
Note that gcd (14 and 18) = 2. Since 2 divides 12, we have exactly two solutions, but first we

reduce the equation.

Both solutions, 6 and 15 satisfy the congruence relation, because (14 × 6) mod 18 = 12 and also

(14 × 15) mod 18 = 12.

14x ≡ 12 (mod 18) →      7x ≡ 6 (mod 9)    →  x ≡ 6 (7−1) (mod 9)

x0 = (6 × 7 −1) mod 9 = (6 × 4) (mod 9) = 6

x1 = x0 + 1 × (18/2) = 15   
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Example 2.37

Solve the equation 3x + 4 ≡ 6 (mod 13).

Solution
First we change the equation to the form ax ≡ b (mod n). We add −4 (the additive inverse of 4) to

both sides, which give 3x ≡ 2 (mod 13). Because gcd (3, 13) = 1, the equation has only one solu-

tion, which is x0 = (2 × 3−1) mod 13 = 18 mod 13 = 5. We can see that the answer satisfies the

original equation: 3 × 5 + 4 ≡ 6 (mod 13).

Set of Linear Equations

We can also solve a set of linear equations with the same modulus if the matrix

formed from the coefficients of the variables is invertible. We make three matrices.

The first is the square matrix made from the coefficients of variables. The second is a

column matrix made from the variables. The third is a column matrix made from the

values at the right-hand side of the congruence operator. We can interpret the set of

equations as matrix multiplication. If both sides of congruence are multiplied by the

multiplicative inverse of the first matrix, the result is the variable matrix at the right-

hand side, which means the problem can be solved by a matrix multiplication as

shown in Figure 2.27.

Example 2.38

Solve the set of following three equations:  

Figure 2.27 Set of linear equations

3x + 5y + 7z ≡ 3 (mod 16)

x + 4y + 13z ≡ 5 (mod 16)

2x + 7y + 3z ≡ 4 (mod 16) 
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Solution

Here x, y, and z play the roles of x1, x2, and x3. The matrix formed by the set of equations is

invertible. We find the multiplicative inverse of the matrix and multiply it by the column matrix

formed from 3, 5, and 4. The result is x ≡ 15 (mod 16), y ≡ 4 (mod 16), and z ≡14 (mod 16). We

can check the answer by inserting these values into the equations. 

2.5 RECOMMENDED READING

For more details about subjects discussed in this chapter, we recommend the following

books and sites. The items enclosed in brackets refer to the reference list at the end of

the book.

Books

Several books give an easy but thorough coverage of number theory including [Ros06],

[Sch99], [Cou99], and [BW00]. Matrices are discussed in any book about linear alge-

bra; [LEF04], [DF04], and [Dur05] are good texts to start with.

WebSites

The following websites give more information about topics discussed in this chapter.

2.6 KEY TERMS

http://en.wikipedia.org/wiki/Euclidean_algorithm

http://en.wikipedia.org/wiki/Multiplicative_inverse

http://en.wikipedia.org/wiki/Additive_inverse

additive inverse main diagonal

binary operation matrix

column matrix modular arithmetic

congruence modulo operator (mod)

congruence operator modulus

determinant multiplicative inverse

divisibility relatively prime

Euclidean algorithm residue

extended Euclidean algorithm residue class

greatest common divisor row matrix

identity matrix scalar

integer arithmetic set of integers, Z

least residue set of residues, Zn

linear congruence square matrix

linear Diophantine equation
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2.7 SUMMARY

❏ The set of integers, denoted by Z, contains all integral numbers from negative

infinity to positive infinity. Three common binary operations defined for integers

are addition, subtraction, and multiplication. Division does not fit in this category

because it produces two outputs instead of one.

❏ In integer arithmetic, if we divide a by n, we can get q and r. The relationship

between these four integers can be shown as a = q × n + r. We say a |b if a = q × n.

We mentioned four properties of divisibility in this chapter. 

❏ Two positive integers can have more than one common divisor. But we are nor-

mally interested in the greatest common divisor. The Euclidean algorithm gives an

efficient and systematic way to calculation of the greatest common divisor of two

integer.

❏ The extended Euclidean algorithm can calculate gcd (a, b) and at the same time

calculate the value of s and t to satisfy the equation as + bt = gcd (a, b).

❏ A linear Diophantine equation of two variables is ax + by = c. It has a particular

and general solution.

❏ In modular arithmetic, we are interested only in remainders; we want to know the

value of r when we divide a by n. We use a new operator called modulo operator

(mod) so that a mod n = r. Now n is called the modulus; r is called the residue.

❏ The result of the modulo operation with modulus n is always an integer between 0

and. We can say that the modulo operation creates a set, which in modular arith-

metic is referred to as the set of least residues modulo n, or Zn.

❏ Mapping from Z to Zn is not one-to-one. Infinite members of Z can map to one

member of Zn. In modular arithmetic, all integers in Z that map to one integer in

Zn are called congruent modulo n. To show that two integers are congruent, we use

the congruence operator (≡).

❏ A residue class [a] is the set of integers congruent modulo n. It is the set of all inte-

gers such that x = a (mod n). 

❏ The three binary operations (addition, subtraction, and multiplication) defined for

the set Z can also be defined for the set Zn. The result may need to be mapped to

Zn using the mod operator.

❏ Several properties were defined for the modulo operation in this chapter. 

❏ In Zn, two numbers a and b are additive inverses of each other if a + b ≡ 0 (mod n).

They are the multiplicative inverse of each other if a × b ≡ 1 (mod n). The integer a

has a multiplicative inverse in Zn if and only if gcd (n, a) = 1 (a and n are relatively

prime).

❏ The extended Euclidean algorithm finds the multiplicative inverses of b in Zn when

n and b are given and gcd (n, b) = 1. The multiplicative inverse of b is the value of

t after being mapped to Zn.

❏ A matrix is a rectangular array of l × m elements, in which l is the number of rows

and m is the number of columns. We show a matrix with a boldface uppercase let-

ter such as A. The element aij is located in the ith row and jth column. 
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❏ Two matrices are equal if they have the same number of rows and columns and the

corresponding elements are equal. 

❏ Addition and subtraction are done only on matrices of equal sizes. We can multiply

two matrices of different sizes if the number of columns of the first matrix is the

same as the number of rows of the second matrix. 

❏ In residue matrices, all elements are in Zn. All operations on residue matrices are

done in modular arithmetic. A residue matrix has an inverse if the determinant of

the matrix has an inverse. 

❏ An equation of the form ax ≡ b (mod n) may have no solution or a limited number

of solutions. If gcd (a, n) |b, there is a limited number of solutions. 

❏ A set of linear equations with the same modulus can be solved if the matrix formed

from the coefficients of variables has an inverse. 

2.8 PRACTICE SET

Review Questions

1. Distinguish between Z and Zn. Which set can have negative integers? How can we

map an integer in Z to an integer in Zn? 

2. List four properties of divisibility discussed in this chapter. Give an integer with

only one divisor. Give an integer with only two divisors. Give an integer with more

than two divisors. 

3. Define the greatest common divisor of two integers. Which algorithm can effec-

tively find the greatest common divisor? 

4. What is a linear Diophantine equation of two variables? How many solutions can

such an equation have? How can the solution(s) be found?

5. What is the modulo operator, and what is its application? List all properties we

mentioned in this chapter for the modulo operation.

6. Define congruence and compare with equality. 

7. Define a residue class and a least residue. 

8. What is the difference between the set Zn and the set Zn*? In which set does each ele-

ment have an additive inverse? In which set does each element have a multiplicative

inverse? Which algorithm is used to find the multiplicative inverse of an integer in Zn? 

9. Define a matrix. What is a row matrix? What is a column matrix? What is a square

matrix? What type of matrix has a determinant? What type of matrix can have an

inverse? 

10. Define linear congruence. What algorithm can be used to solve an equation of type

ax ≡ b (mod n)? How can we solve a set of linear equations? 

Exercises

11. Which of the following relations are true and which are false? 

 5 |26      3 |123       27 127      15 21     23 |96       8 |5
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12. Using the Euclidean algorithm, find the greatest common divisor of the following

pairs of integers.

a. 88 and 220

b. 300 and 42

c. 24 and 320 

d. 401 and 700

13. Solve the following.

a. Given gcd (a, b) = 24, find gcd (a, b, 16). 

b. Given gcd (a, b, c) = 12, find gcd (a, b, c, 16)

c. Find gcd (200, 180, and 450).

d. Find gcd (200, 180, 450, 610).

14. Assume that n is a nonnegative integer. 

a. Find gcd (2n + 1, n).

b. Using the result of part a, find gcd (201, 100), gcd (81, 40), and gcd (501,

250). 

15. Assume that n is a nonnegative integer. 

a. Find gcd (3n + 1, 2n + 1).

b. Using the result of part a, find gcd (301, 201) and gcd (121, 81).

16. Using the extended Euclidean algorithm, find the greatest common divisor of the

following pairs and the value of s and t.

a. 4 and 7

b. 291 and 42

c. 84 and 320 

d. 400 and 60

17. Find the results of the following operations.

a. 22 mod 7

b. 140 mod 10

c. −78 mod 13

d. 0 mod 15

18. Perform the following operations using reduction first.

a. (273 + 147) mod 10

b. (4223 + 17323) mod 10

c. (148 + 14432) mod 12

d. (2467 + 461) mod 12

19. Perform the following operations using reduction first.

a. (125 × 45) mod 10

b. (424 × 32) mod 10

c. (144 × 34) mod 12

d. (221 × 23) mod 22
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20. Use the properties of the mod operator to prove the following:

a. The remainder of any integer when divided by 10 is the rightmost digit. 

b. The remainder of any integer when divided by 100 is the integer made of the

two rightmost digits.

c. The remainder of any integer when divided by 1000 is the integer made of the

three rightmost digits.

21. We have been told in arithmetic that the remainder of an integer divided by 5 is the

same as the remainder of division of the rightmost digit by 5. Use the properties of

the mod operator to prove this claim.

22. We have been told in arithmetic that the remainder of an integer divided by 2 is the

same as the remainder of division of the rightmost digit by 2. Use the properties of

the mod operator to prove this claim. 

23. We have been told in arithmetic that the remainder of an integer divided by 4 is the

same as the remainder of division of the two rightmost digits by 4. Use the proper-

ties of the mod operator to prove this claim.

24. We have been told in arithmetic that the remainder of an integer divided by 8 is the

same as the remainder of division of the rightmost three digits by 8. Use the proper-

ties of the mod operator to prove this claim.

25. We have been told in arithmetic that the remainder of an integer divided by 9 is the

same as the remainder of division of the sum of its decimal digits by 9. In other

words, the remainder of dividing 6371 by 9 is the same as dividing 17 by 9 because

6 + 3 + 7 + 1 = 17. Use the properties of the mod operator to prove this claim. 

26. The following shows the remainders of powers of 10 when divided by 7. We can

prove that the pattern will be repeated for higher powers.  

Using the above information, find the remainder of an integer when divided by 7.

Test your method with 631453672. 

27. The following shows the remainders of powers of 10 when divided by 11. We can

prove that the pattern will be repeated for higher powers.  

Using the above information, find the remainder of an integer when divided by 11.

Test your method with 631453672. 

28. The following shows the remainders of powers of 10 when divided by 13. We can

prove that the pattern will be repeated for higher powers.  

Using the above information, find the remainder of an integer when divided by 13.

Test your method with 631453672. 

100 mod 7 =   1 101 mod 7 =   3 102 mod 7 =   2

103 mod 7 = −1 104 mod 7 = −3 105 mod 7 = −2

100 mod 11 = 1 101 mod 11 = −1 102 mod 11 = 1 103 mod 11 = −1

100 mod 13 =   1 101 mod 13 = −3 102 mod 13 = −4

103 mod 13 = −1 104 mod 13 =   3 105 mod 13 =   4
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29. Let us assign numeric values to the uppercase alphabet (A = 0, B = 1, . . . Z = 25).

We can now do modular arithmetic on the system using modulo 26. 

a. What is (A + N) mod 26 in this system?

b. What is (A + 6) mod 26 in this system?

c. What is (Y − 5) mod 26 in this system?

d. What is (C −10) mod 26 in this system?

30. List all additive inverse pairs in modulus 20.

31. List all multiplicative inverse pairs in modulus 20.

32. Find the multiplicative inverse of each of the following integers in Z180 using the

extended Euclidean algorithm. 

a. 38

b. 7

c. 132

d. 24

33. Find the particular and the general solutions to the following linear Diophantine

equations.

a. 25x + 10y = 15

b. 19x + 13y = 20

c. 14x + 21y = 77

d. 40x + 16y = 88

34. Show that there are no solutions to the following linear Diophantine equations:

a. 15x + 12y = 13

b. 18x + 30y = 20

c. 15x + 25y = 69

d. 40x + 30y = 98

35. A post office sells only 39-cent and 15-cent stamps. Find the number of stamps a

customer needs to buy to put $2.70 postage on a package. Find a few solutions. 

36. Find all solutions to each of the following linear equations:

a. 3x ≡ 4 (mod 5)

b. 4x ≡ 4 (mod 6)

c. 9x ≡ 12 (mod 7)

d. 256x ≡ 442 (mod 60)

37. Find all solutions to each of the following linear equations:

a. 3x + 5 ≡ 4 (mod 5)

b. 4x + 6 ≡ 4 (mod 6)

c. 9x + 4 ≡ 12 (mod 7)

d. 232x + 42 ≡ 248 (mod 50)

38. Find (A × B) mod 16 using the matrices in Figure 2.28.   
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39. In Figure 2.29, find the determinant and the multiplicative inverse of each residue

matrix over Z10. 

40. Find all solutions to the following sets of linear equations:

a. 3x + 5y ≡ 4 (mod 5) 

2x +  y ≡ 3 (mod 5)

b. 3x + 2y ≡ 5 (mod 7)

4x + 6y ≡ 4 (mod 7)

c. 7x + 3y ≡ 3 (mod 7)

4x + 2y ≡ 5 (mod 7)

d. 2x + 3y ≡ 5 (mod 8)

 x + 6y ≡ 3 (mod 8)

Figure 2.28 Matrices for Exercise 38

Figure 2.29 Matrices for Exercise 39
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CHAPTER 3

Traditional Symmetric-Key Ciphers

Objectives

This chapter presents a survey of traditional symmetric-key ciphers used
in the past. By explaining the principles of such ciphers, it prepares the
reader for the next few chapters, which discuss modern symmetric-key
ciphers. This chapter has several objectives: 

❏ To define the terms and the concepts of symmetric-key ciphers

❏ To emphasize the two categories of traditional ciphers: substitution
ciphers and transposition ciphers 

❏ To describe the categories of cryptanalysis used to break the symmetric
ciphers

❏ To introduce the concepts of the stream ciphers and block ciphers 

❏ To discuss some very dominant ciphers used in the past, such as the
Enigma machine 

The general idea behind symmetric-key ciphers will be introduced here
using examples from cryptography. The terms and definitions presented
are used in all later chapters on symmetric-key ciphers. We then discuss
traditional symmetric-key ciphers. These ciphers are not used today, but
we study them for several reasons. First, they are simpler than modern
ciphers and easier to understand. Second, they show the basic foundation
of cryptography and encipherment: This foundation can be used to better
understand modern ciphers. Third, they provide the rationale for using
modern ciphers, because the traditional ciphers can be easily attacked
using a computer. Ciphers that were secure in earlier eras are no longer
secure in this computer age.
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3.1 INTRODUCTION

Figure 3.1 shows the general idea behind a symmetric-key cipher.

 In Figure 3.1, an entity, Alice, can send a message to another entity, Bob, over an
insecure channel with the assumption that an adversary, Eve, cannot understand the
contents of the message by simply eavesdropping over the channel. 

The original message from Alice to Bob is called plaintext; the message that is
sent through the channel is called the ciphertext. To create the ciphertext from the
plaintext, Alice uses an encryption algorithm and a shared secret key. To create the
plaintext from ciphertext, Bob uses a decryption algorithm and the same secret key.
We refer to encryption and decryption algorithms as ciphers. A key is a set of values
(numbers) that the cipher, as an algorithm, operates on. 

Note that the symmetric-key encipherment uses a single key (the key itself may be a
set of values) for both encryption and decryption. In addition, the encryption and decryp-
tion algorithms are inverses of each other. If P is the plaintext, C is the ciphertext, and K is
the key, the encryption algorithm Ek(x) creates the ciphertext from the plaintext; the
decryption algorithm Dk(x) creates the plaintext from the ciphertext. We assume that
Ek(x) and Dk(x) are inverses of each other: they cancel the effect of each other if they are
applied one after the other on the same input. We have 

We can prove that the plaintext created by Bob is the same as the one originated by
Alice. We assume that Bob creates P1; we prove that P1= P:

We need to emphasize that, according to Kerckhoff’s principle (described later), it
is better to make the encryption and decryption public but keep the shared key secret.

Figure 3.1 General idea of symmetric-key cipher

Encryption: C = Ek(P)                        Decryption: P = Dk(C)

In which, Dk(Ek (x)) = Ek(Dk (x)) = x 

Alice: C = Ek (P)                        Bob: P1 = Dk (C) = Dk (Ek(P)) = P
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This means that Alice and Bob need another channel, a secured one, to exchange the
secret key. Alice and Bob can meet once and exchange the key personally. The secured
channel here is the face-to-face exchange of the key. They can also trust a third party to
give them the same key. They can create a temporary secret key using another kind of
cipherasymmetric-key cipherswhich will be described in later chapters. The con-
cern will be dealt with in future chapters. In this chapter, we assume that there is an
established secret key between Alice and Bob. 

Using symmetric-key encipherment, Alice and Bob can use the same key for com-
munication on the other direction, from Bob to Alice. This is why the method is called
symmetric. 

Another element in symmetric-key encipherment is the number of keys. Alice
needs another secret key to communicate with another person, say David. If there are m
people in a group who need to communicate with each other, how many keys are
needed? The answer is (m × (m − 1))/2 because each person needs m − 1 keys to com-
municate with the rest of the group, but the key between A and B can be used in both
directions. We will see in later chapters how this problem is being handled. 

Encryption can be thought of as locking the message in a box; decryption can be
thought of as unlocking the box. In symmetric-key encipherment, the same key locks
and unlocks as shown in Figure 3.2. Later chapters show that the asymmetric-key enci-
pherment needs two keys, one for locking and one for unlocking. 

Kerckhoff’s Principle

Although it may appear that a cipher would be more secure if we hide both the
encryption/decryption algorithm and the secret key, this is not recommended. Based
on Kerckhoff’s principle, one should always assume that the adversary, Eve, knows
the encryption/decryption algorithm. The resistance of the cipher to attack must be
based only on the secrecy of the key. In other words, guessing the key should be so
difficult that there is no need to hide the encryption/decryption algorithm. This prin-
ciple manifests itself more clearly when we study modern ciphers. There are only a
few algorithms for modern ciphers today. The key domain for each algorithm, how-
ever, is so large that it makes it difficult for the adversary to find the key. 

Cryptanalysis

As cryptography is the science and art of creating secret codes, cryptanalysis is the sci-
ence and art of breaking those codes. In addition to studying cryptography techniques,

Figure 3.2 Symmetric-key encipherment as locking and unlocking with the same key

Encryption
algorithm

Decryption
algorithm
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we also need to study cryptanalysis techniques. This is needed, not to break other peo-
ple’s codes, but to learn how vulnerable our cryptosystem is. The study of cryptanalysis
helps us create better secret codes. There are four common types of cryptanalysis
attacks, as shown in Figure 3.3. We will study some of these attacks on particular ciphers
in this and future chapters.

Ciphertext-Only Attack

In a ciphertext-only attack, Eve has access to only some ciphertext. She tries to find
the corresponding key and the plaintext. The assumption is that Eve knows the algo-
rithm and can intercept the ciphertext. The ciphertext-only attack is the most probable
one because Eve needs only the ciphertext for this attack. To thwart the decryption of a
message by an adversary, a cipher must be very resisting to this type of attack. Figure 3.4
shows the process.  

 Various methods can be used in ciphertext-only attack. We mention some common
ones here. 

Brute-Force Attack

In the brute-force method or exhaustive-key-search method, Eve tries to use all possi-
ble keys. We assume that Eve knows the algorithm and knows the key domain (the list of

Figure 3.3 Cryptanalysis attacks
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all possible keys). Using the intercepted cipher, Eve decrypts the ciphertext with every
possible key until the plaintext makes sense. Using brute-force attack was a difficult task
in the past; it is easier today using a computer. To prevent this type of attack, the num-
ber of possible keys must be very large. 

Statistical Attack

The cryptanalyst can benefit from some inherent characteristics of the plaintext lan-
guage to launch a statistical attack. For example, we know that the letter E is the most-
frequently used letter in English text. The cryptanalyst finds the mostly-used character
in the ciphertext and assumes that the corresponding plaintext character is E. After find-
ing a few pairs, the analyst can find the key and use it to decrypt the message. To pre-
vent this type of attack, the cipher should hide the characteristics of the language.

Pattern Attack

Some ciphers may hide the characteristics of the language, but may create some pat-
terns in the ciphertext. A cryptanalyst may use a pattern attack to break the cipher.
Therefore, it is important to use ciphers that make the ciphertext look as random as
possible. 

Known-Plaintext Attack

In a known-plaintext attack, Eve has access to some plaintext/ciphertext pairs
in addition to the intercepted ciphertext that she wants to break, as shown in Figure 3.5. 

The plaintext/ciphertext pairs have been collected earlier. For example, Alice has
sent a secret message to Bob, but she has later made the contents of the message public.
Eve has kept both the ciphertext and the plaintext to use them to break the next secret
message from Alice to Bob, assuming that Alice has not changed her key. Eve uses the
relationship between the previous pair to analyze the current ciphertext. The same
methods used in a ciphertext-only attack can be applied here. This attack is easier to
implement because Eve has more information to use for analysis. However, it is less
likely to happen because Alice may have changed her key or may have not disclosed
the contents of any previous messages.

Figure 3.5 Known-plaintext attack
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Chosen-Plaintext Attack

The chosen-plaintext attack is similar to the known-plaintext attack, but the plaintext/
ciphertext pairs have been chosen by the attacker herself. Figure 3.6 shows the process. 

This can happen, for example, if Eve has access to Alice’s computer. She can
choose some plaintext and intercept the created ciphertext. Of course, she does not have
the key because the key is normally embedded in the software used by the sender. This
type of attack is much easier to implement, but it is much less likely to happen. 

Chosen-Ciphertext Attack

The chosen-ciphertext attack is similar to the chosen-plaintext attack, except that Eve
chooses some ciphertext and decrypts it to form a ciphertext/plaintext pair. This can
happen if Eve has access to Bob’s computer. Figure 3.7 shows the process.  

Categories of Traditional Ciphers

We can divide traditional symmetric-key ciphers into two broad categories: substitution
ciphers and transposition ciphers. In a substitution cipher, we replace one symbol in the

Figure 3.6 Chosen-plaintext attack

Figure 3.7 Chosen-ciphertext attack
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ciphertext with another symbol; in a transposition cipher, we reorder the position of
symbols in the plaintext. 

3.2 SUBSTITUTION CIPHERS

A substitution cipher replaces one symbol with another. If the symbols in the plaintext
are alphabetic characters, we replace one character with another. For example, we can
replace letter A with letter D, and letter T with letter Z. If the symbols are digits (0 to 9),
we can replace 3 with 7, and 2 with 6. Substitution ciphers can be categorized as either
monoalphabetic ciphers or polyalphabetic ciphers. 

Monoalphabetic Ciphers

We first discuss a group of substitution ciphers called the monoalphabetic ciphers. In
monoalphabetic substitution, a character (or a symbol) in the plaintext is always
changed to the same character (or symbol) in the ciphertext regardless of its position in
the text. For example, if the algorithm says that letter A in the plaintext is changed to
letter D, every letter A is changed to letter D. In other words, the relationship between
letters in the plaintext and the ciphertext is one-to-one.  

Example 3.1

The following shows a plaintext and its corresponding ciphertext. We use lowercase characters to
show the plaintext; we use uppercase characters to show the ciphertext. The cipher is probably
monoalphabetic because both l’s (els) are encrypted as O’s.

Example 3.2

The following shows a plaintext and its corresponding ciphertext. The cipher is not monoalpha-
betic because each l (el) is encrypted by a different character. The first l (el) is encrypted as N; the
second as Z. 

A substitution cipher replaces one symbol with another.

In monoalphabetic substitution, the relationship between a symbol in the plaintext to a 

symbol in the ciphertext is always one-to-one. 

Plaintext: hello Ciphertext: KHOOR

Plaintext: hello Ciphertext: ABNZF
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Additive Cipher

The simplest monoalphabetic cipher is the additive cipher. This cipher is sometimes
called a shift cipher and sometimes a Caesar cipher, but the term additive cipher better
reveals its mathematical nature. Assume that the plaintext consists of lowercase letters
(a to z), and that the ciphertext consists of uppercase letters (A to Z). To be able to
apply mathematical operations on the plaintext and ciphertext, we assign numerical
values to each letter (lower- or uppercase), as shown in Figure 3.8. 

In Figure 3.8 each character (lowercase or uppercase) is assigned an integer in Z26.
The secret key between Alice and Bob is also an integer in Z26. The encryption algorithm
adds the key to the plaintext character; the decryption algorithm subtracts the key from
the ciphertext character. All operations are done in Z26. Figure 3.9. shows the process.

We can easily prove that the encryption and decryption are inverse of each other
because plaintext created by Bob (P1) is the same as the one sent by Alice (P). 

P1 = (C − k) mod 26 = (P + k − k) mode 26 = P 

Example 3.3

Use the additive cipher with key = 15 to encrypt the message “hello”.

Solution
We apply the encryption algorithm to the plaintext, character by character:

Figure 3.8 Representation of plaintext and ciphertext characters in Z26

Figure 3.9 Additive cipher

When the cipher is additive, the plaintext, ciphertext, and key are integers in Z26.

Plaintext

Value 01 05 06 07 09 10 11 12 13 14 15 16 1708 18 19 2000 21 22 23 24 25

A B C D E F G H J K L M N O P Q RI S T U V W X Y Z

a b c d e f g h j k l m n o p q ri s t u v w x y z

Ciphertext

02 0403

P

C C

Alice Bob 
Plaintext

Ciphertext

Plaintext

k

Encryption Decryption

C = (P + k) mod 26
k

P

P = (C − k) mod 26
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The result is “WTAAD”. Note that the cipher is monoalphabetic because two instances of the
same plaintext character (l’s) are encrypted as the same character (A).

Example 3.4

Use the additive cipher with key = 15 to decrypt the message “WTAAD”.

Solution

We apply the decryption algorithm to the plaintext character by character:

The result is “hello”. Note that the operation is in modulo 26 (see Chapter 2), which means that a
negative result needs to be mapped to Z26 (for example −15 becomes 11). 

Shift Cipher

Historically, additive ciphers are called shift ciphers. The reason is that the encryption algo-
rithm can be interpreted as “shift key characters down” and the encryption algorithm can be
interpreted as “shift key character up”. For example, if the key = 15, the encryption algo-
rithm shifts 15 characters down (toward the end of the alphabet). The decryption algorithm
shifts 15 characters up (toward the beginning of the alphabet). Of course, when we reach
the end or the beginning of the alphabet, we wrap around (manifestation of modulo 26). 

Caesar Cipher

Julius Caesar used an additive cipher to communicate with his officers. For this reason,
additive ciphers are sometimes referred to as the Caesar cipher. Caesar used a key of 3
for his communications. 

Cryptanalysis

Additive ciphers are vulnerable to ciphertext-only attacks using exhaustive key
searches (brute-force attacks). The key domain of the additive cipher is very small;
there are only 26 keys. However, one of the keys, zero, is useless (the ciphertext is the
same as the plaintext). This leaves only 25 possible keys. Eve can easily launch a brute-
force attack on the ciphertext.   

Plaintext: h → 07 Encryption: (07 + 15) mod 26 Ciphertext: 22 → W

Plaintext: e → 04 Encryption: (04 + 15) mod 26 Ciphertext: 19 → T

Plaintext: l  → 11 Encryption: (11 + 15) mod 26 Ciphertext: 00 → A

Plaintext: l  → 11 Encryption: (11 + 15) mod 26 Ciphertext: 00 → A 

Plaintext: o → 14 Encryption: (14 + 15) mod 26 Ciphertext: 03 → D 

Ciphertext: W → 22 Decryption: (22 − 15) mod 26 Plaintext: 07 → h

Ciphertext: T  → 19 Decryption: (19 − 15) mod 26 Plaintext: 04 → e

Ciphertext: A  → 00 Decryption: (00 − 15) mod 26 Plaintext: 11 → l

Ciphertext: A  → 00 Decryption: (00 − 15) mod 26 Plaintext: 11 → l

Ciphertext: D  → 03 Decryption: (03 − 15) mod 26 Plaintext: 14 → o

 Additive ciphers are sometimes referred to as shift ciphers or Caesar cipher.
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Example 3.5

Eve has intercepted the ciphertext “UVACLYFZLJBYL”. Show how she can use a brute-force
attack to break the cipher. 

Solution
Eve tries keys from 1 to 7. With a key of 7, the plaintext is “not very secure”, which makes sense.

Additive ciphers are also subject to statistical attacks. This is especially true if the
adversary has a long ciphertext. The adversary can use the frequency of occurrence of
characters for a particular language. Table 3.1 shows the frequency for an English text
of 100 characters.

However, sometimes it is difficult to analyze a ciphertext based only on information
about the frequency of a single letter; we may need to know the occurrence of specific
letter combinations. We need to know the frequency of two-letter or three-letter strings
in the ciphertext and compare them with the frequency of two-letter or three-letter
strings in the underlying language of the plaintext.

 The most common two-letter groups (digrams) and three-letter groups (trigrams)
for the English text are shown in Table 3.2.  

Ciphertext: UVACLYFZLJBYL

K = 1    → Plaintext: tuzbkxeykiaxk

K = 2    → Plaintext: styajwdxjhzwj

K = 3    → Plaintext: rsxzivcwigyvi

K = 4    → Plaintext: qrwyhubvhfxuh

K = 5    → Plaintext: pqvxgtaugewtg

K = 6    → Plaintext: opuwfsztfdvsf

K = 7    → Plaintext: notverysecure

Table 3.1 Frequency of occurrence of letters in an English text 

Letter Frequency Letter Frequency Letter Frequency Letter Frequency

E 12.7 H 6.1 W 2.3 K 0.08

T 9.1 R 6.0 F 2.2 J 0.02

A 8.2 D 4.3 G 2.0 Q 0.01

O 7.5 L 4.0 Y 2.0 X 0.01

I 7.0 C 2.8 P 1.9 Z 0.01

N 6.7 U 2.8 B 1.5

S 6.3 M 2.4 V 1.0

Table 3.2 Grouping of digrams and trigrams based on their frequency in English 

Digram TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, 
EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF

Trigram THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH
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Example 3.6

Eve has intercepted the following ciphertext. Using a statistical attack, find the plaintext.

Solution
When Eve tabulates the frequency of letters in this ciphertext, she gets: I =14, V =13, S =12, and
so on. The most common character is I with 14 occurrences. This shows that character I in the
ciphertext probably corresponds to the character e in plaintext. This means key = 4. Eve deci-
phers the text to get

Multiplicative Ciphers

In a multiplicative cipher, the encryption algorithm specifies multiplication of the
plaintext by the key and the decryption algorithm specifies division of the ciphertext by
the key as shown in Figure 3.10. However, since operations are in Z26, decryption here
means multiplying by the multiplicative inverse of the key. Note that the key needs to
belong to the set Z26* to guarantee that the encryption and decryption are inverses of
each other.   

Example 3.7

What is the key domain for any multiplicative cipher?

Solution
The key needs to be in Z26*. This set has only 12 members: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21,
23, 25. 

XLILSYWIMWRSAJSVWEPIJSVJSYVQMPPMSRHSPPEVWMXMWASVX-LQSVILY-
VVCFIJSVIXLIWIPPIVVIGIMZIWQSVISJJIVW

the house is now for sale for four million dollars it is worth more hurry before the seller 
receives more offers

Figure 3.10 Multiplicative cipher 

In a multiplicative cipher, the plaintext and ciphertext are integers in Z26; the key 

is an integer in Z26*. 
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Encryption Decryption

C = (P ⋅ k) mod 26
k

P

C = (P ⋅ k−1) mod 26
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Example 3.8

We use a multiplicative cipher to encrypt the message “hello” with a key of 7. The ciphertext is
“XCZZU”.

Affine Cipher

We can combine the additive and multiplicative ciphers to get what is called the affine

ciphera combination of both ciphers with a pair of keys. The first key is used with
the multiplicative cipher; the second key is used with the additive cipher. Figure 3.11
shows that the affine cipher is actually two ciphers, applied one after another. We could
have shown only one complex operation for the encryption or decryption such as C =
(P × k1 + k2) mod 26 and P = ((C − k2) × k1

−1) mod 26. However, we have used a tem-
porary result (T) and have indicated two separate operations to show that whenever we use
a combination of ciphers we should be sure that each one has an inverse at the other side of
the line and that they are used in reverse order in the encryption and decryption. If addition
is the last operation in encryption, then subtraction should be the first in decryption. 

In the affine cipher, the relationship between the plaintext P and the ciphertext C is

Example 3.9

The affine cipher uses a pair of keys in which the first key is from Z26* and the second is from Z26.
The size of the key domain is 26 × 12 = 312. 

Plaintext: h → 07 Encryption: (07 × 07) mod 26 ciphertext: 23 → X

Plaintext: e → 04 Encryption: (04 × 07) mod 26 ciphertext: 02 → C

Plaintext: l  → 11 Encryption: (11 × 07) mod 26 ciphertext: 25 → Z

Plaintext: l  → 11 Encryption: (11 × 07) mod 26 ciphertext: 25 → Z 

Plaintext: o → 14 Encryption: (14 × 07) mod 26 ciphertext: 20 → U

Figure 3.11 Affine cipher

C = (P × k1 + k2) mod 26                                P = ((C − k2) × k1
−1) mod 26 

where k1
−1 is the multiplicative inverse of k1 and −k2 is the additive inverse of k2 

P

C

Alice Bob 
Plaintext

key key

Ciphertext

Plaintext

k1

k2

k1

k2

Encryption Decryption

T = (P ⋅ k1) mod 26

C = (T + k2) mod 26

P

P = (T ⋅ k1
−1) mod 26

T = (C − k2) mod 26
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Example 3.10

Use an affine cipher to encrypt the message “hello” with the key pair (7, 2).

Solution
We use 7 for the multiplicative key and 2 for the additive key. We get “ZEBBW”.

Example 3.11

Use the affine cipher to decrypt the message “ZEBBW” with the key pair (7, 2) in modulus 26.

Solution
Add the additive inverse of − 2 ≡ 24 (mod 26) to the received ciphertext. Then multiply the result
by the multiplicative inverse of 7−1 ≡ 15 (mod 26) to find the plaintext characters. Because 2 has
an additive inverse in Z26 and 7 has a multiplicative inverse in Z26∗, the plaintext is exactly what
we used in Example 3.10.

Example 3.12

The additive cipher is a special case of an affine cipher in which k1 = 1. The multiplicative cipher
is a special case of affine cipher in which k2 = 0.

Cryptanalysis of Affine Cipher

Although the brute-force and statistical method of ciphertext-only attack can be
used, let us try a chosen-plaintext attack. Assume that Eve intercepts the following
ciphertext:

Eve also very briefly obtains access to Alice’s computer and has only enough time
to type a two-letter plaintext: “et”. She then tries to encrypt the short plaintext using
two different algorithms, because she is not sure which one is the affine cipher.  

P: h → 07 Encryption: (07 × 7 + 2) mod 26 C: 25 → Z
P: e → 04 Encryption: (04 × 7 + 2) mod 26 C: 04 → E
P: l  → 11 Encryption: (11 × 7 + 2) mod 26 C: 01 → B
P: l  → 11 Encryption: (11 × 7 + 2) mod 26 C: 01 → B

P: o → 14 Encryption: (14 × 7 + 2) mod 26 C: 22 → W

 C: Z  →  25 Decryption: ((25 − 2) × 7-1) mod 26 P:07 → h

 C: E  →  04 Decryption: ((04 − 2) × 7-1) mod 26 P:04 → e

 C: B  →  01 Decryption: ((01 − 2) × 7-1) mod 26 P:11 → l

 C: B  →  01 Decryption: ((01 − 2) × 7-1) mod 26 P:11 → l

 C: W →  22 Decryption: ((22 − 2) × 7-1) mod 26 P:14 → o

PWUFFOGWCHFDWIWEJOUUNJORSMDWRHVCMWJUPVCCG

Algorithm 1: Plaintext: et ciphertext: → WC

Algorithm 2: Plaintext: et ciphertext: → WF
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 To find the key, Eve uses the following strategy: 

a. Eve knows that if the first algorithm is affine, she can construct the following two
equations based on the first data set. 

As we learned in Chapter 2, these two congruence equations can be solved and the
values of k1 and k2 can be found. However, this answer is not acceptable because
k1 = 16 cannot be the first part of the key. Its value, 16, does not have a multiplica-
tive inverse in Z26*. 

b. Eve now tries the result of the second set of data. 

The square matrix and its inverse are the same. Now she has k1 = 11 and k2 = 4.
This pair is acceptable because k1 has a multiplicative inverse in Z26∗. She tries the
pair of keys (19, 22), which are the inverse of the pair (11, 4), to decipher the mes-
sage. The plaintext is   

Monoalphabetic Substitution Cipher

Because additive, multiplicative, and affine ciphers have small key domains, they are
very vulnerable to brute-force attack. After Alice and Bob agreed to a single key, that
key is used to encrypt each letter in the plaintext or decrypt each letter in the ciphertext.
In other words, the key is independent from the letters being transferred.

A better solution is to create a mapping between each plaintext character and the
corresponding ciphertext character. Alice and Bob can agree on a table showing the
mapping for each character. Figure 3.12 shows an example of such a mapping. 

e → W               04 → 22               (04 × k1 + k2) ≡ 22 (mod 26) 

t → C                19 → 02                (19 × k1 + k2) ≡ 02 (mod 26) 

e → W               04 → 22               (04 × k1 + k2)  ≡  22 (mod 26) 

t → F                19 → 05               (19 × k1 + k2)  ≡  05 (mod 26) 

best time of the year is spring when flowers bloom

Figure 3.12 An example key for monoalphabetic substitution cipher
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Example 3.13

 

We can use the key in Figure 3.12 to encrypt the message 

The ciphertext is

 

Cryptanalysis

 

The size of the key space for the monoalphabetic substitution cipher is 26! (almost
4 

 
× 

 
10

 

26

 
). This makes a brute-force attack extremely difficult for Eve even if she is

using a powerful computer. However, she can use statistical attack based on the fre-
quency of characters. The cipher does not change the frequency of characters. 

 

Polyalphabetic Ciphers

 

In 

 

polyalphabetic substitution,

 

 each occurrence of a character may have a different
substitute. The relationship between a character in the plaintext to a character in the
ciphertext is one-to-many. For example, “a” could be enciphered as “D” in the begin-
ning of the text, but as “N” at the middle. Polyalphabetic ciphers have the advantage of
hiding the letter frequency of the underlying language. Eve cannot use single-letter fre-
quency statistic to break the ciphertext. 

To create a polyalphabetic cipher, we need to make each ciphertext character
dependent on both the corresponding plaintext character and the position of the plain-
text character in the message. This implies that our key should be a stream of subkeys,
in which each subkey depends somehow on the position of the plaintext character that
uses that subkey for encipherment. In other words, we need to have a key stream 
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) in which 

 

k

 

i

 

 is used to encipher the 

 

i

 

th character in the plaintext to create
the 

 

i

 

th character in the ciphertext. 

 

Autokey Cipher

 

To see the position dependency of the key, let us discuss a simple polyalphabetic cipher
called the 

 

autokey

 

 

 

cipher.

 

 In this cipher, the key is a stream of subkeys, in which each
subkey is used to encrypt the corresponding character in the plaintext. The first subkey
is a predetermined value secretly agreed upon by Alice and Bob. The second subkey is
the value of the first plaintext character (between 0 and 25). The third subkey is the
value of the second plaintext. And so on.  

 

this message is easy to encrypt but hard to find the key

ICFVQRVVNEFVRNVSIYRGAHSLIOJICNHTIYBFGTICRXRS

 

The monoalphabetic ciphers do not change the frequency of characters in the ciphertext, 

which makes the ciphers vulnerable to statistical attack. 
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The name of the cipher, 

 

autokey

 

, implies that the subkeys are automatically created
from the plaintext cipher characters during the encryption process. 

 

Example 3.14

 

Assume that Alice and Bob agreed to use an autokey cipher with initial key value 

 

k

 

1

 

 = 12. Now
Alice wants to send Bob the message “Attack is today”. Enciphering is done character by charac-
ter. Each character in the plaintext is first replaced by its integer value as shown in Figure 3.8.
The first subkey is added to create the first ciphertext character. The rest of the key is created as
the plaintext characters are read. Note that the cipher is polyalphabetic because the three occur-
rences of “a” in the plaintext are encrypted differently. The three occurrences of the “t” are enci-
phered differently.     

Cryptanalysis

 

The autokey cipher definitely hides the single-letter frequency statistics of the plain-
text. However, it is still as vulnerable to the brute-force attack as the additive cipher.
The first subkey can be only one of the 25 values (1 to 25). We need polyalphabetic
ciphers that not only hide the characteristics of the language but also have large key
domains. 

 

Playfair Cipher

 

Another example of a polyalphabetic cipher is the 

 

Playfair cipher

 

 used by the British
army during World War I. The secret key in this cipher is made of 25 alphabet letters
arranged in a 5 

 

×

 

 5 matrix (letters I and J are considered the same when encrypting).
Different arrangements of the letters in the matrix can create many different secret
keys. One of the possible arrangements is shown in Figure 3.13. We have dropped the
letters in the matrix diagonally starting from the top right-hand corner. 
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Plaintext: a t t a c k i s t o d a y

P’s Values: 00 19 19 00 02 10 08 18 19 14 03 00 24

Key stream: 

 

12 00 19 19 00 02 10 08 18 19 14 03 00

 

C’s Values: 12 19 12 19 02 12 18 00 11 7 17 03 24

Ciphertext: 

 

M T M T C M S A L H R D Y

 

Figure 3.13

 

An example of a secret key in the Playfair cipher
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Before encryption, if the two letters in a pair are the same, a bogus letter is inserted to
separate them. After inserting bogus letters, if the number of characters in the plaintext is
odd, one extra bogus character is added at the end to make the number of characters even.

The cipher uses three rules for encryption:

a. If the two letters in a pair are located in the same row of the secret key, the corre-
sponding encrypted character for each letter is the next letter to the right in the
same row (with wrapping to the beginning of the row if the plaintext letter is the
last character in the row).

b. If the two letters in a pair are located in the same column of the secret key, the cor-
responding encrypted character for each letter is the letter beneath it in the same
column (with wrapping to the beginning of the column if the plaintext letter is the
last character in the column).

c. If the two letters in a pair are not in the same row or column of the secret, the cor-
responding encrypted character for each letter is a letter that is in its own row but
in the same column as the other letter. 

The Playfair cipher meets our criteria for a polyalphabetic cipher. The key is a
stream of subkeys in which the subkeys are created two at a time. In Playfair cipher, the
key stream and the cipher stream are the same. This means that the above-mentioned
rules can be thought of as the rules for creating the key stream. The encryption algo-
rithm takes a pair of characters from the plaintext and creates a pair of subkeys by
following the above-mentioned rules. We can say that the key stream depends on the
position of the character in the plaintext. Position dependency has a different inter-
pretation here: the subkey for each plaintext character depends on the next or previ-
ous neighbor. Looking at the Playfair cipher in this way, the ciphertext is actually
the key stream.  

Example 3.15

Let us encrypt the plaintext “hello” using the key in Figure 3.13. When we group the letters in
two-character pairs, we get “he, ll, o”. We need to insert an x between the two l’s (els), giving
“he, lx, lo”. We have

We can see from this example that the cipher is actually a polyalphabetic cipher: the two
occurrences of the letter “l” (el) are encrypted as “Q” and “B”. 

Cryptanalysis of a Playfair Cipher

Obviously a brute-force attack on a Playfair cipher is very difficult. The size of the key
domain is 25! (factorial 25). In addition, the encipherment hides the single-letter

P = P1P2P3 …                    C= C1C2C3…               k= [(k1, k2), (k3, k4), …]

Encryption: Ci = ki                           Decryption: Pi = ki 

he →  EC                 lx →  QZ                   lo →  BX

Plaintext: hello                     Ciphertext: ECQZBX
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frequency of the characters. However, the frequencies of diagrams are preserved (to
some extent because of filler insertion), so a cryptanalyst can use a ciphertext-only
attack based on the digram frequency test to find the key. 

Vigenere Cipher

One interesting kind of polyalphabetic cipher was designed by Blaise de Vigenere, a
sixteenth-century French mathematician. A Vigenere cipher uses a different strategy to
create the key stream. The key stream is a repetition of an initial secret key stream of
length m, where we have 1 ≤ m ≤ 26. The cipher can be described as follows where (k1,
k2, …, km) is the initial secret key agreed to by Alice and Bob.     

One important difference between the Vigenere cipher and the other two poly-
alphabetic ciphers we have looked at, is that the Vigenere key stream does not depend
on the plaintext characters; it depends only on the position of the character in the
plaintext. In other words, the key stream can be created without knowing what the
plaintext is.

Example 3.16

Let us see how we can encrypt the message “She is listening” using the 6-character keyword
“PASCAL”. The initial key stream is (15, 0, 18, 2, 0, 11). The key stream is the repetition of this
initial key stream (as many times as needed).  

Example 3.17

Vigenere cipher can be seen as combinations of m additive ciphers. Figure 3.14 shows how the
plaintext of the previous example can be thought of as six different pieces, each encrypted sepa-
rately. The figure helps us later understand the cryptanalysis of Vigenere ciphers. There are m
pieces of the plaintext, each encrypted with a different key, to make m pieces of ciphertext. 

Example 3.18

Using Example 3.18, we can say that the additive cipher is a special case of Vigenere cipher in
which m = 1. 

Vigenere Tableau

Another way to look at Vigenere ciphers is through what is called a Vigenere tableau

shown in Table 3.3.  

P = P1P2P3 …                    C = C1C2C3 …               K = [(k1, k2, …, km), (k1, k2, …, km), …]

Encryption: Ci = Pi + ki                          Decryption: Pi = Ci − ki 

Plaintext: s h e i s l i s t e n i n g

P’s values: 18 07 04 08 18 11 08 18 19 04 13 08 13 06

Key stream: 15 00 18 02 00 11 15 00 18 02 00 11 15 00

C’s values: 07 07 22 10 18 22 23 18 11 6 13 19 02 06

Ciphertext: H H W K S W X S L G N T C G
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Figure 3.14 A Vigenere cipher as a combination of m additive ciphers

Table 3.3 A Vigenere tableau 

a b c d e f g h i j k l m n o p q r s t v v w x y z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
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The first row shows the plaintext character to be encrypted. The first column con-
tains the characters to be used by the key. The rest of the tableau shows the ciphertext
characters.To find the ciphertext for the plaintext “she is listening” using the word
“PASCAL” as the key, we can find “s” in the first row, “P” in the first column, the cross
section is the ciphertext character “H”. We can find “h” in the first row and “A” in the
second column, the cross section is the ciphertext character “H”. We do the same until
all ciphertext characters are found. 

Cryptanalysis of Vigenere Ciphers

Vigenere ciphers, like all polyalphabetic ciphers, do not preserve the frequency of char-
acters. However, Eve still can use some techniques to decipher an intercepted cipher-
text. The cryptanalysis here consists of two parts: finding the length of the key and
finding the key itself. 

1. Several methods have been devised to find the length of the key. One method is dis-
cussed here. In the so-called Kasiski test, the cryptanalyst searches for repeated text
segments, of at least three characters, in the ciphertext. Suppose that two of these
segments are found and the distance between them is d. The cryptanalyst assumes
that d|m where m is the key length. If more repeated segments can be found with dis-
tances d1, d2, …, dn, then gcd (d1, d2, …, dn)/m. This assumption is logical because
if two characters are the same and are k × m (k = 1, 2, …) characters apart in the
plaintext, they are the same and k × m characters apart in the ciphertext. Cryptanalyst
uses segments of at least three characters to avoid the cases where the characters in
the key are not distinct. Example 3.20 may help us to understand the reason. 

2. After the length of the key has been found, the cryptanalyst uses the idea shown in
Example 3.18. She divides the ciphertext into m different pieces and applies the
method used to cryptanalyze the additive cipher, including frequency attack. Each
ciphertext piece can be decrypted and put together to create the whole plaintext. In
other words, the whole ciphertext does not preserve the single-letter frequency of
the plaintext, but each piece does. 

Example 3.19

Let us assume we have intercepted the following ciphertext:

The Kasiski test for repetition of three-character segments yields the results shown in Table 3.4.  

LIOMWGFEGGDVWGHHCQUCRHRWAGWIOWQLKGZETKKMEVLWPCZVGTH-

VTSGXQOVGCSVETQLTJSUMVWVEUVLXEWSLGFZMVVWLGYHCUSWXQH-

KVGSHEEVFLCFDGVSUMPHKIRZDMPHHBVWVWJWIXGFWLTSHGJOUEEHH-

VUCFVGOWICQLTJSUXGLW

Table 3.4 Kasiski test for Example 3.19

String First Index Second Index Difference

JSU 68 168 100

SUM 69 117 48

VWV 72 132 60

MPH 119 127 8
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The greatest common divisor of differences is 4, which means that the key length is multiple

of 4. First try m = 4. Divide the ciphertext into four pieces. Piece C1 is made of characters 1, 5, 9,

…; piece C2 is made of characters 2, 6, 10, …; and so on. Use the statistical attack on each piece

separately. Interleave the decipher pieces one character at a time to get the whole plaintext. If the

plaintext does not make sense, try with another m.  

In this case, the plaintext makes sense. 

Hill Cipher

Another interesting example of a polyalphabetic cipher is the Hill cipher invented by

Lester S. Hill. Unlike the other polyalphabetic ciphers we have already discussed, the

plaintext is divided into equal-size blocks. The blocks are encrypted one at a time in

such a way that each character in the block contributes to the encryption of other char-

acters in the block. For this reason, the Hill cipher belongs to a category of ciphers

called block ciphers. The other ciphers we studied so far belong to the category called

stream ciphers. The differences between block and stream ciphers are discussed at the

end of this chapter. 

In a Hill cipher, the key is a square matrix of size m × m in which m is the size

of the block. If we call the key matrix K, each element of the matrix is ki,j as shown in

Figure 3.15. 

C1: LWGWCRAOKTEPGTQCTJVUEGVGUQGECVPRPVJGTJEUGCJG

P1: jueuapymircneroarhtsthihytrahcieixsthcarrehe

C2: IGGGQHGWGKVCTSOSQSWVWFVYSHSVFSHZHWWFSOHCOQSL

P2: usssctsiswhofeaeceihcetesoecatnpntherhctecex

C3: OFDHURWQZKLZHGVVLUVLSZWHWKHFDUKDHVIWHUHFWLUW

P3: lcaerotnwhiwedssirsiirhketehretltiideatrairt

C4: MEVHCWILEMWVVXGETMEXLMLCXVELGMIMBWXLGEVVITX

P4: iardysehaisrrtcapiafpwtethecarhaesfterectpt

Julius Caesar used a cryptosystem in his wars, which is now referred to as Caesar cipher. 

It is an additive cipher with the key set to three. Each character in the plaintext is 

shifted three characters to create ciphertext.

Figure 3.15 Key in the Hill cipher
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Let us show how one block of the ciphertext is encrypted. If we call the m charac-
ters in the plaintext block P1, P2, …, Pm, the corresponding characters in the ciphertext
block are C1, C2, …, Cm. Then we have      

The equations show that each ciphertext character such as C1 depends on all
plaintext characters in the block (P1, P2, …, Pm). However, we should be aware that not
all square matrices have multiplicative inverses in Z26, so Alice and Bob should be
careful in selecting the key. Bob will not be able to decrypt the ciphertext sent by Alice
if the matrix does not have a multiplicative inverse. 

Example 3.20

Using matrices allows Alice to encrypt the whole plaintext. In this case, the plaintext is an l × m
matrix in which l is the number of blocks. For example, the plaintext “code is ready” can make a
3 × 4 matrix when adding extra bogus character “z” to the last block and removing the spaces.
The ciphertext is “OHKNIHGKLISS”. Bob can decrypt the message using the inverse of the key
matrix. Encryption and decryption are shown in Figure 3.16.

Cryptanalysis of Hill Ciphers

Ciphertext-only cryptanalysis of Hill ciphers is difficult. First, a brute-force attack on a
Hill cipher is extremely difficult because the key is an m × m matrix. Each entry in the
matrix can have one of the 26 values. At first glance, this means that the size of the key

C1 = P1 k11 + P2 k21 + · · · +  Pm km1

C2 = P1 k12 + P2 k22 + · · · +  Pm km2

· · ·

Cm = P1 k1m + P2 k2m + · · · +  Pm kmm

The key matrix in the Hill cipher needs to have a multiplicative inverse.

Figure 3.16 Example 3.20
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C P
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b. Decryption
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K−1
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domain is 26m × m. However, not all of the matrices have multiplicative inverses. The

key domain is smaller, but still huge.

Second, Hill ciphers do not preserve the statistics of the plaintext. Eve cannot run

frequency analysis on single letters, digrams, or trigrams. A frequency analysis of words

of size m might work, but this is very rare that a plaintext has many strings of size m

that are the same. 

Eve, however, can do a known-plaintext attack on the cipher if she knows the value

of m and knows the plaintext/ciphertext pairs for at least m blocks. The blocks can

belong to the same message or different messages but should be distinct. Eve can create

two m × m matrices, P (plaintext) and C (ciphertext) in which the corresponding rows

represent the corresponding known plaintext/ciphertext pairs. Because C = PK, Eve

can use the relationship K = CP−1 to find the key if P is invertible. If P is not invertible,

then Eve needs to use a different set of m plaintext/ciphertext pairs. 

If Eve does not know the value of m, she can try different values provided that m is

not very large. 

Example 3.21

Assume that Eve knows that m = 3. She has intercepted three plaintext/ciphertext pair blocks (not

necessarily from the same message) as shown in Figure 3.17. 

She makes matrices P and C from these pairs. Because P is invertible, she inverts the P

matrix and multiplies it by C to get the K matrix as shown in Figure 3.18. 

Now she has the key and can break any ciphertext encrypted with that key. 

One-Time Pad

One of the goals of cryptography is perfect secrecy. A study by Shannon has shown

that perfect secrecy can be achieved if each plaintext symbol is encrypted with a key

Figure 3.17 Example 3.22, forming the ciphertext cipher

Figure 3.18 Example 3.21, finding the key
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randomly chosen from a key domain. For example, an additive cipher can be easily
broken because the same key is used to encrypt every character. However, even this
simple cipher can become a perfect cipher if the key that is used to encrypt each char-
acter is chosen randomly from the key domain (00, 01, 02, …, 25)that is, if the first
character is encrypted using the key 04, the second character is encrypted using the
key 02, the third character is encrypted using the key 21; and so on. Ciphertext-only
attack is impossible. Other types of attacks are also impossible if the sender changes
the key each time she sends a message, using another random sequence of integers. 

This idea is used in a cipher called one-time pad, invented by Vernam. In this
cipher, the key has the same length as the plaintext and is chosen completely in random.

A one-time pad is a perfect cipher, but it is almost impossible to implement com-
mercially. If the key must be newly generated each time, how can Alice tell Bob the
new key each time she has a message to send? However, there are some occasions when
a one-time pad can be used. For example, if the president of a country needs to send a
completely secret message to the president of another country, she can send a trusted
envoy with the random key before sending the message.

Some variations of the one-time pad cipher will be discussed in later chapters
when modern use of cryptography is introduced. 

Rotor Cipher

Although one-time pad ciphers are not practical, one step toward more secured enci-
pherment is the rotor cipher. It uses the idea behind monoalphabetic substitution but
changes the mapping between the plaintext and the ciphertext characters for each plain-
text character. Figure 3.19 shows a simplified example of a rotor cipher. 

The rotor shown in Figure 3.19 uses only 6 letters, but the actual rotors use 26 let-
ters. The rotor is permanently wired, but the connection to encryption/decryption char-
acters is provided by brushes. Note that the wiring is shown as though the rotor were
transparent and one could see the inside. 

The initial setting (position) of the rotor is the secret key between Alice and Bob.
The first plaintext character is encrypted using the initial setting; the second character
is encrypted after the first rotation (in Figure 3.19 at 1/6 turn, but the actual setting is
1/26 turn); and so on. 

Figure 3.19 A rotor cipher
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A three-letter word such as “bee” is encrypted as “BAA” if the rotor is stationary
(the monoalphabetic substitution cipher), but it will encrypted as “BCA” if it is rotating
(the rotor cipher). This shows that the rotor cipher is a polyalphabetic cipher because
two occurrences of the same plaintext character are encrypted as different characters. 

The rotor cipher is as resistant to a brute-force attack as the monoalphabetic substitu-
tion cipher because Eve still needs to find the first set of mappings among 26! possible
ones. The rotor cipher is much more resistant to statistical attack than the monoalphabetic
substitution cipher because it does not preserve letter frequency. 

Enigma Machine

The Enigma machine was originally invented by Sherbius, but was modified by the
German army and extensively used during World War II. The machine was based on
the principle of rotor ciphers. Figure 3.20 shows a simple schematic diagram of the
machine. 

The following lists the main components of the machine:

1. A keyboard with 26 keys used for entering the plaintext when encrypting and for
entering the ciphertext when decrypting.

2. A lampboard with 26 lamps that shows the ciphertext characters in encrypting and
the plaintext characters in decrypting.

3. A plugboard with 26 plugs manually connected by 13 wires. The configuration is
changed every day to provide different scrambling. 

4. Three wired rotors as described in the previous section. The three rotors were cho-
sen daily out of five available rotors. The fast rotor rotates 1/26 of a turn for each
character entered on the keyboard. The middle rotor makes 1/26 turn for each com-
plete turn of the fast rotor. The slow rotor makes 1/26 turn for each complete turn
of the middle rotor. 

5. A reflector, which is stationary and prewired. 

Figure 3.20 A schematic of the Enigma machine
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Code Book

To use the Enigma machine, a code book was published that gives several settings for
each day, including: 

a. The three rotors to be chosen, out of the five available ones.

b. The order in which the rotors are to be installed.

c. The setting for the plugboard.

d. A three-letter code of the day.

Procedure for Encrypting a Message

To encrypt a message, the operator followed these steps:

1. Set the starting position of the rotors to the code of the day. For example, if the
code was “HUA”, the rotors were initialized to “H”, “U”, and “A”, respectively. 

2. Choose a random three-letter code, such as “ACF”. Encrypt the text “ACFACF”
(repeated code) using the initial setting of rotors in step 1. For example, assume the
encrypted code is “OPNABT”. 

3. Set the starting positions of the rotors to OPN (half of the encrypted code).

4. Append the encrypted six letters obtained from step 2 (“OPNABT”) to the begin-
ning of the message.

5. Encrypt the message including the 6-letter code. Send the encrypted message. 

Procedure for Decrypting a Message

To decrypt a message, the operator followed these steps:

1. Receive the message and separate the first six letters. 

2. Set the starting position of the rotors to the code of the day. 

3. Decrypt the first six letters using the initial setting in step 2. 

4. Set the positions of the rotors to the first half of the decrypted code. 

5. Decrypt the message (without the first six letters). 

Cryptanalysis

We know that the Enigma machine was broken during the war, although the German
army and the rest of the world did not hear about this until a few decades later. The
question is how such a complicated cipher was attacked. Although the German army
tried to hide the internal wiring of the rotors, the Allies somehow obtained some copies
of the machines. The next step was to find the setting for each day and the code sent to
initialize the rotors for every message. The invention of the first computer helped the
Allies to overcome these difficulties. The full picture of the machine and its cryptanaly-
sis can be found at some of the Enigma Websites.   

3.3 TRANSPOSITION CIPHERS

A transposition cipher does not substitute one symbol for another, instead it changes
the location of the symbols. A symbol in the first position of the plaintext may appear
in the tenth position of the ciphertext. A symbol in the eighth position in the plaintext
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may appear in the first position of the ciphertext. In other words, a transposition cipher
reorders (transposes) the symbols.  

Keyless Transposition Ciphers

Simple transposition ciphers, which were used in the past, are keyless. There are two
methods for permutation of characters. In the first method, the text is written into a
table column by column and then transmitted row by row. In the second method, the
text is written into the table row by row and then transmitted column by column.    

Example 3.22

A good example of a keyless cipher using the first method is the rail fence cipher. In this cipher,
the plaintext is arranged in two lines as a zigzag pattern (which means column by column); the
ciphertext is created reading the pattern row by row. For example, to send the message “Meet me
at the park” to Bob, Alice writes 

She then creates the ciphertext “MEMATEAKETETHPR” by sending the first row fol-
lowed by the second row. Bob receives the ciphertext and divides it in half (in this case the sec-
ond half has one less character). The first half forms the first row; the second half, the second row.
Bob reads the result in zigzag. Because there is no key and the number of rows is fixed (2), the
cryptanalysis of the ciphertext would be very easy for Eve. All she needs to know is that the rail
fence cipher is used.

Example 3.23

Alice and Bob can agree on the number of columns and use the second method. Alice writes the
same plaintext, row by row, in a table of four columns.   

She then creates the ciphertext “MMTAEEHREAEKTTP” by transmitting the characters
column by column. Bob receives the ciphertext and follows the reverse process. He writes the
received message, column by column, and reads it row by row as the plaintext. Eve can easily
decipher the message if she knows the number of columns. 

A transposition cipher reorders symbols.

m e m a t e a k

e t e t h p r

m e e t

m e a t

t h e p

a r k

→ → → → → →
→

→
→→→→→ →
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Example 3.24

The cipher in Example 3.23 is actually a transposition cipher. The following shows the permuta-
tion of each character in the plaintext into the ciphertext based on the positions.

The second character in the plaintext has moved to the fifth position in the ciphertext; the
third character has moved to the ninth position; and so on. Although the characters are permuted,
there is a pattern in the permutation: (01, 05, 09, 13), (02, 06, 10, 13), (03, 07, 11, 15), and (08,
12). In each section, the difference between the two adjacent numbers is 4. 

Keyed Transposition Ciphers

The keyless ciphers permute the characters by using writing plaintext in one way (row
by row, for example) and reading it in another way (column by column, for example).
The permutation is done on the whole plaintext to create the whole ciphertext.
Another method is to divide the plaintext into groups of predetermined size, called
blocks, and then use a key to permute the characters in each block separately. 

Example 3.25

Alice needs to send the message “Enemy attacks tonight” to Bob. Alice and Bob have agreed to
divide the text into groups of five characters and then permute the characters in each group. The
following shows the grouping after adding a bogus character at the end to make the last group the
same size as the others. 

The key used for encryption and decryption is a permutation key, which shows how the
character are permuted. For this message, assume that Alice and Bob used the following key: 

The third character in the plaintext block becomes the first character in the ciphertext block;
the first character in the plaintext block becomes the second character in the ciphertext block; and
so on. The permutation yields  

Alice sends the ciphertext “EEMYNTAACTTKONSHITZG” to Bob. Bob divides the cipher-
text into 5-character groups and, using the key in the reverse order, finds the plaintext. 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

01 05 09 13 02 06 10 13 03 07 11 15 04 08 12

e n e m y a t t a c k s t o n i g h t z

Encryption   ↓
3 1 4 5 2

   ↑ Decryption
1 2 3 4 5

E E M Y N T A A C T T K O N S H I T Z G
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Combining Two Approaches 

More recent transposition ciphers combine the two approaches to achieve better
scrambling. Encryption or decryption is done in three steps. First, the text is written
into a table row by row. Second, the permutation is done by reordering the columns.
Third, the new table is read column by column. The first and third steps provide a
keyless global reordering; the second step provides a blockwise keyed reordering.
These types of ciphers are often referred to as keyed columnar transposition ciphers
or just columnar transposition ciphers. 

Example 3.26

Suppose Alice again enciphers the message in Example 3.25, this time using the combined
approach. The encryption and decryption is shown in Figure 3.21.

The first table is created by Alice writing the plaintext row by row. The columns are per-
muted using the same key as in the previous example. The ciphertext is created by reading the
second table column by column. Bob does the same three steps in the reverse order. He writes the
ciphertext column by column into the first table, permutes the columns, and then reads the second
table row by row. 

Keys

In Example 3.27, a single key was used in two directions for the column exchange:
downward for encryption, upward for decryption. It is customary to create two keys

Figure 3.21 Example 3.27
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from this graphical representation: one for encryption and one for direction. The keys
are stored in tables with one entry for each column. The entry shows the source column
number; the destination column number is understood from the position of the entry.
Figure 3.22 shows how the two tables can be made from the graphical representation of
the key. 

The encryption key is (3 1 4 5 2). The first entry shows that column 3 (contents) in
the source becomes column 1 (position or index of the entry) in the destination. The
decryption key is (2 5 1 3 4). The first entry shows that column 2 in the source becomes
column 1 in the destination. 

How can the decryption key be created if the encryption key is given, or vice
versa? The process can be done manually in a few steps, as shown in Figure 3.23. First
add indices to the key table, then swap the contents and indices, finally sort the pairs
according to the index.  

Using Matrices 

We can use matrices to show the encryption/decryption process for a transposition
cipher. The plaintext and ciphertext are l × m matrices representing the numerical val-
ues of the characters; the keys are square matrices of size m × m. In a permutation
matrix, every row or column has exactly one 1 and the rest of the values are 0s. Encryp-
tion is performed by multiplying the plaintext matrix by the key matrix to get the
ciphertext matrix; decryption is performed by multiplying the ciphertext by the inverse

Figure 3.22 Encryption/decryption keys in transpositional ciphers

Figure 3.23 Key inversion in a transposition cipher
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key matrix to get the plaintext matrix. A very interesting point is that the decryption
matrix in this case is the inverse of the encryption matrix. However, there is no need to
invert the matrix, the encryption key matrix can simply be transposed (swapping the
rows and columns) to get the decryption key matrix. 

Example 3.27

Figure 3.24 shows the encryption process. Multiplying the 4 × 5 plaintext matrix by the 5 × 5
encryption key gives the 4 × 5 ciphertext matrix. Matrix manipulation requires changing the
characters in Example 3.27 to their numerical values (from 00 to 25). Note that the matrix multi-
plication provides only the column permutation of the transposition; reading and writing into the
matrix should be provided by the rest of the algorithm. 

Cryptanalysis of Transposition Ciphers 

Transposition ciphers are vulnerable to several kinds of ciphertext-only attacks. 

Statistical Attack

A transposition cipher does not change the frequency of letters in the ciphertext; it
only reorders the letters. So the first attack that can be applied is single-letter fre-
quency analysis. This method can be useful if the length of the ciphertext is long
enough. We have seen this attack before. However, transposition ciphers do not pre-
serve the frequency of digrams and trigrams. This means that Eve cannot use these
tools. In fact, if a cipher does not preserve the frequency of digrams and trigrams, but
does preserve the frequency of single letters, it is probable that the cipher is a trans-
position cipher. 

Brute-Force Attack

Eve can try all possible keys to decrypt the message. However, the number of keys can
be huge (1! + 2! + 3! + . . . + L!), where L is the length of the ciphertext. A better
approach is to guess the number of columns. Eve knows that the number of columns
divides L. For example, if the length of the cipher is 20 characters, then 20 = 1 × 2 × 2 × 5.

Figure 3.24 Representation of the key as a matrix in the transposition cipher
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This means the number of columns can be a combination of these factors (1, 2, 4, 5,
10, 20). However, the first (only one column) is out of the question and the last (only one
row) is unlikely. 

Example 3.28

Suppose that Eve has intercepted the ciphertext message “EEMYNTAACTTKONSHITZG”. The
message length L = 20 means the number of columns can be 1, 2, 4, 5, 10, or 20. Eve ignores the
first value because it means only one column and no permutation. 

a. If the number of columns is 2, the only two permutations are (1, 2) and (2, 1). The first one
means there would be no permutation. Eve tries the second one. Eve divides the ciphertext
into two-character units: “EE MY NT AA CT TK ON SH IT ZG”. She then tries to permute
each of these getting “ee ym nt aa tc kt no hs ti gz”, which does not make sense. 

b. If the number of columns is 4, there are 4! = 24 permutations. The first one (1 2 3 4) means
there would be no permutation. Eve needs to try the rest. After trying all 23 possibilities,
Eve finds no plaintext that makes sense. 

c. If the number of columns is 5, there are 5! = 120 permutations. The first one (1 2 3 4 5)
means there would be no permutation. Eve needs to try the rest. The permutation (2 5 1 3 4)
yields a plaintext “enemyattackstonightz” that makes sense after removing the bogus letter z
and adding spaces. 

Pattern Attack

Another attack on the transposition cipher can be called pattern attack. The ciphertext
created from a keyed transposition cipher has some repeated patterns. The following
show where each character in the ciphertext in Example 3.28 comes from. 

The 1st character in the ciphertext comes from the 3rd character in the plaintext.
The 2nd character in the ciphertext comes from the 8th character in the plaintext. The
20th character in the ciphertext comes from the 17th character in the plaintext, and so
on. There is a pattern in the above list. We have five groups: (3, 8, 13, 18), (1, 6, 11, 16),
(4, 9, 14, 19), (5, 10, 15, 20), and (2, 7, 12, 17). In all groups, the difference between
the two adjacent numbers is 5. This regularity can be used by the cryptanalyst to break
the cipher. If Eve knows or can guess the number of columns (which is 5 in this case),
she can organize the ciphertext in groups of four characters. Permuting the groups can
provide the clue to finding the plaintext. 

Double Transposition Ciphers

Double transposition ciphers can make the job of the cryptanalyst difficult. An exam-
ple of such a cipher would be the one that repeats twice the algorithm used for encryp-
tion and decryption in Example 3.26. A different key can be used in each step, but
normally the same key is used. 

Example 3.29

Let us repeat Example 3.26 using double transposition. Figure 3.25 shows the process. 

03 08 13 18 01 06 11 16 04 09 14 19 05 10 15 20 02 07 12 17
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Although, the cryptanalyst can still use the single-letter frequency attack on the ciphertext, a
pattern attack is now much more difficult. The pattern analysis of the text shows

Comparing the above set with the result in Example 3.28, we see that there is no repetitive
pattern. Double transposition removes the regularities we have seen before. 

3.4 STREAM AND BLOCK CIPHERS

The literature divides the symmetric ciphers into two broad categories: stream ciphers
and block ciphers. Although the definitions are normally applied to modern ciphers,
this categorization also applies to traditional ciphers. 

Stream Ciphers

In a stream cipher, encryption and decryption are done one symbol (such as a charac-
ter or a bit) at a time. We have a plaintext stream, a ciphertext stream, and a key stream.
Call the plaintext stream P, the ciphertext stream C, and the key stream K. 

Figure 3.25 Double transposition cipher
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Figure 3.26 shows the idea behind a stream cipher. Characters in the plaintext are fed
into the encryption algorithm, one at a time; the ciphertext characters are also created one at a
time. The key stream, can be created in many ways. It may be a stream of predetermined val-
ues; it may be created one value at a time using an algorithm. The values may depend on the
plaintext or ciphertext characters. The values may also depend on the previous key values. 

Figure 3.26 shows the moment where the third character in the plaintext stream is
being encrypted using the third value in the key stream. The result creates the third
character in the ciphertext stream.

Example 3.30

Additive ciphers can be categorized as stream ciphers in which the key stream is the repeated
value of the key. In other words, the key stream is considered as a predetermined stream of keys
or K = (k, k, …, k). In this cipher, however, each character in the ciphertext depends only on the
corresponding character in the plaintext, because the key stream is generated independently. 

Example 3.31

The monoalphabetic substitution ciphers discussed in this chapter are also stream ciphers. How-
ever, each value of the key stream in this case is the mapping of the current plaintext character to
the corresponding ciphertext character in the mapping table. 

Example 3.32

Vigenere ciphers are also stream ciphers according to the definition. In this case, the key stream is
a repetition of m values, where m is the size of the keyword. In other words, 

Example 3.33

We can establish a criterion to divide stream ciphers based on their key streams. We can say that
a stream cipher is a monoalphabetic cipher if the value of ki does not depend on the position of
the plaintext character in the plaintext stream; otherwise, the cipher is polyalphabetic. 

❏ Additive ciphers are definitely monoalphabetic because ki in the key stream is fixed; it does 
not depend on the position of the character in the plaintext. 

❏ Monoalphabetic substitution ciphers are definitely monoalphabetic because ki does not 
depend on the position of the corresponding character in the plaintext stream; it depends 
only on the value of the plaintext character. 

Figure 3.26 Stream cipher
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❏ Vigenere ciphers are polyalphabetic ciphers because ki definitely depends on the position of 
the plaintext character. However, the dependency is cyclic. The key is the same for two 
characters m positions apart. 

Block Ciphers

In a block cipher, a group of plaintext symbols of size m (m > 1) are encrypted together
creating a group of ciphertext of the same size. Based on the definition, in a block
cipher, a single key is used to encrypt the whole block even if the key is made of multi-
ple values. Figure 3.27 shows the concept of a block cipher. 

In a block cipher, a ciphertext block depends on the whole plaintext block.   

Example 3.34

Playfair ciphers are block ciphers. The size of the block is m = 2. Two characters are encrypted
together. 

Example 3.35

Hill ciphers are block ciphers. A block of plaintext, of size 2 or more is encrypted together using
a single key (a matrix). In these ciphers, the value of each character in the ciphertext depends on
all the values of the characters in the plaintext. Although the key is made of m × m values, it is
considered as a single key. 

Example 3.36

From the definition of the block cipher, it is clear that every block cipher is a polyalphabetic cipher
because each character in a ciphertext block depends on all characters in the plaintext block. 

Combination

In practice, blocks of plaintext are encrypted individually, but they use a stream of keys
to encrypt the whole message block by block. In other words, the cipher is a block
cipher when looking at the individual blocks, but it is a stream cipher when looking at
the whole message considering each block as a single unit. Each block uses a different
key that may be generated before or during the encryption process. Examples of this
will appear in later chapters. 

Figure 3.27 Block cipher
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3.5 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this
chapter. The items enclosed in brackets refer to the reference list at the end of the book. 

Books

Several books discuss classic symmetric-key ciphers. [Kah96] and [Sin99] give a thor-
ough history of these ciphers. [Sti06], [Bar02], [TW06], [Cou99], [Sta06], [Sch01],
[Mao03], and [Gar01] provide good accounts of the technical details. 

WebSites

The following websites give more information about topics discussed in this chapter.

3.6  KEY TERMS

http://www.cryptogram.org

http://www.cdt.org/crypto/

http://www.cacr.math.uwaterloo.ca/

http://www.acc.stevens.edu/crypto.php

http://www.crypto.com/

http://theory.lcs.mit.edu/~rivest/crypto-security.html

http://www.trincoll.edu/depts/cpsc/cryptography/substitution.html

http://hem.passagen.se/tan01/transpo.html

http://www.strangehorizons.com/2001/20011008/steganography.shtml
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3.7 SUMMARY

❏ Symmetric-key encipherment uses a single key for both encryption and decryp-

tion. In addition, the encryption and decryption algorithms are inverse of each

other.

❏ The original message is called the plaintext; the message that is sent through the

channel is called the ciphertext. To create the ciphertext from the plaintext, an

encryption algorithm is used with the shared secret key. To create the plaintext

from ciphertext, a decryption algorithm is used and the same secret key. We refer

to encryption and decryption algorithms as ciphers. 

❏ Based on Kerckhoff’s principle, one should always assume that the adversary

knows the encryption/decryption algorithm. The resistance of the cipher to attack

should be based only on the secrecy of the key. 

❏ Cryptanalysis is the science and art of breaking ciphers. There are four common

types of cryptanalysis attacks: ciphertext-only, known-plaintext, chosen-plaintext,

and chosen-ciphertext. 

❏ Traditional symmetric-key ciphers can be divided into two broad categories:

substitution ciphers and transposition ciphers. A substitution cipher replaces one

character with another character. A transposition cipher reorders the symbols. 

❏ Substitution ciphers can be divided into two broad categories: monoalphabetic

ciphers and polyalphabetic ciphers. In monoalphabetic substitution, the relation-

ship between a character in the plaintext and the characters in the ciphertext is one-

to-one. In polyalphabetic substitution, the relationship between a character in the

plaintext and the characters in the ciphertext is one-to-many.

❏ Monoalphabetic ciphers include additive, multiplicative, affine, and monoalphabetic

substitution ciphers. 

❏ Polyalphabetic ciphers include autokey, Playfair, Vigenere, Hill, one-time pad,

rotor, and Enigma ciphers. 

❏ Transposition ciphers include keyless, keyed, and double transposition ciphers. 

monoalphabetic cipher rotor cipher

monoalphabetic substitution cipher shared secret key

multiplicative cipher shift cipher

one-time pad statistical attack

pattern attack stream cipher

plaintext substitution cipher

Playfair cipher transposition cipher

polyalphabetic cipher trigram

polyalphabetic substitution cipher Vigenere cipher

rail fence cipher Vigenere tableau
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❏ Symmetric ciphers can also be divided into two broad categories: stream ciphers
and block ciphers. In a stream cipher, encryption and decryption are done one
symbol at a time. In a block cipher, symbols in a block are encrypted together. In
practice, blocks of plaintext are encrypted individually, but they use a stream of
keys to encrypt the whole message block by block. 

3.8 PRACTICE SET

Review Questions

1. Define a symmetric-key cipher.

2. Distinguish between a substitution cipher and a transposition cipher.

3. Distinguish between a monoalphabetic and a polyalphabetic cipher.

4. Distinguish between a stream cipher and a block cipher.

5. Are all stream ciphers monoalphabetic? Explain.

6. Are all block ciphers polyalphabetic? Explain. 

7. List three monoalphabetic ciphers. 

8. List three polyalphabetic ciphers.

9. List two transposition ciphers.

10. List four kinds of cryptanalysis attacks. 

Exercises

11. A small private club has only 100 members. Answer the following questions:

a. How many secret keys are needed if all members of the club need to send secret
messages to each other?

b. How many secret keys are needed if everyone trusts the president of the club? If
a member needs to send a message to another member, she first sends it to the
president; the president then sends the message to the other member. 

c. How many secret keys are needed if the president decides that the two members
who need to communicate should contact him first. The president then creates a
temporary key to be used between the two. The temporary key is encrypted and
sent to both members. 

12. Some archeologists found a new script written in an unknown language. The arche-
ologists later found a small tablet at the same place that contains a sentence in the
same language with the translation in Greek. Using the tablet, they were able to read
the original script. What type of attack did the archeologists use? 

13. Alice can use only the additive cipher on her computer to send a message to a friend.
She thinks that the message is more secure if she encrypts the message two times,
each time with a different key. Is she right? Defend you answer.

14. Alice has a long message to send. She is using the monoalphabetic substitution
cipher. She thinks that if she compresses the message, it may protect the text from
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single-letter frequency attack by Eve. Does the compression help? Should she com-
press the message before the encryption or after the encryption? Defend your answer.

15. Alice often needs to encipher plaintext made of both letters (a to z) and digits (0 to 9). 

a. If she uses an additive cipher, what is the key domain? What is the modulus? 

b. If she uses a multiplication cipher, what is the key domain? What is the modulus?

c. If she uses an affine cipher, what is the key domain? What is the modules?

16. Suppose that spaces, periods, and question marks are added to the plaintext to
increase the key domain of simple ciphers. 

a. What is the key domain if an additive cipher is used? 

b. What is the key domain if a multiplicative cipher is used?

c. What is the key domain if an affine cipher is used?

17. Alice and Bob have decided to ignore Kerckhoff’s principle and hide the type of the
cipher they are using.

a. How can Eve decide whether a substitution or a transposition cipher was used?

b. If Eve knows that the cipher is a substitution cipher, how can she decide
whether it was an additive, multiplicative, or affine cipher?

c. If Eve knows that the cipher is a transposition, how can she find the size of the
section (m)? 

18. In each of the following ciphers, what is the maximum number of characters that
will be changed in the ciphertext if only a single character is changed in the
plaintext?

a. Additive

b. Multiplicative

c. Affine

d. Vigenere

e. Auto-key

f. One-time pad

g. Rotor

h. Enigma

19. In each of the following ciphers, what is the maximum number of characters that will
be changed in the ciphertext if only one character is changed in plaintext?

a. Single transposition 

b. Double transposition

c. Playfair

20. For each of the following ciphers, say whether it is a stream cipher or block cipher.
Defend your answers.

a. Playfair

b. Auto-key

c. One-time pad

d. Rotor

e. Enigma
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21. Encrypt the message “this is an exercise” using one of the following ciphers. Ignore

the space between words. Decrypt the message to get the original plaintext.

a. Additive cipher with key = 20

b. Multiplicative cipher with key = 15

c. Affine cipher with key = (15, 20)

22. Encrypt the message “the house is being sold tonight” using one of the following

ciphers. Ignore the space between words. Decrypt the message to get the plaintext: 

a. Vigenere cipher with key: “dollars”

b. Autokey cipher with key = 7

c. Playfair cipher with the key created in the text (see Figure 3.13) 

23. Use the Vigenere cipher with keyword “HEALTH” to encipher the message “Life is

full of surprises”.

24. Use the Playfair cipher to encipher the message “The key is hidden under the door

pad”. The secret key can be made by filling the first and part of the second row

with the word “GUIDANCE” and filling the rest of the matrix with the rest of the

alphabet. 

25. Use a Hill cipher to encipher the message “We live in an insecure world”. Use the

following key:

26. John is reading a mystery book involving cryptography. In one part of the book,

the author gives a ciphertext “CIW” and two paragraphs later the author tells the

reader that this is a shift cipher and the plaintext is “yes”. In the next chapter, the

hero found a tablet in a cave with “XVIEWVWI” engraved on it. John immediately

found the actual meaning of the ciphertext. What type of attack did John launch

here? What is the plaintext?

27. Eve secretly gets access to Alice’s computer and using her cipher types “abcdefghij”.

The screen shows “CABDEHFGIJ”. If Eve knows that Alice is using a keyed trans-

position cipher, answer the following questions:

a. What type of attack is Eve launching?

b. What is the size of the permutation key? 

28. Use a brute-force attack to decipher the following message enciphered by Alice using

an additive cipher. Suppose that Alice always uses a key that is close to her birthday,

which is on the 13th of the month:

29. Use a brute-force attack to decipher the following message. Assume that you know it

is an affine cipher and that the plaintext “ab” is enciphered to “GL”.

NCJAEZRCLASJLYODEPRLYZRCLASJLCPEHZDTOPDZQLNZTY 

XPALASXYFGFUKPXUSOGEUTKCDGFXANMGNVS

K = 

03 02

05 07
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30. Use a one-letter frequency attack to decipher the following message. Assume that
you know it is enciphered using monoalphabetic substitution cipher. 

31. Assume that punctuation marks (periods, question marks, and spaces) are added to
the encryption alphabet of a Hill cipher, then a 2 × 2 key matrix in Z29 can be used
for encryption and decryption. 

a. Find the total number of possible matrices. 

b. It has been proved that the total number of invertible matrices is (N2 – 1)(N2 – N),
where N is the number of alphabet size. Find the key domain of a Hill cipher
using this alphabet. 

32. Use a single-letter frequency attack to break the following ciphertext. You know that
it has been created with an additive cipher

33. Use a Kasiski test and single-frequency attack to break the following ciphertext. You
know that it has been created with a Vigenere cipher 

34. The encryption key in a transposition cipher is (3, 2, 6, 1, 5, 4). Find the decryp-
tion key.

35. Show the matrix representation of the transposition-cipher encryption key with
the key (3, 2, 6, 1, 5, 4). Find the matrix representation of the decryption key.

36. The plaintext “letusmeetnow” and the corresponding ciphertext “HBCDFNOPIKLB”
are given. You know that the algorithm is a Hill cipher, but you don’t know the size of
the key. Find the key matrix.

37. Hill ciphers and multiplicative ciphers are very similar. Hill ciphers are block ciphers
using multiplication of matrices; multiplicative ciphers are stream ciphers using mul-
tiplication of scalars.

a. Define a block cipher that is similar to an additive cipher using the addition of
matrices.

b. Define a block cipher that is similar to an affine cipher using the multiplication
and addition of matrices.

ONHOVEJHWOBEVGWOCBWHNUGBLHGBGR

OTWEWNGWCBPQABIZVQAPMLJGZWTTQVOBQUMAPMIDGZCAB
EQVBMZLZIXMLAXZQVOQVLMMXAVWEIVLLIZSNZWAB
JQZLWNLMTQOPBVIUMLGWCBPAEQNBTGTMNBBPMVMAB
ITIAKWCTLVBBQUMQBEPQTMQBEIAQVUGBZCAB

MPYIGOBSRMIDBSYRDIKATXAILFDFKXTPPSNTTJIGTHDELT
TXAIREIHSVOBSMLUCFIOEPZIWACRFXICUVXVTOPXDLWPENDHPTSI
DDBXWWTZPHNSOCLOUMSNRCCVUUXZHHNWSVXAUHIK
LXTIMOICHTYPBHMHXGXHOLWPEWWWWDALOCTSQZELT
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38. Let us define a new stream cipher. The cipher is affine, but the keys depend on the
position of the character in the plaintext. If the plaintext character to be encrypted is
in position i, we can find the keys as follow:

a. The multiplicative key is the (i mod 12)th element in Z26*.

b. The additive key is the (i mod 26)th element in Z26. 

Encrypt the message “cryptography is fun” using this new cipher.

39. Suppose that for a Hill cipher the plaintext is a multiplicative identity matrix (I). Find
the relationship between the key and ciphertext. Use the result of your finding to
launch a chosen-plaintext attack on the Hill cipher.

40. Atbash was a popular cipher among Biblical writers. In Atbash, “A” is encrypted
as “Z”, “B” is encrypted as “Y”, and so on. Similarly, “Z” is encrypted as “A”, “Y”
is encrypted as “B”, and so on. Suppose that the alphabet is divided into two halves
and the letters in the first half are encrypted as the letters in the second and vice
versa. Find the type of cipher and key. Encipher the message “an exercise” using
the Atbash cipher. 

41. In a Polybius cipher, each letter is enciphered as two integers. The key is a 5 × 5
matrix of characters as in a Playfair cipher. The plaintext is the character in the
matrix, the ciphertext is the two integers (each between 1 and 5) representing row
and column numbers. Encipher the message “An exercise” using the Polybius
cipher with the following key:

1 2 3 4 5

1 z q p f e

2 y r o g d

3 x s n h c

4 w t m i / j b

5 v u l k a
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CHAPTER 4

Mathematics of Cryptography

Part II: Algebraic Structures

Objectives

This chapter prepares the reader for the next few chapters, which will
discuss modern symmetric-key ciphers based on algebraic structures.
This chapter has several objectives: 

❏ To review the concept of algebraic structures

❏ To define and give some examples of groups

❏ To define and give some examples of rings

❏ To define and give some examples of fields

❏ To emphasize the finite fields of type GF(2n) that make it possible
to perform operations such as addition, subtraction, multiplication,
and division on n-bit words in modern block ciphers 

The next few chapters will discuss modern symmetric-key block ciphers
that perform some operations on n-bit words. Understanding and analyz-
ing these ciphers requires some knowledge of a branch of modern algebra
called algebraic structures. This chapter first reviews the topic of algebraic
structures, and then it shows how to perform operations such as addition or
multiplication on n-bit words.
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4.1 ALGEBRAIC STRUCTURES
Chapter 2 discussed some sets of numbers, such as Z, Zn, Zn

∗, Zp and Zp
∗. Cryptography

requires sets of integers and specific operations that are defined for those sets. The com-
bination of the set and the operations that are applied to the elements of the set is called
an algebraic structure. In this chapter, we will define three common algebraic struc-
tures: groups, rings, and fields (Figure 4.1).

Groups

A group (G) is a set of elements with a binary operation “•” that satisfies four prop-
erties (or axioms). A commutative group, also called an abelian group, is a group
in which the operator satisfies the four properties for groups plus an extra property,
commutativity. The four properties for groups plus commutativity are defined as follows: 

❏ Closure: If a and b are elements of G, then c = a • b is also an element of G. This
means that the result of applying the operation on any two elements in the set is
another element in the set.

❏ Associativity: If a, b, and c are elements of G, then (a • b) • c = a • (b • c). In
other words, it does not matter in which order we apply the operation on more than
two elements. 

❏ Commutativity: For all a and b in G, we have a • b = b • a. Note that this property
needs to be satisfied only for a commutative group. 

❏ Existence of identity: For all a in G, there exists an element e, called the identity
element, such that e • a = a • e = a. 

❏ Existence of inverse: For each a in G, there exists an element a′, called the inverse
of a, such that a • a′ = a′ • a = e. 

Figure 4.2 shows the concept of a group. 

Application

Although a group involves a single operation, the properties imposed on the operation
allow the use of a pair of operations as long as they are inverses of each other. For
example, if the defined operation is addition, the group supports both addition and
subtraction, because subtraction is addition using the additive inverse. This is also true
for multiplication and division. However, a group can support only addition/subtraction
or multiplication/division operations, but not the both at the same time.   

Figure 4.1 Common algebraic structures

Common
algebraic structures

FieldsRingsGroups
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Example 4.1

The set of residue integers with the addition operator, G = <Zn, +>, is a commutative group. We
can perform addition and subtraction on the elements of this set without moving out of the set.
Let us check the properties. 

1. Closure is satisfied. The result of adding two integers in Zn is another integer in Zn.

2. Associativity is satisfied. The result of 4 + (3 + 2) is the same as (4 + 3) + 2.

3. Commutativity is satisfied. We have 3 + 5 = 5 + 3. 

4. The identify element is 0. We have 3 + 0 = 0 + 3 = 3.

5. Every element has an additive inverse. The inverse of an element is its complement. For
example, the inverse of 3 is −3 (n − 3 in Zn) and the inverse of −3 is 3. The inverse allows us
to perform subtraction on the set.

Example 4.2

The set Zn* with the multiplication operator, G = <Zn*,  ×>, is also an abelian group. We can per-
form multiplication and division on the elements of this set without moving out of the set. It is
easy to check the first three properties. The identity element is 1. Each element has an inverse that
can be found according to the extended Euclidean algorithm. 

Example 4.3

Although we normally think about a group as the set of numbers with the regular operations such
as addition or subtraction, the definition of the group allows us to define any set of objects and an
operation that satisfies the above-mentioned properties. Let us define a set G = < {a, b, c, d}, •>
and the operation as shown in Table 4.1.    

Figure 4.2 Group

Table 4.1 Operation table for Example 4.3

• a b c d

a a b c d

b b c d a

c c d a b

d d a b c

1. Closure

2. Associativity

3. Commutativity (See note)

4. Existence of identity

5. Existence of inverse

{a, b, c, …}

Set

Properties 

Group

Note: 
The third property needs 
to be satisfied only for a
commutative group. 

Operation
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This is an abelian group. All five properties are satisfied:

1. Closure is satisfied. Applying the operation on any pair of elements result in another ele-
ments in the set. 

2. Associativity is also satisfied. To prove this we need to check the property for any combina-
tion of three elements. For example, (a + b) + c = a + (b + c) = d. 

3. The operation is commutative. We have a + b = b + a. 

4. The group has an identity element, which is a.

5. Each element has an inverse. The inverse pairs can be found by finding the identity in each
row (shaded). The pairs are (a, a), (b, d), (c, c). 

Example 4.4

In a group, the elements in the set do not have to be numbers or objects; they can be rules, map-
pings, functions, or even actions. A very interesting group is the permutation group. The set is
the set of all permutations, and the operation is composition: applying one permutation after
another. Figure 4.3 shows composition of two permutations that transpose three inputs to create
three outputs. 

The inputs and outputs can be characters (Chapter 2) or can be bits (Chapter 5). We have
shown each permutation by a table in which the content shows where the input comes from and
the index (not shown) defines the output. Composition involve applying two permutations, one
after the other. Note that the expression in Figure 4.3 is read from right to left: the first permuta-
tion is [1  3  2] followed by [3  1  2]; the result is [3  2  1]. With three inputs and three outputs,
there can be 3! or 6 different permutations. Table 4.2 shows how the operation is defined. The
first row is the first permutation; the first column is the second permutation. The result is the
cross-section element.

In this case, only four properties are satisfied; the group is non-abelian. 

1. Closure is satisfied. 

2. Associativity is also satisfied. To prove this we need to check the property for any combina-
tion of three elements. 

3. The commutative property is not satisfied. This can be easily checked, but we leave it as an
exercise. 

Figure 4.3 Composition of permutations (Example 4.4)

[3 2 1]  =  [3 1 2]     [1 3 2]  
Result

[3 2 1]

1 2 3

1 2 3

[3 1 2]

[1 3 2]

1 2 3

1 2 3

( )

1 2 3

1 2 3
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4. The set has an identity element, which is [1 2 3] (no permutation). These are shaded. 

5. Each element has an inverse. The inverse pairs can be found using the identity elements. 

Example 4.5

In the previous example, we showed that a set of permutations with the composition operation is
a group. This implies that using two permutations one after another cannot strengthen the secu-
rity of a cipher, because we can always find a permutation that can do the same job because of the
closure property.

Finite Group

A group is called a finite group if the set has a finite number of elements; otherwise, it
is an infinite group.

Order of a Group

The order of a group, |G|, is the number of elements in the group. If the group is not
finite, its order is infinite; if the group is finite, the order is finite. 

Subgroups

A subset H of a group G is a subgroup of G if H itself is a group with respect to the
operation on G. In other words, if G = <S, • > is a group, H = <T, •> is a group under
the same operation, and T is a nonempty subset of S, then H is a subgroup of G. The
above definition implies that: 

1. If a and b are members of both groups, then c = a • b is also a member of both
groups.

2. The group share the same identity element. 

3. If a is a member of both groups, the inverse of a is also a member of both
groups.

4. The group made of the identity element of G, H = <{e}, •>, is a subgroup of G.

5. Each group is a subgroup of itself. 

Example 4.6

Is the group H = <Z10, +> a subgroup of the group G = <Z12, +>?

Table 4.2 Operation table for permutation group

° [1   2   3] [1   3   2] [2   1   3] [2   3   1] [3   1   2] [3   2   1]

[1   2   3] [1   2   3] [1   3   2] [2   1   3] [2   3   1] [3   1   2] [3   2  1]

[1   3   2] [1   3   2] [ 1  2  3] [2  3  1] [2  1  3] [3  2  1] [3  1  2]

[2   1   3] [2   1   3] [ 3  1  2] [1  2  3 ] [3  2  1] [1  3  2] [2  3  1]

[2   3   1] [2   3   1] [3  2  1] [1  3  2] [3  1  2] [1  2  3] [2  1  3]

[3   1   2] [3   1   2] [2  1  3] [ 3  2  1] [1  2  3] [2  3  1] [1  3  2]

[3   2   1] [3   2   1] [2  3  1] [3  1  2] [1  3  2] [2  1  3] [1  2  3]
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Solution
The answer is no. Although H is a subset of G, the operations defined for these two groups are
different. The operation in H is addition modulo 10; the operation in G is addition modulo 12.

Cyclic Subgroups

If a subgroup of a group can be generated using the power of an element, the subgroup
is called the cyclic subgroup. The term power here means repeatedly applying the
group operation to the element: 

an →  a • a • … • a    (n times)

The set made from this process is referred to as <a>. Note that the duplicate elements
must be discarded. Note also that a0 = e.

Example 4.7

Four cyclic subgroups can be made from the group G = <Z6, +>. They are H1 = <{0}, +>, H2 =
<{0, 2, 4}, +>, H3 = <{0, 3}, +>, and H4 = G. Note that when the operation is addition, an

means multiplying n by a. Note also that in all of these groups, the operation is addition modulo 6.
The following show how we find the elements of these cyclic subgroups.

a. The cyclic subgroup generated from 0 is H1, which has only one element, the identity element.   

b. The cyclic subgroup generated from 1 is H4, which is G itself. 

c. The cyclic subgroup generated from 2 is H2, which has three elements: 0, 2, and 4.    

d. The cyclic subgroup generated from 3 is H3, which has two elements: 0 and 3. 

e. The cyclic subgroup generated from 4 is H2; this is not a new subgroup.   

00 mod 6 = 0                                                             (stop: the process will be repeated)

10 mod 6 = 0
11 mod 6 = 1
12 mod 6 = (1 + 1) mod 6 = 2
13 mod 6 = (1 + 1 +1) mod 6 = 3
14 mod 6 = (1 + 1 + 1 + 1) mod 6 = 4
15 mod 6 = (1 + 1 + 1 + 1+ 1) mod 6 = 5                 (stop: the process will be repeated)

20 mod 6 = 0
21 mod 6 = 2
22 mod 6 = (2 + 2) mod 6 = 4                                   (stop: the process will be repeated)

30 mod 6 = 0
31 mod 6 = 3                                                             (stop: the process will be repeated)

40 mod 6 = 0
41 mod 6 = 4
42 mod 6 = (4 + 4) mod 6 = 2                                   (stop: the process will be repeated)
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f. The cyclic subgroup generated from 5 is H4, which is G itself.   

Example 4.8

Three cyclic subgroups can be made from the group G = <Z10∗, ×>. G has only four elements:
1, 3, 7, and 9. The cyclic subgroups are H1 = <{1}, ×>, H2 = <{1, 9}, ×>, and H3 = G. The
following show how we find the elements of these subgroups.

a. The cyclic subgroup generated from 1 is H1. The subgroup has only one element, the iden-
tity element.   

b. The cyclic subgroup generated from 3 is H3, which is G itself. 

c. The cyclic subgroup generated from 7 is H3, which is G itself.  

d. The cyclic subgroup generated from 9 is H2. The subgroup has only two elements. 

Cyclic Groups

A cyclic group is a group that is its own cyclic subgroup. In Example 4.7, the group G
has a cyclic subgroup H5 = G. This means that the group G is a cyclic group. In this
case, the element that generates the cyclic subgroup can also generate the group itself.
This element is referred to as a generator. If g is a generator, the elements in a finite
cyclic group can be written as 

{e, g, g2, … , gn−1}, where gn = e

Note that a cyclic group can have many generators. 

50 mod 6 = 0
51 mod 6 = 5
52 mod 6 = 4
53 mod 6 = 3
54 mod 6 = 2
55 mod 6 = 1                                                             (stop: the process will be repeated)

10 mod 10 = 1                                                  (stop: the process will be repeated)

30 mod 10 = 1
31 mod 10 = 3
32 mod 10 = 9
33 mod 10 = 7                                                  (stop: the process will be repeated)

70 mod 10 = 1
71 mod 10 = 7
72 mod 10 = 9
73 mod 10 = 3                                                  (stop: the process will be repeated)

90 mod 10 = 1
91 mod 10 = 9                                                  (stop: the process will be repeated)
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Example 4.9

a. The group G = <Z6, +> is a cyclic group with two generators, g = 1 and g = 5. 

b. The group G = <Z10
∗, ×> is a cyclic group with two generators, g = 3 and g = 7.

Lagrange’s Theorem

Lagrange’s theorem relates the order of a group to the order of its subgroup. Assume that
G is a group, and H is a subgroup of G. If the order of G and H are |G| and |H|, respectively,
then, based on this theorem, |H| divides |G|. In Example 4.7, |G| = 6. The order of the sub-
groups are |H1| = 1, |H2| = 3, |H3| = 2, and |H4| = 6. Obviously all of these orders divide 6.

Lagrange’s theorem has a very interesting application. Given a group G of order
|G|, the orders of the potential subgroups can be easily determined if the divisors of |G|
can be found. For example, the order of the group G = <Z17, +> is 17. The only divisors
of 17 are 1 and 17. This means that this group can have only two subgroups, H1 with
the identity element and H2 = G.

Order of an Element

The order of an element a in a group, ord(a), is the smallest integer n such that an = e.
The definition can be paraphrased: the order of an element is the order of the cyclic
group it generates. 

Example 4.10

a. In the group G = <Z6, +>,  the orders of the elements are: ord(0) = 1, ord(1) = 6, ord(2) = 3,
ord(3) = 2, ord(4) = 3, ord(5) = 6. 

b. In the group G = <Z10*, ×>, the orders of the elements are: ord(1) = 1, ord(3) = 4, ord(7) = 4,
ord(9) = 2.

Ring

A ring, denoted as R = <{…}, •,  >, is an algebraic structure with two operations. The
first operation must satisfy all five properties required for an abelian group. The second
operation must satisfy only the first two. In addition, the second operation must be dis-
tributed over the first. Distributivity means that for all a, b, and c elements of R, we
have a   (b • c) = (a   b)  • (a   c) and (a • b)   c = (a   c) • (b   c). A commutative ring
is a ring in which the commutative property is also satisfied for the second the opera-
tion. Figure 4.4 shows a ring and a commutative ring.

Application

A ring involves two operations. However, the second operation can fail to satisfy the
third and fourth properties. In other words, the first operation is actually a pair of oper-
ation such as addition and subtraction; the second operation is a single operation, such
as multiplication, but not division.

Example 4.11

The set Z with two operations, addition and multiplication, is a commutative ring. We show it
by R = <Z, +, ×>. Addition satisfies all of the five properties; multiplication satisfies only three



SECTION 4.1 ALGEBRAIC STRUCTURES 105

properties. Multiplication also distributes over addition. For example, 5 × (3 + 2) = (5 × 3) +
(5 × 2) = 25. Although, we can perform addition and subtraction on this set, we can perform
only multiplication, but not division. Division is not allowed in this structure because it yields
an element out of the set. The result of dividing 12 by 5 is 2.4, which is not in the set. 

Field

A field, denoted by F = <{…}, •,  > is a commutative ring in which the second opera-
tion satisfies all five properties defined for the first operation except that the identity
of the first operation (sometimes called the zero element) has no inverse. Figure 4.5
shows the field.

Application

A field is a structure that supports two pairs of operations that we have used in mathe-
matics: addition/subtraction and multiplication/division. There is one exception: division
by zero is not allowed. 

Figure 4.4 Ring 

Figure 4.5 Field

{a, b, c, …}

Set 

Ring

1. Closure

2. Associativity

3. Commutativity

4. Existence of identity

5. Existence of inverse

1. Closure

2. Associativity

3. Commutativity

Distribution of     over

Operations

 

Note: 
The third property is
only satisfied for a
commutative ring.

Field

Distribution of     over

{a, b, c, …}

Set 

1. Closure

2. Associativity

3. Commutativity

4. Existence of identity

5. Existence of inverse

1. Closure

2. Associativity

3. Commutativity

4. Existence of identity

5. Existence of inverse

Operations

Note: 
The identity element
of the first operation
has no inverse with
respect to the second
operation.
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Finite Fields

Although we have fields of infinite order, only finite fields extensively used in cryptog-

raphy. A finite field, a field with a finite number of elements, are very important struc-

tures in cryptography. Galois showed that for a field to be finite, the number of

elements should be pn, where p is a prime and n is a positive integer. The finite fields

are usually called Galois fields and denoted as GF(pn). 

GF(p) Fields

When n = 1, we have GF(p) field. This field can be the set Zp, {0, 1, …, p − 1}, with

two arithmetic operations (addition and multiplication). Recall that in this set each

element has an additive inverse and that nonzero elements have a multiplicative inverse

(no multiplicative inverse for 0). 

Example 4.12

A very common field in this category is GF(2) with the set {0, 1} and two operations, addition

and multiplication, as shown in Figure 4.6. 

There are several things to notice about this field. First, the set has only two elements, which

are binary digits or bits (0 and 1). Second, the addition operation is actually the exclusive-or

(XOR) operation we use on two binary digits. Third, the multiplication operation is the AND

operation we use on two binary digits. Fourth, addition and subtraction operations are the same

(XOR operation). Fifth, multiplication and division operations are the same (AND operation). 

Example 4.13

We can define GF(5) on the set Z5 (5 is a prime) with addition and multiplication operators as

shown in Figure 4.7. 

Although we can use the extended Euclidean algorithm to find the multiplicative inverses of

elements in GF(5), it is simpler to look at the multiplication table and find each pair with

the product equal to 1. They are (1,1), (2, 3), (3, 2), and (4, 4). Note that we can apply addition/

subtraction and multiplication/division on the set except that division by 0 is not allowed.

A Galois field, GF(pn), is a finite field with pn elements.

Figure 4.6 GF(2) field

Addition/subtraction in GF(2) is the same as the XOR operation; 

multiplication/division is the same as the AND operation. 

GF(2)

Addition

1

0

10

10

01

+

{0, 1} + ⋅

Inverses

1
01

0a
−a

1
1

0a

a−1

Multiplication

1

0

10

00

10

⋅
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GF(pn) Fields

In addition to GF(p) fields, we are also interested in GF(pn) fields in cryptography.
However, the set Z, Zn, Zn* and Zp, which we have used so far with operations such as
addition and multiplication, cannot satisfy the requirement of a field. Some new sets
and some new operations on those sets must be defined. The next section, we shows
how GF(2n) is a very useful field in cryptography. 

Summary

The study of three algebraic structures allows us to use sets in which operations similar
to addition/subtraction and multiplication/division can be used with the set. We need to
distinguish between the three structures. The first structure, the group, supports one
related pair of operations. The second structure, the ring, supports one related pair of
operations and one single operation. The third structure, the field, supports two pairs of
operations. Table 4.3 may help us to see the difference. 

4.2 GF(2n) FIELDS 
In cryptography, we often need to use four operations (addition, subtraction, multipli-
cation, and division). In other words, we need to use fields. However, when we work
with computers, the positive integers are stored in the computer as n-bit words in which
n is usually 8, 16, 32, 64, and so on. This means that the range of integers is 0 to 2n−1.
The modulus is 2n. So we have two choices if we want to use a field:

1. We can use GF(p) with the set Zp, where p is the largest prime number less than
2n. Although this scheme works, it is inefficient because we cannot use the integers
from p to 2n − 1. For example, if n = 4, the largest prime less than 24 is 13. This
means that we cannot use integers 13, 14, and 15. If n = 8, the largest prime less
than 28 is 251, so we cannot use 251, 252, 253, 254, and 255. 

Figure 4.7 GF(5) field

Table 4.3 Summary of algebraic structures

Algebraic

Structure

Supported 

Typical Operations

Supported 

Typical Sets of Integers

Group (+ −) or (× ÷) Zn or Zn*

Ring (+ −) and (×) Z

Field (+ −) and (× ÷) Zp

{0, 1, 2, 3, 4}  

GF(5) 

Multiplication Multiplicative inverse 

Additive inverse 

1 2 3 40
4 3 2 10

a 

−a 

1 2 3 40
1 3 2 4

a 

a−1

0 0 0 00
1 2 3 40
2 4 1 30
3 1 4 20
4 3 2 10

0
1
2
3
4

1 2 3 40

Addition

1 2 3 40
2 3 4 01
3 4 0 12
4 0 1 23
0 1 2 34

0
1
2
3
4

1 2 3 40

+ ×

×+
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2. We can work in GF(2n) and uses a set of 2n elements. The elements in this set are
n-bit words. For example, if n = 3, the set is

However, we cannot interpret each element as an integer between 0 to 7 because
the regular four operations cannot be applied (the modulus 2n is not a prime). We
need to define a set of n-bit words and two new operations that satisfies the proper-
ties defined for a field. 

Example 4.14

Let us define a GF(22) field in which the set has four 2-bit words: {00, 01, 10, 11}. We can rede-
fine addition and multiplication for this field in such a way that all properties of these operations
are satisfied, as shown in Figure 4.8. 

Each word is the additive inverse of itself. Every word (except 00) has a multiplicative
inverse. The multiplicative inverse pairs are (01, 01) and (10, 11). Addition and multiplication are
defined in terms of polynomials. 

Polynomials

Although we can directly define the rules for addition and multiplication operations on
n-bit words that satisfy the properties in GF(2n), it is easier to work with a representation
of n-bit words, a polynomial of degree n − 1. A polynomial of degree n − 1 is an expres-
sion of the form 

where xi is called the ith term and ai is called coefficient of the ith term. Although we
are familiar with polynomials in algebra, to represent an n-bit word by a polynomial we
need to follow some rules:

a. The power of x defines the position of the bit in the n-bit word. This means the left-
most bit is at position zero (related to x0); the rightmost bit is at position n − 1
(related to xn−1).

b. The coefficients of the terms define the value of the bits. Because a bit can have
only a value of 0 or 1, our polynomial coefficients can be either 0 or 1. 

{000, 001, 010, 011, 100, 101, 110, 111}

Figure 4.8 An example of a GF(22) field

ƒ(x) = an−1xn−1 + an−2xn−2 + … + a1x1 + a0x0

Addition 

00 01 10 11

00

00

00

10

00 01 10 11

11

11

00

01 01

01

01

10 10

1011 11

⊕

Identity: 00

Multiplication

00 00 00 00

01

11

10

11

00 01 10 11

10

10

00

01 00

01

01

10 00

1111 00

⊗

Identity: 01
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Example 4.15

Figure 4.9 show how we can represent the 8-bit word (10011001) using a polynomials. 

Note that the term is totally omitted if the coefficient is 0, and the coefficient is omitted if it
is 1. Also note that x0 is 1. 

Example 4.16

To find the 8-bit word related to the polynomial x5 + x2 + x, we first supply the omitted terms.
Since n = 8, it means the polynomial is of degree 7. The expanded polynomial is 

This is related to the 8-bit word 00100110.   

Operations

Note that any operation on polynomials actually involves two operations: operations on
coefficients and operations on two polynomials. In other words, we need to define two
fields: one for the coefficients and one for the polynomials. Coefficients are made of 0 or
1; we can use the GF(2) field for this purpose. We discusses this field before (see Exam-
ple 4.14). For the polynomials we need the field GF(2n), which we will discuss shortly.  

Modulus

Before defining the operations on polynomials, we need to talk about the modulus
polynomials. Addition of two polynomials never creates a polynomial out of the set.
However, multiplication of two polynomials may create a polynomial with degrees
more than n − 1. This means we need to divide the result by a modulus and keep only
the remainder, as we did in modular arithmetic. For the sets of polynomials in GF(2n),
a group of polynomials of degree n is defined as the modulus. The modulus in this case
acts as a prime polynomial, which means that no polynomials in the set can divide this
polynomial. A prime polynomial cannot be factored into a polynomial with degree of
less than n. Such polynomials are referred to as irreducible polynomials. Table 4.4
shows irreducible polynomials of degrees 1 to 5.

Figure 4.9 Representation of an 8-bit word by a polynomial

0x7 + 0x6 + 1x5 + 0x4 + 0x3 + 1x2 + 1x1 + 0x0 

Polynomials representing n-bit words use two fields: GF(2) and GF(2n). 

0 0 0 11 1 01

1x7
 + 0x6

 + 0x5
 + 1x4

 + 1x3
 + 0x2

 + 0x1
 + 1x0

 

1x7
 + 1x4

 + 1x3
 + 1x0

x7
 + x4

 + x3
 + 1

n-bit word

Polynomial

First simplification

Second simplification
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For each degree, there is often more than one irreducible polynomial, which means
when we define our GF(2n) we need to declare which irreducible polynomial we are
using as the modulus.

Addition

Now let us define the addition operation for polynomials with coefficient in GF(2).
Addition is very easy: we add the coefficients of the corresponding terms in GF(2).
Note that adding two polynomials of degree n − 1 always create a polynomial
with degree n − 1, which means that we do not need to reduce the result using the
modulus.     

Example 4.17

Let us do (x5 + x2 + x) ⊕ (x3 + x2 + 1) in GF(28). We use the symbol ⊕ to show that we mean
polynomial addition. The following shows the procedure: 

There is a short cut: keeps the uncommon terms and delete the common terms. In other
words, x5, x3, x, and 1 are kept and x2, which is common in the two polynomials, is deleted. 

Example 4.18

There is also another short cut. Because the addition in GF(2) means the exclusive-or (XOR)
operation. So we can exclusive-or the two words, bits by bits, to get the result. In the previous
example, x5 + x2 + x is 00100110 and x3 + x2 + 1 is 00001101. The result is 00101011 or in poly-
nomial notation x5 + x3 + x + 1. 

Additive Identity The additive identity in a polynomial is a zero polynomial (a poly-
nomial with all coefficients set to zero) because adding a polynomial with itself results
in a zero polynomial. 

Additive Inverse The additive inverse of a polynomial with coefficients in GF(2) is
the polynomial itself. This means that the subtraction operation is the same as the addi-
tion operation.

Table 4.4 List of irreducible polynomials

Degree Irreducible Polynomials

1 (x + 1), (x)                                

2 (x2 + x + 1)

3 (x3 + x2 + 1), (x3 +  x + 1)

4 (x4 + x3 + x2 + x + 1), (x4 + x3 + 1), (x4 + x + 1) 

5 (x5 + x2 + 1), (x5 + x3 + x2 + x + 1),  (x5 + x4 + x3 + x + 1), 
(x5 + x4 + x3 + x2 + 1), (x5 + x4 + x2 + x + 1) 

0x7 + 0x6 + 1x5 + 0x4 + 0x3 + 1x2 + 1x1 + 0x0      ⊕

0x7 + 0x6 + 0x5 + 0x4 + 1x3 + 1x2 + 0x1 + 1x0

-------------------------------------------------------
0x7 + 0x6 + 1x5 + 0x4 + 1x3 + 0x2 + 1x1 + 1x0     →      x5 + x3 + x + 1   
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Multiplication

Multiplication in polynomials is the sum of the multiplication of each term of the first
polynomial with each term of the second polynomial. However, we need to remember
three points. First, the coefficient multiplication is done in GF(2). Second, multiplying
xi by xj results in xi+j. Third, the multiplication may create terms with degree more than
n − 1, which means the result needs to be reduced using a modulus polynomial. We first
show how to multiply two polynomials according to the above definition. Later we will
see a more efficient algorithm that can be used by a computer program.

Example 4.19

Find the result of (x5 + x2 + x)  ⊗  (x7 + x4 + x3 + x2 + x) in GF(28) with irreducible polynomial
(x8 + x4 + x3 + x + 1). Note that we use the symbol ⊗ to show the multiplication of two
polynomials. 

Solution
We first multiply the two polynomials as we have learned in algebra. Note that in this process, a
pair of terms with equal power of x are deleted. For example, x9 + x9 is totally deleted because the
result is a zero polynomial, as we discussed above.

To find the final result, divide the polynomial of degree 12 by the polynomial of degree 8
(the modulus) and keep only the remainder. The process is the same as we have learned in alge-
bra, but we need to remember that subtraction is the same as addition here. Figure 4.10 shows the
process of division. 

Multiplicative Identity The multiplicative identity is always 1. For example, in GF(28),
the multiplicative inverse is the bit pattern 00000001. 

Addition and subtraction operations on polynomials are the same operation.

P1 ⊗ P2 = x5(x7 + x4 + x3 + x2 + x) + x2(x7 + x4 + x3 + x2 + x) + x(x7 + x4 + x3 + x2 + x) 

P1
 ⊗ P2 = x12 + x9 + x8 + x7 + x6 + x9 + x6 + x5 + x4 + x3 + x8 + x5 + x4 + x3 + x2   

P1  ⊗ P2 = (x12 + x7 + x2) mod (x8 + x4 + x3 + x + 1) = x5 + x3 + x2 + x + 1                                                      

Figure 4.10 Polynomial division with coefficients in GF(2)

Remainder

x12
 + x7

 + x2x8
 + x4

 + x3
 + x + 1

x12
 + x8

 + x7
 + x5

 + x4

x8
  +  x5

 + x4
 + x2

x8
 +  x4

 + x3
 + x + 1

x5
 +  x3

 + x2
 + x + 1

x4
 + 1
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Multiplicative Inverse Finding the multiplicative inverse is a little more involved.

The extended Euclidean algorithm must be applied to the modulus and the polynomial.

The process is exactly the same as for integers.

Example 4.20

In GF(24), find the inverse of (x2 + 1) modulo (x4 + x + 1). 

Solution

We use the extended Euclidean algorithm as in Table 4.5: 

This means that (x2 + 1)−1 modulo (x4 + x + 1) is (x3 + x + 1). The answer can be easily

proved by multiplying the two polynomials and finding the remainder when the result is divided

by the modulus. 

Example 4.21

In GF(28), find the inverse of (x5) modulo (x8 + x4 + x3 + x + 1). 

Solution

Use the Extended Euclidean algorithm as shown in Table 4.6: 

This means that (x5)−1 modulo (x8 + x4 + x3 + x + 1) is (x5 + x4 + x3 + x). The answer can be

easily proved by multiplying the two polynomials and finding the remainder when the result is

divided by the modulus. 

Table 4.5 Euclidean algorithm for Exercise 4.20

q r1                   r2  r t1                       t2 t 

(x2 + 1) (x4 + x + 1)          (x2 + 1) (x) (0) (1) (x2 + 1)

(x) (x2 + 1)                 (x)  (1) (1) (x2 + 1) (x3 + x + 1)

(x) (x )                       (1) (0)  (x2 + 1) (x3 + x + 1) (0)

(1) (0) (x3 + x + 1) (0)

[(x2 + 1) ⊗ (x3 + x + 1)] mod (x4 + x + 1) = 1

Table 4.6 Euclidean algorithm for Example 4.21

q r1                r2  r t1                       t2 t 

 (x3)  (x8 + x4 + x3 + x + 1) (x5) (x4 + x3 + x + 1) (0) (1)  (x3)

(x + 1)           (x5) (x4 + x3 + x + 1)  (x3 + x2 + 1)  (1) (x3) (x4 + x3 + 1)

(x) (x4 + x3 + x + 1) (x3 + x2 + 1) (1)  (x3 ) (x4 + x3 + 1) (x5 + x4 + x3 + x)

(x3 + x2 + 1) (x3 + x2 + 1) (1) (0) (x4 + x3 + 1) (x5 + x4 + x3 + x) (0)

(1)    (0) (x5 + x4 + x3 + x)   (0)
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Multiplication Using Computer

Because of the division operation, there is an efficiency problem involved in writing

a program to multiply two polynomials. The computer implementation uses a better

algorithm, repeatedly multiplying a reduced polynomial by x. For example, instead

of finding the result of (x2 ⊗ P2), the program finds the result of (x ⊗ (x ⊗ P2)). The

benefit of this strategy will be discussed shortly, but first let us use an example to

show the process.

Example 4.22

Find the result of multiplying P1 = (x5 + x2 + x) by P2 =  (x7 + x4 + x3 + x2 + x) in GF(28) with

irreducible polynomial (x8 + x4 + x3 + x + 1) using the algorithm described above. 

Solution

The process is shown in Table 4.7. We first find the partial result of multiplying x0, x1, x2, x3, x4,

and x5 by P2. Note that although only three terms are needed, the product of xm ⊗ P2 for m from

0 to 5 is calculated because each calculation depends on the previous result. 

The above algorithm has two benefits. First, multiplication of a polynomial by x

can be easily achieved by one-bit shifting of the n-bit word; an operation provided by

common programming languages. Second, the result needed to be reduced only if the

polynomial maximum power is n − 1. In this case, reduction can be easily done by an

XOR operation with the modulus because the highest power in the result is only 8. We

can then design a simple algorithm to find each partial result:

1. If the most significant bit of the previous result is 0, just shift the previous result

one bit to the left.

2. If the most significant bit of the previous result is 1, 

a. shift it one bit to the left, and 

b. exclusive-or it with the modulus without the most significant bit

[(x5) ⊗ (x5 + x4 + x3 + x)] mode (x8 + x4 + x3 + x + 1) = 1

Table 4.7 An efficient algorithm for multiplication using polynomials (Example 4.22)

Powers Operation New Result Reduction

x0 
⊗ P2 x7 + x4 + x3 + x2 + x No

x1 
⊗ P2 x ⊗ (x7 + x4 + x3 + x2 + x) x5 + x2 + x + 1 Yes

x2 
⊗ P2 x ⊗ (x5 + x2 + x + 1) x6 + x3 + x2 + x No

x3 
⊗ P2 x ⊗ (x6 + x3 + x2 + x) x7 + x4 + x3 + x2 No

x4 
⊗ P2 x ⊗ (x7 + x4 + x3 + x2) x5 + x + 1 Yes

x5 
⊗ P2 x ⊗ (x5 + x + 1) x6 + x2 + x No

P1 × P2 = (x6 + x2 + x) + (x6 + x3 + x2 + x) + (x5 + x2 + x + 1) = x5
 + x3

 + x2 
+ x + 1
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Example 4.23

Repeat Example 4.22 using bit patterns of size 8. 

Solution
We have P1 = 000100110, P2 = 10011110, modulus = 100011010 (nine bits). We show the exclusive-
or operation by ⊕. See Table 4.8. 

In this case, we need only five shift-left operations and four exclusive-or operations
to multiply the two polynomials. In general, a maximum of n − 1 shift-left opera-
tions and 2n exclusive-or operations are needed to multiply two polynomial of
degree n − 1.   

Example 4.24

The GF(23) field has 8 elements. We use the irreducible polynomial (x3 + x2 + 1) and show the
addition and multiplication tables for this field. We show both 3-bit words and the polynomials.
Note that there are two irreducible polynomials for degree 3. The other one, (x3 + x + 1), yields a
totally different table for multiplication. Table 4.9 shows addition. The shaded boxes easily give
us the additive inverses pairs.  

Table 4.10 shows multiplication. The shaded boxes easily give us the multiplica-
tive inverse pairs.  

Using a Generator

Sometimes it is easier to define the elements of the GF(2n) field using a generator. In
this field with the irreducible polynomial ƒ(x), an element in the field, a, must satisfy
the relation ƒ(a) = 0. In particular, if g is a generator of the field, then ƒ(g) = 0. It can be
proved that the elements of the field can be generated as 

{0, g, g, g2, …, gN}, where N = 2n − 2 

Table 4.8 An efficient algorithm for multiplication using n-bit words

Powers Shift-Left Operation Exclusive-Or 

x0 ⊗ P2 10011110

x1 ⊗ P2 00111100 (00111100)  ⊕ (00011010) = 00100111

x2 ⊗ P2 01001110 01001110

x3 ⊗ P2 10011100 10011100

x4 ⊗ P2 00111000 (00111000)  ⊕ (00011010) = 00100011

x5 ⊗ P2 01000110 01000110 

P1 ⊗ P2 = (00100111)  ⊕ (01001110)  ⊕ (01000110) = 00101111 

Multiplication of polynomials in GF(2n) can be achieved using shift-left and 
exclusive-or operations. 



SECTION 4.2 GF(2n) FIELDS 115

Example 4.25

Generate the elements of the field GF(24) using the irreducible polynomial ƒ(x) = x4 + x + 1. 

Solution
The elements 0, g0, g1, g2, and g3 can be easily generated, because they are the 4-bit representa-
tions of 0, 1, x2, and x3 (there is no need for polynomial division). Elements g4 through g14, which
represent x4 though x14 need to be divided by the irreducible polynomial. To avoid the polynomial

Table 4.9 Addition table for GF(23) 

⊕

000

(0)

001

(1)

010

(x)

011

(x + 1)

100

(x2)

101

x2 + 1

110

(x2 + x)

111

(x2 + x + 1)

000

(0)

000

(0)

001

(1)

010

(x)

011

(x + 1)

100

(x2)

101

(x2 + 1)

110

(x2 + x)

111

(x2 + x + 1)

001

(1)

001

(1)

000

(0)

011

 (x + 1)

010

(x2)

101

(x2 + 1)

100

(x2 + x)

111

(x2 + x + 1)

110

(x2 + x) 

010

(x) 

010

(x) 

011

 (x + 1)

000

(0)

001

(1)

110

(x2 + x) 

111

(x2 + x + 1)

100

(x2 + x)

101

(x2 + 1)

011

(x + 1)

011

(x + 1)

010

(x) 

001

(1)

000

(0)

111

(x2 + x + 1)

110

(x2 + x)

101

(x2 + 1)

100

(x2)

100

(x2)

100

(x2)

101

(x2 + 1)

110

(x2 + x)

111

(x2 + x + 1)

000

(0)

001

(1)

010

(x) 

011

(x + 1)

101

(x2 + 1)

101

(x2 + 1)

100

(x2)

111

(x2 + x + 1)

110

(x2 + x)

001

(1)

000

(0)

011

(x + 1)

010

(x)

110

(x2 + x)

110

(x2 + x)

111

(x2 + x + 1)

100

(x2)

101

(x2 + 1)

010

(x) 

011

(x + 1)

000

(0)

001

(1)

111

(x2 + x + 1)

111

(x2 + x + 1)

110

(x2 + x)

101

(x2 + 1)

100

(x2)

011

(x + 1)

010

(x)

001

(1)

000

(0)

Table 4.10 Multiplication table for GF(23) with irreducible polynomial (x3 + x2 + 1)

⊗

000
(0)

001
(1)

010
(x)

011
(x + 1)

100
(x2)

101
(x2 + 1)

110
(x2 + x)

111
(x2 + x + 1)

000
(0)

000
(0)

000
(0)

000
(0)

000
(0)

000
(0)

000
(0)

000
(0)

000
(0)

001
(1)

000
(0)

001
(1)

010
(x)

011
(x + 1) 

100
(x2)

101
(x2 + 1)

110
(x2 + x)

111
(x2 + x + 1)

010
(x) 

000
(0)

010
(x) 

100
(x)

110
(x2 + x)

101
(x2 + 1)

111
(x2 + x + 1)

001
(1)

011
(x + 1) 

011
(x + 1)

000
(0)

011
(x + 1) 

110
(x2 + x)

101
(x2 + 1)

001
(1)

010
(x) 

111
(x2 + x + 1)

100
(x)

100
(x2)

000
(0)

100
(x2)

101
(x2 + 1)

001
(1)

111
(x2 + x + 1)

011
(x + 1) 

010
(x) 

110
(x2 + x)

101
(x2 + 1)

000
(0)

101
(x2 + 1)

111
(x2 + x + 1)

010
(x) 

011
(x + 1) 

110
(x2 + x)

100
(x2)

001
(1)

110
(x2 + x)

000
(0)

110
(x2 + x)

001
(1)

111
(x2 + x + 1)

010
(x) 

100
(x2)

011
(x + 1) 

101
(x2 + 1)

111
(x2 + x + 1)

000
(0)

111
(x2 + x + 1)

011
(x + 1) 

100
(x2)

110
(x2 + x)

001
(1)

101
(x2 + 1)

010
(x) 
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division, the relation ƒ(g) = g4 + g + 1 = 0 can be used. Using this relation, we have g4 =  −g − 1.
Because in this field addition and subtraction are the same operation, g4 =  g + 1. We use this
relation to find the value of all elements as 4-bit words: 

The main idea is to reduce terms g4 to g14 to a combination of the terms 1, g, g2, and g3, using the
relation g4 = g + 1. For example, 

g12 = g (g11) = g (g3 + g2 + g) = g4 + g3+ g2 = g3+ g2 + g + 1

After the reduction, it is easy to transform the powers into an n-bit word. For example, g3 + 1 is
equivalent to 1001, because only the powers 0 and 3 are present. Note that two equal terms cancel
each other in this process. For example, g2 + g2 = 0. 

Inverses

Finding inverses using the above representation is simple. 

Additive Inverses

The additive inverse of each element is the element itself because addition and subtrac-
tion in this field are the same: −g3 = g3

Multiplicative Inverses

Finding the multiplicative inverse of each element is also very simple. For example, we
can find the multiplicative inverse of g3 as shown below: 

Note that the exponents are calculated modulo 2n − 1, 15 in this case. Therefore, the
exponent −3 mod 15 = 12 mod 15. It can be easily proved that g3 and g12 are inverses of
each other because g3 × g12 = g15 = g0 = 1. 

Operations

The four operations defined for the field can also be performed using this representation.

0    
g0 
g1 
g2 
g3        

=
=    
=
=  
=  

0    
g0 
g1 
g2 
g3 

=
=    
=
=  
=  

0 
g0 
g1

g2

g3 

=
=    
=
=  
=  

0    
g0 
g1 
g2 
g3 

→    

→  

→  

→  

→ 

0    
g0 
g1 
g2 
g3    

=    
=  
=  
=  
=  

(0000) 
(0001)

(0010)

(0100)

(1000)

g4   
g5       
g6    

g7    

g8 

g9   

g10   

g11   

g12 

g13    
g14   

=  
= 
=
= 
=
=
=
= 
=  
= 
=

g4   
g (g4)       
g (g5)   
g (g6)    
g (g7) 
g (g8)    
g (g9)   
g (g10)  
g (g11) 
g (g12)   
g (g13)   

=  
= 
=
= 
=
=
=
= 
=  
= 
=

g4  

g (g + 1)    
g (g2 + g) 
g (g3 + g)  
g (g3 + g + 1) 
g (g2 + 1)  
g (g3 + g) 
g (g2 + g + 1) 
g (g3 + g2 + g)
g (g3 + g2 + g + 1)  
g (g3 + g2 + 1)  

=  
= 
=
= 
=
=
=
= 
=  
= 
=

g + 1 

g2 + g 

g3 + g2  

g3 + g + 1
g2 + 1
g3 + g
g2 + g + 1
g3 + g2 + g  

g3 + g2 + g + 1 

g3 + g2 + 1 

g3 + 1

→    

→  

→  

→  

→ 

→  

→  

→ 

→

→ 

→

g4  

g5   

g6 

g7 

g8 

g9

g10 

g11 

g12 

g13  

g14 

=    
=  
=  
=  
= 
=  
=  
= 
=
= 
=

(0011)

(0110) 

(1100)

(1011) 

(0101) 

(1010) 

(0111)

(1110)

(1111)

(1101)

(1001)

(g3)−1 = g−3 = g12  =  g3 + g2 + g + 1     →    (1111)   
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Addition and Subtraction

Addition and subtraction are the same operation. The intermediate results can be sim-
plified as shown in the following example. 

Example 4.26

The following show the results of addition and subtraction operations:

a. g3 +  g12 + g7 = g3 +  (g3 + g2 + g + 1) + (g3 + g + 1) = g3 + g2  → (1100)

b. g3 −  g6 = g3 +  g6 = g3 +  (g3 + g2) = g2 → (0100)

Multiplication and Division

Multiplication is the addition of powers modulo 2n − 1. Division is multiplication using
the multiplicative inverse. 

Example 4.27

The following show the result of multiplication and division operations:

a. g9 ×  g11 = g20 = g20 mod 15 = g5 = g2 + g → (0110)

b. g3 / g8 = g3 × g7 = g10 = g2 + g + 1 → (0111)

Summary

The finite field GF(2n) can be used to define four operations of addition, subtraction,
multiplication and division over n-bit words. The only restriction is that division by
zero is not defined. Each n-bit word can also be represented as a polynomial of degree
n − 1 with coefficients in GF(2), which means that the operations on n-bit words are the
same as the operations on this polynomial. To make it modular, we need to define an
irreducible polynomial of degree n when we multiply two polynomials. The extended
Euclidean algorithm can be applied to polynomials to find the multiplicative inverses. 

4.3 RECOMMENDED READING
The following books and Web sites provide more details about subjects discussed in this
chapter. The items enclosed in brackets refer to the reference list at the end of the book. 

Books

[Dur05], [Ros06], [Bla03], [BW00], and [DF04] discuss algebraic structures thoroughly. 

WebSites

The following websites give more information about topics discussed in this chapter.

http://en.wikipedia.org/wiki/Algebraic_structure

http://en.wikipedia.org/wiki/Ring_%28mathematics%29

http://en.wikipedia.org/wiki/Polynomials

http://www.math.niu.edu/~rusin/known-math/index/20-XX.html

http://www.math.niu.edu/~rusin/known-math/index/13-XX.html

http://www.hypermaths.org/quadibloc/math/abaint.htm

http://en.wikipedia.org/wiki/Finite_field



118 CHAPTER 4 MATHEMATICS OF CRYPTOGRAPHY

4.4 KEY TERMS

4.5 SUMMARY
❏ Cryptography requires sets and specific operations defined on those sets. The com-

bination of the set and the operations applied to elements of the set is called an
algebraic structure. Three algebraic structures were introduced in this chapter:
groups, rings, and fields.

❏ A group is an algebraic structure with a binary operation shown as that satisfies
four properties: closure, associativity, existence of identity, and existence of
inverse. A commutative group, also called an abelian group, is a group in which the
operator satisfies an extra property: commutativity. 

❏ A subset H of a group G is a subgroup of G if H itself is a group with respect to the
operation on G. If a subgroup of a group can be generated using the power of an
element, the subgroup is called the cyclic subgroup. A cyclic group is a group that
is its own cyclic subgroup.

❏ Lagrange’s theorem relates the order of a group to the order of its subgroup. If the
order of G and H are |G| and |H|, respectively, then, |H| divides |G|.

❏ The order of an element a in a group is the smallest positive integer n such that an = e. 

❏ A ring is an algebraic structure with two operations. The first operation needs to
satisfy all five properties required for an abelian group. The second operation
needs to satisfy only the first two. In addition, the second operation must be
distributed over the first. A commutative ring is a ring in which the commutative
property is also satisfied for the second the operation.

❏ A field is a commutative ring in which the second operation satisfies all five prop-
erties defined for the first operation except that the identity of the first operation

abelian group field

algebraic structure finite field

associativity finite group

closure Galois field

commutative group group

commutative ring irreducible polynomial

commutativity Lagrange’s theorem

composition order of an element

cyclic group order of a group

cyclic subgroup permutation group

distributivity polynomial

existence of identity ring

existence of inverse subgroup
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has no inverse. A finite field, also called a Galois field, is a field with pn elements,

where p is a prime and n is a positive integer. GF(pn) fields are used to allow

operations on n-bit words in cryptography. 

❏ Polynomials with coefficients in GF(2) are used to represent n-bit words. Addition

and multiplication on n-bit words can be defined as addition and multiplication of

polynomials. 

❏ Sometimes it is easier to define the elements of the GF(2n) field using a generator.

If g is a generator of the field, then ƒ(g) = 0. Finding inverses and performing oper-

ations on the elements of the field become simpler when the elements are repre-

sented as the powers of the generator. 

4.6 PRACTICE SET

Review Questions

1. Define an algebraic structure and list three algebraic structures discussed in this

chapter.

2. Define a group and distinguish between a group and a commutative group.

3. Define a ring and distinguish between a ring and a commutative ring.

4. Define a field and distinguish between an infinite field and a finite field.

5. Show the number of elements in Galois fields in terms of a prime number. 

6. Give one example of a group using a set of residues.

7. Give one example of a ring using a set of residues.

8. Give one example of a field using a set of residues. 

9. Show how a polynomial can represent an n-bit word. 

10. Define an irreducible polynomial. 

Exercises

11. For the group G = <Z4, +>:

a. Prove that it is an abelian group.

b. Show the result of 3 + 2 and 3 − 2. 

12. For the group G = <Z6*, ×>:

a. Prove that it is an abelian group.

b. Show the result of 5 × 1 and 1 ÷ 5. 

c. Show that why we should not worry about division by zero in this group.

13. Only one operation was defined for the group in Table 4.1. Assume that this opera-

tion is addition. Show the table for the subtraction operation (the inverse operation). 

14. Prove that the permutation group in Table 4.2 is not commutative.

15. Partially prove that the permutation group in Table 4.2 satisfies associativity by

giving a few cases. 

16. Create a permutation table for two inputs and two outputs similar to Table 4.2.
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17. Alice uses three consecutive permutations [1  3  2], [3  2  1], and [2  1  3]. Show
how Bob can use only one permutation to reverse the process. Use Table 4.2.

18. Find all subgroups of the following groups:

a. G = <Z16, +>

b. G = <Z23, +>

c. G = <Z16∗, ×>

d. G = <Z17∗, ×>

19. Using Lagrange’s theorem, find the orders of all the potential subgroups of the
following groups:

a. G = <Z18, +>

b. G = <Z29, +>

c. G = <Z12∗, ×>

d. G = <Z19∗, ×>

20. Find the orders of all elements in the following groups:

a. G = <Z8, +>

b. G = <Z7, +>

c. G = <Z9∗, ×>

d. G = <Z7∗, ×>

21. Redo Example 4.25 using the irreducible polynomial ƒ(x) = x4 + x3 + 1.

22. Redo Example 4.26 using the irreducible polynomial ƒ(x) = x4 + x3 + 1.

23. Redo Example 4.27 using the irreducible polynomial ƒ(x) = x4 + x3 + 1.

24. Which of the following is a valid Galois field?

a. GF(12)

b. GF(13)

c. GF(16)

d. GF(17)

25. For each of the following n-bit words, find the polynomial that represent that word: 

a. 10010

b. 10

c. 100001

d. 00011

26. Find the n-bit word that is represented by each of the following polynomials. 

a. x2 + 1 in GF(24)

b. x2 + 1 in GF(25)

c. x + 1 in GF(23)

d. x7 in GF(28)

27. In the field GF(7), find the result of 

a. 5 + 3

b. 5 − 4

c. 5 × 3

d. 5 ÷ 3
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28. Prove that (x) and (x + 1) are irreducible polynomials of degree 1.

29. Prove that (x2 + x + 1) is an irreducible polynomials of degree 2.

30. Prove that (x3 + x2 + 1) is an irreducible polynomials of degree 3.

31. Multiply the following n-bit words using polynomials. 

a. (11) × (10)

b. (1010) × (1000)

c. (11100) × (10000)

32. Find the multiplicative inverse of the following polynomials in GF(22). Note that

there is only one modulus for this field. 

a. 1

b. x

c. x + 1

33. Use the extended Euclidean algorithm to find the inverse of (x4 + x3 + 1) in GF(25)

using the modulus (x5 + x2 + 1).

34. Create a table for addition and multiplication for GF(24), using (x4 + x3 + 1) as the

modulus. 

35. Using Table 4.10, perform the following operations:

a. (100) ÷ (010)

b. (100) ÷ (000)

c. (101) ÷ (011)

d. (000) ÷ (111)

36. Show how to multiply (x3 + x2 + x + 1) by (x2 + 1) in GF(24) using the algorithm in

Table 4.7. Use (x4 + x3 + 1) as modulus.

37. Show how to multiply (10101) by (10000) in GF(25) using the algorithm in

Table 4.8. Use (x5 + x2 + 1) as modulus.
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CHAPTER 5

Introduction to Modern 
Symmetric-Key Ciphers

Objectives

This chapter has several objectives: 

❏ To distinguish between traditional and modern symmetric-key ciphers.

❏ To introduce modern block ciphers and discuss their characteristics.

❏ To explain why modern block ciphers need to be designed as substi-
tution ciphers.

❏ To introduce components of block ciphers such as P-boxes and S-boxes.

❏ To discuss product ciphers and distinguish between two classes of
product ciphers: Feistel and non-Feistel ciphers.

❏ To discuss two kinds of attacks particularly designed for modern
block ciphers: differential and linear cryptanalysis.

❏ To introduce stream ciphers and to distinguish between synchronous
and nonsynchronous stream ciphers.

❏ To discuss linear and nonlinear feedback shift registers for imple-
menting stream ciphers.

The traditional symmetric-key ciphers that we have studied so far are
character-oriented ciphers. With the advent of the computer, we need
bit-oriented ciphers. This is because the information to be encrypted is
not just text; it can also consist of numbers, graphics, audio, and video
data. It is convenient to convert these types of data into a stream of bits,
to encrypt the stream, and then to send the encrypted stream. In addition,
when text is treated at the bit level, each character is replaced by 8 (or 16)
bits, which means that the number of symbols becomes 8 (or 16) times
larger. Mixing a larger number of symbols increases security.
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This chapter provides the necessary background for the study of the
modern block and stream ciphers discussed in the next three chapters.
Most of this chapter is devoted to discussion of the general ideas behind
modern block ciphers; a small part is dedicated to discussion of the prin-
ciples of modern stream ciphers.

5.1 MODERN BLOCK CIPHERS

A symmetric-key modern block cipher encrypts an n-bit block of plaintext or decrypts
an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key. The
decryption algorithm must be the inverse of the encryption algorithm, and both operations
must use the same secret key so that Bob can retrieve the message sent by Alice. Figure 5.1
shows the general idea of encryption and decryption in a modern block cipher. 

If the message has fewer than n bits, padding must be added to make it an n-bit
block; if the message has more than n bits, it should be divided into n-bit blocks and the
appropriate padding must be added to the last block if necessary. The common values
for n are 64, 128, 256, or 512 bits.

Example 5.1

How many padding bits must be added to a message of 100 characters if 8-bit ASCII is used for
encoding and the block cipher accepts blocks of 64 bits?

Solution

Encoding 100 characters using 8-bit ASCII results in an 800-bit message. The plaintext must be
divisible by 64. If |M| and |Pad| are the length of the message and the length of the padding,

This means that 32 bits of padding (for example, 0’s) need to be added to the message. The plain-
text then consists of 832 bits or thirteen 64-bit blocks. Note that only the last block contains pad-
ding. The cipher uses the encryption algorithm thirteen times to create thirteen ciphertext blocks. 

Figure 5.1 A modern block cipher

|M| + |Pad| = 0 mod 64 → |Pad| = − 800 mod 64 → 32 mod 64   

Encryption Decryption

n-bit plaintext

k-bit key

n-bit plaintext

n-bit ciphertext n-bit ciphertext
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Substitution or Transposition

A modern block cipher can be designed to act as a substitution cipher or a transposition
cipher. This is the same idea as is used in traditional ciphers, except that the symbols to
be substituted or transposed are bits instead of characters.

If the cipher is designed as a substitution cipher, a 1-bit or a 0-bit in the plaintext can
be replaced by either a 0 or a 1. This means that the plaintext and the ciphertext can have
a different number of 1’s. A 64-bit plaintext block of 12 0’s and 52 1’s can be encrypted
to a ciphertext of 34 0’s and 30 1’s. If the cipher is designed as a transposition cipher, the
bits are only reordered (transposed); there is the same number of 1’s in the plaintext and
in the ciphertext. In either case, the number of n-bit possible plaintexts or ciphertexts
is 2n, because each of the n bits in the block can have one of the two values, 0 or 1.

Modern block ciphers are designed as substitution ciphers because the inherent
characteristics of transposition (preserving the number of 1’s or 0’s) makes the cipher
vulnerable to exhaustive-search attacks, as the next example shows.

Example 5.2

Suppose that we have a block cipher where n = 64. If there are 10 1’s in the ciphertext, how many
trial-and-error tests does Eve need to do to recover the plaintext from the intercepted ciphertext in
each of the following cases?

a. The cipher is designed as a substitution cipher.

b. The cipher is designed as a transposition cipher.

Solution

a. In the first case (substitution), Eve has no idea how many 1’s are in the plaintext. Eve
needs to try all possible 264 64-bit blocks to find one that makes sense. If Eve could try
1 billion blocks per second, it would still take hundreds of years, on average, before she
could be successful.

b. In the second case (transposition), Eve knows that there are exactly 10 1’s in the plain-
text, because transposition does not change the number of 1’s (or 0’s) in the ciphertext.
Eve can launch an exhaustive-search attack using only those 64-bit blocks that have
exactly 10 1’s. There are only (64!) / [(10!) (54!)] = 151,473,214,816 out of 264 64-bit
words that have exactly 10 1’s. Eve can test all of them in less than 3 minutes if she can
do 1 billion tests per second. 

Block Ciphers as Permutation Groups

As we will see in later chapters, we need to know whether a modern block cipher is a
group (see Chapter 4). To answer this question, first assume that the key is long enough
to choose every possible mapping from the input to the output. Call this a full-size key
cipher. In practice, however, the key is smaller; only some mappings from the input to
the output are possible. Although a block cipher needs to have a key that is a secret
between the sender and the receiver, there are also keyless components that are used
inside a cipher.

To be resistant to exhaustive-search attack, a modern block cipher needs to be 

designed as a substitution cipher.
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Full-Size Key Ciphers

Although full-size key ciphers are not used in practice, we first discuss this category to
make the discussion of partial-size key ciphers understandable.

Full-Size Key Transposition Block Ciphers A full-size key transposition cipher only
transposes bits without changing their values, so it can be modeled as an n-object per-
mutation with a set of n! permutation tables in which the key defines which table is
used by Alice and Bob. We need to have n! possible keys, so the key should have
log2 n! bits. 

Example 5.3

Show the model and the set of permutation tables for a 3-bit block transposition cipher where the
block size is 3 bits.

Solution

The set of permutation tables has 3! = 6 elements, as shown in Figure 5.2. The key should be
log26 = 3 bits long. Note that, although a 3-bit key can select 23 = 8 different mappings, we use
only 6 of them.  

Full-Size Key Substitution Block Ciphers A full-size key substitution cipher does
not transpose bits; it substitutes bits. At first glance, it appears that a full-size key substitu-
tion cipher cannot be modeled as a permutation. However, we can model the substitution
cipher as a permutation if we can decode the input and encode the output. Decoding

means transforming an n-bit integer into a 2n-bit string with only a single 1 and 2n − 1 0’s.
The position of the single 1 is the value of the integer, in which the positions range
from 0 to 2n − 1. Encoding is the reverse process. Because the new input and output
have always a single 1, the cipher can be modeled as a permutation of 2n! objects.   

Example 5.4

Show the model and the set of permutation tables for a 3-bit block substitution cipher.

Figure 5.2 A transposition block cipher modeled as a permutation

{[1 2 3], [1 3 2], [2 1 3], [2 3 1], [3 1 2], [3 2 1]}    

1 2 3

1 2 3

The set of permutation tables with 3! = 6 elements

Key (3 bits)
A 3-bit block 

transposition cipher
  A 3-object permutation
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Solution

The three-input plaintext can be an integer between 0 to 7. This can be decoded as an 8-bit string
with a single 1. For example, 000 can be decoded as 00000001; 101 can be decoded as 00100000.
Figure 5.3 shows the model and the set of permutation tables. Note that the number of elements
in the set is much bigger than the number of elements in the transposition cipher (8! = 40,320).
The key is also much longer, log2 40,320 = 16 bits. Although a 16-bit key can define 65,536 dif-
ferent mappings, only 40,320 are used.           

Permutation Group The fact that a full-size key transposition or substitution cipher is
a permutation shows that, if encryption (or decryption) uses more than one stage of any of
these ciphers, the result is equivalent to a permutation group under the composition oper-
ation. As discussed in Chapter 4, two or more cascaded permutations can be always
replaced with a single permutation. This means that it is useless to have more than one
stage of full-size key ciphers, because the effect is the same as having a single stage.

Partial-Size Key Ciphers

Actual ciphers cannot use full-size keys because the size of the key becomes so large,
especially for a substitution block cipher. For example, a common substitution cipher is
DES (see Chapter 6), which uses a 64-bit block cipher. If the designers of DES had

Figure 5.3 A substitution block cipher model as a permutation

A full-size key n-bit transposition cipher or a substitution block cipher can be modeled

as a permutation, but their key sizes are different:

For a transposition cipher, the key is  log2    n!    bits    long.

For a substitution cipher, the key is  log2(2n)!    bits    long.

1 2 3

1 2 3

3 × 8
 Decoder

8 × 3
Encoder

{[1  2  3  4  5  6  7  8], [1  2  3  4  5  6  8  7],  .  .  .}   

The set of permutation tables with 8! = 40,320 elements

A 3-bit block 
substitution cipher Key (16 bits)  An 8-object permutation
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used a full-size key, the key would have been log2(264!) ≈ 270 bits. The key size for
DES is only 56 bits, which is a very small fraction of the full-size key. This means that
DES uses only 256 mappings out of approximately 2(270) possible mappings. 

Permutation Group Now the question is whether a multi-stage partial-key trans-
position or substitution is a permutation group under the composition operation. This
question is extremely important because it tells us whether a multi-stage version of the
same cipher can be made to achieve more security (see the discussion of multiple DES in
Chapter 6). A partial-key cipher is a group if it is a subgroup of the corresponding full-
size key cipher. In other words, if the full-size key cipher makes a group G = <M, °>,
where M is a set of mappings and the operation is the composition (°), then the partial-
size key cipher must make a subgroup H = < N, ° >, where N is a subset of M and the
operation is the same. 

For example, it has been proved that the multi-stage DES with a 56-bit key is not a
group because no subgroup with 256 mappings can be created from the corresponding
group with 264! mappings. 

Keyless Ciphers

Although a keyless cipher is practically useless by itself, keyless ciphers are used as
components of keyed ciphers. 

Keyless Transposition Ciphers A keyless (or fixed-key) transposition cipher (or
unit) can be thought of as a prewired transposition cipher when implemented in hard-
ware. The fixed key (single permutation rule) can be represented as a table when the
unit is implemented in software. The next section of this chapter discusses keyless
transposition ciphers, called P-boxes, which are used as building blocks of modern
block ciphers. 

Keyless Substitution Ciphers A keyless (or fixed-key) substitution cipher (or unit)
can be thought of as a predefined mapping from the input to the output. The mapping can
be defined as a table, a mathematical function, and so on. The next section of this chapter
discusses keyless substitution ciphers, called S-boxes, which are used as building blocks
of modern block ciphers. 

Components of a Modern Block Cipher

Modern block ciphers normally are keyed substitution ciphers in which the key allows
only partial mappings from the possible inputs to the possible outputs. However, mod-
ern block ciphers normally are not designed as a single unit. To provide the required
properties of a modern block cipher, such as diffusion and confusion (discussed
shortly), a modern block cipher is made of a combination of transposition units (called
P-boxes), substitution units (called S-boxes), and some other units (discussed shortly).

A partial-key cipher is a group under the composition operation if it is a subgroup 

of the corresponding full-size key cipher.
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P-Boxes

A P-box (permutation box) parallels the traditional transposition cipher for characters.
It transposes bits. We can find three types of P-boxes in modern block ciphers: straight
P-boxes, expansion P-boxes, and compression P-boxes, as shown in Figure 5.4. 

Figure 5.4 shows a 5 × 5 straight P-box, a 5 × 3 compression P-box, and a 3 × 5
expansion P-box. We will discuss each of them in more detail.

Straight P-Boxes A straight P-Box with n inputs and n outputs is a permutation.
There are n! possible mappings.

Example 5.5

Figure 5.5 shows all 6 possible mappings of a 3 × 3 P-box.

Although a P-box can use a key to define one of the n! mappings, P-boxes are
normally keyless, which means that the mapping is predetermined. If the P-box is
implemented in hardware, it is prewired; if it is implemented in software, a permutation
table shows the rule of mapping. In the second case, the entries in the table are the
inputs and the positions of the entries are the outputs. Table 5.1 shows an example of a
straight permutation table when n is 64. 

Figure 5.4 Three types of P-boxes

Figure 5.5 The possible mappings of a 3 × 3 P-box

 Straight
P-box

1 2 4 53

1 2 4 53

 Compression
P-box

1 2 4 53

1 32

 Expansion
P-box

1 32

1 2 4 53

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3
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Table 5.1 has 64 entries, corresponding to the 64 inputs. The position (index) of
the entry corresponds to the output. Because the first entry contains the number 58,
we know that the first output comes from the 58th input. Because the last entry is 7, we
know that the 64th output comes from the 7th input, and so on.

Example 5.6

Design an 8 × 8 permutation table for a straight P-box that moves the two middle bits (bits 4 and 5)
in the input word to the two ends (bits 1 and 8) in the output words. Relative positions of other
bits should not be changed.

Solution

We need a straight P-box with the table [4  1  2  3   6   7   8   5]. The relative positions of input
bits 1, 2, 3, 6, 7, and 8 have not been changed, but the first output takes the fourth input and the
eighth output takes the fifth input. 

Compression P-Boxes A compression P-box is a P-box with n inputs and m outputs
where m < n. Some of the inputs are blocked and do not reach the output (see Figure 5.4).
The compression P-boxes used in modern block ciphers normally are keyless with a per-
mutation table showing the rule for transposing bits. We need to know that a permutation
table for a compression P-box has m entries, but the content of each entry is from 1 to n
with some missing values (those inputs that are blocked). Table 5.2 shows an example of
a permutation table for a 32 × 24 compression P-box. Note that inputs 7, 8, 9, 15, 16, 23,
24, and 25 are blocked. 

Compression P-boxes are used when we need to permute bits and the same time
decrease the number of bits for the next stage. 

Expansion P-Boxes An expansion P-box is a P-box with n inputs and m outputs
where m > n. Some of the inputs are connected to more than one input (see Figure 5.4).
The expansion P-boxes used in modern block ciphers normally are keyless, where a
permutation table shows the rule for transposing bits. We need to know that a permuta-
tion table for an expansion P-box has m entries, but m − n of the entries are repeated
(those inputs mapped to more than one output). Table 5.3 shows an example of a per-
mutation table for a 12 × 16 expansion P-box. Note that each of the inputs 1, 3, 9, and
12 is mapped to two outputs. 

Table 5.1 Example of a permutation table for a straight P-box

58  50  42  34  26  18  10  02  60  52  44  36  28  20  12  04
62  54  46  38  30  22  14  06  64  56  48  40  32  24  16  08
57  49  41  33  25  17  09  01  59  51  43  35  27  19  11  03
61  53  45  37  29  21  13  05  63  55  47  39  31  23  15  07

Table 5.2 Example of a 32 × 24 permutation table

01   02   03   21   22   26   27   28   29   13   14   17
18   19   20   04   05   06   10   11   12   30   31   32

Table 5.3 Example of a 12 × 16 permutation table

01 09 10 11 12 01 02 03 03 04 05 06 07 08 09 12  
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Expansion P-boxes are used when we need to permute bits and the same time
increase the number of bits for the next stage. 

Invertibility A straight P-box is invertible. This means that we can use a straight P-box
in the encryption cipher and its inverse in the decryption cipher. The permutation tables,
however, need to be the inverses of each other. In Chapter 3, we saw how we can make
the inverse of a permutation table.

Example 5.7

Figure 5.6 shows how to invert a permutation table represented as a one-dimensional table. 

Compression and expansion P-boxes have no inverses. In a compression P-box,
an input can be dropped during encryption; the decryption algorithm does not have a
clue how to replace the dropped bit (a choice between a 0-bit or a 1-bit). In an expan-
sion P-box, an input may be mapped to more than one output during encryption; the
decryption algorithm does not have a clue which of the several inputs are mapped to an
output. Figure 5.7 demonstrates both cases.  

Figure 5.6 Inverting a permutation table

Figure 5.7 Compression and expansion P-boxes as non-invertible components
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Figure 5.7 also shows that a compression P-box is not the inverse of an expansion
P-box or vice versa. This means that if we use a compression P-box in the encryption
cipher, we cannot use an expansion P-box in the decryption cipher; or vice versa.
However, as will be shown later in this chapter, there are ciphers that use compression
or expansion P-boxes in the encryption cipher; the effects of these are canceled in some
other ways in the decryption cipher.  

S-Boxes

An S-box (substitution box) can be thought of as a miniature substitution cipher. How-
ever, an S-box can have a different number of inputs and outputs. In other words, the
input to an S-box could be an n-bit word, but the output can be an m-bit word, where m
and n are not necessarily the same. Although an S-box can be keyed or keyless, modern
block ciphers normally use keyless S-boxes, where the mapping from the inputs to the
outputs is predetermined. 

Linear Versus Nonlinear S-Boxes In an S-box with n inputs and m outputs, we call
the inputs x0, x1, …, xn and the outputs y1, …, ym. The relationship between the inputs
and the outputs can be represented as a set of equations 

y1 = ƒ1 (x1, x2, …, xn)
y2 = ƒ2 (x1, x2, …, xn)

…
ym = ƒm (x1, x2, …, xn)

In a linear S-box, the above relations can be expressed as 

In a nonlinear S-box we cannot have the above relations for every output. 

Example 5.8

In an S-box with three inputs and two outputs, we have  

A straight P-box is invertible, but compression and expansion P-boxes are not.

An S-box is an m ×××× n substitution unit, where m and n are not necessarily the same.

y1 = a1,1 x1  ⊕ a1,2 x1 ⊕ … ⊕ a1,n xn

y2 = a2,1 x1  ⊕ a2,2 x1 ⊕ … ⊕ a2,n xn

…
ym = am,1 x1 ⊕ am,2 x1 ⊕ … ⊕ am,n xn

y1 = x1 ⊕ x2 ⊕ x3 y2 = x1



SECTION 5.1 MODERN BLOCK CIPHERS 133

The S-box is linear because a1,1 = a1,2 = a1,3 = a2,1 =1 and a2,2 = a2,3 = 0. The relationship can be
represented by matrices, as shown below: 

Example 5.9

In an S-box with three inputs and two outputs, we have

where multiplication and addition is in GF(2). The S-box is nonlinear because there is no linear
relationship between the inputs and the outputs.

Example 5.10

The following table defines the input/output relationship for an S-box of size 3 × 2. The leftmost
bit of the input defines the row; the two rightmost bits of the input define the column. The two
output bits are values on the cross section of the selected row and column.  

Based on the table, an input of 010 yields the output 01. An input of 101 yields the output of 00. 

Invertibility S-boxes are substitution ciphers in which the relationship between input
and output is defined by a table or mathematical relation. An S-box may or may not be
invertible. In an invertible S-box, the number of input bits should be the same as the
number of output bits.

Example 5.11

Figure 5.8 shows an example of an invertible S-box. One of tables is used in the encryption algo-
rithm; the other table is used in the decryption algorithm. In each table, the leftmost bit of the
input defines the row; the next two bits define the column. The output is the value where the input
row and column meet.  

For example, if the input to the left box is 001, the output is 101. The input 101 in the right
table creates the output 001, which shows that the two tables are inverses of each other. 

Exclusive-Or

An important component in most block ciphers is the exclusive-or operation. As we
discussed in Chapter 4, addition and subtraction operations in the GF(2n) field are per-
formed by a single operation called the exclusive-or (XOR).

y1 = (x1)3  + x2 y2 = (x1)2  + x1x2  + x3 

1

1 0 0

1 1y1

y2

x1

x2

x3

= ×

Leftmost
bit

Rightmost
bits

Output bits

01 10 1100

00 01 11

10

10

00 11 01

0

1
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Properties The five properties of the exclusive-or operation in the GF(2n) field
makes this operation a very interesting component for use in a block cipher.

1. Closure: This property guarantees that the result of exclusive-oring two n-bit
words is another n-bit word. 

2. Associativity: This property allows us to use more than one exclusive-or operator
in any order. 

3. Commutativity: This property allows us to swap the inputs without affecting the output.

4. Existence of identity: The identity element for the exclusive-or operation is an n-bit
word that consists of all 0’s, or (00…0). This implies that exclusive-oring of a
word with the identity element does not change that word. 

We use this property in the Feistel cipher discussed later in this chapter. 

5. Existence of inverse: In the GF(2n) field, each word is the additive inverse of itself.
This implies that exclusive-oring of a word with itself yields the identity element.   

We also use this property in the Feistel cipher discussed later in this chapter.

Complement The complement operation is a unary operation (one input and one out-
put) that flips each bit in a word. A 0-bit is changed to a 1-bit; a 1-bit is changed to a
0-bit. We are interested in the complement operation in relation to the exclusive-or
operation. If x is the complement of x, then the following two relations hold:

Figure 5.8 S-box tables for Example 5.11

 x  ⊕ (y  ⊕  z)     ↔     (x  ⊕ y)  ⊕  z 

 x  ⊕ y      ↔     y  ⊕ x 

 x  ⊕ (00…0) = x 

 x  ⊕ x = (00…0) 

x  ⊕ x = (11…1)         and       x  ⊕ (11…1) =  x

3 bits 3 bits

3 bits 3 bits

Table used for
encryption

Table used for
decryption

01 10 1100

100 101 000

011

110

001 111 010

0

1

01 10 1100

011 111 100

000

101

010 001 110

0

1
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We also use these properties later in this chapter when we discuss the security of
some ciphers.

Inverse The inverse of a component in a cipher makes sense if the component repre-
sents a unary operation (one input and one output). For example, a keyless P-box or a
keyless S-box can be made invertible because they have one input and one output. An
exclusive operation is a binary operation. The inverse of an exclusive-or operation can
make sense only if one of the inputs is fixed (is the same in encryption and decryption).
For example, if one of the inputs is the key, which normally is the same in encryption
and decryption, then an exclusive-or operation is self-invertible, as shown in Figure 5.9. 

In Figure 5.9, the additive inverse property implies that

We will use this property when we discuss the structure of block ciphers later in
this chapter. 

Circular Shift

Another component found in some modern block ciphers is the circular shift opera-

tion. Shifting can be to the left or to the right. The circular left-shift operation shifts
each bit in an n-bit word k positions to the left; the leftmost k bits are removed from the
left and become the rightmost bits. The circular right-shift operation shifts each bit in
an n-bit word k positions to the right; the rightmost k bits are removed from the right
and become the leftmost bits. Figure 5.10 shows both left and right operations in the
case where n = 8 and k = 3. 

The circular shift operation mixes the bits in a word and helps hide the patterns
in the original word. Although the number of positions to be shifted can be used as
a key, the circular shift operation normally is keyless; the value of k is fixed and
predetermined. 

Invertibility A circular left-shift operation is the inverse of the circular right-shift
operation. If one is used in the encryption cipher, the other can be used in the decryp-
tion cipher. 

Property The circular shift operation has two properties that we need to be aware of.
First, the shifting is modulo n. In other words, if k = 0 or k = n, there is no shifting. If k is
larger than n, then the input is shifted k mod n bits. Second, the circular shift operation

Figure 5.9 Invertibility of the exclusive-or operation

y = x  ⊕  k          →         x = k  ⊕  y 

Encryption Decryption 
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under the composition operation is a group. This means that shifting a word more than
once is the same as shifting it only once.

Swap

The swap operation is a special case of the circular shift operation where k = n/2. This
means this operation is valid only if n is an even number. Because left-shifting n/2 bits
is the same as right-shifting n/2, this component is self-invertible. A swap operation in
the encryption cipher can be totally canceled by a swap operation in the decryption
cipher. Figure 5.11 shows the swapping operation for an 8-bit word. 

Split and Combine

Two other operations found in some block ciphers are split and combine. The split

operation normally splits an n-bit word in the middle, creating two equal-length
words. The combine operation normally concatenates two equal-length words to
create an n-bit word. These two operations are inverses of each other and can be used
as a pair to cancel each other out. If one is used in the encryption cipher, the other is
used in the decryption cipher. Figure 5.12 shows the two operations in the case
where n = 8.  

Product Ciphers

Shannon introduced the concept of a product cipher. A product cipher is a complex cipher
combining substitution, permutation, and other components discussed in previous sections.

Figure 5.10 Circular shifting an 8-bit word to the left or right 

Figure 5.11 Swap operation on an 8-bit word
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Diffusion and Confusion

Shannon’s idea in introducing the product cipher was to enable the block ciphers to
have two important properties: diffusion and confusion. The idea of diffusion is to hide
the relationship between the ciphertext and the plaintext. This will frustrate the adver-
sary who uses ciphertext statistics to find the plaintext. Diffusion implies that each
symbol (character or bit) in the ciphertext is dependent on some or all symbols in the
plaintext. In other words, if a single symbol in the plaintext is changed, several or all
symbols in the ciphertext will also be changed.  

The idea of confusion is to hide the relationship between the ciphertext and the
key. This will frustrate the adversary who tries to use the ciphertext to find the key. In
other words, if a single bit in the key is changed, most or all bits in the ciphertext will
also be changed. 

Rounds

Diffusion and confusion can be achieved using iterated product ciphers where each
iteration is a combination of S-boxes, P-boxes, and other components. Each iteration is
referred to as a round. The block cipher uses a key schedule or key generator that
creates different keys for each round from the cipher key. In an N-round cipher, the
plaintext is encrypted N times to create the ciphertext; the ciphertext is decrypted
N times to create the plaintext. We refer to the text created at the intermediate levels
(between two rounds) as the middle text. Figure 5.13 shows a simple product cipher
with two rounds. In practice, product ciphers have more than two rounds. 

In Figure 5.13, three transformations happen at each round:

a. The 8-bit text is mixed with the key to whiten the text (hide the bits using the key).
This is normally done by exclusive-oring the 8-bit word with the 8-bit key.

b. The outputs of the whitener are organized into four 2-bit groups and are fed into
four S-boxes. The values of bits are changed based on the structure of the S-boxes
in this transformation.

c. The outputs of S-boxes are passed through a P-box to permute the bits so that in
the next round each box receives different inputs.

Figure 5.12 Split and combine operations on an 8-bit word

Diffusion hides the relationship between the ciphertext and the plaintext.

Confusion hides the relationship between the ciphertext and the key.

Encryption Decryption

Split Combine

b7 b6 b5 b4

b7 b6 b5 b4b7 b6 b5 b4 b3 b2 b1 b0

Decryptionb7 b6 b5 b4 b3 b2 b1 b0b3 b2 b1 b0

b3 b2 b1 b0
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Diffusion The primitive design of Figure 5.13 shows how a product with the combi-
nation of S-boxes and P-boxes can guarantee diffusion. Figure 5.14 shows how chang-
ing a single bit in the plaintext affects many bits in the ciphertext. 

a. In the first round, bit 8, after being exclusive-ored with the corresponding bit of K1,
affects two bits (bits 7 and 8) through S-box 4. Bit 7 is permuted and becomes bit
2; bit 8 is permuted and becomes bit 4. After the first round, bit 8 has affected bits
2 and 4. In the second round, bit 2, after being exclusive-ored with the correspond-
ing bit of K2, affects two bits (bits 1 and 2) through S-box 1. Bit 1 is permuted and
becomes bit 6; bit 2 is permuted and becomes bit 1. Bit 4, after being exclusive-
ored with the corresponding bit in K2, affects bits 3 and 4. Bit 3 remains the same;
bit 4 is permuted and becomes bit 7. After the second round, bit 8 has affected
bits 1, 3, 6, and 7. 

b. Going through these steps in the other direction (from ciphertext to the plain-
text) shows that each bit in the ciphertext is affected by several bits in the
plaintext. 

Confusion Figure 5.14 also shows us how the confusion property can be achieved
through the use of a product cipher. The four bits of ciphertext, bits 1, 3, 6, and 7, are
affected by three bits in the key (bit 8 in K1 and bits 2 and 4 in K2). Going through the

Figure 5.13 A product cipher made of two rounds 
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steps in the other direction shows that each bit in each round key affects several bits in
the ciphertext. The relationship between ciphertext bits and key bits is obscured. 

Practical Ciphers To improve diffusion and confusion, practical ciphers use larger
data blocks, more S-boxes, and more rounds. With some thought, it can be seen that
increasing the number of rounds using more S-boxes may create a better cipher in
which the ciphertext looks more and more like a random n-bit word. In this way, the
relationship between ciphertext and plaintext is totally hidden (diffusion). Increasing
the number of rounds increases the number of round keys, which better hides the rela-
tionship between the ciphertext and the key. 

Two Classes of Product Ciphers

Modern block ciphers are all product ciphers, but they are divided into two classes. The
ciphers in the first class use both invertible and noninvertible components. The ciphers
in this class are normally referred to as Feistel ciphers. The block cipher DES discussed
in Chapter 6 is a good example of a Feistel cipher. The ciphers in the second class use
only invertible components. We refer to ciphers in this class as non-Feistel ciphers (for
the lack of another name). The block cipher AES discussed in Chapter 7 is a good
example of a non-Feistel cipher. 

Feistel Ciphers

Feistel designed a very intelligent and interesting cipher that has been used for decades.
A Feistel cipher can have three types of components: self-invertible, invertible, and

Figure 5.14 Diffusion and confusion in a block cipher
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noninvertible. A Feistel cipher combines all noninvertible elements in a unit and uses
the same unit in the encryption and decryption algorithms. The question is how the
encryption and decryption algorithms are inverses of each other if each has a non-
invertible unit. Feistel showed that they can be canceled out.

First Thought To better understand the Feistel cipher, let us see how we can use the
same noninvertible component in the encryption and decryption algorithms. The effects
of a noninvertible component in the encryption algorithm can be canceled in the
decryption algorithm if we use an exclusive-or operation, as shown in Figure 5.15. 

In the encryption, a noninvertible function, ƒ(K), accepts the key as the input. The
output of this component is exclusive-ored with the plaintext. The result becomes
the ciphertext. We call the combination of the function and the exclusive-or operation
the mixer (for lack of another name). The mixer plays an important role in the later
development of the Feistel cipher. 

Because the key is the same in encryption and decryption, we can prove that the
two algorithms are inverses of each other. In other words, if C2 = C1 (no change in the
ciphertext during transmission), then P2 = P1. 

Note that two properties of exclusive-or operation have been used (existence of
inverse and existence of identity).

The above argument proves that, although the mixer has a noninvertible element,
the mixer itself is self-invertible.  

Example 5.12

This is a trivial example. The plaintext and ciphertext are each 4 bits long and the key is 3 bits
long. Assume that the function takes the first and third bits of the key, interprets these two bits

Figure 5.15 The first thought in Feistel cipher design

Encryption: C1 = P1 ⊕ ƒ(K) 

Decryption: P2 = C2 ⊕ ƒ(K) = C1 ⊕ ƒ(K) = P1 ⊕ ƒ(K) ⊕ ƒ(K) = P1 ⊕  (00…0) = P1 
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as a decimal number, squares the number, and interprets the result as a 4-bit binary pattern.
Show the results of encryption and decryption if the original plaintext is 0111 and the key
is 101.

Solution

The function extracts the first and second bits to get 11 in binary or 3 in decimal. The result of
squaring is 9, which is 1001 in binary. 

The function ƒ(101) = 1001 is noninvertible, but the exclusive-or operation allows us to use
the function in both encryption and decryption algorithms. In other words, the function is nonin-
vertible, but the mixer is self-invertible.

Improvement Let us improve on our first thought to get closer to the Feistel cipher.
We know that we need to use the same input to the noninvertible element (the function),
but we don’t want to use only the key. We want the input to the function to also be part
of the plaintext in the encryption and part of the ciphertext in the decryption. The key
can be used as the second input to the function. In this way, our function can be a com-
plex element with some keyless elements and some keyed elements. To achieve this
goal, divide the plaintext and the ciphertext into two equal-length blocks, left and right.
We call the left block L and the right block R. Let the right block be the input to the
function, and let the left block be exclusive-ored with the function output. We need to
remember one important point: the inputs to the function must be exactly the same in
encryption and decryption.This means that the right section of plaintext in the encryp-
tion and the right section of the ciphertext in the decryption must be the same. In other
words, the right section must go into and come out of the encryption and decryption
processes unchanged. Figure 5.16 shows the idea. 

The encryption and decryption algorithms are still inverses of each other. Assume
that L3 = L2 and R3 = R2 (no change in the ciphertext during transmission).  

Encryption: C = P ⊕ ƒ (K) = 0111 ⊕ 1001 = 1110                  

Decryption: P = C ⊕ ƒ (K) = 1110 ⊕ 1001 = 0111        Same as the original P 

Figure 5.16 Improvement of the previous Feistel design
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The plaintext used in the encryption algorithm is correctly regenerated by the
decryption algorithm. 

Final Design The preceding improvement has one flaw. The right half of the plain-
text never changes. Eve can immediately find the right half of the plaintext by inter-
cepting the ciphertext and extracting the right half of it. The design needs more
improvement. First, increase the number of rounds. Second, add a new element to
each round: a swapper. The effect of the swapper in the encryption round is canceled
by the effect of the swapper in the decryption round. However, it allows us to swap
the left and right halves in each round. Figure 5.17 shows the new design with two
rounds. 

Note that there are two round keys, K1 and K2. The keys are used in reverse order
in the encryption and decryption.

Because the two mixers are inverses of each other, and the swappers are inverses of
each other, it should be clear that the encryption and decryption ciphers are inverses
of each other. However, let us see if we can prove this fact using the relationship
between the left and right sections in each cipher. In other words, let us see if L6 = L1

R4 = R3  = R2  = R1             
L4 = L3 ⊕ ƒ(R3, K) = L2 ⊕ ƒ(R2, K) = L1⊕ ƒ(R1, K)  ⊕  ƒ(R1, K) = L1

Figure 5.17 Final design of a Feistel cipher with two rounds
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and R6 = R1, assuming that L4 = L3 and R4 = R3 (no change in the ciphertext during

transmission). We first prove the equality for the middle text. 

Then it is easy to prove that the equality holds for two plaintext blocks. 

Non-Feistel Ciphers

A non-Feistel cipher uses only invertible components. A component in the encryption

cipher has the corresponding component in the decryption cipher. For example, S-boxes

need to have an equal number of inputs and outputs to be compatible. No compression or

expansion P-boxes are allowed, because they are not invertible. In a non-Feistel cipher,

there is no need to divide the plaintext into two halves as we saw in the Feistel ciphers.

Figure 5.13 can be thought of as a non-Feistel cipher because the only components in

each round are the exclusive-or operation (self-invertible), 2 × 2 S-boxes that can be

designed to be invertible, and a straight P-box that is invertible using the appropriate

permutation table. Because each component is invertible, it can be shown that each

round is invertible. We only need to use the round keys in the reverse order. The encryp-

tion uses round keys K1 and K2. The decryption algorithm needs to use round keys K2

and K1. 

Attacks on Block Ciphers

Attacks on traditional ciphers can also be used on modern block ciphers, but today’s

block ciphers resist most of the attacks discussed in Chapter 3. For example, brute-

force attack on the key is usually infeasible because the keys normally are very large.

However, recently some new attacks on block ciphers have been devised that are based

on the structure of the modern block ciphers. These attacks use differential and linear

cryptanalysis techniques. 

Differential Cryptanalysis

Eli Biham and Adi Shamir introduced the idea of differential cryptanalysis. This is

a chosen-plaintext attack; Eve can somehow access Alice’s computer, submitting cho-

sen plaintext and obtaining the corresponding ciphertext. The goal is to find Alice’s

cipher key. 

Algorithm Analysis Before Eve uses the chosen-plaintext attack, she needs to ana-

lyze the encryption algorithm in order to collect some information about plaintext-

ciphertext relationships. Obviously, Eve does not know the cipher key. However,

some ciphers have weaknesses in their structures that can allow Eve to find a relation-

ship between the plaintext differences and ciphertext differences without knowing

the key.

L5 = R4 ⊕ ƒ(L4, K2) = R3 ⊕ ƒ(R2, K2) =  L2 ⊕ ƒ(R2, K2) ⊕ ƒ(R2, K2) = L2

R5 = L4 = L3 = R2

L6 = R5 ⊕ ƒ(L5, K1) = R2 ⊕ ƒ(L2, K1) = L1 ⊕ ƒ(R1, K1) ⊕ ƒ(R1, K1) = L1 

R6 = L5 = L2 = R1
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Example 5.13

Assume that the cipher is made only of one exclusive-or operation, as shown in Figure 5.18.
Without knowing the value of the key, Eve can easily find the relationship between plaintext
differences and ciphertext differences if by plaintext difference we mean P1 ⊕ P2 and by cipher-
text difference, we mean C1⊕ C2. The following proves that C1 ⊕ C2 = P1 ⊕  P2:

However, this example is very unrealistic; modern block ciphers are not so simple. 

Example 5.14

We add one S-box to Example 5.13, as shown in Figure 5.19. 

Although the effect of the key is still canceled, when we use differences between two X’s
and two P’s (X1 ⊕ X2 = P1 ⊕  P2), the existence of the S-box prevents Eve from finding a def-
inite relationship between the plaintext differences and the ciphertext differences. However,
she can create a probabilistic relationship. Eve can make Table 5.4, which shows, for each
plaintext difference, how many ciphertext differences the cipher may create. Note that
the table is made from information about the S-box input/output table in Figure 5.19 because
P1 ⊕ P2 = X1 ⊕ X2.

C1 = P1  ⊕  K      C2 = P2  ⊕  K      →    C1 ⊕ C2 = P1  ⊕  K   ⊕  P2  ⊕  K = P1  ⊕  P2 

Figure 5.18 Diagram for Example 5.13

Figure 5.19 Diagram for Example 5.14 
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Because the key size is 3 bits, there can be eight cases for each difference in the input.
The table shows that if the input difference is (000)2, the output difference is always (00)2. On the
other hand, the table shows that if the input difference is (100)2, there are two cases of (00)2 out-
put difference, two cases of (01)2 output difference, and four cases of (01)2 output difference.

Example 5.15

The heuristic result of Example 5.14 can create probabilistic information for Eve as shown in
Table 5.5. The entries in the table show the probabilities of occurrences. Those with zero proba-
bility will never occur. 

Eve now has a great deal of information to start her attack, as we will see later. The table
shows that the probabilities are not distributed uniformly because of the weakness in the structure
of the S-box. Table 5.5 is sometimes referred to as the differential distribution table or XOR

profile.

Launching a Chosen-Plaintext Attack After the analysis, which can be done once
and kept for future uses as long as the structure of the cipher does not change, Eve can

Table 5.4 Differential input/output for the cipher in Example 5.14 

C1 ⊕ C2

00 01 10 11

000 8

001 2 2 4

010 2 2 4

P1 ⊕ P2 011 4 2 2

100 2 2 4

101 4 2 2

110 4 2 2

111 2 6

Table 5.5 Differential distribution table for Example 5.15

C1 ⊕ C2

00 01 10 11

000 1 0 0 0

001 0.25 0.25 0 0.50

010 0.25 0.25 0.50 0

P1 ⊕ P2 011 0 0.50 0.25 0.25

100 0.25 0.25 0.50 0

101 0 0.50 0.25 0.25

110 0.50 0 0.25 0.25

111 0 0 0.25 0.75
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choose the plaintexts for attacks. The differential probability distribution table (Table 5.5)

helps Eve choose plaintexts that have the highest probability in the table. 

Guessing the Key Value After launching some attacks with appropriate chosen
plaintexts, Eve can find some plaintext-ciphertext pairs that allow her to guess the value
of the key. This step starts from C and makes toward P. 

Example 5.16

Looking at Table 5.5, Eve knows that if P1 ⊕ P2 = 001, then C1 ⊕ C2 = 11 with the probability of
0.50 (50 percent). She tries C1 = 00 and gets P1 = 010 (chosen-ciphertext attack). She also tries
C2 = 11 and gets P2 = 011 (another chosen-ciphertext attack). Now she tries to work backward,
based on the first pair, P1 and C1,  

Using the second pair, P2 and C2,  

The two tests confirm that K = 011 or K =101. Although Eve is not sure what the exact value
of the key is, she knows that the rightmost bit is 1 (the common bit between the two values).
More attacks, with the assumption that the rightmost bit in the key is 1, can reveal more bits in
the key. 

General Procedure Modern block ciphers have more complexity than we discussed
in this section. In addition, they are made from different rounds. Eve can use the follow-
ing strategy:

1. Because each round is the same, Eve can create a differential distribution table
(XOR profile) for each S-box and combine them to create the distribution for each
round. 

2. Assuming that each round is independent (a fair assumption), Eve can create a dis-
tribution table for the whole cipher by multiplying the corresponding probabilities.

3. Eve now can make a list of plaintexts for attacks based on the distribution table in
step 2. Note that the table in step 2 only helps Eve choose a smaller number of
ciphertext-plaintext pairs.

4. Eve chooses a ciphertext and finds the corresponding plaintext. She then analyzes
the result to find some bits in the key. 

5. Eve repeats step 4 to find more bits in the key.

6. After finding enough bits in the key, Eve can use a brute-force attack to find the
whole key. 

C1 = 00          →    X1 = 001    or    X1 = 111   
If X1 = 001    →    K = X1 ⊕ P1  = 011                      If X1 = 111  →  K = X1 ⊕ P1 = 101 

C2 = 11          →    X2 = 000    or    X1 = 110   
If X2 = 000    →    K = X2 ⊕ P2  = 011                      If X2 = 110  →  K = X2 ⊕ P2 = 101

Differential cryptanalysis is based on a nonuniform differential distribution table 

of the S-boxes in a block cipher.



SECTION 5.1 MODERN BLOCK CIPHERS 147

Linear Cryptanalysis

Linear cryptanalysis was presented by Mitsuru Matsui in 1993. The analysis uses known-

plaintext attacks (versus the chosen-plaintext attacks in differential cryptanalysis). The
thorough discussion of this attack is based on some probability concepts that are beyond
the scope of this book. To see the main idea behind the attack, assume that the cipher is
made of a single round, as shown in Figure 5.20, where c0, c1, and c2 represent the three
bits in the output and x0, x1, and x2 represent the three bits in the input of the S-box.

The S-box is a linear transformation in which each output is a linear function of
input, as we discussed earlier in this chapter. With this linear component, we can create
three linear equations between plaintext and ciphertext bits, as shown below:

Solving for three unknowns, we get

This means that three known-plaintext attacks can find the values of k0, k1, and k2.
However, real block ciphers are not as simple as this one; they have more components
and the S-boxes are not linear. 

Linear Approximation In some modern block ciphers, it may happen that some
S-boxes are not totally nonlinear; they can be approximated, probabilistically, by some
linear functions. In general, given a cipher with plaintext and ciphertext of n bits and a
key of m bits, we are looking for some equations of the form:

A more detailed differential cryptanalysis is given in Appendix N.

Figure 5.20 A simple cipher with a linear S-box

c0 =  p0 ⊕ k0 ⊕ p1 ⊕ k1
c1 =  p0 ⊕ k0 ⊕ p1 ⊕ k1 ⊕  p2 ⊕ k2
c2 =  p1 ⊕ k1 ⊕  p2 ⊕ k2  

k1 =  (p1)  ⊕  (c0  ⊕ c1 ⊕ c2)
k2 =  (p2)  ⊕  (c0  ⊕ c1)
k0 =  (p0)  ⊕  (c1 ⊕ c2) 

(k0 ⊕ k1 ⊕ … ⊕ kx)  =  (p0 ⊕ p1 ⊕ … ⊕ py)  ⊕  (c0 ⊕ c1 ⊕ … ⊕ cz)
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where 1 ≤ x ≤ m, 1 ≤ y ≤ n, and 1 ≤ z ≤ n. The bits in the intercepted plaintext and
ciphertext can be used to find the key bits. To be effective, each equation should hold
with probability 1/2 + ε, where ε is called the bias. An equation with larger ε is more
effective than one with smaller ε.

5.2 MODERN STREAM CIPHERS

In Chapter 3 we briefly discussed the difference between traditional stream ciphers
and tradition block ciphers. Similar differences exist between modern stream ciphers
and modern block ciphers. In a modern stream cipher, encryption and decryption
are done r bits at a time. We have a plaintext bit stream P = pn…p2p1, a ciphertext
bit stream C = cn…c2c1, and a key bit stream K = kn…k2k1, in which pi , ci , and ki are
r-bit words. Encryption is ci = E (ki, pi), and decryption is pi = D (ki, ci), as shown in
Figure 5.21.        

Stream ciphers are faster than block ciphers. The hardware implementation of a
stream cipher is also easier. When we need to encrypt binary streams and transmit them
at a constant rate, a stream cipher is the better choice to use. Stream ciphers are also
more immune to the corruption of bits during transmission. 

Looking at Figure 5.21, one can suggest that the main issue in modern stream
ciphers is how to generate the key stream K = kn…k2k1. Modern stream ciphers are
divided into two broad categories: synchronous and nonsynchronous.

A more detailed linear cryptanalysis is given in Appendix N.

Figure 5.21 Stream cipher
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Synchronous Stream Ciphers

In a synchronous stream cipher, the key stream is independent of the plaintext or
ciphertext stream. The key stream is generated and used with no relationship between
key bits and the plaintext or ciphertext bits. 

One-Time Pad

The simplest and the most secure type of synchronous stream cipher is called the one-

time pad, which was invented and patented by Gilbert Vernam. A one-time pad cipher
uses a key stream that is randomly chosen for each encipherment. The encryption and
decryption algorithms each use a single exclusive-or operation. Based on properties of
the exclusive-or operation discussed earlier, the encryption and decryption algorithms
are inverses of each other. It is important to note that in this cipher the exclusive-or
operation is used one bit at a time. In other words, the operation is over 1-bit word and
the field is GF(2). Note also that there must be a secure channel so that Alice can send
the key stream sequence to Bob (Figure 5.22).  

The one-time pad is an ideal cipher. It is perfect. There is no way that an adversary
can guess the key or the plaintext and ciphertext statistics. There is no relationship
between the plaintext and ciphertext, either. In other words, the ciphertext is a true
random stream of bits even if the plaintext contains some patterns. Eve cannot break the
cipher unless she tries all possible random key streams, which would be 2n if the size of
the plaintext is n bits. However, there is an issue here. How can the sender and the
receiver share a one-time pad key each time they want to communicate? They need to
somehow agree on the random key. So this perfect and ideal cipher is very difficult to
achieve.

Example 5.17

What is the pattern in the ciphertext of a one-time pad cipher in each of the following cases?

a. The plaintext is made of n 0’s.

b. The plaintext is made of n 1’s.

In a synchronous stream cipher the key is independent of the plaintext or ciphertext.

Figure 5.22 One-time pad
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c. The plaintext is made of alternating 0’s and 1’s.

d. The plaintext is a random string of bits.

Solution

a. Because 0 ⊕ ki = ki, the ciphertext stream is the same as the key stream. If the key stream 
is random, the ciphertext is also random. The patterns in the plaintext are not preserved 
in the ciphertext. 

b. Because 1 ⊕ ki = ki where ki is the complement of ki, the ciphertext stream is the comple-
ment of the key stream. If the key stream is random, the ciphertext is also random. Again 
the patterns in the plaintext are not preserved in the ciphertext.

c. In this case, each bit in the ciphertext stream is either the same as the corresponding bit 
in the key stream or the complement of it. Therefore, the result is also a random string if 
the key stream is random. 

d. In this case, the ciphertext is definitely random because the exclusive-or of two random 
bits results in a random bit. 

Feedback Shift Register

One compromise to the one-time-pad is the feedback shift register (FSR). An FSR
can be implemented in either software or hardware, but the hardware implementation is
easier to discuss. A feedback shift register is made of a shift register and a feedback

function, as shown in Figure 5.23.  

The shift register is a sequence of m cells, b0 to bm−1, where each cell holds a
single bit. The cells are initialized to an m-bit word, called the initial value or the
seed. Whenever an output bit is needed (for example, in a click of time), every bit is
shifted one cell to the right, which means that each cell gives its value to the cell to
its right and receives the value of the cell to its left. The rightmost cell, b0, gives its
value as output (ki); the leftmost cell, bm−1, receives its value from the feedback func-
tion. We call the output of the feedback function bm. The feedback function defines
how the values of cells are combined to calculate bm. A feedback shift register can be
linear or nonlinear.

Figure 5.23 Feedback shift register (FSR)
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Linear Feedback Shift Register In a linear feedback shift register (LFSR), bm is a
linear function of b0, b1, …, bm−1. 

bm = cm−1 bm−1 + … + c2 b2  + c1 b1  + c0 b0                      (c0 ≠ 0)

However, we are dealing with binary digits because the multiplication and addition
are in the GF(2) field, so the value of ci is either 1 or 0, but c0 should be 1 to get a feedback
from the output. The addition operation is also the exclusive-or operation. In other words,

bm = cm−1 bm−1 ⊕    …    ⊕ c2 b2  ⊕ c1 b1  ⊕  c0 b0                (c0 ≠ 0) 

Example 5.18

Create a linear feedback shift register with 5 cells in which b5 = b4 ⊕ b2 ⊕ b0. 

Solution

If ci = 0, bi has no role in calculation of bm.This means that bi is not connected to the feedback
function. If ci = 1, bi is involved in calculation of bm. In this example, c1 and c3 are 0’s, which
means that we have only three connections. Figure 5.24 shows the design.  

Example 5.19    

Create a linear feedback shift register with 4 cells in which b4 =  b1  ⊕ b0. Show the value of out-
put for 20 transitions (shifts) if the seed is (0001)2. 

Solution

Figure 5.25 shows the design and use of the LFSR in encryption. 

Figure 5.24 LFSR for Example 5.18

Figure 5.25 LFSR for Example 5.19
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Table 5.6 shows the values of the key stream. For each transition, first the value of b4 is calculated
and then each bit is shifted one cell to the right. 

Note that the key stream is 100010011010111 10001…. This looks like a random sequence at
first glance, but if we go through more transitions, we see that the sequence is periodic. It is a rep-
etition of 15 bits as shown below:

The key stream generated from a LFSR is a pseudorandom sequence in which the
the sequence is repeated after N bits. The stream has a period, but the period is not 4,
the size of the seed. Based on the design and the seed, the period can be up to 2m −1.
The reason is that the m-bit seed can create up to 2m different patterns, from all 0’s to
all 1’s. However, if the seed is all 0’s the result is useless; the plaintext would be a con-
tinuous stream of 0’s, so this is excluded. 

Table 5.6 Cell values and key sequence for Example 5.19 

States b4 b3 b2 b1 b0 ki

Initial 1 0 0 0 1

1 0 1 0 0 0 1

2 0 0 1 0 0 0

3 1 0 0 1 0 0

4 1 1 0 0 1 0

5 0 1 1 0 0 1

6 1 0 1 1 0 0

7 0 1 0 1 1 0

8 1 0 1 0 1 1

9 1 1 0 1 0 1

10 1 1 1 0 1 0

11 1 1 1 1 0 1

12 0 1 1 1 1 0

13 0 0 1 1 1 1

14 0 0 0 1 1 1

15 1 0 0 0 1 1

16 0 1 0 0 0 1

17 0 0 1 0 0 0

18 1 0 0 1 0 0

19 1 1 0 0 1 0

20 1 1 1 0 0 1

100010011010111  100010011010111  100010011010111  100010011010111 …

The maximum period of an LFSR is to 2m    −−−− 1.
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In the previous example, the period is the maximum (24 − 1 = 15). To achieve this

maximum period (a better randomness), we need first to think about the feedback func-

tion as a characteristic polynomial with coefficients in the GF(2) field. 

Because addition and subtraction are the same in this field, all terms can be moved

to one side, which creates a polynomial of degree m (referred to as the characteristic

polynomial). 

An LFSR has a maximum period of 2m −1 if it has an even number of taps and the

characteristic polynomial is a primitive polynomial. A primitive polynomial is an irre-

ducible polynomial that divides xe + 1, where e is the least integer in the form e = 2k − 1

and k ≥ 2. It is not easy to generate a primitive polynomial. A polynomial is chosen ran-

domly and then checked to see if it is primitive. However, there are many already tested

primitive polynomials to choose from (see Appendix G). 

Example 5.20

The characteristic polynomial for the LFSR in Example 5.19 is (x4 + x + 1), which is a primitive

polynomial. Table 4.4 (Chapter 4) shows that it is an irreducible polynomial. This polynomial also

divides (x15 + 1) = (x4 + x + 1) (x11 + x8 + x7 + x5 + x3 + x2 + x + 1), which means e = 24 − 1 = 15. 

Attacks on LFSRs The linear feedback shift register has a very simple structure, but

this simplicity makes the cipher vulnerable to attacks. Two common attacks on LFSR

are listed below:

1. If the structure of the LFSR is known, then after intercepting and analyzing one

n-bit ciphertext Eve can predict all future ciphertexts.

2. If the structure of the LFSR is not known, Eve can use a known-plaintext attack of

2n bits to break the cipher. 

Nonlinear Feedback Shift Register The linear feedback shift register is vulnera-

ble to attacks mainly because of its linearity. A better stream cipher can be achieved

using a nonlinear feedback shift register (NLFSR). An NLFSR has the same

structure as an LFSR except that the bm is the nonlinear function of b0, b1, …, bm.

For example, in a 4-bit NLFSR, the relation can be as shown below where AND

means bit-wise and operation, OR means bit-wise or operation, the bar means the

complement: 

However, NLFSRs are not common because there is no mathematical foundation

for how to make an NLFSR with the maximum period.

bm ==== cm−−−−1 bm−−−−1 ++++    …………    ++++    c1 b1  ++++    c0 b0          →→→→                    x
m ==== cm−−−−1 xm−−−−1 

++++    …………    ++++    c1 x1
  ++++    c0 x0

xm  ++++     cm−−−−1 xm−−−−1   
++++                …………            ++++    c1 x1

  ++++    c0 x0  
====    0

b4 = (b3 AND b2) OR (b1 AND b0)
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Combination A stream cipher can use a combination of linear and nonlinear struc-
tures. Some LFSRs can be made with the maximum period and then combined through
a nonlinear function. 

Nonsynchronous Stream Ciphers

In a nonsynchronous stream cipher, each key in the key stream depends on previous
plaintext or ciphertext.

Two methods that are used to create different modes of operation for block ciphers
(output feedback mode and counter mode) actually create stream ciphers (see Chapter 8).

5.3 RECOMMENDED READING

The following books and websites provide more details about subjects discussed in
this chapter. The items enclosed in brackets refer to the reference list at the end of the
book.

Books

[Sti06] and [PHS03] give a complete discussion of P-boxes and S-boxes. Stream
ciphers are elaborated in [Sch99] and [Sal03]. [Sti06], [PHS03], and [Vau06] present
thorough and interesting discussions of differential and linear cryptanalysis. 

WebSites

The following websites give more information about topics discussed in this chapter. 

5.4 KEY TERMS

In a nonsynchronous stream cipher, the key depends on either the plaintext or ciphertext.

http://en.wikipedia.org/wiki/Feistel_cipher

http://www.quadibloc.com/crypto/co040906.htm

tigger.uic.edu/~jleon/mcs425-s05/handouts/feistal-diagram.pdf

bit-oriented cipher compression P-box

characteristic polynomial confusion

character-oriented cipher decoding

circular shift operation differential cryptanalysis

combine operation differential distribution table
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5.5 SUMMARY

❏ The traditional symmetric-key ciphers are character-oriented ciphers. With the advent
of the computer, we need bit-oriented ciphers. 

❏ A symmetric-key modern block cipher encrypts an n-bit block of plaintext or decrypts
an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key.

❏ A modern block cipher can be designed to act as a substitution cipher or a transpo-
sition cipher. However, to be resistant to exhaustive-search attack, a modern block
cipher needs to be designed as a substitution cipher.

❏ Modern block ciphers normally are keyed substitution ciphers in which the key
allows only practical mapping from the possible inputs to possible outputs. 

❏ A modern block cipher is made of a combination of P-boxes, substitution units,
S-boxes, and some other units.

❏ A P-box (permutation box) parallels the traditional transposition cipher for charac-
ters. There are three types of P-boxes: straight P-boxes, expansion P-boxes, and
compression P-boxes.

❏ An S-box (substitution box) can be thought of as a miniature of a substitution
cipher. However, there can be a different number of inputs and outputs in an S-box.

❏ An important component in most block ciphers is the exclusive-or operation,
which can be thought of as an addition or subtraction operation in the GF(2n) field. 

❏ An operation found in some modern block ciphers is the circular shift operation, in
which shifting can be to the left or to the right. The swap operation is a special case
of the circular shift operation where k = n/2. Two other operations found in some
block ciphers are split and combine. 

diffusion nonlinear S-box

encoding nonsynchronous stream cipher

expansion P-box one-time pad

feedback function P-box

feedback shift register (FSR) primitive polynomial

Feistel cipher product cipher

key generator round

key schedule S-box

linear cryptanalysis seed

linear feedback shift register (LFSR) shift register

linear S-box split operation

mixer straight P-box

modern block cipher swap operation 

modern stream cipher swapper

non-Feistel cipher synchronous stream cipher

nonlinear feedback shift register (NLFSR) XOR profile



156 CHAPTER 5 INTRODUCTION TO MODERN SYMMETRIC-KEY CIPHERS

❏ Shannon introduced the concept of a product cipher. A product cipher is a complex
cipher combining S-boxes, P-boxes, and other components to achieve diffusion and
confusion. Diffusion hides the relationship between the plaintext and the ciphertext;
confusion hides the relationship between the cipher key and the ciphertext.

❏ Modern block ciphers are all product ciphers, but they are divided into two classes:
Feistel ciphers and non-Feistel ciphers. Feistel ciphers use both invertible and nonin-
vertible components. Non-Feistel ciphers use only invertible components. 

❏ Some new attacks on block ciphers are based on the structure of modern block
ciphers. These attacks use differential and linear cryptanalysis techniques. 

❏ In a modern stream cipher, each r-bit word in the plaintext stream is enciphered
using an r-bit word in the key stream to create the corresponding r-bit word in
the ciphertext stream. Modern stream ciphers can be divided into two broad
categories: synchronous stream ciphers and nonsynchronous stream ciphers. In a
synchronous stream cipher, the key stream is independent of the plaintext or cipher-
text stream. In a nonsynchronous stream cipher, the key stream depends on the plain-
text or ciphertext stream. 

❏ The simplest and most secure type of synchronous stream cipher is called the one-
time pad. A one-time pad cipher uses a key stream that is randomly chosen for each
encipherment. The encryption and decryption algorithm are each an exclusive-or
operation. The one-time pad cipher is not practical because the key needs to be
changed for each communication. One compromise to the one-time-pad is the feed-
back shift register (FSR), which can be implemented in hardware or software. 

5.6 PRACTICE SET

Review Questions

1. Distinguish between a modern and a traditional symmetric-key cipher.

2. Explain why modern block ciphers are designed as substitution ciphers instead of
transposition ciphers.

3. Explain why both substitution and transposition ciphers can be thought of as
permutations.

4. List some components of a modern block cipher.

5. Define a P-box and list its three variations. Which variation is invertible?

6. Define an S-box and mention the necessary condition for an S-box to be invertible.

7. Define a product cipher and list the two classes of product ciphers.

8. Distinguish between diffusion and confusion. 

9. Distinguish between a Feistel and a non-Feistel block cipher.

10. Distinguish between differential and linear cryptanalysis. Which one is a chosen-
plaintext attack? Which one is a known-plaintext attack? 

11. Distinguish between a synchronous and a nonsynchronous stream cipher.

12. Define a feedback shift register and list the two variations used in stream ciphers. 
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Exercises

13. A transposition block has 10 inputs and 10 outputs. What is the order of the permu-
tation group? What is the key size?

14. A substitution block has 10 inputs and 10 outputs. What is the order of the permu-
tation group? What is the key size?

15.

a. Show the result of 3-bit circular left shift on word (10011011)2. 

b. Show the result of 3-bit circular right shift on the word resulting from Part a. 

c. Compare the result of Part b with the original word in Part a. 

16.

a. Swap the word (10011011)2. 

b. Swap the word resulting from Part a.

c. Compare the result of Part a and Part b to show that swapping is a self-invertible
operation. 

17. Find the result of the following operations:

a. (01001101) ⊕ (01001101) 

b. (01001101) ⊕ (10110010) 

c. (01001101) ⊕ (00000000) 

d. (01001101) ⊕ (11111111) 

18.

a. Decode the word 010 using a 3 × 8 decoder. 

b. Encode the word 00100000 using a 8 × 3 encoder.

19. A message has 2000 characters. If it is supposed to be encrypted using a block
cipher of 64 bits, find the size of the padding and the number of blocks. 

20. Show the permutation table for the straight P-box in Figure 5.4

21. Show the permutation table for the compression P-box in Figure 5.4.

22. Show the permutation table for the expansion P-box in Figure 5.4.

23. Show the P-box defined by the following table: 

24. Determine whether the P-box with the following permutation table is a straight
P-box, a compression P-box, or an expansion P-box.

25. Determine whether the P-box with the following permutation table is a straight
P-box, a compression P-box, or an expansion P-box.

8    1    2    3    4    5    6    7      

1    1   2    3    4    4 

1     3    5     6    7 
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26. Determine whether the P-box with the following permutation table is a straight
P-box, a compression P-box, or an expansion P-box.

27. The input/output relation in a 2 × 2 S-box is shown by the following table. Show
the table for the inverse S-box.

28. Show an LFSR with the characteristic polynomial x5 + x2 + 1. What is the period?   

29. What is the characteristic polynomial of the following LFSR? What is the maxi-
mum period? 

30. Show the 20-bit key stream generated from the LFSR in Figure 5.25 if the seed is 1110.

31. The maximum period length of an LFSR is 32. How many bits does the shift regis-
ter have?

32. A 6 × 2 S-box exclusive-ors the odd-numbered bits to get the left bit of the output
and exclusive-ors the even-numbered bits to get the right bit of the output. If the
input is 110010, what is the output? If the input is 101101, what is the output?

33. The leftmost bit of a 4 × 3 S-box rotates the other three bits. If the leftmost bit is 0,
the three other bits are rotated to the right one bit. If the leftmost bit is 1, the three
other bits are rotated to the left one bit. If the input is 1011, what is the output? If
the input is 0110, what is the output?

34. Write a routine in pseudocode that splits an n-bit word to two words, each of n/2 bits.

35. Write a routine in pseudocode that combines two n/2-bit words into an n-bit word.

36. Write a routine in pseudocode that swaps the left and right halves of an n-bit word. 

37. Write a routine in pseudocode that circular-shifts an n-bit word k bits to the left or
right based on the first parameter passed to the routine. 

38. Write a routine in pseudocode for a P-box in which the permutation is defined by a
table.

39. Write a routine in pseudocode for an S-box in which the input/output is defined by
a table.

40. Write a routine in pseudocode that simulates each round of a non-Feistel cipher
described in Figure 5.13. 

41. Write a routine in pseudocode that simulates each round of the Feistel cipher
described in Figure 5.17.

42. Write a routine in pseudocode that simulates an n-bit LFSR.

1   2    3   4   5   6   

Input: right bit

0 1

Input: left bit 0 01 11

1 10 00

Output (ki) 
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CHAPTER 6

Data Encryption Standard (DES)

Objectives

In this chapter, we discuss the Data Encryption Standard (DES), the mod-

ern symmetric-key block cipher. The following are our main objectives

for this chapter:

❏ To review a short history of DES

❏ To define the basic structure of DES

❏ To describe the details of building elements of DES

❏ To describe the round keys generation process

❏ To analyze DES

The emphasis is on how DES uses a Feistel cipher to achieve confusion

and diffusion of bits from the plaintext to the ciphertext.

6.1 INTRODUCTION

The Data Encryption Standard (DES) is a symmetric-key block cipher published by

the National Institute of Standards and Technology (NIST).

History

In 1973, NIST published a request for proposals for a national symmetric-key crypto-

system. A proposal from IBM, a modification of a project called Lucifer, was

accepted as DES. DES was published in the Federal Register in March 1975 as a

draft of the Federal Information Processing Standard (FIPS). 

After the publication, the draft was criticized severely for two reasons. First, critics

questioned the small key length (only 56 bits), which could make the cipher vulnerable to

brute-force attack. Second, critics were concerned about some hidden design behind

the internal structure of DES. They were suspicious that some part of the structure (the
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S-boxes) may have some hidden trapdoor that would allow the National Security Agency

(NSA) to decrypt the messages without the need for the key. Later IBM designers men-

tioned that the internal structure was designed to prevent differential cryptanalysis. 

DES was finally published as FIPS 46 in the Federal Register in January 1977.

NIST, however, defines DES as the standard for use in unclassified applications. DES

has been the most widely used symmetric-key block cipher since its publication. NIST

later issued a new standard (FIPS 46-3) that recommends the use of triple DES

(repeated DES cipher three times) for future applications. As we will see in Chapter 7,

AES, the recent standard, is supposed to replace DES in the long run.

Overview

DES is a block cipher, as shown in Figure 6.1.

At the encryption site, DES takes a 64-bit plaintext and creates a 64-bit ciphertext;

at the decryption site, DES takes a 64-bit ciphertext and creates a 64-bit block of plain-

text. The same 56-bit cipher key is used for both encryption and decryption. 

6.2 DES STRUCTURE

Let us concentrate on encryption; later we will discuss decryption. The encryption

process is made of two permutations (P-boxes), which we call initial and final permuta-

tions, and sixteen Feistel rounds. Each round uses a different 48-bit round key gener-

ated from the cipher key according to a predefined algorithm described later in the

chapter. Figure 6.2 shows the elements of DES cipher at the encryption site. 

Initial and Final Permutations

Figure 6.3 shows the initial and final permutations (P-boxes). Each of these permuta-

tions takes a 64-bit input and permutes them according to a predefined rule. We have

shown only a few input ports and the corresponding output ports. These permutations

are keyless straight permutations that are the inverse of each other. For example, in the

initial permutation, the 58th bit in the input becomes the first bit in the output. Similarly,

Figure 6.1 Encryption and decryption with DES

56-bit key

E
n
cr

y
p
ti

o
n

D
ec

ry
p
ti

o
n

DES
cipher

64-bit ciphertext

64-bit plaintext

DES
reverse cipher

64-bit ciphertext

64-bit plaintext



SECTION 6.2 DES STRUCTURE 161

in the final permutation, the first bit in the input becomes the 58th bit in the output. In

other words, if the rounds between these two permutations do not exist, the 58th bit

entering the initial permutation is the same as the 58th bit leaving the final permutation. 

The permutation rules for these P-boxes are shown in Table 6.1. Each side of the

table can be thought of as a 64-element array. Note that, as with any permutation table

Figure 6.2 General structure of DES

Figure 6.3 Initial and final permutation steps in DES
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we have discussed so far, the value of each element defines the input port number, and

the order (index) of the element defines the output port number. 

 These two permutations have no cryptography significance in DES. Both permuta-

tions are keyless and predetermined. The reason they are included in DES is not clear

and has not been revealed by the DES designers. The guess is that DES was designed to

be implemented in hardware (on chips) and that these two complex permutations may

thwart a software simulation of the mechanism. 

Example 6.1

Find the output of the initial permutation box when the input is given in hexadecimal as: 

Solution
The input has only two 1s (bit 15 and bit 64); the output must also have only two 1s (the nature of

straight permutation). Using Table 6.1, we can find the output related to these two bits. Bit 15 in

the input becomes bit 63 in the output. Bit 64 in the input becomes bit 25 in the output. So the

output has only two 1s, bit 25 and bit 63. The result in hexadecimal is 

Example 6.2

Prove that the initial and final permutations are the inverse of each other by finding the output of

the final permutation if the input is  

Solution
Only bit 25 and bit 64 are 1s; the other bits are 0s. In the final permutation, bit 25 becomes bit 64

and bit 63 becomes bit 15. The result is  

Table 6.1 Initial and final permutation tables

Initial Permutation Final Permutation

58 50 42 34 26 18 10 02

60 52 44 36 28 20 12 04

62 54 46 38 30 22 14 06

64 56 48 40 32 24 16 08

57 49 41 33 25 17 09 01

59 51 43 35 27 19 11 03

61 53 45 37 29 21 13 05

63 55 47 39 31 23 15 07

40 08 48 16 56 24 64 32

39 07 47 15 55 23 63 31

38 06 46 14 54 22 62 30

37 05 45 13 53 21 61 29

36 04 44 12 52 20 60 28

35 03 43 11 51 19 59 27

34 02 42 10 50 18 58 26

33 01 41 09 49 17 57 25

0x0002 0000 0000 0001

0x0000 0080 0000 0002

0x0000 0080 0000 0002

0x0002 0000 0000 0001

The initial and final permutations are straight P-boxes that are inverses of each other. 

They have no cryptography significance in DES. 
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Rounds

DES uses 16 rounds. Each round of DES is a Feistel cipher, as shown in Figure 6.4.

The round takes LI−1 and RI−1 from previous round (or the initial permutation box)

and creates LI and RI, which go to the next round (or final permutation box). As we dis-

cussed in Chapter 5, we can assume that each round has two cipher elements (mixer and

swapper). Each of these elements is invertible. The swapper is obviously invertible. It

swaps the left half of the text with the right half. The mixer is invertible because of the

XOR operation. All noninvertible elements are collected inside the function f (RI−1, KI).

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the

rightmost 32 bits (RI−1) to produce a 32-bit output. This function is made up of four sec-

tions: an expansion P-box, a whitener (that adds key), a group of S-boxes, and a straight

P-box as shown in Figure 6.5. 

Expansion P-box Since RI−1 is a 32-bit input and KI is a 48-bit key, we first need to

expand RI−1 to 48 bits. RI−1 is divided into 8 4-bit sections. Each 4-bit section is then

expanded to 6 bits. This expansion permutation follows a predetermined rule. For each

section, input bits 1, 2, 3, and 4 are copied to output bits 2, 3, 4, and 5, respectively. Out-

put bit 1 comes from bit 4 of the previous section; output bit 6 comes from bit 1 of the

next section. If sections 1 and 8 can be considered adjacent sections, the same rule applies

to bits 1 and 32. Figure 6.6 shows the input and output in the expansion permutation. 

 Although the relationship between the input and output can be defined mathemati-

cally, DES uses Table 6.2 to define this P-box. Note that the number of output ports is

48, but the value range is only 1 to 32. Some of the inputs go to more than one output.

For example, the value of input bit 5 becomes the value of output bits 6 and 8.

Figure 6.4 A round in DES (encryption site)
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Whitener (XOR) After the expansion permutation, DES uses the XOR operation on

the expanded right section and the round key. Note that both the right section and the

key are 48-bits in length. Also note that the round key is used only in this operation. 

S-Boxes The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with

a 6-bit input and a 4-bit output. See Figure 6.7. 

Figure 6.5 DES function

Figure 6.6 Expansion permutation 

Table 6.2 Expansion P-box table

32 01 02 03 04    05

04 05 06 07 08    09

08 09 10 11 12   13

12 13 14 15 16   17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 01

KI (48 bits)

f ( RI–1, KI )

Out

S S S S S S S S

Straight P-box

Expansion P-box

S-Boxes

XOR

 32 bits

In

48 bits

48 bits

 32 bits

32 bits

32-bit input

48-bit output

From bit 32 From bit 1
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The 48-bit data from the second operation is divided into eight 6-bit chunks, and

each chunk is fed into a box. The result of each box is a 4-bit chunk; when these are com-

bined the result is a 32-bit text. The substitution in each box follows a pre-determined rule

based on a 4-row by 16-column table. The combination of bits 1 and 6 of the input defines

one of four rows; the combination of bits 2 through 5 defines one of the sixteen columns

as shown in Figure 6.8. This will become clear in the examples. 

Because each S-box has its own table, we need eight tables, as shown in Tables 6.3

to 6.10, to define the output of these boxes. The values of the inputs (row number and

column number) and the values of the outputs are given as decimal numbers to save

space. These need to be changed to binary.          

Figure 6.7 S-boxes

Figure 6.8 S-box rule

Table 6.3 S-box 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 07

1 00 15 07 04 14 02 13 10 03 06 12 11 09 05 03 08

2 04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00

3 15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13

S-Box S-Box S-Box S-Box S-Box S-Box S-Box S-Box

48-bit input

32-bit output

Array of S-Boxes

S-box

bit 1 

bit 1 

bit 2 

bit 2 

bit 3 

bit 3 

bit 4 

bit 4 

bit 5 bit 6 

0
0 1 2 3 15

1

2
3 Table

entry
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Table 6.4 S-box 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 01 08 14 06 11 03 04 09 07 02 13 12 00 05 10

1 03 13 04 07 15 02 08 14 12 00 01 10 06 09 11 05

2 00 14 07 11 10 04 13 01 05 08 12 06 09 03 02 15

3 13 08 10 01 03 15 04 02 11 06 07 12 00 05 14 09

Table 6.5 S-box 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 00 09 14 06 03 15 05 01 13 12 07 11 04 02 08

1 13 07 00 09 03 04 06 10 02 08 05 14 12 11 15 01

2 13 06 04 09 08 15 03 00 11 01 02 12 05 10 14 07

3 01 10 13 00 06 09 08 07 04 15 14 03 11 05 02 12

Table 6.6 S-box 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 07 13 14 03 00 6 09 10 1 02 08 05 11 12 04 15

1 13 08 11 05 06 15 00 03 04 07 02 12 01 10 14 09

2 10 06 09 00 12 11 07 13 15 01 03 14 05 02 08 04

3 03 15 00 06 10 01 13 08 09 04 05 11 12 07 02 14

Table 6.7 S-box 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 02 12 04 01 07 10 11 06 08 05 03 15 13 00 14 09

1 14 11 02 12 04 07 13 01 05 00 15 10 03 09 08 06

2 04 02 01 11 10 13 07 08 15 09 12 05 06 03 00 14

3 11 08 12 07 01 14 02 13 06 15 00 09 10 04 05 03

Table 6.8 S-box 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 01 10 15 09 02 06 08 00 13 03 04 14 07 05 11

1 10 15 04 02 07 12 09 05 06 01 13 14 00 11 03 08

2 09 14 15 05 02 08 12 03 07 00 04 10 01 13 11 06

3 04 03 02 12 09 05 15 10 11 14 01 07 10 00 08 13

Table 6.9 S-box 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 2 14 15 00 08 13 03 12 09 07 05 10 06 01

1 13 00 11 07 04 09 01 10 14 03 05 12 02 15 08 06

2 01 04 11 13 12 03 07 14 10 15 06 08 00 05 09 02

3 06 11 13 08 01 04 10 07 09 05 00 15 14 02 03 12
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Example 6.3

The input to S-box 1 is 100011. What is the output? 

Solution

If we write the first and the sixth bits together, we get 11 in binary, which is 3 in decimal. The

remaining bits are 0001 in binary, which is 1 in decimal. We look for the value in row 3, column 1,

in Table 6.3 (S-box 1). The result is 12 in decimal, which in binary is 1100. So the input 100011

yields the output 1100.

Example 6.4

The input to S-box 8 is 000000. What is the output?   

Solution

If we write the first and the sixth bits together, we get 00 in binary, which is 0 in decimal. The

remaining bits are 0000 in binary, which is 0 in decimal. We look for the value in row 0, column 0,

in Table 6.10 (S-box 8). The result is 13 in decimal, which is 1101 in binary. So the input 000000

yields the output 1101.

Straight Permutation The last operation in the DES function is a straight permutation

with a 32-bit input and a 32-bit output. The input/output relationship for this operation is

shown in Table 6.11 and follows the same general rule as previous permutation tables.

For example, the seventh bit of the input becomes the second bit of the output.

Cipher and Reverse Cipher

Using mixers and swappers, we can create the cipher and reverse cipher, each having

16 rounds. The cipher is used at the encryption site; the reverse cipher is used at the

decryption site. The whole idea is to make the cipher and the reverse cipher algorithms

similar. 

First Approach

To achieve this goal, one approach is to make the last round (round 16) different from

the others; it has only a mixer and no swapper. This is done in Figure 6.9. 

Table 6.10 S-box 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 02 08 04 06 15 11 01 10 09 03 14 05 00 12 07

1 01 15 13 08 10 03 07 04 12 05 06 11 10 14 09 02

2 07 11 04 01 09 12 14 02 00 06 10 10 15 03 05 08

3 02 01 14 07 04 10 8 13 15 12 09 09 03 05 06 11

Table 6.11 Straight permutation table

16 07 20 21 29 12 28 17

01 15 23 26 05 18 31 10

02 08 24 14 32 27 03 09

19 13 30 06 22 11 04 25
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Figure 6.9 DES cipher and reverse cipher for the first approach
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Although the rounds are not aligned, the elements (mixer or swapper) are

aligned. We proved in Chapter 5 that a mixer is a self-inverse; so is a swapper.

The final and initial permutations are also inverses of each other. The left section of

the plaintext at the encryption site, L0, is enciphered as L16 at the encryption site; L16

at the decryption is deciphered as L0 at the decryption site. The situation is the same

with R0 and R16. 

A very important point we need to remember about the ciphers is that the round

keys (K1 to K16) should be applied in the reverse order. At the encryption site, round 1

uses K1 and round 16 uses K16; at the decryption site, round 1 uses K16 and round 16

uses K1. 

Algorithm

Algorithm 6.1 gives the pseudocode for the cipher and four corresponding routines in

the first approach. The codes for the rest of the routines are left as exercises.    

In the first approach, there is no swapper in the last round. 

Algorithm 6.1 Pseudocode for DES cipher 

Cipher (plainBlock[64], RoundKeys[16, 48], cipherBlock[64])

{

      permute (64, 64, plainBlock, inBlock, InitialPermutationTable)

      split (64, 32, inBlock, leftBlock, rightBlock)     

       for (round = 1 to 16)

       {

               mixer (leftBlock, rightBlock, RoundKeys[round])

                if (round!=16) swapper (leftBlock, rightBlock)

      }

       combine (32, 64, leftBlock, rightBlock, outBlock)

       permute (64, 64, outBlock, cipherBlock, FinalPermutationTable) 

} 

mixer (leftBlock[32], rightBlock[32], RoundKey[48])

{

       copy (32, rightBlock, T1)

       function (T1, RoundKey, T2)

       exclusiveOr (32, leftBlock, T2, T3)

       copy (32, T3, rightBlock)

}

swapper (leftBlock[32], rigthBlock[32])

{

        copy (32, leftBlock, T)

        copy (32, rightBlock, leftBlock)

        copy (32, T, rightBlock) 

} 
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Alternative Approach

In the first approach, round 16 is different from other rounds; there is no swapper in this

round. This is needed to make the last mixer in the cipher and the first mixer in the

reverse cipher aligned. We can make all 16 rounds the same by including one swapper

to the 16th round and add an extra swapper after that (two swappers cancel the effect of

each other). We leave the design for this approach as an exercise. 

Key Generation

The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key. However,

the cipher key is normally given as a 64-bit key in which 8 extra bits are the parity bits,

which are dropped before the actual key-generation process, as shown in Figure 6.10. 

Parity Drop

The preprocess before key expansion is a compression permutation that we call parity

bit drop. It drops the parity bits (bits 8, 16, 24, 32, …, 64) from the 64-bit key and per-

mutes the rest of the bits according to Table 6.12. The remaining 56-bit value is the

actual cipher key which is used to generate round keys. The parity drop permutation (a

compression P-box) is shown in Table 6.12.  

function (inBlock[32], RoundKey[48], outBlock[32])

{

        permute (32, 48, inBlock, T1, ExpansionPermutationTable)

        exclusiveOr (48, T1, RoundKey, T2)

        substitute (T2, T3, SubstituteTables)

        permute (32, 32, T3, outBlock, StraightPermutationTable) 

} 

substitute (inBlock[32], outBlock[48], SubstitutionTables[8, 4, 16])

{

       for (i = 1 to 8)

        {

            row ← 2 × inBlock[i × 6 + 1] + inBlock [i × 6 + 6]

            col  ← 8 × inBlock[i × 6 + 2] + 4 × inBlock[i × 6 + 3] +

                      2 × inBlock[i × 6 + 4] + inBlock[i × 6 + 5]

            value = SubstitutionTables [i][row][col]

             

             outBlock[[i × 4 + 1] ← value / 8;               value ← value mod 8 

             outBlock[[i × 4 + 2] ← value / 4;               value ← value mod 4

             outBlock[[i × 4 + 3] ← value / 2;               value ← value mod 2

             outBlock[[i × 4 + 4] ← value                

         }

} 

Algorithm 6.1 Pseudocode for DES cipher (continued)
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Figure 6.10 Key generation

Table 6.12 Parity-bit drop table

57 49 41 33 25 17      09 01

58 50 42 34 26 18    10 02     

59 51 43 35 27 19    11 03    

60 52 44 36 63 55   47 39    

31 23 15 07 62 54 46 38 

30 22 14 06 61 53    45 37    

29 21 13 05 28 20    12 04    
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Shift Left

After the straight permutation, the key is divided into two 28-bit parts. Each part is

shifted left (circular shift) one or two bits. In rounds 1, 2, 9, and 16, shifting is one bit;

in the other rounds, it is two bits. The two parts are then combined to form a 56-bit part.

Table 6.13 shows the number of shifts for each round. 

Compression Permutation

The compression permutation (P-box) changes the 58 bits to 48 bits, which are used as

a key for a round. The compression permutation is shown in Table 6.14.  

Algorithm

Let us write a simple algorithm to create round keys from the key with parity bits.

Algorithm 6.2 uses several routines from Algorithm 6.1. The new one is the shiftLeft

routine, for which the code is given. Note that T is a temporary block. 

Table 6.13 Number of bit shifts

Round 1 2 3 4 5 6 7 8 9 10      11 12 13 14 15 16

Bit shifts 1 1 2 2 2 2 2 2 1 2   2 2    2 2 2 1

Table 6.14 Key-compression table

14 17 11 24 01 05 03 28 

15 06 21 10 23 19 12 04 

26 08 16 07 27 20 13 02

41   52 31   37 47 55 30 40 

51   45 33   48 44 49 39 56 

34   53 46 42   50  36 29 32

Algorithm 6.2 Algorithm for round-keys generation 

Key_Generator (keyWithParities[64], RoundKeys[16, 48], ShiftTable[16])

{

      permute (64, 56, keyWithParities, cipherKey, ParityDropTable)

      split (56, 28, cipherKey, leftKey, rightKey)     

       for (round = 1 to 16)

       {

               shiftLeft (leftKey, ShiftTable[round])

               shiftLeft (rightKey, ShiftTable[round])

               combine (28, 56, leftKey, rightKey, preRoundKey)

               permute (56, 48, preRoundKey, RoundKeys[round], KeyCompressionTable)

       }

} 
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Examples

Before analyzing DES, let us look at some examples to see the how encryption and

decryption change the value of bits in each round. 

Example 6.5

We choose a random plaintext block and a random key, and determine what the ciphertext block

would be (all in hexadecimal):

Let us show the result of each round and the text created before and after the rounds.

Table 6.15 first shows the result of steps before starting the round. The plaintext goes through

shiftLeft (block[28], numOfShifts)

{

       for (i = 1 to numOfShifts)

       {

               T ← block[1]

               for (j = 2 to 28)

                {

                     block [j−1] ← block [j]

               }          

               block[28] ← T

       }

} 

Plaintext: 123456ABCD132536                         Key: AABB09182736CCDD

CipherText: C0B7A8D05F3A829C

Table 6.15 Trace of data for Example 6.5 

Plaintext: 123456ABCD132536

After initial permutation:14A7D67818CA18AD

After splitting: L0=14A7D678 R0=18CA18AD

Round Left Right Round Key

Round 1 

Round 2 

Round 3

Round 4

18CA18AD

5A78E394

4A1210F6

B8089591

5A78E394

4A1210F6

B8089591

236779C2

194CD072DE8C

4568581ABCCE

06EDA4ACF5B5

DA2D032B6EE3

Algorithm 6.2 Algorithm for round-keys generation (continued)
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the initial permutation to create completely different 64 bits (16 hexadecimal digit). After this

step, the text is split into two halves, which we call L0 and R0. The table shows the result of

16 rounds that involve mixing and swapping (except for the last round). The results of the last

rounds (L16 and R16) are combined. Finally the text goes through final permutation to create

the ciphertext.   

Some points are worth mentioning here. First, the right section out of each

round is the same as the left section out of the next round. The reason is that the

right section goes through the mixer without change, but the swapper moves it to the

left section. For example, R1 passes through the mixer of the second round without

change, but then it becomes L2 because of the swapper. The interesting point is that

we do not have a swapper at the last round. That is why R15 becomes R16 instead of

becoming L16.

Example 6.6

Let us see how Bob, at the destination, can decipher the ciphertext received from Alice using

the same key. We have shown only a few rounds to save space. Table 6.16 shows some interest-

ing points. First, the round keys should be used in the reverse order. Compare Table 6.15 and

Table 6.16. The round key for round 1 is the same as the round key for round 16. The values of

L0 and R0 during decryption are the same as the values of L16 and R16 during encryption. This

is the same with other rounds. This proves not only that the cipher and the reverse cipher are

inverses of each other in the whole, but also that each round in the cipher has a corresponding

reverse round in the reverse cipher. The result proves that the initial and final permutation steps

are also inverses of each other.   

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

Round 11

Round 12

Round 13

Round 14

Round 15

Round 16

236779C2

A15A4B87

2E8F9C65

A9FC20A3

308BEE97

10AF9D37

6CA6CB20

FF3C485F

22A5963B

387CCDAA

BD2DD2AB

19BA9212

A15A4B87

2E8F9C65

A9FC20A3

308BEE97

10AF9D37

6CA6CB20

FF3C485F

22A5963B

387CCDAA

BD2DD2AB

CF26B472

CF26B472

69A629FEC913

C1948E87475E

708AD2DDB3C0

34F822F0C66D

84BB4473DCCC

02765708B5BF

6D5560AF7CA5

C2C1E96A4BF3

99C31397C91F

251B8BC717D0

3330C5D9A36D

181C5D75C66D

After combination: 19BA9212CF26B472

Ciphertext: C0B7A8D05F3A829C                                                    (after final permutation)

Table 6.15 Trace of data for Example 6.5 (continued)
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6.3 DES ANALYSIS

Critics have used a strong magnifier to analyze DES. Tests have been done to measure

the strength of some desired properties in a block cipher. The elements of DES have

gone through scrutinies to see if they have met the established criteria. We discuss some

of these in this section.

Properties

Two desired properties of a block cipher are the avalanche effect and the completeness. 

Avalanche Effect

Avalanche effect means a small change in the plaintext (or key) should create a significant

change in the ciphertext. DES has been proved to be strong with regard to this property. 

Example 6.7

To check the avalanche effect in DES, let us encrypt two plaintext blocks (with the same key) that

differ only in one bit and observe the differences in the number of bits in each round. 

Although the two plaintext blocks differ only in the rightmost bit, the ciphertext blocks dif-

fer in 29 bits. This means that changing approximately 1.5 percent of the plaintext creates a

change of approximately 45 percent in the ciphertext. Table 6.17 shows the change in each round.

It shows that significant changes occur as early as the third round.  

Table 6.16 Trace of data for Example 6.6

Ciphertext: C0B7A8D05F3A829C

After initial permutation: 19BA9212CF26B472

After splitting: L0=19BA9212 R0=CF26B472    

Round Left Right Round Key

Round 1 

Round 2

    . . .

Round 15

Round 16

CF26B472

BD2DD2AB

...

5A78E394

14A7D678

BD2DD2AB

387CCDAA

...

18CA18AD

18CA18AD

181C5D75C66D

3330C5D9A36D

...

4568581ABCCE

194CD072DE8C

After combination: 14A7D67818CA18AD

Plaintext:123456ABCD132536                                                   (after final permutation)

Plaintext: 0000000000000000                    Key: 22234512987ABB23

Ciphertext: 4789FD476E82A5F1

Plaintext: 0000000000000001                    Key: 22234512987ABB23

Ciphertext: 0A4ED5C15A63FEA3
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Completeness effect 

Completeness effect means that each bit of the ciphertext needs to depend on many

bits on the plaintext. The diffusion and confusion produced by P-boxes and S-boxes in

DES, show a very strong completeness effect.

Design Criteria

The design of DES was revealed by IBM in 1994. Many tests on DES have proved that

it satisfies some of the required criteria as claimed. We briefly discuss some of these

design issues.

S-Boxes

We have discussed the general design criteria for S-boxes in Chapter 5; we only discuss

the criteria selected for DES here. The design provides confusion and diffusion of bits

from each round to the next. According to this revelation and some research, we can

mention several properties of S-boxes.

1. The entries of each row are permutations of values between 0 and 15. 

2. S-boxes are nonlinear. In other words, the output is not an affine transformation of

the input. See Chapter 5 for discussion on the linearity of S-boxes.

3. If we change a single bit in the input, two or more bits will be changed in the output. 

4. If two inputs to an S-box differ only in two middle bits (bits 3 and 4), the output

must differ in at least two bits. In other words, S(x) and S(x ⊕ 001100) must differ

in at least two bits where x is the input and S(x) is the output. 

5. If two inputs to an S-box differ in the first two bits (bits 1 and 2) and are the same

in the last two bits (5 and 6), the two outputs must be different. In other words,

we need to have the following relation S(x) ≠ S(x ⊕ 11bc00), in which b and c are

arbitrary bits. 

6. There are only 32 6-bit input-word pairs (xi and xj), in which xi ⊕ xj ≠ (000000)2.

These 32 input pairs create 32 4-bit output-word pairs. If we create the difference

between the 32 output pairs, d = yi ⊕ yj, no more than 8 of these d’s should be the

same.     

7. A criterion similar to # 6 is applied to three S-boxes. 

8. In any S-box, if a single input bit is held constant (0 or 1) and the other bits are

changed randomly, the differences between the number of 0s and 1s are minimized. 

P-Boxes

Between two rows of S-boxes (in two subsequent rounds), there are one straight P-box

(32 to 32) and one expansion P-box (32 to 48). These two P-boxes together provide

diffusion of bits. We have discussed the general design principle of P-boxes in

Table 6.17 Number of bit differences for Example 6.7

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit differences 1 6 20 29 30 33 32 29 32 39 33 28 30 31 30 29
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Chapter 5. Here we discuss only the ones applied to the P-boxes used inside the DES

function. The following criteria were implemented in the design of P-boxes to

achieve this goal:

1. Each S-box input comes from the output of a different S-box (in the previous

round). 

2. No input to a given S-box comes from the output from the same box (in the previous

round). 

3. The four outputs from each S-box go to four different S-boxes (in the next round). 

4. No two output bits from an S-box go to the same S-box (in the next round). 

5. If we number the eight S-boxes, S1, S2, …, S8, 

a. An output of Sj−2 goes to one of the first two bits of Sj (in the next round). 

b. An output bit from Sj −1 goes to one of the last two bits of Sj (in the next round). 

c. An output of Sj +1 goes to one of the two middle bits of Sj (in the next round). 

6. For each S-box, the two output bits go to the first or last two bits of an S-box in the

next round. The other two output bits go to the middle bits of an S-box in the next

round. 

7. If an output bit from Sj goes to one of the middle bits in Sk (in the next round), then

an output bit from Sk cannot go to the middle bit of Sj. If we let j = k, this implies

that none of the middle bits of an S-box can go to one of the middle bits of the

same S-box in the next round. 

Number of Rounds

DES uses sixteen rounds of Feistel ciphers. It has been proved that after eight rounds,

each ciphertext is a function of every plaintext bit and every key bit; the ciphertext is

thoroughly a random function of plaintext and ciphertext. Therefore, it looks like

eight rounds should be enough. However, experiments have found that DES versions

with less than sixteen rounds are even more vulnerable to known-plaintext attacks

than brute-force attack, which justifies the use of sixteen rounds by the designers

of DES. 

DES Weaknesses

During the last few years critics have found some weaknesses in DES. 

Weaknesses in Cipher Design

We will briefly mention some weaknesses that have been found in the design of the

cipher. 

S-boxes At least three weaknesses are mentioned in the literature for S-boxes.

1. In S-box 4, the last three output bits can be derived in the same way as the first out-

put bit by complementing some of the input bits.

2. Two specifically chosen inputs to an S-box array can create the same output.

3. It is possible to obtain the same output in a single round by changing bits in only

three neighboring S-boxes.
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P-boxes One mystery and one weakness were found in the design of P-boxes:

1. It is not clear why the designers of DES used the initial and final permutations;

these have no security benefits.

2. In the expansion permutation (inside the function), the first and fourth bits of every

4-bit series are repeated. 

Weakness in the Cipher Key

Several weaknesses have been found in the cipher key.

Key Size Critics believe that the most serious weakness of DES is in its key size

(56 bits). To do a brute-force attack on a given ciphertext block, the adversary needs

to check 256 keys. 

a. With available technology, it is possible to check one million keys per second.

This means that we need more than two thousand years to do brute-force attacks

on DES using only a computer with one processor.

b. If we can make a computer with one million chips (parallel processing), then

we can test the whole key domain in approximately 20 hours. When DES was

introduced, the cost of such a computer was over several million dollars, but the

cost has dropped rapidly. A special computer was built in 1998 that found the

key in 112 hours. 

c. Computer networks can simulate parallel processing. In 1977 a team of

researchers used 3500 computers attached to the Internet to find a key challenged

by RSA Laboratories in 120 days. The key domain was divided among all of

these computers, and each computer was responsible to check the part of the

domain.

d. If 3500 networked computers can find the key in 120 days, a secret society with

42,000 members can find the key in 10 days.

The above discussion shows that DES with a cipher key of 56 bits is not safe enough to

be used comfortably. We will see later in the chapter that one solution is to use triple

DES (3DES) with two keys (112 bits) or triple DES with three keys (168 bits). 

Weak Keys Four out of 256 possible keys are called weak keys. A weak key is the

one that, after parity drop operation (using Table 6.12), consists either of all 0s, all 1s,

or half 0s and half 1s. These keys are shown in Table 6.18.   

The round keys created from any of these weak keys are the same and have the

same pattern as the cipher key. For example, the sixteen round keys created from

the first key is all made of 0s; the one from the second is made of half 0s and half 1s.

Table 6.18 Weak keys

Keys before parities drop (64 bits) Actual key (56 bits)

0101 0101 0101 0101 0000000 0000000

1F1F 1F1F 0E0E 0E0E 0000000 FFFFFFF

E0E0 E0E0 F1F1 F1F1 FFFFFFF 0000000

FEFE FEFE FEFE FEFE FFFFFFF FFFFFFF
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The reason is that the key-generation algorithm first divides the cipher key into two

halves. Shifting or permutation of a block does not change the block if it is made of

all 0s or all 1s. 

What is the disadvantage of using a weak key? If we encrypt a block with a weak key

and subsequently encrypt the result with the same weak key, we get the original block.

The process creates the same original block if we decrypt the block twice. In other words,

each weak key is the inverse of itself Ek(Ek(P)) = P, as shown in Figure 6.11. 

Weak keys should be avoided because the adversary can easily try them on the

intercepted ciphertext. If after two decryptions the result is the same, the adversary has

found the key.

Example 6.8

Let us try the first weak key in Table 6.18 to encrypt a block two times. After two encryptions

with the same key the original plaintext block is created. Note that we have used the encryption

algorithm two times, not one encryption followed by another decryption.   

Semi-weak Keys There are six key pairs that are called semi-weak keys. These six

pairs are shown in Table 6.19 (64-bit format before dropping the parity bits).  

A semi-weak key creates only two different round keys and each of them is

repeated eight times. In addition, the round keys created from each pair are the same

Figure 6.11 Double encryption and decryption with a weak key 

Key: 0x0101010101010101

Plaintext: 0x1234567887654321           Ciphertext: 0x814FE938589154F7

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7          Ciphertext: 0x1234567887654321

A weak key
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with different orders. To show the idea, we have created the round keys from the first

pairs as shown below: 

As the list shows, there are eight equal round keys in each semi-weak key. In addi-

tion, round key 1 in the first set is the same as round key 16 in the second; round key 2

in the first is the same as round key 15 in the second; and so on. This means that the

keys are inverses of each other , as shown in Figure 6.12.  

Table 6.19 Semi-weak keys

First key in the pair Second key in the pair

01FE 01FE 01FE 01FE FE01 FE01 FE01 FE01

1FE0 1FE0 0EF1 0EF1 E01F E01F F10E F10E

01E0 01E1 01F1 01F1 E001 E001 F101 F101

1FFE 1FFE 0EFE 0EFE FE1F FE1F FE0E FE0E

011F 011F 010E 010E 1F01 1F01 0E01 0E01

E0FE E0FE F1FE F1FE FEE0 FEE0 FEF1 FEF1

Round key 1

Round key 2

Round key 3

Round key 4

Round key 5

Round key 6

Round key 7

Round key 8

Round key 9

Round key 10

Round key 11

Round key 12

Round key 13

Round key 14

Round key 15

Round key 16

9153E54319BD

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

6EAC1ABCE642

6EAC1ABCE642

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

9153E54319BD

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

6EAC1ABCE642

9153E54319BD

Figure 6.12 A pair of semi-weak keys in encryption and decryption
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Possible Weak Keys There are also 48 keys that are called possible weak keys. A

possible weak key is a key that creates only four distinct round keys; in other words, the

sixteen round keys are divided into four groups and each group is made of four equal

round keys.

Example 6.9

What is the probability of randomly selecting a weak, a semi-weak, or a possible weak key? 

Solution

DES has a key domain of 256. The total number of the above keys are 64 (4 + 12 + 48). The prob-

ability of choosing one of these keys is 8.8 × 10−16, almost impossible. 

Key Complement In the key domain (256), definitely half of the keys are comple-

ment of the other half. A key complement can be made by inverting (changing 0 to 1 or

1 to 0) each bit in the key. Does a key complement simplify the job of the cryptanalysis?

It happens that it does. Eve can use only half of the possible keys (255) to perform

brute-force attack. This is because

In other words, if we encrypt the complement of plaintext with the complement of

the key, we get the complement of the ciphertext. Eve does not have to test all 256 pos-

sible keys, she can test only half of them and then complement the result. 

Example 6.10

Let us test the claim about the complement keys. We have used an arbitrary key and plaintext to

find the corresponding ciphertext. If we have the key complement and the plaintext, we can

obtain the complement of the previous ciphertext (Table 6.20).  

Key Clustering Key clustering refers to the situation in which two or more different

keys can create the same ciphertext from the same plaintext. Obviously, each pair of the

semi-weak keys is a key cluster. However, no more clusters have been found for the

DES. Future research may reveal some more. 

6.4 MULTIPLE DES

As we have seen, the major criticism of DES regards its key length. With available

technology and the possibility of parallel processing, a brute-force attack on DES is

feasible. One solution to improve the security of DES is to abandon DES and design a

new cipher. We will see this solution in Chapter 7 with the advent of AES. The second

C = E (K, P) → C   = E (K, P) 

Table 6.20 Results for Example 6.10

Original Complement

Key 1234123412341234 EDCBEDCBEDCBEDCB

Plaintext 12345678ABCDEF12 EDCBA987543210ED

Ciphertext E112BE1DEFC7A367 1EED41E210385C98
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solution is to use multiple (cascaded) instances of DES with multiple keys; this solu-

tion, which has been used for a while, does not require an investment in new software

and hardware. We study the second solution here.   

As we learned in Chapter 5, a substitution that maps every possible input to

every possible output is a group, with the mappings as the set elements and the com-

position as the operator. In this case, using two consecutive mappings is useless

because we can always find the third mapping that is equivalent to the composition of

the two (closure property). This means that if DES is a group, using double DES with

two keys k1 and k2 is useless because a single DES with key k3 does the same thing

(Figure 6.13). 

Fortunately DES is not a group, based on the following two arguments:

a. The number of possible inputs or outputs in DES is N = 264. This means that

we have N! = (264)! = 10347,380,000,000,000,000,000 mappings. One way to make

DES a group is to make it support all of these mappings with the key size of

log2(264!) ≈ 270 bits. But we know that the key length in DES is only 56 bits

(only a small fraction of this huge key). 

b. Another way for DES to be a group is for the set of mappings to be a subset of the

set in the sense of the first argument, but it has been proved that none of the sub-

groups created from the group in the first argument, have a key size of 56 bits.

If DES is not a group, it is highly improbable that we can find a key, k3, such that 

This means that we can use double or triple DES to increase the key size. 

Double DES

The first approach is to use double DES (2DES). In this approach, we use two

instances of DES ciphers for encryption and two instances of reverse ciphers for

decryption. Each instance uses a different key, which means that the size of the key is

now doubled (112 bits). However, double DES is vulnerable to a known-plain text

attack, as discussed in the next section.

Figure 6.13 Composition of mapping

Ek2 (Ek1(P)) = Ek3 (P)

First mapping
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All possible
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Second mapping
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Meet-in-the-Middle Attack

At first glance, it looks like double DES increases the number of tests for key search

from 256 (in single DES) to 2112 (in double DES). However, using a known-plaintext

attack called meet-in-the-middle attack proves that double DES improves this vulner-

ability slightly (to 257 tests), but not tremendously (to 2112). Figure 6.14 shows the dia-

gram for the double DES. Alice uses two keys, k1 and k2, to decrypt plaintext P into

ciphertext C; Bob uses ciphertext C and two keys, k2 and k1, to recover P. 

The point is that the middle text, the text created by the first encryption or first

decryption, M, should be the same for encryption and decryption to work. In other words,

we have two relationships:

Assume that Eve has intercepted a previous pair P and C (known-plaintext attack).

Based on the first relationship mentioned above, Eve encrypts P using all possible val-

ues (256) of k1 and records all values obtained for M. Based on the second relationship

mentioned above, Eve decrypts C using all possible values (256) of k2 and records all

values obtained for M. Eve creates two tables sorted by M values. She then compares

the values for M until she finds those pairs of k1 and k2 for which the value of M is the

same in both tables as shown in Figure 6.15. Note that there must be at least one pair

because she is doing exhaustive search on the combination of two keys.  

1. If there is only one match, Eve has found the two keys (k1 and k2). If there is more

than one candidate, Eve moves to the next step.

2. She takes another intercepted plaintext-ciphertext pair and uses each of the candidate

key pairs to see if she can get the ciphertext from the plaintext. If she finds more than

one candidate key pair, she repeats step 2 until she finally finds a unique pair.

Figure 6.14 Meet-in-the-middle attack for double DES
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It has been proved that after applying the second step to a few intercepted plaintext-

ciphertext pairs, the keys are found. This means that instead of using 2112 key-search

tests, Eve uses 256 key-search tests two times (with some more tests if more than a sin-

gle candidate is found in the first step). In other words, moving from single DES to

double DES, we have increased the strength from 256 to 257 (not to 2112 as it is believed

superficially).

Triple DES

To improve the security of DES, triple DES (3DES) was proposed. This uses three

stages of DES for encryption and decryption. Two versions of triple DES are in use

today: triple DES with two keys and triple DES with three keys.

Triple DES with Two Keys

In triple DES with two keys, there are only two keys: k1 and k2. The first and the third

stages use k1; the second stage uses k2. To make triple DES compatible with single

DES, the middle stage uses decryption (reverse cipher) in the encryption site and

encryption (cipher) in the decryption site. In this way, a message encrypted with single

DES with key k can be decrypted with triple DES if k1= k2 = k. Although triple DES

with two keys is also vulnerable to a known-plaintext attack, it is much stronger than

double DES. It has been adopted by the banking industry. Figure 6.16 shows triple DES

with two keys. 

Triple DES with Three Keys

The possibility of known-plaintext attacks on triple DES with two keys has enticed

some applications to use triple DES with three keys. Although the algorithm can use

three DES cipher stages at the encryption site and three reverse cipher stages at the

decryption site, to be compatible with single DES, the encryption site uses EDE and the

decryption site uses DED (E stands for encryption and D stands for decryption). Com-

patibility with single DES is provided by letting k1 = k and setting k2 and k3 to the

same arbitrary key chosen by the receiver. Triple DES with three keys is used by many

applications such as PGP (See Chapter 16). 

Figure 6.15 Tables for meet-in-the-middle attack
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6.5 SECURITY OF DES

DES, as the first important block cipher, has gone through much scrutiny. Among the

attempted attacks, three are of interest: brute-force, differential cryptanalysis, and linear

cryptanalysis.

Brute-Force Attack

We have discussed the weakness of short cipher key in DES. Combining this weakness

with the key complement weakness, it is clear that DES can be broken using 255

encryptions. However, today most applications use either 3DES with two keys (key

size of 112) or 3DES with three keys (key size of 168). These two multiple-DES ver-

sions make DES resistant to brute-force attacks. 

Differential Cryptanalysis

We discussed the technique of differential cryptanalysis on modern block ciphers in

Chapter 5. DES is not immune to that kind of attack. However, it has been revealed that

the designers of DES already knew about this type of attack and designed S-boxes and

chose 16 as the number of rounds to make DES specifically resistant to this type of

attack. Today, it has been shown that DES can be broken using differential cryptanalysis

if we have 247 chosen plaintexts or 255 known plaintexts. Although this looks more effi-

cient than a brute-force attack, finding 247 chosen plaintexts or 255 know plaintexts is

impractical. Therefore, we can say that DES is resistant to differential cryptanalysis. It

has also been shown that increasing the number of rounds to 20 require more than 264

chosen plaintexts for this attack, which is impossible because the possible number of

plaintext blocks in DES is only 264. 

Figure 6.16 Triple DES with two keys
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Linear Cryptanalysis

We discussed the technique of linear cryptanalysis on modern block ciphers in Chapter 5.

Linear cryptanalysis is newer than differential cryptanalysis. DES is more vulnerable to

linear cryptanalysis than to differential cryptanalysis, probably because this type of attack

was not known to the designers of DES. S-boxes are not very resistant to linear cryptanal-

ysis. It has been shown that DES can be broken using 243 pairs of known plaintexts. How-

ever, from the practical point of view, finding so many pairs is very unlikely. 

6.6 RECOMMENDED READING

The following books and websites provide more details about subjects discussed in this

chapter. The items enclosed in brackets […] refer to the reference list at the end of the book. 

Books

[Sta06], [Sti06], [Rhe03], [Sal03], [Mao04], and [TW06] discuss DES. 

WebSites

The following websites give more information about topics discussed in this chapter.

6.7 KEY TERMS

We show an example of DES differential cryptanalysis in Appendix N. 

We show an example of DES linear cryptanalysis in Appendix N. 

http://www.itl.nist.gov/fipspubs/fip46-2.htm

www.nist.gov/director/prog-ofc/report01-2.pdf

www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.ps

islab.oregonstate.edu/koc/ece575/notes/dc1.pdf

homes.esat.kuleuven.be/~abiryuko/Cryptan/matsui_des

http://nsfsecurity.pr.erau.edu/crypto/lincrypt.html

avalanche effect National Security Agency (NSA)

completeness effect parity bit drop

Data Encryption Standard (DES) possible weak keys

double DES (2DES) round-key generator

Federal Information Processing Standard 

(FIPS)

semi-weak keys

triple DES (3DES)

key complement triple DES with three keys

meet-in-the-middle attack triple DES with two keys

National Institute of Standards and Technology 

(NIST)

weak keys
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6.8  SUMMARY

❏ The Data Encryption Standard (DES) is a symmetric-key block cipher published

by the National Institute of Standards and Technology (NIST) as FIPS 46 in the

Federal Register.

❏ At the encryption site, DES takes a 64-bit plaintext and creates a 64-bit ciphertext.

At the decryption site, DES takes a 64-bit ciphertext and creates a 64-bit block of

plaintext. The same 56-bit cipher key is used for both encryption and decryption.

❏ The encryption process is made of two permutations (P-boxes), which we call

initial and final permutations, and sixteen Feistel rounds. Each round of DES is a

Feistel cipher with two elements (mixer and swapper). Each of these elements is

invertible.

❏ The heart of DES is the DES function. The DES function applies a 48-bit key

to the rightmost 32 bits to produce a 32-bit output. This function is made up of

four operations: an expansion permutation, a whitener (that adds key), a group

of S-boxes, and a straight permutation.

❏ The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key.

However, the cipher key is normally presented as a 64-bit key in which 8 extra bits

are the parity bits, which are dropped before the actual key-generation process.

❏ DES has shown a good performance with respect to avalanche and completeness

effects. Areas of weaknesses in DES include cipher design (S-boxes and P-boxes)

and cipher key (length, weak keys, semi-weak keys, possible weak keys, and key

complements). 

❏ Since DES is not a group, one solution to improve the security of DES is to use mul-

tiple DES (double and triple DES). Double DES is vulnerable to meet-in-the-middle

attack, so triple DES with two keys or three keys is common in applications. 

❏ The design of S-boxes and number of rounds makes DES almost immune from the

differential cryptanalysis. However, DES is vulnerable to linear cryptanalysis if the

adversary can collect enough known plaintexts. 

6.9 PRACTICE SET

Review Questions

1. What is the block size in DES? What is the cipher key size in DES? What is the

round-key size in DES?

2. What is the number of rounds in DES?

3. How many mixers and swappers are used in the first approach of making encryption

and decryption inverses of each other? How many are used in the second approach?

4. How many permutations are used in a DES cipher algorithm? How many permuta-

tions are used in the round-key generator?

5. How many exclusive-or operations are used in the DES cipher?

6. Why does the DES function need an expansion permutation?
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7. Why does the round-key generator need a parity drop permutation? 

8. What is the difference between a weak key, a semi-weak key, and a possible weak key?

9. What is double DES? What kind of attack on double DES makes it useless?

10. What is triple DES? What is triple DES with two keys? What is triple DES with

three keys? 

Exercises

11. Answer the following questions about S-boxes in DES:

a. Show the result of passing 110111 through S-box 3.

b. Show the result of passing 001100 through S-box 4.

c. Show the result of passing 000000 through S-box 7.

d. Show the result of passing 111111 through S-box 2.

12. Draw the table to show the result of passing 000000 through all 8 S-boxes. Do you

see a pattern in the outputs?

13. Draw the table to show the result of passing 111111 through all 8 S-boxes. Do you

see a pattern in the outputs?

14. Check the third criterion for S-box 3 using the following pairs of inputs.

a. 000000 and 000001

b. 111111 and 111011

15. Check the fourth design criterion for S-box 2 using the following pairs of inputs.

a. 001100 and 000000

b. 110011 and 111111

16. Check the fifth design criterion for S-box 4 using the following pairs of inputs.

a. 001100 and 110000

b. 110011 and 001111

17. Create 32 6-bit input pairs to check the sixth design criterion for S-box 5.     

18. Show how the eight design criterion for S-box 7 are fulfilled. 

19. Prove the first design criterion for P-boxes by checking the input to S-box 2 in

round 2.

20. Prove the second design criterion for P-boxes by checking inputs to S-box 3 in

round 4. 

21. Prove the third design criterion for P-boxes by checking the output of S-box 4 in

round 3. 

22. Prove the fourth design criterion for P-boxes by checking the output of S-box 6 in

round 12. 

23. Prove the fifth design criteria for P-boxes by checking the relationship between

S-boxes 3, 4, 5, and 6 in rounds 10 and 11. 

24. Prove the sixth design criteria for P-boxes by checking the destination of an arbi-

trary S-box. 

25. Prove the seventh design criterion for P-boxes by checking the relationship

between S-box 5 in round 4 and S-box 7 in round 5. 
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26. Redraw Figure 6.9 using the alternate approach. 

27. Prove that the reverse cipher in Figure 6.9 is in fact the inverse of the cipher for a

three-round DES. Start with a plaintext at the beginning of the cipher and prove

that you can get the same plaintext at the end of the reverse cipher.   

28. Carefully study the key compression permutation of Table 6.14. 

a. Which input ports are missing in the output?

b. Do all left 24 output bits come from all left 28 input bits?

c. Do all right 24 output bits come from all right 28 input bits? 

29. Show the results of the following hexadecimal data

0110 1023 4110 1023

after passing it through the initial permutation box.

30. Show the results of the following hexadecimal data

AAAA BBBB CCCC DDDD

after passing it through the final permutation box. 

31. If the key with parity bit (64 bits) is 0123 ABCD 2562 1456, find the first round

key. 

32. Using a plaintext block of all 0s and a 56-bit key of all 0s, prove the key-complement

weakness assuming that DES is made only of one round. 

33. Can you devise a meet-in-the- middle attack for a triple DES?

34. Write pseudocode for the permute routine used in Algorithm 6.1: 

35. Write pseudocode for the split routine used in Algorithm 6.1: 

36. Write pseudocode for the combine routine used in Algorithm 6.1: 

37. Write pseudocode for the exclusiveOr routine used in Algorithm 6.1: 

38. Change Algorithm 6.1 to represent the alternative approach. 

39. Augment Algorithm 6.1 to be used for both encryption and decryption.

permute (n, m, inBlock[n], outBlock[m], permutationTable[m])

split (n, m, inBlock[n], leftBlock[m], rightBlock[m])

combine (n, m, leftBlock[n], rightBlock[n], outBlock[m])

exclusiveOr (n, firstInBlock[n], secondInBlock[n], outBlock[n])
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CHAPTER 7

Advanced Encryption Standard
(AES)

Objectives

In this chapter, we discuss the Advanced Encryption Standard (AES), the

modern symmetric-key block cipher that may replace DES. This chapter

has several objectives:

❏ To review a short history of AES

❏ To define the basic structure of AES

❏ To define the transformations used by AES

❏ To define the key expansion process

❏ To discuss different implementations

The emphasis is on how the algebraic structures discussed in Chapter 4

achieve the AES security goals. 

7.1 INTRODUCTION

The Advanced Encryption Standard (AES) is a symmetric-key block cipher published

by the National Institute of Standards and Technology (NIST) in December 2001.

History

In 1997, NIST started looking for a replacement for DES, which would be called the

Advanced Encryption Standard or AES. The NIST specifications required a block size

of 128 bits and three different key sizes of 128, 192, and 256 bits. The specifications

also required that AES be an open algorithm, available to the public worldwide. The

announcement was made internationally to solicit responses from all over the world.

After the First AES Candidate Conference, NIST announced that 15 out of 21

received algorithms had met the requirements and been selected as the first candi-

dates (August 1998). Algorithms were submitted from a number of countries; the
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variety of these proposals demonstrated the openness of the process and worldwide

participation. 

After the Second AES Candidate Conference, which was held in Rome, NIST

announced that 5 out of 15 candidatesMARS, RC6, Rijndael, Serpent, and Twofish

were selected as the finalists (August 1999). 

 After the Third AES Candidate Conference, NIST announced that Rijndael, (pro-

nounced like “Rain Doll”), designed by Belgian researchers Joan Daemen and Vincent

Rijment, was selected as Advanced Encryption Standard (October 2000). 

In February 2001, NIST announced that a draft of the Federal Information Process-

ing Standard (FIPS) was available for public review and comment. 

Finally, AES was published as FIPS 197 in the Federal Register in December 2001.

Criteria

The criteria defined by NIST for selecting AES fall into three areas: security, cost, and

implementation. At the end, Rijndael was judged the best at meeting the combination of

these criteria.

Security

The main emphasis was on security. Because NIST explicitly demanded a 128-bit key,

this criterion focused on resistance to cryptanalysis attacks other than brute-force attack.

Cost

The second criterion was cost, which covers the computational efficiency and storage

requirement for different implementations such as hardware, software, or smart cards.

Implementation

This criterion included the requirement that the algorithm must have flexibility (be

implementable on any platform) and simplicity.

Rounds

AES is a non-Feistel cipher that encrypts and decrypts a data block of 128 bits. It uses

10, 12, or 14 rounds. The key size, which can be 128, 192, or 256 bits, depends on the

number of rounds. Figure 7.1 shows the general design for the encryption algorithm

(called cipher); the decryption algorithm (called inverse cipher) is similar, but the round

keys are applied in the reverse order.

In Figure 7.1, Nr defines the number of rounds. The figure also shows the relation-

ship between the number of rounds and the key size, which means that we can have

three different AES versions; they are referred as AES-128, AES-192, and AES-256.

However, the round keys, which are created by the key-expansion algorithm are always

128 bits, the same size as the plaintext or ciphertext block.     

AES has defined three versions, with 10, 12, and 14 rounds. 

Each version uses a different cipher key size (128, 192, or 256), but the round keys are 

always 128 bits. 
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The number of round keys generated by the key-expansion algorithm is always one

more than the number of rounds. In other words, we have 

Number of round keys = Nr + 1 

We refer to the round keys as K0, K1, K2, …, KNr
.

Data Units

AES uses five units of measurement to refer to data: bits, bytes, words, blocks, and

state. The bit is the smallest and atomic unit; other units can be expressed in terms of

smaller ones. Figure 7.2 shows the non-atomic data units: byte, word, block, and state. 

Bit

In AES, a bit is a binary digit with a value of 0 or 1. We use a lowercase letter to refer

to a bit.

Byte

A byte is a group of eight bits that can be treated as a single entity, a row matrix (1 × 8) of

eight bits, or a column matrix (8 × 1) of eight bits. When treated as a row matrix, the bits

are inserted to the matrix from left to right; when treated as a column matrix, the bits are

inserted into the matrix from top to bottom. We use a lowercase bold letter to refer to a byte. 

Word

A word is a group of 32 bits that can be treated as a single entity, a row matrix of four

bytes, or a column matrix of four bytes. When it is treated as a row matrix, the bytes are

Figure 7.1 General design of AES encryption cipher 
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inserted into the matrix from left to right; when it is considered as a column matrix, the

bytes are inserted into the matrix from top to bottom. We use the lowercase bold letter

w to show a word.

Block

AES encrypts and decrypts data blocks. A block in AES is a group of 128 bits. How-

ever, a block can be represented as a row matrix of 16 bytes.

State

AES uses several rounds in which each round is made of several stages. Data block

is transformed from one stage to another. At the beginning and end of the cipher,

AES uses the term data block; before and after each stage, the data block is referred

to as a state. We use an uppercase bold letter to refer to a state. Although the states

in different stages are normally called S, we occasionally use the letter T to refer to

a temporary state. States, like blocks, are made of 16 bytes, but normally are treated

as matrices of 4 × 4 bytes. In this case, each element of a state is referred to as sr,c,

where r (0 to 3) defines the row and the c (0 to 3) defines the column. Occasionally,

a state is treated as a row matrix (1 × 4) of words. This makes sense, if we think of a

word as a column matrix. At the beginning of the cipher, bytes in a data block are

inserted into a state column by column, and in each column, from top to bottom. At

the end of the cipher, bytes in the state are extracted in the same way, as shown in

Figure 7.3.  

Figure 7.2 Data units used in AES
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Example 7.1

Let us see how a 16-character block can be shown as a 4 × 4 matrix. Assume that the text block is

“AES uses a matrix”. We add two bogus characters at the end to get “AESUSESAMATRIXZZ”.

Now we replace each character with an integer between 00 and 25. We then show each byte as an

integer with two hexadecimal digits. For example, the character “S” is first changed to 18 and

then written as 1216 in hexadecimal. The state matrix is then filled up, column by column, as

shown in Figure 7.4. 

Structure of Each Round

Figure 7.5 shows the structure of each round at the encryption side. Each round, except

the last, uses four transformations that are invertible. The last round has only three

transformations. 

As Figure 7.5 shows, each transformation takes a state and creates another state to

be used for the next transformation or the next round. The pre-round section uses only

one transformation (AddRoundKey); the last round uses only three transformations

(MixColumns transformation is missing).

Figure 7.3 Block-to-state and state-to-block transformation 
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At the decryption site, the inverse transformations are used: InvSubByte, InvShiftRows,

InvMixColumns, and AddRoundKey (this one is self-invertible).

7.2 TRANSFORMATIONS

To provide security, AES uses four types of transformations: substitution, permutation,

mixing, and key-adding. We will discuss each here. 

Substitution

AES, like DES, uses substitution. However, the mechanism is different. First, the sub-

stitution is done for each byte. Second, only one table is used for transformation of

every byte, which means that if two bytes are the same, the transformation is also the

same. Third, the transformation is defined by either a table lookup process or mathe-

matical calculation in the GF(28) field. AES uses two invertible transformations.

SubBytes

The first transformation, SubBytes, is used at the encryption site. To substitute a

byte, we interpret the byte as two hexadecimal digits. The left digit defines the row

Figure 7.5 Structure of each round at the encryption site
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and the right digit defines the column of the substitution table. The two hexadecimal

digits at the junction of the row and the column are the new byte. Figure 7.6 shows

the idea. 

In the SubBytes transformation, the state is treated as a 4 × 4 matrix of bytes.

Transformation is done one byte at a time. The contents of each byte is changed,

but the arrangement of the bytes in the matrix remains the same. In the process,

each byte is transformed independently. There are sixteen distinct byte-to-byte

transformations.  

Table 7.1 shows the substitution table (S-box) for SubBytes transformation. The

transformation definitely provides confusion effect. For example, two bytes, 5A16 and

5B16, which differ only in one bit (the rightmost bit) are transformed to BE16 and 3916,

which differ in four bits. 

Figure 7.6 SubBytes transformations

The SubBytes operation involves 16 independent byte-to-byte transformations. 

Table 7.1 SubBytes transformation table 

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
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InvSubBytes

InvSubBytes is the inverse of SubBytes. The transformation is done using Table 7.2.

We can easily check that the two transformations are inverse of each other.  

Example 7.2

Figure 7.7 shows how a state is transformed using the SubBytes transformation. The figure also

shows that the InvSubBytes transformation creates the original one. Note that if the two bytes

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 CB 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 7.2 InvSubBytes transformation table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 7.1 SubBytes transformation table (continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F
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have the same values, their transformation is also the same. For example, the two bytes 0416

and 0416 in the left state are transformed to F216 and F216 in the right state and vice versa.The

reason is that every byte uses the same table. In contrast, we saw that DES (Chapter 6) uses eight

different S-boxes.      

Transformation Using the GF(28) Field 

Although we can use Table 7.1 or Table 7.2 to find the substitution for each byte, AES

also defines the transformation algebraically using the GF(28) field with the irreducible

polynomials (x8 + x4 + x3+ x + 1), as shown in Figure 7.8. 

The SubBytes transformation repeats a routine, called subbyte, sixteen times.

The InvSubBytes repeats a routine called invsubbyte. Each iteration transforms one

byte.

In the subbyte routine, the multiplicative inverse of the byte (as an 8-bit binary

string) is found in GF(28) with the irreducible polynomial (x8 + x4 + x3+ x + 1) as the

modulus. Note that if the byte is 0016, its inverse is itself. The inverted byte is then

interpreted as a column matrix with the least significant bit at the top and the most sig-

nificant bit at the bottom. This column matrix is multiplied by a constant square matrix,

X, and the result, which is a column matrix, is added with a constant column matrix, y,

to give the new byte. Note that multiplication and addition of bits are done in GF(2).

The invsubbyte is doing the same thing in reverse order. 

After finding the multiplicative inverse of the byte, the process is similar to the

affine ciphers we discussed in Chapter 3. In the encryption, multiplication is first and

addition is second; in the decryption, subtraction (addition by inverse) is first and divi-

sion (multiplication by inverse) is second. We can easily prove that the two transforma-

tions are inverses of each other because addition or subtraction in GF(2) is actually the

XOR operation.     

Figure 7.7 SubBytes transformation for Example 7.2

subbyte:       →   d = X (sr,c)
−1 ⊕ y

invsubbyte:  →  [X−1(d ⊕ y)]−1 = [X−1(X (sr,c)
−1 ⊕ y  ⊕ y)]−1 = [(sr,c)

−1]−1 = sr,c
 

The SubBytes and InvSubBytes transformations are inverses of each other.
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Example 7.3

Let us show how the byte 0C is transformed to FE by subbyte routine and transformed back to 0C

by the invsubbyte routine. 

1. subbyte: 

a. The multiplicative inverse of 0C in GF(28) field is B0, which means b is (10110000). 

b. Multiplying matrix X by this matrix results in c = (10011101)

c. The result of XOR operation is d = (11111110), which is FE in hexadecimal.

Figure 7.8 SubBytes and InvSubBytes processes
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2. invsubbyte:

a. The result of XOR operation is c = (10011101)

b. The result of multiplying by matrix X−1 is (11010000) or B0 

c. The multiplicative inverse of B0 is 0C. 

Algorithm

Although we have shown matrices to emphasize the nature of substitution (affine

transformation), the algorithm does not necessarily use multiplication and addition of

matrices because most of the elements in the constant square matrix are only 0 or 1.

The value of the constant column matrix is 0x63. We can write a simple algorithm to

do the SubBytes. Algorithm 7.1 calls the subbyte routine 16 time, one for each byte

in the state.  

The ByteToMatrix routine transforms a byte to an 8 × 1 column matrix. The

MatrixToByte routine transforms an 8 × 1 column matrix to a byte. The expansion of

these routines and the algorithm for InvSubBytes are left as exercises. 

Nonlinearity

Although the multiplication and addition of matrices in the subbyte routine are

an affine-type transformation and linear, the replacement of the byte by its multipli-

cative inverse in GF(28) is nonlinear. This step makes the whole transformation

nonlinear.

Algorithm 7.1 Pseudocode for SubBytes transformation

SubBytes (S)

{

    for (r = 0 to 3)

      for (c = 0 to 3)

                Sr,c = subbyte (Sr,c)

}

subbyte (byte)

{

     a ← byte−1                                 // Multiplicative inverse in GF(28) with inverse of 00 to be 00               

     ByteToMatrix (a, b)

     for (i = 0 to 7) 

    {

           ci ← bi ⊕ b(i+4)mod 8 ⊕ b(i+5)mod 8 ⊕ b(i+6)mod 8 ⊕ b(i+7)mod 8

        di ← ci ⊕ ByteToMatrix (0x63)

   }     

     MatrixToByte (d, d)

     byte ← d 

} 
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Permutation

Another transformation found in a round is shifting, which permutes the bytes. Unlike

DES, in which permutation is done at the bit level, shifting transformation in AES is

done at the byte level; the order of the bits in the byte is not changed. 

ShiftRows

In the encryption, the transformation is called ShiftRows and the shifting is to the

left.The number of shifts depends on the row number (0, 1, 2, or 3) of the state

matrix. This means the row 0 is not shifted at all and the last row is shifted three

bytes. Figure 7.9 shows the shifting transformation.  

Note that the ShiftRows transformation operates one row at a time.

InvShiftRows

In the decryption, the transformation is called InvShiftRows and the shifting is to the

right. The number of shifts is the same as the row number (0, 1, 2, and 3) of the state

matrix. 

Algorithm

Algorithm 7.2 for ShiftRows transformation is very simple. However, to emphasize that

the transformation is one row at a time, we use a routine called shiftrow that shifts the

byte in a single row. We call this routine three times. The shiftrow routine first copies

the row into a temporary row matrix, t. It then shifts the row.  

Example 7.4

Figure 7.10 shows how a state is transformed using ShiftRows transformation. The figure also

shows that InvShiftRows transformation creates the original state. 

Figure 7.9 ShiftRows transformation

The ShiftRows and InvShiftRows transformations are inverses of each other.

State

Row 0: no shift
Row 1: 1-byte shift
Row 2: 2-byte shift   
Row 3: 3-byte shift 

ShiftRow

Shift left

State
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Mixing 

The substitution provided by the SubBytes transformation changes the value of the byte

based only on original value and an entry in the table; the process does not include the

neighboring bytes. We can say that SubBytes is an intrabyte transformation. The permu-

tation provided by the ShiftRows transformation exchanges bytes without permuting

the bits inside the bytes. We can say that ShiftRows is a byte-exchange transformation.

We also need an interbyte transformation that changes the bits inside a byte, based on

the bits inside the neighboring bytes. We need to mix bytes to provide diffusion at the

bit level.

The mixing transformation changes the contents of each byte by taking four

bytes at a time and combining them to recreate four new bytes. To guarantee that

each new byte is different (even if all four bytes are the same), the combination

process first multiplies each byte with a different constant and then mixes them.

The mixing can be provided by matrix multiplication. As we discussed in Chapter 2,

when we multiply a square matrix by a column matrix, the result is a new column

matrix. Each element in the new matrix depends on all four elements of the old

matrix after they are multiplied by row values in the constant matrix. Figure 7.11

shows the idea.  

Algorithm 7.2 Pseudocode for ShiftRows transformation

ShiftRows (S)

{

      for (r = 1 to 3)

              shiftrow (sr, r)                              // sr is the rth row

}        

shiftrow (row, n)                                     // n is the number of bytes to be shifted

{

    CopyRow (row, t)                                       // t is a temporary row

    for (c = 0 to 3)

               row(c − n) mod 4 ←  tc

}        

Figure 7.10 ShiftRows transformation in Example 7.4
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AES defines a transformation, called MixColumns, to achieve this goal. There is

also an inverse transformation, called InvMixColumns. Figure 7.12 shows the constant

matrices used for these transformations. These two matrices are inverses of each other

when the elements are interpreted as 8-bit words (or polynomials) with coefficients in

GF(28). The proof is left as an exercise.  

MixColumns

The MixColumns transformation operates at the column level; it transforms each column

of the state to a new column. The transformation is actually the matrix multiplication of a

state column by a constant square matrix. The bytes in the state column and constants

matrix are interpreted as 8-bit words (or polynomials) with coefficients in GF(2). Multi-

plication of bytes is done in GF(28) with modulus (10001101) or (x8 + x4 + x3 + x + 1).

Addition is the same as XORing of 8-bit words. Figure 7.13 shows the MixColumns

transformations. 

InvMixColumns

The InvMixColumns transformation is basically the same as the MixColumns trans-

formation. If the two constant matrices are inverses of each other, it is easy to prove that

the two transformations are inverses of each other.  

Figure 7.11 Mixing bytes using matrix multiplication

Figure 7.12 Constant matrices used by MixColumns and InvMixColumns

The MixColumns and InvMixColumns transformations are inverses of each other.
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Algorithm

Algorithm 7.3 shows the code for MixColumns transformation. 

Algorithms for MixColumns and InvMixColumns involve multiplication and addi-

tion in the GF(28) field. As we saw in Chapter 4, there is a simple and efficient algorithm

for multiplication and addition in this field. However, to show the nature of the algorithm

(transformation of a column at a time), we use a routine, called mixcolumn, to be called

four times by the algorithm. The routine mixcolumn simply multiplies the rows of the

constant matrix by a column in the state. In the above algorithm, the operator (•) used

in the mixcolumn routine is multiplication in the GF(28) field. It can be replaced with

a simple routine as discussed in Chapter 4. The code for InvMixColumns is left as an

exercise. 

Figure 7.13 MixColumns transformation

Algorithm 7.3 Pseudocode for MixColumns transformation

MixColumns (S)

{

      for (c = 0 to 3)

            mixcolumn (sc) 

} 

mixcolumn (col)

{

    CopyColumn (col, t)                          // t is a temporary column

       

     col0 ←  (0x02) • t0  ⊕  (0x03 • t1)  ⊕  t2   ⊕ t3

 

     col1 ← t0  ⊕  (0x02) • t1  ⊕   (0x03) • t2   ⊕ t3 

     col2 ←  t0 ⊕  t1 ⊕  (0x02) • t2   ⊕    (0x03) • t3

     col3 ← (0x03 • t0)  ⊕  t1  ⊕  t2 ⊕  (0x02) • t3           

} 

MixColumns = ⋅

Constant

State State
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Example 7.5

Figure 7.14 shows how a state is transformed using the MixColumns transformation. The figure

also shows that the InvMixColumns transformation creates the original one. 

Note that equal bytes in the old state are not equal any more in the new state. For example,

the two bytes F2 in the second row are changed to CF and 0D. 

Key Adding

Probably the most important transformation is the one that includes the cipher key. All pre-

vious transformations use known algorithms that are invertible. If the cipher key is not

added to the state at each round, it is very easy for the adversary to find the plaintext, given

the ciphertext. The cipher key is the only secret between Alice and Bob in this case.

AES uses a process called key expansion (discussed later in the Chapter) that cre-

ates Nr +1 round keys from the cipher key. Each round key is 128 bits longit is

treated as four 32-bit words. For the purpose of adding the key to the state, each word is

considered as a column matrix. 

AddRoundKey

AddRoundKey also proceeds one column at a time. It is similar to MixColumns in this

respect. MixColumns multiplies a constant square matrix by each state column;

AddRoundKey adds a round key word with each state column matrix. The operation in

MixColumns is matrix multiplication; the operation in AddRoundKey is matrix addi-

tion. Since addition and subtraction in this field are the same, the AddRoundKey trans-

formation is the inverse of itself. Figure 7.15 shows the AddRoundKey transformation.     

Algorithm

The AddRoundKey transformation can be thought as XORing of each column of the

state, with the corresponding key word. We will discuss how the cipher key is expanded

Figure 7.14 The MixColumns transformation in Example 7.5

The AddRoundKey transformation is the inverse of itself.

State State
F2

7D

D4

63
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C9D4

C9 30
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92
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18
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91

F40C

02 26

0D
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7430
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into a set of key words, but for the moment we can define this transformation as shown

in Algorithm 7.4. Note that sc and wround+4c are 4 × 1 column matrices. 

We need to remember, however, that the ⊕ operator here means XORing two col-

umn matrices, each of 4 bytes. Writing a simple routine to do that is left as an exercise. 

7.3 KEY EXPANSION

To create round key for each round, AES uses a key-expansion process. If the number

of rounds is Nr , the key-expansion routine creates Nr + 1 128-bit round keys from one

single 128-bit cipher key. The first round key is used for pre-round transformation

(AddRoundKey); the remaining round keys are used for the last transformation

(AddRoundKey) at the end of each round. 

The key-expansion routine creates round keys word by word, where a word is an

array of four bytes. The routine creates 4 × (Nr +1) words that are called 

In other words, in the AES-128 version (10 rounds), there are 44 words; in the AES-

192 version (12 rounds), there are 52 words; and in the AES-256 version (with 14

rounds), there are 60 words. Each round key is made of four words. Table 7.3 shows the

relationship between rounds and words.

Figure 7.15 AddRoundKey transformation

Algorithm 7.4 Pseudocode for AddRoundKey transformation

AddRoundKey (S)

{

      for (c = 0 to 3)

            sc ←    sc  ⊕  w4 round + c 

} 

w0, w1, w2, …, w4(Nr + 1) −1

AddRoundKey = +

Key word

State State
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Key Expansion in AES-128

Let us show the creation of words for the AES-128 version; the processes for the other

two versions are the same with some slight changes. Figure 7.16 shows how 44 words

are made from the original key. 

The process is as follows: 

1. The first four words (w0, w1, w2, w3) are made from the cipher key. The cipher key

is thought of as an array of 16 bytes (k0 to k15). The first four bytes (k0 to k3)

become w0; the next four bytes (k4 to k7) become w1; and so on. In other words,

the concatenation of the words in this group replicates the cipher key. 

2. The rest of the words (wi for i = 4 to 43) are made as follows:

a. If (i mod 4) ≠ 0, wi = wi−1 ⊕  wi−4. Referring to Figure 7.16, this means each 

word is made from the one at the left and the one at the top.

Table 7.3 Words for each round

Round Words

Pre-round w0    w1     w2  w3

1 w4    w5     w6  w7

2 w8    w9     w10   w11

. . . . . .

Nr w4Nr
   w4Nr +1   w4Nr +2   w4Nr +3

Figure 7.16 Key expansion in AES

t4

Cipher key

t8

t40

ti

Making of ti (temporary) words i = 4 Nr

RCon[i/4]

Wi–1

k0

w0

w4 w5 w6 w7

w8 w9 w10 w11

w40 w41 w42 w43

w1 w2 w3

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

RotWord SubWord
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b. If (i mod 4) = 0, wi = t  ⊕  wi−4. Here t, a temporary word, is the result of apply-

ing two routines, SubWord and RotWord, on wi−1 and XORing the result with 

a round constants, RCon. In other words, we have,  

RotWord

The RotWord (rotate word) routine is similar to the ShiftRows transformation, but it is

applied to only one row. The routine takes a word as an array of four bytes and shifts

each byte to the left with wrapping. 

SubWord

The SubWord (substitute word) routine is similar to the SubBytes transformation, but

it is applied only to four bytes. The routine takes each byte in the word and substitutes

another byte for it. 

Round Constants

Each round constant, RCon, is a 4-byte value in which the rightmost three bytes are

always zero. Table 7.4 shows the values for AES-128 version (with 10 rounds). 

 The key-expansion routine can either use the above table when calculating the

words or use the GF(28) field to calculate the leftmost byte dynamically, as shown

below (prime is the irreducible polynomial): 

t = SubWord (RotWord (wi−1))  ⊕  RConi /4

Table 7.4 RCon constants

Round

Constant 

(RCon) Round

Constant 

(RCon)

1 (01 00 00 00)16 6 (20 00 00 00)16

2 (02 00 00 00)16 7 (40 00 00 00)16

3 (04 00 00 00)16 8 (80 00 00 00)16

4 (08 00 00 00)16 9 (1B 00 00 00)16

5 (10 00 00 00)16 10 (36 00 00 00)16

RC1 

RC2 

RC3 

RC4 

RC5 

RC6 

RC7 

RC8 

RC9   

RC10 

→  x1−1   

→  x2−1     

→  x3−1   

→  x4−1    

→  x5−1    

→  x6−1      

→  x7−1   

→  x8−1    

→   x9−1        

→  x10−1 

= x0  

= x1 

= x2 

= x3

= x4

= x5

= x6

= x7 

= x8   

= x9 

mod  prime 

mod  prime 

mod  prime

mod  prime

mod  prime

mod  prime

mod  prime

mod  prime

mod  prime

mod  prime

= 1

= x   

= x2   

= x3   

= x4    

= x5     

= x6   

= x7   

= x4 + x3 + x + 1

= x5 + x4 + x2 + x 

→ 00000001

→ 00000010

→ 00000100

→ 00001000

→ 00010000

→ 00100000

→ 01000000

→ 10000000 

→ 00011011

→ 00110110

→ 0116

→ 0216

→ 0416

→ 0816

→ 1016

→ 2016

→ 4016

→ 8016

→ 1B16

→ 3616
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The leftmost byte, which is called RCi is actually xi−1, where i is the round num-

ber. AES uses the irreducible polynomial (x8 + x4 + x3 + x +1). 

Algorithm

Algorithm 7.5 is a simple algorithm for the key-expansion routine (version AES-128). 

Example 7.6

Table 7.5 shows how the keys for each round are calculated assuming that the 128-bit cipher key

agreed upon by Alice and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87)16.      

Algorithm 7.5 Pseudocode for key expansion in AES-128

KeyExpansion ([key0 to key15], [w0 to w43])

{

       for (i = 0 to 3)

            wi ← key4i + key4i+1 + key4i+2 + key4i+3

       for (i = 4 to 43)

      {

           if (i mod 4 ≠ 0)     wi ← wi–1 + wi–4   

           else

          {

                t ← SubWord (RotWord (wi–1)) ⊕ RConi/4                 // t is a temporary word

                wi ← t + wi–4

           }

       }

}   

Table 7.5 Key expansion example

Round

Values of

t’s

First word

in the round

Second word

in the round

Third word

in the round

Fourth word

in the round

— w00 = 2475A2B3 w01 = 34755688 w02 = 31E21200 w03 = 13AA5487 

1 AD20177D w04 = 8955B5CE w05 = BD20E346 w06 = 8CC2F146 w07 = 9F68A5C1

2 470678DB w08 = CE53CD15 w09 = 73732E53 w10 = FFB1DF15 w11 = 60D97AD4

3 31DA48D0 w12 = FF8985C5 w13 = 8CFAAB96 w14 = 734B7483 w15 = 2475A2B3

4 47AB5B7D w16 = B822deb8 w17 = 34D8752E w18 = 479301AD w19 = 54010FFA

5 6C762D20 w20 = D454F398 w21 = E08C86B6 w22 = A71F871B w23 = F31E88E1

6 52C4F80D w24 = 86900B95 w25 = 661C8D23 w26 = C1030A38 w27 = 321D82D9

7 E4133523 w28 = 62833EB6 w29 = 049FB395 w30 = C59CB9AD w31 = F7813B74

8 8CE29268 w32 = EE61ACDE w33 = EAFE1F4B w34 = 2F62A6E6 w35 = D8E39D92

9 0A5E4F61 w36 = E43FE3BF w37 = 0EC1FCF4 w38 = 21A35A12 w39 = F940C780

10 3FC6CD99 w40 = DBF92E26 w41 = D538D2D2 w42 = F49B88C0 w43 = 0DDB4F40
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In each round, the calculation of the last three words are very simple. For the calculation of

the first word we need to first calculate the value of temporary word (t). For example, the first t

(for round 1) is calculated as 

Example 7.7

Each round key in AES depends on the previous round key. The dependency, however, is nonlin-

ear because of SubWord transformation. The addition of the round constants also guarantees that

each round key will be different from the previous one.   

Example 7.8

The two sets of round keys can be created from two cipher keys that are different only in one bit. 

As Table 7.6 shows, there are significant differences between the two correspond-

ing round keys (R. means round and B. D. means bit difference). 

Example 7.9

The concept of weak keys, as we discussed for DES in Chapter 6, does not apply to AES. Assume

that all bits in the cipher key are 0s. The following shows the words for some rounds:

RotWord (13AA5487) = AA548713            →            SubWord (AA548713) = AC20177D

t = AC20177D ⊕ RCon1 = AC20 17 7D ⊕  0100000016 = AD20177D

Cipher Key 1: 12 45 A2 A1 23 31 A4 A3   B2 CC AA 34   C2 BB 77 23

Cipher Key 2: 12 45 A2 A1 23 31 A4 A3   B2 CC AB 34   C2 BB 77 23

Table 7.6 Comparing two sets of round keys

R. Round keys for set 1 Round keys for set 2 B. D.

—

1

2

3

4

5

6

7

8

9

10

1245A2A1 2331A4A3 B2CCAA34 C2BB7723

F9B08484 DA812027 684D8A13 AAF6FD30

B9E48028 6365A00F 0B282A1C A1DED72C

A0EAF11A C38F5115 C8A77B09 6979AC25

1E7BCEE3 DDF49FF6 1553E4FF 7C2A48DA

EB2999F3 36DD0605 238EE2FA 5FA4AA20

82852E3C B4582839 97D6CAC3 C87260E3

82553FD4 360D17ED A1DBDD2E 69A9BDCD

D12F822D E72295C0 46F948EE 2F50F523

99C9A438 7EEB31F8 38127916 17428C35

83AD32C8 FD460330 C5547A26 D216F613

1245A2A1 2331A4A3 B2CCAB34 C2BB7723

F9B08484 DA812027 684D8B13 AAF6FC30

B9008028 6381A00F 0BCC2B1C A13AD72C

3D0EF11A 5E8F5115 55437A09 F479AD25

839BCEA5 DD149FB0 8857E5B9 7C2E489C

A2C910B5 7FDD8F05 F78A6ABC 8BA42220

CB5AA788 B487288D 430D4231 C8A96011

588A2560 EC0D0DED AF004FDC 67A92FCD

0B9F98E5 E7929508 4892DAD4 2F3BF519

F2794CF0 15EBD9F8 5D79032C 7242F635

E83BDAB0 FDD00348 A0A90064 D2EBF651

01

02

17

30

31

34

56

50

44

51

52
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The words in the pre-round and the first round are all the same. In the second round, the first

word matches with the third; the second word matches with the fourth. However, after the second

round the pattern disappears; every word is different. 

Key Expansion in AES-192 and AES-256

Key-expansion algorithms in the AES-192 and AES-256 versions are very similar to

the key expansion algorithm in AES-128, with the following differences:

1. In AES-192, the words are generated in groups of six instead of four.

a. The cipher key creates the first six words (w0 to w5). 

b. If i mod 6 ≠ 0, wi ← wi−1 + wi−6; otherwise, wi ← t + wi−6. 

2. In AES-256, the words are generated in groups of eight instead of four. 

a. The cipher key creates the first eight words (w0 to w7).

b. If i mod 8 ≠ 0, wi ← wi−1 + wi−8; otherwise, wi ← t + wi−8. 

c. If i mod 4 = 0, but i mod 8 ≠ 0, then wi = SubWord (wi−1) + wi−8.

Key-Expansion Analysis

The key-expansion mechanism in AES has been designed to provide several features

that thwart the cryptanalyst.

1. Even if Eve knows only part of the cipher key or the values of the words in some

round keys, she still needs to find the rest of the cipher key before she can find all

round keys. This is because of the nonlinearity produced by SubWord transforma-

tion in the key-expansion process. 

2. Two different cipher keys, no matter how similar to each other, produce two expan-

sions that differ in at least a few rounds. 

3. Each bit of the cipher key is diffused into several rounds. For example, changing a

single bit in the cipher key, will change some bits in several rounds.

4. The use of the constants, the RCons, removes any symmetry that may have been

created by the other transformations. 

5. There are no serious weak keys in AES, unlike in DES.

6. The key-expansion process can be easily implemented on all platforms. 

7. The key-expansion routine can be implemented without storing a single table; all

calculations can be done using the GF(28) and FG(2) fields.

Pre-round:

Round 01:

Round 02:

Round 03:

...

Round 10:

00000000

62636363

9B9898C9

90973450

...

B4EF5BCB

00000000

62636363

F9FBFBAA

696CCFFA

...

3E92E211

00000000

62636363

9B9898C9

F2F45733

...

23E951CF

00000000

62636363

F9FBFBAA

0B0FAC99

...

6F8F188E
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7.4 CIPHERS

Now let us see how AES uses four types of transformations for encryption and decryp-

tion. In the standard, the encryption algorithm is referred to as the cipher and the

decryption algorithm as the inverse cipher. 

As we mentioned before, AES is a non-Feistel cipher, which means that each trans-

formation or group of transformations must be invertible. In addition, the cipher and

the inverse cipher must use these operations in such a way that cancel each other. The

round keys must also be used in the reverse order. Two different designs are given to be

used for different implementation. We discuss both designs for AES-128; the designs

for other versions are the same. 

Original Design

In the original design, the order of transformations in each round is not the same in the

cipher and reverse cipher. Figure 7.17 shows this version. 

First, the order of SubBytes and ShiftRows is changed in the reverse cipher.

Second, the order of MixColumns and AddRoundKey is changed in the reverse

cipher. This difference in ordering is needed to make each transformation in the

Figure 7.17 Cipher and inverse cipher of the original design
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cipher aligned with its inverse in the reverse cipher. Consequently, the decryption

algorithm as a whole is the inverse of the encryption algorithm. We have shown only

three rounds, but the rest is the same. Note that the round keys are used in the reverse

order. Note that the encryption and decryption algorithms in the original design are

not similar. 

Algorithm

The code for the AES-128 version of this design is shown in Algorithm 7.6. The code

for the inverse cipher is left as an exercise. 

Alternative Design

For those applications that prefer similar algorithms for encryption and decryption, a

different inverse cipher was developed. In this version, the transformations in the

reverse cipher are rearranged to make the order of transformations the same in the

cipher and reverse cipher. In this design, invertibility is provided for a pair of transfor-

mations, not for each single transformation.

SubBytes/ShiftRows Pairs

SubBytes change the contents of each byte without changing the order of the bytes in

the state; ShiftRows change the order of the bytes in the state without changing the con-

tents of the bytes. This implies that we can change the order of these two transforma-

tions in the inverse cipher without affecting the invertibility of the whole algorithm.

Figure 7.18 shows the idea. Note that the combination of two transformations in the

cipher and inverse cipher are the inverses of each other.  

Algorithm 7.6 Pseudocode for cipher in the original design

Cipher (InBlock [16], OutBlock[16], w[0 … 43])

{

     BlockToState (InBlock, S)

     S ← AddRoundKey (S, w[0…3])

      for (round = 1 to 10)

     {

           S ← SubBytes (S) 

           S ← ShiftRows (S)

            if (round ≠ 10)   S ← MixColumns (S)

            S ← AddRoundKey (S, w[4 × round, 4 × round + 3])

      }

    StateToBlock (S, OutBlock); 

}
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MixColumns/AddRoundKey Pair

Here the two involved transformations are of different nature. However, the pairs can

become inverses of each other if we multiply the key matrix by the inverse of the con-

stant matrix used in MixColumns transformation. We call the new transformation

InvAddRoundKey. Figure 7.19 shows the new configuration. 

It can be proved that the two combinations are now inverses of each other. In the

cipher we call the input state to the combination S and the output state T. In the reverse

cipher the input state to the combination is T. The following shows that the output state

is also S. Note that the MixColumns transformation is actually multiplication of the

C matrix (constant matrix by the state). 

Now we can show the cipher and inverse cipher for the alternate design. Note that

we still need to use two AddRoundKey transformations in the decryption. In other

words, we have nine InvAddRoundKey and two AddRoundKey transformations as

shown in Figure 7.20.  

Changing Key-Expansion Algorithm

Instead of using InvRoundKey transformation in the reverse cipher, the key-expansion

algorithm can be changed to create a different set of round keys for the inverse cipher.

Figure 7.18 Invertibility of SubBytes and ShiftRows combinations

Figure 7.19 Invertibility of MixColumns and AddRoundKey combinations

Cipher: T = CS ⊕ K

Inverse Cipher: C−1T ⊕ C−1K = C−1(CS ⊕ K) ⊕ C−1K  =  C−1CS ⊕ C−1K ⊕ C−1K = S

Inverse

ShiftRows

SubBytes

InvSubBytes

InvShiftRows

Round key

Round key

Inverse

AddRoundKey

MixColumns

InvMixColumns

InvAddRoundKey
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However, note that the round key for the pre-round operation and the last round should

not be changed. The round keys for rounds 1 to 9 need to be multiplied by the constant

matrix. This algorithm is left as an exercise.

7.5 EXAMPLES

In this section, some examples of encryption/decryption and key generation are given

to emphasize some points discussed in the two previous sections. 

Example 7.10 

The following shows the ciphertext block created from a plaintext block using a randomly

selected cipher key. 

Table 7.7 shows the values of state matrices and round keys for this example. 

Figure 7.20 Cipher and reverse cipher in alternate design

Plaintext:      00 04 12 14 12 04 12 00 0C 00 13 11 08 23 19 19

Cipher Key: 24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87

Ciphertext:   BC 02 8B D3 E0 E3 B1 95 55 0D 6D FB E6 F1 82 41 
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Table 7.7 Example of encryption 

Round Input State Output State Round Key

Pre-round 00 12 0C 08 

04 04 00 23 

12 12 13 19 

14 00 11 19

24 26 3D 1B 

71 71 E2 89 

B0 44 01 4D 

A7 88 11 9E 

24 34 31 13 

75 75 E2 AA 

A2 56 12 54 

B3 88 00 87 

1 24 26 3D 1B 

71 71 E2 89 

B0 44 01 4D 

A7 88 11 9E 

6C 44 13 BD 

B1 9E 46 35 

C5 B5 F3 02 

5D 87 FC 8C 

89 BD 8C 9F 

55 20 C2 68 

B5 E3 F1 A5 

CE 46 46 C1 

2 6C 44 13 BD 

B1 9E 46 35 

C5 B5 F3 02 

5D 87 FC 8C 

1A 90 15 B2 

66 09 1D FC 

20 55 5A B2 

2B CB 8C 3C 

CE 73 FF 60 

53 73 B1 D9 

CD 2E DF 7A 

15 53 15 D4 

3 1A 90 15 B2 

66 09 1D FC 

20 55 5A B2 

2B CB 8C 3C 

F6 7D A2 B0 

1B 61 B4 B8 

67 09 C9 45 

4A 5C 51 09 

FF 8C 73 13 

89 FA 4B 92 

85 AB 74 0E 

C5 96 83 57 

4 F6 7D A2 B0 

1B 61 B4 B8 

67 09 C9 45 

4A 5C 51 09 

CA E5 48 BB 

D8 42 AF 71 

D1 BA 98 2D 

4E 60 9E DF 

B8 34 47 54 

22 D8 93 01 

DE 75 01 0F 

B8 2E AD FA 

5 CA E5 48 BB 

D8 42 AF 71 

D1 BA 98 2D 

4E 60 9E DF 

90 35 13 60 

2C FB 82 3A 

9E FC 61 ED 

49 39 CB 47 

D4 E0 A7 F3 

54 8C 1F 1E 

F3 86 87 88 

98 B6 1B E1 

6 90 35 13 60 

2C FB 82 3A 

9E FC 61 ED 

49 39 CB 47 

18 0A B9 B5 

64 68 6A FB 

5A EF D7 79 

8E B2 10 4D

86 66 C1 32 

90 1C 03 1D 

0B 8D 0A 82 

95 23 38 D9 

7 18 0A B9 B5 

64 68 6A FB 

5A EF D7 79 

8E B2 10 4D 

01 63 F1 96 

55 24 3A 62 

F4 8A DE 4D 

CC BA 88 03

62 04 C5 F7 

83 9F 9C 81 

3E B3 B9 3B 

B6 95 AD 74 

8 01 63 F1 96 

55 24 3A 62 

F4 8A DE 4D 

CC BA 88 03 

2A 34 D8 46 

2D 6B A2 D6 

51 64 CF 5A 

87 A8 F8 28 

EE EA 2F D8 

61 FE 62 E3 

AC 1F A6 9D 

DE 4B E6 92 



218 CHAPTER 7 ADVANCED ENCRYPTION STANDARD (AES)

Example 7.11

Figure 7.21 shows the state entries in one round, round 7, in Example 7.10.      

Example 7.12

One may be curious to see the result of encryption when the plaintext is made of all 0s. Using the

cipher key in Example 7.10 yields the ciphertext.   

Example 7.13

Let us check the avalanche effect that we discussed in Chapter 6. Let us change only one bit in

the plaintext and compare the results. We changed only one bit in the last byte. The result clearly

shows the effect of diffusion and confusion. Changing a single bit in the plaintext has affected

many bits in the ciphertext. 

9 2A 34 D8 46 

2D 6B A2 D6 

51 64 CF 5A 

87 A8 F8 28 

0A D9 F1 3C 

95 63 9F 35 

2A 80 29 00 

16 76 09 77 

E4 0E 21 F9 

3F C1 A3 40 

E3 FC 5A C7 

BF F4 12 80 

10 0A D9 F1 3C 

95 63 9F 35 

2A 80 29 00 

16 76 09 77 

BC E0 55 E6 

02 E3 0D F1 

8B B1 6D 82 

D3 95 F8 41 

DB D5 F4 0D 

F9 38 9B DB 

2E D2 88 4F 

26 D2 C0 40 

Figure 7.21 State in a single round

Plaintext:     00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Cipher Key: 24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87

Ciphertext:  63 2C D4 5E 5D 56 ED B5 62 04 01 A0 AA 9C 2D 8D

Plaintext 1:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Plaintext 2:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

Ciphertext 1: 63 2C D4 5E 5D 56 ED B5 62 04 01 A0 AA 9C 2D 8D

Ciphertext 2: 26 F3 9B BC A1 9C 0F B7 C7 2E 7E 30 63 92 73 13

Table 7.7 Example of encryption (continued)

Round Input State Output State Round Key

Input State After SubBytes After ShiftRows After MixColumns Output State

18

64

5A

68

EF

6A

D7

0A B9

FB

79

8E B2 10 D4

B5 7C

36

1D

80

E3

AA

BF

FB A1

FC

7E

7B 4B F4 C4

90 C4

4C

FD

95

7B

C0

69

DE F7

35

C7

59 E3 1E BA

9E 2A

2D

51

6B

64

A2

CF

34 D8

D6

5A

87 A8 F8 28

46 01

55

F4

24

8A

3A

DE

63 F1

62

4D

CC BA 88 03

96
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Example 7.14

The following shows the effect of using a cipher key in which all bits are 0s. 

7.6 ANALYSIS OF AES

Following is a brief review of the three characteristics of AES.

Security

AES was designed after DES. Most of the known attacks on DES were already tested

on AES; none of them has broken the security of AES so far. 

Brute-Force Attack

AES is definitely more secure than DES due to the larger-size key (128, 192, and

256 bits). Let us compare DES with 56-bit cipher key and AES with 128-bit cipher key.

For DES we need 256(ignoring the key complement issue) tests to find the key; for AES

we need 2128 tests to find the key. This means that if we can break DES in t seconds, we

need (272 × t) seconds to break AES. This would be almost impossible. In addition,

AES provides two other versions with longer cipher keys. The lack of weak keys is

another advantage of AES over DES.

Statistical Attacks

The strong diffusion and confusion provided by the combination of the SubBytes,

ShiftRows, and MixColumns transformations removes any frequency pattern in the

plaintext. Numerous tests have failed to do statistical analysis of the ciphertext. 

Differential and Linear Attacks

AES was designed after DES. Differential and linear cryptanalysis attacks were no

doubt taken into consideration. There are no differential and linear attacks on AES

as yet.

Implementation

AES can be implemented in software, hardware, and firmware. The implementation

can use table lookup process or routines that use a well-defined algebraic structure. The

transformation can be either byte-oriented or word-oriented. In the byte-oriented ver-

sion, the whole algorithm can use an 8-bit processor; in the word-oriented version,

it can use a 32-bit processor. In either case, the design of constants makes processing

very fast.

Plaintext:     00 04 12 14 12 04 12 00 0c 00 13 11 08 23 19 19

Cipher Key: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Ciphertext:  5A 6F 4B 67 57 B7 A5 D2 C4 30 91 ED 64 9A 42 72 
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Simplicity and Cost

The algorithms used in AES are so simple that they can be easily implemented using

cheap processors and a minimum amount of memory. 

7.7 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. We recommend the following books and sites. The items enclosed in brackets

refer to the reference list at the end of the book. 

Books

[Sta06], [Sti06], [Rhe03], [Sal03], [Mao04], and [TW06] discuss AES. 

WebSites

The following websites give more information about topics discussed in this chapter.

7.8 KEY TERMS

7.9 SUMMARY

❏ The Advanced Encryption Standard (AES) is a symmetric-key block cipher pub-

lished by NIST as FIPS 197. AES is based on the Rijndael algorithm.

csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://www.quadibloc.com/crypto/co040401.htm

http://www.ietf.org/rfc/rfc3394.txt

AddRoundKey key expansion

Advanced Encryption Standard (AES) MixColumns

bit

block

National Institute of Standards and 

Technology (NIST)

byte Rijndael

cipher RotWord

InvAddRoundKey ShiftRows

inverse cipher state

InvMixColumns SubBytes

InvShiftRows SubWord

InvSubBytes word
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❏ AES is a non-Feistel cipher that encrypts and decrypts a data block of 128 bits. It

uses 10, 12, or 14 number of rounds. The key size, which can be 128, 192, or 256

bits depends on the number of rounds.

❏ AES is byte-oriented. The 128-bit plaintext or ciphertext is considered as sixteen 8-bit

bytes. To be able to perform some mathematical transformations on bytes, AES has

defined the concept of a state. A state is a 4 × 4 matrix in which each entry is a byte. 

❏ To provide security, AES uses four types of transformations: substitution, permuta-

tion, mixing, and key-adding. Each round of AES, except the last, uses the four

transformations. The last round uses only three of the four transformations.

❏ Substitution is defined by either a table lookup process or mathematical calculation

in the GF(28) field. AES uses two invertible transformations, SubBytes and Inv-

SubBytes, which are inverses of each other. 

❏ The second transformation in a round is shifting, which permutes the bytes. In the

encryption, the transformation is called ShiftRows. In the decryption, the transfor-

mation is called InvShiftRows. The ShiftRows and InvShiftRows transformations

are inverses of each other.

❏ The mixing transformation changes the contents of each byte by taking four bytes

at a time and combining them to recreate four new bytes. AES defines two trans-

formations, MixColumns and InvMixColumns, to be used in the encryption and

decryption. MixColumns multiplies the state matrix by a constant square matrix;

the InvMixColumns does the same using the inverse constant matrix. The

MixColumns and InvMixColumns transformations are inverses of each other.

❏ The transformation that performs whitening is called AddRoundKey. The previous

state is added (matrix addition) with the round matrix key to create the new state.

Addition of individual elements in the two matrices is done in GF(28), which means

that 8-bit words are XORed. The AddRoundKey transformation is the inverse of itself.

❏ In the first configuration (10 rounds with 128-bit keys), the key generator creates

eleven 128-bit round keys out of the 128-bit cipher key. AES uses the concept of a

word for key generation. A word is made of four bytes. The round keys are gener-

ated word by word. AES numbers the words from w0 to w43. The process is

referred to as key expansion.

❏ AES cipher uses two algorithms for decryption. In the original design, the order

of transformations in each round is not the same in the encryption and decryption.

In the alternative design, the transformations in the decryption algorithms are

rearranged to make ordering the same in encryption and decryption. In the second

version, the invertibility is provided for a pair of transformations.

7.10 PRACTICE SET

Review Questions

1. List the criteria defined by NIST for AES.

2. List the parameters (block size, key size, and the number of rounds) for the three

AES versions.
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3. How many transformations are there in each version of AES? How many round

keys are needed for each version? 

4. Compare DES and AES. Which one is bit-oriented? Which one is byte-oriented?

5. Define a state in AES. How many states are there in each version of AES? 

6. Which of the four transformations defined for AES change the contents of bytes?

Which one does not change the contents of the bytes? 

7. Compare the substitution in DES and AES. Why do we have only one substitution

table (S-box) in AES, but several in DES?

8. Compare the permutations in DES and AES. Why do we need expansion and com-

pression permutations in DES, but not in AES? 

9. Compare the round keys in DES and AES. In which cipher is the size of the round

key the same as the size of the block? 

10. Why do you think the mixing transformation (MixColumns) is not needed in DES,

but is needed in AES? 

Exercises

11. In a cipher, S-boxes can be either static or dynamic. The parameters in a static S-box

do not depend on the key. 

a. State some advantages and some disadvantages of static and dynamic S-boxes. 

b. Are the S-boxes (substitution tables) in AES static or dynamic?

12. AES has a larger block size than DES (128 versus 64). Is this an advantage or dis-

advantage? Explain.

13. AES defines different implementations with three different numbers of rounds

(10, 12, and 14); DES defines only implementation with 16 rounds. What are

the advantages and disadvantages of AES over DES with respect to this

difference? 

14. AES defines three different cipher-key sizes (128, 192, and 256); DES defines only

one cipher-key size (56). What are the advantages and disadvantages of AES over

DES with respect to this difference? 

15. In AES, the size of the block is the same as the size of the round key (128 bits); in

DES, the size of the block is 64 bits, but the size of the round key is only 48 bits.

What are the advantages and disadvantages of AES over DES with respect to this

difference?

16. Prove that the ShiftRows and InvShiftRows transformations are permutations by

doing the following: 

a. Show the permutation table for ShiftRows. The table needs to have 128 entries,

but since the contents of a byte do not change, the table can have only 16 entries

with the assumption that each entry represents a byte. 

b. Repeat Part a for InvShiftRows transformation.

c. Using the results of Parts a and b, prove that the ShiftRows and InvShiftRows

transformations are inverses of each other. 
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17. Using the same cipher key, apply each of the following transformations on two

plaintexts that differ only in the first bit. Find the number of bits changed after each

transformation. Each transformation is applied independently.

a. SubBytes

b. ShiftRows

c. MixColumns

d. AddRoundKey (with the same round keys of your choice) 

18. To see the nonlinearity of the SubBytes transformation, show that if a and b are

two bytes, we have 

Use a = 0x57 and b = 0xA2 as an example. 

19. Give a general formula to calculate the number of each kind of transformation

(SubBytes, ShiftRows, MixColumns, and AddRoundKey) and the number of total

transformations for each version of AES. The formula should be parametrized on

the number of rounds. 

20. Redraw Figure 7.16 for AES-192 and AES-256.

21. Create two new tables that show RCons constants for the AES-192 and AES-256

implementations (see Table 7.4).

22. In AES-128, the round key used in the pre-round operation is the same as the

cipher key. Is this the case for AES-192? Is this the case for AES-256? 

23. In Figure 7.8, multiply the X and X−1 matrices to prove that they are inverses of

each other.

24. Using Figure 7.12, rewrite the square matrices C and C−1 using polynomials with

coefficients in GF(2). Multiply the two matrices and prove that they are inverse of

each other. 

25. Prove that the code in Algorithm 7.1 (SubBytes transformation) matches the pro-

cess shown in Figure 7.8. 

26. Using Algorithm 7.1 (SubBytes transformation), do the following:

a. Write the code for a routine that calculates the inverse of a byte in GF(28). 

b. Write the code for ByteToMatrix.

c. Write the code for MatrixToByte.

27. Write an algorithm for the InvSubBytes transformation. 

28. Prove that the code in Algorithm 7.2 (ShiftRows transformation) matches the pro-

cess shown in Figure 7.9. 

29. Using Algorithm 7.2 (ShiftRows transformation), write the code for CopyRow

routine.

30. Write an algorithm for the InvShiftRows transformation. 

31. Prove that the code in Algorithm 7.3 (MixColumns transformation) matches with

the process shown in Figure 7.13. 

SubBytes (a ⊕ b) ≠ SubBytes (a) ⊕ SubBytes (b)
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32. Using Algorithm 7.3 (MixColumns transformation), write the code for the Copy-

Column routine.

33. Rewrite Algorithm 7.3 (MixColumns transformation) replacing the operators (.)

with a routine called MultField to calculate the multiplication of two bytes in the

GF(28) field.

34. Write an algorithm for InvMixColumns transformation. 

35. Prove that the code in Algorithm 7.4 (AddRoundKey transformation) matches the

process shown in Figure 7.15. 

36. In Algorithm 7.5 (Key Expansion), 

a. Write the code for the SubWord routine.

b. Write the code for the RotWord routine. 

37. Give two new algorithms for key expansion in AES-192 and AES-256 (see Algo-

rithm 7.5).

38. Write the key-expansion algorithm for alternate inverse cipher. 

39. Write the algorithm for inverse cipher in the original design.

40. Write the algorithm for the inverse cipher in the alternative design.
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CHAPTER 8

Encipherment Using
Modern Symmetric-Key Ciphers

Objectives

This chapter has several objectives: 

❏ To show how modern standard ciphers, such as DES or AES, can be

used to encipher long messages. 

❏ To discuss five modes of operation designed to be used with modern

block ciphers.

❏ To define which mode of operation creates stream ciphers out of the

underlying block ciphers.

❏ To discuss the security issues and the error propagation of different

modes of operation.

❏ To discuss two stream ciphers used for real-time processing of data.

This chapter shows how the concepts discussed in Chapter 5 and two

modern block ciphers discussed in Chapters 6 and 7 can be used to enci-

pher long messages. It also introduces two stream ciphers.

8.1 USE OF MODERN BLOCK CIPHERS

Symmetric-key encipherment can be done using modern block ciphers. The two

modern block ciphers discussed in Chapters 6 and 7, namely DES and AES, are

designed to encipher and decipher a block of text of fixed size. DES encrypts and

decrypts a block of 64 bits; AES encrypts and decrypts a block of 128 bits. In real-

life applications, the text to be enciphered is of variable size and normally much

larger than 64 or 128 bits. Modes of operation have been devised to encipher text of

any size employing either DES or AES. Figure 8.1 shows the five modes of operation

that will be discussed here. 
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Electronic Codebook (ECB) Mode 

The simplest mode of operation is called the electronic codebook (ECB) mode. The

plaintext is divided into N blocks. The block size is n bits. If the plaintext size is not a

multiple of the block size, the text is padded to make the last block the same size as the

other blocks. The same key is used to encrypt and decrypt each block. Figure 8.2 shows

the encryption and decryption in this mode. 

The relation between plaintext and ciphertext block is shown below:

Example 8.1

It can be proved that each plaintext block at Alice’s site is exactly recovered at Bob’s site.

Because encryption and decryption are inverses of each other, 

Example 8.2

This mode is called electronic codebook because one can precompile 2K codebooks (one for each

key) in which each codebook has 2n entries in two columns. Each entry can list the plaintext and

Figure 8.1 Modes of operation

Figure 8.2 Electronic codebook (ECB) mode

Encryption: Ci = EK (Pi) Decryption: Pi = DK (Ci)

Pi = DK (Ci) = DK (EK (Pi)) = Pi 

Modes of
operation

Output
feedback

Counter
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Cipher block 
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ECB CBC CFB OFB CTR
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the corresponding ciphertext blocks. However, if K and n are large, the codebook would be far

too large to precompile and maintain.

Security Issues

Following are security issues in CBC mode: 

1. Patterns at the block level are preserved. For example, equal blocks in the plaintext

become equal blocks in the ciphertext. If Eve finds out that ciphertext blocks 1, 5,

and 10 are the same, she knows that plaintext blocks 1, 5, and 10 are the same. This

is a leak in security. For example, Eve can do an exhaustive search to decrypt only

one of these blocks to find the contents of all of them. 

2. The block independency creates opportunities for Eve to exchange some ciphertext

blocks without knowing the key. For example, if she knows that block 8 always

conveys some specific information, she can replace this block with the correspond-

ing block in the previously intercepted message.

Example 8.3

Assume that Eve works in a company a few hours per month (her monthly payment is very

low). She knows that the company uses several blocks of information for each employee in

which the seventh block is the amount of money to be deposited in the employee’s account.

Eve can intercept the ciphertext sent to the bank at the end of the month, replace the block

with the information about her payment with a copy of the block with the information about

the payment of a full-time colleague. Each month Eve can receive more money than she

deserves.

Error Propagation

A single bit error in transmission can create errors in several (normally half of the bits

or all of the bits) in the corresponding block. However, the error does not have any

effect on the other blocks. 

Algorithm

Simple algorithms can be written for encryption or decryption. Algorithm 8.1 gives the

pseudocode routine for encryption; the routine for decryption is left as an exercise. EK

encrypts a single block and can be one of the ciphers discussed in Chapters 6 or 7 (DES

or AES).

Algorithm 8.1 Encryption for ECB mode

ECB_Encryption (K, Plaintext blocks)

{

       for (i = 1 to N) 

       {

               Ci ← EK (Pi) 

      }

      return Ciphertext blocks     
} 
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Ciphertext Stealing

In ECB mode, padding must be added to the last block if it is not n bits long. Padding is

not always possible. For example, when the ciphertext needs to be stored in the buffer

where the plaintext was previously stored, plaintext and ciphertext must be the same. A

technique called ciphertext stealing (CTS) can make it possible to use ECB mode

without padding. In this technique the last two plaintext blocks, PN−1 and PN, are

encrypted differently and out of order, as shown below, assuming that PN−1 has n bits

and PN has m bits, where m ≤ n. 

The headm function selects the leftmost m bits; the tailn−m function selects the

rightmost n − m bits. The detailed diagram and the procedure of the encryption and

decryption are left as exercises. 

Applications

The ECB mode of operation is not recommended for encryption of messages of

more than one block to be transferred through an insecure channel. If the message

is short enough to fit in one block, the security issues and propagation errors are

tolerable.

One area where the independency of the ciphertext block is useful is where records

need to be encrypted before they are stored in a database or decrypted before they are

retrieved. Because the order of encryption and decryption of blocks is not important in

this mode, access to the database can be random if each record is a block or multiple

blocks. A record can be retrieved from the middle, decrypted, and encrypted after mod-

ification without affecting other records. 

Another advantage of this mode is that we can use parallel processing if we need to

create, for example, a very huge encrypted database. 

Cipher Block Chaining (CBC) Mode 

The next evolution in the operation mode is the cipher block chaining (CBC) mode.

In CBC mode, each plaintext block is exclusive-ored with the previous ciphertext

block before being encrypted. When a block is enciphered, the block is sent, but a

copy of it is kept in memory to be used in the encryption of the next block. The reader

may wonder about the initial block. There is no ciphertext block before the first block.

In this case, a phony block called the initialization vector (IV) is used.The sender

and receiver agree upon a specific predetermined IV. In other words, an IV is

used instead of the nonexistent C0. Figure 8.3 shows CBC mode. At the sender side,

exclusive-oring is done before encryption; at the receiver site, decryption is done

before exclusive-oring.

X = EK (PN − 1)            →     CN     =  headm (X)

Y = PN | tailn−m (X)      →     CN − 1 = EK (Y) 
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The relation between plaintext and ciphertext blocks is shown below: 

Example 8.4

It can be proved that each plaintext block at Alice’s site is recovered exactly at Bob’s site.

Because encryption and decryption are inverses of each other,       

Initialization Vector (IV)

The initialization vector (IV) should be known by the sender and the receiver. Although

keeping the vector secret is not necessary, the integrity of the vector plays an important

role in the security of CBC mode; IV should be kept safe from change. If Eve can

change the bit values of the IV, it can change the bit values of the first block.

Several methods have been recommended for using IV. A pseudorandom number

can be selected by the sender and transmitted through a secure channel (using ECB

mode for example). A fixed value can be agreed upon by Alice and Bob as the IV when

the secret key is established. It can be part of the secret key, and so on.

Security Issues

Following are two of the security issues in CBC mode: 

1. In CBC mode, equal plaintext blocks belonging to the same message are enci-

phered into different ciphertext blocks. In other words, the patterns at the block

Figure 8.3 Cipher block chaining (CBC) mode

Encryption:                                                                     

C0 = IV

Ci = EK (Pi  ⊕  Ci −1)

Decryption: 

C0 = IV                                                                                        

Pi = DK (Ci)   ⊕   Ci −1

Pi = DK (Ci)   ⊕   Ci −1 = DK (EK (Pi  ⊕  Ci −1)) ⊕ Ci −1 = Pi ⊕  Ci −1 ⊕  Ci −1 = Pi 
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levels are not preserved. However, if two messages are equal, their encipherment is

the same if they use the same IV. As a matter of fact, if the first M blocks in two

different messages are equal, they are enciphered into equal blocks unless different

IVs are used. For this reason, some people recommend the use of a timestamp

as an IV.

2. Eve can add some ciphertext blocks to the end of the ciphertext stream.   

Error Propagation

In CBC mode, a single bit error in ciphertext block Cj during transmission may create

error in most bits in plaintext block Pj during decryption. However, this single error

toggles only one bit in plaintext block Pj+1 (the bit in the same location). The proof of

this fact is left as an exercise. Plaintext blocks Pj+2 to PN are not affected by this single

bit error. A single bit error in ciphertext is self-recovered.   

Algorithm

Algorithm 8.2 gives the pseudocode for encryption. The algorithm calls the encrypt

routine that encrypts a single block (DES or AES, for example). The decryption algo-

rithm is left as an exercise. 

Ciphertext Stealing

The ciphertext stealing technique described for ECB mode can also be applied to CBC

mode, as shown below

The head function is the same as described in ECB mode; the pad function

inserts 0’s.

Applications

The CBC mode of operation can be used to encipher messages. However, because of

chaining mechanism, parallel processing is not possible. CBC mode is not used to

Algorithm 8.2 Encryption algorithm for CBC mode

CBC_Encryption (IV, K, Plaintext blocks)

{

       C0 ← IV 

       for (i = 1 to N) 

       {

               Temp ← Pi  ⊕  Ci−1    

               Ci ← EK (Temp) 

      }

      return Ciphertext blocks 

} 

 U = PN−1 ⊕  CN−2    →      X = EK (U)       →       CN     =  headm (X). 

 V = PN | padn−m (0)       →       Y = X ⊕  V       →       CN−1 =  EK (Y) 
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encrypt and decrypt random-access Þles records because encryption and decryption
require access to the previous records. As we will see in Chapter 11, CBC mode is also
used for authentication. 

Cipher Feedback (CFB) Mode
ECB and CBC modes encrypt and decrypt blocks of the message. The block size, n, is
predetermined by the underlying cipher; for example, n = 64 for DES and n =128 for
AES. In some situations, we need to use DES or AES as secure ciphers, but the plain-
text or ciphertext block sizes are to be smaller. For example, to encrypt and decrypt
ASCII 8-bit characters, you would not want to use one of the traditional ciphers dis-
cussed in Chapter 3 because they are insecure. The solution is to use DES or AES in
cipher feedback (CFB) mode. In this mode the size of the block used in DES or AES
is n, but the size of the plaintext or ciphertext block is r, where r �  n. 

The idea is to use DES or AES, not for encrypting the plaintext or decrypting the
ciphertext, but to encrypt or decrypt the contents of a shift register, S, of size n. Encryp-
tion is done by exclusive-oring an r-bit plaintext block with r bits of the shift register.
Decryption is done by exclusive-oring an r-bit ciphertext block with r bits of the shift
register. For each block, the shift register Si is made by shifting the shift register SiŠ1
(previous shift register) r bits to the left and Þlling the rightmost r bits with CiŠ1. Si is
then encrypted to Ti. Only the rightmost r bits of Ti are exclusive-ored with the plain-
text block Pi to make the Ci. Note that S1, which is not shifted, is set to the IV for the
Þrst block. 

Figure 8.4 shows the CFB mode for enciphering; deciphering is the same, but the
roles of plaintext blocks (PiÕs) and ciphertext blocks (CiÕs) are switched. Note that both
encipherment and decipherment use the encryption function of the underlying block
cipher (DES or AES, for example).      

Figure 8.4 Encryption in cipher feedback (CFB) mode
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 The relation between plaintext and ciphertext blocks is shown below:

where the ShiftLeftr routine shifts the contents of its argument r bits to the left (the

leftmost r bits are dropped). The operator | shows the concatenation. The SelectLeftr
routine selects only the leftmost r bits from the argument. It can be proven that each

plaintext block at Alice’s site is recovered exactly at Bob’s site, but the proof is left as

an exercise. 

One interesting point about this mode is that no padding is required because the

size of the blocks, r, is normally chosen to fit the data unit to be encrypted (a character,

for example). Another interesting point is that the system does not have to wait until it

has received a large block of data (64 bits or 128 bits) before starting the encryption.

The encrypting process is done for a small block of data (such as a character). These

two advantages come with a disadvantage. CFB is less efficient than CBC or ECB,

because it needs to apply the encryption function of underlying block cipher for each

small block of size r.

CFB as a Stream Cipher

Although CFB is an operation mode for using block ciphers such as DES or AES, the

result is a stream cipher. In fact, it is a nonsynchronous stream cipher in which the key

stream is dependent on the ciphertext. Figure 8.5 shows the point of the encryption and

decryption where the key generator is conspicuous. 

In CFB mode, encipherment and decipherment use the encryption function of the 

underlying block cipher. 

Encryption: Ci = Pi  ⊕  SelectLeftr {EK [ShiftLeftr (Si−1) | Ci −1)]}

Decryption: Pi = Ci  ⊕  SelectLeftr {EK [ShiftLeftr (Si−1) | Ci −1)]}

Figure 8.5 Cipher feedback (CFB) mode as a stream cipher
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Figure 8.5 shows that the underlying cipher (DES or AES), the cipher key (K), and

the previous cipher block (Ci) are used only to create the key streams (k1, k2, …, kN).

Algorithm

Algorithm 8.3 gives the routine for encryption. The algorithm calls several other rou-

tines whose details are left as exercises. Note that we have written the algorithm in such

a way to show the stream nature of the mode (real-time situation). The algorithm runs

as long as there are plaintext blocks to be encrypted.  

Security Issues

There are three primary security issues in CFB mode:

1. Just like CBC, the patterns at the block level are not preserved. 

2. More than one message can be encrypted with the same key, but the value of the IV

should be changed for each message. This means that Alice needs to use a different

IV each time she sends a message.

3. Eve can add some ciphertext block to the end of the ciphertext stream.

Error Propagation

In CFB, a single bit error in ciphertext block Cj during transmission creates a single

bit error (at the same position) in plaintext block Pj. However, most of the bits in the

Algorithm 8.3 Encryption algorithm for CFB

CFB_Encryption (IV, K, r)

{

i   ← 1

    while (more blocks to encrypt) 

    {

    input (Pi)

    if (i = 1)   

    S    ←  IV

    else

    {

        Temp ← shiftLeftr (S)

        S   ←  concatenate (Temp, Ci–1)

        }

    T   ←  EK(S)

    ki   ←  selectLeftr (T)

    Ci  ← Pi  ⊕  ki 

    output (Ci)

    i   ←  i  + 1 

    }

} 
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following plaintext blocks are in error (with 50 percent probability) as long as some
bits of Cj are still in the shift register. The calculation of the number of affected
blocks is left as an exercise. After the shift register is totally refreshed, the system
recovers from the error.

Application

The CFB mode of operation can be used to encipher blocks of small size such as one
character or bit at a time. There is no need for padding because the size of the plaintext
block is normally Þxed (8 for a character or 1 for a bit).

Special Case

If the blocks in the text and in the underlying cipher are the same size (n = r), the
encryption/decryption becomes simpler, but discovery of the diagram and the algorithm
are left as an exercise.

Output Feedback (OFB) Mode
Output feedback (OFB) mode is very similar to CFB mode, with one difference:
each bit in the ciphertext is independent of the previous bit or bits. This avoids error
propagation. If an error occurs in transmission, it does not affect the bits that follow.
Note that, like CFB, both the sender and the receiver use the encryption algorithm.
Figure 8.6 shows OFB mode.  

OFB as a Stream Cipher

OFB, like CFB, creates a stream cipher out of the underlying block cipher. The key
stream, however, is independent from the plaintext or ciphertext, which means that the

Figure 8.6 Encryption in output feedback (OFB) mode 
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stream cipher is synchronous as discussed in Chapter 5. Figure 8.7 shows the encryp-

tion and decryption in which the key generator is conspicuous. 

Algorithm

Algorithm 8.4 gives the routine for encryption. The algorithm calls several other rou-

tines whose details are left as exercises. Note that we have written the algorithm in such

Figure 8.7 Output feedback (OFB) mode as a stream cipher

Algorithm 8.4 Encryption algorithm for OFB

OFB_Encryption (IV, K, r)

{

      i   ← 1

     while (more blocks to encrypt) 

      {

       input (Pi)

       if (i = 1)    S ←  IV

           else   

           {

            Temp ← shiftLeftr (S)   

                S   ←  concatenate (Temp, ki−1)

           }

           T  ←  EK (S)

           ki   ←  selectLeftr (T)

           Ci  ← Pi  ⊕  ki 

           output (Ci) 

       i   ← i  + 1 

     }
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a way to show the stream nature of the mode (real-time situation). The algorithm runs

as long as there are plaintext blocks to be encrypted.

Security Issues

Following are two of the security issues in OFB mode:

1. Just like the CFB mode, patterns at the block level are not preserved. 

2. Any change in the ciphertext affects the plaintext encrypted at the receiver side. 

Error Propagation

A single error in the ciphertext affects only the corresponding bit in the plaintext. 

Special Case

If the blocks in the text and the underlying cipher are of the same size (n = r), the

encryption/decryption becomes simpler, but we leave the discovery of the diagram and

the algorithm as an exercise.

Counter (CTR) Mode

In the counter (CTR) mode, there is no feedback. The pseudorandomness in the key

stream is achieved using a counter. An n-bit counter is initialized to a pre-determined

value (IV) and incremented based on a predefined rule (mod 2n). To provide a better

randomness, the increment value can depend on the block number to be incremented.

The plaintext and ciphertext block have the same block size as the underlying cipher

(e.g., DEA or AES). Plaintext blocks of size n are encrypted to create ciphertext blocks

of size n. Figure 8.8 shows the counter mode. 

Figure 8.8 Encryption in counter (CTR) mode 
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 The relation between plaintext and ciphertext blocks is shown below. 

CTR uses the encryption function of the underlying block cipher (EK) for both

encipherment and decipherment. It is easy to prove that the plaintext block Pi can be

recovered from the ciphertext Ci. This is left as an exercise. 

We can compare CTR mode to OFB and ECB modes. Like OFB, CTR creates a key

stream that is independent from the previous ciphertext block, but CTR does not use feed-

back. Like ECB, CTR creates n-bit ciphertext blocks that are independent from each other;

they depend only on the value of the counter. On the negative side, this means that CTR

mode, like ECB mode, cannot be used for real-time processing. The encrypting algorithm

needs to wait to get a complete n-bit block of data before encrypting. On the positive side,

CTR mode, like ECB mode can be used to encrypt and decrypt random-access files as long

as the value of the counter can be related to the record number in the file. 

CTR as a Stream Cipher

Like CFB and OFB, CTR is actually a stream cipher (different block are exclusive-ored

with different keys). Figure 8.9 shows encryption and decryption of the ith data block. 

Algorithm

Algorithm 8.5 gives the routine in pseudocode for encryption; the algorithm for decryp-

tion is left as an exercise. In this algorithm, the increment value is dependent on the

block number. In other words, the counter values are IV, IV + 1, IV + 3, IV + 6, and so

on. It is also assumed that all N plaintext blocks are ready before starting encryption,

but the algorithm can be rewritten to avoid this assumption.  

Security Issues

The security issues for the CTR mode are the same as the those for OFB mode. 

Error Propagation

A single error in the ciphertext affects only the corresponding bit in the plaintext. 

Encryption: Ci = Pi  ⊕   (Counter)                       Decryption: Pi  = Ci  ⊕   (Counter)                        

Figure 8.9 Counter (CTR) mode as a stream cipher
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Comparison of Different Modes

Table 8.1 briefly compares the five different modes of operation discussed in this chapter. 

8.2 USE OF STREAM CIPHERS

Although the five modes of operations enable the use of block ciphers for encipherment

of messages or files in large units (ECB, CBC, and CTR) and small units (CFB and

OFB), sometimes pure stream are needed for enciphering small units of data such as

characters or bits. Stream ciphers are more efficient for real-time processing. Several

stream ciphers have been used in different protocols during the last few decades. We

discuss only two: RC4 and A5/1. 

RC4

RC4 is a stream cipher that was designed in 1984 by Ronald Rivest for RSA Data

Security. RC4 is used in many data communication and networking protocols, includ-

ing SSL/TLS (see Chapter 17) and the IEEE802.11 wireless LAN standard. 

Algorithm 8.5 Encryption algorithm for CTR

CTR_Encryption (IV, K, Plaintext blocks)

{

 Counter ← IV 

     for (i = 1 to N ) 

     { 

     Counter ← (Counter + i  − 1) mod 2N

         ki  ← EK (Counter)

         Ci  ← Pi  ⊕  ki         

     } 

     return Ciphertext blocks    
}  

Table 8.1 Summary of operation modes

Operation 

Mode Description

Type of 

Result 

Data Unit 

Size

ECB Each n-bit block is encrypted independently with 

the same cipher key. 

Block

cipher 

n

CBC Same as ECB, but each block is first exclusive-ored 

with the previous ciphertext. 

Block

cipher

n

CFB Each r-bit block is exclusive-ored with an r-bit key, 

which is part of previous cipher text 

Stream

cipher

r ≤ n

OFB Same as CFB, but the shift register is updated by the 

previous r-bit key. 

Stream

cipher

r ≤ n

CTR Same as OFB, but a counter is used instead of a shift 

register. 

Stream

cipher

n
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RC4 is a byte-oriented stream cipher in which a byte (8 bits) of a plaintext is

exclusive-ored with a byte of key to produce a byte of a ciphertext. The secret key,

from which the one-byte keys in the key stream are generated, can contain anywhere

from 1 to 256 bytes.

State

RC4 is based on the concept of a state. At each moment, a state of 256 bytes is active,

from which one of the bytes is randomly selected to serve as the key for encryption.

The idea can be shown as an array of bytes:

Note that the indices of the elements range between 0 and 255. The contents of each

element is also a byte (8 bits) that can be interpreted as an integer between 0 to 255. 

The Idea

Figure 8.10 shows the whole idea of RC4. The first two boxes are performed only once

(initializing); the permutation for creating stream key is repeated as long as there are

plaintext bytes to encrypt.

S[0]    S[1]    S[2]    …     S[255]

Figure 8.10 The idea of RC4 stream cipher
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Initialization Initialization is done in two steps:

1. In the first step, the state is initialized to values 0, 1, …, 255. A key array, K[0], K[1],

…, K[255] is also created. If the secret key has exactly 256 bytes, the bytes are cop-

ied to the K array; otherwise, the bytes are repeated until the K array is filled. 

2. In the second step, the initialized state goes through a permutation (swapping the

elements) based on the value of the bytes in K[i]. The key byte is used only in this

step to define which elements are to be swapped. After this step, the state bytes are

completely shuffled.

Key Stream Generation The keys in the key stream, the k’s, are generated, one by

one. First, the state is permuted based on the values of state elements and the values of

two individual variables, i and j. Second, the values of two state elements in positions

i and j are used to define the index of the state element that serves as k. The following

code is repeated for each byte of the plaintext to create a new key element in the key

stream. The variables i and j are initialized to 0 before the first iteration, but the values

are copied from one iteration to the next.

Encryption or Decryption After k has been created, the plaintext byte is encrypted

with k to create the ciphertext byte. Decryption is the reverse process.

Algorithm

Algorithm 8.6 shows the pseudocode routine for RC4.  

   for (i = 0 to 255)

   { 

          S[i]   ←  i

          K[i]   ← Key [i mod KeyLength]

   } 

    j ←  0 

   for (i = 0 to 255) 

   { 

           j ← (j + S[i] + K[i]) mod 256   

           swap (S[i] , S[j])

   }

   i   ←  (i  + 1) mod 256                

   j  ←  (j  + S[i]) mod 256 

   swap (S [i] , S[j])                           

   k  ← S [(S[i] + S[j]) mod 256]
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Example 8.5

To show the randomness of the stream key, we use a secret key with all bytes set to 0. The key

stream for 20 values of k is (222, 24, 137, 65, 163, 55, 93, 58, 138, 6, 30, 103, 87, 110, 146, 109,

199, 26, 127, 163).

Example 8.6

Repeat Example 8.5, but let the secret key be five bytes of (15, 202, 33, 6, 8). The key stream is

(248, 184, 102, 54, 212, 237, 186, 133, 51, 238, 108, 106, 103, 214, 39, 242, 30, 34, 144, 49).

Again the randomness in the key stream is obvious.

Algorithm 8.6 Encryption algorithm for RC4

RC4_Encryption (K)

{ 

      // Creation of initial state and key bytes 

      for (i = 0 to 255)

      {   

           S[i]  ←   i

           K[i]   ← Key [i mod KeyLength]

      } 

       // Permuting state bytes based on values of key bytes

       j ←  0 

       for (i = 0 to 255) 

      { 

           j ← (j + S[i] + K[i]) mod 256   

           swap (S[i] , S[j])

      } 

      // Continuously permuting state bytes, generating keys, and encrypting 

      i ←  0 

      j ←  0 

      while (more byte to encrypt) 

      { 

           i   ←  (i  + 1) mod 256 

           j  ←  (j  + S[i]) mod 256 

           swap (S [i] , S[j])

           k  ← S [(S[i] + S[j]) mod 256]

           // Key is ready, encrypt

           input P

           C  ←  P  ⊕  k

            output C

     } 

} 
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Security Issues

It is believed that the cipher is secure if the key size is at least 128 bits (16 bytes). There

are some reported attacks for smaller key sizes (less than 5 bytes), but the protocols that

use RC4 today all use key sizes that make RC4 secure. However, like many other

ciphers, it is recommended the different keys be used for different sessions. This pre-

vents Eve from using differential cryptanalysis on the cipher. 

A5/1

In this section we introduce a stream cipher that uses LFSRs (see Chapter 5) to create a bit

stream: A5/1. A5/1 (a member of the A5 family of ciphers) is used in the Global System for

Mobile Communication (GSM), a network for mobile telephone communication. Phone

communication in GSM is done as a sequence of 228-bit frames in which each frame lasts

4.6 milliseconds. A5/1 creates a bit stream out of a 64-bit key. The bit streams are collected

in a 228-bit buffer to be exclusive-ored with a 228-bit frame, as shown in Figure 8.11.  

Key Generator 

A5/1 uses three LFSRs with 19, 22, and 23 bits. The LFSRs, the characteristic polyno-

mials, and the clocking bits are shown in Figure 8.12.

Figure 8.11 General outline of A5/1

Figure 8.12 Three LFSR’s in A5/1
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The one-bit output is fed to the 228-bit buffer to be used for encryption (or

decryption).

Initialization Initialization is done for each frame of encryption (or decryption). The

initialization uses a 64-bit secret key and 22 bits of the corresponding frame number.

Following are the steps:

1. First, set all bits in three LFSRs to 0.

2. Second, mix the 64-bit key with the value of register according to the following

code. Clocking means that each LFSR goes through one shifting process. 

3. Then repeat the previous process but use the 22-bit frame number. 

4. For 100 cycles, clock the whole generator, but use the Majority-function (see

next section) to see which LFSR should be clocked. Note that clocking here

means that sometimes two and sometimes all three LFSRs go through the shift-

ing process.    

Majority Function A majority function, Majority (b1, b2, b3), is 1 if the majority

number of bits is 1; it is 0 if the majority of bits is 0. For example, Majority (1, 0, 1) = 1,

but Majority (0, 0, 1) = 0. The majority function has a value before each click of time;

the three input bits are called clocking bits: bits LFSR1[10], LFSR2[11], and

LFSR3[11] if the rightmost bit is bit zero. Note that the literature calls these bits 8, 10,

and 10 counting from the left, but we use 10, 11, and 11 counting from the right. We

use this convention to match with the characteristic polynomial. 

Key Stream Bits The key generator creates the key stream one bit at each click of

time. Before the key is created the majority function is calculated. Then each LFSR is

clocked if its clocking bit matches with the result of the majority function; otherwise, it

is not clocked.

Example 8.7

At a point of time the clocking bits are 1, 0, and 1. Which LFSR is clocked (shifted)?

 for (i = 0 to 63)

    {

         Exclusive-or K[i] with the leftmost bit in all three registers.

         Clock all three LFSRs

    } 

 for (i = 0 to 21)

    {

         Exclusive-or FrameNumber [i] with the leftmost bit in all three registers.

         Clock all three LFSRs

    } 

 for (i = 0 to 99)

    {

       Clock the whole generator based on the majority function. 

    } 
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Solution

The result of Majority (1, 0, 1) = 1. LFSR1 and LAFS3 are shifted, but LFSR2 is not. 

Encryption/Decryption

The bit streams created from the key generator are buffered to form a 228-bit key that is

exclusive-ored with the plaintext frame to create the ciphertext frame. Encryption/

decryption is done one frame at a time. 

Security Issues

Although GSM continues to use A5/1, several attacks on GSM have been recorded. Two

have been mentioned. In 2000, Alex Biryukov, Adi Shamir, and David Wagner showed a

real-time attack that finds the key in minutes from small known plaintexts, but it needs a

preprocessing stage with 248 steps. In 2003, Ekdahl and Johannson published an attack

that broke A5/1 in a few minutes using 2 to 5 minutes of plaintext. With some new attacks

on the horizon, GSM may need to replace or fortify A5/1 in the future. 

8.3 OTHER ISSUES

Encipherment using symmetric-key block or stream ciphers requires discussion of

other issues.

Key Management

Alice and Bob need to share a secret key between themselves to securely communicate

using a symmetric-key cipher. If there are n entities in the community, each needs to com-

municate with n − 1 other entities. Therefore, n(n − 1) secret keys are needed. However,

in a symmetric-key encipherment a single key can be used in both directions: from Alice

to Bob and from Bob to Alice. This means that n(n − 1)/2 keys suffice. If n is around a

million, then almost half a billion keys must be exchanged. Because this is not feasible,

several other solutions have been found. First, each time Alice and Bob want to communi-

cate, they can create a session (temporary) key between themselves. Second, one or more

key distribution centers can be established in the community to distribute session keys for

entities. All of these issues are part of key management, which will be discussed thor-

oughly in Chapter 15 after the necessary tools have been discussed. 

Key Generation

Another issue in symmetric-key encipherment is the generation of a secure key. Differ-

ent symmetric-key ciphers need keys of different sizes. The selection of the key must

be based on a systematic approach to avoid a security leak. If Alice and Bob generate a

session key between themselves, they need to choose the key so randomly that Eve can-

not guess the next key. If a key distribution center needs to distribute the keys, the keys

Key management is discussed in Chapter 15.



SECTION 8.6 SUMMARY 245

should be so random that Eve cannot guess the key assigned to Alice and Bob from the

key assigned to John and Eve. This implies that there is a need for random (or pseudo-

random) number generator. Because the discussion of random number generator

involves some topics that have not yet been discussed, the study of random number

generators is presented in Appendix K. 

8.4 RECOMMENDED READING

The following books and websites provide more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the book. 

Books

[Sch99], [Sta06], [PHS03], [Sti06], [MOV97], and [KPS02] discuss modes of opera-

tions. [Vau06] and [Sta06] give thorough discussions of stream ciphers. 

WebSites

The following websites give more information about topics discussed in this chapter.

8.5 KEY TERMS

8.6 SUMMARY

❏ In real-life applications, the text to be enciphered is of variable size and normally

much larger than the block size defined for modern block ciphers. Modes of opera-

tion have been devised to encipher text of any size employing modern block

ciphers. Five modes of operation were discussed in this chapter.

Random number generators are discussed in Appendix K.

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

http://www.itl.nist.gov/fipspubs/fip81.htm

en.wikipedia.org/wiki/A5/1

en.wikipedia.org/wiki/RC4

A5/1 Global System for Mobile Communication (GSM) 

cipher block chaining (CBC) mode initialization vector (IV)

cipher feedback (CFB) mode mode of operation

ciphertext stealing (CTS) output feedback (OFB) mode

counter (CTR) mode RC4

electronic codebook (ECB) mode
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❏ The simplest mode of operation is called the electronic codebook (ECB) mode.

The plaintext is divided into N blocks. The block size is n bits. The same key is

used to encrypt and decrypt each block.

❏ In cipher block chaining (CBC) mode, each plaintext block is exclusive-ored

with the previous ciphertext block before being encrypted. When a block is

enciphered, the block is sent, but a copy of it is kept in memory to be used in the

encryption of the next block. The sender and the receiver agree upon a specific

predetermined initialization vector (IV) to be exclusive-ored with the first

ciphertext block. 

❏ To encipher small data units in real-time processing, cipher feedback (CFB) mode

was introduced. CFB uses a standard block cipher, such as DES or AES, to encrypt

a shift register, but uses the exclusive-or operation to encrypt or decrypt the actual

data units. CFB mode uses block ciphers, but the result is a stream cipher because

each data unit is enciphered with a different key. 

❏ Output feedback (OFB) mode is very similar to CFB mode, with one difference.

Each bit in the ciphertext is independent of the previous bit or bits. This avoids

error propagation. Instead of using the previous ciphertext block, OFB uses the

previous key as feedback. 

❏ In counter (CTR) mode, there is no feedback. The pseudorandomness in the key

stream is achieved using a counter. An n-bit counter is initialized to a predeter-

mined value (IV) and incremented based on a predefined rule. 

❏ To encipher small units of data, such as characters or bits, several stream ciphers

have been designed from scratch. These stream ciphers are more efficient for real-

time processing. Only two pure stream ciphers were discussed in this chapter: RC4

and A5/1.

❏ RC4 is a byte-oriented stream cipher in which a byte (8 bits) of a plaintext is exclusive-

ored with a byte of a key to produce a byte of a ciphertext. The secret key, from

which the one-byte keys in the key stream are generated, can contain anywhere

from 1 to 256 bytes.The key stream generator is based on the permutation of a state

of 256 bytes. 

❏ A5/1 is a stream cipher used in mobile telephone communication. A5/1 creates a

bit stream out of a 64-bit key using three LFSRs. 

8.7 PRACTICE SET

Review Questions

1. Explain why modes of operation are needed if modern block ciphers are to be used

for encipherment.

2. List five modes of operation discussed in this chapter.

3. Define ECB and list its advantages and disadvantages.

4. Define CBC and list its advantages and disadvantages.

5. Define CFB and list its advantages and disadvantages.
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6. Define OFB and list its advantages and disadvantages.

7. Define CTR and list its advantages and disadvantages.

8. Divide the five modes of operation into two groups: those that use the encryption

and decryption functions of the underlying cipher (for example, DES or AES) and

those that use only the encryption function.

9. Divide the five modes of operation into two groups: those that need padding and

those that do not.

10. Divide the five modes of operation into two groups: those that use the same key for

the encipherment of all blocks, and those that use a key stream for encipherment of

blocks. 

11. Explain the major difference between RC4 and A5/1. Which one uses LFSRs? 

12. What is the size of data unit in RC4? What is the size of data unit in A5/1?

13. List the operation modes that can be sped up by parallel processing.

14. List the operation modes that can be used for encipherment of random-access files. 

Exercises

15. Show why CFB mode creates a nonsynchronous stream cipher, but OFB mode cre-

ates a synchronous one. 

16. In CFB mode, how many blocks are affected by a single-bit error in transmission?

17. In ECB mode, bit 17 in ciphertext block 8 is corrupted during transmission. Find

the possible corrupted bits in the plaintext. 

18. In CBC mode, bits 17 and 18 in ciphertext block 9 are corrupted during transmis-

sion. Find the possible corrupted bits in the plaintext. 

19. In CFB mode, bits 3 to 6 in ciphertext block 11 are corrupted (r = 8). Find the pos-

sible corrupted bits in the plaintext. 

20. In CTR mode, cipher blocks 3 and 4 are entirely corrupted. Find the possible cor-

rupted bits in the plaintext. 

21. In OFB mode, the entire ciphertext block 11 is corrupted (r = 8), Find the possible

corrupted bits in the plaintext. 

22. Prove that the plaintext used by Alice is recovered by Bob in CFB mode.

23. Prove that the plaintext used by Alice is recovered by Bob in OFB mode.

24. Prove that the plaintext used by Alice is recovered by Bob in CTR mode.

25. Show the diagram for encryption and decryption in the CFB mode when r = n.

26. Show the diagram for encryption and decryption in the OFB mode when r = n.

27. Show the processes used for decryption algorithm in ECB mode if ciphertext steal-

ing (CTS) is used.

28. Show the encryption and the decryption diagram for ECB mode (only the last two

blocks) when ciphertext stealing (CTS) is used.       

29. Show the processes used for decryption algorithm in CBC mode if ciphertext steal-

ing (CTS) is used.

30. Show the encryption and the decryption diagram for CBC mode (only the last two

blocks) when ciphertext stealing (CTS) is used.
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31. Explain why there is no need for ciphertext stealing in CFB, OFB, and CTR modes.

32. Show the effect of error propagation when ECB uses the CTS technique.

33. Show the effect of error propagation when CBC uses the CTS technique.

34. The block chaining (BC) mode is a variation of CBC in which all the previous

ciphertext blocks are exclusive-ored with the current plaintext block before

encryption. Draw a diagram that shows the encryption and decryption.

35. The propagating cipher block chaining (PCBC) mode is a variation of CBC in

which both the previous plaintext block and the previous ciphertext block are

exclusive-ored with the current plaintext block before encryption. Draw a diagram

that shows the encryption and decryption.

36. The cipher block chaining with checksum (CBCC) mode is a variation of CBC in

which all previous plaintext blocks are exclusive-ored with the current plaintext

block before encryption. Draw a diagram to show the encryption and decryption

and show the procedure.

37. In RC4, show the first 20 elements of the key stream if the secret key is only

7 bytes with values 1, 2, 3, 4, 5, 6, and 7. You may want to write a small program

to do so.

38. In RC4, find a value for the secret key that does not change the state after the first

and second initialization steps.

39. Alice and Bob communicate using RC4 for secrecy with a 16-byte secret key. The

secret key is changed each time using the recursive definition Ki = (Ki-1 + Ki-2)

mod 2128. Show how many messages they can exchange before the pattern repeats

itself.

40. In A5/1, find the maximum period of each LFSR.

41. In A5/1, find the value of the following functions. In each case, show how many

LFSRs are clocked.

a. Majority (1, 0, 0)

b. Majority (0, 1, 1)

c. Majority (0, 0, 0)

d. Majority (1, 1, 1)

42. In A5/1, find an expression for the Majority function.

43. Write the decryption algorithm in pseudocode for ECB mode.

44. Write the decryption algorithm in pseudocode for CBC mode.

45. Write the decryption algorithm pseudocode for CFB mode.

46. Write the decryption algorithm in pseudocode for OFB mode.

47. Write the decryption algorithm in pseudocode for CTR mode.

48. Write an algorithm for the shiftLeft routine used in Algorithm 8.4.

49. Write an algorithm for the selectLeft routine used in Algorithm 8.4.

50. Write an algorithm for the concatenate routine used in Algorithm 8.4.



PART

2
Asymmetric-Key Encipherment  
In Chapter 1, we saw that cryptography provides three techniques: symmetric-key

ciphers, asymmetric-key ciphers, and hashing. Part Two is devoted to asymmetric-

key ciphers. Chapter 9 reviews the mathematical background necessary to understand

the rest of the chapters in this part and the rest of the book. Chapter 10 explores the

contemporary asymmetric-key ciphers. 

Chapter 9: Mathematics of Cryptography: Part III

Chapter 9 reviews some mathematical concepts needed for understanding the next few

chapters. It discusses prime numbers and their applications in cryptography. It introduces

primality test algorithms and their efficiencies. Other topics include factorization, the

Chinese remainder theorem, and quadratic congruence. Modular exponentiation and log-

arithms are also discussed to pave the way for discussion of public-key cryptosystems in

Chapter 10. 

Chapter 10: Asymmetric-Key Cryptography

Chapter 10 discusses asymmetric-key (public-key) ciphers. It introduces several cryp-

tosystems, such as RSA, Rabin, ElGamal, and ECC, mentions most kinds of attacks for

each system, and presents recommendations for preventing those attacks. 





251

CHAPTER 9

Mathematics of Cryptography

Part III: Primes and Related Congruence Equations 

Objectives

This chapter has several objectives:

❏ To introduce prime numbers and their applications in cryptography.

❏ To discuss some primality test algorithms and their efficiencies.

❏ To discuss factorization algorithms and their applications in cryptography.

❏ To describe the Chinese remainder theorem and its application.

❏ To introduce quadratic congruence.

❏ To introduce modular exponentiation and logarithm. 

Asymmetric-key cryptography, which we will discuss in Chapter 10, is

based on some topics in number theory, including theories related to primes,

factorization of composites into primes, modular exponentiation and loga-

rithm, quadratic residues, and the Chinese remainder theorem. These issues

are discussed in this chapter to make Chapter 10 easier to understand.

9.1 PRIMES

Asymmetric-key cryptography uses primes extensively. The topic of primes is a large

part of any book on number theory. This section discusses only a few concepts and

facts to pave the way for Chapter 10.

Definition

The positive integers can be divided into three groups: the number 1, primes, and com-

posites as shown in Figure 9.1.
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A positive integer is a prime if and only if it is exactly divisible by two integers, 1 and
itself. A composite is a positive integer with more than two divisors. 

Example 9.1

What is the smallest prime?

Solution

The smallest prime is 2, which is divisible by 2 (itself) and 1. Note that the integer 1 is not a
prime according to the definition, because a prime must be divisible by two different integers, no
more, no less. The integer 1 is divisible only by itself; it is not a prime.

Example 9.2

List the primes smaller than 10.

Solution

There are four primes less than 10: 2, 3, 5, and 7. It is interesting to note that the percentage of
primes in the range 1 to 10 is 40%. The percentage decreases as the range increases. 

Coprimes

Two positive integers, a and b, are relatively prime, or coprime, if gcd (a, b) = 1. Note
that the number 1 is relatively prime with any integer. If p is a prime, then all integers 1
to p − 1 are relatively prime to p. In Chapter 2, we discussed set Zn*whose members are
all relatively prime to n. Set Zp*is the same except that modulus (p) is a prime.

Cardinality of Primes

After the concept of primes has been defined, two questions naturally arise: Is there a finite
number of primes or is the list infinite? Given a number n, how many primes are smaller
than or equal to n? 

Figure 9.1 Three groups of positive integers

A prime is divisible only by itself and 1.

Exactly one divisor Exactly two divisors More than two divisors

Positive
integers

CompositesPrimesNumber 1
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Infinite Number of Primes

The number of primes is infinite. Here is an informal proof: Suppose that the set of primes
is finite (limited), with p as the largest prime. Multiply the set of primes and call the result
P = 2 × 3 × … × p. The integer (P + 1) cannot have a factor q ≤ p. We know that q divides P.
If q also divides (P + 1), then q divides (P + 1) − P = 1 The only number that divides 1 is 1,
which is not a prime. Therefore, q is larger than p. 

Example 9.3

As a trivial example, assume that the only primes are in the set {2, 3, 5, 7, 11, 13, 17}. Here P =
510510 and P + 1 = 510511. However, 510511 = 19 × 97 × 277; none of these primes were in the
original list. Therefore, there are three primes greater than 17. 

Number of Primes

To answer the second question, a function called π(n) is defined that finds the number
of primes smaller than or equal to n. The following shows the values of this function for
different n’s. 

But if n is very large, how can we calculate π(n)? The answer is that we can only
use approximation. It has been shown that 

[n / (ln n)]    <     π(n)     <      [n/(ln n − 1.08366)] 

Gauss discovered the upper limit; Lagrange discovered the lower limit. 

Example 9.4

Find the number of primes less than 1,000,000. 

Solution

The approximation gives the range 72,383 to 78,543. The actual number of primes is 78,498. 

Checking for Primeness

The next question that comes to mind is this: Given a number n, how can we determine if n
is a prime? The answer is that we need to see if the number is divisible by all primes less
than . We know that this method is inefficient, but it is a good start. 

Example 9.5

Is 97 a prime?

Solution

The floor of  = 9. The primes less than 9 are 2, 3, 5, and 7. We need to see if 97 is divisible
by any of these numbers. It is not, so 97 is a prime. 

There is an infinite number of primes. 

π(1) = 0    π(2) = 1     π(3) = 2     π(10) = 4      π(20) = 8    π(50) = 15    π(100) = 25  

n

97
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Example 9.6

Is 301 a prime?

Solution

The floor of  = 17. We need to check 2, 3, 5, 7, 11, 13, and 17. The numbers 2, 3, and 5 do
not divide 301, but 7 does. Therefore 301 is not a prime. 

Sieve of Eratosthenes

The Greek mathematician Eratosthenes devised a method to find all primes less than
n. The method is called the sieve of Eratosthenes. Suppose we want to find all prime
less than 100. We write down all the numbers between 2 and 100. Because  = 10,
we need to see if any number less than 100 is divisible by 2, 3, 5, and 7. Table 9.1
shows the result. 

The following shows the process:

1. Cross out all numbers divisible by 2 (except 2 itself).

2. Cross out all numbers divisible by 3 (except 3 itself).

3. Cross out all numbers divisible by 5 (except 5 itself).

4. Cross out all numbers divisible by 7 (except 7 itself). 

5. The numbers left over are primes. 

Euler’s Phi-Function 

Euler’s phi-function, φ(n), which is sometimes called the Euler’s totient function plays
a very important role in cryptography. The function finds the number of integers that are
both smaller than n and relatively prime to n. Recall from Chapter 2 that the set Zn* con-
tains the numbers that are smaller than n and relatively prime to n. The function φ(n) cal-
culates the number of elements in this set. The following helps to find the value of φ(n).

1. φ(1) = 0.

2. φ(p) = p − 1 if p is a prime.

Table 9.1 Sieve of Eratosthenes

  2   3   4   5   6   7   8   9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

301

100
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3. φ(m × n) = φ(m) × φ(n) if m and n are relatively prime.

4. φ(pe) = pe − pe−1 if p is a prime.

We can combine the above four rules to find the value of  φ(n). For example, if n can be
factored as n = p1

e1 ×  p2
e2 ×  …  ×  pk

ek, then we combine the third and the fourth rule to find

 φ(n) = (p1
e1 − p1

e1−1) × (p2
e2 − p2

e2 − 1) ×  …  × (pk 
ek  − pk

ek − 1) 

It is very important to notice that the value of φ(n) for large composites can be
found only if the number n can be factored into primes. In other words, the difficulty of
finding φ(n) depends on the difficulty of finding the factorization of n, which is dis-
cussed in the next section. 

Example 9.7

What is the value of φ(13)?

Solution

Because 13 is a prime, φ(13) = (13 −1) = 12.

Example 9.8

What is the value of φ(10)?

Solution

We can use the third rule: φ(10) = φ(2)  ×  φ(5) = 1 × 4 = 4, because 2 and 5 are primes.   

Example 9.9

What is the value of φ(240)?

Solution

We can write 240 = 24 × 31 × 51. Then 

φ(240) = (24 −23)  × (31 − 30) ×  (51 − 50) = 64

Example 9.10

Can we say that φ(49) =  φ(7) × φ(7) = 6 × 6 = 36?

Solution

No. The third rule applies when m and n are relatively prime. Here 49 = 72. We need to use the
fourth rule: φ(49) = 72 − 71 = 42.

Example 9.11

What is the number of elements in Z14*?

Solution

The answer is  φ(14) = φ(7) × φ(2) = 6 × 1 = 6. The members are 1, 3, 5, 9, 11, and 13.

The difficulty of finding φ(n) depends on the difficulty of finding the factorization of n. 

Interesting point: If n > 2, the value of φ(n) is even. 
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Fermat’s Little Theorem

Fermat’s little theorem plays a very important role in number theory and cryptogra-
phy. We introduce two versions of the theorem here.

First Version 

The first version says that if p is a prime and a is an integer such that p does not divide
a, then ap−1 ≡ 1 mod p.

Second Version 

The second version removes the condition on a. It says that if p is a prime and a is an
integer, then ap ≡ a mod p.

Applications

Although we will see some applications of this theorem later in this chapter, the theo-
rem is very useful for solving some problems.

Exponentiation Fermat’s little theorem sometimes is helpful for quickly finding a
solution to some exponentiations. The following examples show the idea. 

Example 9.12

Find the result of 610 mod 11.

Solution

We have 610 mod 11 = 1. This is the first version of Fermat’s little theorem where p = 11. 

Example 9.13

Find the result of 312 mod 11.   

Solution

Here the exponent (12) and the modulus (11) are not the same. With substitution this can be
solved using Fermat’s little theorem. 

Multiplicative Inverses A very interesting application of Fermat’s theorem is in
finding some multiplicative inverses quickly if the modulus is a prime. If p is a prime
and a is an integer such that p does not divide a (p | a), then a−1 mod p = ap−2 mod p.

This can be easily proved if we multiply both sides of the equality by a and use the
first version of Fermat’s little theorem: 

312 mod 11 = (311 × 3) mod 11 = (311 mod 11) (3 mod 11) = (3 × 3) mod 11 = 9 

 a × a−1 mod p = a × a p−2 mod p = a p−1 mod p = 1 mod p 
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This application eliminates the use of extended Euclidean algorithm for finding
some multiplicative inverses. 

Example 9.14

The answers to multiplicative inverses modulo a prime can be found without using the extended
Euclidean algorithm:

a. 8−1 mod 17 = 817−2 mod 17 = 815 mod 17 = 15 mod 17

b. 5−1 mod 23 = 523−2 mod 23 = 521 mod 23 = 14 mod 23

c. 60−1 mod 101 = 60101−2 mod 101 = 6099 mod 101 = 32 mod 101

d. 22−1 mod 211 = 22211−2 mod 211 = 22209 mod 211 = 48 mod 211

Euler’s Theorem

Euler’s theorem can be thought of as a generalization of Fermat’s little theorem. The
modulus in the Fermat theorem is a prime, the modulus in Euler’s theorem is an integer.
We introduce two versions of this theorem.

First Version

The first version of Euler’s theorem is similar to the first version of the Fermat’s little
theorem. If a and n are coprime, then aφ(n) ≡ 1 (mod n). 

Second Version

The second version of Euler’s theorem (as we call it for the lack of anyname) is similar
to the second version of Fermat’s little theorem; it removes the condition that a and n
should be coprime. If n = p × q, a < n, and k an integer, then ak × φ(n) + 1 ≡ a (mod n). 

Let us give an informal proof of the second version based on the first version.
Because a < n, three cases are possible: 

1. If a is neither a multiple of p nor a multiple of q, then a and n are coprimes.  

2. If a is a multiple of p (a = i × p), but not a multiple of q, 

 ak  ×  φ(n) + 1 mod n = (aφ(n))k × a mod n = (1)k × a mod n =  a mod n                                         

aφ(n) mod q  = (aφ(q) mod q)φ(p) mod q = 1    →   aφ(n) mod q  = 1

a k × φ(n) mod q  = (aφ(n) mod q)k mod q = 1   →  a k × φ(n) mod q = 1

a k × φ(n) mod q  = 1  →   a k × φ(n)  = 1 + j × q   (Interpretation of congruence)

a k × φ(n) + 1  = a × (1 + j × q) = a + j × q × a  = a + (i × j) × q × p = a + (i × j) × n 

a k × φ(n) + 1  = a + (i × j) × n    →   a k × φ(n) + 1  = a mod n     (Congruence relation) 
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3. If a is a multiple of q (a = i × q), but not a multiple of p, the proof is the same as for
the second case, but the roles of p and q are changed. 

Applications

Although we will see some applications of Euler’s later in this chapter, the theorem is
very useful for solving some problems.

Exponentiation Euler’s theorem sometimes is helpful for quickly finding a solution
to some exponentiations. The following examples show the idea. 

Example 9.15

Find the result of 624 mod 35.

Solution

We have 624 mod 35 = 6φ(35) mod 35 = 1. 

Example 9.16

Find the result of 2062 mod 77.   

Solution

If we let k = 1 on the second version, we have 2062 mod 77 = (20 mod 77) (20φ(77)+1 mod 77)
mod 77 = (20)(20) mod 77 = 15. 

Multiplicative Inverses Euler’s theorem can be used to find multiplicative inverses
modulo a prime; Euler’s theorem can be used to find multiplicative inverses modulo a
composite. If n and a are coprime, then a−1 mod n = aφ(n)−1 mod n.

This can be easily proved if we multiply both sides of the equality by a: 

Example 9.17

The answers to multiplicative inverses modulo a composite can be found without using the
extended Euclidean algorithm if we know the factorization of the composite:

a. 8−1 mod 77 = 8φ(77)−1 mod 77 =  859 mod 77 = 29 mod 77

b. 7−1 mod 15 = 7φ(15)−1 mod 15 =  77 mod 15 = 13 mod 15

c. 60−1 mod 187 = 60φ(187) −1mod 187 = 60159 mod 187 = 53 mod 187

d. 71−1 mod 100 = 71φ(100)−1mod 100 = 7139 mod 100 = 31 mod 100

Generating Primes

Two mathematicians, Mersenne and Fermat, attempted to develop a formula that could
generate primes.

The second version of Euler’s theorem is used in the RSA cryptosystem in Chapter 10.

 a × a−1 mod n  =   a × a φ(n) −1 mod n = a φ(n) mod n = 1 mod n
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Mersenne Primes

Mersenne defined the following formula, called the Mersenne numbers, that was sup-

posed to enumerate all primes. 

If p in the above formula is a prime, then Mp was thought to be a prime. Years later, it

was proven that not all numbers created by the Mersenne formula are primes. The fol-

lowing lists some Mersenne numbers.

It turned out that M11 is not a prime. However, 41 Mersenne primes have been

found; the latest one is M124036583, a very large number with 7,253,733 digits. The

search continues.

Fermat Primes

Fermat tried to find a formula to generate primes. The following is the formula for a

Fermat number:

Fermat tested numbers up to F4, but it turned out that F5 is not a prime. No number

greater than F4 has been proven to be a prime. As a matter of fact many numbers up to

F24 have been proven to be composite numbers. 

Mp = 2p −−−− 1

M2   = 22 − 1 = 3

M3   = 23 − 1 = 7

M5   = 25 − 1 = 31

M7   = 27 − 1 = 127

M11 = 211 − 1 = 2047          Not a prime (2047 = 23 × 89)

M13 = 213 − 1 = 8191

M17 = 217 − 1 = 131071

A number in the form Mp = 2p −−−− 1 is called a Mersenne number and may

or may not be a prime. 

Fn = 22
n
 + 1

F0 = 3

F1 = 5

F2 = 17

F3 = 257

F4 = 65537

F5 = 4294967297 = 641 × 6700417 Not a prime
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9.2 PRIMALITY TESTING

If schemes for generating primes, like Fermat’s or Mersenne’s, have failed to produce
large primes, how can we create large primes for cryptography? We could just choose a
large random number and test it to be sure that it is a prime. 

Finding an algorithm to correctly and efficiently test a very large integer and out-
put a prime or a composite has always been a challenge in number theory, and conse-
quently in cryptography. However, recent developments (one of which we discuss in
this section) look very promising. 

Algorithms that deal with this issue can be divided into two broad categories:
deterministic algorithms and probabilistic algorithms. Some members of both cate-
gories are discussed here. A deterministic algorithm always gives a correct answer; a
probabilistic algorithm gives an answer that is correct most of the time, but not all of
the time. Although a deterministic algorithm is ideal, it is normally less efficient than
the corresponding probabilistic one. 

Deterministic Algorithms

A deterministic primality testing algorithm accepts an integer and always outputs a
prime or a composite. Until recently, all deterministic algorithms were so inefficient at
finding larger primes that they were considered infeasible. As we will show shortly, a
newer algorithm looks more promising. 

Divisibility Algorithm

The most elementary deterministic test for primality is the divisibility test. We use as
divisors all numbers smaller that . If any of these numbers divides n, then n is com-
posite. Algorithm 9.1 shows the divisibility test in its primitive, very inefficient form.

The algorithm can be improved by testing only odd numbers. It can be further
improved by using a table of primes between 2 and . The number of arithmatic oper-
ations in Algorithm 9.1 is . If we assume that each arithmatic operation uses only one
bit operation (unrealistic) then the bit-operation complexity of Algorithm 9.1 is f(nb) =

 = , where nb is the number of bits in n. In Big-O notation, the complexity can

be shown as O( ): exponential (see Appendix L). In other words, the divisibility algo-
rithm is infeasible (intractable) if nb is large.    

Example 9.18

Assume n has 200 bits. What is the number of bit operations needed to run the divisibility-test
algorithm? 

Solution

The bit-operation complexity of this algorithm is . This means that the algorithm needs
2100 bit operations. On a computer capable of doing 230 bit operations per second, the algorithm
needs 270 seconds to do the testing (forever). 

The bit-operation complexity of the divisibility test is exponential. 

n

n

n

2
nb

2
nb/2

2
nb

2
nb/2
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AKS Algorithm

In 2002, Agrawal, Kayal, and Saxena announced that they had found an algorithm for
primality testing with polynomial bit-operation time complexity of O( ). The
algorithm uses the fact that (x − a)p ≡ (xp − a) mod p. It is not surprising to see some
future refinements make this algorithm the standard primality test in mathematics and
computer science. 

Example 9.19

Assume n has 200 bits. What is the number of bit operations needed to run the AKS algorithm? 

Solution

The bit-operation complexity of this algorithm is O( ). This means that the algorithm
needs only (log2200)12 = 39,547,615,483 bit operations. On a computer capable of doing 1 bil-
lion bit operations per second, the algorithm needs only 40 seconds. 

Probabilistic Algorithms

Before the AKS algorithm, all efficient methods for primality testing have been proba-
bilistic. These methods may be used for a while until the AKS is formally accepted as
the standard. A probabilistic algorithm does not guarantee the correctness of the result.
However, we can make the probability of error so small that it is almost certain that the
algorithm has returned a correct answer. The bit-operation complexity of the algorithm
can become polynomial if we allow a small chance for mistakes. A probabilistic algo-
rithm in this category returns either a prime or a composite based on the following
rules:

a. If the integer to be tested is actually a prime, the algorithm definitely returns a
prime. 

b. If the integer to be tested is actually a composite, it returns a composite with prob-
ability 1− ε, but it may return a prime with the probability ε. 

The probability of mistake can be improved if we run the algorithm more than once
with different parameters or using different methods. If we run the algorithm m times,
the probability of error may reduce to εm. 

Algorithm 9.1 Pseudocode for the divisibility test

Divisibility_Test (n)                                 // n is the number to test for primality

{
   r ← 2
   while (r < )                                   
   {
    if (r | n) return "a composite"

    r ← r + 1                      
   } 

    return "a prime"    
}

n

log2nb( )
12

log2nb( )
12
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Fermat Test

The first probabilistic method we discuss is the Fermat primality test. Recall the Fermat

little theorem

Note that this means that if n is a prime, the congruence holds. It does not mean that if

the congruence holds, n is a prime. The integer can be a prime or composite. We can

define the following as the Fermat test  

A prime passes the Fermat test; a composite may pass the Fermat test with proba-

bility ε. The bit-operation complexity of Fermat test is the same as the complexity of an

algorithm that calculates exponentiation. Later in this chapter, we introduce an algo-

rithm for fast exponentiation with bit-operation complexity of O(nb), where nb is the

number of bits in n. The probability can be improved by testing with several bases (a1,

a2, a3, and so on). Each test increases the probability that the number is a prime.

Example 9.20

Does the number 561 pass the Fermat test?

Solution

Use base 2 

The number passes the Fermat test, but it is not a prime, because 561 = 33 × 17.

Square Root Test

In modular arithmetic, if n is a prime, the square root of 1 is either +1 or −1. If n is com-

posite, the square root is +1 or −1, but there may be other roots. This is known as the

square root primality test. Note that in modular arithmetic, −1 means n −1. 

Example 9.21

What are the square roots of 1 mod n if n is 7 (a prime)? 

Solution

The only square roots are 1 and −1. We can see that 

If n is a prime, then an−−−−1 ≡≡≡≡ 1 mod n.

If n is a prime, an−1 ≡ 1 mod n

If n is a composite, it is possible that an−1 ≡ 1 mod n

 2561–1 = 1 mod 561   

If n is a prime, mod n = ±1.

If n is a composite, mod n = ±1 and possibly other values. 

12 = 1 mod 7            (–1)2 = 1 mod 7

22 = 4 mod 7            (–2)2 = 4 mod 7

32 = 2 mod 7            (–3)2 = 2 mod 7

1

1
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Note that we don’t have to test 4, 5 and 6 because 4 = –3 mod 7, 5 = –2 mod 7 and 6 = –1 mod 7.

Example 9.22

What are the square roots of 1 mod n if n is 8 (a composite)? 

Solution

There are four solutions: 1, 3, 5, and 7 (which is −1). We can see that

Example 9.23

What are the square roots of 1 mod n if n is 17 (a prime)? 

Solution

There are only two solutions: 1 and  −1

Note that there is no need to check integers larger than 8 because 9 = −8 mod 17, and so on.

Example 9.24

What are the square roots of 1 mod n if n is 22 (a composite)?

Solution

Surprisingly, there are only two solutions, +1 and −1, although 22 is a composite.

Although this test can tell us if a number is composite, it is difficult to do the testing.
Given a number n, all numbers less than n (except 1 and n −1) must be squared to be sure
that none of them is 1. This test can be used for a number (not +1 or −1) that when squared
in modulus n has the value 1. This fact helps in the Miller-Rabin test in the next section.

Miller-Rabin Test

The Miller-Rabin primality test combines the Fermat test and the square root test in a
very elegant way to find a strong pseudoprime (a prime with a very high probability). In
this test, we write n − 1 as the product of an odd number m and a power of 2: 

The Fermat test in base a can be written as shown in Figure 9.2. 

12 = 1 mod 8            (−1)2 = 1 mod 8
32 = 1 mod 8            52      = 1 mod 8

12    = 1 mod 17             (−1)2 = 1 mod 17
22    = 4 mod 17             (−2)2 = 4 mod 17
32    = 9 mod 17             (−3)2 = 9 mod 17
42    = 16 mod 17           (−4)2 = 16 mod 17
52    = 8 mod 17             (−5)2 = 8 mod 17
62    = 2 mod 17             (−6)2 = 2 mod 17
(7)2 = 15 mod 17           (−7)2 = 15 mod 17
(8)2 = 13 mod 17           (−8)2 = 13 mod 17

12      = 1 mod 22 
(−1)2 = 1 mod 22 

n − 1 = m × 2k
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In other words, instead of calculating an−1 (mod n) in one step, we can do it in k + 1
steps. What is the benefit of using k + 1 steps instead of just one? The benefit is that, in
each step, the square root test can be performed. If the square root test fails, we stop
and declare n a composite number. In each step, we assure ourself that the Fermat test
is passed and the square root test is satisfied between all pairs of adjacent steps, if appli-
cable (if the result is 1). 

Initialization:

Choose a base a and calculate T = am, in which m = (n − 1) / 2k

a. If T is +1 or −1, declare that n is a strong pseudoprime and stop. We say that
n has passed two tests, the Fermat test and the square root test. Why?
Because if T is ±1, T will become 1 in the next step and remains 1 until it
passes the Fermat test. In addition T has passed the square root test, because
T would be 1 in the next step and the square root of 1 (in the next step) is ±1
(in this step). 

b. If T is anything else, we are not sure if n is a prime or a composite, so we con-
tinue to the next step. 

Step 1:

We square T.

a. If the result is +1, we definitely know that the Fermat test will be passed,
because T remains 1 for the succeeding tests. The square root test, however, has
not been passed. Because T is 1 in this step and was something other than ±1 in
the previous step (the reason why we did not stop in the previous step), we
declare n a composite and stop. 

b. If the result is −1, we know that n will eventually pass the Fermat test. We also
know that it will pass the square root test because T is −1 in this step and
becomes 1 in the next step. We declare n a strong peseudoprime and stop.

c. If T is anything else, we are not sure whether we do or do not have a prime. We
continue to the next step.

Steps 2 to k − 1:

This step and all steps until step k − 1 are the same as step 1.

Figure 9.2 Idea behind Fermat primality test

an − 1 
= am × 2k 

= [am]
2k

 
= [am] 

2 2 
. . 

. 2

k 
tim

es
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Step k:

This step is not needed. If we have reached this step and we have not made a decision,
this step will not help us. If the result of this step is 1, the Fermat test is passed, but
because the result of the previous step is not ±1, the square root test is not passed. After
step k − 1, if we have not already stopped, we declare that n is composite.    

Algorithm 9.2 shows the pseudocode for the Miller-Rabin test. 

There exists a proof that each time a number passes a Miller-Rabin test, the proba-
bility that it is not a prime is 1/4. If the number passes m tests (with m different bases),
the probability that it is not a prime is (1/4)m. 

Example 9.25

Does the number 561 pass the Miller-Rabin test?

Solution
Using base 2, let 561 − 1 = 35 × 24, which means m = 35, k = 4, and a = 2   

Example 9.26

We already know that 27 is not a prime. Let us apply the Miller-Rabin test. 

The Miller-Rabin test needs from step 0 to step k − 1. 

Algorithm 9.2 Pseudocode for Miller-Rabin test

Miller_Rabin_Test (n, a)                                       // n is the number; a is the base.

{
      Find m and k such that n − 1 = m × 2k 
      T  ← am mod n

      if (T = ± 1)   return "a prime"

      for (i ← 1 to k − 1)                                            // k − 1 is the maximum number of steps.
      {
            T  ← T2 mod n

            if (T = +1) return "a composite"

            if (T = −1) return "a prime"                     
      } 

      return "a composite"     
}

Initialization:              
k = 1:             
k = 2:            
k = 3:          

T = 235 mod 561 = 263 mod 561 
T = 2632 mod 561 = 166 mod 561
T = 1662 mod 561 = 67 mod 561
T = 672 mod 561 = +1 mod 561                   →   a composite
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Solution

With base 2, let 27 − 1 = 13 × 21, which means that m = 13, k = 1, and  a = 2. In this case, because
k − 1 = 0, we should do only the initialization step: T = 213 mod 27 = 11 mod 27. However,
because the algorithm never enters the loop, it returns a composite.

Example 9.27

We know that 61 is a prime, let us see if it passes the Miller-Rabin test. 

Solution

We use base 2. 

Note that the last result is 60 mod 61, but we know that 60 = −1 in mod 61. 

Recommended Primality Test

Today, one of the most popular primality test is a combination of the divisibility test
and the Miller-Rabin test. Following are the recommended steps:   

1. Choose an odd integer, because all even integers (except 2) are definitely
composites.

2. Do some trivial divisibility tests on some known primes such as 3, 5, 7, 11, 13, and
so on to be sure that you are not dealing with an obvious composite. If the number
passes all of these tests, move to the next step. If the number fails any of these
tests, go back to step 1 and choose another odd number.

3. Choose a set of bases for testing. A large set of bases is preferable.

4. Do Miller-Rabin tests on each of the bases. If any of them fails, go back to step 1
and choose another odd number. If the test passes for all bases, declare the number
a strong pseudoprime. 

Example 9.28

The number 4033 is a composite (37 × 109). Does it pass the recommended primality test? 

Solution

1. Perform the divisibility tests first. The numbers 2, 3, 5, 7, 11, 17, and 23 are not divisors 
of 4033.

2. Perform the Miller-Rabin test with a base of 2, 4033 − 1 = 63 × 26, which means m is 63 
and k is 6. 

3. But we are not satisfied. We continue with another base, 3. 

61 − 1 = 15 × 22   →    m = 15 k = 2 a = 2
Initialization:   T =   215 mod 61 = 11 mod 61
k = 1                 T = 112   mod 61 =  −1 mod 61       →   a prime

Initialization: T ≡ 263 (mod 4033) ≡ 3521 (mod 4033) 
k = 1                T ≡ T2 ≡ 35212 (mod 4033) ≡ −1 (mod 4033)    → Passes 
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9.3 FACTORIZATION

Factorization has been the subject of continuous research in the past; such research is
likely to continue in the future. Factorization plays a very important role in the security
of several public-key cryptosystems (see Chapter 10).

Fundamental Theorem of Arithmetic

According to the Fundamental Theorem of Arithmetic, any positive integer greater
than one can be written uniquely in the following prime factorization form where p1,
p2,…, pk are primes and e1, e2, …, ek are positive integers.

There are immediate applications of factorization, such as the calculation of the
greatest common divisor and the least common multiplier. 

Greatest Common Divisor

Chapter 2 discussed the greatest common divisor of two numbers, gcd (a, b). Recall
that the Euclidean algorithm gives this value, but this value can also be found if we
know the factorization of a and b.  

Least Common Multiplier

The least common multiplier, lcm (a, b), is the smallest integer that is a multiple of both
a and b. Using factorization, we also find lcm (a, b). 

Initialization: T ≡  363 (mod 4033)  ≡ 3551 (mod 4033)

k = 1                T ≡ T2 ≡ 35512 (mod 4033 ≡ 2443 (mod 4033)
k = 2                T ≡ T2 ≡ 24432 (mod 4033 ≡ 3442 (mod 4033)
k = 3                T ≡ T2 ≡ 34422 (mod 4033 ≡ 2443 (mod 4033)
k = 4                T ≡ T2 ≡ 24432 (mod 4033 ≡ 3442 (mod 4033)
k = 5                T ≡ T2 ≡ 34422 (mod 4033  ≡ 2443 (mod 4033)  →Failed (composite)

n = p1
e1× p2

e2 ×  …  × pk
ek

a = p1
a1 × p2

a2 ×  …  × pk
ak                                              b = p1

b1 × p2
b2 ×  …  × pk

bk

gcd (a, b) =   p1
min (a1 , b1)  ×  p2

min (a2 , b2)×  …  × pk
min (ak , bk)

a = p1
a1 × p2

a2 ×  …  × pk
ak                                             b = p1

b1 × p2
b2 ×  …  × pk

bk 

lcm (a, b) =   p1
max (a1 , b1)  ×  p2

max (a2 , b2)×  …  × pk
max (ak , bk)
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It can be proved that gcd (a, b) and lcm (a, b) are related to each other as shown
below: 

Factorization Methods

There has been a long search for efficient algorithms to factor large composite num-
bers. Unfortunately, no such perfect algorithm has been found. Although there are sev-
eral algorithms that can factor a number, none are capable of factoring a very large
number in a reasonable amount of time. Later we will see that this is good for cryptog-
raphy because modern cryptosystems rely on this fact. In this section, we give a few
simple algorithms that factor a composite number. The purpose is to make clear that the
process of factorization is time consuming. 

Trial Division Method

By far, the simplest and least efficient algorithm is the trial division factorization

method. We simply try all the positive integers, starting with 2, to find one that
divides n. From discussion on the sieve of Eratosthenes, we know that if n is com-
posite, then it will have a prime p ≤ . Algorithm 9.3 shows the pseudocode for
this method. The algorithm has two loops, one outer and one inner. The outer loop
finds unique factors; the inner loop finds duplicates of a factor. For example, 24 =
23× 3. The outer loop finds the factors 2 and 3. The inner loop finds that 2 is a multi-
ple factor. 

Complexity The trial-division method is normally good if n < 210, but it is very inef-
ficient and infeasible for factoring large integers. The complexity of the algorithm (see
Appendix L) is exponential.   

lcm (a, b)  × gcd (a, b) = a × b                                                        

Algorithm 9.3 Pseudocode for trial-division factorization

Trial_Division_Factorization (n)                          // n is the number to be factored

{
      a  ← 2

     while (a ≤ )

     {

            while (n mod a = 0)
            {

                    output a                                               // Factors are output one by one

                    n = n / a
            }

            a  ← a + 1
     }
     if (n > 1) output n                                            // n has no more factors

}

n

n
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Example 9.29

Use the trial division algorithm to find the factors of 1233. 

Solution

We run a program based on the algorithm and get the following result.

Example 9.30

Use the trial division algorithm to find the factors of 1523357784. 

Solution

We run a program based on the algorithm and get the following result. 

Fermat Method

The Fermat factorization method (Algorithm 9.4) divides a number n into two posi-

tive integers a and b (not necessarily a prime) so that n = a × b. 

The Fermat method is based on the fact that if we can find x and y such that n = x2 − y2,

then we have    

The method tries to find two integers a and b close to each other (a ≈ b). It starts from

the smallest integer greater than x =  and tries to find another integer y such that the

relation y2 = x2 − n holds. The whole point is that, in each iteration, we need to see if

the result of x2 − n is a perfect square. If we find such a value for y, we calculate a and b

and break from the loop. If we do not, we do another iteration. 

1233 = 32 × 137

1523357784 = 23 × 32 × 13 × 37 × 43987

Algorithm 9.4 Pseudocode for Fermat factorization 

Feramat_Factorization (n)                          // n is the number to be factored

{

      x  ←                                                 // smallest integer greater than  

      while (x < n)

      {

      w  ← x2 − n

            if (w is perfect square)      y  ← ; a  ← x + y; b  ← x − y;       return a and b                                                          

      x  ← x + 1

      }

}

 n = x2 
− y2 = a × b       with a = (x + y) and b = (x − y)

n n

w

n
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Note that the method does not necessarily find a prime factorization; the algo-
rithm must be recursively repeated for each value a and b until the prime factors are
found. 

Complexity The complexity of the Fermat method is close to subexponential (see
Appendix L). 

Pollard p – 1 Method

In 1974, John M. Pollard developed a method that finds a prime factor p of a number
based on the condition that p−1 has no factor larger than a predefined value B, called
the bound. Pollard showed that in this case

Algorithm 9.5 shows the pseudocode for Pollard p − 1 factorization method. Note
that when we come out of the loop, 2B! is stored in a. 

Complexity Note that this method needs to do B−1 exponentiation operations (a =

ae mod n). As we will see later in this chapter, there is a fast exponentiation algorithm

that does this in 2log2B operations. The method also uses the gcd calculation, which

needs log n3 operations. We can say that the complexity is somehow greater than O(B) or

O( ): exponential, where nb is the number of bits in B. Another problem is that the algo-

rithm may fail. The probability of success is very small unless B is very close to .

Example 9.31

Use the Pollard p − 1 method to find a factor of 57247159 with the bound B = 8.

p = gcd (2B! − 1, n)

Algorithm 9.5 Pseudocode for Pollard p −1 factorization

Pollard_ (p − 1) _Factorization (n, B)                             // n is the number to be factored

{
     a  ← 2

     e  ← 2                                             

     while (e  ≤  B)

     {

           a  ← ae mod n

           e  ← e + 1

     }

     p  ← gcd (a −1, n)

     if 1 < p < n    return p

     return failure

}

2
nb

n
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Solution

We run a program based on the algorithm and find that p = 421. As a matter of fact 57247159 =

421 × 135979. Note that 421 is a prime and p − 1 has no factor greater than 8 (421 − 1 = 22 × 3 ×
5 × 7). 

Pollard rho Method

In 1975 John M. Pollard developed a second method for factorization. The Pollard rho

factorization method is based on the following points:

a. Assume that there are two integers, x1 and x2, such that p divides x1 − x2, but n

does not. 

b. It can be proven that p = gcd (x1 − x2, n). Because p divides x1 − x2, it can be

written as x1 − x2 = q × p. But because n does not divide x1− x2, it is obvious

that q does not divide n. This means that gcd (x1 − x2, n) is either 1 or a factor

of n.

The following algorithm repeatedly selects x1 and x2 until it finds an appropriate

pair. 

1. Choose x1, a small random integer called the seed.

2. Use a function to calculate x2 such that n does not divide x1 − x2. A function that

may be used here is x2 = f (x1) = x1
2 + a (a is normally chosen as 1).

3. Calculate gcd (x1 − x2, n). If it is not 1, the result is a factor of n; stop. If it is 1,

return to step 1 and repeat the process with x2. Now we are calculating x3. Note that

in the next round, we start with x3 and so on. If we list the values of x’s using the

Pollard rho algorithm, we see that the values are eventually repeated, creating a

shape similar to the Greek letter rho (ρ), as shown in Figure 9.3. 

To decrease the number of iterations, the algorithm has been slightly modified.

The algorithm starts with the pair (x0, x0) and iteratively computes (x1, x2), (x2, x4),

(x3, x6), …, (xi, x2i) using xi+1 = ƒ(xi). In each iteration we use the function (from step 2)

Figure 9.3 Pollard rho successive numbers

xi + 1

xi

xi + 2

xi + j
xi + j + 1

x2

x1
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once to calculate the first element in the pair and twice to calculate the second element
in the pair (see Algorithm 9.6).

Complexity The method requires  arithmetic operations. However, because we
expect p to be smaller or equal to , we expect to do n1/4 arithmetic operations. This
means that the bit-operation complexity is O( ), exponential.

Example 9.32

Assume that there is a computer that can perform 230 (almost 1 billion) bit operations per second.
What is the approximation time required to factor an integer of size 

a. 60 decimal digits?

b. 100 decimal digits? 

Solution

a. A number of 60 decimal digits has almost 200 bits. The complexity is then  or 250.
With 230 operations per second, the algorithm can be computed in 220 seconds, or almost
12 days. 

b. A number of 100 decimal digits has almost 300 bits. The complexity is 275. With 230

operations per second, the algorithm can be computed in 245 seconds, many years. 

Example 9.33

We have written a program to calculate the factors of 434617. The result is 709 (434617 = 709 × 613).
Table 9.2 shows the values of pairs (x and y) and p in this run. 

More Efficient Methods

Several factorization methods have been devised during the last few decades. Two of
these methods are briefly discussed here.

Algorithm 9.6 Pseudocode for Pollard rho method

Pollard_ rho _Factorization (n, B)                             // n is the number to be factored

{
      x  ← 2

      y  ← 2

      p  ← 1                                                                                                      

      while (p  =  1)

      {

           x  ←  f(x) mod n

           y  ←  f (f (y) mod n) mod n

           p  ← gcd (x − y, n)

      }  

      return p                                                                 // if p = n, the program has failed
}

p

n

2
nb/4

2
nb/4
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Quadratic Sieve

Pomerance devised a factorization method called the quadratic sieve method. The method
uses a sieving procedure to find the value of x2 mod n. The method was used to factor inte-
gers with more than 100 digits. Its complexity is O(eC), where C ≈ (ln n lnln n)1/2. Note that
this is subexponential complexity. 

Number Field Sieve

Hendric Lenstra and Argin Lenstra devised a factorization method called the number

field sieve method. The method uses a sieving procedure in an algebraic ring structure
to find x2 ≡ y2 mod n. It has been shown that this method is faster for factoring numbers
with more than 120 digits. Its complexity is O(eC) where C ≈ 2 (ln n)1/3 (lnln n)2/3.
Note that this is also subexponential complexity.

Example 9.34

Assume that there is a computer that can perform 230 (almost 1 billion) bit operations per second.
What is the approximate time required for this computer to factor an integer of 100 decimal digits
using one of the following methods? 

a. Quadratic sieve method

b. Number field sieve method 

Solution

A number with 100 decimal digits has almost 300 bits (n = 2300). ln(2300) = 207 and lnln (2300) = 5.

a. For the quadratic sieve method we have (207)1/2 × (5)1/2 = 14 × 2.23 ≈ 32. This means
we need e32 bit operation that can be done in  (e32) / (230) ≈ 20 hours.

b. For the number field sieve method we have (207)1/3× (5)2/2 = 6 × 3 ≈ 18. This means we
need e18 bit operation that can be done in  (e18) / (230) ≈ 6 seconds.

However, these results are valid only if we have a computer that can perform 1 billion bit opera-
tions per second. 

Table 9.2 Values of x, y, and p in Example 9.33

x y p

2
5

26
677

23713
346589
142292
380320
157099
369457
52128

102901
41831
64520
68775

2
26

23713
142292
157099
52128
41831
68775

427553
2634

63593
161353
64890
21979
16309

1

1

1

1

1

1

1

1

1

1

1

1

709
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Other Challenges

Chapter 10 will discuss the application of factorization in breaking public-key crypto-
systems. If more efficient factorization methods are devised, public-key cryptosystems
need to use larger integers to resist cryptanalysis. The inventors of RSA have created
contests for factorization of numbers up to 2048 bits (more than 600 digits). 

9.4 CHINESE REMAINDER THEOREM

The Chinese remainder theorem (CRT) is used to solve a set of congruent equa-
tions with one variable but different moduli, which are relatively prime, as shown
below: 

The Chinese remainder theorem states that the above equations have a unique solu-
tion if the moduli are relatively prime. 

Example 9.35

The following is an example of a set of equations with different moduli:

The solution to this set of equations is given in the next section; for the moment, note that
the answer to this set of equations is x = 23. This value satisfies all equations: 23 ≡ 2 (mod 3),
23 ≡ 3 (mod 5), and 23 ≡ 2 (mod 7).

Solution

The solution to the set of equations follows these steps:

1. Find M = m1 × m2 × … × mk. This is the common modulus.

2. Find M1 = M/m1, M2 = M/m2, …, Mk = M/mk.

3. Find the multiplicative inverse of M1, M2, …, Mk using the corresponding moduli (m1, 
m2, …, mk). Call the inverses M1

−1, M2
−1, …, Mk

−1. 

4. The solution to the simultaneous equations is 

Note that the set of equations can have a solution even if the moduli are not relatively prime
but meet other conditions. However, in cryptography, we are only interested in solving equations
with coprime moduli. 

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

…

x ≡ ak (mod mk)

x  ≡ 2 (mod 3)
x  ≡ 3 (mod 5)
x  ≡ 2 (mod 7)

x = (a1 × M1 × M1
−1 + a2 × M2 × M2

−1 +  … + ak × Mk × Mk
−1) mod M 
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Example 9.36

Find the solution to the simultaneous equations:

Solution

From the previous example, we already know that the answer is x = 23. We follow the four steps.

1. M = 3 × 5 × 7 = 105

2. M1 = 105 / 3 = 35,   M2 = 105 / 5 = 21,   M3 = 105 / 7 = 15

3. The inverses are M1
−1 = 2, M2

−1 = 1, M3
−1 = 1

4. x = (2 × 35 × 2 + 3 × 21 × 1 + 2 × 15 × 1) mod 105 = 23 mod 105

Example 9.37

Find an integer that has a remainder of 3 when divided by 7 and 13, but is divisible by 12. 

Solution

This is a CRT problem. We can form three equations and solve them to find the value of x.  

If we follow the four steps, we find x = 276. We can check that 276 = 3 mod 7, 276 = 3 mod 13
and 276 is divisible by 12 (the quotient is 23 and the remainder is zero). 

Applications

The Chinese remainder theorem has several applications in cryptography. One is to
solve quadratic congruence as discussed in the next section. The other is to represent a
very large integer in terms of a list of small integers. 

Example 9.38

Assume we need to calculate z = x + y where x = 123 and y = 334, but our system accepts only
numbers less than 100. These numbers can be represented as follows: 

Adding each congruence in x with the corresponding congruence in y gives 

x  ≡ 2 mod 3
x  ≡ 3 mod 5
x  ≡ 2 mod 7

x = 3 mod 7
  x = 3 mod 13
  x = 0 mod 12

x ≡ 24 (mod 99)          y ≡ 37 (mod 99)
x ≡ 25 (mod 98)          y ≡ 40 (mod 98)
x ≡ 26 (mod 97)          y ≡ 43 (mod 97)

x + y ≡ 61 (mod 99)    →   z ≡ 61 (mod 99)
x + y ≡ 65 (mod 98)    →   z ≡ 65 (mod 98)
x + y ≡ 69 (mod 97)    →   z ≡ 69 (mod 97)
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Now three equations can be solved using the Chinese remainder theorem to find z. One of

the acceptable answers is z = 457. 

9.5 QUADRATIC CONGRUENCE

Linear congruence was discussed in Chapter 2 and the Chinese remainder theorem was

discussed in the previous section. In cryptography, we also need to discuss quadratic

congruence⎯that is, equations of the form a2x2 + a1x + a0 ≡ 0 (mod n). We limit our dis-

cussion to quadratic equations in which a2 = 1 and a1 = 0, that is equations of the form

x2  
≡  a (mod n).

Quadratic Congruence Modulo a Prime

We first consider the case in which the modulus is a prime. In other words, we want to

find the solutions for an equation of the form x2  
≡  a (mod p), in which p is a prime, a is

an integer such that p a. It can be proved that this type of equation has either no solu-

tion or exactly two incongruent solutions. 

Example 9.39

The equation x2  
≡  3 (mod 11) has two solutions, x  ≡ 5 (mod 11) and x  ≡ −5 (mod 11). But note

that −5 ≡ 6 (mod 11), so the solutions are actually 5 and 6. Also note that these two solutions are

incongruent. 

Example 9.40

The equation x2  
≡  2 (mod 11) has no solution. No integer x can be found such that its square is

2 mod 11. 

Quadratic Residues and Nonresidue

In the equation x2 
≡ a (mod p), a is called a quadratic residue (QR) if the equation has

two solutions; a is called quadratic nonresidue (QNR) if the equation has no solu-

tions. It can be proved that in Zp*, with p − 1 elements, exactly (p − 1)/2 elements are

quadratic residues and (p − 1)/2 are quadratic nonresidues.

Example 9.41

There are 10 elements in Z11*. Exactly five of them are quadratic residues and five of them are

nonresidues. In other words, Z11* is divided into two separate sets, QR and QNR, as shown in

Figure 9.4. 

Euler’s Criterion

How can we check to see if an integer is a QR modulo p? Euler’s criterion gives a very

specific condition: 

a. If a(p−1)/2 ≡ 1 (mod p), a is a quadratic residue modulo p.

b. If a(p−1)/2 ≡ −1 (mod p), a is a quadratic nonresidue modulo p.
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Example 9.42

To find out if 14 or 16 is a QR in Z23*, we calculate:

Solving Quadratic Equation Modulo a Prime

Although the Euler criterion tells us if an integer a is a QR or QNR in Zp*, it cannot

find the solution to x2  ≡  a (mod p). To find the solution to this quadratic equation, we

notice that a prime can be either p = 4k + 1 or p = 4k + 3, in which k is a positive inte-

ger. The solution to a quadratic equation is very involved in the first case; it is easier in

the second. We will discuss only the second case, which we will use in Chapter 10

when we discuss Rabin cryptosystem. 

Special Case: p = 4k + 3 If p is in the form 4k + 3 (that is,  p  ≡ 3 mod 4) and a is a

QR in Zp*, then   

Example 9.43

Solve the following quadratic equations: 

a. x2  ≡  3 (mod 23)

b. x2  ≡  2 (mod 11)

c. x2  ≡  7 (mod 19)

Solutions

a. In the first equation, 3 is a QR in Z23. The solution is x ≡  ± 16 (mod 23). In other words, 

√3 ≡ ± 16 (mod 23).

b. In the second equation, 2 is a QNR in Z11. There is no solution for √2 in Z11. 

c. In the third equation, 7 is a QR in Z19. The solution is x ≡  ± 11 (mod 19). In other 

words, √7 ≡ ± 11 (mod 19). 

Quadratic Congruence Modulo a Composite

Quadratic congruence modulo a composite can be done by solving a set of congruence

modulo a prime. In other words, we can decompose x2 ≡ a (mod n) if we have the

factorization of n. Now we can solve each decomposed equation (if solvable) and find k

pairs of answers for x as shown in Figure 9.5.

Figure 9.4 Division of Z11* elements into QRs and QNRs

14(23−1)/2 mod 23  → 1411 mod 23 →  22 mod 23   →  −1 mod 23          nonresidue

16(23−1)/2 mod 23  →  1611 mod 23 →  1 mod 23                                              residue

x  ≡  a(p+1)/4 (mod p) and x  ≡ − a(p + 1)/4 (mod p) 

Z11∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Each element has a square root No element has a square root

QNR set = {2, 6, 7, 8, 10}QR set = {1, 3, 4, 5, 9}
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From k pairs of answers, we can make 2k set of equations that can be solved using
the Chinese remainder theorem to find 2k values for x. In cryptography, normally n is
made such that n = p × q, which means k = 2 and we have only four total answers. 

Example 9.44

Assume that x2 ≡ 36 (mod 77). We know that 77 = 7 × 11. We can write

Note that we have chosen 3 and 7 to be of the form 4k + 3 so that we can solve the equations
based on the previous discussion. Both of these equations have quadratic residues in their own
sets. The answers are x ≡ +1 (mod 7), x ≡ − 1 (mod 7), x ≡ + 5 (mod 11), and x ≡ − 5 (mod 11).
Now we can make four sets of equations out of these:

The answers are x = ± 6 and ± 27. 

Complexity

How hard is it to solve a quadratic congruence modulo a composite? The main task is
the factorization of the modulus. In other words, the complexity of solving a quadratic
congruence modulo a composite is the same as factorizing a composite integer. As we
have seen, if n is very large, factorization is infeasible.  

9.6 EXPONENTIATION AND LOGARITHM

Exponentiation and logarithm are inverses of each other. The following shows the rela-
tionship between them, in which a is called the base of the exponentiation or logarithm.  

Figure 9.5 Decomposition of congruence modulo a composite

x2 ≡ 36 (mod 7)  ≡ 1 (mod 7)            and            x2 ≡ 36 (mod 11) ≡ 3 (mod 11)    

Set 1: x ≡ +1 (mod 7)        x ≡ + 5 (mod 11) 
Set 2: x ≡ +1 (mod 7)        x ≡ − 5 (mod 11) 
Set 3: x ≡ −1 (mod 7)        x ≡ + 5 (mod 11) 
Set 4: x ≡ −1 (mod 7)        x ≡ − 5 (mod 11)

Solving a quadratic congruence modulo a composite is as hard as factorization 

of the modulus.

Exponentiation: y = ax     →       Logarithm: x = loga y 

x2 
≡ a1 (mod p1)

x2 
≡ a2 (mod p1)

x2 
≡ ak (mod pk)

x1 ≡ ± b1 (mod p1)

x2 ≡ ± b2 (mod p1)

xk ≡ ± bk (mod pk)

x2 
≡ a mod (n) 

n = p1 × p2 × .  .  . × pk 
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Exponentiation

In cryptography, a common modular operation is exponentiation. That is, we often
need to calculate 

The RSA cryptosystem, which will be discussed in Chapter 10, uses exponentiation
for both encryption and decryption with very large exponents. Unfortunately, most com-
puter languages have no operator that can efficiently compute exponentiation, particularly
when the exponent is very large. To make this type of calculation more efficient, we need
algorithms that are more efficient.

Fast Exponentiation

Fast exponentiation is possible using the square-and-multiply method. In traditional
algorithms only multiplication is used to simulate exponentiation, but the fast exponen-
tiation algorithm uses both squaring and multiplication. The main idea behind this
method is to treat the exponent as a binary number of nb bits (x0 to xnb − 1). For exam-
ple, x = 22 = (10110)2. In general, x can be written as:

x = xnb − 1 × 2k−1 + xnb − 2 × 2k−2 + … + x2 × 22 + x1 × 21 + x0 × 20 

Now we can write y = ax as shown in Figure 9.6. 

Note that y is the product of nb terms. Each term is either 1 (if the corresponding
bit is 0) or a2i (if the corresponding bit is 1). In other words, the term a2i is included in
the multiplication if the bit is 1, it is not included if the bit is 0 (multiplication by 1 has
no effect). Figure 9.6 gives the general idea how to write the algorithm. We can contin-
uously square the base, a, a2, a4, …, . If the corresponding bit is 0, the term is
not included in the multiplication process; if the bit is 1, it is. Algorithm 9.7 reflects
these two observations.

y = a x mod n

Figure 9.6 The idea behind the square-and-multiply method

in which xi

is 0 or 1  
y = a

xnb−1 × 2nb−1 + xnb−2 × 2nb−2 +  .  .  .  + x1 × 21 + x0 × 20

y = a9 
= a10012 = a8 

× 1 × 1 × a  

Example:

× .  .  . × ×y = ×a2nb−1
 or 1 a2nb−2

 or 1 a2 or 1 a or 1

a
2n

b
 −1
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Algorithm 9.7 uses  nb iterations. In each iteration, it checks the value of the corre-

sponding bit. If the value of the bit is 1, it multiplies the current base with the previous

value of the result. It then squares the base for the next iteration. Note that squaring is

not needed in the last step (the result is not used). 

Example 9.45

Figure 9.7 shows the process for calculating y = ax using the Algorithm 9.7 (for simplicity, the

modulus is not shown). In this case, x = 22 = (10110)2 in binary. The exponent has five bits. 

Squaring is done in each step except the last. Multiplication is done only if the corresponding

bit is 1. Figure 9.7 shows how the values of y are gradually built until y = a22. The solid boxes mean

that multiplication is ignored and the previous value of y is carried to the next step. Table 9.3 shows

how the value for y = 1722 mod 21 is calculated. The result is y = 4. 

Algorithm 9.7 Pseudocode for square-and-multiply algorithm

Square_and_Multiply (a, x, n)

{

      y  ← 1

      for (i ← 0 to nb − 1)                                    // nb is the number of bits in x

      {

             if (xi = 1)     y  ← a  
×  y  mod n          // multiply only if the bit is 1

         

             a  ← a2 mod n                                      // squaring is not needed in the last iteration

      }

      return y      

}

Figure 9.7 Demonstration of calculation of a22 using square-and-multiply method

Table 9.3 Calculation of 1722 mod 21

i xi

Multiplication 

(Initialization: y = 1)     

Squaring 

(Initialization: a = 17)     

0 0 → a = 172 mod 21 = 16

1 1 y = 1  × 16 mod 21 = 16 → a = 162 mod 21 = 4  

2 1 y = 16  × 4 mod 21 =   1 → a = 42   mod 21 = 16 

3 0 → a = 162 mod 21 = 4

4 1 y = 1 × 4 mod 21 =   4 →                 

x4 = 1 x3 = 0 x2 = 1 x1 = 1 x0 = 0

Initiation 

a
1

a
2

a
4

a
8a

16

y = a22 y = a6
y = a2 y = 1 y = 1y = a6

Multiply Multiply Multiply

Square Square Square Square
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Complexity Algorithm 9.7 uses a maximum of 2nb arithmetic operations in which nb
is the length of the modulus in bits (nb = log2n), so the bit-operation complexity of the
algorithm is O(nb) or polynomial. 

Alternative Algorithm Note that Algorithm 9.7 checks the value of bits in x from
the right to the left (least significant to most significant). An algorithm can be written to
use the reverse order. We have chosen the above algorithm because the squaring opera-
tion is totally independent from the multiplication operation; they can be done in paral-
lel to increase the speed of processing. The alternative algorithm is left as an exercise. 

Logarithm

In cryptography, we also need to discuss modular logarithm. If we use exponentiation
to encrypt or decrypt, the adversary can use logarithm to attack. We need to know how
hard it is to reverse the exponentiation. 

Exhaustive Search

The first solution that might come to mind is to solve x = logay (mod n). We can write
an algorithm that continuously calculates y = ax mod n until it finds the value of given y.
Algorithm 9.8 shows this approach.  

Algorithm 9.8 is definitely very inefficient. The bit-operation complexity is O(2nb) or
exponential.   

Discrete Logarithm

The second approach is to use the concept of discrete logarithm. Understanding this
concept requires understanding some properties of multiplicative groups. 

Finite Multiplicative Group In cryptography, we often use the multiplicative finite
group: G = <Zn*,  ×> in which the operation is multiplication. The set Zn* contains those
integers from 1 to n−1 that are relatively prime to n; the identity element is e = 1. Note that
when the modulus of the group is a prime, we have G = <Zp*,  ×>. This group is the spe-
cial case of the first group, so we concentrate on the first group in this section.

The bit-operation complexity of the fast exponential algorithm is polynomial. 

Algorithm 9.8 Exhaustive search for modular logarithm

Modular_Logarithm (a, y, n)

{

      for (x = 1 to n −1)                                                      // k is the number of bits in x
      {
           if (y ≡ ax mod n) return x                                                   
      }
      return failure      
}
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Order of the Group In Chapter 4, we discussed the order of a finite group, |G|, to be
the number of elements in the group G. In G = <Zn∗,  ×>, it can be proved that the order of
group is φ(n). We have shown how to calculate φ(n), when n can be factored into primes. 

Example 9.46

What is the order of group G = <Z21∗,  ×>? |G| = φ(21) = φ(3) × φ(7) = 2 × 6 =12. There are
12 elements in this group: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20. All are relatively prime
with 21.

Order of an Element In Chapter 4, we also discussed the order of an element, ord(a).
In G = <Zn∗,  ×>, we continue with the same definition. The order of an element, a, is
the smallest integer i such that ai ≡ e (mod n). The identity element e is 1 in this case. 

Example 9.47

Find the order of all elements in G = <Z10∗,  ×>. 

Solution

This group has only φ(10) = 4 elements: 1, 3, 7, 9. We can find the order of each element by trial
and error. However, recall from Chapter 4 that the order of an element divides the order of the
group (Lagrange theorem). The only integers that divide 4 are 1, 2, and 4, which means in each
case we need to check only these powers to find the order of the element. 

a. 11 ≡ 1 mod (10) → ord(1) = 1.

b. 31 ≡ 3 mod (10); 32 ≡ 9 mod (10); 34 ≡ 1 mod (10)  → ord(3) = 4.

c. 71 ≡ 7 mod (10); 72 ≡ 9 mod (10); 74 ≡ 1 mod (10)  → ord(7) = 4.

d. 91 ≡ 9 mod (10); 92 ≡ 1 mod (10)   → ord(9) = 2.

Euler’s Theorem Another related theorem is the Euler’s theorem (discussed in this
chapter) that says if a is the member of G = <Zn∗,  ×>, then aφ(n) = 1 mod n

This theorem is very helpful because it shows that the relationship ai ≡ 1 (mod n)
holds when i = φ(n), even if it holds when i < φ(n). In other words, this relation holds at
least once.

Example 9.48

Table 9.4 shows the result of ai  ≡ x (mod 8) for the group G = <Z8∗,  ×>. Note that φ(8) = 4.
The elements are 1, 3, 5, and 7.

Table 9.4 reveals some points. First, the shaded area shows the result of applying Euler’s
theorem: When i = φ(8) = 4, the result is x = 1 for every a. Second, the table shows that the value

Table 9.4 Finding the orders of elements in Example 9.48

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

a = 1  x: 1  x: 1  x: 1  x: 1  x: 1  x: 1  x: 1

a = 3  x: 3  x: 1  x: 3  x: 1  x: 3  x: 1  x: 3

a = 5  x: 5  x: 1  x: 5  x: 1  x: 5  x: 1  x: 5

a = 7  x: 7  x: 1  x: 7  x: 1  x: 7  x: 1  x: 7
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of x can be 1 for many values of i. The first time when x is 1, the value of i gives us the order of
the element (double-sided boxes). The orders of elements are ord(1) = 1, ord(3) = 2, ord(5) = 2,
and ord(7) = 2.

Primitive Roots A very interesting concept in multiplicative group is that of primi-

tive root, which is used in the ElGamal cryptosystem in Chapter 10. In the group
G = <Zn∗,  ×>, when the order of an element is the same as φ(n), that element is called
the primitive root of the group. 

Example 9.49

Table 9.4 shows that there are no primitive roots in G = <Z8∗,  ×> because no element has the
order equal to  φ(8) = 4. The order of elements are all smaller than 4. 

Example 9.50

Table 9.5 shows the result of ai  ≡ x (mod 7) for the group G = <Z7∗,  ×>. In this group, φ(7) = 6. 

The orders of elements are ord(1) = 1, ord(2) = 3, ord(3) = 6, ord(4) = 3, ord(5) = 6, and ord(6) = 1.
Table 9.5 shows that only two elements, 3 and 5, have the order at i = φ(n) = 6. Therefore, this
group has only two primitive roots: 3 and 5. 

It has been proved that the group G = <Zn∗,  ×> has a primitive root only if n = 2, 4, pt, or
2pt, in which p is an odd prime (not 2) and t is an integer. 

Example 9.51

For which value of n, does the group G = <Zn∗,  ×> have primitive roots: 17, 20, 38, and 50?

Solution

a. G = <Z17∗,  ×> has primitive roots, because 17 is a prime (pt where t is 1).

b. G = <Z20∗,  ×> has no primitive roots.

c. G = <Z38∗,  ×> has primitive roots, because 38 = 2 × 19 and 19 is a prime.

d. G = <Z50∗,  ×> has primitive roots, because 50 = 2 × 52 and 5 is a prime.

If a group has a primitive root, then it normally has several of them. The number of
primitive roots can be calculated as φ(φ(n)). For example, the number of primitive roots

Table 9.5 Example 9.50

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

a = 1  x: 1  x: 1  x: 1  x: 1  x: 1  x: 1

a = 2  x: 2  x: 4  x: 1  x: 2  x: 4  x: 1

Primitive root → a = 3  x: 3  x: 2  x: 6  x: 4  x: 5  x: 1

a = 4  x: 4  x: 2  x: 1  x: 4  x: 2  x: 1

Primitive root → a = 5  x: 5  x: 4  x: 6  x: 2  x: 3  x: 1

a = 6  x: 6  x: 1  x: 6  x: 1  x: 6  x: 1

The group G = <Zn*,  ×> has primitive roots only if n is 2, 4, pt, or 2pt. 
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of G = <Z17∗,  ×> is φ(φ(17)) = φ(16) = 8. Note that we should first check to see if the
group has any primitive root, before we find the number of roots.  

Three questions arise:

1. Given an element a and the group G = <Zn*,  ×>, how can we find out whether a is
a primitive root of G? This is not an easy task. 

a.   We need to find φ(n), which is as difficult as factorization of n. 

b.   We need to check whether ord(a) =  φ(n). 

2. Given a group G = <Zn*,  ×>, how can we check all primitive roots of G? This is
more difficult than the first task because we need to repeat part b for all elements of
the group. 

3. Given a group G = <Zn*,  ×>, how can we select a primitive root of G? In cryptog-
raphy, we need to find at least one primitive root in the group. However, in this
case, the value of n is chosen by the user and the user knows the value of φ(n). The
user tries several elements until he or she finds the first one. 

Cyclic Group Cyclic groups were discussed in Chapter 4. Note that if the group
G = <Zn*,  ×> has primitive roots, it is cyclic. Each primitive root is a generator and
can be used to create the whole set. In other words, if g is a primitive root in the group,
we can generate the set Zn* as 

Zn∗ = {g1, g2, g3, …, gφ(n)}

Example 9.52

The group G = <Z10*,  ×> has two primitive roots because φ(10) = 4 and φ(φ(10)) = 2. It can be
found that the primitive roots are 3 and 7. The following shows how we can create the whole set
Z10* using each primitive root.

Note that the group G = <Zp*,  ×> is always cyclic because p is a prime.   

The idea of Discrete Logarithm The group G = <Zp*,  ×> has several interesting
properties:

1. Its elements include all integers from 1 to p − 1. 

2. It always has primitive roots. 

3. It is cyclic. The elements can be created using gx where x is an integer from 1 to
φ(n) = p − 1. 

If the group G = <Zn*,  ×> has any primitive root, the number of primitive roots is φ(φ(n)).

g = 3   →
g = 7   →

g1 mod 10 = 3       g2 mod 10 = 9      g3 mod 10 = 7     g4 mod 10 = 1
g1 mod 10 = 7       g2 mod 10 = 9      g3 mod 10 = 3     g4 mod 10 = 1

The group G = <Zn*,  ×> is a cyclic group if it has primitive roots.
The group G = <Zp*,  ×> is always cyclic.   
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4. The primitive roots can be thought as the base of logarithm. If the group has k
primitive roots, calculations can be done in k different bases. Given x = loggy for
any element y in the set, there is another element x that is the log of y in base g.
This type of logarithm is called discrete logarithm. A discrete logarithm is desig-
nated by several different symbols in the literature, but we will use the notation Lg

to show that the base is g (the modulus is understood). 

Solution to Modular Logarithm Using Discrete Logs

Now let us see how to solve problems of type y = ax (mod n) when y is given and we
need to find x. 

Tabulation of Discrete Logarithms One way to solve the above-mentioned prob-
lem is to use a table for each Zp∗ and different bases. This type of table can be precal-
culated and saved. For example, Table 9.6 shows the tabulation of the discrete
logarithm for Z7*. We know that we have two primitive roots or bases in the set.  

Given the tabulation for other discrete logarithms for every group and all possible
bases, we can solve any discrete logarithm problem. This is similar to the past with tra-
ditional logarithms. Before the era of calculators and computers, tables were used to
calculate logarithms in base 10. 

Example 9.53

Find x in each of the following cases:

a. 4 ≡ 3x (mod 7). 

b. 6 ≡ 5x (mod 7). 

Solution

We can easily use the tabulation of the discrete logarithm in Table 9.6. 

a. 4 ≡ 3x mod 7     →   x = L34 mod 7 = 4 mod 7    

b. 6 ≡ 5x mod 7     →   x = L56 mod 7 = 3 mod 7

Using Properties of Discrete Logarithms To see that discrete logarithms behave
just like traditional logarithms, several properties of both types of logarithms are given
in Table 9.7. Note that the modulus is φ(n) instead of n. 

Table 9.6 Discrete logarithm for G = <Z7*,  ×> 

y 1 2 3 4 5 6

x = L3 y 6 2 1 4 5 3

x = L5 y 6 4 5 2 1 3

Table 9.7 Comparison of traditional and discrete logarithms 

Traditional Logarithm Discrete Logarithms 

loga 1 = 0 Lg1 ≡ 0 (mod φ(n)) 

loga (x × y) = loga x + loga y Lg(x × y) ≡ (Lgx + Lgy) (mod φ(n)) 

loga xk = k × loga x Lgxk ≡ k × Lgx (mod φ(n)) 
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Using Algorithms Based on Discrete Logarithms Tabulation and the properties of dis-

crete logarithms cannot be used to solve y ≡ ax (mod n) when n is very large. Several algo-

rithms have been devised that use the basic idea of discrete logarithms to solve the problem.

Although all of these algorithms are more efficient than the exhaustive-search algorithm

that we mentioned at the beginning of this section, none of them have polynomial complexity.

Most of these algorithms have the same level of complexity as the factorization problem. 

9.7 RECOMMENDED READING

For more details about subjects discussed in this chapter, we recommend the following books

and websites. The items enclosed in brackets refer to the reference list at the end of the book. 

Books

We recommend [Ros06], [Cou99], and [BW00], and [Bla03] for topics discussed in

this chapter.

WebSites

The following websites give more information about topics discussed in this chapter.

The discrete logarithm problem has the same complexity as the factorization problem. 

http://en.wikipedia.org/wiki/Prime_number

http://primes.utm.edu/mersenne/

http://en.wikipedia.org/wiki/Primality_test

www.cl.cam.ac.uk/~jeh1004/research/talks/miller-talk.pdf

http://mathworld.wolfram.com/TotientFunction.html

http://en.wikipedia.org/wiki/Proofs_of_Fermat’s_little_theorem

faculty.cs.tamu.edu/klappi/629/analytic.pdf 

9.8 KEY TERMS

Chinese remainder theorem (CRT)

composite

coprime (relatively prime)

deterministic algorithm

discrete logarithm

divisibility test

Euler’s phi-function

Euler’s theorem

exponentiation

factorization

Fermat factorization method

Fermat primality test

Fermat numbers

Fermat primes

Fermat’s little theorem

Mersenne numbers
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Mersenne primes

Miller-Rabin primality test

number field sieve method 

Polard p–1 factorization method

Polard rho factorization method

primality test

prime

primitive root

probabilistic algorithm

pseudoprime

quadratic congruence

quadratic equation

quadratic nonresidue (QNR)

quadratic residue (QR)

quadratic sieve method

sieve of Eratosthenes

square-and-multiply method

square root primality test method

strong pseudoprime

trial division factorization method

9.9 SUMMARY

❏ The positive integers can be divided into three groups: the number 1, primes, and com-
posites. A positive integer is a prime if and only if it is exactly divisible by two differ-
ent integers, 1 and itself. A composite is a positive integer with at least two divisors.

❏ Euler’s phi-function, φ(n), which is sometimes called Euler’s totient function, plays a
very important role in cryptography. The function finds the number of integers that
are both smaller than n and relatively prime to n.

❏ Table 9.8 shows Fermat’s little theorem and Euler’s theorem, as discussed in this chapter. 

❏ To create a large prime, we choose a large random number and test it to be sure that
it is a prime. The algorithms that deal with this issue can be divided into two broad
categories: deterministic algorithms and probabilistic algorithms. Some probabilis-
tic algorithms for primality test are the Fermat test, the square root test, and the
Miller-Rabin test. Some deterministic algorithms are the divisibility test and AKS
algorithm.

❏ According to the Fundamental Theorem of Arithmetic, any positive integer greater
than 1 can be factored into primes. We mentioned several factorization methods
including the trial division, the Fermat, the Pollard p − 1, the Pollard rho, the qua-
dratic sieve and the number field sieve. 

Table 9.8 Fermat’s little theorem and Euler’s theorem

Fermat First Version:

If gcd (a, p) = 1, then ap – 1 ≡ 1 (mod p)

Second Version:

ap  ≡ a (mod p)

Euler First Version:

If gcd (a, n) = 1, then aφ(n) = 1 (mod n)

Second Version:

If  n =  p × q and a < n, then ak × φ(n)+1 ≡ a (mod n)
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❏ The Chinese remainder theorem (CRT) is used to solve a set of congruent equations
with one variable but different moduli that are relatively prime.

❏ We discussed solutions to quadratic congruence modulo a prime and quadratic con-
gruence modulo a composite. However, if the modulus is large, solving a quadratic
congruence is as hard as factorization of the modulus.

❏ In cryptography, a common modular operation is exponentiation. Fast exponentia-
tion is possible using the square-and-multiply method. Cryptography also involves
modular logarithms. If exponentiation is used to encrypt or decrypt, the adversary
can use logarithms to attack. We need to know how hard it is to reverse the expo-
nentiation. Although exponentiation can be done using fast algorithms, using mod-
ular logarithm for a large modulus is as hard has as the factorization problem. 

9.10 PRACTICE SET

Review Questions

1. Distinguish between a prime and a composite integer.

2. Define the meaning of relatively prime (coprime). 

3. Define the following functions and their application:

a. π(n) function

b. Euler’s totient function

4. Explain the sieve of Eratosthenes and its application.

5. Define Fermat’s little theorem and explain its application.

6. Define Euler’s theorem and explain its application.

7. What are Mersenne primes? What are Fermat primes?

8. Distinguish between deterministic and probabilistic algorithms for primality testing.

9. List some algorithms for factorization of primes.

10. Define the Chinese remainder theorem and its application. 

11. Define quadratic congruence and the importance of QRs and QNRs in solving
quadratic equations.

12. Define discrete logarithms and explain their importance in solving logarithmic
equations.

Exercises

13. Using approximation, find

a. the number of primes between 100,000 and 200,000.

b. the number of composite integers between 100,000 and 200,000.

c. the ratio of the primes to composites in the above range and compare it to the
same between 1 to 10.
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14. Find the largest prime factor of the following composite integers: 100, 1000, 10,000,

100,000, and 1,000,000. Also find the largest prime factor of 101, 1001, 10,001,

100,001, and 1,000,001.

15. Show that every prime is either in the form 4k + 1 or 4k + 3, where k is a positive

integer. 

16. Find some primes in the form 5k + 1, 5k + 2, 5k + 3, and 5k + 4, where k is a

positive integer. 

17. Find the value of φ(29), φ(32), φ(80), φ(100), φ(101). 

18. Show that 224 − 1 and 216− 1 are composites. Hint: Use the expansion of (a2 − b2).

19. There is a conjecture that every integer greater than 2 can be written as the sum of

two primes. Check this conjecture for 10, 24, 28, and 100.

20. There is a conjecture that there are many primes in the form n2 + 1. Find some of them.

21. Find the results of the following, using Fermat’s little theorem: 

a. 515 mod 13

b. 1518 mod 17

c. 45617 mod 17

d. 145102 mod 101

22. Find the results of the following, using Fermat’s little theorem: 

a. 5−1 mod 13

b. 15−1 mod 17

c. 27−1 mod 41

d. 70−1 mod 101

Note that all moduli are primes. 

23. Find the results of the following, using Euler’s theorem: 

a. 12−1 mod 77

b. 16−1 mod 323

c. 20−1 mod 403

d. 44−1 mod 667

Note that 77 = 7 × 11, 323 = 17 × 19, 403 = 31 × 13, and 667 = 23 × 29.

24. Determine whether the following Mersenne numbers are primes: M23, M29, and

M31. Hint: Any divisor of a Mersenne number has the form 2kp + 1.

25. Write some examples to show that if 2n − 1 is a prime, then n is a prime. Can this fact

be used for primality testing? Explain.

26. Determine how many of the following integers pass the Fermat primality test: 100,

110, 130, 150, 200, 250, 271, 341, 561. Use base 2.

27. Determine how many of the following integers pass the Miller-Rabin primality test:

100, 109, 201, 271, 341, 349. Use base 2.

28. Use the recommended test to determine whether any of the following integers are

primes: 271, 3149, 9673. 
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29. Use a = 2, x = 3, and a few primes to show that if p is a prime, the following

congruence (x − a)p ≡ (x p − a) (mod p) holds.   

30. It is said that the nth prime can be approximated as pn ≈ nlnn. Check this with some

primes.

31. Find the value of x for the following sets of congruence using the Chinese remainder

theorem.

a. x ≡ 2 mod 7, and x ≡ 3 mod 9

b. x ≡ 4 mod 5, and x ≡ 10 mod 11

c. x ≡ 7 mod 13, and x ≡ 11 mod 12 

32. Find all QRs and QNRs in Z13*, Z17*, and Z23*. 

33. Using quadratic residues, solve the following congruences:

a. x2 ≡ 4 mod 7

b. x2 ≡ 5 mod 11

c. x2 ≡ 7 mod 13

d. x2 ≡ 12 mod 17

34. Using quadratic residues, solve the following congruences:

a. x2 ≡ 4 mod 14

b. x2 ≡ 5 mod 10

c. x2 ≡ 7 mod 33

d. x2 ≡ 12 mod 34 

35. Find the results of the following using the square-and-multiply method. 

a. 2124 mod 8

b. 32023 mod 461 

c. 173641 mod 2134

d. 200135 mod 2000

36. For the group G = <Z19*, × >: 

a. Find the order of the group.

b. Find the order of each element in the group.

c. Find the number of primitive roots in the group.

d. Find the primitive roots in the group.

e. Show that the group is cyclic.

f. Make a table of discrete logarithms.

37. Using the properties of discrete logarithms, show how to solve the following

congruences:

a. x5 ≡ 11 mod 17

b. 2x11 ≡ 22 mod 19

c. 5x12 + 6x ≡ 8 mod 23.
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38. Assume that you have a computer performing 1 million bit operations per second.

You want to spend only 1 hour on primality testing. What is the largest number you

can test using the following primality testing methods?

a. divisibility

b. AKS algorithm

c. Fermat

d. square root

e. Miller-Rabin

39. Assume that you have a computer that performs 1 million bit operations per second.

You want to spend only 1 hour on factoring a composite integer. What is the largest

number you can factor using the following factorization methods?

a. trial division

b. Fermat

c. Pollard rho

d. quadratic sieve

e. number field sieve

40. The square-and-multiply fast exponentiation algorithm allows us to halt the program

if the value of the base becomes 1. Modify Algorithm 9.7 to show this.

41. Rewrite Algorithm 9.7 to test the bits in the exponent in order of the most significant

to least significant.

42. The square-and-multiply fast exponentiation algorithm can also be designed to test

whether the exponent is even or odd instead of testing the bit value. Rewrite Algo-

rithm 9.7 to show this. 

43. Write an algorithm in pseudocode for the Fermat primality test.

44. Write an algorithm in pseudocode for the square root primality test.

45. Write an algorithm in pseudocode for the Chinese remainder theorem.

46. Write an algorithm in pseudocode to find QRs and QNRs for any Zp*. 

47. Write an algorithm in pseudocode to find a primitive root for the set Zp*.

48. Write an algorithm in pseudocode to find all primitive roots for the set Zp*.

49. Write an algorithm to find and store the discrete logarithms for the set Zp*. 
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CHAPTER 10

Asymmetric-Key Cryptography

Objectives

This chapter has several objectives:

❏ To distinguish between symmetric-key and asymmetric-key cryptosystems

❏ To introduce trapdoor one-way functions and their use in asymmetric-
key cryptosystems 

❏ To introduce the knapsack cryptosystem as one of the first ideas in
asymmetric-key cryptography

❏ To discuss the RSA cryptosystem

❏ To discuss the Rabin cryptosystem 

❏ To discuss the ElGamal cryptosystem 

❏ To discuss the elliptic curve cryptosystem 

This chapter discusses several asymmetric-key cryptosystems: RSA,
Rabin, ElGamal, and ECC. Discussion of the Diffie-Hellman cryptosys-
tem is postponed until Chapter 15 because it is mainly a key-exchange
algorithm rather than an encryption/decryption algorithm. 

10.1 INTRODUCTION

In Chapters 2 through 8, we emphasized the principles of symmetric-key cryptography.

In this chapter, we start the discussion of asymmetric-key cryptography. Symmetric-
and asymmetric-key cryptography will exist in parallel and continue to serve the com-
munity. We actually believe that they are complements of each other; the advantages of
one can compensate for the disadvantages of the other. 

The Diffie-Hellman cryptosystem is discussed in Chapter 15. 
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The conceptual differences between the two systems are based on how these sys-
tems keep a secret. In symmetric-key cryptography, the secret must be shared between
two persons. In asymmetric-key cryptography, the secret is personal (unshared); each
person creates and keeps his or her own secret. 

In a community of n people, n(n − 1)/2 shared secrets are needed for symmetric-key
cryptography; only n personal secrets are needed in asymmetric-key cryptography. For
a community with a population of 1 million, symmetric-key cryptography would require
half a billion shared secrets; asymmetric-key cryptography would require 1 million
personal secrets. 

There are some other aspects of security besides encipherment that need asymmetric-
key cryptography. These include authentication and digital signatures. Whenever an appli-
cation is based on a personal secret, we need to use asymmetric-key cryptography. 

Whereas symmetric-key cryptography is based on substitution and permutation of
symbols (characters or bits), asymmetric-key cryptography is based on applying mathe-
matical functions to numbers. In symmetric-key cryptography, the plaintext and cipher-
text are thought of as a combination of symbols. Encryption and decryption permute
these symbols or substitute a symbol for another. In asymmetric-key cryptography, the
plaintext and ciphertext are numbers; encryption and decryption are mathematical
functions that are applied to numbers to create other numbers. 

Keys

Asymmetric key cryptography uses two separate keys: one private and one public. If
encryption and decryption are thought of as locking and unlocking padlocks with keys,
then the padlock that is locked with a public key can be unlocked only with the corre-
sponding private key. Figure 10.1 shows that if Alice locks the padlock with Bob’s public
key, then only Bob’s private key can unlock it.

General Idea

Figure 10.2 shows the general idea of asymmetric-key cryptography as used for enci-
pherment. We will see other applications of asymmetric-key cryptography in future chap-
ters. The figure shows that, unlike symmetric-key cryptography, there are distinctive
keys in asymmetric-key cryptography: a private key and a public key. Although some
books use the term secret key instead of private key, we use the term secret key only for
symmetric-key and the terms private key and public key for asymmetric key cryptogra-
phy. We even use different symbols to show the three keys. One reason is that we
believe the nature of the secret key used in symmetric-key cryptography is different

Symmetric-key cryptography is based on sharing secrecy; 

asymmetric-key cryptography is based on personal secrecy.

In symmetric-key cryptography, symbols are permuted or substituted; in asymmetric-

key cryptography, numbers are manipulated.
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from the nature of the private key used in asymmetric-key cryptography. The first is

normally a string of symbols (bits for example), the second is a number or a set of num-

bers. In other words, we want to show that a secret key is not exchangeable with a

private key; there are two different types of secrets.

Figure 10.2 shows several important facts. First, it emphasizes the asymmetric

nature of the cryptosystem. The burden of providing security is mostly on the shoulders

of the receiver (Bob, in this case). Bob needs to create two keys: one private and one

public. Bob is responsible for distributing the public key to the community. This can be

done through a public-key distribution channel. Although this channel is not required to

provide secrecy, it must provide authentication and integrity. Eve should not be able to

advertise her public key to the community pretending that it is Bob’s public key. Issues

regarding public-key distribution are discussed in Chapter 15. For the moment, we

assume that such a channel exists.

Figure 10.1 Locking and unlocking in asymmetric-key cryptosystem

Figure 10.2 General idea of asymmetric-key cryptosystem
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Second, asymmetric-key cryptography means that Bob and Alice cannot use the
same set of keys for two-way communication. Each entity in the community should
create its own private and public keys. Figure 10.2 shows how Alice can use Bob’s pub-
lic key to send encrypted messages to Bob. If Bob wants to respond, Alice needs to
establish her own private and public keys.

Third, asymmetric-key cryptography means that Bob needs only one private key to
receive all correspondence from anyone in the community, but Alice needs n public
keys to communicate with n entities in the community, one public key for each entity.
In other words, Alice needs a ring of public keys.

Plaintext/Ciphertext

Unlike in symmetric-key cryptography, plaintext and ciphertext are treated as integers
in asymmetric-key cryptography. The message must be encoded as an integer (or a set
of integers) before encryption; the integer (or the set of integers) must be decoded into
the message after decryption. Asymmetric-key cryptography is normally used to
encrypt or decrypt small pieces of information, such as the cipher key for a symmetric-
key cryptography. In other words, asymmetric-key cryptography normally is used for
ancillary goals instead of message encipherment. However, these ancillary goals play a
very important role in cryptography today.

Encryption/Decryption

Encryption and decryption in asymmetric-key cryptography are mathematical functions
applied over the numbers representing the plaintext and ciphertext. The ciphertext can be
thought of as C = f (Kpublic, P); the plaintext can be thought of as P = g(Kprivate, C). The
decryption function f is used only for encryption; the decryption function g is used only
for decryption. Next we show that the function f needs to be a trapdoor one-way function

to allow Bob to decrypt the message but to prevent Eve from doing so.

Need for Both

There is a very important fact that is sometimes misunderstood: The advent of asymmetric-
key (public-key) cryptography does not eliminate the need for symmetric-key (secret-
key) cryptography. The reason is that asymmetric-key cryptography, which uses mathe-
matical functions for encryption and decryption, is much slower than symmetric-key
cryptography. For encipherment of large messages, symmetric-key cryptography is still
needed. On the other hand, the speed of symmetric-key cryptography does not eliminate
the need for asymmetric-key cryptography. Asymmetric-key cryptography is still
needed for authentication, digital signatures, and secret-key exchanges. This means
that, to be able to use all aspects of security today, we need both symmetric-key and
asymmetric-key cryptography. One complements the other.

Trapdoor One-Way Function

The main idea behind asymmetric-key cryptography is the concept of the trapdoor one-
way function.
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Functions

Although the concept of a function is familiar from mathematics, we give an
informal definition here. A function is a rule that associates (maps) one element
in set A, called the domain, to one element in set B, called the range, as shown in
Figure 10.3.

An invertible function is a function that associates each element in the range
with exactly one element in the domain. 

One-Way Function

A one-way function (OWF) is a function that satisfies the following two properties:

1.  f is easy to compute. In other words, given x, y = f (x) can be easily computed. 

2.  f −1 is difficult to compute. In other words, given y, it is computationally infeasible
to calculate x = f −1(y).

Trapdoor One-Way Function 

A trapdoor one-way function (TOWF) is a one-way function with a third property:

3. Given y and a trapdoor (secret), x can be computed easily. 

Example 10.1

When n is large, n  = p × q is a one-way function. Note that in this function x is a tuple (p, q) of
two primes and y is n. Given p and q, it is always easy to calculate n; given n, it is very difficult to
compute p and q. This is the factorization problem that we saw in Chapter 9. There is not a poly-
nomial time solution to the f −1 function in this case. 

Example 10.2

When n is large, the function y = xk mod n is a trapdoor one-way function. Given x, k, and n, it is
easy to calculate y using the fast exponential algorithm we discussed in Chapter 9. Given y, k, and n,
it is very difficult to calculate x. This is the discrete logarithm problem we discussed in Chapter 9.
There is not a polynomial time solution to the f −1 function in this case. However, if we know the
trapdoor, k′ such that k × k′ = 1 mod φ(n), we can use x = yk′ mod n to find x. This is the famous
RSA, which will be discussed later in this chapter.

Figure 10.3 A function as rule mapping a domain to a range

x
y

y = f (x)

Set A Set B

Domain Range

f

f –1
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Knapsack Cryptosystem

The first brilliant idea of public-key cryptography came from Merkle and Hellman, in
their knapsack cryptosystem. Although this system was found to be insecure with
today’s standards, the main idea behind this cryptosystem gives an insight into recent
public-key cryptosystems discussed later in this chapter. 

If we are told which elements, from a predefined set of numbers, are in a knapsack,
we can easily calculate the sum of the numbers; if we are told the sum, it is difficult to
say which elements are in the knapsack.

Definition

Suppose we are given two k-tuples, a = [a1, a2, …, ak] and x = [x1, x2, …, xk]. The
first tuple is the predefined set; the second tuple, in which xi is only 0 or 1, defines
which elements of a are to be dropped in the knapsack. The sum of elements in the
knapsack is

s = knapsackSum (a, x)  =  x1a1 + x2a2 + … +  xkak

Given a and x, it is easy to calculate s. However, given s and a it is difficult to find
x. In other words, s = knapsackSum (x, a) is easy to calculate, but x = inv_knapsackSum

(s, a) is difficult. The function knapsackSum is a one-way function if a is a general
k-tuple.

Superincreasing Tuple

It is easy to compute knapsackSum and inv_knapsackSum if the k-tuple a is super-

increasing. In a superincreasing tuple, ai ≥ a1 + a2 + … + ai−1. In other words,
each element (except a1) is greater than or equal to the sum of all previous elements. In
this case we calculate knapsackSum and inv_knapsackSum as shown in Algorithm 10.1.
The algorithm inv_knapsackSum starts from the largest element and proceeds to
the smallest one. In each iteration, it checks to see whether an element is in the
knapsack.  

Algorithm 10.1 knapsacksum and inv_knapsackSum for a superincreasing k-tuple

knapsackSum (x [1 … k], a [1 … k])
{
     s   ←  0
     for (i = 1 to k)
     {
        s   ←  s + ai  × xi

     }
     return s
}

inv_knapsackSum (s, a [1 … k])
{
     for (i = k down to 1)
     {
           if s ≥ ai 
           {
                  xi  ← 1
                  s   ←  s − ai

           }
           else xi    ← 0
     }
     return x [1 … k]
}
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Example 10.3

As a very trivial example, assume that a = [17, 25, 46, 94, 201,400] and s = 272 are given.
Table 10.1 shows how the tuple x is found using inv_knapsackSum routine in Algorithm 10.1. 

In this case x = [0, 1, 1, 0, 1, 0], which means that 25, 46, and 201 are in the knapsack.

Secret Communication with Knapsacks

Let us see how Alice can send a secret message to Bob using a knapsack cryptosystem.
The idea is shown in Figure 10.4. 

Key Generation

a. Create a superincreasing k-tuple b = [b1, b2, …, bk]

b. Choose a modulus n, such that n > b1 + b2  + … +  bk

Table 10.1 Values of i, ai, s, and xi in Example 10.3

i ai  s s ≥ ai xi s   ←  s − ai × xi 

6 400 272 false x6 = 0 272

5  201 272 true x5 = 1    71

4   94   71 false x4 = 0    71

3   46    71 true x3 = 1   25

2   25   25 true x2 = 1     0

1   17     0 false x1 = 0     0

Figure 10.4 Secret communication with knapsack cryptosystem
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c. Select a random integer r that is relatively prime with n and 1 ≤ r ≤ n −1. 

d. Create a temporary k-tuple t = [t1, t2, … , tk] in which ti = r × bi mod n.

e. Select a permutation of k objects and find a new tuple a = permute (t). 

f. The public key is the k-tuple a. The private key is n, r, and the k-tuple b.

Encryption

Suppose Alice needs to send a message to Bob. 

a. Alice converts her message to a k-tuple x = [x1, x2, … , xk] in which xi is either
0 or 1. The tuple x is the plaintext. 

b. Alice uses the knapsackSum routine to calculate s. She then sends the value of s as
the ciphertext.

Decryption

Bob receives the ciphertext s. 

a. Bob calculates s′ = r−1 × s mod n. 

b. Bob uses inv_knapsackSum to create x′.

c. Bob permutes x′ to find x. The tuple x is the recovered plaintext. 

Example 10.4

This is a trivial (very insecure) example just to show the procedure. 

1. Key generation:

a. Bob creates the superincreasing tuple b = [7, 11, 19, 39, 79, 157, 313]. 

b. Bob chooses the modulus n = 900 and r = 37, and  [4 2 5 3 1 7 6] as permutation table. 

c. Bob now calculates the tuple t = [259, 407, 703, 543, 223, 409, 781]. 

d. Bob calculates the tuple a  = permute (t) = [543, 407, 223, 703, 259, 781, 409]. 

e. Bob publicly announces a; he keeps n, r, and b secret.   

2. Suppose Alice wants to send a single character “g” to Bob. 

a. She uses the 7-bit ASCII representation of “g”, (1100111)2, and creates the tuple x = 
[1, 1, 0, 0, 1, 1, 1]. This is the plaintext.    

b. Alice calculates s = knapsackSum (a, x) = 2165. This is the ciphertext sent to Bob. 

3. Bob can decrypt the ciphertext, s = 2165. 

a. Bob calculates s′ = s × r−1 mod n = 2165 × 37−1 mod 900 = 527. 

b. Bob calculates x′ = Inv_knapsackSum (s′, b) = [1, 1, 0, 1, 0, 1, 1].

c. Bob calculates x = permute (x′) = [1, 1, 0, 0, 1, 1, 1]. He interprets the string (1100111)2 
as the character “g”. 

Trapdoor

Calculating the sum of items in Alice’s knapsack is actually the multiplication of the
row matrix x by the column matrix a. The result is a 1 × 1 matrix s. Matrix multiplica-
tion, s = x × a, in which x is a row matrix and a is a column matrix, is a one-way func-
tion. Given s and x, Eve cannot find a easily. Bob, however, has a trapdoor. Bob uses
his s′ = r−1 × s and the secret superincreasing column matrix b to find a row matrix x′
using the inv_knapsackSum routine. The permutation allows Bob to find x from x′. 
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10.2 RSA CRYPTOSYSTEM

The most common public-key algorithm is the RSA cryptosystem, named for its

inventors (Rivest, Shamir, and Adleman). 

Introduction

RSA uses two exponents, e and d, where e is public and d is private. Suppose P is the

plaintext and C is the ciphertext. Alice uses C = Pe mod n to create ciphertext C from

plaintext P; Bob uses P = Cd mod n to retrieve the plaintext sent by Alice. The modulus n,

a very large number, is created during the key generation process, as we will discuss later.

 Encryption and decryption use modular exponentiation. As we discussed in

Chapter 9, modular exponentiation is feasible in polynomial time using the fast expo-

nentiation algorithm. However, modular logarithm is as hard as factoring the modu-

lus, for which there is no polynomial algorithm yet. This means that Alice can

encrypt in polynomial time (e is public), Bob also can decrypt in polynomial time

(because he knows d), but Eve cannot decrypt because she would have to calculate

the eth root of C using modular arithmetic. Figure 10.5 shows the idea. 

In other words, Alice uses a one-way function (modular exponentiation) with a

trapdoor known only to Bob. Eve, who does not know the trapdoor, cannot decrypt the

message. If some day, a polynomial algorithm for eth root modulo n calculation is

found, modular exponentiation is not a one-way function any more.

Procedure

Figure 10.6 shows the general idea behind the procedure used in RSA.

Figure 10.5 Complexity of operations in RSA
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Two Algebraic Structures

RSA uses two algebraic structures: a ring and a group.

Encryption/Decryption Ring Encryption and decryption are done using the com-

mutative ring R = <Zn, +, × > with two arithmetic operations: addition and multiplica-

tion. In RSA, this ring is public because the modulus n is public. Anyone can send a

message to Bob using this ring to do encryption. 

Key-Generation Group RSA uses a multiplicative group G = <Zφ(n)∗, × > for

key generation. This group supports only multiplication and division (using multi-

plicative inverses), which are needed for generating public and private keys. This

group is hidden from the public because its modulus, φ(n), is hidden from the pub-

lic. We will see shortly that if Eve can find this modulus, she can easily attack the

cryptosystem.  

Key Generation

Bob uses the steps shown in Algorithm 10.2 to create his public and private key. After

key generation, Bob announces the tuple (e, n) as his public key; Bob keeps the integer

d as his private key. Bob can discard p, q, and φ(n); they will not be needed unless Bob

needs to change his private key without changing the modulus (which is not recom-

mended, as we will see shortly). To be secure, the recommended size for each prime, p

or q, is 512 bits (almost 154 decimal digits). This makes the size of n, the modulus,

1024 bits (309 digits).     

Figure 10.6 Encryption, decryption, and key generation in RSA
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Encryption

Anyone can send a message to Bob using his public key. Encryption in RSA can be
done using an algorithm with polynomial time complexity, as shown in Algorithm 10.3.
The fast exponentiation algorithm was discussed in Chapter 9. The size of the plaintext
must be less than n, which means that if the size of the plaintext is larger than n, it
should be divided into blocks. 

Decryption

Bob can use Algorithm 10.4 to decrypt the ciphertext message he received. Decryption
in RSA can be done using an algorithm with polynomial time complexity. The size of
the ciphertext is less than n.     

Algorithm 10.2 RSA Key Generation

RSA_Key_Generation

{

     Select two large primes p and q such that p ≠ q.

     n  ← p × q

     φ(n)  ← (p − 1) × (q  − 1)

     Select e such that 1 < e < φ(n) and e is coprime to φ(n)

     d   ← e −1 mod φ(n)                                             // d is inverse of e modulo φ(n)

     Public_key  ←  (e, n)                                            // To be announced publicly

     Private_key ← d                                                     // To be kept secret

     return Public_key and Private_key
}

In RSA, the tuple (e, n) is the public key; the integer d is the private key.

Algorithm 10.3 RSA encryption

RSA_Encryption (P, e, n)                              // P is the plaintext in Zn and P < n

{

     C   ←  Fast_Exponentiation (P, e, n)       // Calculation of (Pe mod n)

     return C 
}

Algorithm 10.4 RSA decryption

RSA_Decryption (C, d, n)                               //C is the ciphertext in Zn           

{

     P   ←  Fast_Exponentiation (C, d, n)        // Calculation of (Cd mod n)

     return P 

}

In RSA, p and q must be at least 512 bits; n must be at least 1024 bits. 
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Proof of RSA

We can prove that encryption and decryption are inverses of each other using the sec-
ond version of Euler’s theorem discussed in Chapter 9:

Assume that the plaintext retrieved by Bob is P1 and prove that it is equal to P. 

Some Trivial Examples

Following are some trivial (insecure) examples of the RSA procedure. The criteria that
make the RSA system secure will be discussed in the later sections. 

Example 10.5

Bob chooses 7 and 11 as p and q and calculates n = 7 × 11 = 77. The value of φ(n) = (7 − 1)(11 − 1)
or 60. Now he chooses two exponents, e and d, from Z60∗. If he chooses e to be 13, then d is 37.
Note that e × d mod 60 = 1 (they are inverses of each other). Now imagine that Alice wants to
send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5. 

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

The plaintext 5 sent by Alice is received as plaintext 5 by Bob.

Example 10.6

Now assume that another person, John, wants to send a message to Bob. John can use the same
public key announced by Bob (probably on his website), 13; John’s plaintext is 63. John calcu-
lates the following: 

 Bob receives the ciphertext 28 and uses his private key 37 to decipher the ciphertext:

If n = p × q, a < n, and k is an integer, then ak×φ(n)+1 ≡ a (mod n).

P1 = Cd mod n = (Pe mod n)d mod n = Ped mod n
ed = kφ(n) + 1                                                          // d and e are inverses modulo φ(n)
P1 = Ped mod n → P1 = Pkφ(n)+1 mod n           
P1 = Pkφ(n)+1 mod n =   P mod n                            // Euler’s theorem (second version)

Plaintext: 5                          C = 513 = 26 mod 77                    Ciphertext: 26 

Ciphertext: 26                            P = 2637 = 5 mod 77                                     Plaintext: 5

Plaintext: 63                 C = 6313 = 28 mod 77                   Ciphertext: 28 

Ciphertext: 28                 P = 2837 = 63 mod 77                   Plaintext: 63 
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Example 10.7

Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates
n = 397 × 401= 159197. She then calculates φ(n) = 396 × 400 = 158400. She then chooses
e = 343 and d = 12007. Show how Ted can send a message to Jennifer if he knows e and n. 

Solution

Suppose Ted wants to send the message “NO” to Jennifer. He changes each character to a number
(from 00 to 25), with each character coded as two digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext is 1314. Ted then uses e and n to encrypt
the message. The ciphertext is 1314343 = 33677 mod 159197. Jennifer receives the message
33677 and uses the decryption key d to decipher it as   3367712007 = 1314 mod 159197. Jennifer
then decodes 1314 as the message “NO”. Figure 10.7 shows the process.

Attacks on RSA

No devastating attacks on RSA have been yet discovered. Several attacks have been
predicted based on the weak plaintext, weak parameter selection, or inappropriate
implementation. Figure 10.8 shows the categories of potential attacks.

Figure 10.7 Encryption and decryption in Example 10.7

Figure 10.8 Taxonomy of potential attacks on RSA
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Factorization Attack

The security of RSA is based on the idea that the modulus is so large that it is infeasi-
ble to factor it in a reasonable time. Bob selects p and q and calculates n = p × q.
Although n is public, p and q are secret. If Eve can factor n and obtain p and q, she
can calculate φ(n) = (p − 1) (q − 1). Eve then can calculate d = e−1 mod φ(n) because
e is public. The private exponent d is the trapdoor that Eve can use to decrypt any
encrypted message. 

As we learned in Chapter 9, there are many factorization algorithms, but none of
them can factor a large integer with polynomial time complexity. To be secure, RSA
presently requires that n should be more than 300 decimal digits, which means that the
modulus must be at least 1024 bits. Even using the largest and fastest computer avail-
able today, factoring an integer of this size would take an infeasibly long period of
time. This means that RSA is secure as long as an efficient algorithm for factorization
has not been found. 

Chosen-Ciphertext Attack

A potential attack on RSA is based on the multiplicative property of RSA. Assume that
Alice creates the ciphertext C = Pe mod n and sends C to Bob. Also assume that Bob
will decrypt an arbitrary ciphertext for Eve, other than C. Eve intercepts C and uses the
following steps to find P:

a. Eve chooses a random integer X in Zn*.

b. Eve calculates Y = C × Xe mod n.

c. Eve sends Y to Bob for decryption and get Z = Yd mod n; This step is an instance
of a chosen-ciphertext attack. 

d. Eve can easily find P because

Eve uses the extended Euclidean algorithm to find the multiplicative inverse of X
and eventually the value of P. 

Attacks on the Encryption Exponent

To reduce the encryption time, it is tempting to use a small encryption exponent e. The
common value for e is e = 3 (the second prime). However, there are some potential
attacks on low encryption exponent that we briefly discuss here. These attacks do not
generally result in a breakdown of the system, but they still need to be prevented. To
thwart these kinds of attacks, the recommendation is to use e = 216 + 1 = 65537 (or a
prime close to this value). 

Coppersmith Theorem Attack The major low encryption exponent attack is referred
to as the Coppersmith theorem attack. This theorem states that in a modulo-n polyno-
mial f(x) of degree e, one can use an algorithm of the complexity log n to find the
roots if one of the roots is smaller than n1/e. This theorem can be applied to the RSA

Z = Yd mod n = (C × Xe)d mod n = (Cd × Xed) mod n = (Cd × X) mod n = (P × X) mod n
Z = (P × X) mod n    →    P = Z × X−1 mod n 
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cryptosystem with C = f (P) = Pe mod n. If e = 3 and only two thirds of the bits in the
plaintext P are known, the algorithm can find all bits in the plaintext. 

Broadcast Attack The broadcast attack can be launched if one entity sends the
same message to a group of recipients with the same low encryption exponent. For
example, assume the following scenario: Alice wants to send the same message to three
recipients with the same public exponent e = 3 and the moduli n1, n2, and n3. 

Applying the Chinese remainder theorem to these three equations, Eve can find
an equation of the form C′ = P3 mod n1n2n3. This means that P3< n1n2n3. This
means C′= P3 is in regular arithmetic (not modular arithmetic). Eve can find the
value of C′ = P1/3. 

Related Message Attack The related message attack, discovered by Franklin Reiter,
can be briefly described as follows. Alice encrypts two plaintexts, P1 and P2, and
encrypts them with e = 3 and sends C1 and C2 to Bob. If P1 is related to P2 by a linear
function, then Eve can recover P1 and P2 in a feasible computation time. 

Short Pad Attack The short pad attack, discovered by Coppersmith, can be briefly
described as follows. Alice has a message M to send to Bob. She pads the message with
r1, encrypts the result to get C1, and sends C1 to Bob. Eve intercepts C1 and drops it.
Bob informs Alice that he has not received the message, so Alice pads the message again
with r2, encrypts it, and sends it to Bob. Eve also intercepts this message. Eve now has
C1 and C2, and she knows that they both are ciphertexts belonging to the same plaintext.
Coppersmith proved that if r1 and r2 are short, Eve may be able to recover the original
message M. 

Attacks on the Decryption Exponent

Two forms of attacks can be launched on the decryption exponent: revealed decryp-

tion exponent attack and low decryption exponent attack. They are discussed
briefly. 

Revealed Decryption Exponent Attack It is obvious that if Eve can find the
decryption exponent, d, she can decrypt the current encrypted message. However, the
attack does not stop here. If Eve knows the value of d, she can use a probabilistic
algorithm (not discussed here) to factor n and find the value of p and q. Consequently,
if Bob changes only the compromised decryption exponent but keeps the same mod-
ulus, n, Eve will be able to decrypt future messages because she has the factorization
of n. This means that if Bob finds out that the decryption exponent is compromised,
he needs to choose new value for p and q, calculate n, and create totally new private
and public keys. 

C1 = P3 mod n1                                    C2 = P3 mod n2                                   C3 = P3 mod n3

In RSA, if d is comprised, then p, q, n, e, and d must be regenerated. 
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Low Decryption Exponent Attack Bob may think that using a small private-key d,
would make the decryption process faster for him. Wiener showed that if d < 1/3 n1/4, a
special type of attack based on continuous fraction, a topic discussed in number theory,
can jeopardize the security of RSA. For this to happen, it must be the case that q < p < 2q.
If these two conditions exist, Eve can factor n in polynomial time.  

Plaintext Attacks

Plaintext and ciphertext in RSA are permutations of each other because they are inte-
gers in the same interval (0 to n − 1). In other words, Eve already knows something
about the plaintext. This characteristic may allow some attacks on the plaintext. Three
attacks have been mentioned in the literature: short message attack, cycling attack, and
unconcealed attack.

Short Message Attack In the short message attack, if Eve knows the set of possible
plaintexts, she then knows one more piece of information in addition to the fact that the
ciphertext is the permutation of plaintext. Eve can encrypt all of the possible messages
until the result is the same as the ciphertext intercepted. For example, if it is known that
Alice is sending a four-digit number to Bob, Eve can easily try plaintext numbers from
0000 to 9999 to find the plaintext. For this reason, short messages must be padded with
random bits at the front and the end to thwart this type of attack. It is strongly recom-
mended that messages be padded with random bits before encryption using a method
called OAEP, which is discussed later in this chapter. 

Cycling Attack The cycling attack is based on the fact that if the ciphertext is a
permutation of the plaintext, the continuous encryption of the ciphertext will eventu-
ally result in the plaintext. In other words, if Eve continuously encrypts the inter-
cepted ciphertext C, she will eventually get the plaintext. However, Eve does not
know what the plaintext is, so she does not know when to stop. She needs to go one
step further. When she gets the ciphertext C again, she goes back one step to find the
plaintext. 

Is this a serious attack on RSA? It has been shown that the complexity of the algo-
rithm is equivalent to the complexity of factoring n. In other words, there is no efficient
algorithm that can launch this attack in polynomial time if n is large.

Unconcealed Message Attack Another attack that is based on the permutation rela-
tionship between plaintext and ciphertext is the unconcealed message attack. An

In RSA, the recommendation is to have d ≥≥≥≥ 1/3 n1/4 to prevent low decryption 

exponent attack.

Intercepted ciphertext: C
C1 = Ce   mod n   
C2 = C1

e mod n   
… 
Ck = Ck−1

e mod n → If Ck = C, stop: the plaintext is  P = Ck−1
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unconcealed message is a message that encrypts to itself (cannot be concealed). It has
been proven that there are always some messages that are encrypted to themselves.
Because the encryption exponent normally is odd, there are some plaintexts that are
encrypted to themselves such as P = 0 and P = 1. Although there are more, if the
encrypting exponent is selected carefully, the number of these message is negligible.
The encrypting program can always check if the calculated ciphertext is the same as
the plaintext and reject the plaintext before submitting the ciphertext. 

Attacks on the Modulus

The main attack on RSA, as discussed previously, is the factorization attack. The fac-
torization attack can be considered an attack on the low modulus. However, because we
have already discussed this attack, we will concentrate on another attack on the modu-
lus: the common modulus attack. 

Common Modulus Attack The common modulus attack can be launched if a com-
munity uses a common modulus, n. For example, people in a community might let a
trusted party select p and q, calculate n and φ(n), and create a pair of exponents (ei, di)
for each entity. Now assume Alice needs to send a message to Bob. The ciphertext to
Bob is C = PeB mod n. Bob uses his private exponent, dB, to decrypt his message, P =
CdB mod n. The problem is that Eve can also decrypt the message if she is a member of
the community and has been assigned a pair of exponents (eE and dE), as we learned in
the section “Low Decryption Exponent Attack”. Using her own exponents (eE and dE),
Eve can launch a probabilistic attack to factor n and find Bob’s dB. To thwart this type
of attack, the modulus must not be shared. Each entity needs to calculate her or his own
modulus.

Attacks on Implementation

Previous attacks were based on the underlying structure of RSA. As Dan Boneh has
shown, there are several attacks on the implementation of RSA. We mention two of
these attacks: the timing attack and the power attack. 

Timing Attack Paul Kocher elegantly demonstrated a ciphertext-only attack, called
the timing attack. The attack is based on the fast-exponential algorithm discussed in
Chapter 9. The algorithm uses only squaring if the corresponding bit in the private
exponent d is 0; it uses both squaring and multiplication if the corresponding bit is 1. In
other words, the timing required to do each iteration is longer if the corresponding bit is
1. This timing difference allows Eve to find the value of bits in d, one by one. 

Assume that Eve has intercepted a large number of ciphertexts, C1 to Cm. Also
assume that Eve has observed how long it takes for Bob to decrypt each ciphertext, T1
to Tm. Eve, who knows how long it takes for the underlying hardware to calculate a
multiplication operation, calculated t1 to tm, where ti is the time required to calculate
the multiplication operation Result = Result × Ci mod n. 

Eve can use Algorithm 10.5, which is a simplified version of the algorithm used in
practice, to calculate all bits in d (d0 to dk−1).   

The algorithm sets d0 = 1 (because d should be odd) and calculates new values for
Ti’s (decryption time related to d1 to dk−1). The algorithm then assumes the next bit is 1
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and finds some new values D1 to Dm based on this assumption. If the assumption is
correct, each Di is probably smaller than the corresponding Ti. However, the algorithm
uses the variance (or other correlation criteria) to consider all variations of Di and Ti.
If the difference in variance is positive, the algorithm assumes that the next bit is 1;
otherwise, it assumes that the next bit is 0. The algorithm then calculates the new Ti’s to
be used for remaining bits. 

There are two methods to thwart timing attack:

1. Add random delays to the exponentiations to make each exponentiation take the
same amount of time.

2. Rivest recommended blinding. The idea is to multiply the ciphertext by a random
number before decryption. The procedure is as follows:

a. Select a secret random number r between 1 and (n − 1).

b. Calculate C1 = C × re mod n.

c. Calculate P1 = C1
d mod n. 

d. Calculate P = P1 × r−1 mod n.

Power Attack The Power attack is similar to the timing attack. Kocher showed that
if Eve can precisely measure the power consumed during decryption, she can launch a
power attack based on the principle discussed for timing attack. An iteration involving
multiplication and squaring consumes more power than an iteration that uses only
squaring. The same kind of techniques used to prevent timing attacks can be used to
thwart power attacks.

Recommendations

The following recommendations are based on theoretical and experimental results.

1. The number of bits for n should be at least 1024. This means that n should be
around 21024, or 309 decimal digits. 

Algorithm 10.5 Timing attack on RSA

RSA_Timing_Attack ([T1 … Tm])                                        

{

       d0   ←  1                                                     // Because d is odd

       Calculate [t1 … tm]

        [T1 … Tm] ← [T1 … Tm] − [t1 … tm]        // Update Ti for the next bit 

        for ( j from 1 to k − 1)
       {

                     Recalculate [t1 … tm]                           // Recalculate ti assuming the next bit is 1                               
              [D1 … Dm] ← [T1 … Tm] − [t1 … tm]       
             var ← variance ([D1 … Dm]) −  variance ([T1 … Tm])                  

              if (var > 0)   dj ← 1        else   dj ← 0
            [T1 … Tm] ← [T1 … Tm] −  dj × [t1 … tm]     // Update Ti for the next bit
       }
}
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2. The two primes p and q must each be at least 512 bits. This means that p and q
should be around 2512 or 154 decimal digits.

3. The values of p and q should not be very close to each other. 

4. Both p − 1 and q − 1 should have at least one large prime factor.

5. The ratio p/q should not be close to a rational number with a small numerator or
denominator.

6. The modulus n must not be shared. 

7. The value of e should be 216 + 1 or an integer close to this value. 

8. If the private key d is leaked, Bob must immediately change n as well as both e and
d. It has been proven that knowledge of n and one pair (e, d ) can lead to the dis-
covery of other pairs of the same modulus.

9. Messages must be padded using OAEP, discussed later. 

Optimal Asymmetric Encryption Padding (OAEP)

As we mentioned earlier, a short message in RSA makes the ciphertext vulnerable to
short message attacks. It has been shown that simply adding bogus data (padding) to
the message might make Eve’s job harder, but with additional efforts she can still attack
the ciphertext. The solution proposed by the RSA group and some vendors is to apply a
procedure called optimal asymmetric encryption padding (OAEP). Figure 10.9

Figure 10.9 Optimal asymmetric encryption padding (OAEP)
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shows a simple version of this procedure; the implementation may use a more sophisti-
cated version. 

The whole idea in Figure 10.9 is that P = P1 || P2, where P1 is the masked version
of the padded message, M; P2 is sent to allow Bob to find the mask. 

Encryption The following shows the encryption process:

1. Alice pads the message to make an m-bit message, which we call M. 

2. Alice chooses a random number r of k bits. Note that r is used only once and is
then destroyed.

3. Alice uses a public one-way function, G, that takes an r-bit integer and creates an
m-bit integer (m is the size of M, and r < m). This is the mask. 

4. Alice applies the mask G(r) to create the first part of the plaintext P1 = M ⊕ G(r).
P1 is the masked message. 

5. Alice creates the second part of the plaintext as P2 = H(P1) ⊕ r. The function H is
another public function that takes an m-bit input and creates an k-bit output. This
function can be a cryptographic hash function (see Chapter 12). P2 is used to allow
Bob to recreate the mask after decryption.

6. Alice creates C = Pe = (P1 || P2)e and sends C to Bob. 

Decryption The following shows the decryption process:

1. Bob creates P = Cd = (P1 || P2). 

2. Bob first recreates the value of r using H(P1) ⊕ P2 = H(P1) ⊕ H(P1) ⊕ r = r. 

3. Bob uses G(r) ⊕ P = G(r) ⊕ G(r) ⊕ M = M to recreate the value of the padded
message. 

4. After removing the padding from M, Bob finds the original message. 

Error in Transmission

If there is even a single bit error during transmission, RSA will fail. If the received
ciphertext is different from what was sent, the receiver cannot determine the original
plaintext. The plaintext calculated at the receiver site may be very different from the
one sent by the sender. The transmission media must be made error-free by adding
error-detecting or error-correcting redundant bits to the ciphertext. 

Example 10.8

Here is a more realistic example. We choose a 512-bit p and q, calculate n and φ(n), then choose
e and test for relative primeness with φ(n). We then calculate d. Finally, we show the results of
encryption and decryption. The integer p is a 159-digit number. 

p = 961303453135835045741915812806154279093098455949962158225831508796
479404550564706384912571601803475031209866660649242019180878066742
1096063354219926661209
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The integer q is a 160-digit number. 

The modulus n = p × q.  It has 309 digits.

 φ(n) = (p − 1)(q − 1) has 309 digits.

Bob chooses e = 35535 (the ideal is 65537) and tests it to make sure it is relatively prime
with φ(n). He then finds the inverse of e modulo φ(n) and calls it d.  

Alice wants to send the message “THIS IS A TEST”, which can be changed to a numeric
value using the 00−26 encoding scheme (26 is the space character). 

The ciphertext calculated by Alice is C = Pe, which is 

q = 120601919572314469182767942044508960015559250546370339360617983217
314821484837646592153894532091752252732268301071206956046025138871
45524969000359660045617

n = 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656772727460097082714127730434960500556347274566
628060099924037102991424472292215772798531727033839381334692684137
327622000966676671831831088373420823444370953

φ(n) = 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656751054233608492916752034482627988117554787657
013923444405716989581728196098226361075467211864612171359107358640
614008885170265377277264467341066243857664128

e = 35535

d = 580083028600377639360936612896779175946690620896509621804228661113
805938528223587317062869100300217108590443384021707298690876006115
306202524959884448047568240966247081485817130463240644077704833134
010850947385295645071936774061197326557424237217617674620776371642
0760033708533328853214470885955136670294831

P = 1907081826081826002619041819

C =   475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
148354103361657898467968386763733765777465625079280521148141844048
14184430812773059004692874248559166462108656
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Bob can recover the plaintext from the ciphertext using P = Cd, which is 

The recovered plaintext is “THIS IS A TEST” after decoding. 

Applications

Although RSA can be used to encrypt and decrypt actual messages, it is very slow if the
message is long. RSA, therefore, is useful for short messages. In particular, we will see
that RSA is used in digital signatures and other cryptosystems that often need to
encrypt a small message without having access to a symmetric key. RSA is also used
for authentication, as we will see in later chapters.

10.3 RABIN CRYPTOSYSTEM

The Rabin cryptosystem, devised by M. Rabin, is a variation of the RSA cryptosys-
tem. RSA is based on the exponentiation congruence; Rabin is based on quadratic con-
gruence. The Rabin cryptosystem can be thought of as an RSA cryptosystem in which
the value of e and d are fixed; e = 2 and d = 1/2. In other words, the encryption is C ≡ P2

(mod n) and the decryption is P ≡ C1/2 (mod n). 
The public key in the Rabin cryptosystem is n; the private key is the tuple (p, q).

Everyone can encrypt a message using n; only Bob can decrypt the message using p
and q. Decryption of the message is infeasible for Eve because she does not know the
values of p and q. Figure 10.10 shows the encryption and decryption. 

P = 1907081826081826002619041819

Figure 10.10 Encryption, decryption, and key generation in the Rabin cryptosystem
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We need to emphasize a point here. If Bob is using RSA, he can keep d and n and

discard p, q, and φ(n) after key generation. If Bob is using Rabin cryptosystem, he

needs to keep p and q.

Procedure

Key generation, encryption, and decryption are described below.

Key Generation

Bob uses the steps shown in Algorithm 10.6 to create his public key and private key.  

Although the two primes, p and q, can be in the form 4k + 1 or 4k + 3, the decryption pro-

cess becomes more difficult if the first form is used. It is recommended to use the second 

form, 4k + 3, to make the decryption for Alice much easier. 

Encryption

Anyone can send a message to Bob using his public key. The encrypting process is

shown in Algorithm 10.7. 

Although the plaintext P can be chosen from the set Zn, we have defined the set

to be in Zn* to make the decryption easier.

Encryption in the Rabin cryptosystem is very simple. The operation needs only one

multiplication, which can be done quickly. This is beneficial when resources are limited.

For example, smart cards have limited memory and need to use short CPU time.

Decryption

Bob can use Algorithm 10.8 to decrypt the received ciphertext. 

Algorithm 10.6 Key generation for Rabin cryptosystem

Rabin_Key_Generation                                  

{

     Choose two large primes p and q in the form 4k + 3 and p ≠ q.

     n  ← p × q

     Public_key  ←  n                                         // To be announced publicly

     Private_key ← (p, q)                                   // To be kept secret

     return Public_key and Private_key               

}

Algorithm 10.7 Encryption in Rabin cryptosystem

Rabin_Encryption (n, P)                    // n is the public key; P is the ciphertext from Zn*

{

     C   ←  P2 mod n                              // C is the ciphertext

     return C 

}
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Several points should be emphasized here. The decryption is based on the solution

of quadratic congruence, discussed in Chapter 9. Because the received ciphertext is the

square of the plaintext, it is guaranteed that C has roots (quadratic residues) in Zn*. The

Chinese remainder algorithm is used to find the four square roots. 

The most important point about the Rabin system is that it is not deterministic. The

decryption has four answers. It is up to the receiver of the message to choose one of the

four as the final answer. However, in many situations, the receiver can easily pick up

the right answer. 

Example 10.9

Here is a very trivial example to show the idea. 

1. Bob selects p = 23 and q = 7. Note that both are congruent to 3 mod 4. 

2. Bob calculates n = p × q = 161.

3. Bob announces n publicly; he keeps p and q private.

4. Alice wants to send the plaintext P = 24. Note that 161 and 24 are relatively prime; 24 is in

Z161*. She calculates C = 242 = 93 mod 161, and sends the ciphertext 93 to Bob.

5. Bob receives 93 and calculates four values:

a. a1 = +(93(23+1)/4) mod 23 = 1 mod 23 

b. a2 = −(93(23+1)/4) mod 23 = 22 mod 23

c. b1 = +(93(7+1)/4) mod 7 = 4 mod 7

d. b2 = −(93(7+1)/4) mod 7 = 3 mod 7

6. Bob takes four possible answers, (a1, b1), (a1, b2), (a2, b1), and (a2, b2), and uses the Chinese

remainder theorem to find four possible plaintexts: 116, 24, 137, and 45 (all of them rela-

tively prime to 161). Note that only the second answer is Alice’s plaintext. Bob needs to

make a decision based on the situation. Note also that all four of these answers, when

squared modulo n, give the ciphertext 93 sent by Alice.  

Algorithm 10.8 Decryption in Rabin cryptosystem

Rabin_Decryption (p, q, C)                  // C is the ciphertext; p and q are private keys

{

      a1  ←  +(C(p+1)/4) mod p

      a2  ←  −(C(p+1)/4) mod p

      b1  ←  +(C(q+1)/4) mod q
       b2  ←  −(C(q+1)/4) mod q

      // The algorithm for the Chinese remainder theorem is called four times.

      P1  ←  Chinese_Remainder (a1, b1, p, q)

      P2  ←  Chinese_Remainder (a1, b2, p, q)

      P3  ←  Chinese_Remainder (a2, b1, p, q)

      P4  ←  Chinese_Remainder (a2, b2, p, q)

      return P1, P2, P3, and P4        

}

The Rabin cryptosystem is not deterministic: Decryption creates four equally 

probable plaintexts.



SECTION 10.4 ELGAMAL CRYPTOSYSTEM 317

Security of the Rabin System

The Rabin system is secure as long as p and q are large numbers. The complexity of the

Rabin system is at the same level as factoring a large number n into its two prime fac-

tors p and q. In other words, the Rabin system is as secure as RSA. 

10.4 ELGAMAL CRYPTOSYSTEM

Besides RSA and Rabin, another public-key cryptosystem is ElGamal, named after its

inventor, Taher ElGamal. ElGamal is based on the discrete logarithm problem dis-

cussed in Chapter 9.

ElGamal Cryptosystem

Recall from Chapter 9 that if p is a very large prime, e1 is a primitive root in the group

G = <Zp*, × > and r is an integer, then e2 = e1
r mod p is easy to compute using the fast

exponential algorithm (square-and-multiply method), but given e2, e1, and p, it is infea-

sible to calculate r = loge1e2 mod p (discrete logarithm problem). 

Procedure

Figure 10.11 shows key generation, encryption, and decryption in ElGamal.     

1162 = 93 mod 161     242 = 93 mod 161    1372 = 93 mod 161   452 = 93 mod 161

Figure 10.11 Key generation, encryption, and decryption in ElGamal
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d)−1] mod p
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Key Generation

Bob uses the steps shown in Algorithm 10.9 to create his public and private keys.    

Encryption

Anyone can send a message to Bob using his public key. The encryption process is shown
in Algorithm 10.10. If the fast exponential algorithm (see Chapter 9) is used, encryption
in the ElGamal cryptosystem can also be done in polynomial time complexity. 

Decryption

Bob can use Algorithm 10.11 to decrypt the ciphertext message received.     

Algorithm 10.9 ElGamal key generation

ElGamal_Key_Generation                                  

{

     Select a large prime p

     Select d to be a member of the group G = < Zp*, × > such that 1 ≤ d ≤ p − 2

     Select e1 to be a primitive root in the group G = < Zp*, × > 

      e2  ← e1
d mod p

      Public_key  ←  (e1, e2, p)                                    // To be announced publicly

      Private_key ← d                                                  // To be kept secret

      return Public_key and Private_key            
}

Algorithm 10.10 ElGamal encryption

ElGamal_Encryption (e1, e2, p, P)                             // P is the plaintext  

{

     Select a random integer r in the group G = < Zp*, × > 
     C1   ←  e1

r mod p 

     C2   ←  (P × e2
r) mod p                                           // C1 and C2 are the ciphertexts

     return C1 and C2

}

Algorithm 10.11 ElGamal decryption

ElGamal_Decryption (d, p, C1, C2)                             // C1 and C2 are the ciphertexts 

{

     P   ←  [C2 (C1
d) −1] mod p                                       // P is the plaintext

     return P 
}

The bit-operation complexity of encryption or decryption in ElGamal 

cryptosystem is polynomial. 
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Proof

The ElGamal decryption expression C2 × (C1
d)−1 can be verified to be P  through

substitution: 

Example 10.10

Here is a trivial example. Bob chooses 11 as p. He then chooses e1 = 2. Note that 2 is a primitive

root in Z11* (see Appendix J). Bob then chooses d = 3 and calculates e2 = e1
d = 8. So the public

keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C1 and C2 for the

plaintext 7.  

Bob receives the ciphertexts (5 and 6) and calculates the plaintext.  

Example 10.11

Instead of using P = [C2 × (C1
d) −1] mod p for decryption, we can avoid the calculation of multi-

plicative inverse and use P = [C2 × C1
p−1−d] mod p (see Fermat’s little theorem in Chapter 9). In

Example 10.10, we can calculate P = [6 × 5 11−1−3] mod 11 = 7 mod 11. 

Analysis

A very interesting point about the ElGamal cryptosystem is that Alice creates r and

keeps it secret; Bob creates d and keeps it secret. The puzzle of this cryptosystem can

be solved as follows:

a. Alice sends C2 = [e2
r 

× P] mod p = [(e1
rd) × P] mod p. The expression (e1

rd) acts as a

mask that hides the value of P. To find the value of P, Bob must remove this mask. 

b. Because modular arithmetic is being used, Bob needs to create a replica of the

mask and invert it (multiplicative inverse) to cancel the effect of the mask. 

c. Alice also sends C1 = e1
r to Bob, which is a part of the mask. Bob needs to calcu-

late C1
d to make a replica of the mask because C1

d = (e1
r )d = (e1

rd). In other words,

after obtaining the mask replica, Bob inverts it and multiplies the result with C2 to

remove the mask.

d. It might be said that Bob helps Alice make the mask (e1
rd) without revealing the

value of d (d is already included in e2 = e1
d); Alice helps Bob make the mask (e1

rd)

without revealing the value of r (r is already included in C1 = e1
r). 

 [C2 × (C1
d)−1] mod p = [(e2

r 
× P) × (e1

rd )−1] mod p = (e1
dr ) × P × (e1

rd)−1 = P

Plaintext: 7 

C1 = e1
r mod 11 = 16 mod 11 = 5 mod 11

C2 = (P × e2
r) mod 11 = (7 × 4096) mod 11 = 6 mod 11

Ciphertext: (5, 6) 

[C2 × (C1
d) −1 ] mod 11= 6 × (53)−1 mod 11 = 6 × 3 mod 11 = 7 mod 11

Plaintext: 7
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Security of ElGamal

Two attacks have been mentioned for the ElGamal cryptosystem in the literature:
attacks based on low modulus and known-plaintext attacks.

Low-Modulus Attacks

If the value of p is not large enough, Eve can use some efficient algorithms (see Chapter 9)
to solve the discrete logarithm problem to find d or r. If p is small, Eve can easily find
d = loge1 e2 mod p and store it to decrypt any message sent to Bob.This can be done
once and used as long as Bob uses the same keys. Eve can also use the value of C1 to find
random number r used by Alice in each transmission r = loge1C1 mod p. Both of these
cases emphasize that security of the ElGamal cryptosystem depends on the infeasibility
of solving a discrete logarithm problem with a very large modulus. It is recommended
that p be at least 1024 bits (300 decimal digits). 

Known-Plaintext Attack

If Alice uses the same random exponent r, to encrypt two plaintexts P and P′, Eve
discovers P′ if she knows P. Assume that C2 = P × (e2

r) mod p and C′2 = P′ × (e2
r) mod p.

Eve finds P′ using the following steps:

1. (e2
r)  =  C2 × P−1 mod p

2.  P′ =  C′2 × (e2
r )−1 mod p 

It is recommended that Alice use a fresh value of r to thwart the known-plaintext
attacks. 

Example 10.12

Here is a more realistic example. Bob uses a random integer of 512 bits (the ideal is 1024 bits).
The integer p is a 155-digit number (the ideal is 300 digits). Bob then chooses e1, d, and
calculates e2, as shown below: Bob announces (e1, e2, p) as his public key and keeps d as his
private key. 

For the ElGamal cryptosystem to be secure, p must be at least 300 digits and r must be 

new for each encipherment. 

p = 115348992725616762449253137170143317404900945326098349598143469219
056898698622645932129754737871895144368891765264730936159299937280
61165964347353440008577

e1 = 2         

d = 1007    

e2 = 978864130430091895087668569380977390438800628873376876100220622332
554507074156189212318317704610141673360150884132940857248537703158
2066010072558707455 
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Alice has the plaintext P = 3200 to send to Bob. She chooses r = 545131, calculates C1 and
C2, and sends them to Bob. 

Bob calculates the plaintext P = C2 × ((C1)d)−1 mod p = 3200 mod p.

Application

ElGamal can be used whenever RSA can be used. It is used for key exchange, authenti-
cation, and encryption and decryption of small messages. 

10.5 ELLIPTIC CURVE CRYPTOSYSTEMS

Although RSA and ElGamal are secure asymmetric-key cryptosystems, their secu-
rity comes with a price, their large keys. Researchers have looked for alternatives
that give the same level of security with smaller key sizes. One of these promising
alternatives is the elliptic curve cryptosystem (ECC). The system is based on the
theory of elliptic curves. Although the deep involvement of this theory is beyond
the scope of this book, this section first gives a very simple introduction to three
types of elliptic curves and then suggests a flavor of a cryptosystem that uses some
of these curves.

Elliptic Curves over Real Numbers

Elliptic curves, which are not directly related to ellipses, are cubic equations in two
variables that are similar to the equations used to calculate the length of a curve in the
circumference of an ellipse. The general equation for an elliptic curve is 

P    ==== 3200 

r    ==== 545131 

C1 = 887297069383528471022570471492275663120260067256562125018188351429
417223599712681114105363661705173051581533189165400973736355080295
736788569060619152881

C2 = 708454333048929944577016012380794999567436021836192446961774506921
244696155165800779455593080345889614402408599525919579209721628879
6813505827795664302950

P = 3200 

y2 + b1xy + b2y = x3 + a1x2 + a2x + a3
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Elliptic curves over real numbers use a special class of elliptic curves of the form

In the above equation, if 4a3 + 27b2 ≠ 0, the equation represents a nonsingular

elliptic curve; otherwise, the equation represented a singular elliptic curve. In a non-
singular elliptic curve, the equation x3 + ax + b = 0 has three distinct roots (real or com-
plex); in a singular elliptic curve the equation x3 + ax + b = 0 does not have three
distinct roots.

Looking at the equation, we can see that the left-hand side has a degree of 2 while
the right-hand side has a degree of 3. This means that a horizontal line can intersects
the curve in three points if all roots are real. However, a vertical line can intersects the
curve at most in two points.

Example 10.13

Figure 10.12 shows two elliptic curves with equations y2 = x3 − 4x and y2 = x3 − 1. Both are non-
singular. However, the first has three real roots (x = −2, x = 0, and x = 2), but the second has only
one real root (x = 1) and two imaginary ones. 

An Abelian Group

Let us define an abelian (commutative) group (see Chapter 4) using points on an elliptic
curve. A tuple P = (x1, y1) represents a point on the curve if x1 and y1 are the coordinates
of a point on the curve that satisfy the equation of the curve. For example, the points
P = (2.0, 0.0), Q = (0.0, 0.0), R = (−2.0, 0.0), S = (10.0, 30.98), and T = (10.0, −30.98)
are all points on the curve y2 = x3 − 4x. Note that each point is represented by two real
numbers. Recall from Chapter 4 that to create an abelian group we need a set, an oper-
ation on the set, and five properties that are satisfied by the operation. The group in this
case is G = <E, +>.

y2 = x3 + ax + b

Figure 10.12 Two elliptic curves over a real field
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Set We define the set as the points on the curve, where each point is a pair of real

numbers. For example, the set E for the elliptic curve y2 = x3 − 4x is shown as 

E = {(2.0, 0.0), (0.0, 0.0), (−2.0, 0.0), (10.0, 30.98), (10.0, −30.98), …} 

Operation The specific properties of a nonsingular elliptic curve allows us to define

an addition operation on the points of the curve. However, we need to remember that

the addition operation here is different from the operation that has been defined for

integers. The operation is the addition of two points on the curve to get another point on

the curve

To find R on the curve, consider three cases as shown in Figure 10.13.  

1. In the first case, the two points P = (x1, y1) and Q = (x2, y2) have different x-coordinates

and y-coordinates (x1 ≠ y1 and x2 ≠ y2), as shown in Figure 10.13a. The line con-

necting P and Q intercepts the curve at a point called −R. R is the reflection of −R

with respect to the x-axis. The coordinates of the point R, x3 and y3, can be found

by first finding the slope of the line, λ, and then calculating the values of x3 and y3,

as shown below:  

2. In the second case, the two points overlap (R = P + P), as shown in Figure 10.13b.

In this case, the slope of the line and the coordinates of the point R can be found as

shown below: 

R = P + Q, where P = (x1, y1), Q = (x2, y2), and R = (x3, y3)

Figure 10.13 Three adding cases in an elliptic curve
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3. In the third case, the two points are additive inverses of each other as shown in
Figure 10.13c. If the first point is P = (x1, y1), the second point is Q = (x1, −y1).
The line connecting the two points does not intercept the curve at a third point.
Mathematicians say that the intercepting point is at infinity; they define a point O
as the point at infinity or zero point, which is the additive identity of the group. 

Properties of the Operation The following are brief definitions of the properties of
the operation as discussed in Chapter 4:

1. Closure: It can be proven that adding two points, using the addition operation
defined in the previous section, creates another point on the curve.

2. Associativity: It can be proven that (P + Q) + R = P + (Q + R).

3. Commutativity: The group made from the points on a non-singular elliptic curve is
an abelian group; it can be proven that P + Q = Q + P.

4. Existence of identity: The additive identity in this case is the zero point, O. In other
words P = P + O = O + P.

5. Existence of inverse: Each point on the curve has an inverse. The inverse of a point
is its reflection with respect to the x-axis. In other words, the point P = (x1, y1) and
Q = (x1, −y1) are inverses of each other, which means that P + Q = O. Note that the
identity element is the inverse of itself. 

A Group and a Field

Note that the previous discussion refers to two algebraic structures: a group and a field.
The group defines the set of the points on the elliptic curve and the addition operation on
the points. The field defines the addition, subtraction, multiplication, and division using
operations on real numbers that are needed to find the addition of the points in the group.

Elliptic Curves over GF( p)

Our previous elliptic curve group used a real field for calculations involved in adding
points. Cryptography requires modular arithmetic. We have defined an elliptic curve
group with an addition operation, but the operation on the coordinates of the point are
over the GF(p) field with p > 3. In modular arithmetic, the points on the curve do not
make nice graphs as seen in the previous figures, but the concept is the same. We use
the same addition operation with the calculation done in modulo p. We call the result-
ing elliptic curve Ep(a, b), where p defines the modulus and a and b are the coefficient
of the equation y2 = x3 + ax + b. Note that although the value of x in this case ranges
from 0 to p, normally not all points are on the curve. 

Finding an Inverse

The inverse of a point (x, y) is (x, −y), where −y is the additive inverse of y. For example,
if p = 13, the inverse of (4, 2) is (4, 11). 

Finding Points on the Curve

Algorithm 10.12 shows the pseudocode for finding the points on the curve Ep(a, b).   
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Example 10.14

Define an elliptic curve E13(1, 1). The equation is y2 = x3 + x + 1 and the calculation is done

modulo 13. Points on the curve can be found as shown in Figure 10.14.  

Note the following:

a. Some values of y2 do not have a square root in modulo 13 arithmetic. These are not 

points on this elliptic curve. For example, the points with x = 2, x = 3, x = 6, and x = 9 are 

not on the curve.

b. Each point defined for the curve has an inverse. The inverses are listed as pairs. Note that 

(7, 0) is the inverse of itself. 

c. Note that for a pair of inverse points, the y values are additive inverses of each other 

in Zp. For example, 4 and 9 are additive inverses in Z13. So we can say that if 4 is y, then 

9 is −y. 

d. The inverses are on the same vertical lines.   

Algorithm 10.12 Pseudocode for finding points on an elliptic curve

ellipticCurve_points (p, a, b)                                                   // p is the modulus

{

     x ← 0

     while (x < p)

     {

            w ← (x3 + ax + b) mod p                                                          // w is y2

            if (w is a perfect square in Zp) output (x, ) (x, − )     

            x ← x + 1                          

     {        

}

Figure 10.14 Points on an elliptic curve over GF(p)
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Adding Two Points 

We use the elliptic curve group defined earlier, but calculations are done in GF(p).

Instead of subtraction and division, we use additive and multiplicative inverses. 

Example 10.15

Let us add two points in Example 10.14, R = P + Q, where P = (4, 2) and Q = (10, 6). 

a. λ = (6 − 2) × (10 − 4)−1 mod 13 = 4 × 6−1 mod 13 = 5 mod 13.

b. x = (52 − 4 −10) mod 13 = 11 mod 13.

c. y = [5 (4 −11) − 2] mod 13 = 2 mod 13.

d. R = (11, 2), which is a point on the curve in Example 10.14.

Multiplying a Point by a Constant

In arithmetic, multiplying a number by a constant k means adding the number to itself k

times. The situation here is the same. Multiplying a point P on an elliptic curve by a

constant k means adding the point P to itself k times. For example, in E13 (1, 1), if the

point (1, 4) is multiplied by 4, the result is the point (5, 1). If the point (8, 1) is multi-

plied by 3, the result is the point (10, 7). 

Elliptic Curves over GF(2n)

Calculation in the elliptic curve group can be defined over the GF(2n) field. Recall

from Chapter 4 that elements of the set in this field are n-bit words that can be inter-

preted as polynomials with coefficient in GF(2). Addition and multiplication on the

elements are the same as addition and multiplication on polynomials. To define an

elliptic curve over GF(2n), one needs to change the cubic equation. The common

equation is 

y2 + xy = x3 + ax2 + b

where b ≠ 0. Note that the value of x, y, a, and b are polynomials representing n-bit

words. 

Finding Inverses

If P = (x, y), then −P = (x, x + y).

Finding Points on the Curve

We can write an algorithm to find the points on the curve using generators for polyno-

mials discussed in Chapter 4. This algorithm is left as an exercise. Following is a very

trivial example.

Example 10.16

We choose GF(23) with elements {0, 1, g, g2, g3, g4, g5, g6} using the irreducible polynomial of

f(x) = x3 + x + 1, which means that g3 + g + 1 = 0 or g3 = g + 1. Other powers of g can be calcu-

lated accordingly. The following shows the values of the g’s. 
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Using the elliptic curve y2 + xy = x3 + g3x2 + 1, with a = g3 and b = 1, we can find the points on
this curve, as shown in Figure 10.15.

Adding Two Points 

The rules for adding points in GF(2n) is slightly different from the rules for GF(p). 

1. If P = (x1, y1), Q = (x2, y2), Q ≠ −P, and Q ≠ P, then R = (x3, y3) = P + Q can be
found as 

2. If Q = P, then R = P + P (or R = 2P) can be found as 

Example 10.17

Let us find R = P + Q, where P = (0, 1) and Q = (g2, 1). We have λ = 0 and R = (g5, g4). 

Example 10.18

Let us find R = 2P, where P = (g2, 1). We have λ = g2 + 1/g2 = g2 + g5 = g + 1 and R = (g6, g5).

Multiplying a Point by a Constant

To multiply a point by a constant, the points must be added continuously with attention
to the rule for R = 2P. 

0 000 g3 = g + 1 011

 1 001 g4 = g2 + g 110

g 010 g5 = g2 + g + 1 111

g2 100 g6 = g2 + 1 101

Figure 10.15 Points on an elliptic curve over GF(2n)
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Elliptic Curve Cryptography Simulating ElGamal

Several methods have been used to encrypt and decrypt using elliptic curves. The com-
mon one is to simulate the ElGamal cryptosystem using an elliptic curve over GF(p) or
GF(2n), as shown in Figure 10.16.  

Generating Public and Private Keys

1. Bob chooses E(a, b) with an elliptic curve over GF(p) or GF(2n). 

2. Bob chooses a point on the curve, e1(x1, y1).

3. Bob chooses an integer d.

4. Bob calculates e2(x2, y2) = d × e1(x1, y1). Note that multiplication here means mul-
tiple addition of points as defined before.

5. Bob announces E(a, b), e1(x1, y1), and e2(x2, y2) as his public key; he keeps d as his
private key. 

Encryption

Alice selects P, a point on the curve, as her plaintext, P. She then calculates a pair of
points on the text as ciphertexts: 

The reader may wonder how an arbitrary plaintext can be a point on the elliptic
curve. This is one of the challenging issues in the use of the elliptic curve for simulation.
Alice needs to use an algorithm to find a one-to-one correspondence between symbols
(or a block of text) and the points on the curve.   

Figure 10.16 ElGamal cryptosystem using the elliptic curve

C1 = r ×××× e1                         C2 = P + r ×××× e2 

Encryption

Ciphertext: (C1, C2) 

r

 P P

Public key: (e1, e2, Ep) 

(e1, e2, Ep) 
d

Decryption

C1 = r × e1

C2 = P + r × e2   

Key generation

Select Ep (a, b)
Select e1 

=
 
(x1, y1)

Select d
Calculate  e2 = 

(x2, y2) = d × e1        

P = C2 − (d × C1)

Operations such as addition and multiplication
are over an elliptic curve group.  

Note:  

Alice

Bob
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Decryption

Bob, after receiving C1 and C2, calculates P, the plaintext using the following formula. 

We can prove that the P calculated by Bob is the same as that intended by Alice, as
shown below: 

P, C1, C2, e1, and e2 are all points on the curve. Note that the result of adding two
inverse points on the curve is the zero point.

Example 10.19

Here is a very trivial example of encipherment using an elliptic curve over GF(p). 

1. Bob selects E67(2, 3) as the elliptic curve over GF(p). 

2. Bob selects e1 = (2, 22) and d = 4. 

3. Bob calculates e2 = (13, 45), where e2 = d × e1. 

4. Bob publicly announces the tuple (E, e1, e2). 

5. Alice wants to send the plaintext P = (24, 26) to Bob. She selects r = 2. 

6. Alice finds the point C1 = (35, 1), where C1 = r × e1.

7. Alice finds the point C2 = (21, 44), where C2 = P + r × e2.

8. Bob receives C1 and C2. He uses 2 × C1 (35, 1) to get (23, 25). 

9. Bob inverts the point (23, 25) to get the point (23, 42).

10. Bob adds (23, 42) with C2 = (21, 44) to get the original plaintext P = (24, 26). 

Comparison

The following shows a quick comparison of the original ElGamal algorithm with its
simulation using the elliptic curve.

a. The original algorithm uses a multiplicative group; the simulation uses an elliptic
group.

b. The two exponents in the original algorithm are numbers in the multiplicative
group; the two multipliers in the simulation are points on the elliptic curve.

c. The private key in each algorithm is an integer.

d. The secret numbers chosen by Alice in each algorithm are integers.

e. The exponentiation in the original algorithm is replaced by the multiplication of a
point by a constant.

f. The multiplication in the original algorithm is replaced by addition of points.

g. The inverse in the original algorithm is the multiplicative inverse in the multiplicative
group; the inverse in the simulation is the additive inverse of a point on the curve.

h. Calculation is usually easier in the elliptic curve because multiplication is simpler
than exponentiation, addition is simpler than multiplication, and finding the
inverse is much simpler in the elliptic curve group than in a multiplicative group. 

P = C2  −−−−     (d ×××× C1)             The minus sign here means adding with the inverse. 

P + r × e2 − (d × r × e1) = P + (r × d × e1) − (r × d × e1) = P + O = P
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Security of ECC

To decrypt the message, Eve needs to find the value of r or d. 

a. If Eve knows r, she can use P = C2 − (r × e2) to find the point P related to the plain-
text. But to find r, Eve needs to solve the equation C1 = r × e1. This means, given
two points on the curve, C1 and e1, Eve must find the multiplier that creates C1
starting from e1. This is referred to as the elliptic curve logarithm problem, and
the only method available to solve it is the Polard rho algorithm, which is infeasi-
ble if r is large, and p in GF(p) or n in GF(2n) is large. 

b. If Eve knows d, she can use P = C2 − (d × C1) to find the point P related to the
plaintext. Because e2 = d × e1, this is the same type of problem. Eve knows the
value of e1 and e2; she needs to find the multiplier d. 

Modulus Size

For the same level of security (computational effort), the modulus, n, can be smaller in
ECC than in RSA. For example, ECC over the GF(2n) with n of 160 bits can provide
the same level of security as RSA with n of 1024 bits. 

10.6 RECOMMENDED READING

The following books and websites provide more details about subjects discussed in this
chapter. The items enclosed in brackets refer to the reference list at the end of the book. 

Books

The RSA cryptosystem is discussed in [Sti06], [Sta06], [PHS03], [Vau06], [TW06], and
[Mao04]. The Rabin and ElGamal cryptosystems are discussed in [Sti06] and [Mao04].
Elliptic curve cryptography is discussed in [Sti06], [Eng99], and [Bla99]. 

WebSites

The following websites give more information about topics discussed in this chapter.

The security of ECC depends on the difficulty of solving the elliptic curve 

logarithm problem. 

http://www1.ics.uci.edu/~mingl/knapsack.html

www.dtc.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf

http://en.wikipedia.org/wiki/RSA

citeseer.ist.psu.edu/boneh99twenty.html

www.mat.uniroma3.it/users/pappa/SLIDES/RSA-HRI_05.pdf

http://en.wikipedia.org/wiki/Rabin_cryptosystem

http://en.wikipedia.org/wiki/ElGamal_encryption

ww.cs.purdue.edu/homes/wspeirs/elgamal.pdf

http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

www.cs.utsa.edu/~rakbani/publications/Akbani-ECC-IEEESMC03.pdf
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10.7 KEY TERMS 

10.8  SUMMARY

❏ There are two ways to achieve secrecy: symmetric-key cryptography and asymmetric-
key cryptography. These two will exist in parallel and complement each other; the
advantages of one can compensate for the disadvantages of the other.

❏ The conceptual differences between the two systems are based on how they keep a
secret. In symmetric-key cryptography, the secret needs to be shared between two
entities; in asymmetric-key cryptography, the secret is personal (unshared).

❏ Symmetric-key cryptography is based on substitution and permutation of symbols;
asymmetric-key cryptography is based on applying mathematical functions to
numbers.

❏ Asymmetric-key cryptography uses two separate keys: one private and one public.
Encryption and decryption can be thought of as locking and unlocking padlocks
with keys. The padlock that is locked with a public key can be unlocked only with
the corresponding private key.

❏ In asymmetric-key cryptography, the burden of providing security is mostly on the
shoulder of the receiver (Bob), who needs to create two keys: one private and one
public. Bob is responsible for distributing the private key to the community. This
can be done through a public-key distribution channel. 

asymmetric-key cryptography

blinding

broadcast attack

common modulus attack

Coppersmith theorem attack

cycling attack

ElGamal cryptosystem

elliptic curve

elliptic curve cryptosystem (ECC)

elliptic curve logarithm problem 

function

invertible function

knapsack cryptosystem

low decryption exponent attack

low encryption exponent attack

nonsingular elliptic curve

one-way function (OWF)

optimal asymmetric encryption padding 
(OAEP)

power attack

private key

public key

Rabin cryptosystem

random fault attack

related message attack

revealed decryption exponent attack

RSA (Rivest, Shamir, Adleman) 
cryptosystem 

short message attack

short pad attack

singular elliptic curve

superincreasing tuple

symmetric-key cryptography

timing attack

trapdoor

trapdoor one-way function (TOWF)

unconcealed message attack
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❏ Unlike in symmetric-key cryptography, in asymmetric-key cryptography plaintexts
and ciphertexts are treated as integers. The message must be encoded as an integer
(or a set of integers) before encryption; the integer (or the set of integers) must
be decoded into the message after decryption. Asymmetric-key cryptography is
normally used to encrypt or decrypt small messages, such as a cipher key for
symmetric-key cryptography. 

❏ The main idea behind asymmetric-key cryptography is the concept of the trapdoor
one-way function (TOWF), which is a function such that f is easy to compute, but
f−1 is computationally infeasible unless a trapdoor is used. 

❏ A brilliant idea of public-key cryptography came from Merkle and Hellman in
their knapsack cryptosystem. If we are told which elements, from a predefined set
of numbers, are in a knapsack, we can easily calculate the sum of the numbers; if
we are told the sum, it is difficult to say which elements are in the knapsack unless
the knapsack is filled with elements from a superincreasing set. 

❏ The most common public-key algorithm is the RSA cryptosystem. RSA uses two
exponents, e and d, where e is public and d is private. Alice uses C = Pe mod n to
create ciphertext C from plaintext P; Bob uses P = Cd mod n to retrieve the plain-
text sent by Alice. 

❏ RSA uses two algebraic structures: a ring and a group. Encryption and decryption
are done using the commutative ring R = <Zn, +, × > with two arithmetic operations:
addition and multiplication. RSA uses a multiplicative group G = <Zn*, × > for
key generation.

❏ No devastating attacks have yet been discovered on RSA. Several attacks have
been predicted based on factorization, chosen-ciphertext, decryption exponent,
encryption exponent, plaintext, modulus, and implementation.

❏ The Rabin cryptosystem is a variation of the RSA cryptosystem. RSA is based on
the exponentiation congruence; Rabin is based on quadratic congruence. We can
think of Rabin as the RSA in which the value of e = 2 and d = 1/2. The Rabin
cryptosystem is secure as long as p and q are large numbers. The complexity of the
Rabin cryptosystem is at the same level as factoring a large number n into its two
prime factors p and q.

❏ The ElGamal cryptosystem is based on the discrete logarithm problem. ElGamal
uses the idea of primitive roots in Zp*. Encryption and decryption in ElGamal use
the group G = <Zp*, × >. The public key is two exponents e1 and e2; the private
key is an integer d. The security of ElGamal is based on the infeasibility of solving
discrete logarithm problems. However, an attack based on low modulus and a
known-plaintext attack have been mentioned in the literature. 

❏ Another cryptosystem discussed in this chapter is based on elliptic curves.
Elliptic curves are cubic equations in two variables. Elliptic curves over real
numbers use a special class of elliptic curves y2 = x3 + ax + b where 4a3 + 27b2 ≠ 0.
An abelian group has been defined over the elliptic curve with an addition
operation that shows how two points on the curve can be added to get another
point on the curve. 
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❏ Elliptic curve cryptography (ECC) uses two algebraic structures, an abelian group
and a field. The field can be the nonfinite field of real numbers, GF(p) and
GF(2n).We have been shown how the ElGamal cryptosystem can be simulated
using elliptic curves over finite fields. The security of the ECC depends on the
elliptic curve logarithm problem, a solution which is infeasible if the modulus
is large. 

10.9 PRACTICE SET

Review Questions

1. Distinguish between symmetric-key and asymmetric-key cryptosystems. 

2. Distinguish between public and private keys in an asymmetric-key cryptosystem.
Compare and contrast the keys in symmetric-key and asymmetric-key cryptosystems.

3. Define a trapdoor one-way function and explain its use in asymmetric-key cryptography.

4. Briefly explain the idea behind the knapsack cryptosystem. 

a. What is the one-way function in this system? 

b. What is the trapdoor in this system?

c. Define the public and private keys in this system. 

d. Describe the security of this system. 

5. Briefly explain the idea behind the RSA cryptosystem. 

a. What is the one-way function in this system? 

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

6. Briefly explain the idea behind the Rabin cryptosystem. 

a. What is the one-way function in this system? 

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

7. Briefly explain the idea behind the ElGamal cryptosystem. 

a. What is the one-way function in this system? 

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

8. Briefly explain the idea behind ECC. 

a. What is the one-way function in this system? 

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.



334 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

9. Define elliptic curves and explain their applications in cryptography.

10. Define the operation used in the abelian group made of points on an elliptic curve.

Exercises

11. Given the superincreasing tuple b = [7, 11, 23, 43, 87, 173, 357], r = 41, and modulus
n = 1001, encrypt and decrypt the letter “a” using the knapsack cryptosystem. Use
[7 6 5 1 2 3 4] as the permutation table.

12. In RSA: 

a. Given n = 221 and e = 5, find d.

b. Given n =3937 and e =17, find d.

c. Given p = 19, q = 23, and e = 3, find n, φ(n), and d.

13. To understand the security of the RSA algorithm, find d if you know that e = 17
and n = 187. 

14. In RSA, given n and φ(n), calculate p and q.

15. In RSA, given e = 13 and n = 100 

a. encrypt the message “HOW ARE YOU” using 00 to 25 for letters A to Z and 26
for the space. Use different blocks to make P < n.

16. In RSA, given n = 12091 and e = 13, Encrypt the message “THIS IS TOUGH” using
the 00 to 26 encoding scheme. Decrypt the ciphertext to find the original message.

17. In RSA: 

a. Why can’t Bob choose 1 as the public key e?

b. What is the problem in choosing 2 as the public key e?

18. Alice uses Bob’s RSA public key (e = 17, n = 19519) to send a four-character mes-
sage to Bob using the (A ↔ 0, B ↔ 1, … Z ↔ 25) encoding scheme and encrypt-
ing each character separately. Eve intercepts the ciphertext (6625 0 2968 17863)
and decrypts the message without factoring the modulus. Find the plaintext and
explain why Eve could easily break the ciphertext. 

19. Alice uses Bob’s RSA public key (e = 7, n = 143) to send the plaintext P = 8
encrypted as ciphertext C = 57. Show how Eve can use the chosen-ciphertext
attack if she has access to Bob’s computer to find the plaintext. 

20. Alice uses Bob’s RSA public key (e = 3, n = 35) and sends the ciphertext 22 to
Bob. Show how Eve can find the plaintext using the cycling attack. 

21. Suggest how Alice can prevent a related message attack on RSA. 

22. Using the Rabin cryptosystem with p = 47 and q = 11: 

a. Encrypt P = 17 to find the ciphertext. 

b. Use the Chinese remainder theorem to find four possible plaintexts. 

23. In ElGamal, given the prime p = 31: 

a. Choose an appropriate e1 and d, then calculate e2. 
b. Encrypt the message “HELLO”; use 00 to 25 for encoding. Use different blocks

to make P < p.

c. Decrypt the ciphertext to obtain the plaintext.
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24. In ElGamal, what happens if C1 and C2 are swapped during the transition? 

25. Assume that Alice uses Bob’s ElGamal public key (e1 = 2 and e2 = 8) to send two
messages P = 17 and P′ = 37 using the same random integer r = 9. Eve intercepts
the ciphertext and somehow she finds the value of P = 17. Show how Eve can use a
known-plaintext attack to find the value of P′. 

26. In the elliptic curve E(1, 2) over the GF(11) field: 

a. Find the equation of the curve.

b. Find all points on the curve and make a figure similar to Figure 10.14.

c. Generate public and private keys for Bob.

d. Choose a point on the curve as a plaintext for Alice.

e. Create ciphertext corresponding to the plaintext in part d for Alice.

f. Decrypt the ciphertext for Bob to find the plaintext sent by Alice. 

27. In the elliptic curve E(g4, 1) over the GF(24) field: 

a. Find the equation of the curve.

b. Find all points on the curve and make a figure similar to Figure 10.15.

c. Generate public and private keys for Bob.

d. Choose a point on the curve as a plaintext for Alice.

e. Create ciphertext corresponding to the plaintext in part d for Alice.

f. Decrypt the ciphertext for Bob to find the plaintext sent by Alice. 

28. Using the knapsack cryptosystem: 

a. Write an algorithm for encryption.

b. Write an algorithm for decryption.

29. In RSA: 

a. Write an algorithm for encryption using OAEP.

b. Write an algorithm for decryption using OAEP.

30. Write an algorithm for a cycling attack on RSA. 

31. Write an algorithm to add two points on an elliptic curve over GF(p).

32. Write an algorithm to add two points on an elliptic curve over GF(2n).
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CHAPTER 11

Message Integrity
and Message Authentication

Objectives

This chapter has several objectives:

❏ To define message integrity

❏ To define message authentication

❏ To define criteria for a cryptographic hash function

❏ To define the Random Oracle Model and its role in evaluating the
security of cryptographic hash functions

❏ To distinguish between an MDC and a MAC

❏ To discuss some common MACs 

This is the first of three chapters devoted to message integrity, message
authentication, and entity authentication. This chapter discusses general
ideas related to cryptographic hash functions that are used to create a
message digest from a message. Message digests guarantee the integrity
of the message. We then discuss how simple message digests can be
modified to authenticate the message. The standard cryptography crypto-
graphic hash functions are developed in Chapter 12.

11.1 MESSAGE INTEGRITY
The cryptography systems that we have studied so far provide secrecy, or confidentiality,

but not integrity. However, there are occasions where we may not even need secrecy but
instead must have integrity. For example, Alice may write a will to distribute her estate
upon her death. The will does not need to be encrypted. After her death, anyone can
examine the will. The integrity of the will, however, needs to be preserved. Alice does
not want the contents of the will to be changed.
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Document and Fingerprint

One way to preserve the integrity of a document is through the use of a fingerprint. If Alice
needs to be sure that the contents of her document will not be changed, she can put her
fingerprint at the bottom of the document. Eve cannot modify the contents of this
document or create a false document because she cannot forge Alice’s fingerprint. To ensure
that the document has not been changed, Alice’s fingerprint on the document can be com-
pared to Alice’s fingerprint on file. If they are not the same, the document is not from Alice.

Message and Message Digest

The electronic equivalent of the document and fingerprint pair is the message and
digest pair. To preserve the integrity of a message, the message is passed through an
algorithm called a cryptographic hash function. The function creates a compressed
image of the message that can be used like a fingerprint. Figure 11.1 shows the mes-
sage, cryptographic hash function, and message digest.

Difference

The two pairs (document/fingerprint) and (message/message digest) are similar, with
some differences. The document and fingerprint are physically linked together. The
message and message digest can be unlinked (or sent) separately, and, most impor-
tantly, the message digest needs to be safe from change. 

Checking Integrity

To check the integrity of a message, or document, we run the cryptographic hash function
again and compare the new message digest with the previous one. If both are the same,
we are sure that the original message has not been changed. Figure 11.2 shows the idea.

Cryptographic Hash Function Criteria

A cryptographic hash function must satisfy three criteria: preimage resistance, second
preimage resistance, and collision resistance, as shown in Figure 11.3.

Figure 11.1 Message and digest

The message digest needs to be safe from change.

Message digest
(fingerprint)Message

(document)

Hash
function
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Preimage Resistance

A cryptographic hash function must be preimage resistant. Given a hash function h
and y = h(M), it must be extremely difficult for Eve to find any message, M′, such that
y = h(M′). Figure 11.4 shows the idea.

Figure 11.2 Checking integrity

Figure 11.3 Criteria of a cryptographic hash function

Figure 11.4 Preimage
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If the hash function is not preimage resistant, Eve can intercept the digest h(M) and
create a message M′. Eve can then send M′ to Bob pretending it is M.

Example 11.1

Can we use a conventional lossless compression method such as StuffIt as a cryptographic hash
function?

Solution
We cannot. A lossless compression method creates a compressed message that is reversible. You
can uncompress the compressed message to get the original one.

Example 11.2

Can we use a checksum function as a cryptographic hash function?

Solution
We cannot. A checksum function is not preimage resistant, Eve may find several messages whose
checksum matches the given one.

Second Preimage Resistance

The second criterion, second preimage resistance, ensures that a message cannot
easily be forged. If Alice creates a message and a digest and sends both to Bob, this
criterion ensures that Eve cannot easily create another message that hashes to the exact
same digest. In other words, given a specific message and its digest, it is impossible
(or at least very difficult) to create another message with the same digest. Figure 11.5
shows the idea. 

Eve intercepts (has access to) a message M and its digest h(M). She creates another
message M′≠ M, but h(M) = h(M′). Eve sends the M′ and h(M′) to Bob. Eve has forged
the message. 

Collision Resistance

The third criterion, collision resistance, ensures that Eve cannot find two messages
that hash to the same digest. Here the adversary can create two messages (out of
scratch) and hashed to the same digest. We will see later how Eve can benefit from
this weakness in the hash function. For the moment, suppose two different wills can
be created that hash to the same digest. When the time comes for the execution of
the will, the second (forged) will is presented to the heirs. Because the digest
matches both wills, the substitution is undetected. Figure 11.6 shows the idea. We
will see later that this type of attack is much easier to launch than the two previous
kinds. In other words, we need particularly be sure that a hash function is collision
resistant.

Preimage Attack
Given: y = h(M) Find: M′′′′ such that y = h(M′′′′)

Second Preimage Attack
Given: M and h(M)    Find: M′′′′ ≠≠≠≠    M such that h(M) = h(M′′′′)
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11.2 RANDOM ORACLE MODEL

The Random Oracle Model, which was introduced in 1993 by Bellare and Rogaway,

is an ideal mathematical model for a hash function. A function based on this model

behaves as follows:

1. When a new message of any length is given, the oracle creates and gives a fixed-

length message digest that is a random string of 0s and 1s. The oracle records the

message and the message digest. 

2. When a message is given for which a digest exists, the oracle simply gives the

digest in the record. 

Figure 11.5 Second preimage

Figure 11.6 Collision 
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3. The digest for a new message needs to be chosen independently from all previous
digests. This implies that the oracle cannot use a formula or an algorithm to calculate
the digest.

Example 11.3

Assume an oracle with a table and a fair coin. The table has two columns. The left column shows
the messages whose digests have been issued by the oracle. The second column lists the digests
created for those messages. We assume that the digest is always 16 bits regardless of the size of
the message. Table 11.1 shows an example of this table in which the message and the message
digest are listed in hexadecimal. The oracle has already created three digests.  

Now assume that two events occur:

a. The message AB1234CD8765BDAD is given for digest calculation. The oracle checks 
its table. This message is not in the table, so the oracle flips its coin 16 times. Assume 
that result is HHTHHHTTHTHHTTTH, in which the letter H represents heads and the 
letter T represents tails. The oracle interprets H as a 1-bit and T as a 0-bit and gives 
1101110010110001 in binary, or DCB1 in hexadecimal, as the message digest for this 
message and adds the note of the message and the digest in the table (Table 11.2).  

b. The message 4523AB1352CDEF45126 is given for digest calculation. The oracle 
checks its table and finds that there is a digest for this message in the table (first row). 
The oracle simply gives the corresponding digest (13AB). 

Example 11.4

The oracle in Example 11.3 cannot use a formula or algorithm to create the digest for a message.
For example, imagine the oracle uses the formula h(M) = M mod n. Now suppose that the oracle
has already given h(M1) and h(M2). If a new message is presented as M3 = M1 + M2, the oracle
does not have to calculate the h(M3). The new digest is just [h(M1) + h(M2)] mod n since

h(M3) = (M1 + M2) mod n = M1 mod n + M2 mod n = [h(M1) + h(M2)] mod n 

Table 11.1 Oracle table after issuing the first three digests

Message Message Digest

4523AB1352CDEF45126 13AB

723BAE38F2AB3457AC 02CA

AB45CD1048765412AAAB6662BE A38B

Table 11.2 Oracle table after issuing the fourth digest

Message Message Digest

4523AB1352CDEF45126 13AB

723BAE38F2AB3457AC 02CA

AB1234CD8765BDAD DCB1

AB45CD1048765412AAAB6662BE A38B
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This violates the third requirement that each digest must be randomly chosen based on the mes-
sage given to the oracle. 

Pigeonhole Principle

The first thing we need to be familiar with to understand the analysis of the Random
Oracle Model is the pigeonhole principle: if n pigeonholes are occupied by n +1
pigeons, then at least one pigeonhole is occupied by two pigeons.The generalized ver-
sion of the pigeonhole principle is that if n pigeonholes are occupied by kn +1 pigeons,
then at least one pigeonhole is occupied by k + 1 pigeons. 

Because the whole idea of hashing dictates that the digest should be shorter than
the message, according to the pigeonhole principle there can be collisions. In other
words, there are some digests that correspond to more than one message; the relation-
ship between the possible messages and possible digests is many-to-one.

Example 11.5

Assume that the messages in a hash function are 6 bits long and the digests are only 4 bits long.
Then the possible number of digests (pigeonholes) is 24 = 16, and the possible number of mes-
sages (pigeons) is 26 = 64. This means n = 16 and kn + 1 = 64, so k is larger than 3. The conclu-
sion is that at least one digest corresponds to four (k + 1) messages. 

Birthday Problems

The second thing we need to know before analyzing the Random Oracle Model is the
famous birthday problems. Four different birthday problems are usually encountered in
the probability courses. The third problem, sometimes referred to as birthday paradox, is
the most common one in the literature. Figure 11.7 shows the idea of each problem.

Figure 11.7 Four birthday problems
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Description of Problems

Below the birthday problems are described in terms that can be applied to the security of

hash functions. Note that the term likely in all cases means with the probability P ≥ 1/2. 

❏ Problem 1: What is the minimum number, k, of students in a classroom such that it

is likely that at least one student has a predefined birthday? This problem can be

generalized as follows. We have a uniformly distributed random variable with N

possible values (between 0 and N − 1). What is the minimum number of instances,

k, such that it is likely that at least one instance is equal to a predefined value?

❏ Problem 2: What is the minimum number, k, of students in a classroom such that it

is likely that at least one student has the same birthday as the student selected by

the professor? This problem can be generalized as follows. We have a uniformly

distributed random variable with N possible values (between 0 and N − 1). What is

the minimum number of instances, k, such that it is likely that at least one instance

is equal to the selected one? 

❏ Problem 3: What is the minimum number, k, of students in a classroom such that it

is likely that at least two students have the same birthday? This problem can be

generalized as follows. We have a uniformly distributed random variable with N

possible values (between 0 and N − 1). What is the minimum number of instances,

k, such that it is likely that at least two instances are equal?

❏ Problem 4: We have two classes, each with k students. What is the minimum value

of k so that it is likely that at least one student from the first classroom has the same

birthday as a student from the second classroom? This problem can be generalized

as follows. We have a uniformly distributed random variable with N possible val-

ues (between 0 and N − 1). We generate two sets of random values each with k

instances. What is the minimum number of, k, such that it is likely that at least one

instance from the first set is equal to one instance in the second set?

Summary of Solutions

Solutions to these problems are given in Appendix E for interested readers; The results

are summarized in Table 11.3. 

The shaded value, 23, is the solution to the classical birthday paradox; if there are

just 23 students in a classroom, it is likely (with P ≥ 1/2) that two students have the

same birthday (ignoring the year they have been born).

Table 11.3 Summarized solutions to four birthday problems

Problem Probability General value for k

Value of k with 

P = 1/2

Number of

students

 (N = 365)

1 P ≈ 1 − e−k/N k ≈ ln[1/(1 − P)] × N k ≈ 0.69 × N 253

2 P ≈ 1 − e−(k − 1)/N k ≈ ln[1/(1 − P)] × N + 1 k ≈ 0.69 × N + 1 254 

3 P ≈ 1 − e
−k(k − 1)/2N k  ≈ {2 ln [1/(1 − P)]}1/2 × N 1/2 k ≈ 1.18 × N1/2 23

4 P ≈ 1 − k  ≈ {ln [1/(1 − P)]}1/2 × N 1/2 k ≈ 0.83 × N1/2 16e k
2
/ 2N–
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Comparison

The value of k in problems 1 or 2 is proportional to N; the value of k in problems 3 or 4
is proportional to N1/2. As we will see shortly, the first two problems are related to pre-
image and second preimage attacks; the third and the fourth problems are related to the
collision attack. The comparison shows it is much more difficult to launch a preimage
or second preimage attack than to launch a collision attack. Figure 11.8 gives the graph
of P versus k. For the first and second problem only one graph is shown (probabilities
are very close). The graphs for the second and the third problems are more distinct.  

Attacks on Random Oracle Model 

To better understand the nature of the hash functions and the importance of the Random
Oracle Model, consider how Eve can attack a hash function created by the oracle. Sup-
pose that the hash function creates digests of n bits. Then the digest can be thought of
as a random variable uniformly distributed between 0 and N − 1 in which N = 2n. In
other words, there are 2n possible values for the digest; each time the oracle randomly
selects one of these values for a message. Note that this does not mean that the selec-
tion is exhaustive; some values may never be selected, but some may be selected sev-
eral times. We assume that the hash function algorithm is public and Eve knows the size
of the digest, n.

Preimage Attack

Eve has intercepted a digest D = h(M); she wants to find any message M′ such that
D = h(M′). Eve can create a list of k messages and run Algorithm 11.1. 

The algorithm can find a message for which D is the digest or it may fail. What is
the probability of success of this algorithm? Obviously, it depends on the size of list, k,
chosen by Eve. To find the probability, we use the first birthday problem. The digest
created by the program defines the outcomes of a random variable. The probability of

Figure 11.8 Graph of four birthday problems
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success is P ≈ 1 − e−k/N. If Eve needs to be at least 50 percent successful, what should

be the size of k? We also showed this value in Table 11.3 for the first birthday problem:

k ≈ 0.69 × N, or k ≈ 0.69 × 2n. In other words, for Eve to be successful more than

50 percent of the time, she needs to create a list of digest that is proportional to 2n. 

Example 11.6

A cryptographic hash function uses a digest of 64 bits. How many digests does Eve need to create

to find the original message with the probability more than 0.5? 

Solution

The number of digests to be created is k ≈ 0.69 × 2n  ≈ 0.69 × 264. This is a large number. Even if

Eve can create 230 (almost one billion) messages per second, it takes 0.69 × 234 seconds or more

than 500 years. This means that a message digest of size 64 bits is secure with respect to preim-

age attack, but, as we will see shortly, is not secured to collision attack.

Second Preimage Attack

Eve has intercepted a digest D = h(M) and the corresponding message M; she wants to

find another message M′ so that h(M′) = D. Eve can create a list of k − 1 messages and

run Algorithm 11.2. 

Algorithm 11.1 Preimage attack+

Preimage_Attack (D)

{

    for (i = 1 to k)

    {

          create (M [i])

          T ← h(M [i])                                  // T is a temporary digest

          if (T = D) return M [i]

}

return failure

}

The difficulty of a preimage attack is proportional to 2n. 

Algorithm 11.2 Second preimage attack

Second_Preimage_Attack (D, M)

{

    for (i = 1 to k −1)

    {

          create (M [i])

          T ← h (M [i])                                  // T is a temporary digest

          if (T = D) return M [i]

    }

    return failure

}
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The algorithm can find a second message for which D is also the digest or it may

fail. What is the probability of success of this algorithm? Obviously, it depends on

the size of list, k, chosen by Eve. To find the probability, we use the second birthday

problem. The digest created by the program defines the outcomes of a random variable.

The probability of success is P ≈ 1 − e−(k − 1)/N. If Eve needs to be at least 50 percent

successful, what should be the size of k? We also showed this value in Table 11.3 for

the second birthday problem: k ≈ 0.69 × N +1 or k ≈ 0.69 × 2n + 1. In other words, for

Eve to be successful more than 50 percent of the time, she needs to create a list of

digest that is proportional to 2n. 

Collision Attack

Eve needs to find two messages, M and M′; such that h(M) = h(M′). Eve can create a

list of k messages and run Algorithm 11.3.

The algorithm can find two messages with the same digest. What is the proba-

bility of success of this algorithm? Obviously, it depends on the size of list, k, chosen

by Eve. To find the probability, we use the third birthday problem. The digest created

by program defines the outcomes of a random variable. The probability of success is

P ≈ 1 − e−k(k−1)/2N. If Eve needs to be at least fifty percent successful, what should

be the size of k? We also showed this value in Table 11.3 for the third birthday prob-

lem: k ≈ 1.18 × N1/2, or k ≈ 1.18 × 2n/2. In other words, for Eve to be successful

more than 50 percent of the time, she needs to create a list of digests that is propor-

tional to 2n/2. 

The difficulty of a second preimage attack is proportional to 2n. 

Algorithm 11.3 Collision attack

Collision_Attack

{

    for (i = 1 to k )

    {

          create (M[i])

          D[i] ← h (M[i])                                     // D [i] is a list of created digests

          for ( j = 1 to i − 1)

          {

              if (D[i] = D[ j]) return (M[i] and M[ j])

          }

    }

    return failure

}

The difficulty of a collision attack is proportional to 2n/2. 
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Example 11.7

A cryptographic hash function uses a digest of 64 bits. How many digests does Eve need to create
to find two messages with the same digest with the probability more than 0.5? 

Solution
The number of digests to be created is k ≈ 1.18 × 2n/2  ≈ 1.18 × 232. If Eve can test 220 (almost
one million) messages per second, it takes 1.18 × 212 seconds, or less than two hours. This means
that a message digest of size 64 bits is not secure against the collision attack. 

Alternate Collision Attack

The previous collision attack may not be useful for Eve. The adversary needs to create
two messages, one real and one bogus, that hash to the same value. Each message
should be meaningful. The previous algorithm does not provide this type of collision.
The solution is to create two meaningful messages, but add redundancies or modifica-
tions to the message to change the contents of the message without changing the mean-
ing of each. For example, a number of messages can be made from the first message by
adding spaces, or changing the words, or adding some redundant words, and so on. The
second message can also create a number of messages. Let us call the original message
M and the bogus message M′. Eve creates k different variants of M (M1, M2, …, Mk)
and k different variants of M′ (M′1, M′2, …, M′k). Eve then uses Algorithm 11.4 to
launch the attack.   

What is the probability of success of this algorithm? Obviously, it depends on the
size of the list, k, chosen by Eve. To find the probability, we use the fourth birthday
problem. The two digest lists created by program defines the two outcomes of a random
variable. The probability of success is P ≈ 1 − e−k

2/N. If Eve needs to be at least 50 per-
cent successful, what should be the size of k? We also showed this value in Table 11.3
for the fourth birthday problem: k ≈ 0.83 × N1/2 or k ≈ 0.83 × 2n/2. In other words, for
Eve to be successful more than 50% of the time, she needs to create a list of digests that
is proportional to 2n/2. 

Algorithm 11.4 Alternate collision attack

Alternate_Collision_Attack (M [k], M′′′′[k])

{
    for (i = 1 to k )

    { 

        D[i] ← h (M[i])
        D′[i] ← h (M′[i])                                                          
        if (D [i] = D′[j]) return (M[i], M′[j])
    }
    return failure

}

The difficulty of an alternative collision attack is proportional to 2n/2. 
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Summary of Attacks

Table 11.4 shows the level of difficulty for each attack if the digest is n bits.   

Table 11.4 shows that the order, or the difficulty rate of the attack, is much less for
collision attack than for preimage or second preimage attacks. If a hash algorithm is resis-
tant to collision, we should not worry about preimage and second preimage attacks. 

Example 11.8

Originally hash functions with a 64-bit digest were believed to be immune to collision attacks.
But with the increase in the processing speed, today everyone agrees that these hash functions are
no longer secure. Eve needs only 264/2 = 232 tests to launch an attack with probability 1/2 or
more. Assume she can perform 220 (one million) tests per second. She can launch an attack in
232/220 = 212 seconds (almost an hour). 

Example 11.9

MD5 (see Chapter 12), which was one of the standard hash functions for a long time, creates
digests of 128 bits. To launch a collision attack, the adversary needs to test 264 (2128/2) tests in the
collision algorithm. Even if the adversary can perform 230 (more than one billion) tests in a sec-
ond, it takes 234 seconds (more than 500 years) to launch an attack. This type of attack is based
on the Random Oracle Model. It has been proved that MD5 can be attacked on less than 264 tests
because of the structure of the algorithm.

Example 11.10

SHA-1 (see Chapter 12), a standard hash function developed by NIST, creates digests of 160 bits.
The function is attacks. To launch a collision attack, the adversary needs to test 2160/2 = 280 tests
in the collision algorithm. Even if the adversary can perform 230 (more than one billion) tests in a
second, it takes 250 seconds (more than ten thousand years) to launch an attack. However,
researchers have discovered some features of the function that allow it to be attacked in less time
than calculated above. 

Example 11.11

The new hash function, that is likely to become NIST standard, is SHA-512 (see Chapter 12),
which has a 512-bit digest. This function is definitely resistant to collision attacks based on the
Random Oracle Model. It needs 2512/2 = 2256 tests to find a collision with the probability of 1/2.

Attacks on the Structure

All discussions related to the attacks on hash functions have been based on an ideal
cryptographic hash function that acts like an oracle; they were based on the Random
Oracle Model. Although this type of analysis provides systematic evaluation of the
algorithms, practical hash functions can have some internal structures that can make

Table 11.4 Levels of difficulties for each type of attack

Attack Value of k with P=1/2 Order

Preimage k ≈ 0.69 × 2n 2n

Second preimage k ≈ 0.69 × 2n + 1 2n 

Collision k ≈ 1.18 × 2n/2 2n/2

Alternate collision k ≈ 0.83 × 2n/2 2n/2
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them much weaker. It is not possible to make a hash function that creates digests that
are completely random. The adversary may have other tools to attack hash function.
One of these tools, for example, is the meet-in-the-middle attack that we discussed in
Chapter 6 for double DES. We will see in the next chapters that some hash algorithms
are subject to this type of attack. These types of hash function are far from the ideal
model and should be avoided. 

11.3 MESSAGE AUTHENTICATION
A message digest guarantees the integrity of a message. It guarantees that the message
has not been changed. A message digest, however, does not authenticate the sender of
the message. When Alice sends a message to Bob, Bob needs to know if the message is
coming from Alice. To provide message authentication, Alice needs to provide proof
that it is Alice sending the message and not an impostor. A message digest per se cannot
provide such a proof. The digest created by a cryptographic hash function is normally
called a modification detection code (MDC). The code can detect any modification in
the message. What we need for message authentication (data origin authentication) is a
message authentication code (MAC). 

Modification Detection Code

A modification detection code (MDC) is a message digest that can prove the integrity of
the message: that message has not been changed. If Alice needs to send a message to Bob
and be sure that the message will not change during transmission, Alice can create a mes-
sage digest, MDC, and send both the message and the MDC to Bob. Bob can create a new
MDC from the message and compare the received MDC and the new MDC. If they are
the same, the message has not been changed. Figure 11.9 shows the idea. 

Figure 11.9 shows that the message can be transferred through an insecure chan-
nel. Eve can read or even modify the message. The MDC, however, needs to be trans-
ferred through a safe channel. The term safe here means immune to change. If both the

Figure 11.9 Modification detection code (MDC)
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message and the MDC are sent through the insecure channel, Eve can intercept the
message, change it, create a new MDC from the message, and send both to Bob. Bob
never knows that the message has come from Eve. Note that the term safe can mean a
trusted party; the term channel can mean the passage of time. For example, if Alice
makes an MDC from her will and deposits it with her attorney, who keeps it locked
away until her death, she has used a safe channel. 

Alice writes her will and announces it publicly (insecure channel). Alice makes an
MDC from the message and deposits it with her attorney, which is kept until her death
(a secure channel). Although Eve may change the contents of the will, the attorney can
create an MDC from the will and prove that Eve’s version is a forgery. If the cryptogra-
phy hash function used to create the MDC has the three properties described at the
beginning of this chapter, Eve will lose. 

Message Authentication Code (MAC)

To ensure the integrity of the message and the data origin authenticationthat Alice is
the originator of the message, not somebody elsewe need to change a modification
detection code (MDC) to a message authentication code (MAC). The difference
between a MDC and a MAC is that the second includes a secret between Alice and
Bobfor example, a secret key that Eve does not possess. Figure 11.10 shows the idea. 

Alice uses a hash function to create a MAC from the concatenation of the key and
the message, h (K|M). She sends the message and the MAC to Bob over the insecure
channel. Bob separates the message from the MAC. He then makes a new MAC from
the concatenation of the message and the secret key. Bob then compares the newly cre-
ated MAC with the one received. If the two MACs match, the message is authentic and
has not been modified by an adversary.   

Note that there is no need to use two channels in this case. Both message and the
MAC can be sent on the same insecure channel. Eve can see the message, but she can-
not forge a new message to replace it because Eve does not possess the secret key
between Alice and Bob. She is unable to create the same MAC as Alice did.

Figure 11.10 Message authentication code 
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The MAC we have described is referred to as a prefix MAC because the secret key is
appended to the beginning of the message. We can have a postfix MAC, in which the key
is appended to the end of the message. We can combine the prefix and postfix MAC, with
the same key or two different keys. However, the resulting MACs are still insecure.

Security of a MAC

Suppose Eve has intercepted the message M and the digest h(K |M). How can Eve forge
a message without knowing the secret key? There are three possible cases:

1. If the size of the key allows exhaustive search, Eve may prepend all possible keys
at the beginning of the message and make a digest of the (K |M) to find the digest
equal to the one intercepted. She then knows the key and can successfully replace
the message with a forged message of her choosing.

2. The size of the key is normally very large in a MAC, but Eve can use another tool:
the preimage attack discussed in Algorithm 11.1. She uses the algorithm until she
finds X such that h(X) is equal to the MAC she has intercepted. She now can find
the key and successfully replace the message with a forged one. Because the size of
the key is normally very large for exhaustive search, Eve can only attack the MAC
using the preimage algorithm.

3. Given some pairs of messages and their MACs, Eve can manipulate them to come
up with a new message and its MAC.

Nested MAC

To improve the security of a MAC, nested MACs were designed in which hashing is
done in two steps. In the first step, the key is concatenated with the message and is
hashed to create an intermediate digest. In the second step, the key is concatenated with
the intermediate digest to create the final digest. Figure 11.12 shows the general idea.   

The security of a MAC depends on the security of the underlying hash algorithm. 

Figure 11.11 Nested MAC
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HMAC

NIST has issued a standard (FIPS 198) for a nested MAC that is often referred to as

HMAC (hashed MAC, to distinguish it from CMAC, discussed in the next section).

The implementation of HMAC is much more complex than the simplified nested MAC

shown in Figure 11.11. There are additional features, such as padding. Figure 11.12

shows the details. We go through the steps:

1. The message is divided into N blocks, each of b bits. 

2. The secret key is left-padded with 0’s to create a b-bit key. Note that it is recom-

mended that the secret key (before padding) be longer than n bits, where n is the

size of the HMAC. 

3. The result of step 2 is exclusive-ored with a constant called ipad (input pad) to

create a b-bit block. The value of ipad is the b/8 repetition of the sequence

00110110 (36 in hexadecimal).

4. The resulting block is prepended to the N-block message. The result is N + 1 blocks.

5. The result of step 4 is hashed to create an n-bit digest. We call the digest the inter-

mediate HMAC.

Figure 11.12 Details of HMAC
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6. The intermediate n-bit HMAC is left padded with 0s to make a b-bit block.

7. Steps 2 and 3 are repeated by a different constant opad (output pad). The value of
opad is the b/8 repetition of the sequence 01011100 (5C in hexadecimal).

8. The result of step 7 is prepended to the block of step 6. 

9. The result of step 8 is hashed with the same hashing algorithm to create the final n-bit
HMAC.

CMAC

NIST has also defined a standard (FIPS 113) called Data Authentication Algorithm, or
CMAC, or CBCMAC. The method is similar to the cipher block chaining (CBC) mode
discussed in Chapter 8 for symmetric-key encipherment. However, the idea here is not to
create N blocks of ciphertext from N blocks of plaintext. The idea is to create one block of
MAC from N blocks of plaintext using a symmetric-key cipher N times. Figure 11.13
shows the idea. 

The message is divided into N blocks, each m bits long. The size of the CMAC is
n bits. If the last block is not m bits, it is padded with a 1-bit followed by enough 0-bits
to make it m bits. The first block of the message is encrypted with the symmetric key
to create an m-bit block of encrypted data. This block is XORed with the next block
and the result is encrypted again to create a new m-bit block. The process continues
until the last block of the message is encrypted. The n leftmost bit from the last block
is the CMAC. In addition to the symmetric key, K, CMAC also uses another key, k,

Figure 11.13 CMAC
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which is applied only at the last step. This key is derived from the encryption algo-

rithm with plaintext of m 0-bits using the cipher key, K. The result is then multiplied

by x if no padding is applied and multiplied by x2 if padding is applied. The multipli-

cation is in GF(2m) with the irreducible polynomial of degree m selected by the partic-

ular protocol used.

Note that this is different from the CBC used for confidentiality, in which the out-

put of each encryption is sent as the ciphertext and at the same time XORed with the

next plaintext block. Here the intermediate encrypted blocks are not sent as ciphertext;

they are only used to be XORed with the next block. 

11.4 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the book.

Books

Several books that give a good coverage of cryptographic hash functions include

[Sti06], [Sta06], [Sch99], [Mao04], [KPS02], [PHS03], and [MOV96].

WebSites

The following websites give more information about topics discussed in this chapter.

11.5 KEY TERMS

http://en.wikipedia.org/wiki/Preimage_attack

http://en.wikipedia.org/wiki/Collision_attack#In_cryptography

http://en.wikipedia.org/wiki/Pigeonhole_principle

csrc.nist.gov/ispab/2005-12/B_Burr-Dec2005-ISPAB.pdf

http://en.wikipedia.org/wiki/Message_authentication_code

http://en.wikipedia.org/wiki/HMAC

csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

http://www.faqs.org/rfcs/rfc2104.html

http://en.wikipedia.org/wiki/Birthday_paradox
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11.6 SUMMARY
❏ A fingerprint or a message digest can be used to ensure the integrity of a docu-

ment or a message. To ensure the integrity of a document, both the document and
the fingerprint are needed; to ensure the integrity of a message, both the message
and the message digest are needed. The message digest needs to be kept safe
from change.

❏ A cryptographic hash function creates a message digest out of a message.The func-
tion must meet three criteria: preimage resistance, second preimage resistance, and
collision resistance. 

❏ The first criterion, preimage resistance, means that it must be extremely hard for
Eve to create any message from the digest. The second criterion, second preimage
resistance, ensures that if Eve has a message and the corresponding digest, she
should not be able to create a second message whose digest is the same as the first.
The third criterion, collision resistance, ensures that Eve cannot find two messages
that hash to the same digest.

❏ The Random Oracle Model, which was introduced in 1993 by Bellare and Rog-
away, is an ideal mathematical model for a hash function.

❏ The pigeonhole principle states that if n pigeonholes are occupied by n +1 pigeons,
then at least one pigeonhole is occupied by two pigeons.The generalized version of
pigeonhole principle is that if n pigeonholes are occupied by kn + 1 pigeons, then
at least one pigeonhole is occupied by k + 1 pigeons.

❏ The four birthday problems are used to analyze the Random Oracle Model. The
first problem is used to analyze the preimage attack, the second problem is used to
analyze the second preimage attack, and the third and the fourth problems are used
to analyze the collision attack.

❏ A modification detection code (MDC) is a message digest that can prove the integ-
rity of the message: that the message has not been changed. To prove the integrity
of the message and the data origin authentication, we need to change a modification
detection code (MDC) to a message authentication code (MAC). The difference
between an MDC and a MAC is that the second includes a secret between the
sender and the receiver.

❏ NIST has issued a standard (FIPS 198) for a nested MAC that is often referred to
as HMAC (hashed MAC). NIST has also defined another standard (FIPS 113)
called CMAC, or CBCMAC.

11.7 PRACTICE SET

Review Questions

1. Distinguish between message integrity and message authentication.

2. Define the first criterion for a cryptographic hash function.

3. Define the second criterion for a cryptographic hash function.
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4. Define the third criterion for a cryptographic hash function.

5. Define the Random Oracle Model and describe its application in analyzing attacks

on hash functions.

6. State the pigeonhole principle and describe its application in analyzing hash

functions.

7. Define the four birthday problems discussed in this chapter.

8. Associate each birthday problem with one of the attacks on a hash function.

9. Distinguish between an MDC and a MAC.

10. Distinguish between HMAC and CMAC.

Exercises

11. In the Random Oracle Model, why does the oracle need to make a note of the

digest created for a message and give the same digest for the same message?

12. Explain why private-public keys cannot be used in creating a MAC.

13. Ignoring the birth month, how many attempts, on average, are needed to find a per-

son with the same birth date as yours? Assume that all months have 30 days.

14. Ignoring the birth month, how many attempts, on average, are needed to find two

persons with the same birth date? Assume that all months have 30 days.

15. How many attempts, on average, are needed to find a person the same age as you,

given a group of people born after 1950?

16. How many attempts, on average, are needed to find two people of the same age if

we look for people born after 1950?

17. Answer the following questions about a family of six people, assuming that the

birthdays are uniformly distributed through the days of a week, through the days of

a month, through each month of a year, and through the 365 days of the year. Also

assume that a year is exactly 365 days and each month is exactly 30 days.

a. What is the probability that two of the family members have the same birthday?

What is the probability that none of them have the same birthday?

b. What is the probability that two of the family members are born in the same

month? What is the probability that none of them were born in the same month?

c. What is the probability that one of the family members is born on the first day

of a month?

d. What is the probability that three of the family members are born on the same

day of the week?

18. What is the probability of birthday collision in two classes, one with k students and

the other with l students? 

19. In a class of 100 students, what is the probability that two or more students have

Social Security Numbers with the same last four digits? 

20. There are 100 students in a class and the professor assigns five grades (A, B, C, D,

F) to a test. Show that at least 20 students have one of the grades. 

21. Does the pigeonhole principle require the random distribution of pigeons to the

pigeonholes?
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22. Assume that Eve is determined to find a preimage in Algorithm 11.1 What is the
average number of times Eve needs to repeat the algorithm?

23. Assume Eve is determined to find a collision in Algorithm 11.3 What is the aver-
age number of times Eve needs to repeat the algorithm?

24. Assume we have a very simple message digest. Our unrealistic message digest is
just one number between 0 and 25. The digest is initially set to 0. The crypto-
graphic hash function adds the current value of the digest to the value of the cur-
rent character (between 0 and 25). Addition is in modulo 26. Figure 11.14 shows
the idea. What is the value of the digest if the message is “HELLO”? Why is this
digest not secure? 

25. Let us increase the complexity of the previous exercise. We take the value of the cur-
rent character, substitute it with another number, and then add it to the previous value
of the digest in modulo 100 arithmetic. The digest is initially set to 0. Figure 11.15
shows the idea. What is the value of the digest if the message is “HELLO”? Why is
this digest not secure?

Figure 11.14 Exercise 24

Figure 11.15 Exercise 25
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26. Use modular arithmetic to find the digest of a message. Figure 11.16 shows the

procedure. The steps are as follows:

a. Let the length of the message digest be m bits.

b. Choose a prime number, p, of m bits as the modulus.

c. Represent the message as a binary number and pad the message with extra 0’s

to make it multiple of m bits.

d. Divide the padded message into N blocks, each of m bits. Call the ith block Xi.

e. Choose an initial digest of m bits, H0. 

f. Repeat the following N times:

Hi = (Hi−1 + Xi)
2 mod p 

g. The digest is HN.

 What is the value of the digest if the message is “HELLO”? Why is this digest not 

secure?

27. A hash function, called Modular Arithmetic Secure Hash (MASH), is described

below. Write an algorithm to calculate the digest, given the message. Find the

digest of a message of your own. 

a. Let the length of the message digest be N bits.

b. Choose two prime numbers, p and q. Calculate M = pq. 

c. Represent the message as a binary number and pad the message with extra 0s to

make it a multiple of N/2 bits. N is chosen as a multiple of 16, less than the

number of bits in M. 

d. Divide the padded message into m blocks, each of N/2 bits. Call each block Xi.

e. Add the length of the message modulo N/2 as a binary number to the message.

This makes the message m + 1 blocks of N/2 bits.

f. Expand the message to obtain m + 1 blocks, each of N bits as shown below:

Divide blocks X1 to Xm into 4-bit groups. Insert 1111 before each group.

Divide block Xm+1 into 4-bit groups. Insert 1010 before each group.

Call the expanded blocks Y1, Y2, …, Ym+1

Figure 11.16 Exercise 26
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g. Choose an initial digest of N bits, H0. 

h. Choose a constant K of N bits.

i. Repeat the following m + 1 times (Ti and Gi are intermediate values). The “||”
symbol means to concatenate.

    Ti = ((Hi−1 ⊕ Yi) || K)257 mod M          Gi = Ti mod 2N         Hi = Hi−1 ⊕ Gi

j. The digest is Hm+1.

28. Write an algorithm in pseudocode to solve the first birthday problem (in general
form).

29. Write an algorithm in pseudocode to solve the second birthday problem (in general
form).

30. Write an algorithm in pseudocode to solve the third birthday problem (in general
form).

31. Write an algorithm in pseudocode to solve the fourth birthday problem (in general
form).

32. Write an algorithm in pseudocode for HMAC.

33. Write an algorithm in pseudocode for CMAC.



PART

3
Integrity, Authentication, and 
Key Management

In Chapter 1, we saw that cryptography provides three techniques: symmetric-key

ciphers, asymmetric-key ciphers, and hashing. Part Three discusses cryptographic

hash functions and their applications. This part also explores other issues related

to topics discussed in Parts One and Two, such as key management. Chapter 11

discusses the general idea behind message integrity and message authentication.

Chapter 12 explores several cryptographic hash functions. Chapter 13 discusses digital

signatures. Chapter 14 shows the ideas and methods of entity authentication. Finally,

Chapter 15 discusses key management used for symmetric-key and asymmetric-key

cryptography. 

Chapter 11: Message Integrity and Message Authentication

Chapter 11 discusses general ideas related to cryptographic hash functions that are used

to create a message digest from a message. Message digests guarantee the integrity of the

message. The chapter then shows how simple message digests can be modified to authen-

ticate the message. 

Chapter 12: Cryptographic Hash Functions

Chapter 12 investigates several standard cryptographic hash function belonging to two

broad categories: those with a compression function made from scratch and those with a

block cipher as the compression function. The chapter then describes one hash function

from each category, SHA-512 and Whirlpool. 

Chapter 13: Digital Signatures

Chapter 13 discusses digital signatures. The chapter introduces several digital signature

schemes, including RSA, ElGamal, Schnorr, DSS, and elliptic curve. The chapter also

investigates some attacks on the above schemes and how they can be prevented. 



Chapter 14: Entity Authentication

Chapter 14 first distinguishes between message authentication and entity authentication.

The chapter then discusses some methods of entity authentication, including the use of a

password, challenge-response methods, and zero-knowledge protocols. The chapter also

includes some discussion on biometrics. 

Chapter 15: Key Management

Chapter 15 first explains different approaches to key managements including the use of a

a key-distribution center (KDC), certification authorities (CAs), and public-key infra-

structure (PKI). This chapter shows how symmetric-key and asymmetric-key cryptogra-

phy can complement each other to solve some problems such as key management. 
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CHAPTER 12

Cryptographic Hash
Functions

Objectives

This chapter has several objectives:

❏ To introduce general ideas behind cryptographic hash functions

❏ To discuss the Merkle-Damgard scheme as the basis for iterated hash
functions

❏ To distinguish between two categories of hash functions: those with
a compression function made from scratch and those with a block
cipher as the compression function 

❏ To discuss the structure of SHA-512 as an example of a cryptographic
hash function with a compression function made from scratch

❏ To discuss the structure of Whirlpool as an example of a crypto-
graphic hash function with a block cipher as the compression function

12.1 INTRODUCTION

As discussed in Chapter 11, a cryptographic hash function takes a message of arbitrary
length and creates a message digest of fixed length. The ultimate goal of this chapter
is to discuss the details of the two most promising cryptographic hash algorithms

SHA-512 and Whirlpool. However, we first need to discuss some general ideas that may
be applied to any cryptographic hash function. 

Iterated Hash Function

All cryptographic hash functions need to create a fixed-size digest out of a variable-size
message. Creating such a function is best accomplished using iteration. Instead of using
a hash function with variable-size input, a function with fixed-size input is created and
is used a necessary number of times. The fixed-size input function is referred to as a
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compression function. It compresses an n-bit string to create an m-bit string where n is
normally greater than m. The scheme is referred to as an iterated cryptographic hash

function. 

Merkle-Damgard Scheme

The Merkle-Damgard scheme is an iterated hash function that is collision resistant if
the compression function is collision resistant. This can be proved, but the proof is left
as an exercise. The scheme is shown in Figure 12.1. 

The scheme uses the following steps: 

1. The message length and padding are appended to the message to create an aug-
mented message that can be evenly divided into blocks of n bits, where n is the size
of the block to be processed by the compression function.   

2. The message is then considered as t blocks, each of n bits. We call each block M1,
M2,…, Mt. We call the digest created at t iterations H1, H2,…, Ht.

3. Before starting the iteration, the digest H0 is set to a fixed value, normally called
IV (initial value or initial vector). 

4. The compression function at each iteration operates on Hi−1 and Mi to create a new
Hi. In other words, we have Hi = ƒ(Hi−1, Mi), where ƒ is the compression function. 

5. Ht is the cryptographic hash function of the original message, that is, h(M). 

Two Groups of Compression Functions

The Merkle-Damgard scheme is the basis for many cryptographic hash functions today.
The only thing we need to do is design a compression function that is collision resistant

Figure 12.1 Merkle-Damgard scheme

If the compression function in the Merkle-Damgard scheme is collision resistant, 

the hash function is also collision resistant. 
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and insert it in the Merkle-Damgard scheme. There is a tendency to use two different
approaches in designing a hash function. In the first approach, the compression func-
tion is made from scratch: it is particularly designed for this purpose. In the second
approach, a symmetric-key block cipher serves as a compression function. 

Hash Functions Made from Scratch

A set of cryptographic hash functions uses compression functions that are made from
scratch. These compression functions are specifically designed for the purposes they serve.

Message Digest (MD) Several hash algorithms were designed by Ron Rivest. These
are referred to as MD2, MD4, and MD5, where MD stands for Message Digest. The
last version, MD5, is a strengthened version of MD4 that divides the message into
blocks of 512 bits and creates a 128-bit digest. It turned out that a message digest of
size 128 bits is too small to resist collision attack. 

Secure Hash Algorithm (SHA) The Secure Hash Algorithm (SHA) is a standard
that was developed by the National Institute of Standards and Technology (NIST) and
published as a Federal Information Processing standard (FIP 180). It is sometimes
referred to as Secure Hash Standard (SHS). The standard is mostly based on MD5.
The standard was revised in 1995 under FIP 180-1, which includes SHA-1. It was
revised later under FIP 180-2, which defines four new versions: SHA-224, SHA-256,

SHA-384, and SHA-512. Table 12.1 lists some of the characteristics of these versions.

All of these versions have the same structure. SHA-512 is discussed in detail later
in this chapter. 

Other Algorithms RACE Integrity Primitives Evaluation Message Digest

(RIPMED) has several versions. RIPEMD-160 is a hash algorithm with a 160-bit
message digest. RIPEMD-160 uses the same structure as MD5 but uses two parallel
lines of execution. HAVAL is a variable-length hashing algorithm with a message
digest of size 128, 160, 192, 224, and 256.The block size is 1024 bits. 

Hash Functions Based on Block Ciphers

An iterated cryptographic hash function can use a symmetric-key block cipher as a
compression function. The whole idea is that there are several secure symmetric-key
block ciphers, such as triple DES or AES, that can be used to make a one-way function
instead of creating a new compression function. The block cipher in this case only

Table 12.1 Characteristics of Secure Hash Algorithms (SHAs)

Characteristics SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Maximum Message size 264 − 1 264 − 1 264 − 1 2128 − 1 2128 − 1

Block size 512 512 512 1024 1024

Message digest size 160 224 256  384  512

Number of rounds 80 64 64  80  80

Word size 32 32 32  64  64
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performs encryption. Several schemes have been proposed.We later describe one of the
most promising, Whirlpool. 

Rabin Scheme The iterated hash function proposed by Rabin is very simple. The
Rabin scheme is based on the Merkle-Damgard scheme. The compression function is
replaced by any encrypting cipher. The message block is used as the key; the previously
created digest is used as the plaintext. The ciphertext is the new message digest. Note that
the size of the digest is the size of data block cipher in the underlying cryptosystem. For
example, if DES is used as the block cipher, the size of the digest is only 64 bits.
Although the scheme is very simple, it is subject to a meet-in-the-middle attack discussed
in Chapter 6, because the adversary can use the decryption algorithm of the cryptosystem.
Figure 12.2 shows the Rabin scheme. 

Davies-Meyer Scheme The Davies-Meyer scheme is basically the same as the
Rabin scheme except that it uses forward feed to protect against meet-in-the-middle
attack. Figure 12.3 shows the Davies-Meyer scheme. 

Matyas-Meyer-Oseas Scheme The Matyas-Meyer-Oseas scheme is a dual version
of the Davies-Meyer scheme: the message block is used as the key to the cryptosystem.
The scheme can be used if the data block and the cipher key are the same size. For

Figure 12.2 Rabin scheme

Figure 12.3 Davies-Meyer scheme
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example, AES is a good candidate for this purpose. Figure 12.4 shows the Matyas-
Meyer-Oseas scheme. 

Miyaguchi-Preneel Scheme The Miyaguchi-Preneel scheme is an extended ver-
sion of Matyas-Meyer-Oseas. To make the algorithm stronger against attack, the plain-
text, the cipher key, and the ciphertext are all exclusive-ored together to create the new
digest. This is the scheme used by the Whirlpool hash function. Figure 12.5 shows the
Miyaguchi-Preneel scheme. 

12.2 SHA-512

SHA-512 is the version of SHA with a 512-bit message digest. This version, like the
others in the SHA family of algorithms, is based on the Merkle-Damgard scheme. We
have chosen this particular version for discussion because it is the latest version, it has a
more complex structure than the others, and its message digest is the longest. Once the
structure of this version is understood, it should not be difficult to understand the struc-
tures of the other versions. For characteristics of SHA-512 see Table 12.1. 

Introduction

SHA-512 creates a digest of 512 bits from a multiple-block message. Each block is
1024 bits in length, as shown in Figure 12.6.  

Figure 12.4 Matyas-Meyer-Oseas scheme 

Figure 12.5 Miyaguchi-Preneel scheme
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The digest is initialized to a predetermined value of 512 bits. The algorithm mixes
this initial value with the first block of the message to create the first intermediate mes-
sage digest of 512 bits. This digest is then mixed with the second block to create the
second intermediate digest. Finally, the (N − 1)th digest is mixed with the Nth block to
create the Nth digest. When the last block is processed, the resulting digest is the mes-
sage digest for the entire message. 

Message Preparation

SHA-512 insists that the length of the original message be less than 2128 bits. This
means that if the length of a message is equal to or greater than 2128, it will not be pro-
cessed by SHA-512. This is not usually a problem because 2128 bits is probably larger
than the total storage capacity of any system.

Example 12.1

This example shows that the message length limitation of SHA-512 is not a serious problem.
Suppose we need to send a message that is 2128 bits in length. How long does it take for a com-
munications network with a data rate of 264 bits per second to send this message?

Solution

A communications network that can send 264 bits per second is not yet available. Even if it were,
it would take many years to send this message. This tells us that we do not need to worry about
the SHA-512 message length restriction. 

Example 12.2

This example also concerns the message length in SHA-512. How many pages are occupied by a
message of 2128 bits?

Figure 12.6 Message digest creation SHA-512
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Solution

Suppose that a character is 64, or 26, bits. Each page is less than 2048, or approximately 212,
characters. So 2128 bits need at least 2128 / 218, or 2110, pages. This again shows that we need not
worry about the message length restriction. 

Length Field and Padding

Before the message digest can be created, SHA-512 requires the addition of a 128-bit
unsigned-integer length field to the message that defines the length of the message in
bits. This is the length of the original message before padding. An unsigned integer
field of 128 bits can define a number between 0 and 2128 − 1, which is the maximum
length of the message allowed in SHA-512. The length field defines the length of the
original message before adding the length field or the padding (Figure 12.7).

Before the addition of the length field, we need to pad the original message to
make the length a multiple of 1024. We reserve 128 bits for the length field, as shown in
Figure 12.7. The length of the padding field can be calculated as follows. Let |M| be the
length of the original message and |P| be the length of the padding field.  

The format of the padding is one 1 followed by the necessary number of 0s.  

Example 12.3

What is the number of padding bits if the length of the original message is 2590 bits?

Solution

We can calculate the number of padding bits as follows:

The padding consists of one 1 followed by 353 0’s. 

Example 12.4

Do we need padding if the length of the original message is already a multiple of 1024 bits?

Solution

Yes we do, because we need to add the length field. So padding is needed to make the new block
a multiple of 1024 bits.

Figure 12.7 Padding and length field in SHA-512
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Example 12.5

What is the minimum and maximum number of padding bits that can be added to a message? 

Solution

a. The minimum length of padding is 0 and it happens when (−M − 128) mod 1024 is 0. 
This means that |M| = −128 mod 1024 = 896 mod 1024 bits. In other words, the last 
block in the original message is 896 bits. We add a 128-bit length field to make the block 
complete.

b. The maximum length of padding is 1023 and it happens when (−|M| −128) = 1023 mod 
1024. This means that the length of the original message is |M| = (−128 −1023) mod 
1024 or the length is |M| = 897 mod 1024. In this case, we cannot just add the length 
field because the length of the last block exceeds one bit more than 1024. So we need to 
add 897 bits to complete this block and create a second block of 896 bits. Now the 
length can be added to make this block complete.

Words

SHA-512 operates on words; it is word oriented. A word is defined as 64 bits. This
means that, after the padding and the length field are added to the message, each block
of the message consists of sixteen 64-bit words. The message digest is also made of
64-bit words, but the message digest is only eight words and the words are named A, B,
C, D, E, F, G, and H, as shown in Figure 12.8.       

Word Expansion

Before processing, each message block must be expanded. A block is made of 1024
bits, or sixteen 64-bit words. As we will see later, we need 80 words in the processing
phase. So the 16-word block needs to be expanded to 80 words, from W0 to W79. Fig-
ure 12.9 shows the word-expansion process. The 1024-bit block becomes the first 16
words; the rest of the words come from already-made words according to the operation
shown in the figure. 

Figure 12.8 A message block and the digest as words 
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Example 12.6

Show how W60 is made. 

Solution

Each word in the range W16 to W79 is made from four previously-made words. W60 is made as 

Message Digest Initialization

The algorithm uses eight constants for message digest initialization. We call these con-

stants A0 to H0 to match with the word naming used for the digest. Table 12.2 shows

the value of these constants. 

The reader may wonder where these values come from. The values are calculated

from the first eight prime numbers (2, 3, 5, 7, 11, 13, 17, and 19). Each value is the frac-

tion part of the square root of the corresponding prime number after converting to

binary and keeping only the first 64 bits. For example, the eighth prime is 19, with

the square root (19)1/2 = 4.35889894354. Converting the number to binary with only

64 bits in the fraction part, we get 

SHA-512 keeps the fraction part, (5BE0CD19137E2179)16, as an unsigned integer.

Figure 12.9 Word expansion in SHA-512

W60 = W44 ⊕ RotShift1-8-7 (W45) ⊕ W53 ⊕ RotShift19-61-6 (W58)

Table 12.2 Values of constants in message digest initialization of SHA-512

Buffer Value (in hexadecimal) Buffer Value (in hexadecimal)

A0 6A09E667F3BCC908 E0 510E527FADE682D1

B0 BB67AE8584CAA73B F0 9B05688C2B3E6C1F

C0 3C6EF372EF94F82B G0 1F83D9ABFB41BD6B

D0 A54FE53A5F1D36F1 H0 5BE0CD19137E2179

(100.0101 1011 1110 . . . 1001)2       →      (4.5BE0CD19137E2179)16
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Compression Function

SHA-512 creates a 512-bit (eight 64-bit words) message digest from a multiple-block
message where each block is 1024 bits. The processing of each block of data in SHA-
512 involves 80 rounds. Figure 12.10 shows the general outline for the compression
function. In each round, the contents of eight previous buffers, one word from the
expanded block (Wi), and one 64-bit constant (Ki) are mixed together and then oper-
ated on to create a new set of eight buffers. At the beginning of processing, the values
of the eight buffers are saved into eight temporary variables. At the end of the process-
ing (after step 79), these values are added to the values created from step 79. We call
this last operation the final adding, as shown in the figure. 

Figure 12.10 Compression function in SHA-512
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Structure of Each Round

In each round, eight new values for the 64-bit buffers are created from the values of the
buffers in the previous round. As Figure 12.11 shows, six buffers are the exact copies of
one of the buffers in the previous round as shown below:  

Two of the new buffers, A and E, receive their inputs from some complex functions
that involve some of the previous buffers, the corresponding word for this round (Wi),
and the corresponding constant for this round (Ki). Figure 12.11 shows the structure of
each round. 

A → B      B → C     C → D     E → F      F → G     G → H

Figure 12.11 Structure of each round in SHA-512
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There are two mixers, three functions, and several operators. Each mixer combines
two functions. The description of the functions and operators follows:

1. The Majority function, as we call it, is a bitwise function. It takes three corre-
sponding bits in three buffers (A, B, and C) and calculates 

(Aj AND Bj) ⊕  (Bj AND Cj)  ⊕  (Cj AND Aj)

The resulting bit is the majority of three bits. If two or three bits are 1’s, the result-
ing bit is 1; otherwise it is 0. 

2. The Conditional function, as we call it, is also a bitwise function. It takes three cor-
responding bits in three buffers (E, F, and G) and calculates 

(Ej AND Fj)  ⊕  (NOT Ej AND Gj)

The resulting bit is the logic “If Ej then Fj; else Gj”. 

3. The Rotate function, as we call it, right-rotates the three instances of the same
buffer (A or E) and applies the exclusive-or operation on the results. 

Rotate (A): RotR28(A) ⊕ RotR34(A) ⊕ RotR29(A)

Rotate (E): RotR28(E) ⊕ RotR34(E) ⊕ RotR29(E) 

4. The right-rotation function, RotRi(x), is the same as the one we used in the word-
expansion process. It right-rotates its argument i bits; it is actually a circular shift-
right operation.

5. The addition operator used in the process is addition modulo 264. This means that
the result of adding two or more buffers is always a 64-bit word.

6. There are 80 constants, K0 to K79, each of 64 bits as shown in Table 12.3 in hexa-
decimal format (four in a row). Similar to the initial values for the eight digest
buffers, these values are calculated from the first 80 prime numbers (2, 3,…, 409).

Table 12.3 Eighty constants used for eighty rounds in SHA-512

428A2F98D728AE22

3956C25BF348B538   

D807AA98A3030242

72BE5D74F27B896F

E49B69C19EF14AD2

2DE92C6F592B0275

983E5152EE66DFAB

C6E00BF33DA88FC2

27B70A8546D22FFC

650A73548BAF63DE

A2BFE8A14CF10364

D192E819D6EF5218 

19A4C116B8D2D0C8

391C0CB3C5C95A63

748F82EE5DEFB2FC

90BEFFFA23631E28

CA273ECEEA26619C

06F067AA72176FBA

28DB77F523047D84

4CC5D4BECB3E42B6

7137449123EF65CD

59F111F1B605D019    

12835B0145706FBE

80DEB1FE3B1696B1

EFBE4786384F25E3

4A7484AA6EA6E483

A831C66D2DB43210

D5A79147930AA725

2E1B21385C26C926

766A0ABB3C77B2A8

A81A664BBC423001

D69906245565A910

1E376C085141AB53

4ED8AA4AE3418ACB

78A5636F43172F60

A4506CEBDE82BDE9

D186B8C721C0C207

0A637DC5A2C898A6

32CAAB7B40C72493

4597F299CFC657E2

B5C0FBCFEC4D3B2F

923F82A4AF194F9B

243185BE4EE4B28C

9BDC06A725C71235

0FC19DC68B8CD5B5

5CB0A9DCBD41FBD4

B00327C898FB213F

06CA6351E003826F

4D2C6DFC5AC42AED

81C2C92E47EDAEE6

C24B8B70D0F89791

F40E35855771202A

2748774CDF8EEB99

5B9CCA4F7763E373

84C87814A1F0AB72

BEF9A3F7B2C67915

EADA7DD6CDE0EB1E

113F9804BEF90DAE

3C9EBE0A15C9BEBC

5FCB6FAB3AD6FAEC

E9B5DBA58189DBBC

AB1C5ED5DA6D8118

550C7DC3D5FFB4E2

C19BF174CF692694

240CA1CC77AC9C65

76F988DA831153B5

BF597FC7BEEF0EE4

142929670A0E6E70

53380D139D95B3DF

92722C851482353B

C76C51A30654BE30

106AA07032BBD1B8

34B0BCB5E19B48A8

682E6FF3D6B2B8A3

8CC702081A6439EC

C67178F2E372532B

F57D4F7FEE6ED178

1B710B35131C471B

431D67C49C100D4C

6C44198C4A475817
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Each value is the fraction part of the cubic root of the corresponding prime number
after converting it to binary and keeping only the first 64 bits. For example, the
80th prime is 409, with the cubic root (409)1/3 = 7.42291412044. Converting this
number to binary with only 64 bits in the fraction part, we get 

(111.0110 1100 0100 0100 . . . 0111)2    →   (7.6C44198C4A475817)16

SHA-512 keeps the fraction part, (6C44198C4A475817)16, as an unsigned integer.

Example 12.7

We apply the Majority function on buffers A, B, and C. If the leftmost hexadecimal digits of these
buffers are 0x7, 0xA, and 0xE, respectively, what is the leftmost digit of the result? 

Solution

The digits in binary are 0111, 1010, and 1110. 

a. The first bits are 0, 1, and 1. The majority is 1. We can also prove it using the definition 
of the Majority function:

b. The second bits are 1, 0, and 1. The majority is 1. 

c. The third bits are 1, 1, and 1. The majority is 1. 

d. The fourth bits are 1, 0, and 0. The majority is 0. 
The result is 1110, or 0xE in hexadecimal. 

Example 12.8

We apply the Conditional function on E, F, and G buffers. If the leftmost hexadecimal digits of
these buffers are 0x9, 0xA, and 0xF respectively, what is the leftmost digit of the result? 

Solution

The digits in binary are 1001, 1010, and 1111. 

a. The first bits are 1, 1, and 1. Since E1 = 1, the result is F1, which is 1. We can also use the 
definition of the Condition function to prove the result:

b. The second bits are 0, 0, and 1. Since E2 is 0, the result is G2, which is 1. 

c. The third bits are 0, 1, and 1. Since E3 is 0, the result is G3, which is 1. 

d. The fourth bits are 1, 0, and 1. Since E4 is 1, the result is F4, which is 0. 
The result is 1110, or 0xE in hexadecimal. 

Analysis

With a message digest of 512 bits, SHA-512 expected to be resistant to all attacks,
including collision attacks. It has been claimed that this version’s improved design
makes it more efficient and more secure than the previous versions. However, more
research and testing are needed to confirm this claim.

(0 AND 1) ⊕  (1 AND 1)  ⊕  (1 AND 0) = 0  ⊕  1   ⊕  0 = 1

(1 AND 1) ⊕  (NOT 1 AND 1) = 1 ⊕  0   = 1
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12.3 WHIRLPOOL

Whirlpool is designed by Vincent Rijmen and Paulo S. L. M. Barreto. It is endorsed by
the New European Schemes for Signatures, Integrity, and Encryption (NESSIE).

Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi-Preneel
scheme, that uses a symmetric-key block cipher in place of the compression function.
The block cipher is a modified AES cipher that has been tailored for this purpose.
Figure 12.12 shows the Whirlpool hash function.

Preparation

Before starting the hash algorithm, the message needs to be prepared for processing.
Whirlpool requires that the length of the original message be less than 2256 bits. A mes-
sage needs to be padded before being processed. The padding is a single 1-bit followed
by the necessary numbers of 0-bits to make the length of the padding an odd multiple
of 256 bits. After padding, a block of 256 bits is added to define the length of the origi-
nal message. This block is treated as an unsigned number. 

After padding and adding the length field, the augmented message size is an even
multiple of 256 bits or a multiple of 512 bits. Whirlpool creates a digest of 512 bits
from a multiple 512-bit block message. The 512-bit digest, H0, is initialized to all 0’s.
This value becomes the cipher key for encrypting the first block. The ciphertext result-
ing from encrypting each block becomes the cipher key for the next block after being
exclusive-ored with the previous cipher key and the plaintext block. The message digest
is the final 512-bit ciphertext after the last exclusive-or operation. 

Figure 12.12 Whirlpool hash function
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Whirlpool Cipher

The Whirlpool cipher is a non-Feistel cipher like AES that was mainly designed as a
block cipher to be used in a hash algorithm. Instead of giving the whole description of
this cipher, we just assume that the reader is familiar with AES from Chapter 7. Here the
Whirlpool cipher is compared with the AES cipher and their differences are mentioned. 

Rounds

Whirlpool is a round cipher that uses 10 rounds. The block size and key size are 512 bits.
The cipher uses 11 round keys, K0 to K10, each of 512 bits. Figure 12.13 shows the
general design of the Whirlpool cipher.  

States and Blocks

Like the AES cipher, the Whirlpool cipher uses states and blocks. However, the size of
the block or state is 512 bits. A block is considered as a row matrix of 64 bytes; a state
is considered as a square matrix of 8 × 8 bytes. Unlike AES, the block-to-state or state-
to-block transformation is done row by row. Figure 12.14 shows the block, the state,
and the transformation in the Whirlpool cipher. 

Structure of Each Round

Figure 12.15 shows the structure of each round. Each round uses four transformations.  

SubBytes Like in AES, SubBytes provide a nonlinear transformation. A byte is rep-
resented as two hexadecimal digits. The left digit defines the row and the right digit
defines the column of the substitution table. The two hexadecimal digits at the junction
of the row and the column are the new byte. Figure 12.16 shows the idea. 

Figure 12.13 General idea of the Whirlpool cipher
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Figure 12.14 Block and state in the Whirlpool cipher

Figure 12.15 Structure of each round in the Whirlpool cipher
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In the SubBytes transformation, the state is treated as an 8 × 8 matrix of bytes.
Transformation is done one byte at a time. The contents of each byte are changed, but
the arrangement of the bytes in the matrix remains the same. In the process, each byte
is transformed independently; we have 64 distinct byte-to-byte transformations. 

Table 12.4 shows the substitution table (S-Box) for SubBytes transformation. The
transformation definitely provides confusion effect. For example, two bytes, 5A16 and
5B16, which differ only in one bit (the rightmost bit), are transformed to 5B16 and 8816,
which differ in five bits.  

Figure 12.16 SubBytes transformations in the Whirlpool cipher

Table 12.4 SubBytes transformation table (S-Box)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 18 23 C6 E8 87 B8 01 4F 36 A6 D2 F5 79 6F 91 52
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3 BD 5D 10 F4 CB 3E 05 67 E4 27 41 8B A7 7D 95 C8

4 FB EF 7C 66 DD 17 47 9E CA 2D BF 07 AD 5A 83 33

5 63 02 AA 71 C8 19 49 C9 F2 E3 5B 88 9A 26 32 B0

6 E9 0F D5 80 BE CD 34 48 FF 7A 90 5F 20 68 1A AE
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The entries in Table 12.4 can be calculated algebraically using the GF(24) field
with the irreducible polynomials (x4 + x + 1) as shown in Figure 12.17. Each hexadeci-
mal digit in a byte is the input to a minibox (E and E−1). The results are fed into another
minibox, R. The E boxes calculate the exponential of input hexadecimal; the R box
uses a pseudorandom number generator.     

The E−1 box is just the inverse of the E box where the roles of input and output are
changed. The input/output values for boxes are also tabulated in Figure 12.17. 

ShiftColumns To provide permutation, Whirlpool uses the ShiftColumns transforma-
tion, which is similar to the ShiftRows transformation in AES, except that the columns
instead of rows are shifted. Shifting depends on the position of the column. Column 0
goes through 0-byte shifting (no shifting), while column 7 goes through 7-byte shifting.
Figure 12.18 shows the shifting transformation.  

E(input) = (x3 + x + 1)input mod (x4 + x + 1) if input ≠ 0xF 

E(0xF) = 0

Figure 12.17 SubBytes in the Whirlpool cipher
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MixRows The MixRows transformation has the same effect as the MixColumns
transformation in AES: it diffuses the bits. The MixRows transformation is a matrix
transformation where bytes are interpreted as 8-bit words (or polynomials) with coeffi-
cients in GF(2). Multiplication of bytes is done in GF(28), but the modulus is different
from the one used in AES. The Whirlpool cipher uses (0x11D) or (x8 + x4 + x3 + x2 + 1)
as the modulus. Addition is the same as XORing of 8-bit words. Figure 12.19 shows the
MixRows transformation.  

The figure shows multiplication of a single row by the constant matrix; the mul-
tiplication can actually be done by multiplying the whole state by the constant

Figure 12.18 ShiftColumns transformation in the Whirlpool cipher

Figure 12.19 MixRows transformation in the Whirlpool cipher
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matrix. Note that in the constant matrix, each row is the circular right shift of the
previous row.

AddRoundKey The AddRoundKey transformation in the Whirlpool cipher is done
byte by byte, because each round key is also a state of an 8 × 8 matrix. Figure 12.20
shows the process. A byte from the data state is added, in GF(28) field, to the corre-
sponding byte in the round-key state. The result is the new byte in the new state.    

Key Expansion

As Figure 12.21 shows, the key-expansion algorithm in Whirlpool is totally different
from the algorithm in AES. Instead of using a new algorithm for creating round keys,
Whirlpool uses a copy of the encryption algorithm (without the pre-round) to create
the round keys. The output of each round in the encryption algorithm is the round key
for that round. At first glance, this looks like a circular definition; where do the round
keys for the key expansion algorithm come from? Whirlpool has elegantly solved this
problem by using ten round constants (RCs) as the virtual round keys for the key-
expansion algorithm. In other words, the key-expansion algorithm uses constants as
the round keys and the encryption algorithm uses the output of each round of the key-
expansion algorithm as the round keys. The key-generation algorithm treats the cipher
key as the plaintext and encrypts it. Note that the cipher key is also K0 for the
encryption algorithm.

Round Constants Each round constant, RCr is an 8 × 8 matrix where only the first
row has non-zero values. The rest of the entries are all 0’s. The values for the first
row in each constant matrix can be calculated using the SubBytes transformation
(Table 12.4).  

Figure 12.20 AddRoundKey transformation in the Whirlpool cipher
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In other words, RC1 uses the first eight entries in the SubBytes transformation table
[Table 12.4]; RC2 uses the second eight entries, and so on. For example, Figure 12.22
shows RC3, where the first row is the third eight entries in the SubBytes table. 

Figure 12.21 Key expansion in the Whirlpool cipher

Figure 12.22 Round constant for the third round
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Summary 

Table 12.5 summarizes some characteristics of the Whirlpool cipher. 

Analysis

Although Whirlpool has not been extensively studied or tested, it is based on a robust

scheme (Miyaguchi-Preneel), and for a compression function uses a cipher that is

based on AES, a cryptosystem that has been proved very resistant to attacks. In addi-

tion, the size of the message digest is the same as for SHA-512. Therefore it is expected

to be a very strong cryptographic hash function. However, more testing and researches

are needed to confirm this. The only concern is that Whirlpool, which is based on a

cipher as the compression function, may not be as efficient as SHA-512, particularly

when it is implemented in hardware. 

12.4 RECOMMENDED READING

For more details about subjects discussed in this chapter, we recommend the following

books and websites. The items enclosed in brackets refer to the reference list at the end

of the book. 

Books

Several books give a good coverage of cryptographic hash functions, including [Sti06],

[Sta06], [Sch99], [Mao04], [KPS02], [PHS03], and [MOV97].

WebSites

The following websites give more information about topics discussed in this chapter.

Table 12.5 Main characteristics of the Whirlpool cipher 

Block size: 512 bits

Cipher key size: 512 bits

Number of rounds: 10

Key expansion: using the cipher itself with round constants as round keys 

Substitution: SubBytes transformation

Permutation: ShiftColumns transformation

Mixing: MixRows transformation

Round Constant: cubic roots of the first eighty prime numbers

http://www.unixwiz.net/techtips/iguide-crypto-hashes.html

http://www.faqs.org/rfcs/rfc4231.html

http://www.itl.nist.gov/fipspubs/fip180-1.htm

http://www.ietf.org/rfc/rfc3174.txt

http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
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12.5 KEY TERMS 

12.6 SUMMARY

❏ All cryptographic hash functions must create a fixed-size digest out of a variable-
size message. Creating such a function is best accomplished using iteration. A
compression function is repeatedly used to create the digest. The scheme is
referred to as an iterated hash function.

❏ The Merkle-Damgard scheme is an iterated cryptographic hash function that
is collision resistant if the compression function is collision resistant. The Merkle-
Damgard scheme is the basis for many cryptographic hash functions today.

❏ There is a tendency to use two different approaches in designing the compression
function. In the first approach, the compression function is made from scratch: it is
particularly designed for this purpose. In the second approach, a symmetric-key
block cipher serves instead of a compression function.

❏ A set of cryptographic hash functions uses compression functions that are made
from scratch. These compression functions are specifically designed for the pur-
pose they serve. Some examples are the Message Digest (MD) group, the Secure
Hash Algorithm (SHA) group, RIPEMD, and HAVAL.

❏ An iterated cryptographic hash function can use a symmetric-key block cipher
instead of a compression function. Several schemes for this approach have been
proposed, including the Rabin scheme, Davies-Meyer scheme, Matyas-Meyer-
Oseas scheme, and Miyaguchi-Preneel scheme.

AddRoundKey RACE Integrity Primitives Evaluation 

compression function Message Digest (RIPMED)

Davies-Meyer scheme RIPEMD-160

HAVAL Secure Hash Algorithm (SHA)

iterated cryptographic hash function Secure Hash Standard (SHS)

Matyas-Meyer-Oseas scheme SHA-1

MD2 SHA-224

MD4 SHA-256

MD5 SHA-384

Merkle-Damgard scheme SHA-512

Message Digest (MD) ShiftColumns

MixRows SubBytes

Miyaguchi-Preneel scheme Whirlpool cipher

New European Schemes for Signatures, Whirlpool cryptographic hash function

Integrity, and Encryption (NESSIE) word expansion

Rabin scheme
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❏ One of the promising cryptographic hash functions is SHA-512 with a 512-bit
message digest based on the Merkle-Damgard scheme. It is made from scratch for
this purpose. 

❏ Another promising cryptographic hash function is Whirlpool, which is endorsed
by NESSIE. Whirlpool is an iterated cryptographic hash function, based on the
Miyaguchi-Preneel scheme, that uses a symmetric-key block cipher in place of
the compression function. The block cipher is a modified AES cipher tailored for
this purpose.

12.7 PRACTICE SET

Review Questions

1. Define a cryptographic hash function.

2. Define an iterated cryptographic hash function.

3. Describe the idea of the Merkle-Damgard scheme and why this idea is so impor-
tant for the design of a cryptographic hash function. 

4. List some family of hash functions that do not use a cipher as the compression
function.

5. List some schemes that have been designed to use a block cipher as the compres-
sion function.

6. List the main features of the SHA-512 cryptographic hash function. What kind of
compression function is used in SHA-512?

7. List some features of the Whirlpool cryptographic hash function. What kind of
compression function is used in Whirlpool?

8. Compare and contrast features of SHA-512 and Whirlpool cryptographic hash
functions. 

Exercises

9. In SHA-512, show the value of the length field in hexadecimal for the following
message lengths:

a. 1000 bits

b. 10,000 bits

c. 1000,000 bits

10. In Whirlpool, show the value of the length field in hexadecimal for the following
message lengths:

a. 1000 bits

b. 10,000 bits

c. 1000,000 bits

11. What is the padding for SHA-512 if the length of the message is:

a. 5120 bits

b. 5121 bits

c. 6143 bits
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12. What is the padding for Whirlpool if the length of the message is:

a. 5120 bits

b. 5121 bits

c. 6143 bits

13. In each of the following cases, show that if two messages are the same, their last

blocks are also the same (after padding and adding the length field):

a. The hash function is SHA-512.

b. The hash function is Whirlpool. 

14. Calculate G0 in Table 12.2 using the seventh prime (17).

15. Compare the compression function of SHA-512 without the last operation (final

adding) with a Feistel cipher of 80 rounds. Show the similarities and differences.

16. The compression function used in SHA-512 (Figure 12.10) can be thought of as an

encrypting cipher with 80 rounds. If the words, W0 to W79, are thought of as round

keys, which one of the schemes described in this chapter (Rabin, Davies-Meyer,

Matyas-Meyer Oseas, or Miyaguchi-Preneel) does it resemble? Hint: Think about

the effect of the final adding operation. 

17. Show that SHA-512 is subject to meet-in-the middle attack if the final adding

operation is removed from the compression function. 

18. Make a table similar to Table 12.5 to compare AES and Whirlpool.

19. Show that the third operation does not need to be removed from the tenth round in

Whirlpool cipher, but it must be removed in the AES cipher. 

20. Find the result of RotR12(x) if 

x = 1234 5678 ABCD 2345 3456 5678 ABCD 2468

21. Find the result of ShL12(x) if 

x = 1234 5678 ABCD 2345 3456 5678 ABCD 2468

22. Find the result of Rotate(x) if 

x = 1234 5678 ABCD 2345 3456 5678 ABCD 2468

23. Find the result of Conditional (x, y, z) if 

x = 1234 5678 ABCD 2345 3456 5678 ABCD 2468

y = 2234 5678 ABCD 2345 3456 5678 ABCD 2468

x = 3234 5678 ABCD 2345 3456 5678 ABCD 2468

24. Find the result of Majority (x, y, z) if 

x = 1234 5678 ABCD 2345 3456 5678 ABCD 2468

y = 2234 5678 ABCD 2345 3456 5678 ABCD 2468

x = 3234 5678 ABCD 2345 3456 5678 ABCD 2468

25. Write a routine (in pseudocode) to calculate RotRi(x) in SHA-512 (Figure 12.9).

26. Write a routine (in pseudocode) to calculate ShLi(x) in SHA-512 (Figure 12.9).
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27. Write a routine (in pseudocode) for the Conditional function in SHA-512

(Figure 12.11).

28. Write a routine (in pseudocode) for the Majority function in SHA-512 (Figure 12.11).

29. Write a routine (in pseudocode) for the Rotate function in SHA-512 (Figure 12.11). 

30. Write a routine (in pseudocode) to calculate the initial digest (values of A0 to H0)

in SHA-512 (Table 12.2). 

31. Write a routine (in pseudocode) to calculate the eighty constants in SHA-512

(Table 12.3). 

32. Write a routine (in pseudocode) for word-expansion algorithm in SHA-512 as

shown in Figure 12.9. Use an array of 80 elements to hold all words.

33. Write a routine (in pseudocode) for the compression function in SHA-512. 

34. Write a routine (in pseudocode) to change a block of 512 bits to an 8 × 8 state

matrix (Figure 12.14).

35. Write a routine (in pseudocode) to change an 8 × 8 state matrix to a block of 512

bits (Figure 12.14).

36. Write a routine (in pseudocode) for the SubBytes transformation in the Whirlpool

cipher (Figure 12.16).

37. Write a routine (in pseudocode) for the ShiftColumns transformation in the Whirl-

pool cipher (Figure 12.18).

38. Write a routine (in pseudocode) for the MixRows transformation in the Whirlpool

cipher (Figure 12.19).

39. Write a routine (in pseudocode) for the AddRoundKey transformation in the

Whirlpool cipher (Figure 12.20).

40. Write a routine (in pseudocode) for key expansion in Whirlpool cipher (Figure 12.21).

41. Write a routine (in pseudocode) to create the round constants in the Whirlpool

cipher (Figure 12.20).

42. Write a routine (in pseudocode) for the Whirlpool cipher.

43. Write a routine (in pseudocode) for the Whirlpool cryptographic hash function.

44. Use the Internet (or other available resources) to find information about SHA-1.

Then compare the compression function in SHA-1 with that in SHA-512. What are

the similarities? What are the differences? 

45. Use the Internet (or other available resources) to find information about the follow-

ing compression functions, and compare them with SHA-512.

a. SHA-224 

b. SHA-256 

c. SHA-384

46. Use the Internet (or other available resources) to find information about RIPEMD,

and compare it with SHA-512.

47. Use the Internet (or other available resources) to find information about HAVAL,

and compare it with SHA-512.
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CHAPTER 13

Digital Signature

Objectives

This chapter has several objectives:

❏ To define a digital signature

❏ To define security services provided by a digital signature

❏ To define attacks on digital signatures

❏ To discuss some digital signature schemes, including RSA, ElGamal,
Schnorr, DSS, and elliptic curve

❏ To describe some applications of digital signatures 

We are all familiar with the concept of a signature. A person signs a
document to show that it originated from her or was approved by her. The
signature is proof to the recipient that the document comes from the
correct entity. When a customer signs a check, the bank needs to be sure
that the check is issued by that customer and nobody else. In other words,
a signature on a document, when verified, is a sign of authenticationthe
document is authentic. Consider a painting signed by an artist. The signa-
ture on the art, if authentic, means that the painting is probably authentic.

When Alice sends a message to Bob, Bob needs to check the authen-
ticity of the sender; he needs to be sure that the message comes from
Alice and not Eve. Bob can ask Alice to sign the message electronically.
In other words, an electronic signature can prove the authenticity of
Alice as the sender of the message. We refer to this type of signature as a
digital signature. 

In this chapter, we first introduce some issues related to digital signa-
tures and then we walk through different digital signature schemes.
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13.1 COMPARISON

Let us begin by looking at the differences between conventional signatures and digital

signatures.

Inclusion

A conventional signature is included in the document; it is part of the document. When

we write a check, the signature is on the check; it is not a separate document. But when

we sign a document digitally, we send the signature as a separate document. The sender

sends two documents: the message and the signature. The recipient receives both docu-

ments and verifies that the signature belongs to the supposed sender. If this is proven,

the message is kept; otherwise, it is rejected. 

Verification Method

The second difference between the two types of signatures is the method of verifying the

signature. For a conventional signature, when the recipient receives a document, she com-

pares the signature on the document with the signature on file. If they are the same, the

document is authentic. The recipient needs to have a copy of this signature on file for

comparison. For a digital signature, the recipient receives the message and the signature.

A copy of the signature is not stored anywhere. The recipient needs to apply a verification

technique to the combination of the message and the signature to verify the authenticity.

Relationship

For a conventional signature, there is normally a one-to-many relationship between a signa-

ture and documents. A person uses the same signature to sign many documents. For a digi-

tal signature, there is a one-to-one relationship between a signature and a message. Each

message has its own signature. The signature of one message cannot be used in another

message. If Bob receives two messages, one after another, from Alice, he cannot use the

signature of the first message to verify the second. Each message needs a new signature. 

Duplicity

Another difference between the two types of signatures is a quality called duplicity. In

conventional signature, a copy of the signed document can be distinguished from the

original one on file. In digital signature, there is no such distinction unless there is a

factor of time (such as a timestamp) on the document. For example, suppose Alice

sends a document instructing Bob to pay Eve. If Eve intercepts the document and the

signature, she can replay it later to get money again from Bob. 

13.2 PROCESS

Figure 13.1 shows the digital signature process. The sender uses a signing algorithm

to sign the message. The message and the signature are sent to the receiver. The

receiver receives the message and the signature and applies the verifying algorithm
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to the combination. If the result is true, the message is accepted; otherwise, it is

rejected.

Need for Keys

A conventional signature is like a private “key” belonging to the signer of the docu-

ment. The signer uses it to sign documents; no one else has this signature. The copy of

the signature is on file like a public key; anyone can use it to verify a document, to com-

pare it to the original signature. 

In a digital signature, the signer uses her private key, applied to a signing algo-

rithm, to sign the document. The verifier, on the other hand, uses the public key of the

signer, applied to the verifying algorithm, to verify the document. 

We can add the private and public keys to Figure 13.1 to give a more complete con-

cept of digital signature (see Figure 13.2). Note that when a document is signed, anyone,

including Bob, can verify it because everyone has access to Alice’s public key. Alice must

not use her public key to sign the document because then anyone could forge her signature.  

Can we use a secret (symmetric) key to both sign and verify a signature? The

answer is negative for several reasons. First, a secret key is known by only two entities

(Alice and Bob, for example). So if Alice needs to sign another document and send it to

Ted, she needs to use another secret key. Second, as we will see, creating a secret key

for a session involves authentication, which uses a digital signature. We have a vicious

Figure 13.1 Digital signature process

Figure 13.2 Adding key to the digital signature process
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cycle. Third, Bob could use the secret key between himself and Alice, sign a document,

send it to Ted, and pretend that it came from Alice. 

We should make a distinction between private and public keys as used in digital

signatures and public and private keys as used in a cryptosystem for confidentiality. In

the latter, the private and public keys of the receiver are used in the process. The sender

uses the public key of the receiver to encrypt; the receiver uses his own private key to

decrypt. In a digital signature, the private and public keys of the sender are used. The

sender uses her private key; the receiver uses the sender’s public key. 

Signing the Digest

In Chapter 10, we learned that the asymmetric-key cryptosystems are very inefficient

when dealing with long messages. In a digital signature system, the messages are nor-

mally long, but we have to use asymmetric-key schemes. The solution is to sign a digest

of the message, which is much shorter than the message. As we learned in Chapter 11, a

carefully selected message digest has a one-to-one relationship with the message. The

sender can sign the message digest and the receiver can verify the message digest. The

effect is the same. Figure 13.3 shows signing a digest in a digital signature system. 

A digest is made out of the message at Alice’s site. The digest then goes through the

signing process using Alice’s private key. Alice then sends the message and the signature to

Bob. As we will see later in this chapter, there are variations in the process that are depen-

dent on the system. For example, there might be additional calculations before the digest is

made, or other secrets might be used. In some systems, the signature is a set of values.

At Bob’s site, using the same public hash function, a digest is first created out of

the received message. Calculations are done on the signature and the digest. The verify-

ing process also applies criteria on the result of the calculation to determine the authen-

ticity of the signature. If authentic, the message is accepted; otherwise, it is rejected.

A digital signature needs a public-key system. 

The signer signs with her private key; the verifier verifies with the signer’s public key. 

A cryptosystem uses the private and public keys of the receiver: a digital signature uses 

the private and public keys of the sender. 

Figure 13.3 Signing the digest
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13.3 SERVICES

We discussed several security services in Chapter 1 including message confidentiality, mes-

sage authentication, message integrity, and nonrepudiation. A digital signature can directly

provide the last three; for message confidentiality we still need encryption/decryption.

Message Authentication

A secure digital signature scheme, like a secure conventional signature (one that cannot be

easily copied) can provide message authentication (also referred to as data-origin authenti-

cation). Bob can verify that the message is sent by Alice because Alice’s public key is used

in verification. Alice’s public key cannot verify the signature signed by Eve’s private key. 

Message Integrity

The integrity of the message is preserved even if we sign the whole message because

we cannot get the same signature if the message is changed. The digital signature

schemes today use a hash function in the signing and verifying algorithms that preserve

the integrity of the message.

Nonrepudiation

If Alice signs a message and then denies it, can Bob later prove that Alice actually

signed it? For example, if Alice sends a message to a bank (Bob) and asks to transfer

$10,000 from her account to Ted’s account, can Alice later deny that she sent this mes-

sage? With the scheme we have presented so far, Bob might have a problem. Bob must

keep the signature on file and later use Alice’s public key to create the original message

to prove the message in the file and the newly created message are the same. This is not

feasible because Alice may have changed her private or public key during this time; she

may also claim that the file containing the signature is not authentic.

One solution is a trusted third party. People can create an established trusted party

among themselves. In future chapters, we will see that a trusted party can solve many

other problems concerning security services and key exchange. Figure 13.4 shows how

a trusted party can prevent Alice from denying that she sent the message. 

 Alice creates a signature from her message (SA) and sends the message, her iden-

tity, Bob’s identity, and the signature to the center. The center, after checking that

Alice’s public key is valid, verifies through Alice’s public key that the message came

from Alice. The center then saves a copy of the message with the sender identity, recip-

ient identity, and a timestamp in its archive. The center uses its private key to create

another signature (ST) from the message. The center then sends the message, the new

signature, Alice’s identity, and Bob’s identity to Bob. Bob verifies the message using

the public key of the trusted center.

A digital signature provides message authentication. 

A digital signature provides message integrity.



394 CHAPTER 13 DIGITAL SIGNATURE

If in the future Alice denies that she sent the message, the center can show a copy

of the saved message. If Bob’s message is a duplicate of the message saved at the cen-

ter, Alice will lose the dispute. To make everything confidential, a level of encryption/

decryption can be added to the scheme, as discussed in the next section.

Confidentiality

A digital signature does not provide confidential communication. If confidentiality is

required, the message and the signature must be encrypted using either a secret-key or

public-key cryptosystem. Figure 13.5 shows how this extra level can be added to a sim-

ple digital signature scheme.

Figure 13.4 Using a trusted center for nonrepudiation

Nonrepudiation can be provided using a trusted party. 

Figure 13.5 Adding confidentiality to a digital signature scheme
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We have shown asymmetric-key encryption/decryption just to emphasize the type of

keys used at each end. Encryption/decryption can also be done with a symmetric key. 

13.4 ATTACKS ON DIGITAL SIGNATURE

This section describes some attacks on digital signatures and defines the types of forgery.

Attack Types

We will look on three kinds of attacks on digital signatures: key-only, known-message,

and chosen-message.

Key-Only Attack

In the key-only attack, Eve has access only to the public information released by

Alice. To forge a message, Eve needs to create Alice’s signature to convince Bob that

the message is coming from Alice. This is the same as the ciphertext-only attack we

discussed for encipherment.

Known-Message Attack

In the known-message attack, Eve has access to one or more message-signature pairs.

In other words, she has access to some documents previously signed by Alice. Eve tries

to create another message and forge Alice’s signature on it. This is similar to the

known-plaintext attack we discussed for encipherment. 

Chosen-Message Attack

In the chosen-message attack, Eve somehow makes Alice sign one or more messages

for her. Eve now has a chosen-message/signature pair. Eve later creates another mes-

sage, with the content she wants, and forges Alice’s signature on it. This is similar to

the chosen-plaintext attack we discussed for encipherment.

Forgery Types

If the attack is successful, the result is a forgery. We can have two types of forgery:

existential and selective.

Existential Forgery

In an existential forgery, Eve may be able to create a valid message-signature pair, but

not one that she can really use. In other words, a document has been forged, but the

content is randomly calculated. This type of forgery is probable, but fortunately Eve

cannot benefit from it very much. Her message could be syntactically or semantically

unintelligible.

A digital signature does not provide privacy. 

If there is a need for privacy, another layer of encryption/decryption must be applied.
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Selective Forgery

In selective forgery, Eve may be able to forge Alice’s signature on a message with the

content selectively chosen by Eve. Although this is beneficial to Eve, and may be very

detrimental to Alice, the probability of such forgery is low, but not negligible.

13.5 DIGITAL SIGNATURE SCHEMES

Several digital signature schemes have evolved during the last few decades. Some of

them have been implemented. In this section, we discuss these schemes. In the follow-

ing section we discuss one that will probably become the standard. 

RSA Digital Signature Scheme

In Chapter 10 we discussed how to use RSA cryptosystem to provide privacy. The RSA

idea can also be used for signing and verifying a message. In this case, it is called the

RSA digital signature scheme. The digital signature scheme changes the roles of the

private and public keys. First, the private and public keys of the sender, not the receiver,

are used. Second, the sender uses her own private key to sign the document; the

receiver uses the sender’s public key to verify it. If we compare the scheme with the

conventional way of signing, we see that the private key plays the role of the sender’s

own signature, the sender’s public key plays the role of the copy of the signature that is

available to the public. Obviously Alice cannot use Bob’s public key to sign the mes-

sage because then any other person could do the same. Figure 13.6 gives the general

idea behind the RSA digital signature scheme. 

The signing and verifying sites use the same function, but with different parame-

ters. The verifier compares the message and the output of the function for congruence.

If the result is true, the message is accepted.

Key Generation

Key generation in the RSA digital signature scheme is exactly the same as key genera-

tion in the RSA cryptosystem (see Chapter 10). Alice chooses two primes p and q and

Figure 13.6 General idea behind the RSA digital signature scheme
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calculates n = p × q. Alice calculates  φ(n) = (p − 1) (q − 1). She then chooses e, the

public exponent, and calculates d, the private exponent such that e × d = 1 mod φ(n).

Alice keeps d; she publicly announces n and e. 

Signing and Verifying 

Figure 13.7 shows the RSA digital signature scheme.  

Signing Alice creates a signature out of the message using her private exponent, S =

Md mod n and sends the message and the signature to Bob. 

Verifying Bob receives M and S. Bob applies Alice’s public exponent to the signa-

ture to create a copy of the message M′ = Se mod n. Bob compares the value of M′ with

the value of M. If the two values are congruent, Bob accepts the message. To prove this,

we start with the verification criteria:

The last congruent holds because d × e = 1 mod φ(n) (see Euler’s theorem in

Chapter 9).

Example 13.1

For the security of the signature, the value of p and q must be very large. As a trivial example,

suppose that Alice chooses p = 823 and q = 953, and calculates n = 784319. The value of φ(n) is

782544. Now she chooses e = 313 and calculates d = 160009. At this point key generation is com-

plete. Now imagine that Alice wants to send a message with the value of M = 19070 to Bob. She

uses her private exponent, 160009, to sign the message: 

In the RSA digital signature scheme, d is private; e and n are public. 

Figure 13.7 RSA digital signature scheme
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Alice sends the message and the signature to Bob. Bob receives the message and the signa-

ture. He calculates 

Bob accepts the message because he has verified Alice’s signature.

Attacks on RSA Signature

There are some attacks that Eve can apply to the RSA digital signature scheme to forge

Alice’s signature.

Key-Only Attack Eve has access only to Alice’s public key. Eve intercepts the pair

(M, S) and tries to create another message M′ such that M′ ≡  Se(mod n). This problem

is as difficult to solve as the discrete logarithm problem we saw in Chapter 9. Besides,

this is an existential forgery and normally is useless to Eve.   

Known-Message Attack Here Eve uses the multiplicative property of RSA. Assume

that Eve has intercepted two message-signature pairs (M1, S1) and (M2, S2) that have

been created using the same private key. If M = (M1 × M2) mod n, then S = (S1 × S2)

mod n. This is simple to prove because we have 

Eve can create M = (M1 × M2) mod n, and she can create S = (S1 × S2) mod n, and

fool Bob into believing that S is Alice’s signature on the message M. This attack, which

is sometimes referred to as multiplicative attack, is easy to launch. However, this is an

existential forgery as the message M is a multiplication of two previous messages cre-

ated by Alice, not Eve; M is normally useless.

Chosen-Message Attack This attack also uses the multiplicative property of RSA.

Eve can somehow ask Alice to sign two legitimate messages, M1 and M2, for her and

later creates a new message M = M1 × M2. Eve can later claim that Alice has signed M.

The attack is also referred to as multiplicative attack. This is a very serious attack on

the RSA digital signature scheme because it is a selective forgery (Eve can manipulate

M1 and M2 to get a useful M).

RSA Signature on the Message Digest

As we discussed before, signing a message digest using a strong hash algorithm has

several advantages. In the case of RSA, it can make the signing and verifying processes

much faster because the RSA digital signature scheme is nothing other than encryption

with the private key and decryption with the public key. The use of a strong crypto-

graphic hashing function also makes the attack on the signature much more difficult as

we will explain shortly. Figure 13.8 shows the scheme.

Alice, the signer, first uses an agreed-upon hash function to create a digest from the

message, D = h(M). She then signs the digest, S = Dd mod n. The message and the sig-

nature are sent to Bob. Bob, the verifier, receives the message and the signature. He first

uses Alice’s public exponent to retrieve the digest, D′ = Se mod n. He then applies the

M′ = 210625313 mod 784319 = 19070 mod 784319        →        M  ≡  M′ mod n

S = (S1 × S2) mod n = (M1
d × M2

d) mod n = (M1 × M2)d mod n = Md mod n
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hash algorithm to the message received to obtain D = h(M). Bob now compares the two

digests, D and D′. If they are congruent to modulo n, he accepts the message.

Attacks on RSA Signed Digests

How susceptible to attack is the RSA digital signature scheme when the digest is

signed? 

Key-Only Attack We can have three cases of this attack: 

a. Eve intercepts the pair (S, M) and tries to find another message M′ that creates the

same digest, h(M) = h(M′). As we learned in Chapter 11, if the hash algorithm is

second preimage resistant, this attack is very difficult. 

b. Eve finds two messages M and M′ such that h(M) = h(M′). She lures Alice to sign

h(M) to find S. Now Eve has a pair (M′, S) which passes the verifying test, but it is

the forgery. We learned in Chapter 11 that if the hash algorithm is collision resis-

tant, this attack is very difficult. 

c. Eve may randomly find message digest D, which may match with a random signa-

ture S. She then finds a message M such that D = h(M). As we learned in Chapter 11,

if the hash function is preimage resistant, this attack is very difficult to launch.

Known-Message Attack Let us assume Eve has two message-signature pairs (M1,

S1) and (M2, S2) which have been created using the same private key. Eve calculates

S ≡ S1 × S2. If she can find a message M such that h(M) ≡ h(M1) × h(M2), she has

forged a new message. However, finding M given h(M) is very difficult if the hash algo-

rithm is preimage resistant.    

Chosen-Message Attack Eve can ask Alice to sign two legitimate messages M1 and

M2 for her. Eve then creates a new signature S ≡ S1 × S2. Since Eve can calculate

h(M) ≡ h(M1) × h(M2), if she can find a message M given h(M), the new message is

a forgery. However, finding M given h(M) is very difficult if the hash algorithm is

preimage resistant. 

Figure 13.8 The RSA signature on the message digest
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ElGamal Digital Signature Scheme

The ElGamal cryptosystem was discussed in Chapter 10. The ElGamal digital signa-

ture scheme uses the same keys, but the algorithm, as expected, is different. Figure 13.9

gives the general idea behind the ElGamal digital signature scheme. 

In the signing process, two functions create two signatures; in the verifying pro-

cess the outputs of two functions are compared for verification. Note that one function

is used both for signing and verifying but the function uses different inputs. The figure

also shows the inputs to each function. The message is part of the input to function 2

when signing; it is part of the input to function 1 when verifying. Note that the calcula-

tions in functions 1 and 3 are done modulo p; it is done modulo p − 1 in function 2. 

Key Generation

The key generation procedure here is exactly the same as the one used in the cryptosystem.

Let p be a prime number large enough that the discrete log problem is intractable in Zp*.

Let e1 be a primitive element in Zp*. Alice selects her private key d to be less than p − 1.

She calculates e2 = e1
d. Alice’s public key is the tuple (e1, e2, p); Alice’s private key is d. 

Verifying and Signing

Figure 13.10 shows the ElGamal digital signature scheme.    

Signing Alice can sign the digest of a message to any entity, including Bob:

1. Alice chooses a secret random number r. Note that although public and private keys

can be used repeatedly, Alice needs a new r each time she signs a new message.

When the digest is signed instead of the message itself, the susceptibility of the RSA 

digital signature scheme depends on the strength of the hash algorithm.

Figure 13.9 General idea behind the ElGamal digital signature scheme

In ElGamal digital signature scheme, (e1, e2, p) is Alice’s public key; d is her private key. 
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2. Alice calculates the first signature S1 = e1
r mod p.

3. Alice calculates the second signature S2 = (M − d × S1) × r −1 mod (p − 1), where r−1

is the multiplicative inverse of r modulo p. 

4. Alice sends M, S1, and S2 to Bob. 

Verifying An entity, such as Bob, receives M, S1, and S2, which can be verified as

follows: 

1. Bob checks to see if 0 < S1 <  p

2. Bob checks to see if 0 < S2 <  p − 1

3. Bob calculates V1 = e1
M mod p

4. Bob calculates V2 = e2
S1 × S1

S2 mod p

5. If V1 is congruent to V2, the message is accepted; otherwise, it is rejected. We can

prove the verification criterion using e2 = e1
d and S1 = e1

r    

Because e1 is a primitive root, it can be proved that the above congruence holds if

and only if M  ≡ [d S1 + r S2] mod (p − 1) or S2  ≡ [(M − d × S1) × r −1] mod (p − 1),
which is the same S2 we started in the signing process. 

Example 13.2

Here is a trivial example. Alice chooses p = 3119, e1 = 2, d = 127 and calculates e2 = 2127 mod

3119 = 1702. She also chooses r to be 307. She announces e1, e2, and p publicly; she keeps d

secret. The following shows how Alice can sign a message.  

Figure 13.10 ElGamal digital signature scheme
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Alice sends M, S1, and S2 to Bob. Bob uses the public key to calculate V1 and V2. 

Because V1 and V2 are congruent, Bob accepts the message and he assumes that the mes-

sage has been signed by Alice because no one else has Alice’s private key, d.

Example 13.3

Now imagine that Alice wants to send another message, M = 3000, to Ted. She chooses a new r,

107.  Alice sends M, S1, and S2 to Ted. Ted uses the public keys to calculate V1 and V2. 

Because V1 and V2 are congruent, Ted accepts the message; he assumes that the message

has been signed by Alice because no one else has Alice’s private key, d. Note that any person can

receive the message. The goal is not to hide the message, but to prove that it is sent by Alice. 

Forgery in the ElGamal Digital Signature Scheme

The ElGamal scheme is vulnerable to existential forgery, but it is very hard to do a

selective forgery on this scheme. 

Key-Only Forgery In this type of forgery, Eve has access only to the public key. Two

kinds of forgery are possible:

1. Eve has a predefined message M. She needs to forge Alice’s signature on it. Eve must

find two valid signatures S1 and S2 for this message. This is a selective forgery.

a. Eve can choose S1 and calculate S2. She needs to have dS1 S1
S2 ≡ e1

M (mod p). In

other words, S1
S2 ≡ e1

M d −S1(mod p) or S2 ≡ logS1 (e1
M d −S1) (mod p). This means

computing the discrete logarithm, which is very difficult. 

b. Eve can choose S2 and calculate S1. This is much harder than part a.

2. Eve may be able to find three random values, M, S1, and S2 such that the last two

are the signature of the first one. If Eve can find two new parameters x and y such

that M = xS2 mod (p − 1) and S1 = −yS2 mod (p − 1), she can forge the message,

but it might not be very useful for her. This is an existential forgery.

M = 320

S1 = e1
r = 2307 = 2083 mod 3119

S2 = (M − d × S1) × r−1 = (320 − 127 × 2083) × 307−1 = 2105 mod 3118

V1 = e1
M = 2320 = 3006 mod 3119

V2 = d S1 × S1
S2 = 17022083 ×  20832105 = 3006 mod 3119

M = 3000

S1 = e1
r= 2107 = 2732 mod 3119

S2 = (M − d × S1) r−1 = (3000 − 127 × 2083) × 107−1 = 2526 mod 3118

V1 = e1
M = 23000 = 704 mod 3119

V2 = d S1 × S1
S = 17022732 × 20832526 = 704 mod 3119
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Known-Message Forgery If Eve has intercepted a message M and its two signatures

S1 and S2, she can find another message M′, with the same pair of signatures S1 and S2.

However, note that this is also an existential forgery that does not help Eve very much. 

Schnorr Digital Signature Scheme

The problem with the ElGamal digital signature scheme is that p needs to be very large

to guarantee that the discrete log problem is intractable in Zp*. The recommendation is

a p of at least 1024 bits. This could make the signature as large as 2048 bits. To reduce

the size of the signature, Schnorr proposed a new scheme based on ElGamal, but with a

reduced signature size. Figure 13.11 gives the general idea behind the Schnorr digital

signature scheme. 

In the signing process, two functions create two signatures; in the verifying

process, the output of one function is compared to the first signature for verification.

Figure 13.11 also shows the inputs to each function. The important point is that the

scheme uses two moduli: p and q. Functions 1 and 3 use p; function 2 uses q.

The details of inputs and the functions will be discussed shortly. 

Key Generation

Before signing a message, Alice needs to generate keys and announce the public ones

to the public.

1. Alice selects a prime p, which is usually 1024 bits in length.

2. Alice selects another prime q, which is the same size as the digest created by the

cryptographic hash function (currently 160 bits, but it many change in the future).

The prime q needs to divide (p − 1). In other words, (p − 1) = 0 mod q.   

3. Alice chooses e1 to be the qth root of 1 modulo p. To do so, Alice chooses a primi-

tive element in Zp, e0 (see Appendix J), and calculates e1 = e0
(p−1)/q mod p.

4. Alice chooses an integer, d, as her private key.

Figure 13.11 General idea behind the Schnorr digital signature scheme
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5. Alice calculates e2 = e1
d mod p.

6. Alice’s public key is (e1, e2, p, q); her private key is (d); 

Signing and Verifying

Figure 13.12 shows the Schnorr digital signature scheme.  

Signing

1. Alice chooses a random number r. Note that although public and private keys can
be used to sign multiple messages, Alice needs to change r each time she sends a
new message. Note also that r needs to be between 1 and q. 

2. Alice calculates the first signature S1 = h(M |e1
r mod p). The message is prepended

to the value of e1
r mod p; then the hash function is applied to create a digest. Note

that the hash function is not directly applied to the message, but instead is applied
to the concatenation of M and e1

r mod p. 

3. Alice calculates the second signature S2 = r + d × S1 mod q. Note that part of the
calculation of S2 is done in modulo q arithmetic. 

4. Alice sends M, S1, and S2. 

Verifying Message The receiver, Bob, for example, receives M, S1, and S2.

1. Bob calculates V = h (M | e1
S2 e2

−S1mod p).

2. If S1 is congruent to V modulo p, the message is accepted; otherwise, it is rejected. 

Example 13.4

Here is a trivial example. Suppose we choose q = 103 and p = 2267. Note that p = 22 × q + 1. We
choose e0 = 2, which is a primitive in Z2267*. Then (p −1) / q = 22, so we have e1 = 222 mod 2267 = 354.

In the Schnorr digital signature scheme, Alice’s public key is (e1, e2, p, q); her private key (d).

Figure 13.12 Schnorr digital signature scheme
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We choose d = 30, so e2 = 35430 mod 2267 = 1206. Alice’s private key is now (d); her public key is

(e1, e2, p, q).

Alice wants to send a message M. She chooses r = 11 and calculates e2
r = 35411 = 630 mod

2267. Assume that the message is 1000 and concatenation means 1000630. Also assume that the

hash of this value gives the digest h(1000630) = 200. This means S1 = 200. Alice calculates S2 =

r + d × S1 mod q = 11 + 1026 × 200 mod 103 = 11 + 24 = 35. Alice sends the message M =1000,

S1 = 200, and S2 = 35. The verification is left as an exercise.

Forgery on Schnorr Signature Scheme

It looks like all attacks on ElGamal scheme can be applied on Schnorr scheme. How-

ever, Schnorr is in a better position because S1 = h(M | e1
r mod p), which means that the

hash function is applied to the combination of the message and e1
r, in which r is a

secret. 

Digital Signature Standard (DSS)

The Digital Signature Standard (DSS) was adopted by the National Institute of Stan-

dards and Technology (NIST) in 1994. NIST published DSS as FIPS 186. DSS uses a

digital signature algorithm (DSA) based on the ElGamal scheme with some ideas

from the Schnorr scheme. DSS has been criticized from the time it was published. The

main complaint regards the secrecy of DSS design. The second complaint regards

the size of the prime, 512 bits. Later NIST made the size variable to respond to this

complaint. Figure 13.13 gives the general idea behind the DSS scheme. 

In the signing process, two functions create two signatures; in the verifying process,

the output of one function is compared to the first signature for verification. This is simi-

lar to Schnorr, but the inputs are different. Another difference is that this scheme uses the

message digest (not the message) as part of inputs to functions 1 and 3. The interesting

point is that the scheme uses two public moduli: p and q. Functions 1 and 3 use both p and

q; function 2 uses only q. The details of inputs and the functions will be discussed shortly. 

Figure 13.13 General idea behind DSS scheme
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Key Generation

Before signing a message to any entity, Alice needs to generate keys and announce the

public ones to the public.

1. Alice chooses a prime p, between 512 and 1024 bits in length. The number of bits

in p must be a multiple of 64. 

2. Alice chooses a 160-bit prime q in such a way that q divides (p − 1).

3. Alice uses two multiplication groups <Zp*, × > and <Zq*, ×>; the second is a sub-

group of the first.

4. Alice creates e1 to be the qth root of 1 modulo p (e1
p = 1 mod p). To do so, Alice

chooses a primitive element in Zp, e0, and calculates e1 = e0
(p−1)/q mod p.

5. Alice chooses d as the private key and calculates e2 = e1
d mod p.

6. Alice’s public key is (e1, e2, p, q); her private key is (d). 

Verifying and Signing

Figure 13.14 shows the DSS scheme.  

Signing The following shows the steps to sign the message:

1. Alice chooses a random number r (1 ≤ r ≤ q). Note that although public and private

keys can be chosen once and used to sign many messages, Alice needs to select a

new r each time she needs to sign a new message. 

2. Alice calculates the first signature S1 = (e1
r mod p) mod q. Note that the value of

the first signature does not depend on M, the message. 

3. Alice creates a digest of message h(M).

4. Alice calculates the second signature S2 = (h(M) + d S1)r−1mod q. Note that the

calculation of S2 is done in modulo q arithmetic. 

5. Alice sends M, S1, and S2 to Bob. 

Figure 13.14 DSS scheme
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Verifying Following are the steps used to verify the message when M, S1, and S2 are

received:

1. Bob checks to see if 0 < S1 <  q.

2. Bob checks to see if 0 < S2 <  q.

3. Bob calculates a digest of M using the same hash algorithm used by Alice.

4. Bob calculates V = [(e1
h(M)S2

−1

 e2
S1S2

−1

) mod p] mod q. 

5. If S1 is congruent to V, the message is accepted; otherwise, it is rejected. 

Example 13.5

Alice chooses q = 101 and p = 8081. Alice selects e0 = 3 and calculates e1 = e0
(p−1)/q mod p =

6968. Alice chooses d = 61 as the private key and calculates e2 = e1
d mod p = 2038. Now Alice

can send a message to Bob. Assume that h(M) = 5000 and Alice chooses r = 61:  

Alice sends M, S1, and S2 to Bob. Bob uses the public keys to calculate V.

Because S1 and V are congruent, Bob accepts the message. 

DSS Versus RSA

Computation of DSS signatures is faster than computation of RSA signatures when

using the same p.

DSS Versus ElGamal

DSS signatures are smaller than ElGamal signatures because q is smaller than p.

Elliptic Curve Digital Signature Scheme

Our last scheme is the elliptic curve digital signature scheme, which is DSA based on

elliptic curves, as we discussed in Chapter 10. The scheme sometimes is referred to as

ECDSA (elliptic curve DSA). Figure 13.15 gives the general idea behind ECDSS. 

In the signing process, two functions and an extractor create two signatures; in the

verifying process the output of one function (after passing through the extractor) is

compared to the first signature for verification. Functions f1 and f3 actually create points

on the curve. The first creates a new point from the signer’s private key (which is a point);

the second creates a new point from the signer’s two public keys (which are the points).

Each extractor extracts the first coordinates of the corresponding point in modular

arithmetic. The details of inputs and the functions will be discussed shortly.

h(M) = 5000     r = 61

S1 = (e1
r mod p) mod q = 54

S2 = ((h(M) + d S1) r−1) mod q = 40

S2 
−1 = 48 mod 101

V = [(69685000 × 48  
× 

 203854 × 48) mod 8081] mod 101 = 54
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Key Generation

Key generation follows these steps:

1. Alice chooses an elliptic curve Ep(a, b) with p a prime number. 

2. Alice chooses another prime number q to be used in the calculation.

3. Alice chooses the private key d, an integer.

4. Alice chooses e1(…, …), a point on the curve.

5. Alice calculates e2(…, …) = d × e1(…, …), another point on the curve. 

6. Alice’s public key is (a, b, p, q, e1, e2); her private key is d. 

Signing and Verifying

Figure 13.16 shows the elliptic curve digital signature scheme.

Signing The signing process consists mainly of choosing a secret random number,

creating a third point on the curve, calculating two signatures, and sending the message

and signatures. 

1. Alice chooses a secret random number r, between 1 and q − 1. 

2. Alice selects a third point on the curve, P(u, v) = r × e1 (…, …).

3. Alice uses the first coordinates of P(u, v) to calculate the first signature S1. This

means S1 = u mod q.

4. Alice uses the digest of the message, her private key, and the secret random num-

ber r, and the S1 to calculate the second signature S2 = (h(M) + d × S1) r−1mod q.

5. Alice sends M, S1, and S2.

Verifying The verification process consists mainly of reconstructing the third point

and verifying that the first coordinate is equivalent to S1 in modulo q. Note that the

third point was created by the signer using the secret random number r. The verifier

Figure 13.15 General idea behind the ECDSS scheme
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does not have this value. He needs to make the third point from the message digest, S1

and S2: 

1. Bob uses M, S1, and S2 to create two intermediate results, A and B:

A = h(M) S2
−1 mod q         and        B = S2

−1 S1 mod q

Bob then reconstructs the third point T(x, y) = A × e1 (…, …) + B × e2(…, …). 

2. Bob uses the first coordinate of T(x, y) to verify the message. If x = S1 mod q, the

signature is verified; otherwise, it is rejected. 

13.6 VARIATIONS AND APPLICATIONS

This section briefly discusses variations and applications for digital signatures. 

Variations

Following are brief discussions of several variations and additions to the main

concept of digital signatures. For more insight, the reader can consult the specialized

literature.

Time Stamped Signatures

Sometimes a signed document needs to be timestamped to prevent it from being

replayed by an adversary. This is called timestamped digital signature scheme.

For example, if Alice signs a request to her bank, Bob, to transfer some money to Eve,

the document can be intercepted and replayed by Eve if there is no timestamp on the

Figure 13.16 The ECDSS scheme
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document. Including the actual date and time on the documents may create a problem if

the clocks are not synchronized and a universal time is not used. One solution is to use

a nonce (a one-time random number). A nonce is a number that can be used only once.

When the receiver receives a document with a nonce, he makes a note that the number

is now used by the sender and cannot be used again. In other words, a new nonce

defines the “present time”; a used nonce defines “past time”.   

Blind Signatures

Sometimes we have a document that we want to get signed without revealing the con-

tents of the document to the signer. For example, a scientist, say Bob, might have dis-

covered a very important theory that needs to be signed by a notary public, say Alice,

without allowing Alice to know the contents of the theory. David Chaum has developed

some patented blind digital signature schemes for this purpose. The main idea is as

follows: 

a. Bob creates a message and blinds it. Bob sends the blinded message to Alice.

b. Alice signs the blinded message and returns the signature on the blinded message.

c. Bob unblinds the signature to obtain a signature on the original message. 

Blind Signature Based on the RSA Scheme Let us briefly describe a blind digital

signature scheme developed by David Chaum. Blinding can be done using a variation

of the RSA scheme. Bob selects a random number, b, and calculates the blinded mes-

sage B = M × be mod n, in which e is Alice’s public key and n is the modulus defined in

the RSA digital signature scheme. Note that b is sometimes called the blinding factor.

Bob sends B to Alice.

Alice signs the blinded message using the signing algorithm defined in the RSA

digital signature Sb = Bd mod n, in which d is Alice’s private key. Note that Sb is the

signature on the blind version of the message. 

Bob simply uses the multiplicative inverse of his random number b to remove

the blind from the signature. The signature is S = Sb b−1 mod n.   We can prove that

S is the signature on the original message as defined in the RSA digital signature

scheme: 

S is the signature if Bob has sent the original message to be signed by Alice. 

Preventing Fraud It appears that Bob can get Alice to sign a blind message that may

later hurt her. For example, Bob’s message could be a document, claiming to be Alice’s

will, that will give everything to Bob after her death. There are at least three ways to

prevent such damage:

a. The authorities can pass a law that Alice is not responsible for signing any blind

message that is against her interest. 

b. Alice can request a document from Bob that the message she will sign does not

hurt Alice. 

c. Alice could require that Bob proves his honesty before she signs the blind message.

S ≡ Sb b−1 ≡ Bd 
b
−1  ≡ (M × be)d 

b
−1  ≡ Md 

b
ed 

b
−1 
≡

 Md 
b

 
b
−1 
≡

 Md 
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Undeniable Digital Signatures

Undeniable digital signature schemes are elegant inventions of Chaum and van

Antwerpen. An undeniable digital signature scheme has three components: a signing

algorithm, a verification protocol, and a disavowal protocol. The signing algorithm

allows Alice to sign a message. The verification protocol uses the challenge-response

mechanism (discussed in Chapter 14) to involve Alice for verifying the signature. This

prevents the duplication and distribution of the signed message without Alice’s

approval. The disavowal protocol helps Alice deny a forged signature. To prove that the

signature is a forgery, Alice needs to take part in the disavowal protocol. 

Applications

Later chapters discuss several applications of cryptography in network security. Most of

these applications directly or indirectly require the use of public keys. To use a public key,

a person should prove that she actually owns the public key. For this reason, the idea of

certificates and certificate authorities (CAs) has been developed (See Chapter 14 and

Chapter 15). The certificates must be signed by the CA to be valid. Digital signatures are

used to provide such a proof. When Alice needs to use Bob’s public key, she uses the certif-

icates issued by a CA. The CA signs the certificate with its private key and Alice verifies the

signature using the public key of the CA. The certificate itself contains Bob’s public key. 

Today’s protocols that use the services of CA include IPSec (Chapter 18), SSL/

TLS (Chapter 17), and S/MIME (Chapter 16). Protocol PGP uses certificates, but they

can be issued by people in the community. 

13.7 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the book. 

Books

[Sti06], [TW06], and [PHS03] discuss digital signatures in detail. 

WebSites

The following websites give more information about topics discussed in this chapter.

http://www.itl.nist.gov/fipspubs/fip186.htm

csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1

http://en.wikipedia.org/wiki/ElGamal_signature_scheme

csrc.nist.gov/cryptval/dss/ECDSAVS.pdf

http://en.wikipedia.org/wiki/ElGamal_signature_scheme

http://en.wikipedia.org/wiki/Digital_signature
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13.8 KEY TERMS

13.9 SUMMARY

❏ A digital signature scheme can provide the same services provided by a conven-

tional signature. A conventional signature is included in the document; a digital

signature is a separate entity. To verify a conventional signature, the recipient

compares the signature with the signature on file; to verify a digital signature, the

recipient applies a verifying process to the document and signature. There is a

one-to-many relationship between a document and the conventional signature;

there is a one-to-one relationship between a document and a digital signature.

❏ Digital signatures provide message authentication. Digital signatures provide

message integrity if the digest of the message is signed instead of the message

itself. Digital signatures provide nonrepudiation if a trusted third party is used.

❏ Digital signatures cannot provide confidentiality for the message. If confidentiality

is needed, a cryptosystem must be applied over the digital signature scheme.

❏ A digital signature needs an asymmetric-key system. In a cryptosystem, we use the

private and public keys of the receiver; for digital signatures, we use the private

and public keys of the sender.

❏ The RSA digital signature scheme uses the RSA cryptosystem, but the roles of the

private and public keys are swapped. The ElGamal digital signature scheme uses

the ElGamal cryptosystem (with some minor changes), but the roles of the private

and public keys are swapped. The Schnorr digital signature scheme is a modifica-

tion of the ElGamal scheme in which the size of the signature can be smaller. The

Digital Signature Standard (DSS) uses the digital signature algorithm (DSA),

which is based on the ElGamal scheme with some ideas from the Schnorr scheme.

❏ Timestamped digital signature schemes are designed to prevent the replaying of

signatures. Blind digital signature schemes allow Bob to let Alice sign a docu-

ment without revealing the contents of the document to Alice. The undeniable

digital signature scheme needs the signer to be involved in verifying the signature

blind digital signature scheme known-message attack

chosen-message attack nonce

digital signature RSA digital signature scheme

digital signature algorithm (DSA) Schnorr digital signature scheme

digital signature scheme selective forgery

digital signature standard (DSS) signing algorithm

ElGamal digital signature scheme timestamped digital signature

elliptic curve digital signature scheme undeniable digital signatures

existential forgery verifying algorithm

key-only attack
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to prevent the duplication and distribution of the signed message without the

signer’s approval.

❏ The main application of digital signatures is in signing the certificates issued

by a certificate authority (CA). 

13.10 PRACTICE SET

Review Questions

1. Compare and contrast a conventional signature and a digital signature.

2. List the security services provided by a digital signature.

3. Compare and contrast attacks on digital signatures with attacks on cryptosystems.

4. Compare and contrast existential and selective forgery.

5. Define the RSA digital signature scheme and compare it to the RSA cryptosystem.

6. Define the ElGamal scheme and compare it to the RSA scheme.

7. Define the Schnorr scheme and compare it to the ElGamal scheme.

8. Define the DSS scheme and compare it with the ElGamal and the Schnorr

schemes.

9. Define the elliptic curve digital signature scheme and compare it to the elliptic

curve cryptosystem.

10. Mention three variations of digital signatures discussed in this chapter and briefly

state the purpose of each. 

Exercises

11. Using the RSA scheme, let p = 809, q = 751, and d = 23. Calculate the public

key e. Then

a. Sign and verify a message with M1 = 100. Call the signature S1.

b. Sign and verify a message with M2 = 50. Call the signature S2.

c. Show that if M = M1 × M2 = 5000, then S = S1 × S2. 

12. Using the ElGamal scheme, let p = 881 and d = 700. Find values for e1 and e2.

Choose r = 17. Find the value of S1 and S2 if M = 400. 

13. Using the Schnorr scheme, let q = 83, p = 997, and d = 23. Find values for e1 and

e2. Choose r = 11. If M = 400 and h(. . .) = 100, find the value of S1, S2, and V. Is

S1 ≡ V(mod p)?

14. Using the DSS scheme, let q = 59, p = 709, and d = 14. Find values for e1 and e2.

Choose r = 13. Find the value of S1 and S2 if h(M) = 100. Verify the signature. 

15. Do the following:

a. In the RSA scheme, find the relationship between the size of S and the size of n.

b. In the ElGamal scheme, find the size of S1 and S2 in relation to the size of p.

c. In the Schnorr scheme, find the size of S1 and S2 in relation to the size of p and q.

d. In the DSS scheme, find the size of S1 and S2 in relation to the size of p and q.
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16. The NIST specification insists that, in DSS, if the value of S2 = 0, the two signa-

tures must be recalculated using a new r. What is the reason?

17. In ElGamal, Schnorr, or DSS, what happens if Eve can find the value of r used by

the signer? Explain your answer for each protocol separately. 

18. In ElGamal, Schnorr, or DSS, what happens if Alice uses the same value of r to

sign two messages? Explain your answer for each protocol separately.

19. Show an example of the vulnerability of RSA to selective forgery when the values

of p and q are small. Use p = 19 and q = 3.

20. Show an example of the vulnerability of ElGamal to selective forgery when the

value of p is small. Use p = 19.

21. Show an example of the vulnerability of Schnorr to selective forgery when the val-

ues of p and q are small. Use p = 29 and q = 7. 

22. Show an example of the vulnerability of DSS to selective forgery when the values

of p and q are small. Use p = 29 and q = 7.

23. In the ElGamal scheme, if Eve can find the value of r, can she forge a message?

Explain.

24. In the Schnorr scheme, if Eve can find the value of r, can she forge a message?

Explain.

25. In the DSS scheme, if Eve can find the value of r, can she forge a message? Explain.

26. Suppose that the values of p, q, e1, and r in the Schnorr scheme are the same as the

corresponding values in the DSS scheme. Compare the values of S1 and S2 in the

Schnorr scheme with the corresponding values in the DSS scheme. 

27. In the ElGamal scheme, explain why the calculation of S1 is done in modulo p, but

the calculation of S2 is done in modulo p − 1. 

28. In the Schnorr scheme, explain why the calculation of S1 is done in modulo p, but

the calculation of S2 is done in modulo q. 

29. In the DSS scheme, explain why the calculation of S1 is done in modulo p modulo

q, but the calculation of S2 is done only in modulo q. 

30. In the Schnorr scheme, prove the correctness of the verifying process.

31. In the DSS scheme, prove the correctness of the verifying process. 

32. In the elliptic curve digital signature scheme, prove the correctness of the verifying

process. 

33. Write two algorithms for the RSA scheme: one for the signing process and one for

the verifying process.

34. Write two algorithms for the ElGamal scheme: one for the signing process and one

for the verifying process.

35. Write two algorithms for the Schnorr scheme: one for the signing process and one

for the verifying process.

36. Write two algorithms for the DSS scheme: one for the signing process and one for

the verifying process.

37. Write two algorithms for the elliptic curve scheme: one for the signing process and

one for the verifying process.
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CHAPTER 14

Entity Authentication 

Objectives

This chapter has several objectives:

❏ To distinguish between message authentication and entity authentication

❏ To define witnesses used for identification

❏ To discuss some methods of entity authentication using a password

❏ To introduce some challenge-response protocols for entity authentication

❏ To introduce some zero-knowledge protocols for entity authentication

❏ To define biometrics and distinguish between physiological and

behavioral techniques

14.1 INTRODUCTION

Entity authentication is a technique designed to let one party prove the identity of

another party. An entity can be a person, a process, a client, or a server. The entity

whose identity needs to be proved is called the claimant; the party that tries to prove

the identity of the claimant is called the verifier. When Bob tries to prove the identity of

Alice, Alice is the claimant, and Bob is the verifier. 

Data-Origin Versus Entity Authentication

There are two differences between message authentication (data-origin authentication),

discussed in Chapter 13, and entity authentication, discussed in this chapter. 

1. Message authentication (or data-origin authentication) might not happen in real

time; entity authentication does. In the former, Alice sends a message to Bob.

When Bob authenticates the message, Alice may or may not be present in

the communication process. On the other hand, when Alice requests entity
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authentication, there is no real message communication involved until Alice

is authenticated by Bob. Alice needs to be online and to take part in the process.

Only after she is authenticated can messages be communicated between Alice

and Bob. Data-origin authentication is required when an email is sent from Alice to

Bob. Entity authentication is required when Alice gets cash from an automatic

teller machine.

2. Second, message authentication simply authenticates one message; the process

needs to be repeated for each new message. Entity authentication authenticates the

claimant for the entire duration of a session.

Verification Categories

In entity authentication, the claimant must identify herself to the verifier. This can be

done with one of three kinds of witnesses: something known, something possessed, or

something inherent. 

❏ Something known. This is a secret known only by the claimant that can be checked

by the verifier. Examples are a password, a PIN, a secret key, and a private key.

❏ Something possessed. This is something that can prove the claimant’s identity.

Examples are a passport, a driver’s license, an identification card, a credit card, and

a smart card.

❏ Something inherent. This is an inherent characteristic of the claimant. Exam-

ples are conventional signatures, fingerprints, voice, facial characteristics, retinal

pattern, and handwriting. 

Entity Authentication and Key Management

This chapter discusses entity authentication. The next chapter discusses key manag-

ment. These two topics are very closely related; most key management protocols use

entity authentication protocols. This is why these two topics are discussed together in

most books. In this book they are treated separately for clarity. 

14.2 PASSWORDS

The simplest and oldest method of entity authentication is the password-based

authentication, where the password is something that the claimant knows. A password

is used when a user needs to access a system to use the system’s resources (login). Each

user has a user identification that is public, and a password that is private. We

can divide these authentication schemes into two groups: the fixed password and the

one-time password.

Fixed Password

A fixed password is a password that is used over and over again for every access.

Several schemes have been built, one upon the other.
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First Approach

In the very rudimentary approach, the system keeps a table (a file) that is sorted by user

identification. To access the system resources, the user sends her user identification and

password, in plaintext, to the system. The system uses the identification to find the

password in the table. If the password sent by the user matches the password in the

table, access is granted; otherwise, it is denied. Figure 14.1 shows this approach. 

Attacks on the First Approach This approach is subject to several kinds of attack. 

❏ Eavesdropping. Eve can watch Alice when she types her password. Most systems,

as a security measure, do not show the characters a user types. Eavesdropping can

take a more sophisticated form. Eve can listen to the line and intercept the mes-

sage, thereby capturing the password for her own use. 

❏ Stealing a password. The second type of attack occurs when Eve tries to physi-

cally steal Alice’s password. This can be prevented if Alice does not write down

the password and instead she just commits it to memory. For this reason the pass-

word should be very simple or else related to something familiar to Alice. But this

makes the password vulnerable to other types of attacks.

❏ Accessing a password file. Eve can hack into the system and get access to the ID/

password file. Eve can read the file and find Alice’s password or even change it. To

prevent this type of attack, the file can be read/write protected. However, most sys-

tems need this type of file to be readable by the public. We will see how the second

approach can protect the file from this type of attack.

❏ Guessing. Using a guessing attack, Eve can log into the system and try to guess

Alice’s password by trying different combinations of characters. The password is

particularly vulnerable if the user is allowed to choose a short password (a few

characters). It is also vulnerable if Alice has chosen something trivial, such as

her birthday, her child’s name, or the name of her favorite actor. To prevent

Figure 14.1 User ID and password file
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guessing, a long random password is recommended, something that is not very

obvious. However, the use of such a random password may also create a prob-

lem. Because she could easily forget such a password, Alice might store a copy

of it somewhere, which makes the password subject to stealing. 

Second Approach

A more secure approach is to store the hash of the password (instead of the plaintext

password) in the password file. Any user can read the contents of the file, but, because

the hash function is a one-way function, it is almost impossible to guess the value of the

password. Figure 14.2 shows the situation. When the password is created, the system

hashes it and stores the hash in the password file. 

When the user sends the ID and the password, the system creates a hash of the

password and then compares the hash value with the one stored in the file. If there is a

match, the user is granted access; otherwise, access is denied. In this case, the file does

not need to be read protected. 

Dictionary Attack The hash function prevents Eve from gaining access to the

system even though she has the password file. However, there is still the possibility

of dictionary attack. In this attack, Eve is interested in finding one password,

regardless of the user ID. For example, if the password is 6 digits, Eve can create a

list of 6-digit numbers (000000 to 999999), and then apply the hash function to every

number; the result is a list of one million hashes. She can then get the password file

and search the second-column entries to find a match. This could be programmed and

run offline on Eve’s private computer. After a match is found, Eve can go online and

use the password to access the system. The third approach shows how to make this

attack more difficult.

Figure 14.2 Hashing the password
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Third Approach

The third approach is called salting the password. When the password string is created,

a random string, called the salt, is concatenated to the password. The salted password is

then hashed. The ID, the salt, and the hash are then stored in the file. Now, when a user

asks for access, the system extracts the salt, concatenates it with the received password,

makes a hash out of the result, and compares it with the hash stored in the file. If there

is a match, access is granted; otherwise, it is denied (see Figure 14.3). 

Salting makes the dictionary attack more difficult. If the original password is 6 dig-

its and the salt is 4 digits, then hashing is done over a 10-digit value. This means that

Eve now needs to make a list of 10 million items and create a hash for each of them.

The list of hashes has 10 million entries, and the comparison takes much longer. Salting

is very effective if the salt is a very long random number. The UNIX operating system

uses a variation of this method.

Fourth Approach

In the fourth approach, two identification techniques are combined. A good example of

this type of authentication is the use of an ATM card with a PIN (personal identification

number). The card belongs to the category “something possessed ” and the PIN belongs

to the category “something known”. The PIN is a password that enhances the security

of the card. If the card is stolen, it cannot be used unless the PIN is known. The PIN

number, however, is traditionally very short so it is easily remembered by the owner.

This makes it vulnerable to the guessing type of attack. 

One-Time Password

A one-time password is a password that is used only once. This kind of password

makes eavesdropping and salting useless. Three approaches are discussed here. 

Figure 14.3 Salting the password
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First Approach

In the first approach, the user and the system agree upon a list of passwords. Each pass-

word on the list can be used only once. There are some drawbacks to this approach.

First, the system and the user must keep a long list of passwords. Second, if the user

does not use the passwords in sequence, the system needs to perform a long search to

find the match. This scheme makes eavesdropping and reuse of the password useless.

The password is valid only once and cannot be used again. 

Second Approach

In the second approach, the user and the system agree to sequentially update the pass-

word. The user and the system agree on an original password, P1, which is valid only

for the first access. During the first access, the user generates a new password, P2, and

encrypts this password with P1 as the key. P2 is the password for the second access.

During the second access, the user generates a new password, P3, and encrypts it with

P2; P3 is used for the third access. In other words, Pi is used to create Pi+1. Of course, if

Eve can guess the first password (P1), she can find all of the subsequent ones. 

Third Approach

In the third approach, the user and the system create a sequentially updated password

using a hash function In this approach, elegantly devised by Leslie Lamport, the user

and the system agree upon an original password, P0, and a counter, n. The system cal-

culates hn(P0), where hn means applying a hash function n times. In other words,  

The system stores the identity of Alice, the value of n, and the value of hn(P0).

Figure 14.4 shows how the user accesses the system the first time. 

hn(x) = h(hn−1(x))   hn−1(x) = h(hn−2(x))  …  h2(x) = h(h(x))     h1(x) = h(x)

Figure 14.4 Lamport one-time password
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When the system receives the response of the user in the third message, it applies

the hash function to the value received to see if it matches the value stored in the entry.

If there is a match, access is granted; otherwise, it is denied. The system then decre-

ments the value of n in the entry and replaces the old value of the password hn(P0) with

the new value hn−1(P0). 

When the user tries to access the system for the second time, the value of the

counter it receives is n − 1. The third message from the user is now hn−2(P0). When

the system receives this message, it applies the hash function to get hn−1(P0), which can

be compared with the updated entry. 

The value of n in the entry is decremented each time there is an access. When the

value becomes 0, the user can no longer access the system; everything must be set up

again. For this reason, the value of n is normally chosen as a large number such as 1000. 

14.3 CHALLENGE-RESPONSE

In password authentication, the claimant proves her identity by demonstrating that she

knows a secret, the password. However, because the claimant reveals this secret, it is

susceptible to interception by the adversary. In challenge-response authentication,

the claimant proves that she knows a secret without sending it. In other words, the

claimant does not send the secret to the verifier; the verifier either has it or finds it. 

The challenge is a time-varying value such as a random number or a timestamp

that is sent by the verifier. The claimant applies a function to the challenge and sends

the result, called a response, to the verifier. The response shows that the claimant knows

the secret. 

Using a Symmetric-Key Cipher

Several approaches to challenge-response authentication use symmetric-key encryption.

The secret here is the shared secret key, known by both the claimant and the verifier. The

function is the encrypting algorithm applied on the challenge. 

First Approach

In the first approach, the verifier sends a nonce, a random number used only once, to

challenge the claimant. A nonce must be time-varying; every time it is created, it is dif-

ferent. The claimant responds to the challenge using the secret key shared between the

claimant and the verifier. Figure 14.5 shows this first approach.  

In challenge-response authentication, the claimant proves that she knows a secret 

without sending it to the verifier.

The challenge is a time-varying value sent by the verifier; the response is the result 

of a function applied on the challenge. 
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The first message is not part of challenge-response, it only informs the verifier that

the claimant wants to be challenged. The second message is the challenge. RB is the

nonce randomly chosen by the verifier (Bob) to challenge the claimant. The claimant

encrypts the nonce using the shared secret key known only to the claimant and the ver-

ifier and sends the result to the verifier. The verifier decrypts the message. If the nonce

obtained from decryption is the same as the one sent by the verifier, Alice is granted

access. 

Note that in this process, the claimant and the verifier need to keep the symmetric

key used in the process secret. The verifier must also keep the value of the nonce for

claimant identification until the response is returned. 

The reader may have noticed that use of a nonce prevents a replay of the third mes-

sage by Eve. Eve cannot replay the third message and pretend that it is a new request

for authentication by Alice, because once Bob receives the response, the value of RB is

not valid any more. The next time a new value is used. 

Second Approach

In the second approach, the time-varying value is a timestamp, which obviously

changes with time. In this approach the challenge message is the current time sent from

the verifier to the claimant. However, this supposes that the client and the server clocks

are synchronized; the claimant knows the current time. This means that there is no need

for the challenge message. The first and third messages can be combined. The result is

that authentication can be done using one message, the response to an implicit chal-

lenge, the current time. Figure 14.6 shows the approach.  

Third Approach

The first and second approaches are for unidirectional authentication. Alice is authenti-

cated to Bob, but not the other way around. If Alice also needs to be sure about Bob’s

identity, we need bidirectional authentication. Figure 14.7 shows a scheme.  

Figure 14.5 Nonce challenge
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The second message RB is the challenge from Bob to Alice. In the third message,

Alice responds to Bob’s challenge and at the same time, sends her challenge RA to

Bob. The third message is Bob’s response. Note that in the fourth message the order

of RA and RB are switched to prevent a replay attack of the third message by an

adversary. 

Using Keyed-Hash Functions

Instead of using encryption/decryption for entity authentication, we can also use a

keyed-hash function (MAC). One advantage to the scheme is that it preserves the integ-

rity of challenge and response messages and at the same time uses a secret, the key.

Figure 14.8 shows how we can use a keyed-hash function to create a challenge

response with a timestamp.     

Note that in this case, the timestamp is sent both as plaintext and as text scrambled

by the keyed-hash function. When Bob receives the message, he takes the plaintext T,

applies the keyed-hash function, and then compares his calculation with what he

received to determine the authenticity of Alice. 

Figure 14.6 Timestamp challenge

Figure 14.7 Bidirectional authentication
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Using an Asymmetric-Key Cipher

Instead of a symmetric-key cipher, we can use an asymmetric-key cipher for entity

authentication. Here the secret must be the private key of the claimant. The claimant

must show that she owns the private key related to the public key that is available to

everyone. This means that the verifier must encrypt the challenge using the public key

of the claimant; the claimant then decrypts the message using her private key. The

response to the challenge is the decrypted challenge. Following are two approaches:

one for unidirectional authentication and one for bidirectional authentication. 

First Approach

In the first approach, Bob encrypts the challenge using Alice’s public key. Alice

decrypts the message with her private key and sends the nonce to Bob. Figure 14.9

shows this approach. 

Second Approach

In the second approach, two public keys are used, one in each direction. Alice sends her

identity and nonce encrypted with Bob’s public key. Bob responds with his nonce

Figure 14.8 Keyed-hash function

Figure 14.9 Unidirectional, asymmetric-key authentication 
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encrypted with Alice’s public key. Finally, Alice, responds with Bob’s decrypted nonce.

Figure 14.10 shows this approach.  

Using Digital Signature

Entity authentication can also be achieved using a digital signature. When a digital

signature is used for entity authentication, the claimant uses her private key for signing.

Two approaches are shown here, the others are left as exercises. 

First Approach

In the first approach, shown in Figure 14.11, Bob uses a plaintext challenge and Alice

signs the response. 

Figure 14.10 Bidirectional, asymmetric-key 

Figure 14.11 Digital signature, unidirectional authentication
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Second Approach

In the second approach, shown in Figure 14.12, Alice and Bob authenticate each other. 

14.4 ZERO-KNOWLEDGE 

In password authentication, the claimant needs to send her secret (the password) to the

verifier; this is subject to eavesdropping by Eve. In addition, a dishonest verifier could

reveal the password to others or use it to impersonate the claimant.

In challenge-response entity authentication, the claimant’s secret is not sent to the

verifier. The claimant applies a function on the challenge sent by the verifier that

includes her secret. In some challenge-response methods, the verifier actually knows

the claimant’s secret, which could be misused by a dishonest verifier. In other methods,

the verifier can extract some information about the secret from the claimant by choos-

ing a preplanned set of challenges. 

In zero-knowledge authentication, the claimant does not reveal anything that

might endanger the confidentiality of the secret. The claimant proves to the verifier that

she knows a secret, without revealing it. The interactions are so designed that they can-

not lead to revealing or guessing the secret. After exchanging messages, the verifier

only knows that the claimant does or does not have the secret, nothing more. The result

is a yes/no situation, just a single bit of information. 

Figure 14.12 Digital signature, bidirectional authentication
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Fiat-Shamir Protocol

In the Fiat-Shamir protocol, a trusted third party (see Chapter 15) chooses two large

prime numbers p and q to calculate the value of n = p × q. The value of n is announced

to the public; the values of p and q are kept secret. Alice, the claimant, chooses a secret

number s between 1 and n − 1 (exclusive). She calculates v = s2 mod n. She keeps s as

her private key and registers v as her public key with the third party. Verification of

Alice by Bob can be done in four steps as shown in Figure 14.13. 

1. Alice, the claimant, chooses a random number r between 0 and n − 1 (r is called the

commitment). She then calculates the value of x = r2 mod n; x is called the witness.

2. Alice sends x to Bob as the witness. 

3. Bob, the verifier, sends the challenge c to Alice. The value of c is either 0 or 1. 

4. Alice calculates the response y = rsc. Note that r is the random number selected by

Alice in the first step, s is her private key, and c is the challenge (0 or 1).

5. Alice sends the response to Bob to show that she knows the value of her private

key, s. She claims to be Alice. 

6. Bob calculates y2 and xvc. If these two values are congruent, then Alice either

knows the value of s (she is honest) or she has calculated the value of y in some

other ways (dishonest) because we can easily prove that y2 is the same as xvc in

modulo n arithmetic as shown below:

Figure 14.13 Fiat-Shamir protocol

y2 = (rsc)2 = r2s2c = r2(s2)c = xvc

x = r2 mod n

x

1

2

Witness

y

Response

c

Challenge

y = rsc mod n

y2 mod n 

Probable
yes

no

Improbable

n is public

xvc mod n  =

s: Alice’s private key

v: Alice’s public key

r: Random number

3

4

5

6

Alice
(claimant)

Bob
(verifier)



428 CHAPTER 14 ENTITY AUTHENTICATION

The six steps constitute a round; the verification is repeated several times with the

value of c equal to 0 or 1 (chosen randomly). The claimant must pass the test in each

round to be verified. If she fails one single round, the process is aborted and she is not

authenticated.

Let us elaborate on this interesting protocol. Alice can be honest (knows the value

of s) or dishonest (does not know the value of s). If she is honest, she passes each

round. If she is not, she still can pass a round by predicting the value of challenge cor-

rectly. Two situations can happen:

1. Alice guesses that the value of c (the challenge) will be 1 (a prediction). She calcu-

lates x = r2/v and sends x as the witness. 

a. If her guess is correct (c turned out to be 1), she sends y = r as the response. We

can see that she passes the test (y2 = xvc).

b. If her guess is wrong (c turned out to be 0), she cannot find a value of y that

passes the test. She probably quits or sends a value that does not pass the test

and Bob will abort the process.

2. Alice guesses that the value of c (challenge) will be 0. She calculates x = r2 and sends

x as the witness. 

c. If her guess is correct (c turned out to be 0), she sends y = r as the response. We

can see that she passes the test (y2 = xvc).

d. If her guess is wrong (c turned out to be 1), she cannot find a value of y that

passes the rest. She probably quits or sends a value that does not pass the test

and Bob will abort the process.

We can see that a dishonest claimant has a 50 percent chance of fooling the verifier and

passing the test (by predicting the value of the challenge). In other words, Bob assigns a

probability of 1/2 to each round of the test. If the process is repeated 20 times, the prob-

ability decreases to (1/2)20 or 9.54 × 10−7. In other words, it is highly improbable that

Alice can guess correctly 20 times. 

Cave Example To show the logic behind the above protocol, Quisquater and Guillou

devised the cave example (Figure 14.14). 

Figure 14.14 Cave example
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 Suppose there is an underground cave with a door at the end of the cave that can

only be opened with a magic word. Alice claims that she knows the word and that she

can open the door. At the beginning, Alice and Bob are standing at the entrance (point 1).

Alice enters the cave and reaches the fork (point 2). Bob cannot see Alice from the

entrance. Now the game starts.

1. Alice chooses to go either right or left. This corresponds to the sending of the

witness (x). 

2. After Alice disappears into the cave, Bob comes to the fork (point 2) and asks

Alice to come up from either the right or left. This corresponds to sending the

challenge (c).

3. If Alice knows the magic word (her private key), she can come up from the requested

side. She may have to use the magic word (if she is on the wrong side) or she can just

come up without using the magic word (if she is at the right side). However, if Alice

does not know the magic word, she may come up from the correct side if she has

guessed Bob’s challenge. With a probability of 1/2, Alice can fool Bob and make him

believe that she knows the magic word. This corresponds to the response (y).

4. The game is repeated many times. Alice will win if she passes the test all of the

time. The probability that she wins the game is very low if she does not know

the magic word. In other words, P = (1/2)N where P is the probability of winning

without knowing the magic word and N is the number of times the test is run. 

Feige-Fiat-Shamir Protocol

The Feige-Fiat-Shamir protocol is similar to the first approach except that it uses a

vector of private keys [s1, s2, …, sk], a vector of public keys [v1, v2, …, vk], and a vector

of challenges (c1, c2, …, ck). The private keys are chosen randomly, but they must be

relatively prime to n. The public keys are chosen such that vi = (si
2)−1 mod n. The three

steps in the process are shown in Figure 14.15. 
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the value of c’s equal to 0 or 1 (chosen randomly). The claimant must pass the test in
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Guillou-Quisquater Protocol
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value of n = p × q. The trusted party also chooses an exponent, e, which is coprime with

φ, where φ = (p − 1)(q − 1). The values of n and e are announced to the public; the val-

ues of p and q are kept secret. The trusted party chooses two numbers for each entity, v

which is public and s which is secret. However, in this case, the relationship between v

and s is different: se ×  v = 1 mod n. 

The three exchanges constitute a round; verification is repeated several times with

a random value of c (challenge) between 1 and e. The claimant must pass the test in

each round to be verified. If she fails a single round, the process is aborted and she is

not authenticated. Figure 14.16 shows one round. 

The equality can be proven as shown below:  

14.5 BIOMETRICS

Biometrics is the measurement of physiological or behavioral features that identify a

person (authentication by something inherent). Biometrics measures features that can-

not be guessed, stolen, or shared.

Figure 14.15 Feige-Fiat-Shamir protocol
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Components

Several components are needed for biometrics, including capturing devices, processors,

and storage devices. Capturing devices such as readers (or sensors) measure biometrics

features. Processors change the measured features to the type of data appropriate for

saving. Storage devices save the result of processing for authentication.

Enrollment

Before using any biometric techniques for authentication, the corresponding feature of

each person in the community should be available in the database. This is referred to as

enrollment. 

Authentication

Authentication is done by verification or identification. 

Verification

In verification, a person’s feature is matched against a single record in the database

(one-to-one matching) to find if she is who she is claiming to be. This is useful, for

example, when a bank needs to verify a customer’s signature on a check.

Figure 14.16 Guillou-Quisquater protocol 
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Identification

In identification, a person’s feature is matched against all records in the database (one-

to-many matching) to find if she has a record in the database. This is useful, for exam-

ple, when a company needs to allow access to the building only to employees. 

Techniques

Biometrics techniques can be divided into two broad categories: physiological and

behavioral. Figure 14.17 shows several common techniques under each category.

Physiological Techniques

Physiological techniques measure the physical traits of the human body for verification

and identification. To be effective, the trait should be unique among all or most of the

population. In addition, the feature should be changeable due to aging, surgery, illness,

disease, and so on. There are several physiological techniques.   

Fingerprint Although there are several methods for measuring characteristics associ-

ated with fingerprints, the two most common are minutiae-based and image-based. In

the minutiae-based technique, the system creates a graph based on where individual

ridges start/stop or branch. In the image-based technique, the system creates an image

of the fingertip and finds similarities to the image in the database. Fingerprints have

been used for a long time. They show a high level of accuracy and support verification

and identification. However, fingerprints can be altered by aging, injury, or diseases. 

Iris This technique measures the pattern within the iris that is unique for each person.

It normally requires a laser beam (infrared). They are very accurate and stable over a

person’s life. They also support verification and identification. However, some eye dis-

eases, such as cataracts, can alter the iris pattern.

Retina The devices for this purpose examine the blood vessels in the back of the

eyes. However, these devices are expensive and not common yet.

Figure 14.17 Biometrics
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Face This technique analyzes the geometry of the face based on the distance between

facial features such as the nose, mouth, and eyes. Some technologies combine geomet-

ric features with skin texture. Standard video cameras and this technique support both

verification and identification. However, accuracy can be affected by eyeglasses, grow-

ing facial hair, and aging. 

Hands This technique measures the dimension of hands, including the shape and

length of the fingers. This technique can be used indoors and outdoors. However, it is

better suited to verification rather than identification. 

Voice Voice recognition measures pitch, cadence, and tone in the voice. It can be

used locally (microphone) or remotely (audio channel). This method is mostly used for

verification. However, accuracy can be diminished by background noise, illness, or age. 

DNA DNA is the chemical found in the nucleus of all cells of humans and most other

organsims. The pattern is persistent throughout life and even after death. It is extremely

accurate. It can be used for both verification and identification. The only problem is that

identical twins may share the same DNA. 

Behavioral Techniques

Behavioral techniques measure some human behavior traits. Unlike physiological tech-

niques, behavioral techniques need to be monitored to ensure the claimant behaves nor-

mally and does not attempt to impersonate someone else. 

Signature In the past, signatures were used in the banking industry to verify the iden-

tity of the check writer. There are still many human experts today who can determine

whether a signature on a check or a document is the same as a signature on file. Bio-

metric approaches use signature tablets and special pens to identify the person. These

devices not only compare the final product, the signature, they also measure some other

behavioral traits, such as the timing needed to write the signature. Signatures are

mostly used for verification. 

Keystroke The keystrokes (typing rhythm) technique measures the behavior of a per-

son related to working with a keyboard. It can measure the duration of key depression,

the time between keystrokes, number and frequency of errors, the pressure on the keys,

and so on. It is inexpensive because it does not require new equipment. However, it is

not very accurate because the trait can change with time (people become faster or

slower typists). It is also text dependent. 

Accuracy

Accuracy of biometric techniques is measured using two parameters: false rejection

rate (FRR) and false acceptance rate (FAR). 

False Rejection Rate (FRR)

This parameter measures how often a person, who should be recognized, is not recog-

nized by the system. FRR is measured as the ratio of false rejection to the total number

of attempts (in percentage). 



434 CHAPTER 14 ENTITY AUTHENTICATION

False Acceptance Rate (FAR)

This parameter measures how often a person, who should not be recognized, is recog-

nized by the system. FAR is measured as the ratio of false acceptance to the total num-

ber of attempts (in percentage).

Applications

Several applications of biometrics are already in use. In commercial environments,

these include access to facilities, access to information systems, transaction at point-of-

sales, and employee timekeeping. In the law enforcement system, they include investi-

gations (using fingerprints or DNA) and forensic analysis. Border control and immigra-

tion control also use some biometric techniques. 

14.6 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the

book. 

Books

Entity authentication is discussed in [Sti06], [TW06], [Sal03], and [KPS02]. 

WebSites

The following websites give more information about topics discussed in this chapter.

14.7 KEY TERMS

http://en.wikipedia.org/wiki/Challenge-response_authentication

http://en.wikipedia.org/wiki/Password-authenticated_key_agreement

http://rfc.net/rfc2195.html

biometrics Feige-Fiat-Shamir protocol

challenge-response authentication Fiat-Shamir protocol

claimant fixed password

dictionary attack Guillou-Quisquater protocol

entity authentication identification

false acceptance rate (FAR) nonce

false rejection rate (FRR) one-time password
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14.8 SUMMARY

❏ Entity authentication lets one party prove her identity to another. In entity

authentication, a claimant proves her identity to the verifier using one of the three

kinds of witnesses: something known, something possessed, or something inherent.

❏ In password-based authentication, the claimant uses a string of characters as some-

thing she knows. Password-based authentication can be divided into two broad cat-

egories: fixed and one-time. Attacks on password-based authentication include

eavesdropping, stealing a password, accessing the password file, guessing, and the

dictionary attack.

❏ In challenge-response authentication, the claimant proves that she knows a secret

without actually sending it. Challenge-response authentication can use symmetric-

key ciphers, keyed-hash functions, asymmetric-key ciphers, and digital signatures.

❏ In zero-knowledge authentication, the claimant does not reveal her secret; she just

proves that she knows it. 

❏ Biometrics is the measurement of physiological or behavioral features for

identifying a person using something inherent to her. We can divide the biometric

techniques into two broad categories: physiological and behavioral. Physiological

techniques measure the physical traits of the human body for verification and

identification. Behavioral techniques measure some traits in human behavior. 

14.9 PRACTICE SET

Review Questions

1. Distinguish between data-origin authentication and entity authentication.

2. List and define three kinds of identification witnesses in entity authentication.

3. Distinguish between fixed and one-time passwords.

4. What are some advantages and disadvantages of using long passwords?

5. Explain the general idea behind challenge-response entity authentication.

6. Define a nonce and its use in entity authentication.

7. Define a dictionary attack and how it can be prevented.

8. Distinguish between challenge-response and zero-knowledge entity authentications. 

9. Define biometrics and distinguish between two the broad categories of the techniques.

10. Distinguish between the two accuracy parameters defined for biometric measure-

ment in this chapter.

password something known

password-based authentication something possessed

salting verification

something inherent zero-knowledge authentication
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Exercises

11. We discussed fixed and one-time passwords as two extremes. What about fre-

quently changed passwords? How do you think this scheme can be implemented?

What are the advantages and disadvantages?

12. How can a system prevent a guessing attack on a password? How can a bank pre-

vent PIN guessing if someone has found or stolen a bank card and tries to use it?

13. Show two more exchanges of the authentication procedure in Figure 14.4.

14. What are some disadvantages of using the timestamp in Figure 14.6?

15. Can we repeat the three messages in Figure 14.5 to achieve bidirectional authenti-

cation? Explain.

16. Show how authentication in Figure 14.5 can be done using a keyed-hash function.

17. Show how authentication in Figure 14.7 can be done using a keyed-hash function.

18. Compare Figure 14.5 and Figure 14.9 and make a list of similarities and differences.

19. Compare Figure 14.7 and Figure 14.10 and make a list of similarities and differences.

20. Can we use a timestamp with an asymmetric-key cipher to achieve authentication?

Explain.

21. Compare and contrast Figure 14.13, Figure 14.15, and Figure 14.16. Make a list of

similarities and differences. 

22. Redo the cave example for the Feige-Fiat-Shamir protocol.

23. For p = 569, q = 683, and s = 157, show three rounds of the Fiat-Shamir protocol

by calculating the values and filling in the entries of a table.

24. For p = 683, q = 811, s1 = 157, and s2 = 43215, show three rounds of the Feige-

Fiat-Shamir protocol by calculating the values and filling in the entries of a table. 

25. For p = 683, q = 811, and v = 157, show three rounds of the Guillou-Quisquater

protocol by calculating the values and filling in the entries of a table.

26. Draw a digram to show the general idea behind the three protocols discussed in

this chapter for zero-knowledge authentication.

27. In the Fiat-Shamir protocol, what is the probability that a dishonest claimant cor-

rectly responds to the challenge 15 times in a row?

28. In the Feige-Fiat-Shamir protocol, what is the probability that a dishonest claimant

correctly responds to the challenge 15 times in a row?

29. In the Guillou-Quisquater protocol, what is the probability that a dishonest claimant

correctly responds to the challenge 15 times in a row if the value of the challenge is

selected between 1 and 15?

30. In the bidirectional approach to authentication in Figure 14.10 if multiple session

authentication is allowed, Eve intercepts the RB nonce from Bob (in the first

session) and sends it as Alice’s nonce for a second session. Bob, without checking

that this nonce is the same as the one he sent, encrypts RB and puts it in a message

with his nonce. Eve uses the encrypted RB and pretends that she is Alice, continu-

ing with the first session and responding with the encrypted RB. This is called a

reflection attack. Show the steps in this scenario. 
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CHAPTER 15

Key Management

Objectives

This chapter has several objectives:

❏ To explain the need for a key-distribution center (KDC)

❏ To show how a KDC can create a session key between two parties

❏ To show how two parties can use a symmetric-key agreement proto-

col to create a session key between themselves without using the

services of a KDC

❏ To describe Kerberos as a KDC and an authentication protocol

❏ To explain the need for certification authorities (CAs) for public keys

and how X.509 recommendation defines the format of certificates

❏ To introduce the idea of a Public-Key Infrastructure (PKI) and explain

some of its duties 

Previous chapters have discussed symmetric-key and asymmetric-key

cryptography. However, we have not yet discussed how secret keys in

symmetric-key cryptography, and public keys in asymmetric-key cryp-

tography, are distributed and maintained. This chapter touches on these

two issues. 

We first discuss the distribution of symmetric keys using a trusted third

party. Second, we show how two parties can establish a symmetric key

between themselves without using a trusted third party. Third, we intro-

duce Kerberos as both a KDC and an authentication protocol. Fourth, we

discuss the certification of public keys using certification authorities (CAs)

based on the X.509 recommendation. Finally, we briefly discuss the idea

of a Public-Key Infrastructure (PKI) and mention some of its duties. 
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15.1 SYMMETRIC-KEY DISTRIBUTION

Symmetric-key cryptography is more efficient than asymmetric-key cryptography for

enciphering large messages. Symmetric-key cryptography, however, needs a shared

secret key between two parties. 

If Alice needs to exchange confidential messages with N people, she needs N dif-

ferent keys. What if N people need to communicate with each other? A total of N(N − 1)

keys is needed if we require that Alice and Bob use two keys for bidirectional commu-

nication; only N(N − 1)/2 keys are needed if we allow a key to be used for both direc-

tions. This means that if one million people need to communicate with each other, each

person has almost one million different keys; in total, almost one trillion keys are

needed. This is normally referred to as the N2 problem because the number of required

keys for N entities is N2. 

The number of keys is not the only problem; the distribution of keys is another. If

Alice and Bob want to communicate, they need a way to exchange a secret key; if Alice

wants to communicate with one million people, how can she exchange one million keys

with one million people? Using the Internet is definitely not a secure method. It is obvi-

ous that we need an efficient way to maintain and distribute secret keys.

Key-Distribution Center: KDC

A practical solution is the use of a trusted third party, referred to as a key-distribution

center (KDC). To reduce the number of keys, each person establishes a shared secret

key with the KDC, as shown in Figure 15.1. 

A secret key is established between the KDC and each member. Alice has a secret

key with the KDC, which we refer to as KAlice; Bob has a secret key with the KDC,

which we refer to as KBob; and so on. Now the question is how Alice can send a confi-

dential message to Bob. The process is as follows:

1. Alice sends a request to the KDC stating that she needs a session (temporary)

secret key between herself and Bob.

2. The KDC informs Bob about Alice’s request.

3. If Bob agrees, a session key is created between the two.

Figure 15.1 Key-distribution center (KDC)
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The secret key between Alice and Bob that is established with the KDC is used to authen-

ticate Alice and Bob to the KDC and to prevent Eve from impersonating either of them.

We discuss how a session key is established between Alice and Bob later in the chapter. 

Flat Multiple KDCs

When the number of people using a KDC increases, the system becomes unmanageable

and a bottleneck can result. To solve the problem, we need to have multiple KDCs. We

can divide the world into domains. Each domain can have one or more KDCs (for

redundancy in case of failure). Now if Alice wants to send a confidential message to

Bob, who belongs to another domain, Alice contacts her KDC, which in turn contacts

the KDC in Bob’s domain. The two KDCs can create a secret key between Alice and

Bob. Figure 15.2 shows KDCs all at the same level. We call this flat multiple KDCs.    

Hierarchical Multiple KDCs

The concept of flat multiple KDCs can be extended to a hierarchical system of KDCs,

with one or more KDCs at the top of the hierarchy. For example, there can be local

KDCs, national KDCs, and international KDCs. When Alice needs to communicate with

Bob, who lives in another country, she sends her request to a local KDC; the local KDC

relays the request to the national KDC; the national KDC relays the request to an interna-

tional KDC. The request is then relayed all the way down to the local KDC where Bob

lives. Figure 15.3 shows a configuration of hierarchical multiple KDCs. 

Session Keys

A KDC creates a secret key for each member. This secret key can be used only between

the member and the KDC, not between two members. If Alice needs to communicate

secretly with Bob, she needs a secret key between herself and Bob. A KDC can create a

session key between Alice and Bob, using their keys with the center. The keys of Alice

and Bob are used to authenticate Alice and Bob to the center and to each other before

the session key is established. After communication is terminated, the session key is no

longer useful.   

Figure 15.2 Flat multiple KDCs
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Several different approaches have been proposed to create the session key using

ideas discussed in Chapter 14 for entity authentication. 

A Simple Protocol Using a KDC

Let us see how a KDC can create a session key KAB between Alice and Bob. Figure 15.4

shows the steps.

Figure 15.3 Hierarchical multiple KDCs

Figure 15.4 First approach using KDC
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1. Alice sends a plaintext message to the KDC to obtain a symmetric session key

between Bob and herself. The message contains her registered identity (the word

Alice in the figure) and the identity of Bob (the word Bob in the figure). This mes-

sage is not encrypted, it is public. The KDC does not care. 

2. The KDC receives the message and creates what is called a ticket. The ticket is

encrypted using Bob’s key (KB). The ticket contains the identities of Alice and

Bob and the session key (KAB). The ticket with a copy of the session key is sent to

Alice. Alice receives the message, decrypts it, and extracts the session key. She

cannot decrypt Bob’s ticket; the ticket is for Bob, not for Alice. Note that this

message contains a double encryption; the ticket is encrypted, and the entire mes-

sage is also encrypted. In the second message, Alice is actually authenticated to

the KDC, because only Alice can open the whole message using her secret key

with KDC.

3. Alice sends the ticket to Bob. Bob opens the ticket and knows that Alice needs

to send messages to him using KAB as the session key. Note that in this mes-

sage, Bob is authenticated to the KDC because only Bob can open the ticket.

Because Bob is authenticated to the KDC, he is also authenticated to Alice, who

trusts the KDC. In the same way, Alice is also authenticated to Bob, because

Bob trusts the KDC and the KDC has sent Bob the ticket that includes the iden-

tity of Alice. 

Unfortunately, this simple protocol has a flaw. Eve can use the replay attack discussed

previously. That is, she can save the message in step 3 and replay it later.

Needham-Schroeder Protocol

Another approach is the elegant Needham-Schroeder protocol, which is a foundation

for many other protocols. This protocol uses multiple challenge-response interactions

between parties to achieve a flawless protocol. Needham and Schroeder uses two

nonces: RA and RB. Figure 15.5 shows the five steps used in this protocol. 

We briefly describe each step:

1. Alice sends a message to the KDC that includes her nonce, RA, her identity, and

Bob’s identity.

2. The KDC sends an encrypted message to Alice that includes Alice’s nonce,

Bob’s identity, the session key, and an encrypted ticket for Bob. The whole mes-

sage is encrypted with Alice’s key.

3. Alice sends Bob’s ticket to him. 

4. Bob sends his challenge to Alice (RB), encrypted with the session key. 

5. Alice responds to Bob’s challenge. Note that the response carries RB − 1 instead

of RB. 

Otway-Rees Protocol

A third approach is the Otway-Rees protocol, another elegant protocol. Figure 15.6

shows this five-step protocol.
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The following briefly describes the steps.

1. Alice sends a message to Bob that includes a common nonce, R, the identities of

Alice and Bob, and a ticket for KDC that includes Alice’s nonce RA (a challenge for

the KDC to use), a copy of the common nonce, R, and the identities of Alice and Bob.

2. Bob creates the same type of ticket, but with his own nonce RB. Both tickets are

sent to the KDC. 

3. The KDC creates a message that contains R, the common nonce, a ticket for Alice

and a ticket for Bob; the message is sent to Bob. The tickets contain the corre-

sponding nonce, RA or RB, and the session key, KAB. 

4. Bob sends Alice her ticket.

5. Alice sends a short message encrypted with her session key KAB to show that she

has the session key. 

Figure 15.5 Needham-Schroeder protocol
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15.2 KERBEROS

Kerberos is an authentication protocol, and at the same time a KDC, that has become

very popular. Several systems, including Windows 2000, use Kerberos. It is named

after the three-headed dog in Greek mythology that guards the gates of Hades. Origi-

nally designed at MIT, it has gone through several versions. We only discuss version

4, the most popular, and we briefly explain the difference between version 4 and ver-

sion 5 (the latest). 

Figure 15.6 Otway-Rees protocol
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Servers

Three servers are involved in the Kerberos protocol: an authentication server (AS), a

ticket-granting server (TGS), and a real (data) server that provides services to others. In

our examples and figures, Bob is the real server and Alice is the user requesting service.

Figure 15.7 shows the relationship between these three servers.

Authentication Server (AS)

The authentication server (AS) is the KDC in the Kerberos protocol. Each user regis-

ters with the AS and is granted a user identity and a password. The AS has a database

with these identities and the corresponding passwords. The AS verifies the user, issues

a session key to be used between Alice and the TGS, and sends a ticket for the TGS. 

Ticket-Granting Server (TGS)

The ticket-granting server (TGS) issues a ticket for the real server (Bob). It also

provides the session key (KAB) between Alice and Bob. Kerberos has separated user

Figure 15.7 Kerberos servers
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verification from the issuing of tickets. In this way, though Alice verifies her ID just

once with the AS, she can contact the TGS multiple times to obtain tickets for different

real servers. 

Real Server

The real server (Bob) provides services for the user (Alice). Kerberos is designed for a

client-server program, such as FTP, in which a user uses the client process to access the

server process. Kerberos is not used for person-to-person authentication. 

Operation

A client process (Alice) can access a process running on the real server (Bob) in six

steps, as shown in Figure 15.8.

1. Alice sends her request to the AS in plain text using her registered identity. 

2. The AS sends a message encrypted with Alice’s permanent symmetric key, KA-AS.

The message contains two items: a session key, KA-TGS, that is used by Alice to

contact the TGS, and a ticket for the TGS that is encrypted with the TGS symmet-

ric key, KAS-TGS. Alice does not know KA-AS, but when the message arrives, she

types her symmetric password. The password and the appropriate algorithm

together create KA-AS if the password is correct. The password is then immediately

destroyed; it is not sent to the network and it does not stay in the terminal. It is used

only for a moment to create KA-AS. The process now uses KA-AS to decrypt the

message sent. KA-TGS and the ticket are extracted. 

3. Alice now sends three items to the TGS. The first is the ticket received from the

AS. The second is the name of the real server (Bob), the third is a timestamp that is

encrypted by KA-TGS. The timestamp prevents a replay by Eve.

4. Now, the TGS sends two tickets, each containing the session key between Alice

and Bob, KA-B. The ticket for Alice is encrypted with KA-TGS; the ticket for

Bob is encrypted with Bob’s key, KTGS-B. Note that Eve cannot extract KAB

because Eve does not know KA-TGS or KTGS-B. She cannot replay step 3

because she cannot replace the timestamp with a new one (she does not know

KA-TGS). Even if she is very quick and sends the step 3 message before the

timestamp has expired, she still receives the same two tickets that she cannot

decipher. 

5. Alice sends Bob’s ticket with the timestamp encrypted by KA-B. 

6. Bob confirms the receipt by adding 1 to the timestamp. The message is encrypted

with KA-B and sent to Alice.

Using Different Servers

Note that if Alice needs to receive services from different servers, she need repeat

only the last four steps. The first two steps have verified Alice’s identity and need

not be repeated. Alice can ask TGS to issue tickets for multiple servers by repeating

steps 3 to 6.
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Figure 15.8 Kerberos example
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Kerberos Version 5

The minor differences between version 4 and version 5 are briefly listed below:

1. Version 5 has a longer ticket lifetime.

2. Version 5 allows tickets to be renewed.

3. Version 5 can accept any symmetric-key algorithm.

4. Version 5 uses a different protocol for describing data types. 

5. Version 5 has more overhead than version 4.

Realms

Kerberos allows the global distribution of ASs and TGSs, with each system called a

realm. A user may get a ticket for a local server or a remote server. In the second case,

for example, Alice may ask her local TGS to issue a ticket that is accepted by a remote

TGS. The local TGS can issue this ticket if the remote TGS is registered with the local

one. Then Alice can use the remote TGS to access the remote real server.

15.3  SYMMETRIC-KEY AGREEMENT

Alice and Bob can create a session key between themselves without using a KDC. This

method of session-key creation is referred to as the symmetric-key agreement.

Although there are several ways to accomplish this, only two common methods, Diffie-

Hellman and station-to-station, are discussed here. 

Diffie-Hellman Key Agreement 

In the Diffie-Hellman protocol two parties create a symmetric session key without

the need of a KDC. Before establishing a symmetric key, the two parties need to

choose two numbers p and g. The first number, p, is a large prime number on the

order of 300 decimal digits (1024 bits). The second number, g, is a generator of order

p − 1 in the group <Zp*, ×>. These two (group and generator) do not need to be con-

fidential. They can be sent through the Internet; they can be public. Figure 15.9

shows the procedure. 

The steps are as follows:

1. Alice chooses a large random number x such that 0 ≤ x ≤ p − 1 and calculates

R1 = gx mod p.

2. Bob chooses another large random number y such that 0 ≤ y ≤ p − 1 and calculates

R2 = gy mod p.

3. Alice sends R1 to Bob. Note that Alice does not send the value of x; she sends only R1.

4. Bob sends R2 to Alice. Again, note that Bob does not send the value of y, he sends

only R2.

5. Alice calculates K = (R2)x mod p. 

6. Bob also calculates K = (R1)y mod p.
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K is the symmetric key for the session.

Bob has calculated K = (R1)y mod p = (gx mod p)y mod p = gxy mod p. Alice has

calculated K = (R2)x mod p = (gy mod p)x mod = gxy mod p. Both have reached

the same value without Bob knowing the value of x and without Alice knowing the

value of y. 

Example 15.1

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but

note that in a real situation, the numbers are very large. Assume that g = 7 and p = 23. The steps

are as follows:

1. Alice chooses x = 3 and calculates R1 = 73 mod 23 = 21.

2. Bob chooses y = 6 and calculates R2 = 76 mod 23 = 4.

3. Alice sends the number 21 to Bob. 

4. Bob sends the number 4 to Alice.

5. Alice calculates the symmetric key K = 43 mod 23 = 18.

6. Bob calculates the symmetric key K = 216 mod 23 = 18.

The value of K is the same for both Alice and Bob; gxy mod p = 718 mod 35 = 18.

Figure 15.9 Diffie-Hellman method
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Example 15.2

Let us give a more realistic example. We used a program to create a random integer of 512 bits

(the ideal is 1024 bits). The integer p is a 159-digit number. We also choose g, x, and y as shown

below:  

The following shows the values of R1, R2, and K. 

Analysis of Diffie-Hellman

The Diffie-Hellman concept, shown in Figure 15.10, is simple but elegant. We can

think of the secret key between Alice and Bob as made of three parts: g, x, and y. The

first part is public. Everyone knows 1/3 of the key; g is a public value. The other two

parts must be added by Alice and Bob. Each of them add one part. Alice adds x as the

second part for Bob; Bob adds y as the second part for Alice. When Alice receives the

2/3 completed key from Bob, she adds the last part, her x, to complete the key. When

Bob receives the 2/3-completed key from Alice, he adds the last part, his y, to complete

the key. Note that although the key in Alice’s hand consists of g, y, and x and the key in

Bob’s hand consists of g, x, and y, these two keys are the same because gxy = gyx.

Note also that although the two keys are the same, Alice cannot find the value y

used by Bob because the calculation is done in modulo p; Alice receives gy mod p from

Bob, not gy. To know the value of y, Alice must use the discrete logarithm that we dis-

cussed in a previous chapter. 

Security of Diffie-Hellman

The Diffie-Hellman key exchange is susceptible to two attacks: the discrete logarithm

attack and the man-in-the-middle attack.

Discrete Logarithm Attack The security of the key exchange is based on the diffi-

culty of the discrete logarithm problem. Eve can intercept R1 and R2. If she can find x

p 764624298563493572182493765955030507476338096726949748923573772860925

235666660755423637423309661180033338106194730130950414738700999178043

6548785807987581    

g 2

x 557

y 273

R1 844920284205665505216172947491035094143433698520012660862863631067673

619959280828586700802131859290945140217500319973312945836083821943065

966020157955354

R2 435262838709200379470747114895581627636389116262115557975123379218566

310011435718208390040181876486841753831165342691630263421106721508589

6255201288594143

K 155638000664522290596225827523270765273218046944423678520320400146406

500887936651204257426776608327911017153038674561252213151610976584200

1204086433617740
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from R1 = gx mod p and y from R2 = gy mod p, then she can calculate the symmetric

key K = gxy mod p. The secret key is not secret anymore. To make Diffie-Hellman safe

from the discrete logarithm attack, the following are recommended.

1. The prime p must be very large (more than 300 decimal digits).

2. The prime p must be chosen such that p − 1 has at least one large prime factor

(more than 60 decimal digits).

3. The generator must be chosen from the group <Zp*, × >.

4. Bob and Alice must destroy x and y after they have calculated the symmetric key.

The values of x and y must be used only once. 

Man-in-the-Middle Attack The protocol has another weakness. Eve does not have

to find the value of x and y to attack the protocol. She can fool Alice and Bob by cre-

ating two keys: one between herself and Alice, and another between herself and Bob.

Figure 15.11 shows the situation.  

The following can happen:

1. Alice chooses x, calculates R1 = gx mod p, and sends R1 to Bob.

2. Eve, the intruder, intercepts R1. She chooses z, calculates R2 = gz mod p, and sends

R2 to both Alice and Bob.

3. Bob chooses y, calculates R3 = gy mod p, and sends R3 to Alice. R3 is intercepted

by Eve and never reaches Alice.

4. Alice and Eve calculate K1 = gxz mod p, which becomes a shared key between Alice

and Eve. Alice, however, thinks that it is a key shared between Bob and herself.

Figure 15.10 Diffie-Hellman idea
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5. Eve and Bob calculate K2 = gzy mod p, which becomes a shared key between Eve

and Bob. Bob, however, thinks that it is a key shared between Alice and himself.

In other words, two keys, instead of one, are created: one between Alice and Eve, one

between Eve and Bob. When Alice sends data to Bob encrypted with K1 (shared by

Alice and Eve), it can be deciphered and read by Eve. Eve can send the message to Bob

encrypted by K2 (shared key between Eve and Bob); or she can even change the mes-

sage or send a totally new message. Bob is fooled into believing that the message has

come from Alice. A similar scenario can happen to Alice in the other direction. 

This situation is called a man-in-the-middle attack because Eve comes in

between and intercepts R1, sent by Alice to Bob, and R3, sent by Bob to Alice. It is

also known as a bucket brigade attack because it resembles a short line of volun-

teers passing a bucket of water from person to person. The next method, based on the

Diffie-Hellman uses authentication to thwart this attack. 

Station-to-Station Key Agreement

The station-to-station protocol is a method based on Diffie-Hellman. It uses digital

signatures with public-key certificates (see the next section) to establish a session key

between Alice and Bob, as shown in Figure 15.12. 

Figure 15.11 Man-in-the-middle attack
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The following shows the steps:

❏ After calculating R1, Alice sends R1 to Bob (steps 1 and 2 in Figure 15.12).

❏ After calculating R2 and the session key, Bob concatenates Alice’s ID, R1, and R2.

He then signs the result with his private key. Bob now sends R2, the signature, and

his own public-key certificate to Alice. The signature is encrypted with the session

key (steps 3, 4, and 5 in Figure 15.12).

❏ After calculating the session key, if Bob’s signature is verified, Alice concatenates

Bob’s ID, R1, and R2. She then signs the result with her own private key and sends it to

Bob. The signature is encrypted with the session key (steps 6, 7, and 8 in Figure 15.12).

❏ If Alice’s signature is verified, Bob keeps the session key (step 9 in Figure 15.12).

Security of Station-to-Station Protocol

The station-to-station protocol prevents man-in-the-middle attacks. After intercepting

R1, Eve cannot send her own R2 to Alice and pretend it is coming from Bob because

Eve cannot forge the private key of Bob to create the signaturethe signature cannot

be verified with Bob’s public key defined in the certificate. In the same way, Eve cannot

forge Alice’s private key to sign the third message sent by Alice. The certificates, as we

will see in the next section, are trusted because they are issued by trusted authorities.

Figure 15.12 Station-to-station key agreement method
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15.4 PUBLIC-KEY DISTRIBUTION

In asymmetric-key cryptography, people do not need to know a symmetric shared key.

If Alice wants to send a message to Bob, she only needs to know Bob’s public key,

which is open to the public and available to everyone. If Bob needs to send a message

to Alice, he only needs to know Alice’s public key, which is also known to everyone. In

public-key cryptography, everyone shields a private key and advertises a public key. 

Public keys, like secret keys, need to be distributed to be useful. Let us briefly dis-

cuss the way public keys can be distributed.

Public Announcement

The naive approach is to announce public keys publicly. Bob can put his public key on

his website or announce it in a local or national newspaper. When Alice needs to send a

confidential message to Bob, she can obtain Bob’s public key from his site or from the

newspaper, or even send a message to ask for it. Figure 15.13 shows the situation. 

This approach, however, is not secure; it is subject to forgery. For example, Eve could

make such a public announcement. Before Bob can react, damage could be done. Eve can

fool Alice into sending her a message that is intended for Bob. Eve could also sign a docu-

ment with a corresponding forged private key and make everyone believe it was signed by

Bob. The approach is also vulnerable if Alice directly requests Bob’s public key. Eve can

intercept Bob’s response and substitute her own forged public key for Bob’s public key. 

Trusted Center

A more secure approach is to have a trusted center retain a directory of public keys. The

directory, like the one used in a telephone system, is dynamically updated. Each user can

select a private and public key, keep the private key, and deliver the public key for inser-

tion into the directory. The center requires that each user register in the center and prove

his or her identity. The directory can be publicly advertised by the trusted center. The cen-

ter can also respond to any inquiry about a public key. Figure 15.14 shows the concept. 

In public-key cryptography, everyone has access to everyone’s public key; 

public keys are available to the public.

Figure 15.13 Announcing a public key

Bob

Public key
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Controlled Trusted Center

A higher level of security can be achieved if there are added controls on the distribution

of the public key. The public-key announcements can include a timestamp and be

signed by an authority to prevent interception and modification of the response. If Alice

needs to know Bob’s public key, she can send a request to the center including Bob’s

name and a timestamp. The center responds with Bob’s public key, the original request,

and the timestamp signed with the private key of the center. Alice uses the public key of

the center, known by all, to verify the timestamp. If the timestamp is verified, she

extracts Bob’s public key. Figure 15.15 shows one scenario.

Certification Authority 

The previous approach can create a heavy load on the center if the number of requests

is large. The alternative is to create public-key certificates. Bob wants two things; he

wants people to know his public key, and he wants no one to accept a forged public key

as his. Bob can go to a certification authority (CA), a federal or state organization that

binds a public key to an entity and issues a certificate. The CA has a well-known public

key itself that cannot be forged. The CA checks Bob’s identification (using a picture ID

along with other proof). It then asks for Bob’s public key and writes it on the certificate.

To prevent the certificate itself from being forged, the CA signs the certificate with its

private key. Now Bob can upload the signed certificate. Anyone who wants Bob’s pub-

lic key downloads the signed certificate and uses the center’s public key to extract

Bob’s public key. Figure 15.16 shows the concept. 

Figure 15.14 Trusted center
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Figure 15.15 Controlled trusted center

Figure 15.16 Certification authority
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X.509

Although the use of a CA has solved the problem of public-key fraud, it has created a

side-effect. Each certificate may have a different format. If Alice wants to use a pro-

gram to automatically download different certificates and digests belonging to different

people, the program may not be able to do this. One certificate may have the public key

in one format and another in a different format. The public key may be on the first line

in one certificate, and on the third line in another. Anything that needs to be used uni-

versally must have a universal format. 

To remove this side effect, the ITU has designed X.509, a recommendation that has

been accepted by the Internet with some changes. X.509 is a way to describe the certif-

icate in a structured way. It uses a well-known protocol called ASN.1 (Abstract Syntax

Notation 1) that defines fields familiar to C programmers.  

Certificate

Figure 15.17 shows the format of a certificate.

A certificate has the following fields:

❏ Version number. This field defines the version of X.509 of the certificate. The ver-

sion number started at 0; the current version (third version) is 2. 

❏ Serial number. This field defines a number assigned to each certificate. The value

is unique for each certificate issuer. 

❏ Signature algorithm ID. This field identifies the algorithm used to sign the certif-

icate. Any parameter that is needed for the signature is also defined in this field. 

❏ Issuer name. This field identifies the certification authority that issued the certifi-

cate. The name is normally a hierarchy of strings that defines a country, a state,

organization, department, and so on. 

Figure 15.17 X.509 certificate format
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❏ Validity Period. This field defines the earliest time (not before) and the latest time

(not after) the certificate is valid. 

❏ Subject name. This field defines the entity to which the public key belongs. It is

also a hierarchy of strings. Part of the field defines what is called the common

name, which is the actual name of the beholder of the key. 

❏ Subject public key. This field defines the owner’s public key, the heart of the cer-

tificate. The field also defines the corresponding public-key algorithm (RSA, for

example) and its parameters. 

❏ Issuer unique identifier. This optional field allows two issuers to have the same

issuer field value, if the issuer unique identifiers are different. 

❏ Subject unique identifier. This optional field allows two different subjects to have

the same subject field value, if the subject unique identifiers are different.   

❏ Extensions. This optional field allows issuers to add more private information to

the certificate. 

❏ Signature. This field is made of three sections. The first section contains all

other fields in the certificate. The second section contains the digest of the first

section encrypted with the CA’s public key. The third section contains the algo-

rithm identifier used to create the second section. 

Certificate Renewal

Each certificate has a period of validity. If there is no problem with the certificate, the

CA issues a new certificate before the old one expires. The process is like the renewal

of credit cards by a credit card company; the credit card holder normally receives a

renewed credit card before the one expires.

Certificate Revocation

In some cases a certificate must be revoked before its expiration. Here are some examples:

a. The user’s (subject’s) private key (corresponding to the public key listed in the cer-

tificate) might have been comprised. 

b. The CA is no longer willing to certify the user. For example, the user’s certificate

relates to an organization that she no longer works for.

c. The CA’s private key, which can verify certificates, may have been compromised.

In this case, the CA needs to revoke all unexpired certificates.

The revocation is done by periodically issuing a certificate revocation list (CRL).

The list contains all revoked certificates that are not expired on the date the CRL is

issued. When a user wants to use a certificate, she first needs to check the directory of

the corresponding CA for the last certificate revocation list. Figure 15.18 shows the cer-

tificate revocation list.  

A certificate revocation list has the following fields: 

❏ Signature algorithm ID. This field is the same as the one in the certificate. 

❏ Issuer name. This field is the same as the one in the certificate. 

❏ This update date. This field defines when the list is released.

❏ Next update date. This field defines the next date when the new list will be released.
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❏ Revoked certificate. This is a repeated list of all unexpired certificates that have

been revoked. Each list contains two sections: user certificate serial number and

revocation date.

❏ Signature. This field is the same as the one in the certificate list. 

Delta Revocation

To make revocation more efficient, the delta certificate revocation list (delta CRL) has

been introduced. A delta CRL is created and posted on the directory if there are

changes after this update date and next update date. For example, if CRLs are issued

every month, but there are revocations in between, the CA can create a delta CRL when

there is a change during the month. However, a delta CRL contains only the changes

made after the last CRL. 

Public-Key Infrastructures (PKI)

Public-Key Infrastructure (PKI) is a model for creating, distributing, and revoking

certificates based on the X.509. The Internet Engineering Task Force (see Appendix B)

has created the Public-Key Infrastructure X.509 (PKIX).

Duties

Several duties have been defined for a PKI. The most important ones are shown in

Figure 15.19. 

❏ Certificates’ issuing, renewal, and revocation. These are duties defined in the

X.509. Because the PKIX is based on X.509, it needs to handle all duties related to

certificates.

❏ Keys’ storage and update. A PKI should be a storage place for private keys of

those members that need to hold their private keys somewhere safe. In addition, a

PKI is responsible for updating these keys on members’ demands.

Figure 15.18 Certificate revocation format
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❏ Providing services to other protocols. As we see will in the next few chapters,

some Internet security protocols, such as IPSec and TLS, are relying on the ser-

vices by a PKI.

❏ Providing access control. A PKI can provide different levels of access to the infor-

mation stored in its database. For example, an organization PKI may provide access

to the whole database for the top management, but limited access for employees.

Trust Model

It is not possible to have just one CA issuing all certificates for all users in the world.

There should be many CAs, each responsible for creating, storing, issuing, and revok-

ing a limited number of certificates. The trust model defines rules that specify how a

user can verify a certificate received from a CA.

Hierarchical Model In this model, there is a tree-type structure with a root CA. The

root CA has a self-signed, self-issued certificate; it needs to be trusted by other CAs and

users for the system to work. Figure 15.20 shows a trust model of this kind with three

hierarchical levels. The number of levels can be more than three in a real situation.

Figure 15.19 Some duties of a PKI

Figure 15.20 PKI hierarchical model 
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The figure shows that the CA (the root) has signed certificates for CA1, CA2, and

CA3; CA1 has signed certificates for User1, User2, and User3; and so on. PKI uses the

following notation to mean the certificate issued by authority X for entity Y. 

Example 15.3

Show how User1, knowing only the public key of the CA (the root), can obtain a verified copy of

User3’s public key. 

Solution

User3 sends a chain of certificates, CA<<CA1>> and CA1<<User3>>, to User1. 

a. User1 validates CA<<CA1>> using the public key of CA.

b. User1 extracts the public key of CA1 from CA<<CA1>>.

c. User1 validates CA1<<User3>> using the public key of CA1. 

d. User1 extracts the public key of User 3 from CA1<<User3>>.

Example 15.4

Some Web browsers, such as Netscape and Internet Explorer, include a set of certificates from

independent roots without a single, high-level, authority to certify each root. One can find the

list of these roots in the Internet Explorer at Tools/Internet Options/Contents/Certificate/

Trusted roots (using pull-down menu). The user then can choose any of this root and view the

certificate. 

Mesh Model The hierarchical model may work for an organization or a small com-

munity. A larger community may need several hierarchical structures connected

together. One method is to use a mesh model to connect the roots together. In this

model, each root is connected to every other root, as shown in Figure 15.21.

Figure 15.21 shows that the mesh structure connects only roots together; each root

has its own hierarchical structure, shown by a triangle. The certifications between the

roots are cross-certificates; each root certifies all other roots, which means there are N

(N − 1) certificates. In Figure 15.21, there are 4 nodes, so we need 4 × 3 = 12 certifi-

cates. Note that each double-arrow line represents two certificates. 

Example 15.5

Alice is under the authority Root1; Bob is under the authority Root4. Show how Alice can obtain

Bob’s verified public key. 

Solution

Bob sends a chain of certificates from Root4 to Bob. Alice looks at the directory of Root1 to find

Root1<<Root1>> and Root1<< Root4>> certificates. Using the process shown in Figure 15.21,

Alice can verify Bob’s public key. 

Web of Trust This model is used in Pretty Good Privacy, a security service for elec-

tronic mail discussed in Chapter 16. 

X<<Y>> 
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15.5  RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the

book. 

Books

For further discussion of symmetric-key and asymmetric-key management, see [Sti06],

[KPS02], [Sta06], [Rhe03], and [PHS03]. 

WebSites

The following websites give more information about topics discussed in this chapter.

Figure 15.21 Mesh model
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www.ietf.org/rfc/rfc2631.txt
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15.6 KEY TERMS AND CONCEPTS

15.7 SUMMARY

❏ Symmetric-key cryptography needs a shared secret key between two parties. If N

people need to communicate with each other, N(N − 1)/2 keys are needed. The

number of keys is not the only problem; the distribution of keys is another. 

❏ A practical solution is the use of a trusted third party, referred to as a key-distribution

center (KDC). A KDC can create a session (temporary) key between Alice and

Bob using their keys with the center. The keys of Alice and Bob are used to authen-

ticate Alice and Bob to the center.

❏ Several different approaches have been proposed to create the session key using

ideas discussed in Chapter 14 for entity authentication. Two of the most elegant

ones are Needham-Schroeder protocol, which is a foundation for many other

protocols, and Otway-Rees Protocol.

❏ Kerberos is both an authentication protocol and a KDC. Several systems, including

Windows 2000, use Kerberos. Three servers are involved in the Kerberos protocol:

an authentication server (AS), a ticket-granting server (TGS), and a real (data)

server.

❏ Alice and Bob can create a session key between themselves without using a KDC.

This method of session-key creation is referred to as the symmetric-key agreement.

We discussed two methods: Diffie-Hellman and station-to-station. The first is sus-

ceptible to the man-in-the-middle attack; the second is not. 

❏ Public keys, like secret keys, need to be distributed to be useful. Certificate

authorities (CAs) provide certificates as proof of the ownership of public keys.

X.509 is a recommendation that defines the structure of certificates issued

by CAs. 

❏ Public Key Infrastructure (PKI) is a model for creating, distributing, and revoking

certificates based on the X.509. The Internet Engineering Task Force has created

the Public Key Infrastructure X.509 (PKIX). The duties of a PKI include certifi-

cate issuing, private key storage, services to other protocols, and access control.

authentication server (AS) public-key certificate

bucket brigade attack public-key infrastructure (PKI)

certification authority (CA) session key

Diffie-Hellman protocol station-to-station protocol

Kerberos ticket

key-distribution center (KDC) ticket-granting server (TGS)

man-in-the-middle attack trust model

Needham-Schroeder protocol X.509

Otway-Rees protocol



SECTION 15.8 PRACTICE SET 463

A PKI also defines trust models, the relationship between certificate authorities.

The three trust models mentioned in this chapter are hierarchical, mesh, and web

of trust. 

15.8 PRACTICE SET

Review Questions

1. List the duties of a KDC.

2. Define a session key and show how a KDC can create a session key between Alice

and Bob.

3. Define Kerberos and name its servers. Briefly explain the duties of each server.

4. Define the Diffie-Hellman protocol and its purpose.

5. Define the man-in-the-middle attack.

6. Define the station-to-station protocol and mention its purpose.

7. Define a certification authority (CA) and its relation to public-key cryptography.

8. Define the X.509 recommendation and state its purpose.

9. List the duties of a PKI.

10. Define a trust model and mention some variations of this model discussed in this

chapter.

Exercises

11. In Figure 15.4, what happens if the ticket for Bob is not encrypted in step 2 with

KB, but is encrypted instead by KAB in step 3?

12. Why is there a need for two nonces in the Needham-Schroeder protocol?

13. In the Needham-Schroeder protocol, how is Alice authenticated by the KDC? How

is Bob authenticated by the KDC? How is the KDC authenticated to Alice? How is

the KDC authenticated to Bob? How is Alice authenticated to Bob? How is Bob

authenticated to Alice?

14. Can you explain why in the Needham-Schroeder protocol, Alice is the party that is

in contact with the KDC, but in the Otway-Rees protocol, Bob is the party that is in

contact with the KDC?

15. There are two nonces (RA and RB) in the Needham-Schroeder protocol, but three

nonces (RA, RB, and R) in the Otway-Rees protocol. Can you explain why there is

a need for one extra nonce, R2, in the first protocol?

16. Why do you think we need only one timestamp in Kerberos instead of two nonces

as in Needham-Schroeder or three nonces as in Otway-Rees? 

17. In the Diffie-Hellman protocol, g = 7, p = 23, x = 3, and y = 5. 

a. What is the value of the symmetric key?

b. What is the value of R1 and R2?
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18. In the Diffie-Hellman protocol, what happens if x and y have the same value, that

is, Alice and Bob have accidentally chosen the same number? Are R1 and R2 the

same? Do the session keys calculated by Alice and Bob have the same value? Use

an example to prove your claims.

19. In a trivial (not secure) Diffie-Hellman key exchange, p = 53. Find an appropriate

value for g. 

20. In station-to-station protocol, show that if the identity of the receiver is removed

from the signature, the protocol becomes vulnerable to the man-in-the-middle

attack.

21. Discuss the trustworthiness of root certificates provided by browsers. 
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CHAPTER 16

Security at the Application Layer:
PGP and S/MIME

Objectives

This chapter has several objectives:

❏ To explain the general structure of an e-mail application program

❏ To discuss how PGP can provide security services for e-mail

❏ To discuss how S/MIME can provide security services for e-mail

❏ To define trust mechanism in both PGP and S/MIME 

❏ To show the structure of messages exchanged in PGP and S/MIME

This chapter discusses two protocols providing security services for
e-mails: Pretty Good Privacy (PGP) and Secure/Multipurpose Internet
Mail Extension (S/MIME). Understanding each of these protocols
requires the general understanding of the e-mail system. We first discuss
the structure of electronic mail. We then show how PGP and S/MIME
can add security services to this structure. Emphasis is on how PGP and
S/MIME can exchange cryptographic algorithms, secret keys, and certif-
icates without establishing a session between Alice and Bob. 

16.1 E-MAIL

Let us first discuss the electronic mail (e-mail) system in general.

E-mail Architecture

Figure 16.1 shows the most common scenario in a one-way e-mail exchange. Assume
that Alice is working in an organization that runs an e-mail server; every employee
is connected to the e-mail server through a LAN. Or alternatively, Alice could
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be connected to the e-mail server of an ISP through a WAN (telephone line or cable
line). Bob is also in one of the above two situations.

The administrator of the e-mail server at Alice’s site has created a queuing system
that sends e-mail to the Internet one by one. The administrator of the e-mail server at
Bob’s site has created a mailbox for every user connected to the server; the mailbox
holds the received messages until they are retrieved by the recipient. 

When Alice needs to send a message to Bob, she invokes a user agent (UA) program
to prepare the message. She then uses another program, a message transfer agent (MTA),

to send the message to the mail server at her site. Note that the MTA is a client/server pro-
gram with the client installed at Alice’s computer and the server installed at the mail server. 

The message received at the mail server at Alice’s site is queued with all other
messages; each goes to its corresponding destination. In Alice’s case, her message goes
to the mail server at Bob’s site. A client/server MTA is responsible for the e-mail transfer
between the two servers. When the message arrives at the destination mail server, it is
stored in Bob’s mailbox, a special file that holds the message until it is retrieved by Bob.

When Bob needs to retrieve his messages, including the one sent by Alice, he
invokes another program, which we call a message access agent (MAA). The MAA is
also designed as a client/server program with the client installed at Bob’s computer and
the server installed at the mail server. 

There are several important points about the architecture of the e-mail system. 

a. The sending of an e-mail from Alice to Bob is a store-retrieve activity. Alice can
send an e-mail today; Bob, being busy, may check his e-mail three days later. Dur-
ing this time, the e-mail is stored in Bob’s mailbox until it is retrieved.

b. The main communication between Alice and Bob is through two application pro-
grams: the MTA client at Alice’s computer and the MAA client at Bob’s computer. 

c. The MTA client program is a push program; the client pushes the message when
Alice needs to send it. The MAA client program is a pull program; the client pulls
the messages when Bob is ready to retrieve his e-mail.

Figure 16.1 E-mail architecture
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d. Alice and Bob cannot directly communicate using an MTA client at the sender site
and an MTA server at the receiver site. This requires that the MTA server be running
all the time, because Bob does not know when a message will arrive. This is not
practical, because Bob probably turns off his computer when he does not need it. 

E-mail Security

Sending an e-mail is a one-time activity. The nature of this activity is different from
those we will see in the next two chapters. In IPSec or SSL, we assume that the two
parties create a session between themselves and exchange data in both directions. In
e-mail, there is no session. Alice and Bob cannot create a session. Alice sends a mes-
sage to Bob; sometime later, Bob reads the message and may or may not send a reply.
We discuss the security of a unidirectional message because what Alice sends to Bob is
totally independent from what Bob sends to Alice. 

Cryptographic Algorithms

If e-mail is a one-time activity, how can the sender and receiver agree on a crypto-
graphic algorithm to use for e-mail security? If there is no session and no handshaking
to negotiate the algorithms for encryption/decryption and hashing, how can the receiver
know which algorithm the sender has chosen for each purpose? 

One solution is for the underlying protocol to select one algorithm for each crypto-
graphic operation and to force Alice to use only those algorithms. This solution is very
restrictive and limits the capabilities of the two parties.

A better solution is for the underlying protocol to define a set of algorithms for
each operation that the user used in his/her system. Alice includes the name (or identifi-
ers) of the algorithms she has used in the e-mail. For example, Alice can choose triple
DES for encryption/decryption and MD5 for hashing. When Alice sends a message to
Bob, she includes the corresponding identifiers for triple DES and MD5 in her mes-
sage. Bob receives the message and extracts the identifiers first. He then knows which
algorithm to use for decryption and which one for hashing. 

Cryptographic Secrets

The same problem for the cryptographic algorithms applies to the cryptographic secrets
(keys). If there is no negotiation, how can the two parties establish secrets between
themselves? Alice and Bob could use asymmetric-key algorithms for authentication
and encryption, which do not require the establishment of a symmetric key. However,
as we have discussed, the use of asymmetric-key algorithms is very inefficient for the
encryption/decryption of a long message.

Most e-mail security protocols today require that encryption/decryption be done
using a symmetric-key algorithm and a one-time secret key sent with the message.
Alice can create a secret key and send it with the message she sends to Bob. To protect

In e-mail security, the sender of the message needs to include the name or identifiers 

of the algorithms used in the message. 
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the secret key from interception by Eve, the secret key is encrypted with Bob’s public
key. In other words, the secret key itself is encrypted. 

Certificates

One more issue needs to be considered before we discuss any e-mail security protocol
in particular. It is obvious that some public-key algorithms must be used for e-mail
security. For example, we need to encrypt the secret key or sign the message. To
encrypt the secret key, Alice needs Bob’s public key; to verify a signed message, Bob
needs Alice’s public key. So, for sending a small authenticated and confidential mes-
sage, two public keys are needed. How can Alice be assured of Bob’s public key, and
how can Bob be assured of Alice’s public key? Each e-mail security protocol has a dif-
ferent method of certifying keys. 

16.2 PGP

The first protocol discussed in this chapter is called Pretty Good Privacy (PGP). PGP
was invented by Phil Zimmermann to provide e-mail with privacy, integrity, and
authentication. PGP can be used to create a secure e-mail message or to store a file
securely for future retrieval. 

Scenarios

Let us first discuss the general idea of PGP, moving from a simple scenario to a com-
plex one. We use the term “Data” to show the message or file prior to processing. 

Plaintext

The simplest scenario is to send the e-mail message (or store the file) in plaintext as
shown in Figure 16.2. There is no message integrity or confidentiality in this scenario.
Alice, the sender, composes a message and sends it to Bob, the receiver. The message is
stored in Bob’s mailbox until it is retrieved by him. 

In e-mail security, the encryption/decryption is done using a symmetric-key algorithm, 

but the secret key to decrypt the message is encrypted with the public key of the 

receiver and is sent with the message. 

Figure 16.2 A plaintext message
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Message Integrity

Probably the next improvement is to let Alice sign the message. Alice creates a digest

of the message and signs it with her private key. When Bob receives the message, he

verifies the message by using Alice’s public key. Two keys are needed for this scenario.

Alice needs to know her private key; Bob needs to know Alice’s public key. Figure 16.3

shows the situation. 

Compression

A further improvement is to compress the message to make the packet more compact.

This improvement has no security benefit, but it eases the traffic. Figure 16.4 shows the

new scenario. 

Confidentiality with One-Time Session Key

As we discussed before, confidentiality in an e-mail system can be achieved using

conventional encryption with a one-time session key. Alice can create a session key, use

the session key to encrypt the message and the digest, and send the key itself with the

message. However, to protect the session key, Alice encrypts it with Bob’s public key.

Figure 16.5 shows the situation.  

When Bob receives the packet, he first decrypts the key, using his private key to

remove the key. He then uses the session key to decrypt the rest of the message. After

decompressing the rest of the message, Bob creates a digest of the message and

checks to see if it is equal to the digest sent by Alice. If it is, then the message is

authentic.

Figure 16.3 An authenticated message

Figure 16.4 A compressed message
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Code Conversion

Another service provided by PGP is code conversion. Most e-mail systems allow the
message to consist of only ASCII characters. To translate other characters not in the
ASCII set, PGP uses Radix-64 conversion. Each character to be sent (after encryption)
is converted to Radix-64 code, which is discussed later in the chapter. 

Segmentation

PGP allows segmentation of the message after it has been converted to Radix-64 to make
each transmitted unit the uniform size as allowed by the underlying e-mail protocol.

Key Rings

In all previous scenarios, we assumed that Alice needs to send a message only to Bob.
That is not always the case. Alice may need to send messages to many people; she
needs key rings. In this case, Alice needs a ring of public keys, with a key belonging to
each person with whom Alice needs to correspond (send or receive messages). In addi-
tion, the PGP designers specified a ring of private/public keys. One reason is that Alice
may wish to change her pair of keys from time to time. Another reason is that Alice
may need to correspond with different groups of people (friends, colleagues, and so
on). Alice may wish to use a different key pair for each group. Therefore, each user
needs to have two sets of rings: a ring of private/public keys and a ring of public keys of
other people. Figure 16.6 shows a community of four people, each having a ring of
pairs of private/public keys and, at the same time, a ring of public keys belonging to
other people in the community. 

Alice, for example, has several pairs of private/public keys belonging to her and
public keys belonging to other people. Note that everyone can have more than one pub-
lic key. Two cases may arise.

1. Alice needs to send a message to another person in the community.

a. She uses her private key to sign the digest.
b. She uses the receiver’s public key to encrypt a newly created session key.
c. She encrypts the message and signed digest with the session key created.

Figure 16.5 A confidential message
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2. Alice receives a message from another person in the community.

a. She uses her private key to decrypt the session key.
b. She uses the session key to decrypt the message and digest.
c. She uses her public key to verify the digest. 

PGP Algorithms

The following algorithms are used in PGP. 

Public-Key Algorithms The public-key algorithms that are used for signing the digests
or encrypting the messages are listed in Table 16.1. 

Symmetric-Key Algorithms The symmetric-key algorithms that are used for con-
ventional encrypting are shown in Table 16.2. 

Figure 16.6 Key rings in PGP 

Table 16.1 Public-key algorithms

ID Description

  1 RSA (encryption or signing)

  2 RSA (for encryption only)

  3 RSA (for signing only)

16 ElGamal (encryption only)

17 DSS

18 Reserved for elliptic curve

19 Reserved for ECDSA

20 ElGamal (for encryption or signing)

21 Reserved for Diffie-Hellman
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Hash Algorithms The hash algorithms that are used for creating hashes in PGP are
shown in Table 16.3. 

Compression Algorithms The compression algorithms that are used for compress-
ing text are shown in Table 16.4. 

Table 16.2 Symmetric-key algorithms

ID Description

0 No Encryption

1 IDEA

2 Triple DES

3 CAST-128

4 Blowfish

5 SAFER-SK128

6 Reserved for DES/SK

7 Reserved for AES-128

8 Reserved for AES-192

9 Reserved for AES-256

100−110 Private algorithms

Table 16.3 Hash Algorithms

ID Description

1 MD5

2 SHA-1

3 RIPE-MD/160

4 Reserved for double-width SHA 

5 MD2

6 TIGER/192

7 Reserved for HAVAL

100−110 Private algorithms

Table 16.4 Compression methods

ID Description

0 Uncompressed

1 ZIP

2 ZLIP

100−110 Private methods
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PGP Certificates

PGP, like other protocols we have seen so far, uses certificates to authenticate public
keys. However, the process is totally different.

X.509 Certificates

Protocols that use X.509 certificates depend on the hierarchical structure of the trust.
There is a predefined chain of trust from the root to any certificate. Every user fully
trusts the authority of the CA at the root level (prerequisite). The root issues certificates
for the CAs at the second level, a second level CA issues a certificate for the third level,
and so on. Every party that needs to be trusted presents a certificate from some CA in
the tree. If Alice does not trust the certificate issuer for Bob, she can appeal to a higher-
level authority up to the root (which must be trusted for the system to work). In other
words, there is one single path from a fully trusted CA to a certificate. 

PGP Certificates

In PGP, there is no need for CAs; anyone in the ring can sign a certificate for anyone
else in the ring. Bob can sign a certificate for Ted, John, Anne, and so on. There is no
hierarchy of trust in PGP; there is no tree. The lack of hierarchical structure may result
in the fact that Ted may have one certificate from Bob and another certificate from Liz.
If Alice wants to follow the line of certificates for Ted, there are two paths: one starts
from Bob and one starts from Liz. An interesting point is that Alice may fully trust Bob,
but only partially trust Liz. There can be multiple paths in the line of trust from a fully
or partially trusted authority to a certificate. In PGP, the issuer of a certificate is usually
called an introducer.   

Trusts and Legitimacy

The entire operation of PGP is based on introducer trust, the certificate trust, and the
legitimacy of the public keys. 

Introducer Trust Levels With the lack of a central authority, it is obvious that the
ring cannot be very large if every user in the PGP ring of users has to fully trust every-
one else. (Even in real life we cannot fully trust everyone that we know.) To solve this
problem, PGP allows different levels of trust. The number of levels is mostly imple-
mentation dependent, but for simplicity, let us assign three levels of trust to any intro-
ducer: none, partial, and full. The introducer trust level specifies the trust levels issued
by the introducer for other people in the ring. For example, Alice may fully trust Bob,
partially trust Anne, and not trust John at all. There is no mechanism in PGP to deter-
mine how to make a decision about the trustworthiness of the introducer; it is up to the
user to make this decision. 

In X.509, there is a single path from the fully trusted authority to any certificate. 

In PGP, there can be multiple paths from fully or partially trusted authorities to any subject. 
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Certificate Trust Levels When Alice receives a certificate from an introducer, she
stores the certificate under the name of the subject (certified entity). She assigns a level
of trust to this certificate. The certificate trust level is normally the same as the intro-
ducer trust level that issued the certificate. Assume that Alice fully trusts Bob, partially
trusts Anne and Janette, and has no trust in John. The following scenarios can happen.

1. Bob issues two certificates, one for Linda (with public key K1) and one for Lesley
(with public key K2). Alice stores the public key and certificate for Linda under
Linda’s name and assigns a full level of trust to this certificate. Alice also stores the
certificate and public key for Lesley under Lesley’s name and assigns a full level of
trust to this certificate.   

2. Anne issues a certificate for John (with public key K3). Alice stores this certificate
and public key under John’s name, but assigns a partial level for this certificate.

3. Janette issues two certificates, one for John (with public key K3) and one for Lee
(with public key K4). Alice stores John’s certificate under his name and Lee’s certifi-
cate under his name, each with a partial level of trust. Note that John now has two
certificates, one from Anne and one from Janette, each with a partial level of trust. 

4. John issues a certificate for Liz. Alice can discard or keep this certificate with a sig-
nature trust of none. 

Key Legitimacy The purpose of using introducer and certificate trusts is to deter-
mine the legitimacy of a public key. Alice needs to know how legitimate the public keys
of Bob, John, Liz, Anne, and so on are. PGP defines a very clear procedure for deter-
mining key legitimacy. The level of the key legitimacy for a user is the weighted trust
levels of that user. For example, suppose we assign the following weights to certificate
trust levels:

1. A weight of 0 to a nontrusted certificate

2. A weight of 1/2 to a certificate with partial trust

3. A weight of 1 to a certificate with full trust

Then to fully trust an entity, Alice needs one fully trusted certificate or two partially
trusted certificates for that entity. For example, Alice can use John’s public key in the
previous scenario because both Anne and Janette have issued a certificate for John,
each with a certificate trust level of 1/2. Note that the legitimacy of a public key belong-
ing to an entity does not have anything to do with the trust level of that person.
Although Bob can use John’s public key to send a message to him, Alice cannot accept
any certificate issued by John because, for Alice, John has a trust level of none. 

Starting the Ring 

You might have realized a problem with the above discussion. What if nobody sends
a certificate for a fully or partially trusted entity? For example, how can the legiti-
macy of Bob’s public key be determined if no one has sent a certificate for Bob? In
PGP, the key legitimacy of a trusted or partially trusted entity can be also determined
by other methods.

1. Alice can physically obtain Bob’s public key. For example, Alice and Bob can meet
personally and exchange a public key written on a piece of paper or to a disk.
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2. If Bob’s voice is recognizable to Alice, Alice can call him and obtain his public key
on the phone.

3. A better solution proposed by PGP is for Bob to send his public key to Alice by
e-mail. Both Alice and Bob make a 16-byte MD5 (or 20-byte SHA-1) digest from
the key. The digest is normally displayed as eight groups of 4 digits (or ten groups
of 4 digits) in hexadecimal and is called a fingerprint. Alice can then call Bob
and verify the fingerprint on the phone. If the key is altered or changed during
the e-mail transmission, the two fingerprints do not match. To make it even more
convenient, PGP has created a list of words, each representing a 4-digit combina-
tion. When Alice calls Bob, Bob can pronounce the eight words (or ten words) for
Alice. The words are carefully chosen by PGP to avoid those similar in pronuncia-
tion; for example, if sword is in the list, word is not.

4. In PGP, nothing prevents Alice from getting Bob’s public key from a CA in a sepa-
rate procedure. She can then insert the public key in the public key ring. 

Key Ring Tables

Each user, such as Alice, keeps track of two key rings: one private-key ring and one
public key ring. PGP defines a structure for each of these key rings in the form of a table.

Private Key Ring Table Figure 16.7 shows the format of a private key ring table. 

❏ User ID. The user ID is usually the e-mail address of the user. However, the user
may designate a unique e-mail address or alias for each key pair. The table lists the
user ID associated with each pair.

❏ Key ID. This column uniquely defines a public key among the user’s public keys.
In PGP, the key ID for each pair is the first (least significant) 64 bits of the public
key. In other words, the key ID is calculated as (key mod 264). The key ID is
needed for the operation of PGP because Bob may have several public keys
belonging to Alice in his public key ring. When he receives a message from Alice,
Bob must know which key ID to use to verify the message. The key ID, which is
sent with the message, as we will see shortly, enables Bob to use a specific public
key for Alice from his public ring. You might ask why the entire public key is not
sent. The answer is that in public-key cryptography, the size of the public key may
be very long. Sending just 8 bytes reduces the size of the message.

❏ Public Key. This column just lists the public key belonging to a particular private
key/public key pair.

Figure 16.7 Format of private key ring table
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❏ Encrypted Private Key. This column shows the encrypted value of the private
key in the private key/public key pair. Although Alice is the only person access-
ing her private ring, PGP saves only the encrypted version of the private key. We
will see later how the private key is encrypted and decrypted. 

❏ Timestamp. This column holds the date and time of the key pair creation. It
helps the user decide when to purge old pairs and when to create new ones. 

Example 16.1

Let us show a private key ring table for Alice. We assume that Alice has only two user IDs,
alice@some.com and alice@anet.net. We also assume that Alice has two sets of private/public
keys, one for each user ID. Table 16.5 shows the private key ring table for Alice.  

Note that although the values of key ID, public key, and private key are shown in hexadeci-
mal, and ddmmyy-time format is used for the timestamp, these formats are only for presentation
and may be different in an actual implementation. 

Public Key Ring Table Figure 16.8 shows the format of a public key ring table. 

❏ User ID. As in the private key ring table, the user ID is usually the e-mail address
of the entity.

❏ Key ID. As in the private key ring table, the key ID is the first (least significant)
64 bits of the public key.

❏ Public Key. This is the public key of the entity.    

❏ Producer Trust. This column defines the producer level of trust. In most imple-
mentations, it can only be of one of three values: none, partial, or full.

❏ Certificate(s). This column holds the certificate or certificates signed by other
entities for this entity. A user ID may have more than one certificate. 

Table 16.5 Private key ring table for Example 1 

User ID Key ID Public Key

Encrypted

Private Key Timestamp

alice@anet.net AB13...45 AB13...45...59 32452398...23 031505-16:23

alice@some.com FA23...12 FA23...12...22 564A4923...23 031504-08:11

Figure 16.8 Format of a public key ring table
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❏ Certificate Trust(s). This column represents the certificate trust or trusts. If Anne
sends a certificate for John, PGP searches the row entry for Anne, finds the value of
the producer trust for Anne, copies that value, and inserts it in the certificate trust
field in the entry for John.    

❏ Key Legitimacy. This value is calculated by PGP based on the value of the certifi-
cate trust and the predefined weight for each certificate trust. 

❏ Timestamp. This column holds the date and time of the column creation. 

Example 16.2

A series of steps will show how a public key ring table is formed for Alice. 

1. Start with one row, Alice herself, as shown in Table 16.6. Use N (none), P (partial), and F
(full) for the levels of trust. For simplicity, also assume that everyone (including Alice) has
only one user ID. 

Note that, based on this table, we assume that Alice has issued a certificate for herself (implic-
itly). Alice of course trusts herself fully. The producer level of trust is also full and so is the key
legitimacy. Although Alice never uses this first row, it is needed for the operation of PGP. 

2. Now Alice adds Bob to the table. Alice fully trusts Bob, but to obtain his public key, she asks
Bob to send the public key by e-mail as well as his fingerprint. Alice then calls Bob to check
the fingerprint. Table 16.7 shows this new event. 

Note that the value of the producer trust is full for Bob because Alice fully trusts Bob. The
value of the certificate field is empty, which shows that this key has been received indirectly,
and not by a certificate. 

3. Now Alice adds Ted to the table. Ted is fully trusted. However, for this particular user,
Alice does not have to call Ted. Instead, Bob, who knows Ted’s public key, sends Alice a
certificate that includes Ted’s public key, as shown in Table 16.8.

Table 16.6 Example 2, starting table

User

ID

Key

ID

Public

key

Prod.

trust Certificate 

Cert. 

trust

Key

legit. 

Time-

stamp

Alice... AB... AB....... F F ........

Table 16.7 Example 2, after Bob is added to the table

User

ID

Key

ID

Public

key

Prod.

trust Certificate 

Cert. 

trust

Key

legit. 

Time-

stamp

Alice... AB... AB........ F F ........

Bob... 12... 12........ F F ........

Table 16.8 Example 2, after Ted is added to the table

User

ID

Key

ID

Public

key

Prod.

trust Certificate 

Cert. 

trust

Key

legit. 

Time-

stamp

Alice... AB... AB........ F F ........

Bob... 12... 12........ F F ........

Ted... 48... 48........ F Bob’s F F ........
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Note that the value of certificate field shows that the certificate was received from Bob.
The value of the certificate trust is copied by PGP from Bob’s producer trust field. The
value of the key legitimacy field is the value of the certificate trust multiplied by 1 (the
weight).

4. Now Alice adds Anne to the list. Alice partially trusts Anne, but Bob, who is fully trusted,
sends a certificate for Anne. Table 16.9 shows the new event. 

Note that the producer trust value for Anne is partial, but the certificate trust and key legiti-
macy is full. 

5. Now Anne introduces John, who is not trusted by Alice. Table 16.10 shows the new
event. 

Note that PGP has copied the value of Anne’s producer trust (P) to the certificate trust
field for John. The value of the key legitimacy field for John is 1/2 (P) at this moment,
which means that Alice must not use John’s key until it changes to 1 (F).

6. Now Janette, who is unknown to Alice, sends a certificate for Lee. Alice totally ignores this
certificate because she does not know Janette. 

7. Now Ted sends a certificate for John (John, who is trusted by Ted, has probably asked Ted to
send this certificate). Alice looks at the table and finds John’s user ID with the corresponding
key ID and public key. Alice does not add another row to the table; she just modifies the
table as shown in Table 16.11. 

Because John has two certificates in Alice’s table and his key legitimacy value is 1, Alice
can use his key. But John is still untrustworthy. Note that Alice can continue to add entries to
the table. 

Table 16.9 Example 2, after Anne is added to the table

User

ID

Key

ID

Public

key

Prod.

trust Certificate 

Cert. 

trust

Key

legit. 

Time-

stamp

Alice... AB... AB........ F F ........

Bob... 12... 12........ F F ........

Ted... 48... 48........ F Bob’s F F ........

Anne... 71... 71........ P Bob’s F F ........

Table 16.10 Example 2, after John is added to the table

User

ID

Key

ID

Public

key

Prod.

Trust Certificate 

Cert. 

trust

Key

legit. 

Time-

stamp

Alice... AB... AB........ F F ........

Bob... 12... 12........ F F ........

Ted... 48... 48........ F Bob’s F F ........

Anne... 71... 71........ P Bob’s F F ........

John... 31... 31........ N Anne’s P P ........
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Trust Model in PGP

As Zimmermann has proposed, we can create a trust model for any user in a ring with the
user as the center of activity. Such a model can look like the one shown in Figure 16.9.
The figure shows the trust model for Alice at some moment. The diagram may change
with any changes in the public key ring table.  

Let us elaborate on the figure. Figure 16.9 shows that there are three entities in
Alice’s ring with full trust (Alice herself, Bob, and Ted). The figure also shows three
entities with partial trust (Anne, Mark, and Bruce). There are also six entities with no
trust. Nine entities have a legitimate key. Alice can encrypt a message to any one of
these entities or verify a signature received from one of these entities (Alice’s key is
never used in this model). There are also three entities that do not have any legitimate
keys with Alice. 

Table 16.11 Example 2, after one more certificate received for John

User

ID

Key

ID

Public

key

Prod.

trust Certificate 

Cert. 

trust

Key

legit. 

Time-

stamp

Alice... AB... AB........ F F ........

Bob... 12... 12........ F F ........

Ted... 48... 48........ F Bob’s F F ........

Anne... 71... 71........ P Bob’s F F ........

John... 31... 31........ N Anne’s
Ted’s

P
F

F ........

Figure 16.9 Trust model 

Mark

Duc

Jenny Luise

AnneBob

Ted John Kevin

Helen

Fully trusted entity

Partially trusted entity

Untrusted entity

X introduced by Y

?  X introduced by an unknown entity

X has legitimate key

Alice

??

X Y

X

X

Bruce



482 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Bob, Anne, and Mark have made their keys legitimate by sending their keys by
e-mail and verifying their fingerprints by phone. Helen, on the other hand, has sent a
certificate from a CA because she is not trusted by Alice and verification on the phone
is not possible. Although Ted is fully trusted, he has given Alice a certificate signed by
Bob. John has sent Alice two certificates, one signed by Ted and one by Anne. Kevin
has sent two certificates to Alice, one signed by Anne and one by Mark. Each of these
certificates gives Kevin half a point of legitimacy; therefore, Kevin’s key is legitimate.
Duc has sent two certificates to Alice, one signed by Mark and the other by Helen.
Since Mark is half-trusted and Helen is not trusted, Duc does not have a legitimate
key. Jenny has sent four certificates, one signed by a half-trusted entity, two by un-
trusted entities, and one by an unknown entity. Jenny does not have enough points to
make her key legitimate. Luise has sent one certificate signed by an unknown entity.
Note that Alice may keep Luise’s name in the table in case future certificates for Luise
arrive. 

Web of Trust

PGP can eventually make a web of trust between a group of people. If each entity
introduces more entities to other entities, the public key ring for each entity gets larger
and larger and entities in the ring can send secure e-mail to each other. 

Key Revocation 

It may become necessary for an entity to revoke his or her public key from the ring.
This may happen if the owner of the key feels that the key is compromised (stolen, for
example) or just too old to be safe. To revoke a key, the owner can send a revocation
certificate signed by herself. The revocation certificate must be signed by the old key
and disseminated to all the people in the ring that use that public key.

Extracting Information from Rings

As we have seen, the sender and receiver each have two key rings, one private and one
public. Let us see how information needed for sending and receiving a message is
extracted from these rings. 

Sender Site

Assume that Alice is sending an e-mail to Bob. Alice needs five pieces of information:
the key ID of the public key she is using, her private key, the session key, Bob’s public-
key ID, and Bob’s public key. To obtain these five pieces of information, Alice needs to
feed four pieces of information to PGP: her user ID (for this e-mail), her passphrase, a
sequence of key strokes with possible pauses, and Bob’s user ID. See Figure 16.10.

Alice’s public-key ID (to be sent with the message) and her private key (to sign the
message) are stored in the private key ring table. Alice selects the user ID (her e-mail
address) that she wants  to use as an index to this ring. PGP extracts the key ID and the
encrypted private key. PGP uses the predefined decryption algorithm and her hashed
passphrase (as the key) to decrypt this private key.
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Alice also needs a secret session key. The session key in PGP is a random number
with a size defined in the encryption/decryption algorithm. PGP uses a random number
generator to create a random session key; the seed is a set of arbitrary keystrokes typed
by Alice on her keyboard. Each key stroke is converted to 8 bits and each pause
between the keystrokes is converted to 32 bits. The combination goes through a com-
plex random number generator to create a very reliable random number as the session
key. Note that the session key in PGP is a one-time random key (see Appendix K) and
used only once.

Alice also needs Bob’s key ID (to be sent with the message) and Bob’s public key
(to encrypt the session key). These two pieces of information are extracted from the
public key ring table using Bob’s user ID (his e-mail address). 

Receiver Site

At the receiver site, Bob needs three pieces of information: Bob’s private key (to
decrypt the session key), the session key (to decrypt the data), and Alice’s public key
(to verify the signature). See Figure 16.11.

Bob uses the key ID of his public key sent by Alice to find his corresponding pri-
vate key needed to decrypt the session key. This piece of information can be extracted
from Bob’s private key ring table. The private key, however, is encrypted when stored.
Bob needs to use his passphrase and the hash function to decrypt it. 

The encrypted session key is sent with the message; Bob uses his decrypted private
key to decrypt the session key.

Bob uses Alice’s key ID sent with the message to extract Alice’s public key, which
is stored in Bob’s public key ring table. 

Figure 16.10 Extracting information at the sender site
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PGP Packets

A message in PGP consists of one or more packets. During the evolution of PGP,
the format and the number of packet types have changed. Like other protocols we have
seen so far, PGP has a generic header that applies to every packet. The generic header,
in the most recent version, has only two fields, as shown in Figure 16.12. 

❏ Tag. The recent format for this field defines a tag as an 8-bit flag; the first
bit (most significant) is always 1. The second bit is 1 if we are using the latest
version. The remaining six bits can define up to 64 different packet types, as shown
in Table 16.12.

❏ Length. The length field defines the length of the entire packet in bytes. The
size of this field is variable; it can be 1, 2, or 5 bytes. The receiver can determine

Figure 16.11 Extracting information at the receiver site

Figure 16.12 Format of packet header
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the number of bytes of the length field by looking at the value of the byte
immediately following the tag field. 

a. If the value of the byte after the tag field is less than 192, the length field is 
only one byte. The length of the body (packet minus header) is calculated as:

b. If the value of the byte after the tag field is between 192 and 223 (inclusive), 
the length field is two bytes. The length of the body can be calculated as: 

c. If the value of the byte after the tag field is between 224 and 254 (inclusive), 
the length field is one byte. This type of length field defines only the length 
of part of the body (partial body length). The partial body length can be 
calculated as:

Note that the formula means 1 × 2(first byte & 0x1F). The power is actually the value of the
five rightmost bits. Because the field is between 224 and 254, inclusive, the value of
the five rightmost bits is between 0 and 30, inclusive. In other words, the partial body
length can be between one (20) and 1,073,741,824 (230). When a packet becomes
several partial bodies, the partial body length is applicable. Each partial body length
defines one part of the length. The last length field cannot be a partial body length
definer. For example, if a packet has four parts, it can have three partial length fields
and one length field of another type. 

d. If the value of the byte after the tag field is 255, the length field con-
sists of five bytes. The length of the body is calculated as: 

Table 16.12 Some commonly used packet types

Value Packet type

  1 Session key packet encrypted using a public key

  2 Signature packet

  5 Private-key packet 

  6 Public-key packet

  8 Compressed data packet

  9 Data packet encrypted with a secret key

11 Literal data packet

13 User ID packet

body length = first byte

body length = (first byte - 192) << 8 + second byte + 192

partial body length = 1 << (first byte & 0x1F)

Body length = second byte << 24 | third byte << 16 | fourth byte << 8 | fifth byte
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Literal Data Packet The literal data packet is the packet that carries or holds the
actual data that is being transmitted or stored. This packet is the most elementary type
of message; that is, it cannot carry any other packet. The format of the packet is shown
in Figure 16.13.  

❏ Mode. This one-byte field defines how data is written to the packet. The value of
this field can be “b” for binary, “t” for text, or any other locally defined value.

❏ Length of next field. This one-byte field defines the length of the next field (file
name field). 

❏ File name. This variable-length field defines the name of the file or message as
an ASCII string.

❏ Timestamp. This four-byte field defines the time of creation or last modification
of the message. The value can be 0, which means that the user chooses not to
specify a time.

❏ Literal data. This variable-length field carries the actual data (file or message)
in text or binary (depending on the value of the mode field). 

Compressed Data Packet This packet carries compressed data packets. Figure 16.14
shows the format of a compressed data packet. 

Figure 16.13 Literal data packet

Figure 16.14 Compressed data packet
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❏ Compression method. This one-byte field defines the compression method used
to compress the data (next field). The values defined for this field so far are 1 (ZIP)
and 2 (ZLIP). Also, an implementation can use other experimental compression
methods. ZIP is discussed in Appendix M. 

❏ Compressed data. This variable-length field carries the data after compres-
sion. Note that the data in this field can be one packet or the concatenation of
two or more packets. The common situation is a single literal data packet or a
combination of a signature packet followed by a literal data packet. 

Data Packet Encrypted with Secret Key This packet carries data from one packet
or a combination of packets that have been encrypted using a conventional symmetric-
key algorithm. Note that a packet carrying the one-time session key must be sent before
this packet. Figure 16.15 shows the format of the encrypted data packet.  

Signature Packet A signature packet, as we discussed before, protects the integrity
of the data. Figure 16.16 shows the format of the signature packet.  

Figure 16.15 Encrypted data packet

Figure 16.16 Signature packet
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❏ Version. This one-byte field defines the PGP version that is being used. 

❏ Length. This field was originally designed to show the length of the next two
fields, but because the size of these fields is now fixed, the value of this field is 5.

❏ Signature type. This one-byte field defines the purpose of the signature, the docu-
ment it signs. Table 16.13 shows some signature types. 

❏ Timestamp. This four-byte field defines the time the signature was calculated.

❏ Key ID. This eight-byte field defines the public-key ID of the signer. It indicates to
the verifier which signer public key should be used to decrypt the digest.

❏ Public-key algorithm. This one-byte field gives the code for the public-key algo-
rithm used to encrypt the digest. The verifier uses the same algorithm to decrypt
the digest. 

❏ Hash algorithm. This one-byte field gives the code for the hash algorithm used to
create the digest. 

❏ First two bytes of message digest. These two bytes are used as a kind of check-
sum. They ensure that the receiver is using the right key ID to decrypt the digest. 

❏ Signature. This variable-length field is the signature. It is the encrypted digest
signed by the sender. 

Session-Key Packet Encrypted with Public Key This packet is used to send the
session key encrypted with the receiver public key. The format of the packet is shown in
Figure 16.17.  

❏ Version. This one-byte field defines the PGP version being used. 

❏ Key ID. This eight-byte field defines the public-key ID of the sender. It indicates to
the receiver which sender public key should be used to decrypt the session key. 

❏ Public-key algorithm. This one-byte field gives the code for the public-key algo-
rithm used to encrypt the session key. The receiver uses the same algorithm to
decrypt the session key. 

Table 16.13 Some signature values

Value Signature 

0x00 Signature of a binary document (message or file).

0x01 Signature of a text document (message or file).

0x10 Generic certificate of a user ID and public-key packet. The signer does not 
make any particular assertion about the owner of the key.

0x11 Personal certificate of a user ID and public-key packet. No verification is 
done on the owner of the key. 

0x12 Casual certificate of a User ID and public-key packet. Some casual verification 
done on the owner of the key.

0x13 Positive certificate of a user ID and public-key packet. Substantial verification 
done. 

0x30 Certificate revocation signature. This removes an earlier certificate (0x10 
through 0x13).
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❏ Encrypted session. This variable-length field is the encrypted value of the session key

created by the sender and sent to the receiver. The encryption is done on the following:

a. One-octet symmetric encryption algorithm

b. The session key

c. A two-octet checksum equal to the sum of the preceding session-key octets 

Public-Key Packet This packet contains the public key of the sender. The format of

the packet is shown in Figure 16.18.  

❏ Version. This one-byte field defines the PGP version of the PGP being used. 

❏ Timestamp. This four-byte field defines the time the key was created.

❏ Validity. This two-byte field shows the number of days the key is valid. If the value

is 0, it means the key does not expire.

❏ Public-key algorithm. This one-byte field gives the code for the public-key algorithm. 

❏ Public key. This variable-length field holds the public key itself. Its contents

depend on the public-key algorithm used. 

Figure 16.17 Session-key packet

Figure 16.18 Public-key packet
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User ID Packet This packet identifies a user and can normally associate the user ID
contents with a public key of the sender. Figure 16.19 shows the format of the user
ID packet. Note that the length field of the general header is only one byte.  

❏ User ID. This variable-length string defines the user ID of the sender. It is normally
the name of the user followed by an e-mail address. 

PGP Messages

A message in PGP is a combination of sequenced and/or nested packets. Even though
not all combinations of packets can make a message, the list of combinations is still
long. In this section, we give a few examples to show the idea.

Encrypted Message

An encrypted message can be a sequence of two packets, a session-key packet and a
symmetrically encrypted packet. The latter is normally a nested packet. Figure 16.20
shows this combination. 

Figure 16.19 User ID packet

Figure 16.20 Encrypted message
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Note that the session-key packet is just a single packet. The encrypted data packet,
however, is made of a compressed packet. The compressed packet is made of a literal
data packet. The last one holds the literal data. 

Signed Message

A signed message can be the combination of a signature packet and a literal packet, as
shown in Figure 16.21. 

Certificate Message

Although a certificate can take many forms, one simple example is the combination of a
user ID packet and a public-key packet as shown in Figure 16.22. The signature is then
calculated on the concatenation of the key and user ID. 

Figure 16.21 Signed message

Figure 16.22 Certificate message
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Applications of PGP

PGP has been extensively used for personal e-mails. It will probably continue to be. 

16.3 S/MIME

Another security service designed for electronic mail is Secure/Multipurpose Inter-

net Mail Extension (S/MIME). The protocol is an enhancement of the Multipurpose

Internet Mail Extension (MIME) protocol. To better understand S/MIME, first we
briefly describe MIME. Next, S/MIME is discussed as the extension to MIME. 

MIME

Electronic mail has a simple structure. Its simplicity, however, comes with a price. It
can send messages only in NVT 7-bit ASCII format. In other words, it has some limita-
tions. For example, it cannot be used for languages that are not supported by 7-bit
ASCII characters (such as Arabic, Chinese, French, German, Hebrew, Japanese, and
Russian). Also, it cannot be used to send binary files or video or audio data. 

Multipurpose Internet Mail Extensions (MIME) is a supplementary protocol that
allows non-ASCII data to be sent through e-mail. MIME transforms non-ASCII data at
the sender site to NVT ASCII data and delivers it to the client MTA to be sent through
the Internet. The message at the receiving side is transformed back to the original data. 

We can think of MIME as a set of software functions that transform non-ASCII
data to ASCII data, and vice versa, as shown in Figure 16.23.

MIME defines five headers that can be added to the original e-mail header section
to define the transformation parameters:

1. MIME-Version

2. Content-Type

Figure 16.23 MIME

UA UA

MTA MTA

MIME

User User

MIME

7-bit ASCII

7-bit ASCII

7-bit ASCII

Non-ASCII code Non-ASCII code
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3. Content-Transfer-Encoding

4. Content-Id

5. Content-Description

Figure 16.24 shows the MIME headers. We will describe each header in detail. 

MIME-Version

This header defines the version of MIME used. The current version is 1.1.         

Content-Type

This header defines the type of data used in the body of the message. The content type
and the content subtype are separated by a slash. Depending on the subtype, the header
may contain other parameters.

MIME allows seven different types of data. These are listed in Table 16.14 and described
in more detail below. 

❏ Text. The original message is in 7-bit ASCII format and no transformation by
MIME is needed. There are two subtypes currently used, plain and HTML.

❏ Multipart. The body contains multiple, independent parts. The multipart
header needs to define the boundary between each part. A parameter is used for
this purpose. The parameter is a string token that comes before each part; it is on
a separate line by itself and is preceded by two hyphens. The body is terminated
using the boundary token, again preceded by two hyphens, and then terminated with
two hyphens.

Four subtypes are defined for this type: mixed, parallel, digest, and alternative.
In the mixed subtype, the parts must be presented to the recipient in the exact order

Figure 16.24 MIME header

MIME-Version: 1.1

Content-Type: <type / subtype; parameters>

MIME-Version: 1.1
Content-Type: type/subtype
Content-Transfer-Encoding: encoding type
Content-Id: message id
Content-Description: textual explanation of nontextual contents

E-mail header

E-mail body

MIME headers
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as in the message. Each part has a different type and is defined at the boundary.
The parallel subtype is similar to the mixed subtype, except that the order of the
parts is unimportant. The digest subtype is also similar to the mixed subtype except
that the default type/subtype is message/RFC822, as defined below. In the alterna-
tive subtype, the same message is repeated using different formats. The following
is an example of a multipart message using a mixed subtype:

❏ Message. In the message type, the body is itself an entire mail message, a part
of a mail message, or a pointer to a message. Three subtypes are currently used:
RFC822, partial, and external-body. The subtype RFC822 is used if the body is
encapsulating another message (including header and the body). The partial subtype

Table 16.14 Data types and subtypes in MIME 

Type Subtype Description

Plain Unformatted.

HTML HTML format.

Multipart Mixed Body contains ordered parts of different data types.

Parallel Same as above, but no order.

Digest Similar to Mixed, but the default is message/RFC822.

Alternative Parts are different versions of the same message.

Message RFC822 Body is an encapsulated message.

Partial Body is a fragment of a bigger message.

External-Body Body is a reference to another message.

Image JPEG Image is in JPEG format.

GIF Image is in GIF format.

Video MPEG Video is in MPEG format.

Audio Basic Single channel encoding of voice at 8 KHz.

Application PostScript Adobe PostScript.

Octet-stream General binary data (eight-bit bytes).

Content-Type: multipart/mixed; boundary=xxxx

--xxxx

Content-Type: text/plain;

.............................................

--xxxx

Content-Type: image/gif;

.............................................

--xxxx--
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is used if the original message has been fragmented into different mail mes-
sages and this mail message is one of the fragments. The fragments must be
reassembled at the destination by MIME. Three parameters must be added: id,

number, and the total. The id identifies the message and is present in all the
fragments. The number defines the sequence order of the fragment. The total defines
the number of fragments that comprise the original message. The following is an
example of a message with three fragments:

The subtype external-body indicates that the body does not contain the actual
message but is only a reference (pointer) to the original message. The parameters
following the subtype define how to access the original message. The following
is an example:

❏ Image. The original message is a stationary image, indicating that there is no ani-
mation. The two currently used subtypes are Joint Photographic Experts Group

(JPEG), which uses image compression, and Graphics Interchange Format (GIF).

❏ Video. The original message is a time-varying image (animation). The only sub-
type is Moving Picture Experts Group (MPEG). If the animated image contains
sounds, it must be sent separately using the audio content type.

❏ Audio. The original message is sound. The only subtype is basic, which uses 8 kHz
standard audio data.

❏ Application. The original message is a type of data not previously defined. There
are only two subtypes used currently: PostScript and octet-stream. PostScript is
used when the data are in Adobe PostScript format. Octet-stream is used when the
data must be interpreted as a sequence of 8-bit bytes (binary file).

Content-Type: message/partial;

id=“forouzan@challenger.atc.fhda.edu”;

number=1;

total=3;

........................

........................

Content-Type: message/external-body;

name=“report.txt”;

site=“fhda.edu”;

access-type=“ftp”;

........................

........................
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Content-Transfer-Encoding

This header defines the method used to encode the messages into 0s and 1s for transport:

The five types of encoding methods are listed in Table 16.15.

❏ 7bit. This is 7-bit NVT ASCII encoding. Although no special transformation is
needed, the length of the line should not exceed 1,000 characters.

❏ 8bit. This is 8-bit encoding. Non-ASCII characters can be sent, but the length of
the line still should not exceed 1,000 characters. MIME does not do any encoding
here; the underlying SMTP protocol must be able to transfer 8-bit non-ASCII char-
acters. It is, therefore, not recommended. Radix-64 and quoted-printable types are
preferable.

❏ Binary. This is 8-bit encoding. Non-ASCII characters can be sent, and the length
of the line can exceed 1,000 characters. MIME does not do any encoding here; the
underlying SMTP protocol must be able to transfer binary data. It is, therefore, not
recommended. Radix-64 and quoted-printable types are preferable.

❏ Radix-64. This is a solution for sending data made of bytes when the highest bit is
not necessarily zero. Radix-64 transforms this type of data to printable characters,
which can then be sent as ASCII characters or any type of character set supported
by the underlying mail transfer mechanism. 

Radix-64 divides the binary data (made of streams of bits) into 24-bit
blocks. Each block is then divided into four sections, each made of 6 bits (see
Figure 16.25).

Each 6-bit section is interpreted as one character according to Table 16.16. 

❏ Quoted-printable. Radix-64 is a redundant encoding scheme; that is, 24 bits
become four characters, and eventually are sent as 32 bits. We have an overhead of
25 percent. If the data consist mostly of ASCII characters with a small non-ASCII
portion, we can use quoted-printable encoding. If a character is ASCII, it is sent as
is. If a character is not ASCII, it is sent as three characters. The first character is the
equal sign (=). The next two characters are the hexadecimal representations of the
byte. Figure 16.26 shows an example. 

Content-Transfer-Encoding: <type>

Table 16.15 Content-transfer-encoding 

Type Description

7bit NVT ASCII characters and short lines.

8bit Non-ASCII characters and short lines.

Binary Non-ASCII characters with unlimited-length lines.

Radix-64 6-bit blocks of data are encoded into 8-bit ASCII characters using 
Radix-64 conversion.

Quoted-printable Non-ASCII characters are encoded as an equal sign followed by an 
ASCII code.
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Figure 16.25 Radix-64 conversion

Table 16.16 Radix-64 encoding table

Value Code Value Code Value Code Value Code Value Code Value Code

  0 A 11 L 22 W 33 h 44 s 55 3

  1 B 12 M 23 X 34 i 45 t 56 4

  2 C 13 N 24 Y 35 j 46 u 57 5

  3 D 14 O 25 Z 36 k 47 v 58 6

  4 E 15 P 26 a 37 l 48 w 59 7

  5 F 16 Q 27 b 38 m 49 x 60 8

  6 G 17 R 28 c 39 n 50 y 61 9

  7 H 18 S 29 d 40 o 51 z 62 +

  8 I 19 T 30 e 41 p 52 0 63 /

  9 J 20 U 31 f 42 q 53 1

10 K 21 V 32 g 43 r 54 2

Figure 16.26 Quoted-printable

11001100

z

10000001

I E

00111001

01111010 01001001 01000101 00110101

110011
(51)

001000
(8)

000100
(4)

111001
(57)

5

Non-ASCII
data

ASCII
data

Radix-64
converter

01001100
L

10011101
Non-ASCII

00111001
9

Mixed ASCII and
non-ASCII data

ASCII data

Quoted-
printable

00100110
&

01001011
K

00100110
&

01001011
K

01001100
L

00111001
9

00111101
=

01000100
D

00111001
9



498 CHAPTER 16 SECURITY AT THE APPLICATION LAYER: PGP AND S/MIME

Content-Id

This header uniquely identifies the whole message in a multiple message environment.

Content-Description

This header defines whether the body is image, audio, or video.

S/MIME

S/MIME adds some new content types to include security services to the MIME. All of
these new types include the parameter “application/pkcs7-mime,” in which “pkcs”
defines “Public Key Cryptography Specification.” 

Cryptographic Message Syntax (CMS)

To define how security services, such as confidentiality or integrity, can be added to
MIME content types, S/MIME has defined Cryptographic Message Syntax (CMS).

The syntax in each case defines the exact encoding scheme for each content type. The
following describe the type of message and different subtypes that are created from these
messages. For details, the reader is referred to RFC 3369 and 3370. 

Data Content Type This is an arbitrary string. The object created is called Data. 

Signed-Data Content Type This type provides only integrity of data. It contains
any type and zero or more signature values. The encoded result is an object called
signedData. Figure 16.27 shows the process of creating an object of this type. The
following are the steps in the process:

1. For each signer, a message digest is created from the content using the specific
hash algorithm chosen by that signer.

2. Each message digest is signed with the private key of the signer.

3. The content, signature values, certificates, and algorithms are then collected to cre-
ate the signedData object.

Enveloped-Data Content Type This type is used to provide privacy for the message.
It contains any type and zero or more encrypted keys and certificates. The encoded
result is an object called envelopedData. Figure 16.28 shows the process of creating an
object of this type.    

1. A pseudorandom session key is created for the symmetric-key algorithms to be used.

2. For each recipient, a copy of the session key is encrypted with the public key of
each recipient.

3. The content is encrypted using the defined algorithm and created session key. 

4. The encrypted contents, encrypted session keys, algorithm used, and certificates
are encoded using Radix-64. 

Content-Id: id=<content-id>

Content-Description: <description>
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Figure 16.27 Signed-data content type

Figure 16.28 Enveloped-data content type
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Digested-Data Content Type This type is used to provide integrity for the message.
The result is normally used as the content for the enveloped-data content type. The
encoded result is an object called digestedData. Figure 16.29 shows the process of cre-
ating an object of this type.  

1. A message digest is calculated from the content.

2. The message digest, the algorithm, and the content are added together to create the
digestedData object.

Encrypted-Data Content Type This type is used to create an encrypted version of
any content type. Although this looks like the enveloped-data content type, the
encrypted-data content type has no recipient. It can be used to store the encrypted data
instead of transmitting it. The process is very simple, the user employs any key (normally
driven from the password) and any algorithm to encrypt the content. The encrypted con-
tent is stored without including the key or the algorithm. The object created is called
encryptedData.    

Authenticated-Data Content Type This type is used to provide authentication of
the data. The object is called authenticatedData. Figure 16.30 shows the process.  

1. Using a pseudorandom generator, a MAC key is generated for each recipient.

2. The MAC key is encrypted with the public key of the recipient.

3. A MAC is created for the content. 

4. The content, MAC, algorithms, and other informations are collected together to
form the authenticatedData object. 

Key Management

The key management in S/MIME is a combination of key management used by X.509
and PGP. S/MIME uses public-key certificates signed by the certificate authorities
defined by X.509. However, the user is responsible to maintain the web of trust to ver-
ify signatures as defined by PGP. 

Figure 16.29 Digest-data content type
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Cryptographic Algorithms

S/MIME defines several cryptographic algorithms as shown in Table 16.17. The term
“must” means an absolute requirement; the term “should” means recommendation. 

Figure 16.30 Authenticated-data content type

Table 16.17 Cryptographic algorithm for S/MIME
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Example 16.3

The following shows an example of an enveloped-data in which a small message is encrypted

using triple DES. 

Applications of S/MIME

It is predicted that S/MIME will become the industry choice to provide security for

commercial e-mail.

16.4 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items in brackets refer to the reference list at the end of the text. 

Books

Electronic mail is discussed in [For06] and [For07]. PGP is discussed in [Sta06],

[KPS02], and [Rhe03]. S/MIME is discussed in [Sta06] and [Rhe03]. 

WebSites

The following websites give more information about topics discussed in this chapter.

16.5 KEY TERMS

Content-Type: application/pkcs7-mime; mime-type=enveloped-data

Content-Transfer-Encoding: Radix-64

Content-Description: attachment

name=“report.txt”;

cb32ut67f4bhijHU21oi87eryb0287hmnklsgFDoY8bc659GhIGfH6543mhjkdsaH23YjBnmN

ybmlkzjhgfdyhGe23Kjk34XiuD678Es16se09jy76jHuytTMDcbnmlkjgfFdiuyu678543m0n3h

G34un12P2454Hoi87e2ryb0H2MjN6KuyrlsgFDoY897fk923jljk1301XiuD6gh78EsUyT23y

http://axion.physics.ubc.ca/pgp-begin.html

csrc.nist.gov/publications/nistpubs/800-49/sp800-49.pdf 

www.faqs.org/rfcs/rfc2632.html

Cryptographic Message Syntax (CMS) quoted-printable

electronic mail (e-mail) Radix-64 encoding

key ring Secure/Multipurpose Internet Mail

message access agent (MAA) Extension (S/MIME)

message transfer agent (MTA) user agent (UA)

Multipurpose Internet Mail Extension (MIME) web of trust

Pretty Good Privacy (PGP)
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16.6 SUMMARY

❏ Because there is no session in e-mail communication, the sender of the message
needs to include the name or identifiers of the algorithms used in the message. In
e-mail communication, encryption/decryption is done using a symmetric-key algo-
rithm, but the secret key to decrypt the message is encrypted with the public key of
the receiver and is sent with the message.

❏ The first protocol discussed in this chapter is called Pretty Good Privacy (PGP),
which was invented by Phil Zimmermann to provide e-mail with privacy, integrity,
and authentication. PGP can be used to create a secure e-mail message or to store a
file securely for future retrieval.

❏ In PGP, Alice needs a ring of public keys for each person with whom Alice needs
to correspond. She also needs a ring of private/public keys belonging to her. 

❏ In PGP, there is no need for CAs; anyone in the ring can sign a certificate for any-
one else in the ring. There is no hierarchy of trust in PGP; there is no tree. There
can be multiple paths from fully or partially trusted authorities to any subject.

❏ The entire operation of PGP is based on introducer trust, levels of trust, and the
legitimacy of the public keys. PGP makes a web of trust between a group of people.

❏ PGP has defined several packet types: literal data packet, compressed data packet,
data packet encrypted with secret key, signature packet, session-key packet
encrypted with public key, public-key packet, and user ID packet.

❏ In PGP, we can have several types of messages: encrypted message, signed message,
and certificate message.

❏ Another security service designed for electronic mail is Secure/Multipurpose
Internet Mail Extension (S/MIME). The protocol is an enhancement of the Multi-
purpose Internet Mail Extension (MIME) protocol, which is a supplementary
protocol that allows non-ASCII data to be sent through e-mail. S/MIME adds some
new content types to MIME to provide security services. 

❏ Cryptographic Message Syntax (CMS) has defined several message types that
produce new content types to be added to MIME. This chapter mentioned several
message types, including data content type, signed-data content type, enveloped-
data content type, digested-data content type, encrypted-data content type, and
authenticated-data content type. 

❏ The key management in S/MIME is a combination of key management used by
X.509 and PGP. S/MIME uses public-key certificates signed by the certificate
authorities.

16.7 EXERCISES

Review Questions

1. Explain how Bob finds out what cryptographic algorithms Alice has used when he
receives a PGP message from her.
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2. Explain how Bob finds out what cryptographic algorithms Alice has used when he
receives an S/MIME message from her. 

3. In PGP, explain how Bob and Alice exchange the secret key for encrypting messages.

4. In S/MIME, explain how Bob and Alice exchange the secret key for encrypting
messages.

5. Compare and contrast the nature of certificates in PGP and S/MIME. Explain the
web of trust made from certificates in PGP and in S/MIME.

6. Name seven types of packets used in PGP and explain their purposes.

7. Name three types of messages in PGP and explain their purposes. 

8. Name all content types defined by CMS and their purposes.

9. Compare and contrast key management in PGP and S/MIME.

Exercises

10. Bob receives a PGP message. How can he find out the type of the packet if the tag
value is 

a. 8 

b. 9

c. 2 

11. In PGP, can an e-mail message use two different public-key algorithms for encryp-
tion and signing? How is this defined in a message sent from Alice to Bob?

12. Answer the following questions about tag values in PGP:

a. Can a packet with a tag value of 1 contain another packet?

b. Can a packet with a tag value of 6 contain another packet?

13. What types of a packet should be sent in PGP to provide the following security
services:

a. Confidentiality

b. Message integrity

c. Authentication

d. Nonrepudiation

e. Combination of a and b

f. Combination of a and c

g. Combination of a, b, and c

h. Combination of a, b, c, and d. 

14. What content type in S/MIME provides the following security services:

a. confidentiality

b. message integrity

c. authentication

d. nonrepudiation

e. combination of a and b
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f. combination of a and c

g. combination of a, b, and c

h. combination of a, b, c, and d. 

15. Make a table to compare and contrast the symmetric-key cryptographic algorithms
used in PGP and S/MIME. 

16. Make a table to compare and contrast the asymmetric-key cryptographic algorithms
used in PGP and S/MIME. 

17. Make a table to compare and contrast the hash algorithms used in PGP and S/MIME.

18. Make a table to compare and contrast the digital signature algorithms used in PGP
and S/MIME. 

19. Encode the message “This is a test” using the following encoding scheme: 

a. Radix-64

b. Quoted-printable 
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CHAPTER 17

Security at the Transport Layer:
SSL and TLS

Objectives

This chapter has several objectives:

❏ To discuss the need for security services at the transport layer of the
Internet model

❏ To discuss the general architecture of SSL

❏ To discuss the general architecture of TLS

❏ To compare and contrast SSL and TLS 

Transport layer security provides end-to-end security services for applica-
tions that use a reliable transport layer protocol such as TCP. The idea is to
provide security services for transactions on the Internet. For example,
when a customer shops online, the following security services are desired:

1. The customer needs to be sure that the server belongs to the actual
vendor, not an impostor. The customer does not want to give an
impostor her credit card number (entity authentication).

2. The customer and the vendor need to be sure that the contents of the
message are not modified during transmission (message integrity).

3. The customer and the vendor need to be sure that an impostor does
not intercept sensitive information such as a credit card number
(confidentiality).

Two protocols are dominant today for providing security at the transport
layer: the Secure Sockets Layer (SSL) Protocol and the Transport
Layer Security (TLS) Protocol. The latter is actually an IETF version
of the former. We first discuss SSL, then TLS, and then compare and
contrast the two. Figure 17.1 shows the position of SSL and TLS in the
Internet model. 
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One of the goals of these protocols is to provide server and client
authentication, data confidentiality, and data integrity. Application-layer
client/server programs, such as Hypertext Transfer Protocol (HTTP),
that use the services of TCP can encapsulate their data in SSL packets.
If the server and client are capable of running SSL (or TLS) programs then
the client can use the URL https://… instead of http://… to allow HTTP
messages to be encapsulated in SSL (or TLS) packets. For example, credit
card numbers can be safely transferred via the Internet for online shoppers. 

17.1 SSL ARCHITECTURE
SSL is designed to provide security and compression services to data generated from
the application layer. Typically, SSL can receive data from any application layer protocol,
but usually the protocol is HTTP. The data received from the application is compressed
(optional), signed, and encrypted. The data is then passed to a reliable transport layer
protocol such as TCP. Netscape developed SSL in 1994. Versions 2 and 3 were released
in 1995. In this chapter, we discuss SSLv3.

Services 

SSL provides several services on data received from the application layer. 

Fragmentation

First, SSL divides the data into blocks of 214 bytes or less.

Compression

Each fragment of data is compressed using one of the lossless compression methods
negotiated between the client and server. This service is optional.

Message Integrity

To preserve the integrity of data, SSL uses a keyed-hash function to create a MAC.

Confidentiality

To provide confidentiality, the original data and the MAC are encrypted using symmetric-
key cryptography.

Figure 17.1 Location of SSL and TLS in the Internet model
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Framing

A header is added to the encrypted payload. The payload is then passed to a reliable
transport layer protocol. 

Key Exchange Algorithms

As we will see later, to exchange an authenticated and confidential message, the client
and the server each need six cryptographic secrets (four keys and two initialization vec-
tors). However, to create these secrets, one pre-master secret must be established
between the two parties. SSL defines six key-exchange methods to establish this pre-
master secret: NULL, RSA, anonymous Diffie-Hellman, ephemeral Diffie-Hellman,
fixed Diffie-Hellman, and Fortezza, as shown in Figure 17.2.  

NULL

There is no key exchange in this method. No pre-master secret is established between
the client and the server.   

RSA

In this method, the pre-master secret is a 48-byte random number created by the client,
encrypted with the server’s RSA public key, and sent to the server. The server needs to
send its RSA encryption/decryption certificate. Figure 17.3 shows the idea. 

Figure 17.2 Key-exchange methods

Both client and server need to know the value of the pre-master secret.

Figure 17.3 RSA key exchange; server public key
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Anonymous Diffie-Hellman

This is the simplest and most insecure method. The pre-master secret is established
between the client and server using the Diffie-Hellman (DH) protocol. The Diffie-
Hellman half-keys are sent in plaintext. It is called anonymous Diffie-Hellman
because neither party is known to the other. As we have discussed, the most serious dis-
advantage of this method is the man-in-the-middle attack. Figure 17.4 shows the idea. 

Ephemeral Diffie-Hellman

To thwart the man-in-the-middle attack, the ephemeral Diffie-Hellman key exchange
can be used. Each party sends a Diffie-Hellman key signed by its private key. The receiv-
ing party needs to verify the signature using the public key of the sender. The public
keys for verification are exchanged using either RSA or DSS digital signature certifi-
cates. Figure 17.5 shows the idea.

Fixed Diffie-Hellman

Another solution is the fixed Diffie-Hellman method. All entities in a group can
prepare fixed Diffie-Hellman parameters (g and p). Then each entity can create a fixed
Diffie-Hellman half-key (gx). For additional security, each individual half-key is
inserted into a certificate verified by a certification authority (CA). In other words, the

Figure 17.4 Anonymous Diffie-Hellman key exchange

Figure 17.5 Ephemeral Diffie-Hellman key exchange
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two parties do not directly exchange the half-keys; the CA sends the half-keys in an
RSA or DSS special certificate. When the client needs to calculate the pre-master, it
uses its own fixed half-key and the server half-key received in a certificate. The server
does the same, but in the reverse order. Note that no key-exchange messages are passed
in this method; only certificates are exchanged. 

Fortezza

Fortezza (derived from the Italian word for fortress) is a registered trademark of the U.S.
National Security Agency (NSA). It is a family of security protocols developed for the
Defense Department. We do not discuss Fortezza in this text because of its complexity. 

Encryption/Decryption Algorithms

There are several choices for the encryption/decryption algorithm. We can divide the
algorithms into 6 groups as shown in Figure 17.6. All block protocols use an 8-byte ini-
tialization vector (IV) except for Fortezza, which uses a 20-byte IV.  

NULL

The NULL category simply defines the lack of an encryption/decryption algorithm. 

Stream RC 

Two RC algorithms are defined in stream mode: RC4-40 (40-bit key) and RC4-128
(128-bit key).

Block RC

One RC algorithm is defined in block mode: RC2_CBC_40 (40-bit key).

DES 

All DES algorithms are defined in block mode. DES40_CBC uses a 40-bit key. Stan-
dard DES is defined as DES_CBC. 3DES_EDE_CBC uses a 168-bit key.

IDEA

The one IDEA algorithm defined in block mode is IDEA_CBC, with a 128-bit key.

Figure 17.6 Encryption/decryption algorithms
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Fortezza

The one Fortezza algorithm defined in block mode is FORTEZZA_CBC, with a 96-bit key.

Hash Algorithms

SSL uses hash algorithms to provide message integrity (message authentication). Three
hash functions are defined, as shown in Figure 17.7. 

Null

The two parties may decline to use an algorithm. In this case, there is no hash function
and the message is not authenticated.

MD5

The two parties may choose MD5 as the hash algorithm. In this case, a 128-key MD5
hash algorithm is used. 

SHA-1

The two parties may choose SHA as the hash algorithm. In this case, a 160-bit SHA-1
hash algorithm is used. 

Cipher Suite

The combination of key exchange, hash, and encryption algorithms defines a cipher
suite for each SSL session. Table 17.1 shows the suites used in the United States. We
have not included those that are used for export. Note that not all combinations of key
exchange, message integrity, and message authentication are in the list. 

Each suite starts with the term “SSL” followed by the key exchange algorithm. The
word “WITH” separates the key exchange algorithm from the encryption and hash
algorithms. For example,

defines DHE_RSA (ephemeral Diffie-Hellman with RSA digital signature) as the key
exchange with DES_CBC as the encryption algorithm and SHA as the hash algorithm.

Figure 17.7 Hash algorithms for message integrity
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Note that DH is fixed Diffie-Hellman, DHE is ephemeral Diffie-Hellman, and DH-anon
is anonymous Diffie-Hellman. 

Compression Algorithms

As we said before, compression is optional in SSLv3. No specific compression algo-
rithm is defined for SSLv3. Therefore, the default compression method is NULL. How-
ever, a system can use whatever compression algorithm it desires. 

Cryptographic Parameter Generation

To achieve message integrity and confidentiality, SSL needs six cryptographic secrets,
four keys and two IVs. The client needs one key for message authentication (HMAC),
one key for encryption, and one IV for block encryption. The server needs the same.
SSL requires that the keys for one direction be different from those for the other direc-
tion. If there is an attack in one direction, the other direction is not affected. The param-
eters are generated using the following procedure: 

1. The client and server exchange two random numbers; one is created by the client
and the other by the server.

2. The client and server exchange one pre-master secret using one of the key-
exchange algorithms we discussed previously.   

Table 17.1 SSL cipher suite list

Cipher suite Key Exchange Encryption Hash

SSL_NULL_WITH_NULL_NULL
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_IDEA_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DH_RSA_WITH_DES_CBC_SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_DSS_WITH_DES_CBC_SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA
SSL_FORTEZZA_DMS_WITH_NULL_SHA
SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA
SSL_FORTEZZA_DMS_WITH_RC4_128_SHA

NULL
RSA
RSA
RSA
RSA
RSA
RSA
RSA
DH_anon
DH_anon
DH_anon
DHE_RSA
DHE_RSA
DHE_DSS
DHE_DSS
DH_RSA
DH_RSA
DH_DSS
DH_DSS
Fortezza
Fortezza
Fortezza

NULL
NULL
NULL
RC4
RC4
IDEA
DES
3DES
RC4
DES
3DES
DES
3DES
DES
3DES
DES
3DES
DES
3DES
NULL
Fortezza
RC4

NULL
MD5
SHA-1
MD5
SHA-1
SHA-1
SHA-1
SHA-1
MD5
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
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3. A 48-byte master secret is created from the pre-master secret by applying two

hash functions (SHA-1 and MD5), as shown in Figure 17.8. 

4. The master secret is used to create variable-length key material by applying the

same set of hash functions and prepending with different constants as shown in

Figure 17.9. The module is repeated until key material of adequate size is created.

Figure 17.8 Calculation of master secret from pre-master secret

Figure 17.9 Calculation of key material from master secret
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Note that the length of the key material block depends on the cipher suite selected
and the size of keys needed for this suite. 

5. Six different keys are extracted from the key material, as shown in Figure 17.10  

Sessions and Connections

SSL differentiates a connection from a session. Let us elaborate on these two terms
here. A session is an association between a client and a server. After a session is
established, the two parties have common information such as the session identifier,
the certificate authenticating each of them (if necessary), the compression method (if
needed), the cipher suite, and a master secret that is used to create keys for message
authentication encryption. 

For two entities to exchange data, the establishment of a session is necessary, but
not sufficient; they need to create a connection between themselves. The two entities
exchange two random numbers and create, using the master secret, the keys and param-
eters needed for exchanging messages involving authentication and privacy.

A session can consist of many connections. A connection between two parties can
be terminated and reestablished within the same session. When a connection is termi-
nated, the two parties can also terminate the session, but it is not mandatory. A session
can be suspended and resumed again. 

To create a new session, the two parties need to go through a negotiation process.
To resume an old session and create only a new connection, the two parties can skip
part of the negotiation process and go through a shorter one. There is no need to create
a master secret when a session is resumed. 

The separation of a session from a connection prevents the high cost of creating a
master secret. By allowing a session to be suspended and resumed, the process of the
master secret calculation can be eliminated. Figure 17.11 shows the idea of a session
and connections inside that session.   

Figure 17.10 Extractions of cryptographic secrets from key material
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Session State

A session is defined by a session state, a set of parameters established between the
server and the client. Table 17.2 shows the list of parameters for a session state. 

Connection State

A connection is defined by a connection state, a set of parameters established between
two peers. Table 17.3 shows the list of parameters for a connection state. 

SSL uses two attributes to distinguish cryptographic secrets: write and read. The
term write specifies the key used for signing or encrypting outbound messages. The term
read specifies the key used for verifying or decrypting inbound messages. Note that the
write key of the client is the same as the read key of the server; the read key of the client
is the same as the write key of the server. 

Figure 17.11 A session and connections

Table 17.2 Session state parameters

Parameter Description

Session ID A server-chosen 8-bit number defining a session.

Peer Certificate A certificate of type X509.v3. This parameter may by empty (null).

Compression Method The compression method. 

Cipher Suite The agreed-upon cipher suite.

Master Secret The 48-byte secret.

Is resumable A yes-no flag that allows new connections in an old session.

The client and the server have six different cryptography secrets: three read secrets 
and three write secrets.
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17.2 FOUR PROTOCOLS
We have discussed the idea of SSL without showing how SSL accomplishes its tasks.
SSL defines four protocols in two layers, as shown in Figure 17.12. The Record Protocol
is the carrier. It carries messages from three other protocols as well as the data coming
from the application layer. Messages from the Record Protocol are payloads to the
transport layer, normally TCP. The Handshake Protocol provides security parameters
for the Record Protocol. It establishes a cipher set and provides keys and security

Table 17.3 Connection state parameters

Parameter Description

Server and client random 
numbers

A sequence of bytes chosen by the server and client for 
each connection. 

Server write MAC secret The outbound server MAC key for message integrity. The 
server uses it to sign; the client uses it to verify.

Client write MAC secret The outbound client MAC key for message integrity. The 
client uses it to sign; the server uses it to verify.

Server write secret The outbound server encryption key for message integrity.

Client write secret The outbound client encryption key for message integrity.

Initialization vectors The block ciphers in CBC mode use initialization vectors 
(IVs). One initialization vector is defined for each cipher 
key during the negotiation, which is used for the first block 
exchange. The final cipher text from a block is used as the 
IV for the next block. 

Sequence numbers Each party has a sequence number. The sequence number 
starts from 0 and increments. It must not exceed 264 

− 1.

Figure 17.12 Four SSL protocols 
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parameters. It also authenticates the server to the client and the client to the server if
needed. The ChangeCipherSpec Protocol is used for signalling the readiness of crypto-
graphic secrets. The Alert Protocol is used to report abnormal conditions. We will
briefly discuss these protocols in this section. 

Handshake Protocol

The Handshake Protocol uses messages to negotiate the cipher suite, to authenticate
the server to the client and the client to the server if needed, and to exchange informa-
tion for building the cryptographic secrets. The handshaking is done in four phases, as
shown in Figure 17.13. 

Phase I: Establishing Security Capability

In Phase I, the client and the server announce their security capabilities and choose those
that are convenient for both. In this phase, a session ID is established and the cipher suite
is chosen. The parties agree upon a particular compression method. Finally, two random
numbers are selected, one by the client and one by the server, to be used for creating a
master secret as we saw before. Two messages are exchanged in this phase: ClientHello
and ServerHello messages. Figure 17.14 gives additional details about Phase I. 

ClientHello The client sends the ClientHello message. It contains the following:

a. The highest SSL version number the client can support.

b. A 32-byte random number (from the client) that will be used for master secret
generation.

c. A session ID that defines the session.

d. A cipher suite that defines the list of algorithms that the client can support.

e. A list of compression methods that the client can support. 

Figure 17.13 Handshake Protocol
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ServerHello The server responds to the client with a ServerHello message. It con-
tains the following:

a. An SSL version number. This number is the lower of two version numbers: the
highest supported by the client and the highest supported by the server. 

b. A 32-byte random number (from the server) that will be used for master secret
generation.

c. A session ID that defines the session.

d. The selected cipher set from the client list.

e. The selected compression method from the client list.

Phase II: Server Key Exchange and Authentication

In phase II, the server authenticates itself if needed. The sender may send its certificate,
its public key, and may also request certificates from the client. At the end, the server
announces that the serverHello process is done. Figure 17.15 gives additional details
about Phase II. 

Figure 17.14 Phase I of Handshake Protocol
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Certificate If it is required, the server sends a Certificate message to authenticate
itself. The message includes a list of certificates of type X.509. The certificate is not
needed if the key-exchange algorithm is anonymous Diffie-Hellman. 

ServerKeyExchange After the Certificate message, the server sends a ServerKey-
Exchange message that includes its contribution to the pre-master secret. This message
is not required if the key-exchange method is RSA or fixed Diffie-Hellman. 

CertificateRequest The server may require the client to authenticate itself. In this
case, the server sends a CertificateRequest message in Phase II that asks for certifica-
tion in Phase III from the client. The server cannot request a certificate from the client if
it is using anonymous Diffie-Hellman. 

ServerHelloDone The last message in Phase II is the ServerHelloDone message,
which is a signal to the client that Phase II is over and that the client needs to start
Phase III. 

Let us elaborate on the server authentication and the key exchange in this phase. The
first two messages in this phase are based on the key-exchange method. Figure 17.16
shows four of six methods we discussed before. We have not included the NULL
method because there is no exchange. We have not included the Fortezza method
because we do not discuss it in depth in this book. 

Figure 17.15 Phase II of Handshake Protocol
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❏ RSA. In this method, the server sends its RSA encryption/decryption public-key
certificate in the first message. The second message, however, is empty because the
pre-master secret is generated and sent by the client in the next phase. Note that
the public-key certificate authenticates the server to the client. When the server
receives the pre-master secret, it decrypts it with its private key. The possession of
the private key by the server is proof that the server is the entity that it claims to be
in the public-key certificate sent in the first message.

❏ Anonymous DH. In this method, there is no Certificate message. An anonymous
entity does not have a certificate. In the ServerKeyExchange message, the server
sends the Diffie-Hellman parameters and its half-key. Note that the server is not
authenticated in this method.

❏ Ephemeral DH. In this method, the server sends either an RSA or a DSS digital
signature certificate. The private key associated with the certificate allows the
server to sign a message; the public key allows the recipient to verify the signature.
In the second message, the server sends the Diffie-Hellman parameters and the
half-key signed by its private key. Other text is also sent. The server is authenti-
cated to the client in this method, not because it sends the certificate, but because it
signs the parameters and keys with its private key. The possession of the private
key is proof that the server is the entity that it claims to be in the certificate. If an
impostor copies and sends the certificate to the client, pretending that it is the
server claimed in the certificate, it cannot sign the second message because it does
not have the private key.

❏ Fixed DH. In this method, the server sends an RSA or DSS digital signature certifi-
cate that includes its registered DH half-key. The second message is empty. The

Figure 17.16 Four cases in Phase II 
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certificate is signed by the CA’s private key and can be verified by the client using
the CA’s public key. In other words, the CA is authenticated to the client and the
CA claims that the half-key belongs to the server. 

Phase III: Client Key Exchange and Authentication

Phase III is designed to authenticate the client. Up to three messages can be sent from
the client to the server, as shown in Figure 17.17. 

Certificate To certify itself to the server, the client sends a Certificate message. Note
that the format is the same as the Certificate message sent by the server in Phase II, but
the contents are different. It includes the chain of certificates that certify the client.This
message is sent only if the server has requested a certificate in Phase II. If there is a
request and the client has no certificate to send, it sends an Alert message (part of the
Alert Protocol to be discussed later) with a warning that there is no certificate. The
server may continue with the session or may decide to abort. 

ClientKeyExchange After sending the Certificate message, the client sends a Client-
KeyExchange message, which includes its contribution to the pre-master secret. The
contents of this message are based on the key-exchange algorithm used. If the method
is RSA, the client creates the entire pre-master secret and encrypts it with the RSA
public key of the server. If the method is anonymous or ephemeral Diffie-Hellman, the
client sends its Diffie-Hellman half-key. If the method is Fortezza, the client sends the
Fortezza parameters. The contents of this message are empty if the method is fixed
Diffie-Hellman. 

CertificateVerify If the client has sent a certificate declaring that it owns the public
key in the certificate, it needs to prove that it knows the corresponding private key. This
is needed to thwart an impostor who sends the certificate and claims that it comes from
the client. The proof of private-key possession is done by creating a message and sign-
ing it with the private key. The server can verify the message with the public key

Figure 17.17 Phase III of Handshake Protocol
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already sent to ensure that the certificate actually belongs to the client. Note that this is
possible if the certificate has a signing capability; a pair of keys, public and private, is
involved. The certificate for fixed Diffie-Hellman cannot be verified this way. 

Let us elaborate on the client authentication and the key exchange in this phase.
The three messages in this phase are based on the key-exchange method. Figure 17.18
shows four of the six methods we discussed before. Again, we have not included the
NULL method or the Fortezza method. 

❏ RSA. In this case, there is no Certificate message unless the server has explicitly
requested one in Phase II. The ClientKeyExchange method includes the pre-master
key encrypted with the RSA public key received in Phase II. 

❏ Anonymous DH. In this method, there is no Certificate message. The server does
not have the right to ask for the certificate (in Phase II) because both the client and
the server are anonymous. In the ClientKeyExchange message, the server sends the
Diffie-Hellman parameters and its half-key. Note that the client is not authenticated
to the server in this method. 

After Phase III, 

❏ The client is authenticated for the server.

❏ Both the client and the server know the pre-master secret. 

Figure 17.18 Four cases in Phase III
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❏ Ephemeral DH. In this method, the client usually has a certificate. The server
needs to send its RSA or DSS certificate (based on the agreed-upon cipher set). In
the ClientKeyExchange message, the client signs the DH parameters and its half-
key and sends them. The client is authenticated to the server by signing the second
message. If the client does not have the certificate, and the server asks for it, the
client sends an Alert message to warn the client. If this is acceptable to the server,
the client sends the DH parameters and key in plaintext. Of course, the client is not
authenticated to the server in this situation. 

❏ Fixed DH. In this method, the client usually sends a DH certificate in the first
message. Note that the second message is empty in this method. The client is
authenticated to the server by sending the DH certificate. 

Phase IV: Finalizing and Finishing

In Phase IV, the client and server send messages to change cipher specification and to
finish the handshaking protocol. Four messages are exchanged in this phase, as shown
in Figure 17.19. 

ChangeCipherSpec The client sends a ChangeCipherSpec message to show that it
has moved all of the cipher suite set and the parameters from the pending state to the
active state. This message is actually part of the ChangeCipherSpec Protocol that we
will discuss later. 

Finished The next message is also sent by the client. It is a Finished message that
announces the end of the handshaking protocol by the client. 

ChangeCipherSpec The server sends a ChangeCipherSpec message to show that it has
also moved all of the cipher suite set and parameters from the pending state to the active
state. This message is part of the ChangeCipherSpec Protocol, which will be discussed later.

Figure 17.19 Phase IV of Handshake Protocol
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Finished Finally, the server sends a Finished message to show that handshaking is
totally completed. 

ChangeCipherSpec Protocol

We have seen that the negotiation of the cipher suite and the generation of cryptographic
secrets are formed gradually during the Handshake Protocol. The question now is: When
can the two parties use these parameter secrets? SSL mandates that the parties cannot
use these parameters or secrets until they have sent or received a special message, the
ChangeCipherSpec message, which is exchanged during the Handshake protocol and
defined in the ChangeCipherSpec Protocol. The reason is that the issue is not just send-
ing or receiving a message. The sender and the receiver need two states, not one. One
state, the pending state, keeps track of the parameters and secrets. The other state, the
active state, holds parameters and secrets used by the Record Protocol to sign/verify or
encrypt/decrypt messages. In addition, each state holds two sets of values: read
(inbound) and write (outbound). 

The ChangeCipherSpec Protocol defines the process of moving values between the
pending and active states. Figure 17.20 shows a hypothetical situation, with hypothetical

After Phase IV, the client and server are ready to exchange data. 

Figure 17.20 Movement of parameters from pending state to active state
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values, to show the concept. Only a few parameters are shown. Before the exchange of
any ChangeCipherSpec messages, only the pending columns have values.

First the client sends a ChangeCipherSpec message. After the client sends this
message, it moves the write (outbound) parameters from pending to active. The client
can now use these parameters to sign or encrypt outbound messages. After the receiver
receives this message, it moves the read (inbound) parameters from the pending to the
active state. Now the server can verify and decrypt messages. This means that the
Finished message sent by the client can be signed and encrypted by the client and veri-
fied and decrypted by the server.

The server sends the ChangeCipherSpec message after receiving the Finish message
from the client. After sending this message it moves the write (outbound) parameters from
pending to active. The server can now use these parameters to sign or encrypt outbound
messages. After the client receives this message, it moves the read (inbound) parameters
from the pending to the active state. Now the client can verify and decrypt messages.

Of course, after the exchanged Finished messages, both parties can communicate
in both directions using the read/write active parameters. 

Alert Protocol

SSL uses the Alert Protocol for reporting errors and abnormal conditions. It has only
one message type, the Alert message, that describes the problem and its level (warning
or fatal). Table 17.4 shows the types of Alert messages defined for SSL. 

Record Protocol

The Record Protocol carries messages from the upper layer (Handshake Protocol,
ChangeCipherSpec Protocol, Alert Protocol, or application layer). The message is frag-
mented and optionally compressed; a MAC is added to the compressed message using

Table 17.4 Alerts defined for SSL

Value Description Meaning

  0 CloseNotify Sender will not send any more messages.

10 UnexpectedMessage An inappropriate message received.

20 BadRecordMAC An incorrect MAC received.

30 DecompressionFailure Unable to decompress appropriately.

40 HandshakeFailure Sender unable to finalize the handshake.

41 NoCertificate Client has no certificate to send.

42 BadCertificate Received certificate corrupted.

43 UnsupportedCertificate Type of received certificate is not supported. 

44 CertificateRevoked Signer has revoked the certificate.

45 CertificateExpired Certificate expired.

46 CertificateUnknown Certificate unknown.

47 IllegalParameter An out-of-range or inconsistent field.
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the negotiated hash algorithm. The compressed fragment and the MAC are encrypted
using the negotiated encryption algorithm. Finally, the SSL header is added to the
encrypted message. Figure 17.21 shows this process at the sender. The process at the
receiver is reversed.  

Note, however, that this process can only be done when the cryptographic
parameters are in the active state. Messages sent before the movement from pending
to active are neither signed nor encrypted. However, in the next sections, we will see
some messages in the Handshake Protocol that use some defined hash values for
message integrity.

Fragmentation/Combination

At the sender, a message from the application layer is fragmented into blocks of 214

bytes, with the last block possibly less than this size. At the receiver, the fragments are
combined together to make a replica of the original message.

Compression/Decompression

At the sender, all application layer fragments are compressed by the compression
method negotiated during the handshaking. The compression method needs to be loss-
less (the decompressed fragment must be an exact replica of the original fragment). The
size of the fragment must not exceed 1024 bytes. Some compression methods work

Figure 17.21 Processing done by the Record Protocol
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only on a predefined block size and if the size of the block is less than this, some pad-
ding is added. Therefore, the size of the compressed fragment may be greater than the
size of the original fragment. At the receiver, the compressed fragment is decompressed
to create a replica of the original. If the size of the decompressed fragment exceeds 214,
a fatal decompression Alert message is issued. Note that compression/decompression is
optional in SSL.

Signing/Verifying

At the sender, the authentication method defined during the handshake (NULL, MD5,
or SHA-1) creates a signature (MAC), as shown in Figure 17.22.  

The hash algorithm is applied twice. First, a hash is created from the concatena-
tions of the following values:

a. The MAC write secret (authentication key for the outbound message)

b. Pad-1, which is the byte 0x36 repeated 48 times for MD5 and 40 times for SHA-1

c. The sequence number for this message

d. The compressed type, which defines the upper-layer protocol that provided the
compressed fragment

e. The compressed length, which is the length of the compressed fragment

f. The compressed fragment itself

Second, the final hash (MAC) is created from the concatenation of the following values:

a. The MAC write secret

Figure 17.22 Calculation of MAC
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b. Pad-2, which is the byte 0x5C repeated 48 times for MD5 and 40 times for SHA-1

c. The hash created from the first step

At the receiver, the verifying is done by calculating a new hash and comparing it to the
received hash. 

Encryption/Decryption

At the sender, the compressed fragment and the hash are encrypted using the cipher
write secret. At the receiver, the received message is decrypted using the cipher read
secret. For block encryption, padding is added to make the size of the encryptable mes-
sage a multiple of the block size.

Framing/Deframing

After the encryption, the Record Protocol header is added at the sender. The header is
removed at the receiver before decryption. 

17.3 SSL MESSAGE FORMATS 
As we have discussed, messages from three protocols and data from the application
layer are encapsulated in the Record Protocol messages. In other words, the Record
Protocol message encapsulates messages from four different sources at the sender site.
At the receiver site, the Record Protocol decapsulates the messages and delivers them
to different destinations. The Record Protocol has a general header that is added to each
message coming from the sources, as shown in Figure 17.23. 

The fields in this header are listed below.

❏ Protocol. This 1-byte field defines the source or destination of the encapsulated
message. It is used for multiplexing and demultiplexing. The values are 20
(ChangeCipherSpec Protocol), 21 (Alert Protocol), 22 (Handshake Protocol), and
23 (data from the application layer).

❏ Version. This 2-byte field defines the version of the SSL; one byte is the major
version and the other is the minor. The current version of SSL is 3.0 (major 3 and
minor 0).

❏ Length. This 2-byte field defines the size of the message (without the header)
in bytes.

Figure 17.23 Record Protocol general header
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ChangeCipherSpec Protocol

As we said before, the ChangeCipherSpec Protocol has one message, the Change-
CipherSpec message. The message is only one byte, encapsulated in the Record Protocol
message with protocol value 20, as shown in Figure 17.24.

The one-byte field in the message is called the CCS and its value is currently 1.

Alert Protocol

The Alert Protocol, as we discussed before, has one message that reports errors in the
process. Figure 17.25 shows the encapsulation of this single message in the Record
Protocol with protocol value 21. 

The two fields of the Alert message are listed below.

❏ Level. This one-byte field defines the level of the error. Two levels have been
defined so far: warning and fatal.

❏ Description. The one-byte description defines the type of error.   

Handshake Protocol

Several messages have been defined for the Handshake Protocol. All of these messages
have the four-byte generic header shown in Figure 17.26. The figure shows the Record
Protocol header and the generic header for the Handshake Protocol. Note that the value
of the protocol field is 22. 

❏ Type. This one-byte field defines the type of message. So far ten types have been
defined as listed in Table 17.5.  

Figure 17.24 ChangeCipherSpec message

Figure 17.25 Alert message
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❏ Length (Len). This three-byte field defines the length of the message (exclud-
ing the length of the type and length field). The reader may wonder why we
need two length fields, one in the general Record header and one in the generic
header for the Handshake messages. The answer is that a Record message may
carry two Handshake messages at the same time if there is no need for another
message in between.

HelloRequest Message

The HelloRequest message, which is rarely used, is a request from the server to the cli-
ent to restart a session. This may be needed if the server feels that something is wrong
with the session and a fresh session is needed. For example, if the session becomes so
long that it threatens the security of the session, the server may send this message. The
client then needs to send a ClientHello message and negotiate the security parameters.
Figure 17.27 shows the format of this message. It is four bytes with a type value of 0.
The message has no body, so the value of the length field is also 0.

ClientHello Message

The ClientHello message is the first message exchanged during handshaking. Figure 17.28
shows the format of the message.

Figure 17.26 Generic header for Handshake Protocol
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The type and length fields are as discussed previously. The following is a brief
description of the other fields.

❏ Version. This 2-byte field shows the version of the SSL used. The version is 3.0 for
SSL and 3.1 for TLS. Note that the version value, for example, 3.0, is stored in two
bytes: 3 in the first byte and 0 in the second. 

❏ Client Random Number. This 32-byte field is used by the client to send the client
random number, which creates security parameters. 

❏ Session ID Length. This 1-byte field defines the length of the session ID (next
field). If there is no session ID, the value of this field is 0. 

❏ Session ID. The value of this variable-length field is 0 when the client starts a new
session. The session ID is initiated by the server. However, if a client wants to
resume a previously stopped session, it can include the previously-defined session
ID in this field. The protocol defines a maximum of 32 bytes for the session ID. 

Figure 17.27 HelloRequest message

Figure 17.28 ClientHello message
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❏ Cipher Suite Length. This 2-byte field defines the length of the client-proposed
cipher suite list (next field).

❏ Cipher Suite List. This variable-length field gives the list of cipher suites that the
client supports. The field lists the cipher suites from the most preferred to the least
preferred. Each cipher suite is encoded as a two-byte number. 

❏ Compression Methods Length. This 1-byte field defines the length of client-
proposed compression methods (next field).

❏ Compression Method List. This variable-length field gives the list of com-
pression methods that the client supports. The field lists the methods from the
most preferred to the least preferred. Each method is encoded as a one-byte
number. So far, the only method is the NULL method (no compression). In this
case, the value of the compression method length is 1 and the compression
method list has only one element with the value of 0. 

ServerHello Message

The ServerHello message is the server response to the ClientHello message. The format
is similar to the ClientHello message, but with fewer fields. Figure 17.29 shows the for-
mat of the message. 

The version field is the same. The server random number field defines a value
selected by the server. The session ID length and the session ID field are the same as
those in the ClientHello message. However, the session ID is usually blank (and the
length is usually set to 0) unless the server is resuming an old session. In other words, if
the server allows a session to resume, it inserts a value in the session ID field to be used
by the client (in the ClientHello message) if the client wishes to reopen an old session. 

The selected cipher suite field defines the single cipher suite selected by the server
from the list sent by the client. The compression method field defines the method
selected by the server from the list sent by the client.

Figure 17.29 ServerHello message
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Certificate Message

The Certificate message can be sent by the client or the server to list the chain of public-
key certificates. Figure 17.30 shows the format. 

The value of the type field is 11. The body of the message includes the following
fields:

❏ Certificate Chain Length. This three-byte field shows the length of the certificate
chain. This field is redundant because its value is always 3 less than the value of
the length field. 

❏ Certificate Chain. This variable-length field lists the chain of public-key certifi-
cates that the client or the server carries. For each certificate, there are two sub-fields:

a. A three-byte length field

b. The variable-size certificate itself

ServerKeyExchange Message

The ServerKeyExchange message is sent from the server to the client. Figure 17.31
shows the general format.

The message contains the keys generated by the server. The format of the message is
dependent on the cipher suite selected in the previous message. The client that receives
the message needs to interpret the message according to the previous information. If the
server has sent a certificate message, then the message also contains a signed parameter.

CertificateRequest Message

The CertificateRequest message is sent from the server to the client. The message asks the
client to authenticate itself to the server using one of the acceptable certificates and one of
the certificate authorities named in the message. Figure 17.32 shows the format.

Figure 17.30 Certificate message
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The value of the type field is 13. The body of the message includes the following
fields: 

❏ Len of Cert Types. This one-byte field shows the length of the certificate types. 

❏ Certificates Types. This variable-length field gives the list of the public-key certifi-
cate types that the server accepts. Each type is one byte. 

❏ Length of CAs. This two-byte field gives the length of the certificate authorities
(the rest of the packet).

❏ Length of CA x Name. This two-byte field defines the length of the xth certificate
authority name. The value of x can be between 1 to N. 

❏ CA x Name. This variable-length field defines the name of the xth certificate
authority. The value of x can be between 1 to N. 

Figure 17.31 ServerKeyExchange message

Figure 17.32 CertificateRequest message
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ServerHelloDone Message

The ServerHelloDone message is the last message sent in the second phase of handshak-
ing. The message signals that phase II does not carry any extra information. Figure 17.33
shows the format. 

CertificateVerify Message

The CertificateVerify message is the last message of Phase III. In this message, the client
proves that it actually owns the private key related to its public-key certificate. To do so,
the client creates a hash of all handshake messages sent before this message, and signs
them using the MD5 or SHA-1 algorithm based on the certificate type of the client.
Figure 17.34 shows the format.

If the client private key is related to a DSS certificate, then the hash is based only
on the SHA-1 algorithm and the length of the hash is 20 bytes. If the client private key
is related to an RSA certificate, then there are two hashes (concatenated), one based on
MD5 and the other based on SHA-1. The total length is 16 + 20 = 36 bytes. Figure 17.35
shows the hash calculation.

ClientKeyExchange Message

The ClientKeyExchange is the second message sent during the third phase of hand-
shaking. In this message, the client provides the keys. The format of the message
depends on the specific key exchange algorithms selected by two parties. Figure 17.36
shows the general idea. 

Figure 17.33 ServerHelloDone message

Figure 17.34 CertificateVerify message
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Finished Message

The Finished message shows that the negotiation is over. It contains all of the messages
exchanged during handshaking, followed by the sender role, the master secret, and the
padding. The exact format depends on the type of cipher suite used. The general format
is shown in Figure 17.37.

Figure 17.37 shows that there is a concatenation of two hashes in the message.
Figure 17.38 shows how each is calculated. 

Note that when the client or server sends the Finished message, it has already sent the
ChangeCipherSpec message. In other words, the write cryptographic secrets are in the
active state. The client or the server can treat the Finished message like a data fragment
coming from the application layer. The Finished message can be authenticated (using the
MAC in the cipher suite) and encrypted (using the encryption algorithm in the cipher suite).

Application Data

The Record Protocol adds a signature (MAC) at the end of the (possibly compressed)
fragment coming from the application layer and then encrypts the fragment and the

Figure 17.35 Hash calculation for CertificateVerify message

Figure 17.36 ClientKeyExchange message
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MAC. After adding the general header with protocol value 23, the Record message is
transmitted. Note that the general header is not encrypted. Figure 17.39 shows the
format. 

17.4 TRANSPORT LAYER SECURITY
The Transport Layer Security (TLS) protocol is the IETF standard version of the SSL
protocol. The two are very similar, with slight differences. Instead of describing TLS in
full, we highlight the differences between TLS and SSL protocols in this section.

Figure 17.37 Finished message

Figure 17.38 Hash calculation for Finished message
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Version

The first difference is the version number (major and minor). The current version of
SSL is 3.0; the current version of TLS is 1.0. In other words, SSLv3.0 is compatible
with TLSv1.0.

Cipher Suite

Another minor difference between SSL and TLS is the lack of support for the Fortezza
method. TLS does not support Fortezza for key exchange or for encryption/decryption.
Table 17.6 shows the cipher suite list for TLS (without export entries).

Generation of Cryptographic Secrets

The generation of cryptographic secrets is more complex in TLS than in SSL. TLS first
defines two functions: the data-expansion function and the pseudorandom function. Let
us discuss these two functions.

Data-Expansion Function 

The data-expansion function uses a predefined HMAC (either MD5 or SHA-1) to
expand a secret into a longer one. This function can be considered a multiple-
section function, where each section creates one hash value. The extended secret is the
concatenation of the hash values. Each section uses two HMACs, a secret and a seed.
The data-expansion function is the chaining of as many sections as required. However,
to make the next section dependent on the previous, the second seed is actually the out-
put of the first HMAC of the previous section as shown in Figure 17.40. 

Pseudorandom Function (PRF)

TLS defines a pseudorandom function (PRF) to be the combination of two data-expan-
sion functions, one using MD5 and the other SHA-1. PRF takes three inputs, a secret, a

Figure 17.39 Record Protocol message for application data
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label, and a seed. The label and seed are concatenated and serve as the seed for each data-
expansion function. The secret is divided into two halves; each half is used as the secret for
each data-expansion function. The output of two data-expansion functions is exclusive-
ored together to create the final expanded secret. Note that because the hashes created from

Table 17.6 Cipher Suite for TLS

Cipher suite
Key 

Exchange Encryption Hash

TLS_NULL_WITH_NULL_NULL
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_IDEA_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_WITH_DES_CBC_SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DH_RSA_WITH_DES_CBC_SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_DSS_WITH_DES_CBC_SHA
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

NULL
RSA
RSA
RSA
RSA
RSA
RSA
RSA
DH_anon
DH_anon
DH_anon
DHE_RSA
DHE_RSA
DHE_DSS
DHE_DSS
DH_RSA
DH_RSA
DH_DSS
DH_DSS

NULL
NULL
NULL
RC4
RC4
IDEA
DES
3DES
RC4
DES
3DES
DES
3DES
DES
3DES
DES
3DES
DES
3DES

NULL
MD5
SHA-1
MD5
SHA-1
SHA-1
SHA-1
SHA-1
MD5
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1

Figure 17.40 Data-expansion function
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MD5 and SHA-1 are of different sizes, extra sections of MD5-based functions must be
created to make the two outputs the same size. Figure 17.41 shows the idea of PRF.

Pre-master Secret

The generation of the pre-master secret in TLS is exactly the same as in SSL.

Master Secret

TLS uses the PRF function to create the master secret from the pre-master secret. This
is achieved by using the pre-master secret as the secret, the string “master secret” as the
label, and concatenation of the client random number and server random number as the
seed. Note that the label is actually the ASCII code of the string “master secret”. In other
words, the label defines the output we want to create, the master secret. Figure 17.42
shows the idea.

Figure 17.41 PRF

Figure 17.42 Master secret generation
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Key Material

TLS uses the PRF function to create the key material from the master secret. This time
the secret is the master secret, the label is the string “key expansion”, and the seed is the
concatenation of the server random number and the client random number, as shown in
Figure 17.43.

Alert Protocol

TLS supports all of the alerts defined in SSL except for NoCertificate. TLS also adds
some new ones to the list. Table 17.7 shows the full list of alerts supported by TLS.

Figure 17.43 Key material generation

Table 17.7 Alerts defined for TLS 
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  0 CloseNotify Sender will not send any more messages.
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40 HandshakeFailure Sender unable to finalize the handshake.

42 BadCertificate Received certificate corrupted.
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Secret Label Seed

Master secret

CR: Client Random Number

SR: Server Random Number

|: Concatenation

“Key expansion” SR | CR

Pseudorandom Function 
(PRF)

Key material
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Handshake Protocol

TLS has made some changes in the Handshake Protocol. Specifically, the details of the
CertificateVerify message and the Finished message have been changed.

CertificateVerify Message

In SSL, the hash used in the CertificateVerify message is the two-step hash of the hand-
shake messages plus a pad and the master secret. TLS has simplified the process. The
hash in the TLS is only over the handshake messages, as shown in Figure 17.44. 

Finished Message

The calculation of the hash for the Finished message has also been changed. TLS
uses the PRF to calculate two hashes used for the Finished message, as shown in
Figure 17.45. 

Record Protocol

The only change in the Record Protocol is the use of HMAC for signing the message.
TLS uses the MAC, as defined in Chapter 11, to create the HMAC. TLS also adds the
protocol version (called Compressed version) to the text to be signed. Figure 17.46
shows how the HMAC is formed. 

49 AccessDenied No desire to continue with negotiation.

50 DecodeError Received message could not be decoded.

51 DecryptError Decrypted ciphertext is invalid.

60 ExportRestriction Problem with U.S. restriction compliance.

70 ProtocolVersion The protocol version is not supported.

71 InsufficientSecurity More secure cipher suite needed.

80 InternalError Local error. 

90 UserCanceled The party wishes to cancel the negotiation.

100 NoRenegotiation The server cannot renegotiate the handshake.

Figure 17.44 Hash for CertificateVerify message in TLS

Table 17.7 Alerts defined for TLS (continued)

Value Description Meaning

Handshake Messages

MD5 or SHA-1

Hash
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Figure 17.45 Hash for Finished message in TLS

Figure 17.46 HMAC for TLS
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Sequence
number

Compressed
type

Compressed
version

Compressed
length Compressed fragment

ipad: Byte 0x36 repeated 64 times

opad: Byte 0x5C  repeated 64 times
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MAC secret
left-padded to 512 bits

MAC secret
left-padded to 512 bits

MD5 or SHA-1

MD5 or SHA-1

512 bits

512 bits

HMAC

Hash
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17.5 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the

book. 

Books

[Res01], [Tho00], [Sta06], [Rhe03], and [PHS03] discuss SSL and TLS. 

WebSites

The following website give more information about topics discussed in this chapter.

17.6 KEY TERMS

17.7 SUMMARY

❏ A transport layer security protocol provides end-to-end security services for appli-

cations that use the services of a reliable transport layer protocol such as TCP. Two

protocols are dominant today for providing security at the transport layer: Secure

Sockets Layer (SSL) and Transport Layer Security (TLS). 

❏ SSL (or TLS) provides services such as fragmentation, compression, message

integrity, confidentiality, and framing on data received from the application layer.

Typically, SSL (or TLS) can receive application data from any application layer

protocol, but the protocol is normally HTTP.

❏ The combination of key exchange, hash, and encryption algorithm defines a cipher

suite for each session. The name of each suite is descriptive of the combination.

http://www.ietf.org/rfc/rfc2246.txt

Alert Protocol Hypertext Transfer Protocol (HTTP)

anonymous Diffie-Hellman key material

ChangeCipherSpec Protocol master secret

cipher suite pre-master secret

connection pseudorandom function (PRF)

data-expansion function Record Protocol

ephemeral Diffie-Hellman Secure Sockets Layer (SSL) Protocol

fixed Diffie-Hellman session

Fortezza Transport Layer Security (TLS) Protocol

Handshake Protocol
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❏ To exchange authenticated and confidential messages, the client and the server
each need six cryptographic secrets (four keys and two initialization vectors). 

❏ SSL (or TLS) makes a distinction between a connection and a session. In a session,
one party has the role of a client and the other the role of a server; in a connection,
both parties have equal roles, they are peers.

❏ SSL (or TLS) defines four protocols in two layers: the Handshake Protocol,
the ChangeCipherSpec Protocol, the Alert Protocol, and the Record Protocol. The
Handshake Protocol uses several messages to negotiate cipher suite, to authenti-
cate the server for the client and the client for the server if needed, and to exchange
information for building the cryptographic secrets. The ChangeCipherSpec proto-
col defines the process of moving values between the pending and active states.
The Alert Protocol reports errors and abnormal conditions. The Record Protocol
carries messages from the upper layer (Handshake Protocol, Alert Protocol,
ChangeCipherSpec Protocol, or application layer).

17.8 PRACTICE SET

Review Questions

1. List services provided by SSL or TLS.

2. Describe how master secret is created from pre-master secret in SSL.

3. Describe how master secret is created from pre-master secret in TLS.

4. Describe how key materials are created from master secret in SSL.

5. Describe how key materials are created from master secret in TLS.

6. Distinguish between a session and a connection.

7. List and give the purpose of four protocols defined in SSL or TLS.

8. Define the goal of each phase in the Handshake protocol. 

9. Compare and contrast the Handshake protocols in SSL and TLS.

10. Compare and contrast the Record protocols in SSL and TLS. 

Exercises

11. What is the length of the key material if the cipher suite is one of the following:

a. SSL_RSA_WITH_NULL_MD5

b. SSL_RSA_WITH_NULL_SHA

c. TLS_RSA_WITH_DES_CBC_SHA

d. TLS_RSA_WITH_3DES_EDE_CBC_SHA

e. TLS_DHE_RSA_WITH_DES_CBC_SHA

f. TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
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12. Show the number of repeated modules needed for each case in Exercise 11
(see Figure 17.9).

13. Compare the calculation of the master secret in SSL with that in TLS. In SSL, the
pre-master is included three times in the calculation, in TLS only once. Which
calculation is more efficient in terms of space and time?

14. Compare the calculation of the key material in SSL and TLS. Answer the following
questions:

a. Which calculation provides more security?

b. Which calculation is more efficient in terms of space and time?

15. The calculation of key material in SSL requires several iterations, the one for TLS
does not. How can TLS calculate key material of variable length?

16. When a session is resumed with a new connection, SSL does not require the full
handshaking process. Show the messages that need to be exchanged in a partial
handshaking.

17. When a session is resumed, which of the following cryptographic secrets need to be
recalculated?

a. Pre-master secret

b. Master secret

c. Authentication keys

d. Encryption keys

e. IVs

18. In Figure 17.20, what happens if the server sends the ChangeCipherSpec message,
but the client does not? Which messages in the Handshake Protocol can follow?
Which cannot?

19. Compare the calculation of MAC in SSL and TLS (see Figure 17.22 and Figure 17.46).
Which one is more efficient?

20. Compare the calculation of the hash for CertificateVerify messages in SSL and TLS
(see Figure 17.35 and Figure 17.44). Which one is more efficient?

21. Compare the calculation of the hash for Finished messages in SSL and TLS (see –
Figure 17.38 and Figure 17.45). Answer the following questions:

a. Which one is more secure?

b. Which one is more efficient?

22. TLS uses PRF for all hash calculations except for CertificateVerify message. Give a
reason for this exception.

23. Most protocols have a formula to show the calculations of cryptographic secrets and
hashes. For example, in SSL, the calculation of the master secret (see Figure 17.8) is
as follows (concatenation is designated by a bar):

Master Secret    = MD5 (pre-master | SHA-1 (“A” | pre-master | CR | SR)) |

MD5 (pre-master | SHA-1 (“A” | pre-master | CR | SR)) |

MD5 (pre-master | SHA-1 (“A” | pre-master | CR | SR)) 
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Show the formula for the following:

a. Key material in SSL (Figure 17.9)

b. MAC in SSL (Figure 17.22)

c. Hash calculation for CertificateVerify message in SSL (Figure 17.35)

d. Hash calculation for Finished message in SSL (Figure 17.38)

e. Data expansion in TLS (Figure 17.40)

f. PRF in TLS (Figure 17.41)

g. Master secret in TLS (Figure 17.42)

h. Key material in TLS (Figure 17.43)

i. Hash calculation for CertificateVerify message in TLS (Figure 17.44)

j. Hash calculation for Finished message in TLS (Figure 17.45)

k. MAC in TLS (Figure 17.46)

24. Show how SSL or TLS reacts to a replay attack. That is, show how SSL or TLS
responds to an attacker that tries to replay one or more handshake messages. 

25. Show how SSL or TLS reacts to a brute-force attack. Can an intruder use an exhaus-
tive computer search to find the encryption key in SSL or TLS? Which protocol is
more secure in this respect, SSL or TLS? 

26. What is the risk of using short-length keys in SSL or TLS? What type of attack can
an intruder try if the keys are short?

27. Is SSL or TLS more secure to a man-in-the-middle attack? Can an intruder create
key material between the client and herself and between the server and herself? 
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CHAPTER 18

Security at the Network Layer: IPSec

Objectives

This chapter has several objectives:

❏ To define the architecture of IPSec

❏ To discuss the application of IPSec in transport and tunnel modes

❏ To discuss how IPSec can be used to provide only authentication

❏ To discuss how IPSec can be used to provide both confidentiality and

authentication 

❏ To define Security Association and explain how it is implemented for

IPSec

❏ To define Internet Key Exchange and explain how it is used by IPSec

The two previous chapters have discussed the security at the applica-

tion layer and transport layer. However, security at the above two layers

may not be enough in some cases. First, not all client/server programs

are protected at the application layer; for example, PGP and S/MIME

protect only electronic mail. Second, not all client/server programs at the

application layer use the service of TCP to be protected by SSL or TLS;

some programs use the service of UDP. Third, many applications, such

as routing protocols, directly use the service of IP; they need security

services at the IP layer. 

IP Security (IPSec) is a collection of protocols designed by the

Internet Engineering Task Force (IETF) to provide security for a packet

at the network level. The network layer in the Internet is often referred to

as the Internet Protocol or IP layer. IPSec helps create authenticated and

confidential packets for the IP layer as shown in Figure 18.1. 
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IPSec can be useful in several areas. First, it can enhance the security

of those client/server programs, such as electronic mail, that use their

own security protocols. Second, it can enhance the security of those client/

server programs, such as HTTP, that use the security services provided at

the transport layer. It can provide security for those client/server pro-

grams that do not use the security services provided at the transport

layer. It can provide security for node-to-node communication programs

such as routing protocols. 

18.1  TWO MODES

IPSec operates in one of two different modes: transport mode or tunnel mode. 

Transport Mode

In transport mode, IPSec protects what is delivered from the transport layer to the net-

work layer. In other words, transport mode protects the network layer payload, the pay-

load to be encapsulated in the network layer, as shown in Figure 18.2. 

Figure 18.1 TCP/IP protocol suite and IPSec

Figure 18.2 IPSec in transport mode
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Note that transport mode does not protect the IP header. In other words, transport

mode does not protect the whole IP packet; it protects only the packet from the trans-

port layer (the IP layer payload). In this mode, the IPSec header (and trailer) are added

to the information coming from the transport layer. The IP header is added later. 

Transport mode is normally used when we need host-to-host (end-to-end) protec-

tion of data. The sending host uses IPSec to authenticate and/or encrypt the payload

delivered from the transport layer. The receiving host uses IPSec to check the authenti-

cation and/or decrypt the IP packet and deliver it to the transport layer. Figure 18.3

shows this concept. 

Tunnel Mode

In tunnel mode, IPSec protects the entire IP packet. It takes an IP packet, including the

header, applies IPSec security methods to the entire packet, and then adds a new IP

header, as shown in Figure 18.4. 

The new IP header, as we will see shortly, has different information than the origi-

nal IP header. Tunnel mode is normally used between two routers, between a host and a

router, or between a router and a host, as shown in Figure 18.5. In other words, tunnel

mode is used when either the sender or the receiver is not a host. The entire original

IPSec in transport mode does not protect the IP header; it only protects the information 

coming from the transport layer.

Figure 18.3 Transport mode in action

Figure 18.4 IPSec in tunnel mode
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packet is protected from intrusion between the sender and the receiver, as if the whole

packet goes through an imaginary tunnel. 

Comparison

In transport mode, the IPSec layer comes between the transport layer and the network

layer. In tunnel mode, the flow is from the network layer to the IPSec layer and then

back to the network layer again. Figure 18.6 compares the two modes.  

18.2 TWO SECURITY PROTOCOLS

IPSec defines two protocolsthe Authentication Header (AH) Protocol and the Encap-

sulating Security Payload (ESP) Protocolto provide authentication and/or encryption

for packets at the IP level.

Authentication Header (AH)

The Authentication Header (AH) Protocol is designed to authenticate the source host

and to ensure the integrity of the payload carried in the IP packet. The protocol uses a

hash function and a symmetric key to create a message digest; the digest is inserted in

Figure 18.5 Tunnel mode in action

IPSec in tunnel mode protects the original IP header.

Figure 18.6 Transport mode versus tunnel mode
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the authentication header. The AH is then placed in the appropriate location, based on

the mode (transport or tunnel). Figure 18.7 shows the fields and the position of the

authentication header in transport mode. 

When an IP datagram carries an authentication header, the original value in the

protocol field of the IP header is replaced by the value 51. A field inside the authentica-

tion header (the next header field) holds the original value of the protocol field (the type

of payload being carried by the IP datagram). The addition of an authentication header

follows these steps:

1. An authentication header is added to the payload with the authentication data field

set to 0.

2. Padding may be added to make the total length even for a particular hashing

algorithm.

3. Hashing is based on the total packet. However, only those fields of the IP header

that do not change during transmission are included in the calculation of the mes-

sage digest (authentication data).

4. The authentication data are inserted in the authentication header.

5. The IP header is added after changing the value of the protocol field to 51.

A brief description of each field follows:

❏ Next header. The 8-bit next header field defines the type of payload carried by the

IP datagram (such as TCP, UDP, ICMP, or OSPF). It has the same function as the

protocol field in the IP header before encapsulation. In other words, the process

copies the value of the protocol field in the IP datagram to this field. The value of

the protocol field in the new IP datagram is now set to 51 to show that the packet

carries an authentication header. 

Figure 18.7 Authentication Header (AH) protocol
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❏ Payload length. The name of this 8-bit field is misleading. It does not define the

length of the payload; it defines the length of the authentication header in 4-byte

multiples, but it does not include the first 8 bytes. 

❏ Security parameter index. The 32-bit security parameter index (SPI) field plays

the role of a virtual circuit identifier and is the same for all packets sent during a

connection called a Security Association (discussed later).

❏ Sequence number. A 32-bit sequence number provides ordering information for

a sequence of datagrams. The sequence numbers prevent a playback. Note that the

sequence number is not repeated even if a packet is retransmitted. A sequence num-

ber does not wrap around after it reaches 232; a new connection must be established.

❏ Authentication data. Finally, the authentication data field is the result of apply-

ing a hash function to the entire IP datagram except for the fields that are changed

during transit (e.g., time-to-live). 

Encapsulating Security Payload (ESP)

The AH protocol does not provide privacy, only source authentication and data integrity.

IPSec later defined an alternative protocol, Encapsulating Security Payload (ESP), that

provides source authentication, integrity, and privacy. ESP adds a header and trailer. Note

that ESP’s authentication data are added at the end of the packet, which makes its calcula-

tion easier. Figure 18.8 shows the location of the ESP header and trailer. 

When an IP datagram carries an ESP header and trailer, the value of the protocol

field in the IP header is 50. A field inside the ESP trailer (the next-header field) holds

the original value of the protocol field (the type of payload being carried by the IP data-

gram, such as TCP or UDP). The ESP procedure follows these steps:

1. An ESP trailer is added to the payload.

2. The payload and the trailer are encrypted.

3. The ESP header is added.

4. The ESP header, payload, and ESP trailer are used to create the authentication data.

The AH protocol provides source authentication and data integrity, but not privacy.

Figure 18.8 ESP
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5. The authentication data are added to the end of the ESP trailer.

6. The IP header is added after changing the protocol value to 50. 

The fields for the header and trailer are as follows:

❏ Security parameter index. The 32-bit security parameter index field is similar to

that defined for the AH protocol. 

❏ Sequence number. The 32-bit sequence number field is similar to that defined for

the AH protocol. 

❏ Padding. This variable-length field (0 to 255 bytes) of 0s serves as padding. 

❏ Pad length. The 8-bit pad-length field defines the number of padding bytes. The

value is between 0 and 255; the maximum value is rare.

❏ Next header. The 8-bit next-header field is similar to that defined in the AH protocol.

It serves the same purpose as the protocol field in the IP header before encapsulation.

❏ Authentication data. Finally, the authentication data field is the result of applying

an authentication scheme to parts of the datagram. Note the difference between the

authentication data in AH and ESP. In AH, part of the IP header is included in the

calculation of the authentication data; in ESP, it is not. 

IPv4 and IPv6

IPSec supports both IPv4 and IPv6. In IPv6, however, AH and ESP are part of the

extension header. 

AH versus ESP

The ESP protocol was designed after the AH protocol was already in use. ESP does

whatever AH does with additional functionality (privacy). The question is, Why do we

need AH? The answer is that we don’t. However, the implementation of AH is already

included in some commercial products, which means that AH will remain part of the

Internet until these products are phased out.

Services Provided by IPSec

The two protocols, AH and ESP, can provide several security services for packets at the

network layer. Table 18.1 shows the list of services available for each protocol. 

ESP provides source authentication, data integrity, and privacy. 

Table 18.1 IPSec services

Services AH ESP

Access control yes yes

Message authentication (message integrity) yes yes

Entity authentication (data source authentication) yes yes

Confidentiality no yes

Replay attack protection yes yes



556 CHAPTER 18 SECURITY AT THE NETWORK LAYER: IPSEC

Access Control

IPSec provides access control indirectly using a Security Association Database (SAD),

as we will see in the next section. When a packet arrives at a destination, and there is no

Security Association already established for this packet, the packet is discarded. 

Message Integrity

Message integrity is preserved in both AH and ESP. A digest of data is created and sent

by the sender to be checked by the receiver.

Entity Authentication

The Security Association and the keyed-hash digest of the data sent by the sender

authenticate the sender of the data in both AH and ESP. 

Confidentiality

The encryption of the message in ESP provides confidentiality. AH, however, does

not provide confidentiality. If confidentiality is needed, one should use ESP instead

of AH. 

Replay Attack Protection

In both protocols, the replay attack is prevented by using sequence numbers and a

sliding receiver window. Each IPSec header contains a unique sequence number when

the Security Association is established. The number starts from 0 and increases until

the value reaches 232 − 1 (the size of the sequence number field is 32 bits). When the

sequence number reaches the maximum, it is reset to 0 and, at the same time, the

old Security Association (see the next section) is deleted and a new one is established.

To prevent processing duplicate packets, IPSec mandates the use of a fixed-size win-

dow at the receiver. The size of the window is determined by the receiver with a

default value of 64. Figure 18.9 shows a replay window. The window is of a fixed

size, W. The shaded packets signify received packets that have been checked and

authenticated. 

Figure 18.9 Replay window
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When a packet arrives at the receiver, one of three things can happen, depending

on the value of the sequence number.

1. The sequence number of the packet is less than N. This puts the packet to the left of

the window. In this case, the packet is discarded. It is either a duplicate or its

arrival time has expired. 

2. The sequence number of the packet is between N and (N + W − 1), inclusive. This

puts the packet inside the window. In this case, if the packet is new (not marked)

and it passes the authentication test, the sequence number is marked and the packet

is accepted. Otherwise, it is discarded.

3. The sequence number of the packet is greater than (N + W − 1). This puts the

packet to the right of the window. In this case, if the packet is authenticated, the

corresponding sequence number is marked and the window slides to the right to

cover the newly marked sequence number. Otherwise, the packet is discarded.

Note that it may happen that a packet arrives with a sequence number much larger

than (N + W) (very far from the right edge of the window). In this case, the sliding

of the window may cause many unmarked numbers to fall to the left of the win-

dow. These packets, when they arrive, will never be accepted; their time has

expired. For example, in Figure 18.9, if a packet arrives with sequence number

(N + W + 3), the window slides and the left edge will be at the beginning of (N + 3).

This means the sequence number (N + 2) is now out of the window. If a packet

arrives with this sequence number, it will be discarded. 

18.3 SECURITY ASSOCIATION

Security Association is a very important aspect of IPSec. IPSec requires a logical rela-

tionship, called a Security Association (SA), between two hosts. This section first

discusses the idea and then shows how it is used in IPSec.

Idea of Security Association

A Security Association is a contract between two parties; it creates a secure channel

between them. Let us assume that Alice needs to unidirectionally communicate with

Bob. If Alice and Bob are interested only in the confidentiality aspect of security, they

can get a shared secret key between themselves. We can say that there are two Security

Associations (SAs) between Alice and Bob; one outbound SA and one inbound SA.

Each of them stores the value of the key in a variable and the name of the encryption/

decryption algorithm in another. Alice uses the algorithm and the key to encrypt a mes-

sage to Bob; Bob uses the algorithm and the key when he needs to decrypt the message

received from Alice. Figure 18.10 shows a simple SA. 

The Security Associations can be more involved if the two parties need message

integrity and authentication. Each association needs other data such as the algorithm

for message integrity, the key, and other parameters. It can be much more complex if

the parties need to use specific algorithms and specific parameters for different proto-

cols, such as IPSec AH or IPSec ESP. 
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Security Association Database (SAD)

A Security Association can be very complex. This is particularly true if Alice wants to

send messages to many people and Bob needs to receive messages from many people.

In addition, each site needs to have both inbound and outbound SAs to allow bidirec-

tional communication. In other words, we need a set of SAs that can be collected into a

database. This database is called the Security Association Database (SAD). The data-

base can be thought of as a two-dimensional table with each row defining a single SA.

Normally, there are two SADs, one inbound and one outbound. Figure 18.11 shows the

concept of outbound and inbound SADs for one entity.  

When a host needs to send a packet that must carry an IPSec header, the host

needs to find the corresponding entry in the outbound SAD to find the information

for applying security to the packet. Similarly, when a host receives a packet that

Figure 18.10 Simple SA

Figure 18.11 SAD
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carries an IPSec header, the host needs to find the corresponding entry in the

inbound SAD to find the information for checking the security of the packet. This

searching must be specific in the sense that the receiving host needs to be sure that

correct information is used for processing the packet. Each entry in an inbound SAD

is selected using a triple index: security parameter index, destination address, and

protocol. 

❏ Security Parameter Index. The security parameter index (SPI) is a 32-bit num-

ber that defines the SA at the destination. As we will see later, the SPI is deter-

mined during the SA negotiation. The same SPI is included in all IPSec packets

belonging to the same inbound SA. 

❏ Destination Address. The second index is the destination address of the host. We

need to remember that a host in the Internet normally has one unicast destination

address, but it may have several multicast addresses. IPSec requires that the SAs be

unique for each destination address.

❏ Protocol. IPSec has two different security protocols: AH and ESP. To separate the

parameters and information used for each protocol, IPSec requires that a destina-

tion define a different SA for each protocol. 

The entries for each row are called the SA parameters. Typical parameters are shown in

Table 18.2. 

Table 18.2 Typical SA Parameters

Parameters Descriptions

Sequence Number Counter This is a 32-bit value that is used to generate sequence num-

bers for the AH or ESP header. 

Sequence Number Overflow This is a flag that defines a station’s options in the event of a 

sequence number overflow.

Anti-Replay Window This detects an inbound replayed AH or ESP packet.

AH Information This section contains information for the AH protocol:

1. Authentication algorithm

2. Keys

3. Key lifetime

4. Other related parameters

ESP Information This section contains information for the ESP protocol:

1. Encryption algorithm

2. Authentication algorithm

3. Keys

4. Key lifetime

5. Initiator vectors

6. Other related parameters

SA Lifetime This defines the lifetime for the SA.

IPSec Mode This defines the mode, transport or tunnel.

Path MTU This defines the path MTU (fragmentation).
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18.4 SECURITY POLICY

Another import aspect of IPSec is the Security Policy (SP), which defines the type of

security applied to a packet when it is to be sent or when it has arrived. Before using the

SAD, discussed in the previous section, a host must determine the predefined policy for

the packet.

Security Policy Database

Each host that is using the IPSec protocol needs to keep a Security Policy Database

(SPD). Again, there is a need for an inbound SPD and an outbound SPD. Each entry in

the SPD can be accessed using a sextuple index: source address, destination address,

name, protocol, source port, and destination port, as shown in Figure 18.12. 

Source and destination addresses can be unicast, multicast, or wildcard addresses.

The name usually defines a DNS entity. The protocol is either AH or ESP. The source

and destination ports are the port addresses for the process running at the source and

destination hosts.

Outbound SPD

When a packet is to be sent out, the outbound SPD is consulted. Figure 18.13 shows the

processing of a packet by a sender. 

The input to the outbound SPD is the sextuple index; the output is one of the three

following cases: 

1. Drop. This means that the packet defined by the index cannot be sent; it is

dropped.

2. Bypass. This means that there is no policy for the packet with this policy index;

the packet is sent, bypassing the security header application.

Figure 18.12 SPD

Legend:

SA: Source Address

DA: Destination Address

P: Protocol

SPort: Source Port

DPort: Destination Port

< SA, DA, Name, P, SPort, DPort >

PolicyIndex

< SA, DA, Name, P, SPort, DPort >

< SA, DA, Name, P, SPort, DPort >

< SA, DA, Name, P, SPort, DPort >
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3. Apply. In this case, the security header is applied. Two situations may occur.

a. If an outbound SA is already established, the triple SA index is 

returned that selects the corresponding SA from the outbound SAD. 

The AH or ESP header is formed; encryption, authentication, or both 

are applied based on the SA selected. The packet is transmitted.

b. If an outbound SA is not established yet, the Internet Key Exchange 

(IKE) protocol (see the next section) is called to create an outbound 

and inbound SA for this traffic. The outbound SA is added to the out-

bound SAD by the source; the inbound SA is added to the inbound 

SAD by the destination. 

Inbound SPD

When a packet arrives, the inbound SPD is consulted. Each entry in the inbound SPD is

also accessed using the same sextuple index. Figure 18.14 shows the processing of a

packet by a receiver. 

Figure 18.13 Outbound processing 
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The input to the inbound SPD is the sextuple index; the output is one of the three

following cases:

1. Discard. This means that the packet defined by that policy must be dropped.

2. Bypass. This means that there is no policy for a packet with this policy index; the

packet is processed, ignoring the information from AH or ESP header. The packet

is delivered to the transport layer. 

3. Apply. In this case, the security header must be processed. Two situations may occur:

a. If an inbound SA is already established, the triple SA index is returned that 

selects the corresponding inbound SA from the inbound SAD. Decryp-

tion, authentication, or both are applied. If the packet passes the security 

criteria, the AH or ESP header is discarded and the packet is delivered to 

the transport layer. 

b. If an SA is not yet established, the packet must be discarded.   

Figure 18.14 Inbound processing
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18.5 INTERNET KEY EXCHANGE (IKE)

The Internet Key Exchange (IKE) is a protocol designed to create both inbound and

outbound Security Associations. As we discussed in the previous section, when a peer

needs to send an IP packet, it consults the Security Policy Database (SPDB) to see if

there is an SA for that type of traffic. If there is no SA, IKE is called to establish one. 

IKE is a complex protocol based on three other protocols: Oakley, SKEME, and

ISAKMP, as shown in Figure 18.15.  

The Oakley protocol was developed by Hilarie Orman. It is a key creation protocol

based on the Diffie-Hellman key-exchange method, but with some improvements as we

shall see shortly. Oakley is a free-formatted protocol in the sense that it does not define

the format of the message to be exchanged. We do not discuss the Oakley protocol

directly in this chapter, but we show how IKE uses its ideas. 

SKEME, designed by Hugo Krawcyzk, is another protocol for key exchange. It

uses public-key encryption for entity authentication in a key-exchange protocol. We

will see shortly that one of the methods used by IKE is based on SKEME.

The Internet Security Association and Key Management Protocol (ISAKMP) is

a protocol designed by the National Security Agency (NSA) that actually implements the

exchanges defined in IKE. It defines several packets, protocols, and parameters that allow

the IKE exchanges to take place in standardized, formatted messages to create SAs. We

will discuss ISAKMP in the next section as the carrier protocol that implements IKE. 

In this section, we discuss IKE itself; the mechanism for creating SAs for IPSec. 

Improved Diffie-Hellman Key Exchange

The key-exchange idea in IKE is based on the Diffie-Hellman protocol. This protocol

provides a session key between two peers without the need for the existence of any

IKE creates SAs for IPSec. 

Figure 18.15 IKE components
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previous secret. We have discussed Diffie-Hellman in Chapter 15; The concept is sum-

marized in Figure 18.16. 

In the original Diffie-Hellman key exchange, two parties create a symmetric ses-

sion key to exchange data without having to remember or store the key for future use.

Before establishing a symmetric key, the two parties need to choose two numbers p and g.

The first number, p, is a large prime on the order of 300 decimal digits (1024 bits).

The second number, g, is a generator in the group <Zp∗, × >. Alice chooses a large ran-

dom number i and calculates KE-I = gi mod p. She sends KE-I to Bob. Bob chooses

another large random number r and calculates KE-R = gr mod p. He sends KE-R to

Alice. We refer to KE-I and KE-R as Diffie-Hellman half-keys because each is a half-

key generated by a peer. They need to be combined together to create the full key,

which is K = g ir mod p. K is the symmetric key for the session.

The Diffie-Hellman protocol has some weaknesses that need to be eliminated

before it is suitable as an Internet key exchange. 

Clogging Attack

The first issue with the Diffie-Hellman protocol is the clogging attack or denial-of-

service attack. A malicious intruder can send many half-key (gx mod q) messages to

Bob, pretending that they are from different sources. Bob then needs to calculate differ-

ent responses (gy mod q) and at the same time calculate the full-key (gxy mod q). This

keeps Bob so busy that he may stop responding to any other messages. He denies ser-

vices to clients. This can happen because the Diffie-Hellman protocol is computation-

ally intensive. 

To prevent this clogging attack, we can add two extra messages to the protocol to

force the two parties to send cookies. Figure 18.17 shows the refinement that can pre-

vent a clogging attack. The cookie is the result of hashing a unique identifier of the peer

(such as IP address, port number, and protocol), a secret random number known to the

party that generates the cookie, and a timestamp.  

Figure 18.16 Diffie-Hellman key exchange

Initiator Responder

Value of p and g

Shared secret key

KE-I

KE-R

K = gir mod p

KE-I = gi mod p KE-R = gr mod p
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The initiator sends its own cookie; the responder its own. Both cookies are repeated,

unchanged, in every following message. The calculations of half-keys and the session key

are postponed until the cookies are returned. If any of the peers is a hacker attempting a

clogging attack, the cookies are not returned; the corresponding party does not spend the

time and effort to calculate the half-key or the session key. For example, if the initiator is

a hacker using a bogus IP address, the initiator does not receive the second message and

cannot send the third message. The process is aborted. 

Replay Attack

Like other protocols we have seen so far, Diffie-Hellman is vulnerable to a replay

attack; the information from one session can be replayed in a future session by a mali-

cious intruder. To prevent this, we can add nonces to the third and fourth messages to

preserve the freshness of the message. 

Man-In-The-Middle Attack

The third, and the most dangerous, attack on the Diffie-Hellman protocol is the man-in-

the-middle attack, previously discussed in Chapter 15. Eve can come in the middle and

create one key between Alice and herself and another key between Bob and herself.

Thwarting this attack is not as simple as the other two. We need to authenticate each

Figure 18.17 Diffie-Hellman with cookies

To protect against a clogging attack, IKE uses cookies. 

To protect against a replay attack, IKE uses nonces. 
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party. Alice and Bob need to be sure that the integrity of the messages is preserved and

that both are authenticated to each other. 

Authentication of the messages exchanged (message integrity) and the authentica-

tion of the parties involved (entity authentication) require that each party proves his/her

claimed identity. To do this, each must prove that it possesses a secret.  

In IKE, the secret can be one of the following:

a. A preshared secret key

b. A preknown encryption/decryption public-key pair. An entity must show that a

message encrypted with the announced public key can be decrypted with the corre-

sponding private key.

c. A preknown digital signature public-key pair. An entity must show that it can sign

a message with its private key which can be verified with its announced public key.

IKE Phases

IKE creates SAs for a message-exchange protocol such as IPSec. IKE, however, needs to

exchange confidential and authenticated messages. What protocol provides SAs for IKE

itself? The reader may realize that this requires a never-ending chain of SAs: IKE must

create SAs for IPSec, protocol X must create SAs for IKE, protocol Y needs to create SAs

for protocol X, and so on. To solve this dilemma and, at the same time, make IKE inde-

pendent of the IPSec protocol, the designers of IKE divided IKE into two phases. In

phase I, IKE creates SAs for phase II. In phase II, IKE creates SAs for IPSec or some

other protocol. Phase I is generic; phase II is specific for the protocol. 

Still, the question remains: How is phase I protected? In the next sections we show

how phase I uses an SA that is formed in a gradual manner. Earlier messages are

exchanged in plaintext; later messages are authenticated and encrypted with the keys

created from the earlier messages. 

Phases and Modes

To allow for a variety of exchange methods, IKE has defined modes for the phases. So

far, there are two modes for phase I: the main mode and the aggressive mode. The only

mode for phase II is the quick mode. Figure 18.18 shows the relationship between

phases and modes.  

To protect against man-in-the-middle attack, IKE requires that each party shows 

that it possesses a secret. 

IKE is divided into two phases: phase I and phase II. Phase I creates SAs for phase II;  

phase II creates SAs for a data exchange protocol such as IPSec.
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Based on the nature of the pre-secret between the two parties, the phase I modes

can use one of four different authentication methods: the preshared secret key method,

the original public-key method, the revised public-key method, or the digital signature

method, as shown in Figure 18.19. 

Phase I: Main Mode

In the main mode, the initiator and the responder exchange six messages. In the first two

messages, they exchange cookies (to protect against a clogging attack) and negotiate the

SA parameters. The initiator sends a series of proposals; the responder selects one of them.

When the first two messages are exchanged, the initiator and the responder know the SA

parameters and are confident that the other party exists (no clogging attack occurs).

In the third and fourth messages, the initiator and responder usually exchange their

half-keys (gi and gr of the Diffie-Hellman method) and their nonces (for replay protec-

tion). In some methods other information is exchanged; that will be discussed later.

Note that the half-keys and nonces are not sent with the first two messages because the

two parties must first ensure that a clogging attack is not possible. 

Figure 18.18 IKE Phases

Figure 18.19 Main-mode or aggressive-mode methods

Phase I
Start

End

Phase II

Aggressive Mode

three exchanges

Quick Mode

three exchanges

Main Mode

six exchanges

Pre-shared
secret key

Original
public key

Revised
public key

Digital
signature

Authentication
Methods



568 CHAPTER 18 SECURITY AT THE NETWORK LAYER: IPSEC

After exchanging the third and fourth messages, each party can calculate the com-

mon secret between them in addition to its individual hash digest. The common secret

SKEYID (secret key ID) is dependent on the calculation method as shown below. In the

equations, prf (pseudorandom function) is a keyed-hash function defined during the

negotiation phase. 

 Other common secrets are calculated as follows:

SKEYID_d (derived key) is a key to create other keys. SKEYID_a is the authenti-

cation key and SKEYID_e is used for the encryption key; both are used during the

negotiation phase. The first parameter (SKEYID) is calculated for each key-exchange

method separately. The second parameter is a concatenation of various data. Note that

the key for prf is always SKEYID. 

The two parties also calculate two hash digests, HASH-I and HASH-R, which are

used in three of the four methods in the main mode. The calculation is shown below: 

Note that the first digest uses ID-I, while the second uses ID-R. Both use SA-I, the

entire SA data sent by the initiator. None of them include the proposal selected by the

responder. The idea is to protect the proposal sent by the initiator by preventing an

intruder from making changes. For example, an intruder might try to send a list of pro-

posals more vulnerable to attack. Similarly, if the SA is not included, an intruder might

change the selected proposal to one more favorable to himself. Note also a party does

not need to know the ID of the other party in the calculation of the HASHs.

After calculating the keys and hashes, each party sends the hash to the other party to

authenticate itself. The initiator sends HASH-I to the responder as proof that she is Alice.

Only Alice knows the authentication secret and only she can calculate HASH-I. If the

HASH-I then calculated by Bob matches the HASH-I sent by Alice, she is authenticated.

In the same way, Bob can authenticate himself to Alice by sending HASH-R. 

SKEYID = prf (preshared-key, N-I |  N-R)                            (preshared-key method)

SKEYID = prf (N-I |  N-R, gir )                                                   (public-key method)

SKEYID = prf (hash (N-I |  N-R), Cookie-I |  Cookie-R)                     (digital signature) 

SKEYID_d = prf (SKEYID, gir  | Cookie-I |  Cookie-R |  0)

SKEYID_a = prf (SKEYID, SKEYID_d |  gir |  Cookie-I |  Cookie-R |  1)

SKEYID_e = prf (SKEYID, SKEYID_a |  gir |  Cookie-I |  Cookie-R |  2)

HASH-I = prf (SKEYID, KE-I |  KE-R |  Cookie-I | Cookie-R |  SA-I |  ID-I)

HASH-R = prf (SKEYID, KE-I |  KE-R |  Cookie-I |  Cookie-R |  SA-I |  ID-R)
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Note that there is a subtle point here. When Bob calculates HASH-I, he needs Alice’s

ID and vice versa. In some methods, the ID is sent by previous messages; in others it is

sent with the hash, with both the hash and the ID encrypted by SKEYID_e.

Preshared Secret-Key Method

In the preshared secret-key method, a symmetric key is used for authentication of the

peers to each other. Figure 18.20 shows shared-key authentication in the main mode. 

In the first two messages, the initiator and responder exchange cookies (inside the

general header) and SA parameters. In the next two messages, they exchange the half-

keys and the nonces (see Chapter 15). Now the two parties can create SKEYID and the

two keyed hashes (HASH-I and HASH-R). In the fifth and sixth messages, the two

parties exchange the created hashes and their IDs. To protect the IDs and hashes, the

last two messages are encrypted with SKEYID_e.  

Note that the pre-shared key is the secret between Alice (initiator) and Bob

(responder). Eve (intruder) does not have access to this key. Eve cannot create SKEYID

and therefore cannot create either HASH-I or HASH-R. Note that the IDs need to be

exchanged in messages 5 and 6 to allow the calculation of the hash.

There is one problem with this method. Bob cannot decrypt the message unless he

knows the preshared key, which means he must know who Alice is (know her ID). But

Alice’s ID is encrypted in message 5. The designer of this method has argued that the

Figure 18.20 Main mode, preshared secret-key method
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ID in this case must be the IP address of each party. This is not an issue if Alice is on a

stationary host (the IP address is fixed). However, if Alice is moving from one network

to another, this is a problem.

Original Public-Key Method

In the original public-key method, the initiator and the responder prove their identities by

showing that they possess a private key related to their announced public key. Figure 18.21

shows the exchange of messages using the original public-key method.  

The first two messages are the same as in the previous method. In the third mes-

sage, the initiator sends its half-key, the nonce, and the ID. In the fourth message, the

responder does likewise. However, the nonces and IDs are encrypted by the public key

of the receiver and decrypted by the private key of the receiver. As can be seen from

Figure 18.21, the nonces and IDs are encrypted separately, because, as we will see later,

they are encoded separately from separate payloads.

One difference between this method and the previous one is that the IDs are

exchanged with the third and fourth messages instead of the fifth and sixth messages.

The fifth and sixth messages just carry the HASHs.

Figure 18.21 Main mode, original public-key method
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The calculation of SKEYID in this method is based on a hash of the nonces and the

symmetric key. The hash of the nonces is used as the key for the keyed-HMAC function.

Note that here we use a double hash. Although SKEYID, and consequently, the hashes

are not directly dependent on the secret that each party possesses, they are related indi-

rectly. SKEYID depends on the nonces and the nonces can only be decrypted by the

private key (secret) of the receiver. So if the calculated hashes match those received, it

is proof that each party is who it claims to be.   

Revised Public-Key Method

The original public-key method has some drawbacks. First, two instances of public-key

encryption/decryption place a heavy load on the initiator and responder. Second, the

initiator cannot send its certificate encrypted by the public key of the responder, since

anyone could do this with a false certificate. The method was revised so that the public

key is used only to create a temporary secret key, as shown in Figure 18.22.   

Note that two temporary secret keys are created from a hash of nonces and cook-

ies. The initiator uses the public key of the responder to send its nonce. The responder

Figure 18.22 Main mode, revised public-key method 
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decrypts the nonce and calculates the initiator’s temporary secret key. After that the

half-key, the ID, and the optional certificate can be decrypted. The two temporary

secret keys, K-I and K-R, are calculated as     

Digital Signature Method

In this method, each party shows that it possesses the certified private key related to a

digital signature. Figure 18.23 shows the exchanges in this method. It is similar to the

preshared-key method except for the SKEYID calculation.

Note that in this method the sending of the certificates is optional. The certificate

can be sent here because it can be encrypted with SKEYID_e, which does not depend

on the signature key. In message 5, the initiator signs all the information exchanged in

messages 1 to 4 with its signature key. The responder verifies the signature using the

public key of the initiator, which authenticates the initiator. Likewise, in message 6, the

responder signs all the information exchanged with its signature key. The initiator veri-

fies the signature.    

K-I  = prf (N-I, Cookie-I)                   K-R = prf (N-R, Cookie-R)

Figure 18.23 Main mode, digital signature method

HDR: General header including cookies

Sig-I: Initiator’s signature on messages 1−4

Sig-R: Initiator’s signature on messages 1−5

Cert-I (Cert-R): Initiator’s (responder’s) certificate

N-I (N-R): Initiator’s (responder’s) nonce

KE-I (KE-R): Initiator’s (responder’s) half-key

ID-I (ID-R): Initiator’s (responder’s) ID

Encrypted with SKEYID_e

Initiator 

HDR,  ID-I, Cert-I, Sig-I  

HDR,  ID-R, Cert-R, Sig-R

Responder 

5

3

2

4

6

1

Digital signature key

Result: SA for Phase II

HDR, KE-R, N-R

HDR, SA-selected 

HDR, KE-I, N-I

HDR, SA-offered



SECTION 18.5 INTERNET KEY EXCHANGE (IKE) 573

Phase I: Aggressive Mode

Each aggressive mode is a compressed version of the corresponding main mode. Instead

of six messages, only three are exchanged. Messages 1 and 3 are combined to make the

first message. Messages 2, 4, and 6 are combined to make the second message. Message 5

is sent as the third message. The idea is the same.

Preshared-Key Method

Figure 18.24 shows the preshared-key method in the aggressive mode. Note that after

receiving the first message, the responder can calculate SKEYID and consequently,

HASH-R. But the initiator cannot calculate SKEYID until it receives the second mes-

sage. HASH-I in the third message can be encrypted.  

Original Public-Key Method

Figure 18.25 shows the exchange of messages using the original public-key method in the

aggressive mode. Note that the responder can calculate the SKEYID and HASH-R after

receiving the first message, but the initiator must wait until it receives the second message. 

Revised Public-Key Method

Figure 18.26 shows the revised public-key method in the aggressive mode. The idea is

the same as for the main mode, except that some messages are combined.

Digital Signature Method

Figure 18.27 shows the digital signature method in the aggressive mode. The idea is the

same as for the main mode, except that some messages are combined. 

Figure 18.24 Aggressive mode, preshared-key method
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Figure 18.25 Aggressive mode, original public-key method

Figure 18.26 Aggressive mode, revised public-key method
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Phase II: Quick Mode

After SAs have been created in either the main mode or the aggressive mode, phase II

can be started. There is only one mode defined for phase II so far, the quick mode. This

mode is under the supervision of the IKE SAs created by phase I. However, each quick-

mode method can follow any main or aggressive mode. 

The quick mode uses IKE SAs to create IPSec SAs (or SAs for any other protocol).

 Figure 18.28 shows the messages exchanged during the quick mode. 

Figure 18.27 Aggressive mode, digital signature method

Figure 18.28 Quick mode

Sig-I (Sig-R): Initiator’s (responder’s) signature

HDR: General header including cookies

Cert-I (Cert-R): Initiator’s (responder’s) certificate      

N-I (N-R): Initiator’s (responder’s) nonce

KE-I (KE-R): Initiator’s (responder’s) half-key

ID-I (ID-R): Initiator’s (responder’s) ID  

Encrypted with SKEYID_e 

Initiator 

Result: SA for Phase II
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Digital signature key

Responder 

HDR, SA-offered, KE-I, N-I, ID-I

HDR, SA-selected, KE-R, N-R, ID-R, Sig-R, Cert-R

HDR,  Cert-I, Sig-I  

HDR: General header including cookies  KE-I (KE-R): Initiator’s (responder’s) half-key

N-I (N-R): Initiator’s (responder’s) nonce

ID-I (ID-R): Initiator’s (responder’s) ID  SA: Security association  

Encrypted with SKEYID_e 

Initiator 

 IPSec SAs
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2
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 IKE SAs

Responder 

HDR, HASH1, SA, N-I, [KE-I], [ID-I, ID-R]

HDR, HASH3

HDR, HASH2, SA, N-R, [KE-R], [ID-I, ID-R]



576 CHAPTER 18 SECURITY AT THE NETWORK LAYER: IPSEC

In phase II, either party can be the initiator. That is, the initiator of phase II can be

the initiator of phase I or the responder of phase I. 

The initiator sends the first message, which includes the keyed-HMAC HASH1

(explained later), the entire SA created in phase I, a new nonce (N-I), an optional new

Diffie-Hellman half-key (KE-I), and the optional IDs of both parties. The second mes-

sage is similar, but carries the keyed-HMAC HASH2, the responder nonce (N-R), and,

if present, the Diffie-Hellman half-key created by the responder. The third message

contains only the keyed-HMAC HASH3. 

The messages are authenticated using three keyed-HMACs: HASH1, HASH2, and

HASH3. These are calculated as follows: 

Each HMAC includes the message ID (MsgID) used in the header of ISAKMP

headers. This allows multiplexing in phase II. The inclusion of MsgID prevents simul-

taneous creations of phase II from bumping into each other. 

All three messages are encrypted for confidentiality using the SKEYID_e created

during phase I. 

Perfect Forward Security (PFS)

After establishing an IKE SA and calculating SKEYID_d in phase I, all keys for the

quick mode are derived from SKEYID_d. Since multiple phase IIs can be derived from

a single phase I, phase II security is at risk if the intruder has access to SKEYID_d. To

prevent this from happening, IKE allows Perfect Forward Security (PFS) as an

option. In this option, an additional Diffie-Hellman half-key is exchanged and the

resulting shared key (gir) is used in the calculation of key material (see the next section)

for IPSec. PFS is effective if the Diffie-Hellman key is immediately deleted after the

calculation of the key material for each quick mode. 

Key Materials

After the exchanges in phase II, an SA for IPSec is created including the key material,

K, that can be used in IPSec. The value is derived as:

If the length of K is too short for the particular cipher selected, a sequence of keys

is created, each key is derived from the previous one, and the keys are concatenated to

HASH1 = prf (SKEYID_d, MsgID | SA | N-I)

HASH2 = prf (SKEYID_d, MsgID | SA | N-R)

HASH3 = prf (SKEYID_d, 0 | MsgID | SA | N-I | N-R)

K = prf (SKEYID_d, protocol | SPI | N-I | N-R)                                           (without PFS)

K = prf (SKEYID_d, gir | protocol | SPI | N-I | N-R)                                    (with PFS)
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make a longer key. We show the case without PFS; we need to add gir for the case

with PFS. 

The key material created is unidirectional; each party creates different key material

because the SPI used in each direction is different.  

SA Algorithms

Before leaving this section, let us give the algorithms that are negotiated during the first

two IKE exchanges. 

Diffie-Hellman Groups

The first negotiation involves the Diffie-Hellman group used for exchanging half-keys.

Five groups have been defined, as shown in Table 18.3. 

Hash Algorithms

The hash algorithms that are used for authentication are shown in Table 18.4. 

K1 = prf (SKEYID_d, protocol | SPI | N-I | N-R) 

K2 = prf (SKEYID_d, K1 | protocol | SPI | N-I | N-R)

K3 = prf (SKEYID_d, K2 | protocol | SPI | N-I | N-R) 

… 

K = K1 | K2 | K3 | …                  

The key material created after phase II is unidirectional; there is one key for each direction.

Table 18.3 Diffie-Hellman groups

Value Description

1 Modular exponentiation group with a 768-bit modulus

2 Modular exponentiation group with a 1024-bit modulus

3 Elliptic curve group with a 155-bit field size

4 Elliptic curve group with a 185-bit field size

5 Modular exponentiation group with a 1680-bit modulus

Table 18.4 Hash algorithms

Value Description

1 MD5

2 SHA

3 Tiger

4 SHA2-256

5 SHA2-384

6 SHA2-512
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Encryption Algorithms

The encryption algorithms that are used for confidentiality are shown in Table 18.5. All

of these are normally used in CBC mode. 

18.6 ISAKMP

The ISAKMP protocol is designed to carry messages for the IKE exchange. 

General Header

The format of the general header is shown in Figure 18.29. 

❏ Initiator cookie. This 32-bit field defines the cookie of the entity that initiates the

SA establishment, SA notification, or SA deletion. 

❏ Responder cookie. This 32-bit field defines the cookie of the responding entity.

The value of this field is 0 when the initiator sends the first message. 

❏ Next payload. This 8-bit field defines the type of payload that immediately

follows the header. We discuss the different types of payload in the next section. 

Table 18.5 Encryption algorithms

Value Description

1 DES

2 IDEA

3 Blowfish

4 RC5

5 3DES

6 CAST

7 AES

Figure 18.29 ISAKMP general header

Responder cookie

Initiator cookie

Message ID

Message length

Next payload Exchange type FlagsMajor ver Minor ver

0 8 16 24 31
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❏ Major version. This 4-bit version defines the major version of the protocol.

Currently, the value of this field is 1.

❏ Minor version. This 4-bit version defines the minor version of the protocol.

Currently, the value of this field is 0.

❏ Exchange type. This 8-bit field defines the type of exchange that is being carried

by the ISAKMP packets. We have discussed the different exchange types in the

previous section. 

❏ Flags. This is an 8-bit field in which each bit defines an option for the exchange.

So far only the three least significant bits are defined. The encryption bit, when set

to 1, specifies that the rest of the payload will be encrypted using the encryption

key and the algorithm defined by SA. The commitment bit, when set to 1, specifies

that encryption material is not received before the establishment of the SA. The

authentication bit, when set to 1, specifies that the rest of the payload, though not

encrypted, is authenticated for integrity. 

❏ Message ID. This 32-bit field is the unique message identity that defines the pro-

tocol state. This field is used only during the second phase of negotiation and is set

to 0 during the first phase. 

❏ Message length. Because different payloads can be added to each packet, the

length of a message can be different for each packet. This 32-bit field defines the

length of the total message, including the header and all payloads. 

Payloads

The payloads are actually designed to carry messages. Table 18.6 shows the types of

payloads. 

Table 18.6 Payloads

Types Name Brief Description

  0 None Used to show the end of the payloads

  1 SA Used for starting the negotiation

  2 Proposal Contains information used during SA negotiation

  3 Transform Defines a security transform to create a secure channel 

  4 Key Exchange Carries data used for generating keys 

  5 Identification Carries the identification of communication peers

  6 Certification Carries a public-key certificate

  7 Certification Request Used to request a certificate from the other party 

  8 Hash Carries data generated by a hash function

  9 Signature Carries data generated by a signature function

10 Nonce Carries randomly generated data as a nonce 

11 Notification Carries error message or status associated with an SA

12 Delete Carries one more SA that the sender has deleted 

13 Vendor Defines vendor-specification extensions
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Each payload has a generic header and some specific fields. The format of the

generic header is shown in Figure 18.30. 

❏ Next payload. This 8-bit field identifies the type of the next payload. When there

is no next payload, the value of this field is 0. Note that there is no type field for the

current payload. The type of the current payload is determined by the previous

payload or the general header (if the payload is the first one).

❏ Payload length. This 16-bit field defines the length of the total payload (including

the generic header) in bytes.     

SA Payload

The SA payload is used to negotiate security parameters. However, these parameters

are not included in the SA payload; they are included in two other payloads (proposal

and transform) that we will discuss later. An SA payload is followed by one or more

proposal payloads, and each proposal payload is followed by one or more transform

payloads. The SA payload just defines the domain of interpretation field and the situa-

tion field. Figure 18.31 shows the format of the SA payload. 

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Domain of interpretation (DOI). This is a 32-bit field. For phase I, a value of 0

for this field defines a generic SA; a value of 1 defines IPSec. 

❏ Situation. This is a variable-length field that defines the situation under which the

negotiation takes place.   

Figure 18.30 Generic payload header

Figure 18.31 SA payload

Payload lengthNext payload

0 8 16 31

Reserved

DOI

Situation
(variable length)

0 8 16 31

Payload lengthNext payload Reserved
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Proposal Payload

The proposal payload initiates the mechanism of negotiation. Although by itself it does

not propose any parameters, it does define the protocol identification and the SPI. The

parameters for negotiation are sent in the transform payload that follows. Each proposal

payload is followed by one or more transform payloads that give alternative sets of

parameters. Figure 18.32 shows the format of the proposal payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Proposal #. The initiator defines a number for the proposal so that the responder can

refer to it. Note that an SA payload can include several proposal payloads. If all of the

proposals belong to the same set of protocols, the proposal number must be the same

for each protocol in the set. Otherwise, the proposals must have different numbers.

❏ Protocol ID. This 8-bit field defines the protocol for the negotiation. For example,

IKE phase1 = 0, ESP = 1, AH = 2, etc. 

❏ SPI size. This 8-bit field defines the size of the SPI in bytes. 

❏ Number of Transforms. This 8-bit field defines the number of transform pay-

loads that will follow this proposal payload.

❏ SPI. This variable-length field is the actual SPI. Note that if the SPI does not fill

the 32-bit space, no padding is added. 

Transform Payload

The transform payload actually carries attributes of the SA negotiation. Figure 18.33

shows the format of the transform payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Transform #. This 8-bit field defines the transform number. If there is more than

one transform payload in a proposal payload, then each must have its own number. 

❏ Transform ID. This 8-bit field defines the identity of the payload. 

❏ Attributes. Each transform payload can carry several attributes. Each attribute

itself can have three or two subfields (see Figure 18.33). The attribute type subfield

defines the type of attribute as defined in the DOI. The attribute length subfield, if

present, defines the length of the attribute value. The attribute value field is two

bytes in the short form or of variable-length in the long form. 

Figure 18.32 Proposal payload

Proposal # Protocol ID SPI size No. of transforms

SPI
(variable length)

Payload lengthNext payload

0 8 16 24 31

Reserved
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Key-Exchange Payload

The key exchange payload is used in those exchanges that need to send preliminary

keys that are used for creating session keys. For example, it can be used to send a

Diffie-Hellman half-key. Figure 18.34 shows the format of the key-exchange

payload.

The fields in the generic header have been discussed. The description of the KE

field follows:

❏ KE. This variable-length field carries the data needed for creating the session key. 

Identification Payload

The identification payload allows entities to send their identifications to each other.

Figure 18.35 shows the format of the identification payload.

Figure 18.33 Transform payload

Figure 18.34 Key-exchange payload

Attribute valueAttribute type

0 16 31

Attribute lengthAttribute type

0 16 31

Transform # Transform ID

Attributes
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Attribute value
(variable length)

Reserved

Payload lengthNext payload

0 8 16 31

Reserved

0

1

Transform payload

Attribute (long form)

Attribute (short form)

KE
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ ID type. This 8-bit field is DOI specific and defines the type of ID being used. 

❏ ID data. This 24-bit field is usually set to 0. 

❏ Identification data. The actual identity of each entity is carried in this variable-

length field. 

Certification Payload

Anytime during the exchange, an entity can send its certification (for public-encryption/

decryption keys or signature keys). Although the inclusion of the certification payload

in an exchange is normally optional, it needs to be included if there is no secure direc-

tory available to distribute the certificates. Figure 18.36 shows the format of the certifi-

cation payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Certificate encoding. This 8-bit field defines the encoding (type) of the certificate.

Table 18.7 shows the types defined so far.

❏ Certificate data. This variable-length field carries the actual value of the certifi-

cate. Note that the previous field implicitly defines the size of this field. 

Figure 18.35 Identification payload

Figure 18.36 Certification payload

ID type ID data

Identification data
(variable length)

Payload lengthNext payload
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Certificate Request Payload

Each entity can explicitly request a certificate from the other entity using the certificate

request payload. Figure 18.37 shows the format of this payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ Certificate type. This 8-bit field defines the type of certificate as previously defined

in the certificate payload.

❏ Certificate authority. This is a variable-length field that defines the authority for

the type of certificate issued. 

Hash Payload

The hash payload contains data generated by the hash function as described in the IKE

exchanges. The hash data guarantee the integrity of the message or part of the ISAKMP

states. Figure 18.38 shows the format of the hash payload.

Table 18.7 Certification types

Value Type

  0 None

  1 Wrapped X.509 Certificate

  2 PGP Certificate

  3 DNS Signed Key

  4 X.509 Certificate Signature

  5 X.509 CertificateKey Exchange

  6 Kerberos Tokens

  7 Certification Revocation List

  8 Authority Revocation List

  9 SPKI Certificate

10 X.509 CertificateAttribute

Figure 18.37 Certification request payload

Certificate type

Certificate authority
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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The fields in the generic header have been discussed. The description of the last

field follows:

❏ Hash data. This variable-length field carries the hash data generated by applying

the hash function to the message or part of the ISAKMP states. 

Signature Payload

The signature payload contains data generated by applying the digital signature proce-

dure over some part of the message or ISAKMP state. Figure 18.39 shows the format of

the signature payload.

The fields in the generic header have been discussed. The description of the last

field follows:

❏ Signature. This variable-length field carries the digest resulting from applying the

signature over part of the message or ISAKMP state.

Nonce Payload

The nonce payload contains random data used as a nonce to assure liveliness of the mes-

sage and to prevent a replay attack. Figure 18.40 shows the format of the nonce payload.

Figure 18.38 Hash payload

Figure 18.39 Signature payload

Figure 18.40 Nonce payload

Hash data
(variable length)

Payload lengthNext payload

0 8 16 31

Reserved
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Payload lengthNext payload
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(variable length)

Payload lengthNext payload
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Reserved
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The fields in the generic header have been discussed. The description of the last

field follows:

❏ Nonce. This is a variable-length field carrying the value of the nonce.

Notification Payload

During the negotiation process, sometimes a party needs to inform the other party of the

status or errors. The notification payload is designed for these two purposes. Figure 18.41

shows the format of the notification payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ DOI. This 32-bit field is the same as that defined for the Security Association payload. 

❏ Protocol ID. This 8-bit field is the same as that defined for the proposal payload. 

❏ SPI size. This 8-bit field is the same as that defined for the proposal payload. 

❏ Notification message type. This 16-bit field specifies the status or the type of

error that is to be reported. Table 18.8 gives a brief description of these types.

❏ SPI. This variable-length field is the same as that defined for the proposal payload.   

❏ Notification data. This variable-length field can carry extra textual information

about the status or errors. The types of errors are listed in Table 18.8. The values 31

to 8191 are for future use and the values 8192 to 16383 are for private use. 

Figure 18.41 Notification payload

Table 18.8 Notification types 

Value Description Value Description

  1 INVALID-PAYLOAD-TYPE   8 INVALID-FLAGS

  2 DOI-NOT-SUPPORTED   9 INVALID-MESSAGE-ID

  3 SITUATION-NOT-SUPPORTED 10 INVALID-PROTOCOL-ID

  4 INVALID-COOKIE 11 INVALID-SPI

  5 INVALID-MAJOR-VERSION 12 INVALID-TRANSFORM-ID

  6 INVALID-MINOR-VERSION 13 ATTRIBUTE-NOT-SUPPORTED

  7 INVALID-EXCHANGE-TYPE 14 NO-PROPOSAL-CHOSEN

Reserved

Notification message typeProtocol ID SPI size

Notification data
(variable length)

SPI
(variable length)

DOI (32 bits)

Payload lengthNext payload

0 8 16 31
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Table 18.9 is a list of status notifications. Values from 16385 to 24575 and 40960 to

65535 are reserved for future use. Values from 32768 to 40959 are for private use. 

Delete Payload

The delete payload is used by an entity that has deleted one or more SAs and needs to

inform the peer that these SAs are no longer supported. Figure 18.42 shows the format

of the delete payload.

The fields in the generic header have been discussed. The descriptions of the other

fields follow:

❏ DOI. This 32-bit field is the same as that defined for the Security Association payload. 

❏ Protocol ID. This 8-bit field is the same as that defined for the proposal payload. 

❏ SPI size. This 8-bit field is the same as that defined for the proposal payload. 

❏ Number of SPIs. This 16-bit field defines the number of SPIs. One delete payload

can report the deletion of several SAs. 

❏ SPIs. This variable-length field defines the SPIs of the deleted SAs. 

15 BAD-PROPOSAL-SYNTAX 23 INVALID-HASH-INFORMATION

16 PAYLOAD-MALFORMED 24 AUTHENTICATION-FAILED

17 INVALID-KEY-INFORMATION 25 INVALID-SIGNATURE

18 INVALID-ID-INFORMATION 26 ADDRESS-NOTIFICATION

19 INVALID-CERT-ENCODING 27 NOTIFY-SA-LIFETIME

20 INVALID-CERTIFICATE 28 CERTIFICATE-UNAVAILABLE

21 CERT-TYPE-UNSUPPORTED 29 UNSUPPORTED EXCHANGE-TYPE

22 INVALID-CERT-AUTHORITY 30 UNEQUAL-PAYLOAD-LENGTHS

Table 18.9 Status notification values

Value Description

16384 CONNECTED

24576-32767 DOI-specific codes

Figure 18.42 Delete payload

Table 18.8 Notification types (continued)

Value Description Value Description

Reserved

Number of SPIsProtocol ID SPI size

SPIs
(variable length)

DOI
(variable length)

Payload lengthNext payload

0 8 16 31
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Vendor Payload

ISAKMP allows the exchange of information particular to a specific vendor. Figure 18.43

shows the format of the vendor payload.

The fields in the generic header have been discussed. The description of the last

field follows:

❏ Vendor ID. This variable-length field defines the constant used by the vendor. 

18.7 RECOMMENDED READING

The following books and websites give more details about subjects discussed in this

chapter. The items enclosed in brackets refer to the reference list at the end of the book.

Books

[DH03], [Fra01], [KPS02], [Res01], [Sta06], and [Rhe03] discuss IPSec thoroughly.

WebSites

The following websites give more information about topics discussed in this chapter.

18.8 KEY TERMS

Figure 18.43 Vendor payload

http://www.ietf.org/rfc/rfc2401.txt

http://www.unixwiz.net/techtips/iguide-ipsec.html

http://rfc.net/rfc2411.html

aggressive mode Internet Security Association and Key

Authentication Header (AH) Protocol Management Protocol (ISAKMP)

clogging attack IP Security (IPSec)

cookie main mode

Encapsulating Security Payload (ESP) Oakley

Internet Key Exchange (IKE) Perfect Forward Security (PFS)

Reserved

Vendor ID
(variable length)

Payload lengthNext payload

0 8 16 31
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18.9 SUMMARY

❏ IP Security (IPSec) is a collection of protocols designed by the IETF (Internet

Engineering Task Force) to provide security for a packet at the network level. 

❏ IPSec operates in transport or tunnel mode. In transport mode, IPSec protects

information delivered from the transport layer to the network layer, but does not

protect the IP header. In tunnel mode, IPSec protects the whole IP packet, including

the original IP header.   

❏ IPSec defines two protocols: Authentication Header (AH) Protocol and Encapsu-

lating Security Payload (ESP) Protocol to provide authentication and encryption

or both for packets at the IP level. The Authentication Header (AH) Protocol

authenticates the source host and ensures the integrity of the payload carried by the

IP packet. Encapsulating Security Payload (ESP) provides source authentication,

integrity, and privacy. ESP adds a header and trailer. 

❏ IPSec indirectly provides access control using a Security Association Database

(SAD).

❏ In IPSec, Security Policy (SP) defines what type of security must be applied to a

packet at the sender or at the receiver. IPSec uses a set of SPs called Security Policy

Database (SPD). 

❏ The Internet Key Exchange (IKE) is the protocol designed to create Security

Associations, both inbound and outbound. IKE creates SAs for IPSec. IKE is

a complex protocol based on three other protocols: Oakley, SKEME, and

ISAKMP.

❏ IKE is designed in two phases: phase I and phase II. Phase I creates SAs for phase II;

phase II creates SAs for a data exchange protocol such as IPSec.

❏ The ISAKMP protocol is designed to carry the message for IKE exchange.

18.10 PRACTICE SET

Review Questions

1. Distinguish between two modes of IPSec.

2. Define AH and the security services it provides.

3. Define ESP and the security services it provides.

4. Define Security Association (SA) and explain its purpose.

5. Define SAD and explain its relation to Security Association. 

replay attack Security Policy Database (SPD)

Security Association Database (SAD) SKEME

Security Association (SA) transport mode

Security Policy (SP) tunnel mode
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6. Define Security Policy and explain its purpose with relation to IPSec.

7. Define IKE and explain why it is needed in IPSec. 

8. List phases of IKE and the goal of each phase.

9. Define ISAKMP and its relation to IKE.

10. List ISAKMP payload types and the purpose of each type. 

Exercises

11. A host receives an authenticated packet with the sequence number 181. The replay

window spans from 200 to 263. What will the host do with the packet? What is the

window span after this event?

12. A host receives an authenticated packet with the sequence number 208. The replay

window spans from 200 to 263. What will the host do with the packet? What is the

window span after this event?

13. A host receives an authenticated packet with the sequence number 331. The replay

window spans from 200 to 263. What will the host do with the packet? What is the

window span after this event?

14. The diagram for calculation of SKEYID for the preshared-key method is shown in

Figure 18.44. Note that the key to the prf function in this case is a preshared key. 

a. Draw a similar diagram of SKEYID for the public-key method.

b. Draw a similar diagram of SKEYID for the digital signature method.

15. Draw a diagram similar to Figure 18.44 for the following; the key in each case is

SKEYID.

a. SKEYID_a

b. SKEYID_d

c. SKEYID_e

16. Draw a diagram similar to Figure 18.44 for the following, the key in each case is

SKEYID.

a. HASH-I

b. HASH-R

Figure 18.44 Exercise 14

Preshared key

Key

SKEYID

prf

N-I N-R
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17. Draw a diagram similar to Figure 18.44 for the following; the key in each case is

SKEYID_d:

a. HASH1

b. HASH2

c. HASH3

18. Draw a diagram similar to Figure 18.44 for the following; the key in each case is

SKEYID_d:

a. K for the case without PFS

b. K for the case with PFS

19. Repeat Exercise 18 for the case in which the length of K is too short. 

20. Draw a diagram and show actual ISAKMP packets that are exchanged between

an initiator and a responder using the preshared-key method in the main mode

(see Figure 18.20). Use at least two proposal packets with at least two transform

packets for each proposal. 

21. Repeat Exercise 20 using the original public-key method in the main mode (see

Figure 18.21).

22. Repeat Exercise 20 using the revised public-key method in the main mode (see

Figure 18.22).

23. Repeat Exercise 20 using the digital signature method in the main mode (see

Figure 18.23).

24. Repeat Exercise 20 in the aggressive mode (see Figure 18.24).

25. Repeat Exercise 21 in the aggressive mode (see Figure 18.25).

26. Repeat Exercise 22 in the aggressive mode (see Figure 18.26).

27. Repeat Exercise 23 in the aggressive mode (see Figure 18.27).

28. Draw a diagram and show the actual ISAKMP packets that are exchanged between

an initiator and a responder in the quick mode (see Figure 18.28).

29. Compare the preshared-key methods in the main mode and aggressive modes. How

much compromise is made in the aggressive mode with respect to security? What is

the gain with respect to efficiency? 

30. Compare the original public-key methods in the main and aggressive modes. How

much compromise is made in the aggressive mode with respect to security? What is

the gain with respect to efficiency?

31. Compare the revised public-key methods in the main and aggressive modes. How

much compromise is made in the aggressive mode with respect to security? What is

the gain with respect to efficiency? 

32. Compare the digital signature method in the main and aggressive modes. How much

compromise is made in aggressive mode with respect to security? What is the gain

with respect to efficiency? 

33. In the main and aggressive mode, we assume that an intruder cannot calculate the

SKEYID. Give the reasoning behind this assumption.
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34. In IKE phase I, the identity is usually defined as the IP address. In the preshared key

method, the preshared key is also a function of the IP address. Show how this may

create a vicious circle. 

35. Compare methods for the main mode and show which method exchanges pro-

tected IDs.

36. Repeat Exercise 35 for aggressive methods. 

37. Show how IKE reacts to the replay attack in the main mode. That is, show how IKE

responds to an attacker that tries to replay one or more messages in the main mode. 

38. Show how IKE reacts to the replay attack in the aggressive mode. That is, show how

IKE responds to an attacker that tries to replay one or more messages in the aggres-

sive mode.

39. Show how IKE reacts to the replay attack in the quick mode. That is, show how IKE

responds to an attacker that tries to replay one or more messages in the quick mode.

40. Show how IPSec reacts to a brute-force attack. That is, can an intruder do an exhaus-

tive computer search to find the encryption key for IPSec? 



PART

4
Network Security

Part Four focuses on the subject that is the ultimate goal of the book: using cryptogra-

phy to create secure networks. This part assumes that the reader has previous knowl-

edge of the Internet architecture and the TCP/IP Protocol Suite. Appendix C can be

used as a quick review in this case. Readers are also referred to [For06] on the refer-

ence list for further study. Each chapter in this part is dedicated to the discussion of

security in one of the three layers of the TCP/IP Protocol Suite: application layer,

transport layer, and network layer. Chapter 16 discusses security at the application

layer. Chapter 17 discusses security at the transport layer. Chapter 18 discusses security

at the network layer. 

Chapter 16: Security at the Application Layer: PGP and S/MIME

Chapter 16 discusses two protocols that provide security for electronic mail (e-mail).

Pretty Good Privacy (PGP) is a protocol that is common for personal e-mail exchange.

Secure/Multipurpose Internet Mail Extension (S/MIME) is a protocol that is common in

commercial e-mail systems. 

Chapter 17: Security at the Transport Layer: SSL and TSL

Chapter 17 first shows the need for security services at the transport layer of the Internet

model. It then shows how security at the transport level can be provided using one of the

two protocols: Secure Sockets Layer (SSL) and Transport Layer Security (TLS). The sec-

ond protocol is the new version of the first. 

Chapter 18: Security at the Network Layer: IPSec

Chapter 18 is devoted to the only common security protocol at the network layer: IPSec.

The chapter defines the architecture of IPSec and discusses the application of IPSec in

transport and tunnel modes. The chapter also discusses other auxiliary protocols, such as

IKE, that are used by IPSec, defines Internet Key Exchange, and explains how it is used

by IPSec.
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APPENDIX A

ASCII

The American Standard Code for Information Interchange (ASCII) is a 7-bit code

that was designed to provide codes for 128 symbols, as shown in Table A.1.    

Table A.1 ASCII Codes 

Hex Char Hex Char Hex Char Hex Char Hex Char Hex Char

00 null 18 CAN 30 0 48 H 60 ` 78 x

01 SOH 19 EM 31 1 49 I 61 a 79 y

02 STX 1A SUB 32 2 4A J 62 b 7A z

03 ETX 1B ESC 33 3 4B K 63 c 7B {

04 EOT 1C FS 34 4 4C L 64 d 7C |

05 ENQ 1D GS 35 5 4D M 65 e 7D }

06 ACK 1E RS 36 6 4E N 66 f 7E ~

07 BEL 1F US 37 7 4F O 67 g 7F DEL

08 BS 20 SP 38 8 50 P 68 h

09 HT 21 ! 39 9 51 Q 69 i

0A LF 22 " 3A : 52 R 6A j

0B VT 23 # 3B ; 53 S 6B k

0C FF 24 $ 3C < 54 T 6C l

0D CR 25 % 3D = 55 U 6D m

0E SO 26 & 3E > 56 V 6E n

0F SI 27 ' 3F ? 57 W 6F o

10 DLE 28 ( 40 @ 58 X 70 p

11 DC1 29 ) 41 A 59 Y 71 q

12 DC2 2A * 42 B 5A Z 72 r

13 DC3 2B + 43 C 5B [ 73 s

14 DC4 2C , 44 D 5C \ 74 t

15 NAK 2D – 45 E 5D ] 75 u

16 SYN 2E . 46 F 5E ^ 76 v

17 ETB 2F / 47 G 5F _ 77 w
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APPENDIX B

Standards and
Standard Organizations

Standards are essential in creating and maintaining an open and competitive market for

equipment manufacturers and in guaranteeing national and international interoperability of

technology. Standards provide guidelines to manufacturers, vendors, government agencies,

and other service providers to ensure the kind of interconnectivity necessary in today’s

marketplace and in international communications.

B.1 INTERNET STANDARDS

An Internet standard is a thoroughly tested specification that is useful to and adhered

to by those who work with the Internet. It is a formalized regulation that must be followed.

There is a strict procedure by which a specification attains Internet standard status. A

specification begins as an Internet draft. An Internet draft is a working document (a

work in progress) with no official status and a six-month lifetime. Upon recommenda-

tion from the Internet authorities, a draft may be published as a Request for Comment

(RFC). Each RFC is edited, assigned a number, and made available to all interested

parties. RFCs go through maturity levels and are categorized according to their require-

ment level.

Maturity Levels

An RFC, during its lifetime, falls into one of six maturity levels: proposed standard,

draft standard, Internet standard, historic, experimental, and informational, as shown

in Figure B.1.

Proposed Standard

A proposed standard is a specification that is stable, well understood, and of sufficient

interest to the Internet community. At this level, the specification is usually tested and

implemented by several different groups.
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Draft Standard

A proposed standard is elevated to draft standard status after at least two successful

independent and interoperable implementations. Barring difficulties, a draft standard,

with modifications if specific problems are encountered, normally becomes an Internet

standard.

Internet Standard

A draft standard reaches Internet standard status after demonstrations of successful

implementation.

Historic

The historic RFCs are significant from a historical perspective. They either have been

superseded by later specifications or have never passed the necessary maturity levels to

become an Internet standard.

Experimental

An RFC classified as experimental describes work related to an experimental situation

that does not affect the operation of the Internet. Such an RFC should not be imple-

mented in any functional Internet service.

Informational

An RFC classified as informational contains general, historical, or tutorial information

related to the Internet. It is usually written by someone in a non-Internet organization,

such as a vendor.

Figure B.1 Maturity levels of an RFC

Proposed standardExperimental Informational

Draft standard

Six months and two tries 

Four months and two tries 

Internet standard

Historic

Internet draft
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Requirement Levels

RFCs are classified into five requirement levels: required, recommended, elective,

limited use, and not recommended, as shown in Figure B.2. 

Required

An RFC is labeled required if it must be implemented by all Internet systems to achieve

minimum conformance. 

Recommended

An RFC labeled recommended is not required for minimum conformance; it is recom-

mended because of its usefulness. 

Elective

An RFC labeled elective is not required and not recommended. However, a system can

use it for its own benefit.

Limited Use

An RFC labeled limited use should be used only in limited situations. Most of the

experimental RFCs fall under this category.

Not Recommended

An RFC labeled not recommended is inappropriate for general use. Normally a historic

(obsolete) RFC may fall under this category.

Internet Administration

The Internet, with its roots primarily in the research domain, has evolved and gained

a broader user base with significant commercial activity. Various groups that coordinate

Internet issues have guided this growth and development. Figure B.3 shows the general

organization of Internet administration.

Figure B.2 Requirement levels of an RFC

RFCs can be found at www.faqs.org/rfcs

Requirement
levels

Limited use
Not

recommended
ElectiveRecommendedRequired
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Internet Society (ISOC)

The Internet Society (ISOC) is an international, nonprofit organization formed in

1992 to provide support for the Internet standards process. ISOC accomplishes this

through maintaining and supporting other Internet administrative bodies such as IAB,

IETF, IRTF, and ICANN (see the following sections). ISOC also promotes research and

other scholarly activities relating to the Internet. 

Internet Architecture Board (IAB)

The Internet Architecture Board (IAB) is the technical advisor to ISOC. The main

purposes of the IAB are to oversee the continuing development of the TCP/IP Protocol

Suite and to serve in a technical advisory capacity to research members of the Internet

community. The IAB accomplishes this through its two primary components, the Inter-

net Engineering Task Force (IETF) and the Internet Research Task Force (IRTF).

Another responsibility of the IAB is the editorial management of the RFCs, described

earlier in this appendix. The IAB is also the external liaison between the Internet

administration and other standard organizations and forums. 

Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is a forum of working groups managed

by the Internet Engineering Steering Group (IESG). IETF is responsible for identify-

ing operational problems and proposing solutions to these problems. IETF also devel-

ops and reviews specifications intended as Internet standards. The working groups are

collected into areas, and each area concentrates on a specific topic. Currently nine

areas have been defined: applications, Internet protocols, routing, operations, user ser-

vices, network management, transport, Internet protocol next generation (IPng), and

security.

Figure B.3 Internet administration
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Internet Research Task Force (IRTF)

The Internet Research Task Force (IRTF) is a forum of working groups managed by

the Internet Research Steering Group (IRSG). IRTF focuses on long-term research topics

related to Internet protocols, applications, architecture, and technology.

Internet Corporation for Assigned Names and Numbers (ICANN)

The Internet Corporation for Assigned Names and Numbers (ICANN), a private

nonprofit corporation managed by an international board, is responsible for the man-

agement of Internet domain names and addresses.

Network Information Center (NIC)

The Network Information Center (NIC) is responsible for collecting and distributing

information about TCP/IP protocols.

B.2 OTHER STANDARD ORGANIZATIONS

Several other standard organizations that are mentioned in the text are briefly discussed

here.

NIST 

The National Institute of Standards and Technology (NIST) is part of the United

States Commerce Department. NIST issues standards in the form of Federal Informa-

tion Processing Standard (FIPS). Following are the steps involved in the process:

1. NIST publishes the FIPS in the Federal Register (a governmental publication) and

NIST’s website for public review and comment. The announcement also defines

the deadline for accepting comments (normally 90 days after announcement).

2. After the deadline, an expert group in NIST reviews the comments and makes any

necessary modifications.

3. The recommended FIPS is sent to the secretary of commerce for approval.

4. The approval of the FIPS is published in the Federal Register and NIST’s website. 

ISO

The International Organization for Standardization (ISO) is a multinational body

whose membership is drawn mainly from the standards creation committees of various

governments throughout the world. The ISO is active in developing cooperation in the

realms of scientific, technological, and economic activity.

ITU-T

International Telecommunication Union—Telecommunication Standards Sector

(ITU-T) is part of its International Telecommunication Union (ITU). The sector is

devoted to the research and establishment of standards for telecommunications in general

and for phone and data systems in particular.
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ANSI

The American National Standards Institute (ANSI) is a completely private, nonprofit

corporation not affiliated with the U.S. federal government. However, all ANSI activities

are undertaken with the welfare of the United States and its citizens being of primary

importance. 

IEEE

The Institute of Electrical and Electronics Engineers (IEEE) is the largest profes-

sional engineering society in the world. International in scope, it aims to advance theory,

creativity, and product quality in the fields of electrical engineering, electronics, and

radio as well as in all related branches of engineering. As one of its goals, the IEEE

oversees the development and adoption of international standards for computing and

communications.

EIA

Aligned with ANSI, the Electronic Industries Association (EIA) is a nonprofit organiza-

tion devoted to the promotion of electronics manufacturing concerns. Its activities include

public awareness education and lobbying efforts in addition to standards development. In

the field of information technology, the EIA has made significant contributions by devel-

oping standards for data communication. 
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APPENDIX C

TCP/IP Protocol Suite 

The networking model used in the Internet today is the Transmission Control Protocol/

Internetworking Protocol (TCP/IP) or TCP/IP Protocol Suite. The suite is made of five

layersapplication, transport, network, data link, and physicalas shown in Figure C.1.

TCP/IP is a hierarchical protocol made up of interactive modules, each of which

provides a specific functionality. The term hierarchical means that each upper-layer

protocol uses the services of one or more lower-layer protocols. 

Figure C.1 TCP/IP protocol suite
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C.1 LAYERS IN THE TCP/IP

In this section we briefly describe the functions of each layer in the TCP/IP protocol

suite.

Application Layer

The application layer enables the user, whether human or software, to access the net-

work. It provides user interfaces and support for services such as file transfer, electronic

mail, and remote logging. 

❏ Domain Name System (DNS). DNS is an application program that gives services

to other application programs. It finds the logical (network-layer) address when

given the specific (application-layer) address. 

❏ Simple Mail Transfer Protocol (SMTP). SMTP is the protocol used for elec-

tronic mail. Electronic mail is discussed in Chapter 16. 

❏ File Transfer Protocol (FTP). FTP is the file transfer protocol in the Internet. It is

used to transfer large files from one computer to another.

❏ Hypertext Transfer Protocol (HTTP). HTTP is the protocol that is normally

used to access the World Wide Web (WWW). 

❏ Simple Network Management Protocol (SNMP). SNMP is the official manage-

ment protocol in the Internet.

❏ Terminal Network (TELNET). TELNET is the remote log-in application program.

A user can use TELNET to connect to a remote host and use the available services.

Transport Layer

The transport layer is responsible for process-to-process delivery of the entire mes-

sage. A process is an application program running on the host.

Traditionally the transport layer was represented in TCP/IP by two protocols: TCP and

UDP. A new transport layer protocol, SCTP, has been devised to answer the needs of

some new applications.

❏ User Datagram Protocol (UDP). UDP is the simpler of the two standard TCP/IP

transport protocols. It is a process-to-process protocol that adds only port

addresses, checksum error control, and length information to the data from the

upper layer. 

The application layer is responsible for providing services to the user.

The transport layer is responsible for the delivery of a message from one process 

to another.
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❏ Transmission Control Protocol (TCP). TCP provides full transport layer

services to applications. TCP is a reliable stream transport protocol. The term

stream, in this context, means connection-oriented: a connection must be estab-

lished between both ends of a transmission before either can transmit data. At the

sending end of each transmission, TCP divides a stream of data into smaller units

called segments. Each segment includes a sequence number for reordering after

receipt, together with an acknowledgment number for the segments received. Seg-

ments are carried across the Internet inside of IP datagrams. At the receiving end,

TCP collects each datagram as it comes in and reorders the transmission based on

sequence numbers. 

❏ Stream Control Transmission Protocol (SCTP). SCTP provides support for new

applications such as IP telephony. It is a transport layer protocol that combines the

good features of UDP and TCP.

Network Layer

The network layer is responsible for the source-to-destination delivery of a packet,

possibly across multiple physical networks (links). The network layer ensures that each

packet gets from its point of origin to its final destination. Some responsibilities of the

network layer include logical addressing and routing. 

❏ Internet Protocol (IP). IP is the transmission mechanism used by the TCP/IP

protocols. It is an unreliable and connectionless protocol—a best-effort delivery

service. The term best-effort means that IP provides no error checking or tracking.

IP assumes the unreliability of the underlying layers and does its best to get a

transmission through to its destination, but with no guarantees. IP transports data

in packets called datagrams, each of which is transported separately. Datagrams

can travel along different routes and can arrive out of sequence or be duplicated. IP

does not keep track of the routes and has no facility for reordering datagrams once

they arrive at their destination. The limited functionality of IP should not be con-

sidered a weakness, however. IP provides bare-bones transmission functions that

free the user to add only those facilities necessary for a given application and

thereby allows for maximum efficiency. 

❏ Address Resolution Protocol (ARP). ARP is used to associate an IP address with

the physical address. On a typical physical network, each device on the network is

identified by a physical or station address usually imprinted on the network inter-

face card (NIC). ARP is used to find the physical address of the node when its

Internet address is known. 

❏ Reverse Address Resolution Protocol (RARP). RARP allows a host to discover

its Internet address when it knows only its physical address. It is used when a com-

puter is connected to the network for the first time or when a diskless computer is

booted. 

The network layer is responsible for the delivery of individual 

packets from the source host to the destination host.
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❏ Internet Control Message Protocol (ICMP). ICMP is a mechanism used by

hosts and other intermediate devices to send notification of datagram problems

back to the sender. ICMP sends query and error reporting messages. 

❏ Internet Group Message Protocol (IGMP). IGMP is used to facilitate the simul-

taneous transmission of a message to a group of recipients. 

Data Link Layer

The data link layer transforms the physical layer, a raw transmission facility, to a reli-

able link. It makes the physical layer appear error-free to the upper layer (network

layer). Some responsibilities of the data link layer include framing, physical address-

ing, flow control, error control, and access control. 

Physical Layer

The physical layer coordinates the functions required to carry a bit stream over a physi-

cal medium. The physical layer is concerned with physical characteristics of interfaces

and transmission media, representation of bits, data rate, synchronization of bits, and

physical topology. 

C.2 ADDRESSING

Four different levels of addresses are used in the Internet using the TCP/IP protocols:

specific address, port address, logical address, and physical address, as shown in

Figure C.2. 

Specific Address

Communication at the application layer is done using specific addresses: addresses

belonging to specific application layer protocols. For example, one uses an e-mail

address to send an e-mail. 

Port Address

Today, computers are devices that can run multiple processes at the same time. The end

objective of Internet communication is a process communicating with another process.

For example, computer A can communicate with computer C using TELNET. At the

same time, computer A communicates with computer B using File Transfer Protocol

(FTP). For these processes to occur simultaneously, there must be a method to label

The data link layer is responsible for moving frames from one hop (node) to the next.

The physical layer is responsible for movements of individual bits 

from one hop (node) to the next.
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different processes. In other words, the processes need addresses. In TCP/IP architec-

ture, the label assigned to a process is called a port address. A port address in TCP/IP is

16 bits long.

Logical Address

Logical addresses are necessary for universal communication services that are indepen-

dent of underlying physical networks. A universal addressing system in which each

host can be identified uniquely, regardless of the underlying physical network, is

needed. The logical addresses are designed for this purpose. A logical address (IP

address) in the Internet is currently a 32-bit address that can uniquely define a host con-

nected to the Internet. No two publicly addressed and visible hosts on the Internet can

have the same IP address.

Physical Address

The physical address, also known as the link address, is the address of a node as

defined by its physical network. It is included in the frame used by the data link layer. It

is the lowest-level address. The physical addresses have authority over the physical net-

work. The size and format of these addresses vary depending on the network.

Figure C.2 Addresses in TCP/IP
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APPENDIX D

Elementary Probability

Probability theory plays a very important role in cryptography because it provides the
best way to quantify uncertainty, and the field of cryptography is full of uncertainty.
This appendix reviews basic concepts of probability theory that are needed to under-
stand some topics discussed in this book. 

D.1 INTRODUCTION

We begin with some definitions, axioms, and properties. 

Definitions 

Random Experiment

An experiment can be defined as any process that changes an input to an output. A
random experiment is an experiment in which the same input can result in two differ-
ent outputs. In other words, the output cannot be uniquely defined from knowledge of
the input. For example, when we toss a fair coin two times, the input (the coin) is the
same, but the output (heads or tails) can be different. 

Outcomes

Each output of a random experiment is called an outcome. For example, when a six-
sided die is rolled, the possible outcomes are 1, 2, 3, 4, 5, and 6. 

Sample Space

A sample space, S, is a set of all possible outcomes of a random experiment. When a
coin is tossed, the space has only two elements, S = {heads, tails}. When a die is rolled,
the sample space has six elements, S = {1, 2, 3, 4, 5, 6}. A sample space is sometimes
referred to as a probability space, a random space, or a universe. 

Events

When a random experiment is performed, we are interested in a subset of the sample
space, not necessarily a single outcome. For example, when a die is rolled, we may be
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interested in getting a 2, an even number, or a number less than 4. Each of these possi-
ble outcomes can be thought of as an event. An event, A, is a subset of the sample
space. The previous mentioned events can be defined as follows:

a. Getting a 2 (simple outcome): A1 = {2}

b. Getting an even number: A2 = {2, 4, 6}

c. Getting a number less than 4: A3 = {1, 2, 3}

Probability Assignment

The main idea in probability theory is the idea of an event. But what is the probability
of a given event? This has been debated for centuries. Recently, mathematicians have
come to an agreement that we can assign probabilities to events using three methods:
classical, statistical, and computational.

Classical Probability Assignment

In classical probability assignment, the probability of an event A is a number inter-
preted as P(A) = nA/n, where n is the total number of possible outcomes and nA is the
number of possible outcomes related to event A. This definition is useful only if each
outcome is equally probable. 

Example D.1

We toss a fair coin. What is the probability that the outcome will be heads?

Solution
The total number of possible outcomes is 2 (heads or tails). The number of possible outcomes
related to this event is 1 (only heads). Therefore, we have P(heads) = nheads/n = 1/2. 

Example D.2

We roll a fair die. What is the probability of getting a 5?

Solution
The total number of possible outcomes is 6, S = {1, 2, 3, 4, 5, 6}. The number of possible out-
comes related to this event is 1 (only 5). Therefore, we have P(5) = n5/n = 1/6. 

Statistical Probability Assignment

In statistical probability assignment, an experiment is performed n times under equal
conditions. If event A occurs m times when n is reasonably large, the probability of an
event A is a number interpreted as P(A) = m/n. This definition is useful when the events
are not equally likely.

Example D.3

We toss a nonfair coin 10,000 times and get heads 2600 times and tails 7400 times. Therefore,
P(heads) = 2600/10,000 = 0.26 and P(tails) = 7400/10,000 = 0.74. 
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Computational Probability Assignment

In computational probability assignment, an event is assigned a probability based
on the probabilities of other events, using the axioms and properties discussed in the
next section.

Axioms 

Probability axioms cannot be proved, but they are assumed when using probability theory.
The following three axioms are fundamental to probability theory. 

❏ Axiom 1. The probability of an event is a nonnegative value: P(A) ≥ 0. 

❏ Axiom 2. The probability of the random space is 1: P(S) = 1. In other words, one
of the possible outcomes will definitely occur. 

❏ Axiom 3. If A1, A2, A3,… are pairwise disjoint events, then 

P(A1 or A2 or A3 or …) = P(A1) + P(A2) + P(A3) +  … 

Events A1, A2, A3,… are pairwise disjoint events if the occurrence of one does not
change the probability of the occurrence of the others. 

Properties

Accepting the above axioms, a list of properties can be proven. Following are the mini-
mum properties required to understand the related topics in this book (we leave the
proofs to the books on probability):

❏ The probability of an event is always between 0 and 1: 0 ≤ P(A) ≤ 1. 

❏ The probability of no outcome is 0: P(S) = 0. In other words, if we roll a die, the
probability that none of the numbers will show is 0 (impossible event).

❏ If A is the complement of A, then P(A) = 1 – P(A). For example, if the probability
of getting a 2 in rolling a die is 1/6, the probability of not getting a 2 is (1 – 1/6).   

❏ If A is a subset of B, then P(A) ≤ P(B). For example, when we roll a die, P(2 or 3)
is less than P(2 or 3 or 4). 

❏ If events A, B, C, … are independent, then 

P(A and B and C and …) = P(A) × P(B) × P(C) × …  

Conditional Probability

The occurrence of an event A may convey some information about the occurrence of
another event B. The conditional probability of an event B, given that event A has
occurred, is shown as P(B | A). It can be proved that

P(B | A) = P(A and B)/P(A)

Note that if A and B are independent events, then P(B|A) = P(B). 

Example D.4

A fair die has been rolled. If we are told that the outcome is an even number, what is the probabil-
ity that it is 4?
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Solution
P(4 | even) = P(4 and even)/P(even). Because there is only one way to get 4, and the number is
also even, P(4 and even) = 1/6. P(even) = P(2 or 4 or 6) = 3/6. Therefore, 

Note that the conditional probability of P(4 | even) is larger than P(4). 

D.2 RANDOM VARIABLES

A variable can assume different values. Variables whose values depend on the out-
comes of a random experiment are called random variables. 

Continuous Random Variables

The random variables that can take an unaccountably infinite number of values are
referred to as continuous random variables. We are not usually interested in this type
of random variables in cryptography. 

Discrete Random Variables

In cryptography, we are interested in random experiments with a countable number of
outcomes (such as rolling a die). The random variables associated with this type of
experiment are referred to as discrete random variables. A discrete random variable is
a mapping from the set of countable outcomes to the set of real values. For example, we
can map the outcomes of flipping a coin {heads, tails} to the set {0, 1}. 

P(4 | event) = (1/6) / (3/6) = 1/3
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APPENDIX E

Birthday Problems

Birthday problems were introduced in Chapter 11. In this appendix, general solutions

to four birthday problems are given using the probability discussed in Appendix D. The

following relations from mathematics are used to simplify the solutions:

E.1 FOUR PROBLEMS

We present solutions to four problems discussed in Chapter 11.

First Problem 

We have a sample set of k values, in which each sample can take only one of the N

equally probable values. What is the minimum size of the sample set, k, such that, with

probability P ≥ 1/2, at least one of the samples is equal to a predetermined value? 

To solve the problem, we first find the probability P that at least one sample is equal

to the predetermined value. We then set the probability to 1/2 to find the minimum size of

the sample.

Probability

We follow four steps to find the probability P:

1. If Psel is the probability that a selected sample is equal to the predefined value, then

Psel = 1/N because the sample can equally likely be any of the N values. 

2. If Qsel is the probability that a selected sample is not equal to the predefined value,

then Qsel = 1 − Psel = (1 − 1/N).

3. If each sample is independent (a fair assumption), and Q is the probability that no

sample is equal to the predefined value, then Q = Qsel
k = (1 − 1/N)k.

1 − x ≈ e−x                                                //Taylor’s series when x is small

1 + 2 + … + (k − 1) = k (k − 1)/2

k(k − 1) ≈ k2



612 APPENDIX E BIRTHDAY PROBLEMS

4. Finally, if P is the probability that at least one sample is equal to the predetermined

value, then P =  1 − Q or P = 1 − (1 − 1/N)k.

Sample Size

Now we find the minimum size of the sample with P ≥ 1/2 to be k ≥ ln2 × N as shown

below:

Second Problem 

The second problem is the same as the first except that the predefined value is one of

the samples. This means that we can use the result of the second problem if we replace

k with k − 1 because after selecting one sample from the sample set only k − 1 samples

are left. Therefore, P = 1 − (1 − 1/N)k−1 and k ≥ ln2 × N + 1. 

Third Problem

In the third problem, we need to find the minimum size, k, of the sample set, such that,

with probability P ≥ 1/2, at least two of the samples have the same values. To solve the

problem, we first find the corresponding probability P. We then set the probability to 1/2

to find the minimum size of the sample.

Probability

We use a different strategy here: 

1. We assign probabilities to samples one at a time. Assume that Pi is the probability

that the sample i has a same value as one of the previous samples and Qi is the

probability that the sample i has a value different from all previous samples. 

a. Because there is no sample before the first sample, P1 = 0 and Q1 = 1 −  0 = 1.

b. Because there is one sample before the second sample and the first sample can 

have one of the N values, P2 = 1/N and Q2 = (1 − 1/N). 

c. Because there are two samples before the third sample and each of the two 

samples can have one of the N values, P3 = 2/N and Q1 = (1 − 2/N).

d. Continuing with the same logic, Pk = (k − 1)/N and Qk = (1 − (k − 1)/N).

P = 1 − (1 − 1/N)k  ≥ 1/2 → (1 − 1/N)k ≤ 1/2

(1 − 1/N )k ≤ 1/2 → (e−k/N) ≤ 1/2    Using the approximation 1 − x ≈ e−x with x = 1/N

(e−k/N ) ≤ 1/2 → ek/N ≥ 2 → k/N ≥ ln 2 → k ≥ ln 2 × N 

First Problem

Probability: P ==== 1 −−−− (1 −−−− 1/N)k Sample size: k ≥≥≥≥ ln 2 ×××× N

Second Problem

Probability: P = 1 −−−− (1 −−−− 1/N )k−−−−1 Sample size: k ≥≥≥≥ ln 2 ×××× N ++++ 1
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2. Assuming that all samples are independent, the probability Q that all samples have

different values is 

3. Finally, if P is the probability that at least two samples have the same values, then

we have P =  1 − Q  or P = 1 − e−k2/2N.

Sample Size

Now we find the minimum size of the sample with P ≥ 1/2 to be k ≥ (2 × ln2)1/2 × N1/2 or

k ≥ 1.18 × N1/2 as shown below:  

Fourth Problem

In the fourth problem, we have two samples of equal size, k. We need to find the mini-

mum value of k, such that, with probability P ≥ 1/2, at least one of the samples in the first

set has the same value as a sample in the second set. To solve the problem, we first find

the corresponding probability P. We then set the probability to 1/2 to find the minimum

size of the sample.

Probability

We solve this using a strategy similar to the one we used for the first problem: 

1. According to the first problem, the probability that all samples in the first set have

values different from the value of the first sample in the second set is Q1 = (1 − 1/N)k.

2. The probability that all samples in the first set have values different from the first

and second samples in the second set is Q2 = (1 − 1/N)k × (1 − 1/N)k.

3. We can extend the logic to say that the probability that all samples in the first set

have values different from any sample in the second set is

Q = Q1 × Q2  × Q3  × … × Qk = 1 × (1 − 1/N)  × (1 − 2/N) × … × (1 − (k − 1)/N)

Q = (e−1/N)  × (e−2/N) × … × (e−(k−1)/N) Using the approximation 1 − x ≈ e−x with x = i/N

Q = e−k(k −1)/2N                                                     Using the relation 1 + 2 + … + (k − 1) = k(k − 1)/2

Q = e−k
2
/2N                                                             Using the approximation k(k − 1) ≈ k2

P = 1 − e−k
2
/2N  ≥ 1/2 → e−k

2
/2N ≤ 1/2

e−k
2
/2N ≤ 1/2 → ek

2
/2N ≥ 2 → k2/2N ≥ ln 2 → k ≥ (2 × ln 2)1/2 × N1/2

Third Problem

Probability: P = 1 −−−− e−−−−k
2
/2N Sample size: k ≥≥≥≥ (2 ×××× ln2)1/2 ×××× N1/2

Qk = (1 − 1/N)k × (1 − 1/N)k × … × (1 − 1/N)k → Qk = (1 − 1/N)k2

Qk = (1 − 1/N)k2 → Qk =  e−k2/N Using the approximation 1 − x ≈ e−x with x = 1/N
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4. Finally, if P is the probability that at least one sample from the first set has the

same value as one of the samples in the second set, then P = 1 − Qk or P = 1 − e−k2/N.     

Sample Size

Now we find the minimum common size of the samples as shown below: 

E.2 SUMMARY

Table E.1 gives the expressions for the probability (P) and the sample size (k) for each

of the four problems. 

P = 1 − e−k2/N ≥ 1/2 → e−k2/N ≤ 1/2 → ek2/N ≤ 2

e−k2/N ≤ 1/2 → ek2/N ≥ 2 → k
2
/N ≥ ln2 → k ≥ (ln2)1/2 × N1/2

Fourth Problem

Probability: P = 1 −−−− e−−−−k2/N Sample size: k ≥≥≥≥ (ln2)1/2 ×××× N1/2

Table E.1 Summarized solutions to four birthday problems

Problem Probability General value for k

Value of k with

P ≥ 1/2

1 P ≈ 1 − e−k/N k  ≈ ln[1/(1 − P)] × N k ≈ 0.69 × N 

2 P ≈ 1 − e−(k−1)/N k  ≈ ln[1/(1 − P)] × N + 1 k ≈ 0.69 × N + 1

3 P ≈ 1 − e−k2/2N k  ≈ [2 ln (1/(1 − P))]1/2 × N1/2 k ≈ 1.18 × N1/2

4 P ≈ 1 − e−k2/N k  ≈ [ln (1/(1 − P))]1/2 × N1/2 k ≈ 0.83 × N1/2
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APPENDIX F

Information Theory

In this appendix, we discuss several concepts from information theory that are related
to topics discussed in this book.

F.1 MEASURING INFORMATION
How can we measure the information in an event? How much information does an
event carry? Let us answer these questions through examples.

Example F.1

Imagine a person sitting in a room. Looking out the window, she can clearly see that the sun is shin-
ing. If at this moment she receives a call (an event) from a neighbor saying, “It is now daytime,”
does this message contain any information? It does not. She is already certain that it is daytime. The
message does not remove any uncertainty in her mind.

Example F.2

Imagine a person has bought a lottery ticket. If a friend calls to tell her that she has won first
prize, does this message (event) contain any information? It does. The message contains a lot of
information, because the probability of winning first prize is very small. The receiver of the mes-
sage is totally surprised.

The above two examples show that there is a relationship between the usefulness of an
event and the expectation of the receiver. If the receiver is surprised when the event
happens, the message contains a lot of information; otherwise, it does not. In other
words, the information content of a message is inversely related to the probability of
the occurrence of that message. If the event is very probable, it does not contain any
information (Example F.1); if it is very improbable, it contains a lot of information
(Example F.2).
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F.2 ENTROPY
Assume that S is a finite probability sample space (See Appendix D). The entropy or
uncertainty of S is defined as 

H(S) = Σ P(s) × [log2 1/P(s)]    bits

where s ∈ S is the possible outcome of the experiment. Note that if P(s) = 0, then we let
the corresponding term, P(s) × [log2 1/P(s)], be 0 to avoid dividing by 0. 

Example F.3

Assume that we toss a fair coin. The outcomes are heads and tails, each with a probability of 1/2.
This means

This example shows that the result of flipping a fair coin gives us 1 bit of information
(uncertainty). In each flipping, we don’t know what the outcome will be; the two possibilities are
equally likely. 

Example F.4

Assume that we toss a nonfair coin. The outcomes are heads and tails, with P(heads) = 3/4 and
P(tails) = 1/4. This means

This example shows that the result of flipping a nonfair coin gives us only 0.8 bit of infor-
mation (uncertainty). The amount of information here is less than the amount of information in
Example F.3, because we are expecting to get heads most of the time; we are surprised only when
we get tails.

Example F.5

Now assume that we toss a totally nonfair coin, in which the outcome is always heads, P(heads) = 1
and P(tails) = 0. The entropy in this case is

There is no information (uncertainty) in this experiment. We know that the outcome will
always be heads; the entropy is 0.

Maximum Entropy

It can be proven that for a particular probability sample space with n possible outcomes,
maximum entropy can be achieved only if all the probabilities are the same (all out-
comes are equally likely). In this case, the maximum entropy is

Hmax(S) = log2 n     bits 

H(S) = P(heads) × [log2 1/(P(heads))] + P(tails) × [log2 1/(P(tails))]

H(S) = (1/2) × [log2 1/(1/2)] + (1/2) × [log2 1/(1/2)] = 1 bit

H(S) = (3/4) × [log2 1/(3/4)] + (1/4) × [log2 1/(1/4)] ≈ 0.8 bit

H(S) = (1) × [log2 1/(1)] + (0) × [log2 1/(0)] =  (1) × (0) + (0) = 0
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In other words, the entropy of every probability sample space has an upper limit defined by
this formula.

Example F.6

Assume that we roll a six-sided fair die. The entropy of the experiment is 

Minimum Entropy

It can be proven that for a particular probability sample space with n possible out-
comes, minimum entropy is obtained when only one of the outcomes occurs all the
time. In this case, the minimum entropy is

Hmin(S) = 0     bits

In other words, the entropy of every probability sample space has a lower limit defined
by the above formula.

Interpretation of Entropy

Entropy can be thought of as the number of bits needed to represent each outcome of a
probability sample space when the outcomes are equally probable. For example, when
a probability sample space has eight possible outcomes, each outcome can be repre-
sented as three bits (000 to 111). When we receive the result of the experiment, we can
say that we have received 3 bits of information. The entropy of this probability sample
space is also 3 bits (log2 8 = 3). 

Joint Entropy

When we have two probability sample spaces, S1 and S2, we can define the joint
entropy H(S1, S2) as 

H(S1, S2) =  ΣΣ P (x, y) × [log2 1/P (x, y)]    bits

Conditional Entropy

We often need to know the uncertainty in the probability sample space S1, given the
uncertainty in probability sample space S2. This is referred to as conditional entropy
H(S1 | S2). It can be proven that

H(S1 | S2) = H(S1, S2)  − H(S2) bits

H(S) = log2 6 ≈ 2.58 bits

The entropy of a probability sample space is between 0 bits and log2 n bits, where n is 
the number of possible outcomes.
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Other Relations

There are some other entropy relations that we mention here without proof:

In the second and third relation, the equality holds if S1 and S2 are independent. 

Example F.7

In cryptography, if we let P be the plaintext probability sample space, let C be the ciphertext
probability sample space, and let K be the key sample space, then H (K | C) can be interpreted as
a ciphertext attack in which knowledge of C can lead to knowledge of K.

Example F.8

In cryptography, given the plaintext and key, a deterministic encryption algorithm creates a
unique ciphertext, which means H(C | K, P) = 0. Also given the ciphertext and the key, the
decryption algorithm creates a unique plaintext, which means H(P | K, C) = 0. If given the
ciphertext and the plaintext, the key is also determined uniquely, then H(K | P, C) = 0.

Perfect Secrecy

In cryptography, if P, K, and C are probability sample spaces of plaintext, ciphertext,
and the key, respectively, then we have H(P | C) ≤ H(P). This can be interpreted
as saying that the uncertainty of P given C is less than or equal to the uncertainty of P.
In most cryptosystems, the relation H(P | C) < H(P) holds, which means that the
interception of the ciphertext reduces the knowledge required to find the plaintext. A
cryptosystem provides perfect secrecy if the relation H(P | C) = H(P) holds, which
means the uncertainty about the plaintext given the ciphertext is the same as the
uncertainty about the plaintext. In other words, Eve gains no information by inter-
cepting the ciphertext; she still needs to guess the value of the plaintext by examining
all possibilities. 

Example F.9

In previous chapters, we claimed that the one -time pad cipher provides prefect secrecy. Let us
prove this fact using the previous relations about entropies. Assume that the alphabet is made of
only 0 and 1. If the length of the message is L, it can be proved that the key and the ciphertext each are
made of 2L symbols, in which each symbol is equally probable. Hence H(K) = H(C) = log2 2L = L.

1. H(S1, S2) = H(S2 | S1) ++++ H(S1) = H(S1 | S2) + H(S2)

2. H(S1, S2) ≤≤≤≤ H(S1) + H(S2)

3. H(S1 | S2) ≤≤≤≤ H(S1) 

4. H(S1, S2, S3) = H(S1 | S2, S3)  ++++ H(S1, S3)

A cryptosystem provides perfect secrecy if H(P | C) ====    H(P). 
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Using the relations obtained in Example F.8 and the fact that H(P, K) = H(P) + H(K) because P
and K are independent, we have 

Example F.10

Shannon showed that in a cryptosystem, if (1) the keys in the key sample space occur with equal
probability and (2) for each plaintext and each ciphertext, there is a unique key, then the crypto-
system provides perfect secrecy. The proof uses the fact that, in this case, the key, plaintext, and
ciphertext probability sample spaces are of the same size.

F.3 ENTROPY OF A LANGUAGE
It is interesting to relate the concept of entropy to natural languages such as English. In
this section, we highlight some points related to entropy. 

Entropy of an Arbitrary Language

Assume that a language uses N letters and that all the letters have equal likelihood of
occurring. We can say that the entropy of this language is HL = log2N. For example, if we
use the twenty-six uppercase letters (A to Z) to send our message, the entropy, or the infor-
mation contained in each letter, is HL = log226 ≈ 4.7 bits. In other words, receiving a letter
in this language is equal to receiving 4.7 bits. This means that we can encode the letters in
this language using 5-bit words; instead of sending a letter, we can send one 5-bit word.

Entropy of the English Language

The entropy of the English language is much less than 4.7 bits (if we use only uppercase
letters), for two reasons. First, the letters are not equally likely to occur. Chapter 3 shows
the frequencies of letters occurring in the English language. The letter E is much more
likely to occur than the letter Z. Second, the existence of digrams and trigrams reduces
the amount of information in the received text. If we receive the letter Q, it is very likely
that the next letter is U. Also, if we receive the five consecutive letters SELLI, it is very
likely that the next two letters are NG. These two facts reduce the entropy of the English
language, as Shannon has cleverly calculated, to the average value of 1.50. 

Redundancy

The redundancy of a language has been defined as 

R = 1 − HL/(log2N)

In the case of the English language using only uppercase letters R = 1 − 1.50/4.7 = 0.68.
In other words, there is a 70 percent redundancy in an English message. A compression
algorithm can compress an English text up to 70 percent without losing the contents. 

H(P, K, C) = H(C | P, K) + H(P, K) = H(P, K)  =  H(P) + H(K)

H(P, K, C) = H(K | P, C) + H(P, C) = H(P, C)  = H(P | C) + H(C)

This implies H(P | C) = H(P)
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Unicity Distance

Another definition by Shannon is the unicity distance. The unicity distance is the mini-
mum length of the ciphertext, n0, required for Eve to uniquely determine the key (given
enough time) and eventually calculates the plaintext. The unicity distance is defined as

n0 = H(K)/[R × H(P)]

Example F.11

The substitution cipher uses a key domain of 26! keys and the alphabet of 26 characters. Using
the redundancy of 0.70 for the English language, the unicity distance is 

This means that a ciphertext of at least 27 characters is needed for Eve to uniquely find
the plaintext. 

Example F.12

The shift cipher uses a key domain of 26 keys and the alphabet of 26 characters. Using the redun-
dancy of 0.70 for the English language, the unicity distance is 

This means that a ciphertext of at least 2 characters is needed for Eve to uniquely find
the plaintext. Of course, this is a very rough estimate. In an actual situation, Eve needs
more characters to break the code.

n0 = (log226!)/(0.70 × log226) ≈ 27 

n0 = (log226)/(0.70 × log226) ≈ 1.5 
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APPENDIX G

List of Irreducible and
Primitive Polynomials

Recall from Chapter 4 that an irreducible polynomial in GF(2n) is a polynomial with

degree n that cannot be factored into a polynomial with degree of less than n. Also

recall from Chapter 5 that a primitive polynomial is an irreducible polynomial that

divides xe + 1, where e is the least integer in the form e = 2k − 1 and k ≥ 2. This means

that a primitive polynomial is necessarily an irreducible polynomial, but an irreducible

polynomial is not necessarily a primitive polynomial. Table G.1 shows the irreducible and

primitive polynomials for degrees 1 to 8. Those in parentheses are only irreducible but

not primitive. 

To find the polynomial represented by the hexadecimal number in the table, first

write the number in binary and then convert it to the polynomial. 

Table G.1 Irreducible and primitive polynomials.

n Polynomials (in hexadecimal format)

1 3 2

2 7

3 B D

4 13 19 (1F)

5 25 29 2F 37 3B 3D

6 43 (45) 49 57 5B 61 6D 73

7 83 87 91 9D A7 AB B9 BF C1 CB

D3 D4 E5 EF F1 F7 FD    

8 (11B) 11D 12B  12D (139) (13F) 14D 15F 163 165

169 171 (177) (17B) 187 (18B) (19F) (1A3) 1A9 (1B1)

(1BD) 1CF (1D7) (1DB) 1E7 (1F3) 1F5 (1F9)
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Example G.1

Find the first primitive polynomial of degree 7.

Solution

The first entry for degree 7 is 83 in hexadecimal, which is both an irreducible and primitive poly-

nomial. The integer 83 in hexadecimal is equivalent to 1000 0011 in binary. The corresponding

polynomial is x7 
+ x + 1.

Example G.2

Find the first irreducible polynomial of degree 6, which is not a primitive polynomial. 

Solution

The first nonprimitive polynomial of degree 6 is (45) in hexadecimal. The integer 45 in hexadeci-

mal is equivalent to 100 0101 in binary (note that we must keep only 7 bits). The corresponding

polynomial is x6 
+ x2 + 1.

Example G.3

Find the second irreducible polynomial of degree 8, which is not a primitive polynomial. 

Solution

The second nonprimitive polynomial of degree 8 is (139) in hexadecimal. The integer 139 in

hexadecimal is equivalent to 1 0011 1001 in binary (note that we must keep only 9 bits). The cor-

responding polynomial is x8 
+ x5 

+ x4  
+ x3 + 1.
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APPENDIX H

Primes Less Than 10,000 

This appendix lists the primes less than 10,000. In each table, each number in the first

column is the number of primes in the corresponding range for that row.              

Table H.1 List of primes in the range 1–1000

25 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

21 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

16 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 

16 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 

17 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 

14 503 509 521 523 541 547 557 563 569 571 577 587 593 599 

16 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 

14 701 709 719 727 733 739 743 751 757 761 769 773 787 797 

15 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 

14 907 911 919 929 937 941 947 953 967 971 977 983 991 997 

The total number of primes in the range 1−1000 is 168.

Table H.2 List of primes in the range 1001–2000 

16 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097

12 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 

15 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 

11 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399

17 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 

1493 1499

12 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597

15 1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 

12 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789

12 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889

13 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999

The total number of primes in the range 1001−2000 is 134.
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Table H.3 List of primes in the range 2001–3000

14 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 

10 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 

15 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 

15 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 

10 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 

11 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 

15 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 

14 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797 

12 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 

11 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 

The total number of primes in the range 2001−3000 is 127.

Table H.4 List of primes in the range 3001–4000

12 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 

10 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 

11 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 

15 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 

11 3407 3413 3433 3449 3457 3461 3463 3467 3469 3491 3499 

14 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 3593 

13 3607 3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 3697 

12 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797 

11 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 

11 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 

The total number of primes in the range 3001−4000 is 120.

Table H.5 List of primes in the range 4001–5000

15 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 

  9 4111 4127 4129 4133 4139 4153 4157 4159 4177 

16 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297

  9 4327 4337 4339 4349 4357 4363 4373 4391 4397 

11 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 

12 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 

12 4603 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 

12 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 4799 

  8 4801 4813 4817 4831 4861 4871 4877 4889 

15 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 

The total number of primes in the range 4001−5000 is 119.
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Table H.6 List of primes in the range 5001–6000

12 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 

11 5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 5197 

10 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 

10 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 

13 5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 

13 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 

12 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 

10 5701 5711 5717 5737 5741 5743 5749 5779 5783 5791 

16 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 

  7 5903 5923 5927 5939 5953 5981 5987 

The total number of primes in the range 5001−6000 is 114.

Table H.7 List of primes in the range 6001–7000

12 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 

11 6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 

13 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 

15 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 

  8 6421 6427 6449 6451 6469 6473 6481 6491 

11 6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 6599

10 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 

12 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 

12 6803 6823 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 

13 6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 6997 

The total number of primes in the range 6001−7000 is 117.

Table H.8 List of primes in the range 7001–8000

  9 7001 7013 7019 7027 7039 7043 7057 7069 7079 

10 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193 

11 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 

  9 7307 7309 7321 7331 7333 7349 7351 7369 7393 

11 7411 7417 7433 7451 7457 7459 7477 7481 7487 7489 7499 

15 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591 

12 7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 7699 

10 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 

10 7817 7823 7829 7841 7853 7867 7873 7877 7879 7883 

10 7901 7907 7919 7927 7933 7937 7949 7951 7963 7993 

The total number of primes in the range 7001−8000 is 107.
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Table H.9 List of primes in the range 8001–9000

11 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 

10 8101 8111 8117 8123 8147 8161 8167 8171 8179 8191 

14 8209 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287 8291 8293 8297

  9 8311 8317 8329 8353 8363 8369 8377 8387 8389 

  8 8419 8423 8429 8431 8443 8447 8461 8467

12 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597 8599 

13 8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 8693 8699 

11 8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 

13 8803 8807 8819 8821 8831 8837 8839 8849 8861 8863 8867 8887 8893

  9 8923 8929 8933 8941 8951 8963 8969 8971 8999 

The total number of primes in the range 8001−9000 is 110.

Table H.10 List of primes in the range 9001–10,000

11 9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 9091

12 9103 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187 9199 

11 9203 9209 9221 9227 9239 9241 9257 9277 9281 9283 9293 

11 9311 9319 9323 9337 9341 9343 9349 9371 9377 9391 9397 

15 9403 9413 9419 9421 9431 9433 9437 9439 9461 9463 9467 9473 9479 9491 9497 

  7 9511 9521 9533 9539 9547 9551 9587 

13 9601 9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689 9697 

11 9719 9721 9733 9739 9743 9749 9767 9769 9781 9787 9791 

12 9803 9811 9817 9829 9833 9839 9851 9857 9859 9871 9883 9887 

  9 9901 9907 9923 9929 9931 9941 9949 9967 9973 

The total number of primes in the range 9001−10,000 is 112.
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APPENDIX I

Prime Factors of
Integers Less Than 1000

This appendix provides aid in finding prime factors of integers less than 1000. Tables I.1

and I.2 give the least prime factors. These tables do not include even integers (whose

least prime factors are obviously 2) and integers with 5 as the rightmost digit (with a

prime factors 5). Note that if no least factor is given for an integer, the integer itself is a

prime (its least factor is itself).

To find all factors of an integer less than 1000, first find the least factor, divide the

number by this factor, and search the table again to find the second factor, and so on. 

Example I.1

To find all factors of 693, we use the following steps:

1. The least factor of 693 is 3; 693/3 = 231.

2. The least factor of 231 is 3; 231/3 = 77.

3. The least factor of 77 is 7; 77/7 = 11.

4. The integer 11 is itself a prime. Therefore, 693 = 32 × 7 × 11.

Example I.2

To find all factors of 722, we use the following steps:

1. The number is even, so the least factor is obviously 2; 722/2 = 361.

2. The least factor of 361 is 19; 361/19 = 19.

3. The integer 19 is itself a prime. Therefore, 722 = 2 × 192.

Example I.3

To find all factors of 745, we use the following steps:

1. The number is divisible to 5, so the least factor is obviously 5; 745/5 = 149.

2. The integer 149 is itself a prime. Therefore, 745 = 5 × 149.   
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Table I.1 Least factor of integers in the range 1−500 (L. F. means least factor)

Integer L. F. Integer L. F. Integer L. F. Integer L. F. Integer L. F.

1

3

7

9

11

13

17

19

21

23

27

29

31

33

37

39

41

43

47

49

51

53

57

59

61

63

67

69

71

73

77

79

81

83

87

89

91

93

97

99

−

−

−

3

−

−

−

−

3

−

3

−

−

3

−

3

−

−

−

7

3

−

3

−

−

3

−

3

−

−

7

−

3

−

3

−

7

3

−

3

101

103

107

109

111

113

117

119

121

123

127

129

131

133

137

139

141

143

147

149

151

153

157

159

161

163

167

169

171

173

177

179

181

183

187

189

191

193

197

199

−

−

−

−

3

−

3

7

11

3

−

3

−

7

−

−

3

11

3

−

−

3

−

3

7

−

11

13

3

−

3

−

−

3

11

3

−

−

−

−

201

203

207

209

211

213

217

219

221

223

227

229

231

233

237

239

241

243

247

249

251

253

257

259

261

263

267

269

271

273

277

279

281

283

287

289

291

293

297

299

3

7

3

11

−

3

7

3

13

−

−

−

3

−

3

−

−

3

13

3

−

11

−

7

3

−

3

−

−

3

−

3

−

−

7

17

3

−

3

13

301

303

307

309

311

313

317

319

321

323

327

329

331

333

337

339

341

343

347

349

351

353

357

359

361

363

367

369

371

373

377

379

381

383

387

389

391

393

397

399

7

3

−

3

−

−

−

11

3

17

3

7

−

3

−

3

11

7

−

−

3

−

3

−

19

3

−

3

7

−

13

−

7

−

−

7

17

3

−

3

401

403

407

409

411

413

417

419

421

423

427

429

431

433

437

439

441

443

447

449

451

453

457

459

461

463

467

469

471

473

477

479

481

483

487

489

491

493

497

499

−

13

11

−

3

7

3

−

−

3

7

3

−

−

19

−

3

−

3

−

11

3

−

3

−

−

−

7

3

11

3

−

13

3

−

13

−

17

7

−



PRIME FACTORS OF INTEGERS LESS THAN 1000 629

Table I.2 Least factor of integer in the range 501−1000 (L. F. means least factor)

Integer L. F. Integer L. F. Integer L. F. Integer L. F. Integer L. F.

501

503

507

509

511

513

517

519

521

523

527

529

531

533

537

539

541

543

547

549

551

553

557

559

561

563

567

569

571

573

557

579

581

583

587

589

591

593

597

599

3

−

−

3

7

3

11

3

−

−

17

23

3

13

3

7

−

3

−

3

19

7

−

13

3

−

3

−

−

3

−

3

7

11

−

19

3

−

3

−

601

603

607

609

611

613

617

619

621

623

627

629

631

633

637

639

641

643

647

649

651

653

657

659

661

663

667

669

671

673

677

679

681

683

687

689

691

693

697

699

−

3

−

3

13

−

−

−

3

7

3

17

−

3

7

3

−

−

−

11

3

−

3

−

−

3

23

3

11

−

−

7

3

−

3

13

−

17

−

3

701

703

707

709

711

713

717

719

721

723

727

729

731

733

737

739

741

743

747

749

751

753

757

759

761

763

767

769

771

773

777

779

781

783

787

789

791

793

797

799

−

19

7

−

3

13

3

−

7

3

−

3

17

−

11

−

3

−

3

7

−

3

−

3

−

7

13

−

3

−

3

19

11

3

−

3

7

3

−

17

801

803

807

809

811

813

817

819

821

823

827

829

831

833

837

839

841

843

847

849

851

853

857

859

861

863

867

869

871

873

877

879

881

883

887

889

891

893

897

899

3

11

3

−

−

3

19

3

−

−

−

−

3

7

3

−

29

3

7

3

23

−

−

−

3

−

3

11

13

3

−

3

−

−

−

7

3

19

3

29

901

903

907

909

911

913

917

919

921

923

927

929

931

933

937

939

941

943

947

949

951

953

957

959

961

963

967

969

971

973

977

979

981

983

987

989

991

993

997

999

17

3

−

3

−

11

7

−

3

13

3

−

7

3

−

3

−

23

−

13

3

−

3

7

31

3

−

3

−

7

−

11

3

−

3

23

−

3

−

3
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APPENDIX J

List of First Primitive Roots 
for Primes Less Than 1000 

Table J.1 shows the first primitive roots modulo a prime for primes less than 1000.

Table J.1

Prime Root Prime Root Prime Root Prime Root Prime Root Prime Root Prime Root

  2 1 103 5 241 7 401 3 571 3 739 3 919 7

  3 2 107 2 251 6 409 21 577 5 743 5 929 3

  5 2 109 6 257 3 419 2 587 2 751 3 937 5

  7 3 113 2 263 5 421   2 593 3 757 2 941 2

 11 2 127 3 269 2 431   7 599 7 761 6 947 2

 13 2 131 2 271 6 433   5 601 7 769 11 953 3

 17 3 137 3 277 5 439 15 607 3 773 2 967 5

 19 2 139 2 281 3 443   2 613 2 787 2 971 2

 23 5 149 2 283 3 449   3 617 3 797 2 977 3

 29 2 151 6 293 2 457 13 619 2 809 3 983 5

 31 3 157 5 307 5 461  2 631 3 811 3 991 6

 37 2 163 2 311 17 463  3 641 3 821 2 997 7

 41 6 167 5 313 10 467 2 643 11 823 3

 43 3 173 2 317 2 479 13 647 5 827 2

 47 5 179 2 331 3 487 3 653 2 829 2

 53 2 181 2 337 10 491 2 659 2 839 11

 59 2 191 19 347 2 499 7 671 2 853 2

 61 2 193 5 349 2 503 5 673 5 857 3

 67 2 197 2 353 2 509 2 677 2 859 2

 71 2 199 3 359 7 521 3 683 5 863 5

 73 5 211 2 367 6 523 2 691 3 877 2

 79 3 223 3 373 2 541 2 701 2 881 3

 83 2 227 2 379 2 547 2 709 2 883 2

 89 2 229 6 383 5 557 2 719 11 887 5

 97 5 233 3 389 2 563 2 727 5 907 2

101 2 239 7 397 5 569 3 733 6 911 17
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APPENDIX K

Random Number Generator 

Cryptography and randomness are closely related. In Appendix F, Information Theory,

we mentioned that perfect secrecy can be achieved if the key of the encipherment algo-

rithm is truly a random number. There are two approaches to generating a long stream

of random bits: using a natural random process, such as flipping a coin many times and

interpreting heads and tails as 0-bits and 1-bits, or using a deterministic process with

feedback. The first approach is called a true random number generator (TRNG); the

second is called a pseudorandom number generator (PRNG). Figure K.1 shows

these two approaches. 

K.1 TRNG

Although flipping a fair coin continuously creates a perfect stream of bits, it is not prac-

tical. There are many natural sources that can produce true random numbers, such as

sampling thermal noise produced in an electric resistor or measuring the response time

of a mechanical or electrical process. These natural resources have been used in the past,

and some of them have been commercialized. However, there are several drawbacks to

this approach. The process is normally slow, and the same random stream cannot be

repeated if needed.

Figure K.1 TRNG and PRNG

Deterministic
process

Feedback

Long
stream

Short
stream

a. TRGN b. PRNG

Long
stream

Repeated
experiments

Random
process
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K.2 PRNG

A reasonably random stream of bits can be achieved using a deterministic process with

a short random stream as the input (seed). A pseudorandom number generator uses this

approach. The generated number is not truly random because the process that creates it

is deterministic. PRNGs can be divided into two broad categories: congruential genera-

tors and generators using cryptographic ciphers. We discuss some generators in each

category.

Congruential Generators

Several methods use some congruential relations.   

Linear Congruential Generator

In computer science, the most common technique for generating pseudorandom num-

bers is the linear congruential method, introduced by Lehmer. As Figure K.2 shows,

this method recursively creates a sequence of pseudorandom numbers using a linear

congruence equation of the form xi + 1 = (axi + b) mod n, where x0, called the seed, is a

number between 0 and n − 1. 

 The sequence is periodic, where the period depends one how carefully the coeffi-

cients, a and b, are selected. The ideal is to make the period as large as the modulus n. 

Example K.1

Assume that a = 4, b = 5, n = 17, and x0 = 7. The sequence is 16, 1, 9, 7, 16, 1, 9, 7, …, which is

definitely a poor pseudorandom sequence; the period is only 4. 

Criteria Several criteria for an acceptable PRNG have been developed during the last

few decades:

1. The period must be equal to n (the modulus). This means that, before the integers

in the sequence are repeated, all integers between 0 and n − 1 must be generated. 

2. The sequence in each period must be random.

3. The generating process must be efficient. Most computers today are efficient when

arithmetic is done using 32-bit words. 

Figure K.2 Linear congruential pseudorandom number generator

Feedback

Seed Random
number

x0 

xi + 1 
= (axi  + b) mod n

  

n a b
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Recommendation Based on the previous criteria, the following are recommended

for selecting the coefficients of the congruence equation and the value of the modulus.

1. A good choice for the modulus, n, is the largest prime number close to the size of a

word in the computer being used. The recommendation is to use the thirty-first

Mersenne prime as the modulus: n = M31 = 231
 − 1.

2. To create a period as long as the modulus, the value of the first coefficient, a,

should be a primitive root of the prime modulus. Although the integer 7 is a primi-

tive root of M31, it is recommended to use 7k, where k is an integer coprime with

(M31 − 1). Some recommended values for k are 5 and 13. This means that (a = 75)

or (a = 713). 

3. For the second recommendation to be effective, the value of the second coefficient,

b, should be zero.  

Security A sequence generated by a linear congruential equation shows reasonable

randomness if the previous recommendations are followed. The sequence is useful in

some applications where only randomness is required (such as simulation); it is useless

in cryptography where both randomness and secrecy are desired. Because n is public,

the sequence can be attacked by Eve using one of the two strategies:

a. If Eve knows the value of the seed (x0) and the coefficient a, she can easily regener-

ate the whole sequence. 

b. If Eve does not know the value of x0 and a, she can intercept the first two integers

and use the following two equations to find x0 and a:

Quadratic Residue Generator

To make the pseudorandom sequence less predictable, a quadratic residue generator has

been introduced (see Chapter 9), xi+1 = xi
2 mod n, where x0, called the seed, is a num-

ber between 0 and n − 1.

Blum Blum Shub Generator

A simple but efficient method for generating a pseudorandom number generator is

called Blum Blum Shub (BBC) after the names of its three inventors. BBC uses qua-

dratic residue congruence, but it is a pseudorandom bit generator instead of a pseudo-

random number generator; it generates a sequence of bits (0 or 1). Figure K.3 shows the

idea of this generator. 

The following shows the steps:

1. Find two large primes numbers p and q in the form 4k + 3, where k is an integer

(both p and q are congruent to 3 modulo 4). 

2. Select the modulus n = p × q. 

Linear Congruential Generator:

xi+1 = axi mod n, where n = 231
 − 1 and a = 75 or a = 713

x1 = ax0 mod n                 x2 = ax1 mod n
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3. Choose a random integer r which is coprime to n. 

4. Calculate the seed as x0 = r2 mod n. 

5. Generate the sequence as xi+1 = xi
2 mod n.

6. Extract the least significant bit of the generated random integer as the random bit.

Security It can be proven that if p and q are known, the ith bit in the sequence can be

found as the least significant bit of   

xi = x0
2

i
 mod [(p − 1)(q − 1)] mod n

This means that if Eve knows the value of p and q, she can find the value of the ith bit

by trying possible values of x0 (the value of n is usually public). This means that the

complexity of this generator is the same as the factorization of n. If n is large enough,

the sequence is secure (unpredictable). It has been proved that with a very large n, Eve

cannot guess the value of the next bit in the sequence even if she knows the values of all

previous bits. The probability of each bit being 0 or 1 is very close to 50 percent. 

Cryptosystem-Based Generators

A cryptosystem such as an encryption cipher or a hash function can also be use to

generate a random stream of bits. We briefly mention two systems that use encryption

algorithms. 

ANSI X9.17 PRNG

ANSI X9.17 defines a cryptographically strong pseudorandom number generator.

The generator uses three 3DES with two keys (encryption-decryption-encryption).

Figure K.4 shows the design. Note that the first pseudorandom number uses a 64-bit

seed as the initial vector (IV); the rest of the pseudorandom numbers use the seed

shown as the next IV. The same 112-bit secret key (K1 and K2 in 3DES), are used for

all three 3DES ciphers. 

Figure K.3 Blum Blum Shub (BBC) pseudorandom number generator 

The security of BBC depends on the difficulty of factoring n. 
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The configuration in Figure K.4 is the cipher-block chaining (CBC) mode we

described in Figure 8.3 in Chapter 8. X9.17 uses two stages of the block chaining. The

plaintext for each stage comes from the output of the first 3DES, which uses the 64-bit

date and time as the plaintext. The ciphertext created from the second 3DES is the

random number; the ciphertext created from the third 3DES is the next IV for the next

random number. 

The strength of X9.17 can be due to the following facts:

1. The key is 112 (2 × 56) bits.

2. The date-and-time input of 64 provides a good timestamp preventing replay

attack.

3. The system provides an excellent confusion-diffusion effect with six encryptions

and three decryptions. 

PGP PRNG

PGP uses the same idea as X9.17 with several changes. First, PGP PRNG uses seven

stages instead of two. Second, the cipher is either IDEA or CAST-128 (not dis-

cussed in this book). Third, the key is normally 128 bits. PGP PRNG creates three

64-bit random numbers: the first is used as the IV secret (for communication using

PGP, not for PRNG), the second and the third are concatenated to create a 128-bit

secret key (for communication using PGP). Figure K.5 shows a rough design of PGP

PRNG. The strength of PGP PRNG is in its key size and in the fact that the original

IV (seed) and the 128-bit secret key can be generated from a 24-byte true random

variable. 

Figure K.4 ANSI X9.17 pseudorandom number generator

ANSI X9.17 PRNG

Random number

Date and time

Seed

IV

3DES

3DES

3DES

64 bits

64 bits

64 bits Next IV

112-bit key
(K1 and K2)
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Figure K.5 PGP pseudorandom number generator
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APPENDIX L

Complexity

In computer science, we normally talk about the complexity of an algorithm and the

complexity of a problem. In this appendix, we give a brief review of these two issues as

they are related to cryptography.

L.1 COMPLEXITY OF AN ALGORITHM

In cryptography, we need a tool to analyze the computational complexity of an algorithm.

We need an encryption (or decryption) algorithm to have a low level of complexity

(efficient); we need an algorithm used by a cryptanalyst (to break the code) to have a

high level of complexity (inefficient). In other words, we want to do encryption and

decryption in a short span of time, but we want the intruder to have to run her computers

forever if she tries to break the code. 

The complexity of an algorithm is normally based on two types of resources. The

space complexity of an algorithm refers to the amount of memory needed to store

the algorithm (program) and the data. The time complexity of an algorithm refers to

the amount of time needed to run the algorithm (program) and to get the result. 

Bit-Operation Complexity

In the rest of this appendix, we deal only with time complexity, which is of more con-

cern, more common, and easier to measure. The time complexity of an algorithm

depends on the particular computer on which the algorithm is to be run. To make the

complexity independent from the corresponding computer, the bit-operation complexity,

ƒ(nb), is defined, which counts the number of bit operations the computer needs to per-

form to create the output from an nb-bit input. A bit operation is the time required for a

computer to add, subtract, multiply, or divide two single bits or to shift one single bit.

Example L.1

What is the bit-operation complexity of a function that adds two integers?

Solution
The complexity of the operation is ƒ(nb) = nb, where nb is the number of bits needed to represent

the larger integer. If the value of the larger integer is N, nb = log2N. 
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Example L.2

What is the bit-operation complexity of a function that multiplies two integers. 

Solution
Although today there are faster algorithms available to multiply two integers, traditionally the

number of bit operations is assumed to be , where nb is the number of bits needed to represent

the larger integer. The complexity is therefore ƒ(nb) = . 

Example L.3

What is the bit-operation complexity of a function that adds two integers, each having d decimal

digits. 

Solution
The maximum value of a number of d decimal digits is N = 10d − 1 or N ≈ 10d. The number of

bits in the input is nb = log2 N = log210d= d × log210. The complexity is then ƒ(nb) = d × log210.

For example, if d = 300 digits, ƒ(nb) = 300 log210 ≈ 997 bit operations. 

Example L.4

What is the bit-operation complexity of a function that calculates B = AC (if A < C)? 

Solution
Assume that the number of bits in C is nb (C = 2nb or nb = log2C). The conventional exponentiation

method uses C multiplications. Each multiplication operation needs  bit operations (using a con-

ventional multiplication algorithm). The complexity is therefore ƒ(nb) = C ×  = 2nb × . For

example, if C is in the range of 21024 (nb = 1024), the conventional exponential method gives us 

This means that if the computer can do 220 (almost one million) bit operations per second, it

takes 21044 / 220 = 21024 seconds (forever) to perform this operation. 

Example L.5

What is the bit-operation complexity of a function that calculates B = AC (if A < C) using the fast

exponential algorithm (square-and-multiply method) discussed in Chapter 9? 

Solution
We showed in Chapter 9 that the fast exponential algorithm uses a maximum of 2nb multiplica-

tions, where nb is number of bits in the binary representation of C. Each multiplication operation

needs  bit operations. The complexity is therefore ƒ(nb) = 2nb ×  = 2 . For example, if C is

in the range of 21024 (nb = 1024), the fast exponential algorithm gives us 

This means that if the computer can do 220 (almost one million) bit operations per second, it

takes 231 / 220 = 211 seconds (almost 34 minutes) to perform this operation. Today computers can

do this operation much faster. 

ƒ(nb) = 21024 × 10242 = 21024 × (210)2 = 21044 

ƒ(nb) = 2 × 10243 = 21 × (210)3 = 231 

nb
2

nb
2

nb
2

nb
2 nb

2

nb
2 nb

2 nb
3
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Asymptotic Complexity

The whole purpose of complexity is to measure the behavior of algorithms when nb, the

number of bits in the input, is very large. For example, assume that the following shows

the complexity of two algorithms:

When nb is small, these two algorithms behave differently; when nb is large (around

1000), the two algorithm behave almost the same. The reason is that terms 5, 5nb, and 4

are so small compared with the term 2nb that they can be totally ignored. We can say,

for large nb, ƒ1(nb) = ƒ2(nb) = 2nb. In other words, we are interested in ƒ(nb), when nb

approaches a very large number such as infinity. 

Big-O Notation

Using asymptotic complexity, we can define a standard scale of complexity with dis-

crete values and assign complexity to algorithms using one of these values. One of the

common standards is called Big-O notation, In this standard, ƒ(nb) = O(g(nb)), where

g(nb) is a function of nb derived from ƒ(nb), using the following three theorems:

❏ First Theorem. If we can find a constant K such that ƒ(nb) < Κ × g(nb), then we

have ƒ(nb) = O(g(nb)). This theorem can be easily implemented using the follow-

ing two simple rules:

a. Set all coefficients of nb in ƒ(nb) to 1.

b. Keep the largest term in ƒ(nb) as g(nb), and discard the others. Terms are ranked

from lowest to highest, as shown below: 

❏ Second Theorem. If ƒ1(nb) = O(g1(nb)) and ƒ2(nb) = O(g2(nb)), then 

ƒ1(nb) + ƒ2(nb)  = O(g1(nb) + g2(nb)).

❏ Third Theorem. If ƒ1(nb) = O(g1(nb)) and ƒ2(nb) = O(g2(nb)), then 

ƒ1(nb) × ƒ2(nb)  = O(g1(nb) × g2(nb)).

Example L.6

Find the Big-O notation for ƒ(nb) =  + 3  + 7.

Solution
Note that ƒ(nb) =  + 3  + 7 . Applying the first rule of the first theorem gives g(nb) =  + 

+ 1. Applying the second rule gives us g(nb) = . The Big-O notation is O( ). 

Example L.7

Find the Big-O notation for ƒ(nb) = (2nb + ) + (nblog2nb) 

Solution
We have ƒ1(nb) = (2nb + ) and ƒ2(nb) = (nblog2nb). Therefore, g1(nb) = 2nb and g2(nb) = nblog2nb.

Applying the second theorem, we have g(nb) = 2nb + nblog2nb. Applying the first theorem again, we

get g(nb) =2nb. The Big-O notation is O(2nb). 

ƒ1(nb) = 5 × 2nb + 5nb       and         ƒ2(nb) = 2nb + 4        

(1), (log nb), (nb), (nb log nb), (nb log nb log log nb), ( ), ( ), …, ( ), (2nb),  (nb!)nb
2 nb

3 nb
k

nb
5 nb

2

nb
5

nb
2 nb

0 nb
5 nb

2

nb
5 nb

5

nb
5

nb
5



642 APPENDIX L COMPLEXITY

Example L.8

Find the Big-O notation for ƒ(nb) = nb! (nb factorial). 

Solution
We know that nb! = nb × (nb − 1) × … × 2 × 1. Each term has the maximum complexity of O(nb).

According to the third theorem, the total complexity is nb times of O(nb) or O( ). 

Complexity Hierarchy

The previous discussion allows us to rank algorithms based on their bit-operation com-

plexity. Table L.1 gives common levels of hierarchy used in literature. 

An algorithm with constant, logarithmic, and polynomial complexity is considered

feasible for any size of nb. An algorithm with exponential and superexponential com-

plexity is considered infeasible if nb is very large. An algorithm with subexponential

complexity (such as O(2(log nb)2
) is feasible if nb is not very large. 

Example L.9

As shown in Example L.4, the complexity of conventional exponentiation is ƒ(nb) = 2nb × .

The Big-O notation for this algorithm is O(2nb × ), which is even more than exponential. This

algorithm is infeasible if nb is very large. 

Example L.10

As shown in Example L.5, the complexity of the fast exponential algorithm is ƒ(nb) = 2 . The

Big-O notation for this algorithm is O( ), which is polynomial. This algorithm is feasible; it is

used in the RSA cryptosystem. 

Example L.11

Assume that a cryptosystem has a key length of nb bits. To do a brute-force attack on this system,

the adversary needs to check 2nb different keys. This means that the algorithm needs to go

through 2nb steps. If N is the number of bit operations to do each step, the complexity of the algo-

rithm is definitely ƒ(nb) = N × 2nb. Even if N is a constant, the complexity of this algorithm is

exponential, O(2nb). Therefore, for a large nb, the attack is infeasible. In Chapter 6, we showed

that DES with the 56-bit key is vulnerable to brute-force attack, but 3DES, with the 112-bit is

not. In Chapter 7, we also showed that AES, with 128-bit key is immune to this attack. 

Table L.1 Complexity hierarchy and Big-O notations

Hierarchy Big-O Notation

Constant O(1)

Logarithmic O(log nb)

Polynomial O( ), where c is a constant

Subexponential O(2p(log nb)), where p is a polynomial in log nb

Exponential O(2nb)

Superexponential O(nb
nb) or O(22nb)

nb

nb

nb
c

nb
2

nb
2

nb
3

nb
3
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L.2 COMPLEXITY OF A PROBLEM

Complexity theory also discusses the complexity of a problem before writing an algo-

rithm for it. To define the complexity of a problem, one uses a Turing machine

(devised by Alan Turing), a machine with an infinite amount of memory. Modern com-

puters are realistic manifestations of the theoretical Turing machines. Two versions of

theoretical Turing machines are used to evaluate the complexity of problems: determin-

istic and nondeterministic. A nondeterministic machine can solve harder problems by

first guessing the solution and then checking its guess.

Two Broad Categories

Complexity theory divides all problems into two broad categories: undecidable prob-

lems and decidable problems. 

Undecidable Problems

An undecidable problem is a problem for which there is no algorithm that can solve it.

Alan Turing proved that the famous halting problem is undecidable. The halting prob-

lem can be simply stated as follows: “Given an input and a Turing machine, there is no

algorithm to determine if the machine will eventually halt.” There are several problems

in mathematics and computer science that are undecidable. 

Decidable Problems

A problem is decidable if an algorithm can be written to solve it. The corresponding

algorithm, however, may or may not be feasible. If a problem can be solved using an

algorithm of polynomial complexity or less, it is called a tractable problem. If a prob-

lem can be solved using an algorithm of exponential complexity, it is called intractable. 

P, NP, and coNP Complexity theory divides tractable problems into three (possibly

overlapping) classes, P, NP, and coNP. As shown in Figure L.1, NP and coNP classes

overlap and the P class is in the cross section of these classes. Problems in class P

(P stands for polynomial) can be solved by a deterministic Turing machine in polynomial

time. Problems in class NP (NP stands for nondeterministic polynomial) can be solved

by a nondeterministic Turing machine in polynomial time. Problems in class coNP

(coNP stands for complementary nondeterministic polynomial) are those problems

whose complements can be solved by a nondeterministic Turing machine. For example, a

problem that decides if an integer can be factored into two primes is the complementary

of the problem that can decide if a number is a prime. In other words, “can be factored”

is equivalent of  “is not a prime.” 

Figure L.1 Classes P, NP, and coNP

P

NP coNP
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L.3 PROBABILISTIC ALGORITHMS

If a problem is intractable, we may be able to find a probabilistic algorithm for it.

Although probabilistic algorithms do not guarantee that the solution is error-free, the

probability of error can be made very small by repeating the algorithm using several

different parameters. A probabilistic algorithm can be divided into two categories:

Monte Carlo and Las Vegas.

Monte Carlo Algorithms

A Monte Carlo algorithm is a yes/no decision algorithm: the output of the algorithm is

either yes or no. A yes-biased Monte Carlo algorithm gives a yes-result with probability

1 (no mistake); it gives a no-result with probability e (possible mistake). A no-biased

Monte Carlo algorithm gives a no-result with probability 1 (no mistake); it gives a yes-

result with probability e (possible mistake). We saw in Chapter 9 that a Monte Carlo

yes-biased algorithm for primality can test to see if an integer is prime. If the algorithm

returns “prime,” we are sure that the integer is prime; if it returns “composite,” the

number can be prime with a small probability.   

Las Vegas Algorithms

A Las Vegas algorithm is an algorithm that either succeeds or fails. If it succeeds, it

always returns a correct answer. It it fails, there is no answer.
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APPENDIX M

ZIP 

PGP (Chapter 16) uses the ZIP data compression technique. ZIP, created by Jean-lup

Gailey, Mark Adler, and Richard Wales, is based on an algorithm, called LZ77 (Lempel-

Ziv 77), devised by Jacop Ziv and Abraham Lempel. In this appendix, we briefly discuss

LZ77 as the basis for ZIP.

M.1 LZ77 ENCODING

LZ77 encoding is an example of dictionary-based encoding. The idea is to create a

dictionary (table) of strings used during the communication session. If both the

sender and the receiver have a copy of the dictionary, then already-encountered

strings can be replaced by their indices in the dictionary to reduce the amount of

information transmitted.

Although the idea appears simple, several difficulties surface in the implementa-

tion. First, how can a dictionary be created for each session? It cannot be universal due

to its length. Second, how can the receiver acquire the dictionary made by the sender?

If you send the dictionary, you are sending extra data, which defeats the whole purpose

of compression.

A practical algorithm that uses the idea of adaptive dictionary-based encoding is

the LZ77 algorithm. We introduce the basic idea of this algorithm with an example but

do not delve into the details of different versions and implementations. In our example,

assume that the following string is to be sent. We have chosen this specific string to

simplify the discussion. 

BAABABBBAABBBBAA

Using our simple version of the LZ77 algorithm, the process is divided into two

phases: compressing the string and decompressing the string. 
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Compression

In this phase, there are two concurrent events: building an indexed dictionary and com-

pressing a string of symbols. The algorithm extracts from the remaining noncompressed

string the smallest substring that cannot be found in the dictionary. It then stores a copy of

this substring in the dictionary, (as a new entry) and assigns it an index value. Compres-

sion occurs when the substring, except for the last character, is replaced with the index

found in the dictionary. The process then inserts the index and the last character of the

substring into the compressed string. For example, if the substring is ABBB, you search

for ABB in the dictionary. You find that the index for ABB is 4; the compressed substring

is therefore 4B. Figure M.1 shows the process for our sample string. 

Figure M.1 Example of LZ77 encoding
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Let us go through a few steps in Figure M.1:

❏ Step 1. The process extracts from the original string the smallest substring that is

not in the dictionary. Because the dictionary is empty, the smallest character is one

character (the first character, B). The process stores a copy of it as the first entry in

the dictionary. Its index is 1. No part of this substring can be replaced with an

index from the dictionary (it is only one character). The process inserts B in the

compressed string. So far, the compressed string has only one character: B. The

remaining noncompressed string is the original string without the first character. 

❏ Step 2. The process extracts from the remaining string the next smallest substring

that is not in the dictionary. This substring is the character A, which is not in the

dictionary. The process stores a copy of it as the second entry in the dictionary. No

part of this substring can be replaced with an index from the dictionary (it is only

one character). The process inserts A in the compressed string. So far, the com-

pressed string has two characters: B and A (we have placed commas between the

substrings in the compressed string to show the separation). 

❏ Step 3. The process extracts from the remaining string the next smallest substring

that is not in the dictionary. This situation differs from the two previous steps. The

next character (A) is in the dictionary, so the process extracts two characters (AB)

that are not in the dictionary. The process stores a copy of AB as the third entry in

the dictionary. The process now finds the index of an entry in the dictionary that is

the substring without the last character (AB without the last character is A). The

index for A is 2, so the process replaces A with 2 and inserts 2B in the compressed

string.

❏ Step 4. Next the process extracts the substring ABB (because A and AB are

already in the dictionary). A copy of ABB is stored in the dictionary with an index

of 4. The process finds the index of the substring without the last character (AB),

which is 3. The combination 3B is inserted into the compressed string. You may

have noticed that in the three previous steps, we have not actually achieved any

compression because we have replaced one character by one (A by A in the first

step and B by B in the second step) and two characters by two (AB by 2B in the

third step). But in this step, we have actually reduced the number of characters

(ABB becomes 3B). If the original string has many repetitions (which is true in

most cases), we can greatly reduce the number of characters. 

Each of the remaining steps is similar to one of the preceding four steps, and we let the

reader follow through. Note that the dictionary is used by the sender to find the indices.

It is not sent to the receiver; the receiver must create the dictionary for herself, as we

will see in the next section.

Decompression

Decompression is the inverse of the compression process. The process extracts the sub-

strings from the compressed string and tries to replace the indices with the correspond-

ing entries in the dictionary, which is empty at first and built up gradually. The whole

idea is that when an index is received, there is already an entry in the dictionary corre-

sponding to that index. Figure M.2 shows the decompression process. 
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Let us go through a few steps in Figure M.2:

❏ Step 1. The first substring of the compressed string is examined. It is B without an

index. Because the substring is not in the dictionary, it is added to the dictionary.

The substring (B) is inserted into the decompressed string. 

❏ Step 2. The second substring (A) is examined; the situation is similar to step 1.

Now the decompressed string has two characters (BA), and the dictionary has two

entries.

Figure M.2 Example of LZ77 decoding
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❏ Step 3. The third substring (2B) is examined. The process searches the dictionary

and replaces the index 2 with the substring A. The new substring (AB) is added to

the decompressed string, and AB is added to the dictionary.

❏ Step 4. The fourth substring (3B) is examined. The process searches the dictionary

and replaces the index 3 with the substring AB. The substring ABB is now added

to the decompressed string, and ABB is added to the dictionary.

We leave the exploration of the last three steps as an exercise. As you have noticed, we

used a number such as 1 or 2 for the index. In reality, the index is a binary pattern (pos-

sibly variable in length) for better efficiency. 
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APPENDIX N

Differential and Linear
Cryptanalysis of DES

In this appendix, we briefly discuss two issues related to the DES cipher discussed in

Chapter 6: differential and linear cryptanalysis. Thorough coverage of these two issues

is beyond the scope of this book. This appendix is designed to give the general picture

and a motivation for interested readers. 

N.1 DIFFERENTIAL CRYPTANALYSIS

Differential cryptanalysis for DES was invented by Biham and Shamir. In this cryp-

tanalysis, the intruder concentrates on chosen-plaintext attacks. The analysis uses the

propagation of input differences through the cipher. The term difference here is used to

refer to the exclusive-or of two different inputs (plaintexts). In other words, the intruder

analyzes how P ⊕ P′ is propagated through rounds. 

Probabilistic Relations

The idea of differential cryptanalysis is based on the probabilistic relations between

input differences and output differences. Two relations are of particular interest in the

analysis: differential profiles and round characteristics, as shown in Figure N.1.  

Figure N.1 Differential profile and round characteristic for DES
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Differential Profile

A differential profile (or XOR profile) shows the probabilistic relation between the

input differences and output differences of an S-box. We discussed this profile for a

simple S-box in Chapter 5 (see Table 5.5). Similar profiles can be created for each of

the eight S-boxes in DES. 

Round Characteristic

A round characteristic is similar to a differential profile, but calculated for the whole

round. The characteristic shows the probability that one input difference would create

one output difference. Note that the characteristic is the same for each round because

any relation that involves differences is independent of the round key. Figure N.2 shows

four different round characteristics.    

Although we can have many characteristics for a round, Figure N.2 shows only

four of them. In each characteristic, we have divided the input differences and the

output differences into the left and right sections. Each left or right difference is made

of 32 bits or eight hexadecimal digits. All of these characteristics can be proved

using a program that finds the input/output relation in a round of DES. Figure N.2a

shows that the input difference of (x, 0000000016) produces the output difference of

(x, 0000000016) with probability 1. Figure N.2b shows the same characteristic as

Figure N.2a except that the left and right inputs and outputs are swapped; the

probability will change tremendously. Figure N.2c shows that input difference of

(4008000016, 0400000016) produces the output difference (0000000016, 0400000016)

with probability 1/4. Finally, Figure N.2d shows that the input difference (0000000016,

6000000016) produces the output difference (0080820016, 600000016) with probability

14/64.

Figure N.2 Some round characteristics for differential cryptanalysis
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A Three-Round Characteristic

After creation and storage of single-round characteristics, the analyzer can combine

different rounds to create a multiple-round characteristic. Figure N.3 shows a case of a

three-round DES. 

In Figure N.3, we have used three mixers and only two swappers, because the last

round needs no swapper, as discussed in Chapter 5. The characteristics shown in the

mixers of the first and third rounds is the same as the one in Figure N.2b. The character-

istic of the mixer in the second round is the same as the one in Figure N.2a. A very

interesting point is that, in this particular case, the input and output differences are the

same (∆L3 = ∆L0 and ∆R3 = ∆R0).

A Sixteen-Round Characteristic

Many different characteristics can be compiled for a sixteen-round cipher. Figure N.4

shows an example. In this figure, a complete DES cipher is made of eight two-round

sections. Each section uses the characteristics a and b in Figure N.2. It is clear that if

the last round lacks the swapper, the input (x, 0) creates the output (0, x) with probabil-

ity (1/234)8.  

Attack

For the sake of example, let us assume that Eve uses the characteristic of Figure N.4 to

attack a sixteen-round DES. Eve somehow lures Alice to encrypt a lot of plaintexts

in the form (x, 0), in which the left half is x (different values) and the right half is 0. Eve

then keeps all ciphertexts received from Alice in the form (0, x). Note that 0 here means

0000000016. 

Figure N.3 A three-round characteristic for differential cryptanalysis
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Finding the Cipher Key

The ultimate goal of the intruder in differential cryptanalysis is to find the cipher

key. This can be done by finding the round keys from the bottom to the top (K16

to K1).

Finding the Last Round Key

If the intruder has enough plaintext/ciphertext pairs (each with different values of x),

she can use the relationship in the last round, 0 = f (K16, x), to find some of the bits in

K16. This can be done by finding the most probable values that make this relation more

likely. 

Finding Other Round Keys

The keys for other rounds can be found using other characteristics or using brute-force

attacks.

Security

It turned out that 247 chosen plaintext/ciphertext pairs are needed to attack a 16-round

DES. Finding such a huge number of chosen pairs is extremely difficult in real-life

situations. This means that DES is not vulnerable to this type of attack. 

Figure N.4 A sixteen-round characteristic for differential cryptanalysis
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N.2 LINEAR CRYPTANALYSIS

Linear cryptanalysis for DES was developed by Matsui. It is a known-plaintext attack.

The analysis uses the propagation of a particular set of bits through the cipher. 

Linearity Relations

Linear cryptanalysis concentrates on linearity relations. Two set of relations are of par-

ticular interest in this cryptanalysis: linear profiles and round characteristics, as shown

in Figure N.5. 

Linear Profile

A linear profile shows the level of linearity between the input and output of an S-box.

We saw in Chapter 5 that, in an S-box, each output bit is a function of all input bits. The

desired property in an S-box is achieved if each output bit is a nonlinear function of all

input bits. Unfortunately, this ideal situation does not exist in DES; some output bits are

a linear function of some combinations of input bits. In other words, one can find some

combinations of input/output bits that can be mapped to each other with a linear func-

tion. The linear profile shows the level of linearity (or nonlinearity) between an input

and an output. The cryptanalysis can create eight different tables, one for each S-box, in

which the first column shows the possible combination of six-bit inputs, 0016 to 3F16,

and the first row shows the possible combinations of four-bit outputs, 016 to F16. The

entries shows the level of linearity (or nonlinearity, based on the design). We cannot

delve into the details of how we measure the level of linearity, but the entries with a

high-level of linearity are interesting to the cryptanalysis. 

Round Characteristic

A round characteristic in linear cryptanalysis shows the combination of input bits,

round key bits, and output bits that show a linear relation. Figure N.6 shows two differ-

ent round characteristics. The notation used for each case defines the bits that must be

exclusive-ored together. For example, O(7, 8, 24, 29) means the exclusive-or of 7th,

8th, 24th, and 29th bits coming out of the function; K(22) means the 22nd bit in the

round key; I(15) means the 15th bit going into the function. 

Figure N.5 Linear profile and round characteristic for DES 
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The following shows the relations for part a and b in Figure N.6 using individual bits. 

A Three-Round Characteristic

After creation and storage of single-round characteristics, the analyzer can combine

different rounds to create a multiple-round characteristic. Figure N.7 shows a case of

a three-round DES in which rounds 1 and 3 use the same characteristic as shown in

Figure N.6a, but round 2 uses an arbitrary characteristic. 

Figure N.6 Some round characteristics for linear cryptanalysis

Part a: O(7) ⊕ O(8) ⊕ O(24) ⊕ O(29)  = I(15) ⊕ K(22)

Part b: F(15) = I(29) ⊕ K(42) ⊕ K(43) ⊕ K(45) ⊕ K(46)   

Figure N.7 A three-round characteristic for linear cryptanalysis
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The goal of linear cryptanalysis is to find a linear relation between some bits in the

plaintext, the ciphertext, and the key. Let us see if we can establish such relation for a

3-round DES depicted in Figure N.7.

But L2 is the same as R1, and R2 is the same as R3. After replacing L2 with R1 and

R2 with R3 in the second relation, we have:

We can substitute R1 with its equivalent value in round 1, resulting in:

This is a relationship between input and output bits for the whole three rounds after

being reordered:

In other words, we have  

Probability

One interesting question is how to find the probability of a three-round (or n-round)

DES. Matsui proved that the probability in this case is 

P = 1/2 + 2n−1 Π (pi − 1/2)

in which n is the number of rounds, pi is the probability of each round characteristic,

and P is the total probability. For example, the total probability for the three-round

analysis in Figure N.7 is   

A Sixteen-Round Characteristic

A 16-round characteristic can also be compiled to provide a linear relationship between

some plaintext bits, some ciphertext bits, and some bits in the round keys. 

Round 1: R1(7, 8, 24, 29) = L0(7, 8, 24, 29) ⊕ R0(15) ⊕ K1(22)   

Round 3: L3(7, 8, 24, 29) = L2(7, 8, 24, 29) ⊕ R2(15) ⊕ K3(22)   

L3(7, 8, 24, 29) = R1(7, 8, 24, 29) ⊕ R3 (15) ⊕ K3(22)   

L3(7, 8, 24, 29) = L0(7, 8, 24, 29) ⊕ R0(15) ⊕ K1(22) ⊕ R3 (15) ⊕ K3(22)   

L3(7, 8, 24, 29) ⊕ R3(15) = L0(7, 8, 24, 29) ⊕ R0(15) ⊕ K1(22) ⊕ K3(22)   

C(7, 8, 15, 24, 29) = P(7, 8, 15, 24, 29) ⊕ K1(22) ⊕ K3(22)   

P = 1/2 + 23−1 [(52/64 − 1/2) × (1 − 1/2) × (52/64 − 1/2)] ≈ 0.695 

C(some bits) = P(some bits) ⊕ K1(some bits) ⊕ … ⊕ K16(some bits) 
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Attack

After finding and storing many relationship between some plaintext bits, ciphertext bits,

and round-key bits. Eve can access some plaintext/ciphertext pairs (known-plaintext

attack) and use the corresponding bits in the stored characteristics to find bits in the

round keys. 

Security

It turned out that 243 known plaintext/ciphertext pairs are needed to attack a 16-round

DES. Linear cryptanalysis looks more probable than differential cryptanalysis for two

reasons. First, the number of steps is smaller. Second it is easier to launch a known

plaintext attack than a chosen-plaintext attack. However, the attack is still far from

being a serious treat to DES. 
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APPENDIX O

Simplified DES (S-DES)

Simplified DES (S-DES), developed by Professor Edward Schaefer of Santa Clara

University, is an educational tool designed to help students learn the structure of DES

using cipher blocks and keys with a small number of bits. Readers may choose to study

this appendix before reading Chapter 6.

O.1 S-DES STRUCTURE

S-DES is a block cipher, as shown in Figure O.1. 

At the encryption site, S-DES takes an 8-bit plaintext and creates an 8-bit cipher-

text; at the decryption site, S-DES takes an 8-bit ciphertext and creates an 8-bit plain-

text. The same 10-bit cipher key is used for both encryption and decryption. 

Let us concentrate on encryption; later we will discuss decryption. The encryption

process consists of two permutations (P-boxes), which we call initial and final permuta-

tions (also called IP and IP−1), and two Feistel rounds. Each round uses a different 8-bit

round key generated from the cipher key according to a predefined algorithm described

later in this appendix. Figure O.2 shows the elements of the S-DES cipher at the

encryption site. 

Figure O.1 Encryption and decryption with S-DES
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Initial and Final Permutations

Figure O.3 shows the initial and final permutations (P-boxes). Each of these permuta-

tions takes an 8-bit input and permutes it according to a predefined rule. These permu-

tations are straight permutations that are the inverses of each other as discussed in

Chapter 5. These two permutations have no cryptographic significance in S-DES. They

are included in S-DES to make it compatible with DES.

Rounds

S-DES uses two rounds. Each round of S-DES is a Feistel cipher, as shown in Figure O.4.

Figure O.2 General structure of S-DES encryption cipher

Figure O.3 Initial and final permutations (IP and IP−1)
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The round takes LI−1 and RI−1 from the previous round (or the initial permutation

box) and creates LI and RI, which go to the next round (or the final permutation box).

As we discussed in Chapter 5, we can assume that each round has two cipher elements,

a mixer and a swapper. Each of these elements is invertible. The swapper is obviously

invertible. It swaps the left half of the text with the right half. The mixer is invertible

because of the XOR operation. All noninvertible elements are collected inside the func-

tion, shown as f (RI−1, KI). 

S-DES Function

The heart of S-DES is the S-DES function. The S-DES function applies an 8-bit key to

the rightmost 4 bits (RI−1) to produce a 4-bit output. This function is made up of four

sections: an expansion P-box, a whitener (which adds key), a group of S-boxes, and a

straight P-box as shown in Figure O.4. 

Expansion P-box RI−1 is a 4-bit input and KI is an 8-bit key, so we first need to expand

RI−1 to 8 bits. Although the relationship between the input and output can be defined

mathematically, S-DES uses a table to define this P-box, as shown in Figure O.5. Note

that the number of output ports is 8, but the value range is only 1 to 4. Some of the inputs

go to more than one output. 

Whitener (XOR) After the expansion permutation, S-DES uses the XOR operation

on the expanded right section and the round key. Note that the round key is used only in

this operation.

S-Boxes The S-boxes do the real mixing (confusion). S-DES uses two S-boxes, each

with a 4-bit input and a 2-bit output. See Figure O.6. 

Figure O.4 A round in S-DES (encryption site)
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The 8-bit data from the second operation is divided into two 4-bit chunks, and each

chunk is fed into a box. The result of each box is a 2-bit chunk; when these are combined,

the result is a 4-bit text. The substitution in each box follows a predetermined rule based on

a 4 × 4 table. The combination of bits 1 and 4 of the input defines one of four rows; the

combination of bits 2 and 3 defines one of the four columns, as shown in Figure 15.8. 

Because each S-box has its own table, we need two tables, as shown in Figure O.6,

to define the output of these boxes. The values of the inputs (row number and column

number) and the values of the outputs are given as decimal numbers to save space.

These need to be changed to binary.   

Example O.1

The input to S-box 1 is 10102. What is the output? 

Solution

If we write the first and the fourth bits together, we get 10 in binary, which is 2 in decimal. The

remaining bits are 01 in binary, which is 1 in decimal. We look for the value in row 2, column 1,

in Figure O.6 (S-box 1). The result in decimal is 2, which is 10 in binary. So the input 10102

yields the output 102.

Figure O.5 Expansion P-box
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Straight Permutation The last operation in the S-DES function is a straight permuta-

tion with a 4-bit input and a 4-bit output. The input/output relationship for this operation

is shown in Figure O.7 and follows the same general rule as previous permutation tables. 

Key Generation

The round-key generator creates two 8-bit keys out of a 10-bit cipher key. 

Straight Permutation

The first process is a straight permutation. It permutes the 10 bits in the key according

to a predefined table, as shown in Figure O.8. 

Figure O.7 Straight P-Box

Figure O.8 Key generation
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Shift Left

After the straight permutation, the key is divided into two 5-bit parts. Each part

is shifted left (circular shift) r bits, where r is the round number (1 or 2). The two

parts are then combined to form a 10-bit unit. See Chapter 5 for a discussion of shift

operation.

Compression Permutation

The compression permutation (P-box) changes the 10 bits to 8 bits, which are used as a

key for a round. The compression permutation table is also shown in Figure O.8. 

Example O.2

Table O.1 shows three cases of key generation. 

Cases 2 and 3 show that none of the operations used in the key generation process is effec-

tive if the cipher key is made of all 0’s or all 1’s. These types of cipher keys need to be avoided, as

discussed in Chapter 6.  

O.2 CIPHER AND REVERSE CIPHER

Using mixers and swappers, we can create the cipher and reverse cipher, each having

two rounds. The cipher is used at the encryption site; the reverse cipher is used at the

decryption site. To make the cipher and the reverse cipher algorithms similar, round 2

has only a mixer and no swapper. This is shown in Figure O.9. 

Although the rounds are not aligned, the elements (mixer or swapper) are aligned.

We proved in Chapter 5 that a mixer is a self-invertible; so is a swapper. The final and

initial permutations are also inverses of each other. The left section of the plaintext at

Table O.1

Steps Case 1 Case 2 Case 3

Cipher Key

After permutation 

After splitting

1011100110

1100101110

L: 11001      R: 01110

0000000000

0000000000

L: 00000      R: 00000

1111111111

1111111111

L: 11111      R: 11111

Round 1:

Shifted keys: 

Combined key: 

Round Key 1: 

 

L: 10011      R: 11100

1001111100

10111100

 

L: 00000      R: 00000

0000000000

00000000

 

L: 11111      R: 11111

1111111111

11111111

Round 2:

Shifted keys: 

Combined key: 

Round Key 2: 

 

L: 01110      R: 10011

0111010011

11010011 

 

L: 00000      R: 00000

0000000000

00000000 

 

L: 11111      R: 11111

1111111111

11111111

S-DES is very vulnerable to brute-force attack because of its key size (10 bits). 
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the encryption site, L0, is enciphered as L2; L2 at the decryption site is deciphered as

L0. The situation is the same with the right section. 

A very important point we need to remember about the ciphers is that the

round keys (K1 and K2) should be applied in the reverse order. At the encryption site,

round 1 uses K1 and round 2 uses K2; at the decryption site, round 1 uses K2 and round 2

uses K1.

Example O.3

We choose a random plaintext block and a random key, and determine what the ciphertext block

would be: 

Let us show the result of each round and the text created before and after the rounds.

Table O.2 first shows the result of steps before starting the round. The plaintext goes through the

initial permutation to create completely different 8 bits. After this step, the text is split into two

Figure O.9 S-DES cipher and reverse cipher
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halves, L0 and R0. The table shows the results of two rounds that involve mixing and swapping

(except for the second round). The results of the last rounds (L2 and R2) are combined. Finally

the text goes through final permutation to create the ciphertext. 

Some points are worth mentioning here. First, the right section out of each round is the same

as the left section out of the next round. The reason is that the right section goes through the

mixer without change, but the swapper moves it to the left section. For example, R1 passes

through the mixer of the second round without change, but then it becomes L2 because of the

swapper. The interesting point is that we do not have a swapper at the last round. That is why R1

becomes R2 instead of becoming L2.      

Table O.2

Initial Processing Plaintext: 11110010

After IP: 10111001

L0: 1011                    R0: 1001

Cipher key: 1011100110

Round 1 L1: 1001                    R1: 0111 Round key: 10111100

Round 2 L2: 1011                    R2: 0111 Round key: 11010011

Final Processing Before IP−1: 10110111

Ciphertext: 11101011

Because of its small number of rounds, S-DES is more vulnerable to 

cryptanalysis than DES.
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APPENDIX P

Simplified AES (S-AES)

Simplified AES (S-AES), developed by Professor Edward Schaefer of Santa Clara Univer-

sity, is an educational tool designed to help students learn the structure of AES using smaller

blocks and keys. Readers may choose to study this appendix before reading Chapter 7. 

P.1 S-AES STRUCTURE

S-AES is a block cipher, as shown in Figure P.1. 

At the encryption site, S-AES takes a 16-bit plaintext and creates a 16-bit cipher-

text; at the decryption site, S-AES takes a 16-bit ciphertext and creates a 16-bit plaintext.

The same 16-bit cipher key is used for both encryption and decryption.

Rounds

S-AES is a non-Feistel cipher that encrypts and decrypts a data block of 16 bits. It uses

one pre-round transformation and two rounds. The cipher key is also 16 bits. Figure P.2

Figure P.1 Encryption and decryption with S-AES
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shows the general design for the encryption algorithm (called the cipher); the decryp-

tion algorithm (called the inverse cipher) is similar, but the round keys are applied in

the reverse order.  

In Figure P.2, the round keys, which are created by the key-expansion algorithm,

are always 16 bits, the same size as the plaintext or ciphertext block. In S-AES, there

are three round keys, K0, K1, and K2.

Data Units

S-AES uses five units of measurement to refer to data: bits, nibbles, words, blocks, and

states, as shown in Figure P.3. 

Bit

In S-AES, a bit is a binary digit with a value of 0 or 1. We use a lowercase letter b to

refer to a bit.

Figure P.2 General design of S-AES encryption cipher 

Figure P.3 Data units used in S-AES
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Nibble

A nibble is a group of 4 bits that can be treated as a single entity, a row matrix of 4 bits,

or a column matrix of 4 bits. When treated as a row matrix, the bits are inserted into the

matrix from left to right; when treated as a column matrix, the bits are inserted into the

matrix from top to bottom. We use a lowercase bold letter n to refer to a nibble. Note

that a nibble is actually a single hexadecimal digit. 

Word

A word is a group of 8 bits that can be treated as a single entity, a row matrix of two

nibbles, or a column matrix of 2 nibbles. When it is treated as a row matrix, the nibbles

are inserted into the matrix from left to right; when it is considered as a column matrix,

the nibbles are inserted into the matrix from top to bottom. We use the lowercase bold

letter w to refer to a word. 

Block

S-AES encrypts and decrypts data blocks. A block in S-AES is a group of 16 bits. How-

ever, a block can be represented as a row matrix of 4 nibbles. 

State

In S-AES, a data block is also referred to as a state. We use an uppercase bold letter S

to refer to a state. States, like blocks, are made of 16 bits, but normally they are treated

as matrices of 4 nibbles. In this case, each element of a state is referred to as sr,c, where

r (0 to 1) defines the row and the c (0 to 1) defines the column. At the beginning of the

cipher, nibbles in a data block are inserted into a state column by column, and in each

column, from top to bottom. At the end of the cipher, nibbles in the state are extracted

in the same way, as shown in Figure P.4.

Figure P.4 Block-to-state and state-to-block transformation 

Insertion and 
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State

Block
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Example P.1

Let us see how a 16-bit block can be shown as a 2 × 2 matrix. Assume that the text block is 1011

0111 1001 0110. We first show the block as 4 nibbles. The state matrix is then filled up, column

by column, as shown in Figure P.5. 

Structure of Each Round

Figure P.6 shows that each transformation takes a state and creates another state to

be used for the next transformation or the next round. The pre-round section uses only

one transformation (AddRoundKey); the last round uses only three transformations,

(MixColumns transformation is missing). 

At the decryption site, the inverse transformations are used: InvSubNibbles, Inv-

ShiftRows, InvMixColumns, and AddRoundKey (this one is self-invertible).

Figure P.5 Changing ciphertext to a state

Figure P.6 Structure of each round at the encryption site
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P.2 TRANSFORMATIONS

To provide security, S-AES uses four types of transformations: substitution, permuta-

tion, mixing, and key-adding. We will discuss each here. 

Substitution

Substitution is done for each nibble (4-bit data unit). Only one table is used for trans-

formations of every nibble, which means that if two nibbles are the same, the transfor-

mation is also the same. In this appendix, transformation is defined by a table lookup

process. 

SubNibbles

The first transformation, SubNibbles, is used at the encryption site. To substitute a nib-

ble, we interpret the nibble as 4 bits. The left 2 bits define the row and the right 2 bits

define the column of the substitution table. The hexadecimal digit at the junction of the

row and the column is the new nibble. Figure P.7 shows the idea. 

In the SubNibbles transformation, the state is treated as a 2 × 2 matrix of nibbles.

Transformation is done one nibble at a time. The contents of each nibble is changed,

but the arrangement of the nibbles in the matrix remains the same. In the process,

each nibble is transformed independently: There are four distinct nibble-to-nibble

transformations.  

Figure P.7 also shows the substitution table (S-box) for the SubNibbles transforma-

tion. The transformation definitely provides confusion effect. For example, two nibbles,

A16 and B16, which differ only in one bit (the rightmost bit), are transformed to 016 and

316, which differ in two bits. 

Figure P.7 SubNibbles transformations

SubNibbles involves four independent nibble-to-nibble transformations. 
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InvSubNibbles

InvSubNibbles is the inverse of SubNibbles. The inverse transformation is also shown in

Figure P.7. We can easily check that the two transformations are inverses of each other. 

Example P.2

Figure P.8 shows how a state is transformed using the SubNibbles transformation. The figure also

shows that the InvSubNibbles transformation creates the original state. Note that if the two nib-

bles have the same values, their transformation are also the same. The reason is that every nibble

uses the same table.   

Permutation

Another transformation found in a round is shifting, which permutes the nibbles. Shift-

ing transformation in S-AES is done at the nibble level; the order of the bits in the nib-

ble is not changed.

ShiftRows

In the encryption, the transformation is called ShiftRows and the shifting is to the left.

The number of shifts depends on the row number (0, 1) of the state matrix. This means

row 0 is not shifted at all and row 1 is shifted 1 nibble. Figure P.9 shows the shifting

transformation. Note that the ShiftRows transformation operates one row at a time.

Figure P.8 SubNibble transformation for Example P.2

Figure P.9 ShiftRows transformation

State
4 3

0 2
State

SubNibbles

InvSubNibbles

D B

9 A

ShiftRow

Shift left

Row 0: no shift
Row 1: 1-nibble shift  

State State



SECTION  P.2 TRANSFORMATIONS 673

InvShiftRows

In the decryption, the transformation is called InvShiftRows and the shifting is to the

right. The number of shifts is the same as the number of the row (0, 1) in the state

matrix.

Example P.3

Figure P.10 shows how a state is transformed using ShiftRows. The figure also shows that the

InvShiftRows transformation creates the original state. 

Mixing 

The substitution provided by the SubNibbles transformation changes the value of the

nibble based only on the nibble’s original value and an entry in the table; the process

does not include the neighboring nibbles. We can say that SubNibbles is an intra-nibble

transformation. The permutation provided by the ShiftRows transformation exchanges

nibbles without permuting the bits inside the bytes. We can say that ShiftRows is a

nibble-exchange transformation. We also need an inter-nibble transformation that

changes the bits inside a nibble, based on the bits inside the neighboring nibbles. We

need to mix nibbles to provide diffusion at the bit level.

The mixing transformation changes the contents of each nibble by taking 2 nibbles

at a time and combining them to create 2 new nibbles. To guarantee that each new nib-

ble is different (even if the old nibbles are the same), the combination process first mul-

tiplies each nibble with a different constant and then mixes them. The mixing can be

provided by matrix multiplication. As we discussed in Chapter 2, when we multiply a

square matrix by a column matrix, the result is a new column matrix. Each element in

the new matrix depends on the two elements of the old matrix after they are multiplied

by row values in the constant matrix.

MixColumns

The MixColumns transformation operates at the column level; it transforms each col-

umn of the state into a new column. The transformation is actually the matrix multipli-

cation of a state column by a constant square matrix. The nibbles in the state column

and constants matrix are interpreted as 4-bit words (or polynomials) with coefficients in

The ShiftRows and InvShiftRows transformations are inverses of each other.

Figure P.10 ShiftRows transformation in Example P.3

State
State

ShiftRows

InvShiftRows

F 2

6 C

2 F

6 C
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GF(2). Multiplication of bytes is done in GF(24) with modulus (x4 + x + 1) or (10011).

Addition is the same as XORing of 4-bit words. Figure P.11 shows the MixColumns

transformation. 

InvMixColumns

The InvMixColumns transformation is basically the same as the MixColumns transfor-

mation. If the two constant matrices are inverses of each other, it is easy to prove that

the two transformations are inverses of each other. 

Figure P.12 shows how a state is transformed using the MixColumns transformation.

The figure also shows that the InvMixColumns transformation creates the original one. 

Note that equal bytes in the old state, are not equal any more in the new state. For

example, the two bytes F in the second row are changed to 4 and A. 

Key Adding

Probably the most important transformation is the one that includes the cipher key.

All previous transformations use known algorithms that are invertible. If the cipher

Figure P.11 MixColumns transformation

The MixColumns and InvMixColumns transformations are inverses of each other.

Figure P.12 The MixColumns transformation in Example 7.5
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key is not added to the state at each round, it is very easy for the adversary to find the

plaintext, given the ciphertext. The cipher key is the only secret between Alice and

Bob in this case.

S-AES uses a process called key expansion (discussed later in this appendix) that

creates three round keys from the cipher key. Each round key is 16 bits longit is

treated as two 8-bit words. For the purpose of adding the key to the state, each word is

considered as a column matrix. 

AddRoundKey

AddRoundKey also proceeds one column at a time. It is similar to MixColumns in this

respect. MixColumns multiplies a constant square matrix by each state column;

AddRoundKey adds a round key word with each state column matrix. The operations in

MixColumns are matrix multiplication; the operations in AddRoundKey are matrix

addition. The addition is performed in the GF(24) field. Because addition and subtrac-

tion in this field are the same, the AddRoundKey transformation is the inverse of itself.

Figure P.13 shows the AddRoundKey transformation.     

P.3 KEY EXPANSION

The key expansion routine creates three 16-bit round keys from one single 16-bit cipher

key. The first round key is used for pre-round transformation (AddRoundKey); the

remaining round keys are used for the last transformation (AddRoundKey) at the end of

round 1 and round 2. 

The key-expansion routine creates round keys word by word, where a word is an

array of 2 nibbles. The routine creates 6 words, which are called w0, w1, w2, …, w5.

Creation of Words in S-AES

Figure P.14 shows how 6 words are made from the original key. 

The AddRoundKey transformation is the inverse of itself.

Figure P.13 AddRoundKey transformation

AddRoundKey

Key word

= +

State State
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The process is as follows: 

1. The first two words (w0, w1) are made from the cipher key. The cipher key

is thought of as an array of 4 nibbles (n0 to n3). The first 2 nibbles (n0 to n1)

become w0; the next 2 nibbles (n2 to n3) become w1. In other words, the concate-

nation of the words in this group replicates the cipher key. 

2. The rest of the words (wi for i = 2 to 5) are made as follows:

a.   If (i mod 2) = 0, wi = ti  ⊕  wi−2. Here ti, a temporary word, is the result of apply-

ing two routines, SubWord and RotWord, on wi−1 and XORing the result with a

round constant, RC[Nr], where Nr is the round number. In other words, we have 

  The words w2 and w4 are made using this process.  

b.  If (i mod 2) ≠ 0, wi = wi−1 ⊕  wi−2. Referring to Figure P.14, this means each

word is made from the word at the left and the word at the top. The words w3

and w5 are made using this process. 

RotWord

The RotWord (rotate word) routine is similar to the ShiftRows transformation, but it is

applied to only one row. The routine takes a word as an array of 2 nibbles and shifts

each nibble to the left with wrapping. In S-AES, this is actually swapping the 2 nibbles

in the word. 

SubWord

The SubWord (substitute word) routine is similar to the SubNibble transformation, but

it is applied only to 2 nibbles. The routine takes each nibble in the word and substitutes

another nibble for it using the SubNibble table in Figure P.7. 

Figure P.14 Creation of words in S-AES

ti = SubWord (RotWord (wi−1))  ⊕  RCon [Nr]

t2

Cipher key

Pre-round

Round 1

Round 2 t4

w0 w1

w2 w3

w4 w5

n0 n1

ti

RCon[Nr]
RCon[1] = 8016

RCon[2] = 3016

Making of ti (temporary) words i = 2Nr, where Nr is the round number

Wi−1 RotWord SubWord

n2 n3
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Round Constants

Each round constant, RC, is a 2-nibble value in which the rightmost nibble is always

zero. Figure P.14 also shows the value of RCs. 

Example P.4

Table P.1 shows how the keys for each round are calculated assuming that the 16-bit cipher key

agreed upon by Alice and Bob is 247516. 

In each round, the calculation of the second word is very simple. For the calculation of the

first word we need to first calculate the value of the temporary word (ti), as shown below:

P.4 CIPHERS

Now let us see how S-AES uses the four types of transformations for encryption and

decryption. The encryption algorithm is referred to as the cipher and the decryption

algorithm as the inverse cipher. 

S-AES is a non-Feistel cipher, which means that each transformation or group

of transformations must be invertible. In addition, the cipher and the inverse cipher

must use these operations in such a way that they cancel each other. The round keys

must also be used in the reverse order. To comply with this requirement, the transfor-

mations occur in a different order in the cipher and the reverse cipher, as shown in

Figure P.15. 

First, the order of SubNibbles and ShiftRows is changed in the reverse cipher.

Second, the order of MixColumns and AddRoundKey is changed in the reverse

cipher. This difference in ordering is needed to make each transformation in the

cipher aligned with its inverse in the reverse cipher. Consequently, the decryption

algorithm as a whole is the inverse of the encryption algorithm. Note that the round

keys are used in the reverse order. 

Table P.1 Key expansion example

Round

Values of

t’s

First word

in the round

Second word

in the round Round Key

0 w0 = 24 w1 = 75 K0 = 2475

1 t2 = 95 w2 = 95 ⊕⊕⊕⊕ 24 = B1 w3 = B1 ⊕⊕⊕⊕ 75 = C4 K0 = B1C4

2 t4 = EC w4 = B1 ⊕⊕⊕⊕ EC = 5D w5 = 5D ⊕⊕⊕⊕ C4 = 99 K2 = 5D99

RotWord (75) = 57 →   SubWord (57) = 15 →  t2 = 15 ⊕ RC[1] = 15 ⊕ 80  = 95

RotWord (C4) = 4C →   SubWord (4C) = DC →  t4 = DC ⊕ RC[2] = DC ⊕ 30  = EC
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Example P.5

We choose a random plaintext block, the cipher key used in Example P.4, and determine what the

ciphertext block would be:

Figure P.16 shows the value of states in each round. We are using the round keys generated in

Example P.4.

Figure P.15 Cipher and inverse cipher of the original design

Plaintext: 1A2316                                Key: 247516                     Ciphertext: 3AD216

Figure P.16 Example P.5
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APPENDIX Q

Some Proofs

This appendix presents some proofs for theorems used in Chapters 2 and 9. The proofs
are mostly short and informal so that they will be useful for students in a cryptography
course. The reader interested in more details can consult books on number theory. 

Q.1 CHAPTER 2

This section presents some proofs for theorems on divisibility, Euclidean algorithms,
and congruence.

Divisibility

Following are proofs for several theorems on divisibility. 

Theorem Q.1: Division Relation (Algorithm) 

For integer a and b with b > 0, there exist integers q and r such that a = q × b + r. 

Theorem Q.2

If a | 1, then a = ±1. 

Proof: 

Consider an arithmetic progression in the form: 

…, −3 × b, −2 × b, −1 × b, 0 × b, 1 × b, 2 × b, 3 × b, …

It is obvious that integer a is either equal to one of the terms or between two consecutive
terms. In other words, a = q × b + r, where q × b is a term in the above progression and r is the
offset from the term.

Proof:

a | 1 → 1 = x × a, where x is an integer.

This means: (x = 1 and a = 1) or (x = −1 and a = −1).

Therefore:  a = ±1.
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Theorem Q.3

If a | b and b | a, then a = ±b. 

Theorem Q.4

If a | b and b | c, then a | c. 

Theorem Q.5

If a | b and a | c, then a | (b + c).

Theorem Q.6

If a | b and a | c, then a | (m × b + n × c), where m and n are arbitrary integers. 

Euclidean Algorithms

We used Euclidean and extended Euclidean algorithms in Chapter 2. Following are
proofs of two theorems related to these algorithms. 

Proof:

a | b → b = x × a, where x is an integer.

b | a → a = y × b, where y is an integer.

We have a = y × (x × a) = (y × x) × a. →  y × x = 1.

This means: (x = 1 and y = 1) or (x = −1 and y = −1).

Therefore:  a = y × b →  a = ± b.

Proof:

a | b → b = x × a, where x is an integer.

b | c → c = y × b, where y is an integer.

We have c = y × (x × a) = (y × x) × a. 

Therefore,  a | c.

Proof:

a | b → b = x × a, where x is an integer.

a | c → c = y × a, where y is an integer.

We have b + c = (x + y) × a.

Therefore,  a | (b + c).

Proof:

a | b → b = x × a, where x is an integer.

a | c → c = y × a, where y is an integer.

We have m × b + n × c = m × (x × a) + n × (y × a) = (m × x + n × y) × a.

Therefore,  a | (m × b + n × c).
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Theorem Q.7

If a = b × q + r (r is the remainder of dividing a by b), then gcd (a, b) = gcd (b, r).

As we saw in Chapter 2, this theorem is the basis of the Euclidean algorithm to find the
greatest common divisor of two integers. 

Theorem Q.8

If a and b are integers, not both of which zero, then there exist integers x and y such that
gcd (a, b) = x × a + y × b. 

As we saw in Chapter 2, this theorem is the basis of the extended Euclidean algorithm. 

Congruence

Following are proofs of some theorems about congruence used in Chapter 2.

Theorem Q.9

If a, b, and n are integers with n > 0, then a ≡ b (mod n) if and only if there exists an
integer q such that a = q × n + b. 

Proof:

Assume that E is the set of all common divisors of a and b. Every element of E divides a and
b; therefore, it divides r = a − b × q. This means that E is the set of all common divisors of
a, b, and r.

Assume that F is the set of all common divisors of b and r. Every element of F divides b and
r; therefore, it divides a = b × q + r. This means that F is the set of all common divisors of a, b,
and r.

This means that E = F → a, b, and r have the same set of common divisors.

Therefore, gcd (a, b) = gcd (b, r). 

Proof:

Assume that D is the set of all values of (x × a + y × b), with d the smallest nonzero value.

We can write a = q × d + r → r = a − q × d = (1 − q × x)a + (−q × y)b, where 0 ≤ r < d.

This implies that r is a member of D. But because r < d, then r = 0 or d | a.

With a similar argument, we can show that d | b.

Therefore, d is the common divisor of a and b.

Any other divisor of a and b divides d = x × a + y × b. Therefore, d must be the gcd (a, b).

Proof:

If a ≡ b (mod n), then n | (a − b), which means there is an integer q such that a − b = q × n. 

Therefore, we have a = q × n + b.

If there is an integer q such that a = q × n + b, then a − b = q × n, which means n | (a − b).
Therefore, we have a ≡ b (mod n).
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Theorem Q.10

If a, b, c, and n are integers with n > 0, such that a ≡ b (mod n), then 

a. a + c ≡ b + c (mod n).

b. a − c ≡ b − c (mod n). 

c. a × c ≡ b × c (mod n). 

Theorem Q.11

If a, b, c, d, and n are integers with n > 0, such that a ≡ b (mod n) and c ≡ d (mod n),
then 

a. a + c ≡ b + d (mod n).

b. a − c ≡ b − d (mod n). 

c. a × c ≡ b × d (mod n). 

Q.2 CHAPTER 9

This section presents some proofs of the theorems used in Chapter 9. We leave the dis-
cussion of the lengthy proofs, such as the proof of Chinese remainder theorem, to
books in number theory. 

Primes

We prove just one theorem about primes.

Theorem Q.12  

If n is a composite, then there is a prime divisor p such that p ≤ . 

Proof: Note that a ≡ b (mod n) →  n | (a − b).

a. (a + c) − (b + c) = a − b. Because n | (a − b), n | (a + c) − (b + c).
Therefore, a + c ≡ b + c (mod n).

b. (a − c) − (b − c) = a − b. Because n | (a − b), n | (a − c) − (b − c).
Therefore, a − c ≡ b − c (mod n).

c. (a × c) − (b × c) = (a − b) × c. Because n | (a − b), n | (a − b) × c.

Therefore, a × c ≡ b × c (mod n).

Proof: Note that a ≡ b (mod n) →  (a − b) = k × n; c ≡ d (mod n) →  (c − d) = l × n

a. (a + c) − (b + d) = (a − b) + (c − d) = k × n + l × n = (k + l) × n. 
Therefore, a + c ≡ b + d (mod n).

b. (a − c) − (b − d) = (a − b) − (c − d) = k × n − l × n = (k − l) × n. 
Therefore, a − c ≡ b − d (mod n).

c. a × c − b × d = c × (a − b) + b × (c − d) = (c × k + b × l) × n.

Therefore, a × c ≡ b × d (mod n).

n
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This theorem is used in the sieve of Eratosthenes to find all prime factors of n. 

Euler’s Phi-Function

Following are three proofs related to the Euler’s phi-function.

Theorem Q.13  

If p is a prime, then φ(p) = p − 1. 

This theorem is part of the Euler’s phi-function. 

Theorem Q.14  

If p is a prime and e is a positive integer, then φ(pe) = pe − pe−1. 

This theorem is another part of Euler’s phi-function.

Theorem Q.15  

If n is a composite with prime factorization of Π pi
ei, then φ(n) = Π (pi

ei −  pi
ei−1). 

This theorem is the generalization of Euler’s phi-function.

Proof:

Because n is a composite, n = a × b.

If p is the smallest prime divisor of n, then p ≤ a and p ≤ b.

Therefore, p2 ≤ a × b or p2 ≤ n → p ≤ 

Proof:

Because p is a prime, all integers less than p, except p itself, are relatively prime to p.

Therefore, φ(p) = p − 1.

Proof:

The integers that are not relatively prime to pe are (1 × p), (2 × p), . . . , (pe−1 × p). All of these
integers have the common divisor p with pe. The total number of these integers is pe−1. The
rest of the integers are relatively prime with pe.

Therefore, φ(pe) = pe − pe−1

Proof:

The proof is based on the fact that the φ(n) is a multiplicative function in which φ(m × n) =
φ(m) × φ(n) if m and n are relatively prime. Because the terms in the prime factorization of n
are relatively prime, φ(Π pi

ei) = Πφ(pi
ei).

Therefore, φ(n) = Π (pi
ei −  pi

ei −1).

n
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Fermat’s Little Theorem

Following are proofs of two theorems related to Fermat’s little theorem. 

Theorem Q.16  

If p is a prime and a is a positive integer relatively prime to p, then ap−1 ≡ 1 (mod p). 

This theorem is the first version of Fermat’s little theorem. 

Theorem Q.17  

If p is a prime and a is a positive integer, then ap ≡ a (mod p). 

This theorem is the second version of Fermat’s little theorem. 

Euler’s Theorem

Following is a proof of one theorem related to the first version of Euler’s theorem. We

proved the second version in Chapter 9. 

Theorem Q.18  

If n and a are coprime, then aφ(n) ≡ 1 (mod n). 

Proof:

It can be proven that the residues of the terms a, 2a, . . . , (p − 1)a modulo p are 1, 2, . . . , 

(p − 1), but not necessarily in the same order.

The result of a × 2a × · · · (p − 1)a is [(p − 1)]! ap−1.

The result of 1 × 2 × · · · × (p − 1) is [(p − 1)]!

This means [(p − 1)]! ap−1 ≡ [(p − 1)]! (mod p)

Therefore, ap−1 ≡ 1 (mod p), when we divide both sides by [(p − 1)]!

Proof:

If a and p are coprime, we multiply both sides of the congruence using the result of the previ-

ous theorem to get ap ≡ a (mod p).

If p | a, then ap ≡ a ≡ 0 (mod p).

Proof:

Assume that the elements in Zn
∗ are r1, r2, . . . , rφ(n).  

We create another set ar1, ar2, …, arφ(n)
 by multiplying each element in Zn

∗ by a. It can be

proven that each element in this new set is congruent to an element in Zn
∗ (not necessarily in

the same order).

Thus, ar1 × ar2 × · · · × arφ(n) ≡ r1 × r2 × · · · × rφ(n)
 (mod n)

We have aφ(n) [r1 × r2 × · · · × rφ(n)]
 ≡ r1 × r2 × · · · × rφ(n)

 (mod n)

Therefore, aφ(n) ≡ 1 (mod n).
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Fundamental Theorem of Arithmetic

Following is a partial proof of the Fundamental Theorem of Arithmetic. 

Theorem Q.19  

Any positive integer n greater than 1 can be written as the product of prime. 

This theorem is a partial proof of the Fundamental Theorem of Arithmetic. To

completely prove this theorem, we need to show the product is unique. But we leave

this part to books on number theory.

Proof:

We use induction. The base case is n = 2, which is a prime. For the general case, assume that

all positive integers less than n can be written as the product of primes, we prove that n can

also be written as the product of primes.  

We can have two cases: n is a prime or n is a composite.

1. If n is prime, it can be written as the product of one prime, itself. 

2. If n is a composite, then we can write n = a × b. Because a and b are both less than n, each 

can be written as the product of primes according to the assumption. Therefore, n can be 

written as the product of primes.
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Glossary

A

A5/1 A member of the A5 family of stream ciphers used in the Global System for Mobile

Communication (GSM). 

abelian group A commutative group.

access control A security service that protects against unauthorized access to data. Also a

security mechanism that verifies a user’s right to access the data. 

active attack An attack that may change the data or harm the system. 

additive cipher The simplest monoalphabetic cipher in which each character is encrypted by

adding its value with a key. 

additive inverse In modular arithmetic, a and b are additive inverses of each other if (b + a)

mod n = 0. 

AddRoundKey In AES, an operation that adds a round key word with each state column

matrix. 

Advanced Encryption Standard (AES) A non-Feistel symmetric-key block cipher pub-

lished by the NIST.

affine cipher A cipher that combines the additive and multiplicative ciphers.

aggressive mode In IKE, a mode that is a compressed version of the corresponding main

mode using three message exchange instead of six.

Alert Protocol In SSL and TLS, a protocol for reporting errors and abnormal conditions. 

algebraic structure A structure consists of a set of elements and operations that are defined

for the sets. Groups, rings, and fields are examples of algebraic structures. 

anonymous Diffie-Hellman In SSL and TLS, the original Diffie-Hellman protocol. 

associativity In an algebraic structure, if a, b, and c are elements of the underlying set and  •
denotes  one of the operations, the associative property guarantees that (a • b) • c = a • (b • c).

asymmetric-key cryptosystem A cryptosystem that uses two different keys for encryption

and decryption: a public key for encryption and a private key for decryption. 

asymmetric-key encipherment An encipherment using an asymmetric-key cryptosystem.   

authentication A security service that checks the identity of the party at the other end of the

line. 
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authentication exchange A security mechanism in which two entities exchange a set of

messages to prove their identity to each other. 

Authentication Header (AH) A protocol in IPSec that provides message integrity and

authentication. 

authentication server (AS) The server that plays the role of the KDC in the Kerberos

protocol. 

autokey cipher A stream cipher in which each subkey in the stream is the same as the previ-

ous plaintext character. The first subkey is the secret between two parties. 

availability This component of information security requires that the information created and

stored by an organization to be available to authorized entities. 

avalanche effect A desired characteristic in a cipher in which a small change in the plaintext

or key results in a large change in the ciphertext. 

B

binary operation An operation that takes two inputs and creates one output. 

biometrics The measurement of physiological or behavioral features that identify a person. 

birthday problem A classical problem concerning the probability that n people have distinct

birthdays where n ≤ 365. 

bit A binary digit with a value of 0 or 1.

bit-oriented cipher A cipher in which the symbols in the plaintext, the ciphertext, and the

key are bits. 

blind signatures A patented scheme developed by David Chaum that allows a document to

get signed without revealing the contents of the document to the signer. 

block A group of bits treated as one unit. 

block cipher A type of cipher in which blocks of plaintext are encrypted one at a time using

the same cipher key. 

broadcast attack A type of attack on RSA that can be launched if one entity sends the same

small message to a group of recipients with the same low encryption exponent.

brute-force attack A type of attack in which the attacker tries to use all possible keys to find

the cipher key. 

bucket brigade attack See man-in-the-middle attack. 

byte A group of eight bits. An octet. 

C

Caesar cipher An additive cipher with a fixed-value key used by Julius Caesar. 

CBC-MAC See CMAC. 

certification authority (CA) An organization that binds a public key to an entity and issues

a certificate. 

challenge-response authentication An authentication method in which the claimant

proves that she knows a secret without sending it. 

ChangeCipherSpec Protocol In SSL and TLS, the protocol that allows the movement

from the pending state to the active state. 
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characteristic polynomial In an LFSR, the polynomial representing the feedback function. 

character-oriented cipher A cipher in which the symbols in the plaintext, the ciphertext,

and the key are characters.

Chinese remainder theorem (CRT) A theorem that proves that there exists a unique

solution for a set of congruent equations with one variable if the moduli are relatively prime. 

chosen-ciphertext attack A type of attack in which the adversary chooses a set of cipher-

texts and somehow finds the corresponding plaintexts. She then analyzes the ciphertext/plaintexts

pairs to find the cipher key. 

chosen-message attack An attack in which the attacker somehow makes Alice sign one or

more messages. The attacker later creates another message, with the content she wants, and

forges Alice’s signature on it.

chosen-plaintext attack A type of attack in which the adversary chooses a set of plaintexts

and somehow finds the corresponding ciphertexts. She then analyzes the plaintext/ciphertext

pairs to find the cipher key. 

cipher A decryption and/or encryption algorithm. 

cipher feedback (CFB) mode A mode of operation in which each r-bit block is exclusive-

ored with an r-bit key, which is part of an encrypted register.

cipher block chaining (CBC) mode A mode of operation similar to ECB, but each block

is first exclusive-ored with the previous ciphertext.

cipher suite In SSL and TLS, the combination of key exchange, hash, and encryption algo-

rithms.

ciphertext The message after being encrypted. 

ciphertext-only attack A type of attack in which the intruder has only the intercepted

ciphertext to analyze. 

circular shift operation An operation in modern block ciphers that removes k bits from one

end and inserts them at the other end.

claimant In entity authentication, the entity whose identity needs to be proved. 

clogging attack In the Diffie-Hellman method, a type of attack in which an intruder can send

many half-keys to one of the parties, pretending that they are from different sources. The attack

may eventually result in denial of service. 

closure In an algebraic structure, if a and b are elements of the underlying set and  •  denotes

one of the operations, the closure property guarantees that c = a • b is also a member of the set.

CMAC A standard MAC defined by NIST (FIPS 113) as the Data Authentication Algorithm.

The method is similar to the cipher block chaining (CBC) mode.

coefficient In a polynomial, the constant value in each term. 

collision resistance A property of a cryptographic hash function that ensures that the intruder

cannot find two messages that hash to the same digest. 

column matrix A matrix with only one column.

combine operation An operation in some block ciphers that concatenates two equal-length

blocks to create a new block. 

common modulus attack A type of attack on RSA that can be launched if a community

uses a common modulus. 

commutative group A group in which the binary operation satisfies the commutative property.
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commutativity In an algebraic structure, if a an b are elements of the underlying set and  •
denotes one of the operations, the commutative property guarantees that a • b = b • a.

composite  A positive integer with more than two divisors.

composition Composition of two functions f and g is defined as g(f (x)), which means that

first the function f is applied to the domain x, and then the function g is applied to the range of f. 

compression function A function that creates a fixed-size digest out of a variable-size message.

compression P-box A P-box with n inputs and m outputs, where n > m.

confidentiality A security goal that defines procedures to hide information from an unautho-

rized entity. 

confusion A desired property of a block cipher introduced by Shannon that hides the relation-

ship between the ciphertext and the key. This will frustrate the adversary who tries to use the

ciphertext to find the key.

congruence If n is a positive integer, two integers a and b are said to be congruent modulo n,

a ≡ b (mod n), if a − b = kn, for some integer k. 

congruence operator The operator (≡) used in a congruence relation. 

connection In SSL and TLS, the process that allows two entities to exchange two random

numbers and create the keys and parameters needed for communication. 

cookie A text that holds some information about the receiver and must be returned to the

sender untouched. 

Coppersmith theorem attack A type of attack on RSA that can be launched if the value of

the encryption exponent is small. 

coprime See relatively prime.

counter (CTR) mode A mode of operation in which there is no feedback. It is similar to

OFB, but a counter is used instead of a shift register.

cryptanalysis The science and art of breaking codes. 

cryptographic hash function  A function that creates a much shorter output from an input.

To be useful, the function must be resistant to image, preimage, and collision attacks. 

Cryptographic Message Syntax (CMS) The syntax used in S/MIME that defines the

exact encoding scheme for each content type. 

cryptography The science and art of transforming messages to make them secure and

immune to attacks. 

cyclic subgroup A subgroup that can be generated using the power of an element in the

group.

cycling attack A type of attack on RSA that uses the fact that the ciphertext is a permutation

of the plaintext; continuous encryption of the ciphertext will eventually result in the plaintext. 

D

data confidentiality A security service designed to protect data from disclosure attacks,

snooping, and traffic analysis. 

Data Encryption Standard (DES) A symmetric-key block cipher using rounds of Feistel

ciphers and standardized by NIST.

data expansion function In TLS, a function that uses a predefined HMAC to expand a

secret into a longer one.
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data integrity A security service designed to protect data from modification, insertion, dele-

tion, and replaying. Also, a security mechanism that appends a short checkvalue to the data that

has been created by a specific process from the data itself. The checkvalue can be use to protect

the integrity of data. 

Davies-Meyer scheme A hash function scheme basically the same as the Rabin scheme

except that it uses forward feed to protect against meet-in-the-middle attack. 

deciphering See decryption. 

decoding This term has many definitions. In this text, one of the meanings is to transform an

n-bit integer into a 2n-bit string with only a single 1. The position of the single 1 is the value of

the integer. 

decryption De-scrambling of the ciphertext to create the original plaintext. 

decryption algorithm An algorithm used for decryption. 

denial of service The only attack on the availability goal that may slow down or interrupt the

system. 

determinant A scalar value defined for a square matrix. A matrix is reversible if its determi-

nant is nonzero. 

dictionary attack An attack in which the intruder is interested in finding one password

regardless of the user ID. 

differential cryptanalysis A type of chosen-plaintext attack introduced by Biham and

Shamir that uses the differential profile of S-boxes to attack a product cipher. 

Diffie-Hellman protocol A protocol for creating a session key without using a KDC. 

diffusion A desired property of a block cipher introduced by Shannon that hides the relationship

between the ciphertext and the plaintext. This will frustrate the adversary who uses ciphertext statis-

tics to find the plaintext. 

digital signature A security mechanism in which the sender can electronically sign the mes-

sage and the receiver can verify the message to prove that the message is indeed signed by the

sender. 

Digital Signature Algorithm (DSA) The digital signature algorithm used by the Digital

Signature Standard (DSS).

digital signature scheme A method of systematic creation of a secure digital signature. 

Digital Signature Standard (DSS) The digital signature standard adopted by NIST under

FIPS 186. 

digram A two-letter string.

discrete logarithm The integer d is called the discrete logarithm of a to the base r if rd ≡ a
(mod n), where r is a primitive root of n, and a and n are relatively prime. 

distributivity In an algebraic structure with two operations   and •, distributivity of     over  •
means that for all a, b, and c elements of the underlying set, we have a   (b • c) = (a   b) • (a   c)

and (a • b)   c = (a   c) • (b   c).

divisibility If a and b are integers and a ≠ 0, we say that a divides b if there is an integer k

such that b = k × a. 

divisibility test The most elementary deterministic method for a primality test in which the

number is declared a prime if all numbers less than  cannot divide it. 

double DES (2DES) A cipher that uses two instances of DES ciphers for encryption and two

instances of reverse ciphers for decryption. 

n



692 GLOSSARY

double transposition cipher A transposition cipher in which the same encryption or dec-

ryption algorithm is repeated with two keys or the same key. 

E

electronic cookbook (ECB) mode A mode of operation in which each block is encrypted

independently with the same cipher key.

electronic mail (e-mail) An electronic version of a postal mail system. 

ElGamal cryptosystem An asymmetric-key cryptosystem, devised by ElGamal, which is

based on the discrete logarithm problem.

ElGamal signature scheme The digital signature scheme derived from the ElGamal cryp-

tosystem using the same keys.

elliptic curves Cubic equations in two variables of the following form: y2 + b1xy + b2y = x3 + 

a1x2 + a2x + a3. 

elliptic curves cryptosystem An asymmetric-key cryptosystem based on elliptic curves.

elliptic curves logarithm problem Given two points, e1 and e2, on an elliptic curve, this

problem must find the multiplier r such that e2 = r × e1. 

elliptic curves digital signature scheme (ECDSA) A digital signature algorithm based

on DSA but using elliptic curves.

Encapsulating Security Payload (ESP) A protocol in IPSec that provides source authen-

tication, integrity, and privacy. 

encipherment See encryption.

encoding The term has many definitions. In this text, one of the meanings is to transform a 2n-bit

string with only a single 1 to an n-bit integer. The position of the single 1 defines the value of the

integer.

encryption Producing ciphertext from plaintext using a cryptosystem. 

Enigma machine A machine based on the principle of rotor ciphers. It was used by the

German army during World War II. 

entity authentication A technique designed to let one party prove the identity of another

party. The entity whose identity needs to be proved is called the claimant; the party that tries to

prove the identity of the claimant is called the verifier.

ephemeral Diffie-Hellman A version of the Diffie-Hellman key exchange protocol in

which each party sends a Diffie-Hellman key signed by its private key. 

Euclidean algorithm An algorithm to find the greatest common divisor of two positive

integers.

Euler’s phi-function A function that finds the number of integers that are both smaller than

n and relatively prime to n. 

Euler’s theorem A generalization of Fermat’s little theorem in which the modulus is an

integer.

existence of identity In an algebraic structure, if a is an element of the underlying set and  •

defines one of the operations, this property guarantees that there exists an element e, called the

identity element, such that a • e = e • a = a.

existence of inverse In an algebraic structure, if a is an element of the underlying set and  •

defines one of the operations, this property guarantees that there exists an element a′, called the

inverse element, such that a • a′ = a′ • a = e, where e is the identity element. 
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existential forgery A type of signature forgery in which the forger may be able to create a

valid message-signature pair, but not one that she can really use.

expansion P-box A P-box with n inputs and m outputs where m > n.

extended Euclidean algorithm An algorithm that, given two integers a and b, can find the

values of two variables, s and t, that satisfy the equation s × a + t × b = gcd (a, b). The algorithm

can also find the multiplicative inverse of an integer in modular arithmetic. 

F

factorization Finding all prime factors of an integer. 

false acceptance rate (FAR) The parameter measuring how often the system recognizes a

person who should not be recognized. 

false rejection rate (FRR) The parameter measuring how often the system fails to recog-

nize a person who should be recognized. 

Federal Information Processing Standard (FIPS) A U.S. document specifying a data-

processing standard. 

feedback function The function used in a feedback shift register. The input to the function is

all cell values; the output is the value fed to the first cell. 

feedback shift register (FSR) A shift register with a feedback function. 

Feige-Fiat-Shamir protocol A zero-knowledge authentication method similar to Fiat-

Shamir protocol but using a vector of private keys. 

Feistel cipher A class of product ciphers consisting of both invertible and noninvertible com-

ponents. A Feistel cipher combines all noninvertible elements in a unit (called a mixer in this

text) and uses the same unit in the encryption and decryption algorithms. 

Fermat factorization method A factorization method in which an integer n is divided into

two positive integers a and b so that n = a × b. 

Fermat number A set of integers in the form Fn = 22n

 + 1, where n is an integer.

Fermat primality test method A primality test based on Fermat’s little theorem.

Fermat prime A Fermat number that is a prime. 

Fermat’s little theorem In the first version, if p is a prime and a is an integer such that p

does not divide a, then ap−1 = 1 mod p. In the second version, if p is a prime and a is an integer,

then ap = a mod p. 

Fiat-Shamir protocol A zero-knowledge authentication method devised by Fiat and

Shamir. 

field An algebraic structure with two operations in which the second operation satisfies all five

properties defined for the first operation except that the identity element of the first operation has

no inverse with respect to the second operation. 

finite field  A field with a finite number of elements.

finite group A group with a finite number of elements.

fixed Diffie-Hellman In SSL or TLS, a version of the Diffie-Hellman protocol in which each

entity can create a fixed half-key and send the half-keys embedded in a certificate. 

fixed-password A password that is used repeatedly for every access.

function A mapping that associates one element in set A, called the domain, to one element in

set B, called the range.
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G

Galois field See finite field.

greatest common divisor (gcd) The largest possible integer that can divide two integers a

and b. 

group An algebraic structure with only one binary operation that satisfies four properties:

closure, associativity, existence of identity, and existence of inverse. 

Guillou-Quisquater protocol An extension of the Fiat-Shamir protocol in which a fewer

number of rounds can be used to prove the identity of the claimant.

H

Handshake Protocol In SSL and TLS, the protocol that uses messages to negotiate the

cipher suite, to authenticate the server to the client and the client to the server, and to exchange

information for building the cryptographic secrets. 

hashed message authentication Authentication using a message digest. 

hashed message authentication code (HMAC) A standard issued by NIST (FIPS 198)

for a nested MAC. 

hashing A cryptographic technique in which a fixed-length message digest is created from a

variable-length message. 

HAVAL A variable-length hashing algorithm with a message digest of size 128, 160, 192,

224, and 256. The block size is 1024 bits.

Hill cipher A polyalphabetic cipher in which the plaintext is divided into equal-size blocks.

The blocks are encrypted one at a time in such a way that each character in the block contributes

to the encryption of other characters in the block. 

Hypertext Transfer Protocol (HTTP) An application-layer service for retrieving a Web

document. 

I

infinite group A group with an infinite number of elements.

initial vector (IV) A block used by some mode of operations to initialize the first iteration. 

input pad (ipad) The first padding used in the HMAC algorithm.

integrity See data integrity. 

International Telecommunication Union-Telecommunication Standardization
Sector (ITU−T) An international standards group responsible for communication standard. 

Internet Engineering Task Force (IETF) A group working on the design and develop-

ment of the TCP/IP protocol suite and the Internet. 

Internet Key Exchange (IKE)  A protocol designed to create security associations in IPSec.

Internet Security Association and Key Management Protocol (ISAKMP) A protocol

designed by the NSA that implements the exchanges defined in IKE. 

inverse cipher The decryption algorithm. 

invertible function A function that associates each element in the range with exactly one

element in the domain.

InvMixColumns In AES, the inverse of the MixColumns operation used in the reverse

cipher.
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InvShiftRows In AES, the inverse of ShiftRows operation used in the reverse cipher. 

InvSubBytes In AES, the inverse of SubBytes operation used in the reverse cipher.

Internet Protocol Security (IPSec) A collection of protocols designed by the IETF to

provide security for a packet at the network level. 

irreducible polynomial A polynomial of degree n with no divisor polynomial of degree

less than n. An irreducible polynomial cannot be factored into a polynomial with degree of

less than n.

iterated cryptographic hash function A hashing function in which a function with fixed-

size input is created and is used a necessary number of times.

K

Kasiski test A test to find the key length in a polyalphabetic cipher. 

Kerberos An authentication protocol, and at the same time a KDC, developed at MIT as part

of Project Athena. 

Kerckhoff’s principle A principle in cryptography that one should always assume that the

adversary knows the encryption/decryption algorithm. Therefore, the cipher’s resistance to

attacks must be based only on the secrecy of the key. 

key  A set of values that the cipher, as an algorithm, operates on.

key complement A string made by inverting each bit in the key.

key-distribution center (KDC) A trusted third party that establishes a shared secret key

between two parties.

key domain The possible set of keys for a cipher.

key expansion In a round cipher, the process of creating round keys from the cipher key. 

key generator The algorithm that creates round keys from a cipher key. 

key-only attack An attack on a digital signature in which the attacker has access only to the

public key. 

key material In SSL and TLS, a variable-length string from which the necessary keys and

parameters for communication are extracted. 

key ring A set of public or private keys used in PGP. 

key schedule See key expansion. 

knapsack cryptosystem The first idea of public-key cryptography, devised by Merkle and

Hellman using a knapsack of integers. 

known-message attack An attack on a digital signature in which the attacker has access to

one or more message-signature pairs.

known-plaintext attack An attack in which the attacker uses a set of known plaintexts and

their corresponding ciphertexts to find the cipher key. 

L

least residue The remainder in modular arithmetic. 

linear congruence In this text, an equation of the form ax ≡ b (mod n). 

linear cryptanalysis A known-plaintext attack, presented by Mitsuru Matsui, that uses a

linear approximation to analyze a block cipher. 
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linear feedback shift register (LFSR) A feedback shift register in which the feedback

function is linear. 

linear Diophantine equations An equation of two variables of the form ax + by = c. 

linear S-box An S-box in which each output is a linear function of inputs.

low-private-exponent attack In RSA, an attack that can be launched if the private exponent

is small.

M

main mode In IKE, any mode that uses a six-message exchange. 

man-in-the-middle attack An attack on the Diffie-Hellman protocol in which the attacker

fools two parties involved in the protocol by creating two session keys: one between the first

party and the attacker, the other between the attacker and the second party. 

masquerading A type of attack on integrity of information in which the attacker imperson-

ates somebody else. Spoofing. 

master secret In SSL, a 48-byte secret created from the pre-master secret.

matrix A rectangular array of l × m elements, in which l is the number of rows and m is the

number of columns. 

Matyas-Meyer-Oseas scheme A dual version of the Davies-Meyer scheme in which the

message block is used as the key to the cryptosystem.

meet-in-the-middle attack In double encipherment, an attack that tries to find a plaintext and

a ciphertext such that the encryption of the first and the decryption of the second are the same.

Merkle-Damgard scheme An iterated hash function that is collision resistant if the com-

pression function is collision resistant. 

Mersenne number A set of integers in the form Mp = 2p − 1, where p is a prime. 

Mersenne prime A Mersenne number that is a prime. 

message access agent (MAA) A client program that pulls stored messages from a server. 

message authentication Proving the authenticity of a sender in a connectionless communi-

cation. 

message authentication code (MAC)  An MDC that includes a secret between two parties.

message digest The fixed-length string created from applying a hash function to a message. 

Message Digest (MD) A set of several hash algorithms designed by Ron Rivest and referred

to as MD2, MD4, and MD5. 

message digest domain The set of possible results of a cryptographic hash function. 

message transfer agent (MTA) An e-mail component that transfers messages across the

Internet. 

Miller-Rabin primality test A combination of the Fermat test and the square root test to

find a strong pseudoprime.

MixColumns In AES, an operation that transforms each column of the state to a new column. 

mixer In a Feistel cipher, a self-convertible component made of the nonconvertible function

and an exclusive-or operation. 

MixRows In Whirlpool, an operation similar to MixColumns in AES except that rows, instead

of columns, are mixed.
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Miyaguchi-Preneel scheme An extended version of Matyas-Meyer-Oseas. in which the

plaintext, the cipher key, and the ciphertext are all exclusive-ored together to create the new

digest.

modes of operation A set of modes devised to encipher text of any size employing block

ciphers of fixed sizes. 

modern block cipher A symmetric-key cipher in which each n-bit block of plaintext is

encrypted to an n-bit block of ciphertext using the same key. 

modern stream cipher A symmetric-key cipher in which encryption and decryption are

done r bits at a time using a stream of keys. 

modification A type of attack on the integrity of information in which the attacker delays,

deletes, or changes information to make it beneficial to herself.

modification detection  A message digest that can prove the integrity of the message.

modular arithmetic A type of arithmetic in which, when dividing an integer by another,

only one of the outputs, the remainder r, is used and the quotient is dropped. 

modulo operator (mod) The operator used in modular arithmetic to create the remainder. 

modulus The divisor in modular arithmetic. 

monoalphabetic cipher  A substitution cipher in which a symbol in the plaintext is always

changed to the same symbol in the ciphertext, regardless of its position in the text. 

monoalphabetic substitution cipher A cipher in which the key is a mapping between each

plaintext character and the corresponding ciphertext character. 

multiplicative cipher A cipher in which the encryption algorithm specifies multiplication 

of the plaintext by the key and the decryption algorithm specifies division of the ciphertext by 

the key.

multiplicative inverse In modular arithmetic, a and b are multiplicative inverses of each

other if (a × b) mod n = 1. 

Multipurpose Internet Mail Extension (MIME) A protocol that allows non-ASCII

data to be sent through e-mail. 

N

National Institute of Standards and Technology (NIST) An agency in the U.S. govern-

ment that develops standards and technology. 

National Security Agency (NSA) A U.S. intelligence-gathering security agency. 

Needham-Schroeder protocol A key-exchange protocol using a KDC that uses multiple

challenge-response interactions between parties. 

nested MAC A two-step MAC. 

New European Schemes for Signatures, Integrity, and Encryption (NESSIE) The

European research project to identify secure cryptographic algorithms. 

nonce A random number that can be used only once. 

non-Feistel cipher A product cipher that uses only invertible components. 

nonlinear feedback shift register (NLFSR) A feedback shift register in which the feed-

back function is nonlinear.

nonlinear S-box An S-box in which there is at least one output that is not a linear function of

the inputs.
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nonrepudiation A security service that protects against repudiation attack by either the

sender or the receiver of the data.

nonsingular elliptic curve An elliptic curve in which the equation x3 + ax + b = 0 has three

distinct roots. 

nonsynchronous stream cipher A stream cipher in which each key in the key stream

depends on a previous plaintext or ciphertext.

notarization A security mechanism that selects a third trusted party to control the communi-

cation between two entities. 

O

Oakley A key-exchange protocol developed by Hilarie Orman; it is an improved Diffie-Hellman

method. 

one-time pad A cipher invented by Vernam in which the key is a random sequence of symbols

having the same length as the plaintext.

one-time password A password that is used only once.

one-way function (OWF) A function that can be easily calculated, but the calculation of the

inverse is infeasible. 

optimal asymmetric encryption padding (OAEP) A method proposed by the RSA group

and some vendors that applies a sophisticated procedure to pad a message for encryption using

RSA.

order of a group  The number of elements in the group.

order of an element In a group, the smallest positive integer n such that an = e.

Otway-Rees protocol A key-exchange protocol similar to the Needham-Schroeder protocol,

but more sophisticated.

output feedback (OFB) mode A mode of operation similar to CFB but the shift register is

updated by the previous r-bit key.

output pad (opad) The second padding used in the HMAC algorithm. 

P

passive attack A type of attack in which the attacker’s goal is to obtain information; the

attack does not modify data or harm the system. 

password-based authentication The simplest and oldest method of entity authentication,

in which a password is used to identify the claimant. 

pattern attack An attack on a transposition cipher that uses the repeated pattern created in

the ciphertext.

P-box A component in a modern block cipher that transposes bits.

Perfect Forward Security (PFS) The property of a cryptosystem in which the disclosure

of a long-term secret does not compromise the security of the future communication. 

permutation group A group in which the set is all permutations of the elements, and the

operation is composition.

pigeonhole principle The principle that if n pigeonholes are occupied by n + 1 pigeons, then

at least one pigeonhole is occupied by two pigeons. 
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plaintext The message before encryption or after decryption. 

Playfair cipher A polyalphabetic cipher in which the secret key is made of 25 alphabet letters

arranged in a 5 × 5 matrix. 

Polard p–1 factorization method A method developed by John M. Pollard that finds a

prime factor p of a number based on the condition that p − 1 has no factor larger than a predefined

value B, called the bound. 

Polard rho factorization method A method developed by John M. Pollard that finds a

prime factor p of a number in which the values output by the algorithm are repeated, creating a

shape similar to the Greek letter rho (ρ).

polyalphabetic cipher A cipher in which each occurrence of a character may have a different

substitute. 

polynomial An expression of the form anxn + an−1xn−1 + … + a0x0, where aix
i is called the ith

term and ai is called coefficient of the ith term. 

possible weak keys A set of 48 keys in DES, where each key creates only four distinct round

keys.

power attack In RSA, an attack similar to the timing attack that measures the power con-

sumed during decryption.

preimage resistance The desired property of a cryptographic hash function in which, given h

and y = h(M), it must be extremely difficult for the adversary to find any message, M′, such that

y = h(M′). 

pre-master secret In SSL, a secret exchanged between the client and server before calcula-

tion of the master secret. 

Pretty Good Privacy (PGP) A protocol invented by Phil Zimmermann to provide e-mail

with privacy, integrity, and authentication.

primality test A deterministic or probabilistic algorithm that determines whether a positive

integer is a prime. 

prime A positive integer that is exactly divisible by only two integers, 1 and itself. 

primitive polynomial An irreducible polynomial that divides xe + 1, where e is the least inte-

ger in the form e = 2k − 1.

primitive root In the group G = <Zn∗, ×>, when the order of an element is the same as φ(n),

that element is called the primitive root of the group.

private key In an asymmetric-key cryptosystem, the key used for decryption. In a digital sig-

nature, the key is used for signing.

product cipher A complex cipher, introduced by Shannon, that combines substitution, per-

mutation, and other components to provide confusion and diffusion effects. 

pseudoprime A number that passes several primality test, but it is not guaranteed to be a

prime.

pseudorandom function (PRF) In TLS, a function that combines two data-expansion func-

tions, one using MD5 and the other using SHA-1.

public key In an asymmetric-key cryptosystem, the key used for encryption. In digital signa-

ture, the key is used for verification.

public-key infrastructure (PKI) A model for creating and distributing certificates based on

X.509.
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Q

quadratic congruence A congruence equation of the form ax2 + bx + c = 0 (mod n).

quadratic nonresidue (QNR) Coefficient a in the equation x2 = a (mod p), where the equa-

tion has no solution. 

quadratic residue (QR) Coefficient a in the equation x2 = a (mod p), where the equation

has two solutions.

quoted-printable An encoding scheme used when the data consist mostly of ASCII charac-

ters with a small non-ASCII portion. If a character is ASCII, it is sent as is. If a character is not

ASCII, it is sent as three characters. The first character is the equals sign (=). The next two char-

acters are the hexadecimal representations of the byte.

R

Rabin cryptosystem A variation of the RSA cryptosystem, devised by M. Rabin, in which

the value of e and d are fixed to 2. 

Rabin scheme An iterated hash function scheme proposed by Rabin baed on the Merkle-

Damgard scheme.

RACE Integrity Primitives Evaluation Message Digest (RIPMED) A cryptographic

hash algorithm designed by RACE with several versions.

Radix 64 encoding An encoding system in which binary data are divided into 24-bit blocks.

Each block is then divided into four 6-bit section. Each 6-bit section is then interpreted as one

printable character. 

Random Oracle Model An ideal mathematical model, introduced by Bellare and Rogaway

for a hash function. 

RC4  A byte-oriented stream cipher designed by Ronald Rivest. 

Record Protocol In SSL and TLS, the protocol that carries messages from the upper layer. 

related message attack An attack on RSA, discovered by Franklin Reiter, in which two

related ciphertexts are used to find two related plaintexts when the public exponent is low. 

relatively prime Two integers are relatively prime if their greatest common divisor is 1. 

replay attack See replaying. 

replaying A type of attack on information integrity in which the attacker intercepts the mes-

sage and resends it again. 

repudiation A type of attack on information integrity that can be launched by one of the two

parties in the communication: the sender or the receiver. 

residue Remainder. 

residue class A set of least residues. 

revealed private exponent attack An attack on RSA, in which the attacker uses a proba-

bilistic algorithm to factor n and find the value of p and q if she knows the value of d. 

Rijndael The modern block cipher designed by Belgian researchers Joan Daemen and Vincent

Rijment, and selected as the Advanced Encryption Standard (AES) by NIST. 

ring An algebraic structure with two operations. The first operation must satisfy all five prop-

erties required for an abelian group. The second operation must satisfy only the first two. In addi-

tion, the second operation must be distributed over the first.
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rotor cipher A monoalphabetic substitution that changes the mapping (key) between the

plaintext and the ciphertext characters for each plaintext character. 

RotWord In AES, an operation similar to the ShiftRows operation applied to only one row of

a word in the key-expansion process. 

round Each iterated section in an iterative block cipher. 

round-keys generation In a modern block cipher, the process that creates round keys from

the cipher key. 

routing control A security mechanism that continuously changes different available routes

between the sender and the receiver to prevent the opponent from eavesdropping on a particular route.

row matrix A matrix with only one row.

RSA cryptosystem The most common public-key algorithm, devised by Rivest, Shamir, and

Adleman.

RSA signature scheme A digital signature scheme that is based on the RSA cryptosystem,

but changes the roles of the private and public keys, the sender uses her own private key to sign

the document, and the receiver uses the sender’s public key to verify it. 

S

salting A method of improving password-based authentication in which a random string,

called the salt, is concatenated to the password. 

S-box A component in a block cipher that substitutes the bits in the input with new bits in the

output. 

Schnorr signature scheme A digital signature scheme based on the ElGamal digital signa-

ture scheme but with a reduced signature size.

second preimage resistance A desired property in a cryptographic hash function in which

given M and h(M) the intruder cannot find another message M′ such that h(M′) = h(M). 

Secure Hash Algorithm (SHA) A series of hash function standards developed by NIST

and published as FIPS 180. It is mostly based on MD5. 

Secure Key Exchange Mechanism (SKEME) A protocol designed by Hugo Krawcyzk

for key exchange that uses public-key encryption for entity authentication.

Secure Sockets Layer (SSL) A protocol designed to provide security and compression

services to data generated from the application layer. 

Secure/Multipurpose Internet Mail Extension (S/MIME) An enhancement to MIME

designed to provide security for the electronic mail. 

Security Association (SA)  In IPSec, a logical relationship between two hosts.

Security Association Database (SAD) A two-dimensional table with each row defining a

single security association (SA).

security attacks Attacks threatening the security goals of a system. 

security goals The three goals of information security: confidentiality, integrity, and availability.

security mechanisms Eight mechanism recommended by ITU-T to provide security ser-

vices: encipherment, data integrity, digital signature, authentication exchange, traffic padding,

routing control, notarization, and access control. 

Security Policy (SP) In IPSec, a set of predefined security requirements applied to a packet

when it is to be sent or when it has arrived. 
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Security Policy Database (SPD) A database of security policies (SPs).

security services Five services related to security goals and attacks: data confidentiality, data

integrity, authentication, nonrepudiation, and access control.

seed An initial value used in a pseudorandom number generator or used to load the cells in a

shift register. 

selective forgery A type of forgery in which the forger may be able to forge sender’s signa-

ture on a message with the content selectively chosen by the forger. 

semi-weak keys A set of six key in DES where each key creates only two different round

keys and each of them is repeated eight times.

session In SSL, an association between a client and a server. After a session is established, the

two parties have common information such as the session identifier, the certificate authenticating

each of them (if necessary), the compression method (if needed), the cipher suite, and a master

secret that is used to create keys for message authentication encryption.

session key  A secret one-time key between two parties. 

set of integers (Z) The set of all integral numbers from negative infinity to positive infinity.

set of residues (Zn) The set of positive integers modulo n. 

SHA-1 An SHA with a block of 512 bits and a digest of 160 bits. 

SHA-224 An SHA with a block of 512 bits and a digest of 224 bits. 

SHA-256 An SHA with a block of 512 bits and a digest of 256 bits. 

SHA-384 An SHA with a block of 1024 bits and a digest of 384 bits. 

SHA-512 An SHA with a block of 1024 bits and a digest of 512 bits. 

shared secret key The key used in asymmetric-key cryptography.

shift cipher A type of additive cipher in which the key defines shifting of characters toward the

end of the alphabet. 

ShiftColumns In Whirlpool, an operation similar to the ShiftRows transformation in AES,

except that the columns, instead of rows, are shifted. 

shift register A sequence of cells where each cell holds a single bit. Shifting the values of bits

can create a random-looking sequence of bits. 

ShiftRows In AES, a transformation that shifts bytes. 

short-message attack An attack on RSA, in which the attacker knows the set of possible

plaintexts and encrypts them to find a ciphertext equivalent to the one intercepted. 

short-pad attack An attack on RSA, discovered by Coppersmith, in which the intruder can

find the plaintext if she has two instances of the corresponding ciphertexts, each created with a

different short padding. 

sieve of Eratosthenes A method devised by the Greek mathematician Eratosthenes to find

all primes less than n. 

signing algorithm In a signature scheme, the process used by the sender. 

singular elliptic curve An elliptic curve in which the equation x3 + ax + b = 0 does not have

three distinct roots. 

snooping Unauthorized access to confidential information. An attack on the confidentiality

goal in information security. 

something inherent A characteristic of the claimant, such as conventional signatures, finger-

prints, voice, facial characteristics, retinal pattern, and handwriting, used for entity authentication. 
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something known A secret known only by the claimant that can be checked by the verifier in

entity authentication.

something possessed Something belonging to the claimant that can prove the claimant’s

identity, such as a passport, a driver’s license, an identification card, a credit card, or a smart card.

split operation An operation in a block cipher that splits a block in the middle, creating two

equal-length blocks.

spoofing See masquerading.

square-and-multiply algorithm A fast exponentiation method in which two operations,

squaring and multiplying, are used instead of only multiplying operation. 

square matrix A matrix with the same number of rows and columns. 

square root primality test method A method of primality testing based on the fact that

the square root of a positive integer modulo n is only +1 or −1.

state In AES, a unit of data in intermediate stages consists of a matrix of 16 bytes. In S-AES a

unit of data consists of 4 nibbles. 

station-to-station protocol A method of creating a session key based on the Diffie-Hellman

protocol that uses public-key certificates to prevent man-in-the-middle attacks. 

statistical attack

steganography A security technique in which a message is concealed by covering it with

something else.

straight P-Boxes A P-box with n inputs and n outputs. 

stream cipher A type of cipher in which encryption and decryption are done one symbol

(such as a character or a bit) at a time. 

SubBytes In AES, a transformation that uses a table to substitute bytes. 

subgroup A subset H of a group G is a subgroup of G if H itself is a group with respect to

the operation on G. 

substitution cipher A cipher that replaces one symbol with another. 

SubWord In AES, a routine similar to the SubBytes transformation, but applied only to one row.

superincreasing tuple A tuple in which each element is greater than or equal to the sum of

all previous elements. 

symmetric-key cryptosystem A cryptosystem in which a single secret key is used for both

encryption and decryption. 

symmetric-key encipherment An encipherment using a symmetric-key cryptosystem. 

synchronous stream cipher A stream cipher in which the key stream is independent of the

plaintext or ciphertext stream.

T

ticket An encrypted message intended for entity B, but sent to entity A for delivery. 

ticket-granting server (TGS) In Kerberos, the server that creates tickets for the real server. 

time-stamped signatures A digital signature with a timestamp to prevent it from being

replayed by an adversary. 

timing attack An attack on RSA based on the fast exponential algorithm. The attack uses the

fact that the timing required to do each iteration is longer if the corresponding bit is 1. 
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traffic analysis A type of attack on confidentiality in which the attacker obtains some infor-

mation by monitoring online traffic. 

traffic padding A security mechanism in which some bogus data are inserted into the data

traffic to thwart traffic-analysis attack. 

Transport Layer Security (TLS) An IETF version of the SSL protocol.

transport mode A mode in IPSec that protects what is delivered from the transport layer to

the network layer. 

transposition cipher A cipher that transposes symbols in the plaintext to create the ciphertext. 

trapdoor A feature of an algorithm that allows an intruder to bypass the security if she knows

that feature. 

trapdoor one-way function (TOWF) A one-way function that can reversed if one knows

the trapdoor. 

trial division factorization method The simplest and least efficient algorithm to find the

factors of a positive integer in which all positive integers, starting with 2, are tried to find one that

divides n. 

trigram A three-letter string.

triple DES (3DES) A cipher that uses three instances of DES ciphers for encryption and

three instances of reverse DES ciphers for decryption. 

triple DES with three keys A triple DES implementation where there are three keys: K1,

K2, and K3.

triple DES with two keys A triple DES implementation where there are only two keys: K1

and K2. The first and the third stages use K1; the second stage uses K2.

tunnel mode A mode in IPSec that protects the entire IP packet. It takes an IP packet, including

the header, applies IPSec security methods to the entire packet, and then adds a new IP header.

U

unconcealed message attack An attack on RSA, based on the permutation relationship

between plaintext and ciphertext; an unconcealed message is a message that encrypts to itself. 

undeniable signatures A signature scheme invented by Chaum and van Antwerpen with

three components: a signing algorithm, a verification protocol, and a disavowal protocol. 

user agent (UA) A component in an e-mail system that prepares the message and the envelope.

V

verifying algorithm The algorithm that verifies the validity of a digital signature at the

receiver site. 

Vigenere cipher A polyalphabetic cipher designed by Blaise de Vigenere in which the key

stream is a repetition of an initial secret key stream. 

Vigenere tableau A table used to encrypt and decrypt in the Vigenere cipher. 

W

weak keys A set of four keys in DES where each key, after dropping parity bits, consists either

of all 0s, all 1s, or half 0s and half 1s.

web of trust In PGP, the key rings shared by a group of people. 
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Whirlpool A cryptosystem based on altered AES. 

Whirlpool hash function  An iterated cryptographic hash function, based on the Miyaguchi-

Preneel scheme, designed by Vincent Rijmen and Paulo S. L. M. Barreto, and endorsed by

NESSIE. It is based on the Whirlpool cryptosystem.

word In AES, a group of 32 bits that can be treated as a single entity, a row matrix of four

bytes, or a column matrix of four bytes. 

X

X.509 A recommendation devised by ITU and accepted by the Internet that defines certificates

in a structured way. 

Z

zero-knowledge authentication An entity authentication method in which the claimant

does not reveal anything that might endanger the confidentiality of the secret. The claimant

proves to the verifier that she knows a secret, without revealing it.
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