
Flex
Fun

artima Chet Haase

Graphics and animation for better user interfaces

http://www.artima.com/forums/forum.jsp?forum=285
http://www.artima.com/backtalk/talkback?b=flex_4_fun&v=3&n=i

Flex 4 Fun

Flex 4 Fun
Chet Haase

artima
ARTIMA PRESS

MOUNTAIN VIEW, CALIFORNIA

iv

Flex 4 Fun
First Edition

Chet Haase was a computer scientist on the Flex SDK team at Adobe Systems,
Inc., during the development of the Flex 4 release. He currently works at Google,
Inc., on the Android UI toolkit team.

Artima Press is an imprint of Artima, Inc.
P.O. Box 390122, Mountain View, California 94039

Copyright © 2010 Chet Haase. All rights reserved.

First edition published as PrePrint™ eBook 2010
First edition published 2010
Build date of this impression August 14, 2010
Produced in the United States of America

Cover photo of sea dragon by Romain Guy.

No part of this publication may be reproduced, modified, distributed, stored in a
retrieval system, republished, displayed, or performed, for commercial or
noncommercial purposes or for compensation of any kind without prior written
permission from Artima, Inc.

All information and materials in this book are provided “as is” and without
warranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or
registered trademarks of their owners.

To my parents.
For all of the hassle and expense of raising me,

here’s a book that you’ll never read.

- Chet

Overview
Contents vii
Foreword xi
Acknowledgments xiii
1. Introduction 16
2. Graphics 26
3. Filters: Easy Image Processing 69
4. States 101
5. Transitions 111
6. Skinning Components 126
7. Animation 148
8. The Animation Class 162
9. Flex Effects: The Basics 195
10. Advanced Flex Effects 221
11. Effect Choreography 250
12. Picture Perfekt 272
13. Go Have Fun 281
About the Author 283
Index 284

Contents

Contents vii

Foreword xi

Acknowledgments xiii

1 Introduction 16
1.1 Flexpectations . 16
1.2 Flexciting stuff . 17
1.3 Flex 4: A very brief introduction 18
1.4 Flextreme programming 22
1.5 Flexamples . 22

2 Graphics 26
2.1 Flex 4 graphics . 27
2.2 Shapely: a simple drawing tool 29
2.3 Graphics primitives: getting into shape 35
2.4 Strokes of genius: lines and outlines 44
2.5 Fills: it’s what’s on the inside that counts 47
2.6 Setting strokes and fills in Shapely 60
2.7 Image is everything 63

3 Filters: Easy Image Processing 69
3.1 Flex filters . 70
3.2 Blur-based filters . 72
3.3 The BlurFilter class 75
3.4 The GlowFilter class 78
3.5 The DropShadowFilter class 81

Contents viii

3.6 Other filters . 87
3.7 ConvolutionFilter 88
3.8 Pixel shader filters . 92
3.9 Upon further reflection 96

4 States 101
4.1 Component state . 101
4.2 States syntax . 103
4.3 The states block . 104
4.4 Setting state values . 105
4.5 State inclusion . 106
4.6 State-specific property values 108

5 Transitions 111
5.1 Don’t lose the user . 111
5.2 States and transitions 112
5.3 The Transition class 114
5.4 Transition effects . 117
5.5 Example: search transition 119
5.6 Example: TransitionMultiple 121

6 Skinning Components 126
6.1 Components and their skins 127
6.2 The skin’s elements 129
6.3 Better button skins . 131
6.4 Adding a border . 134
6.5 Modernizing the button 136
6.6 Using skin states . 138
6.7 Beyond the basics: adding sparkle to skins 140

7 Animation 148
7.1 Animation defined . 148
7.2 Periodic callbacks . 149
7.3 It’s about time: frame- versus time-based animation . . 155

8 The Animation Class 162
8.1 Animation targets . 163
8.2 Demo: moving a button with the Animation class . . . 165

Contents ix

8.3 Repetition, repetition, repetition 168
8.4 Motion paths: more is better 170
8.5 Interpolation: when numbers just aren’t enough 177
8.6 Easing does it . 182
8.7 The Animation class and Flex effects 193

9 Flex Effects: The Basics 195
9.1 The Animate effect 197
9.2 The Resize effect . 200
9.3 Transform effects . 202
9.4 The Fade effect . 212
9.5 The AnimateColor effect 215

10 Advanced Flex Effects 221
10.1 The AnimateFilter effect 221
10.2 The AnimateTransitionShader effect 228
10.3 The Wipe effect . 231
10.4 The CrossFade effect 232
10.5 3D: A new dimension to Flex effects 238
10.6 The Move3D effect . 243
10.7 The Rotate3D effect 243
10.8 The Scale3D effect 244

11 Effect Choreography 250
11.1 Composite effects . 250
11.2 The Parallel effect: keeping it together 251
11.3 The Sequence effect: you follow me? 253
11.4 Action effects . 256
11.5 The Pause effect: wait for it. 257
11.6 AddAction and RemoveAction 260
11.7 The SetAction effect: assign of the times 267
11.8 CallAction: form versus function 270

12 Picture Perfekt 272
12.1 Reflection . 273
12.2 Drop shadows . 274
12.3 Selection glow . 275
12.4 Animated colorization 277

Contents x

13 Go Have Fun 281

About the Author 283

Index 284

Foreword

Working as a software developer in 2010 I sometimes feel blessed by the
amazing tools I can use to create applications. Powerful IDEs almost write
all the code for me, and extensive frameworks let me implement complex
features in no time. Despite the incredible sophistication of the tools of our
trade, today’s developers must learn and master many platforms, libraries,
patterns, techniques, and APIs . . . more every year. Learning is a very im-
portant part of our job and even though the Internet can provide us with
countless tutorials and examples, books remain the best way to quickly gain
the knowledge we need. Books are also easy to find; any bookstore, online
or offline, usually carries at least one book on the topic I need to learn about.
They even have sometimes too much choice! Go to the nearest bookstore and
try to pick a book about Java, Flash, or CSS. Which one will you choose? I
usually go with the one that doesn’t have the author’s photo on the cover; it’s
less creepy.

Graphics is one topic, however, for which the choice is very easy: there
is no choice. Sure, you can find books that will describe the APIs the same
way the SDK does, but you won’t find books to teach you how graphics APIs
work and how to put them to good use to create a compelling user interface.

Luckily for you, you have this book. Chet cares deeply about graphics
and cares as much about teaching graphics. I have had, and still have, the
chance to work with him on various projects, and I am constantly amazed by
his passion for the field of graphics and animation. I am equally amazed by
his skills as a teacher. Chet not only knows how to teach other developers
how to use graphics and animations libraries, he also knows how to make
them understand how everything works under the hood. He’s even shock-
ingly entertaining while doing so.

I must warn you though, although you will learn what you need to do
your job, you might also discover a new passion for the wonderful world of

Foreword xii

graphics programming. Do not blame Chet if you later sacrifice your spare
time to write your own exciting graphical effects and animations. He’s only
the teacher.

You are about to embark on a great journey with the best possible com-
panions: the solid Flash engine, the versatile Flex framework and a very
good teacher. You will seldom enjoy a programming book as much as you
will this one.

Romain Guy
Millbrae, California
July 1, 2010

Acknowledgments

Many people have contributed to this book and to the material it covers. I
am grateful to all of them.

First, I’d like to thank Daniel Steinberg, whose editorial work, advice,
and friendship helped make the book possible. Although there were some
odd hiccups along the way, what journey on life’s highways is truly complete
without the occasional flat tire, speeding ticket, and seventeen car pileup?
Thanks, Daniel.

Second, I’d like to thank Romain Guy, my friend and co-author on the
book Filthy Rich Clients, whose bright idea it was to write a book about Flex
in the first place. I would prefer his name be on the cover with mine, instead
of just his photograph of a sea dragon . . . because it would mean he would
have actually helped write the darn thing he helped start. Nevertheless, I
appreciate his time and interest in the project, and hope that he joins me
again in the next book adventure. After I recover from this one. And, by
the way, besides the picture on the cover, Romain contributed the pictures to
many of the demos in the book. Be thankful that you can enjoy his beautiful
photography instead of whatever pictures I could have come up with from
my family snapshots.

I am also grateful to the entire Flex 4 SDK team, without whose hard
work and dedication there would be no Flex 4 Fun book, because there would
be no Flex 4. The product team included Evtim Georgiev, Jason Szeto, Hans
Muller, Gordon Smith, Glenn Ruehle, Ely Greenfield, Deepa Subrmaniam,
Ryan Frishberg, Peter Farland, Peter Donovan, Tom Kraikit, Greg Burch,
Kevin Lin, Jono Spiro, Chiedo Acholonu, Corey Lucier, Alex Harui, Joan
Lafferty, Joann Chuang Anderson, Lauren Park, Matt Finitz, Steven Shon-
grunden, Jacob Goldstein, Ella Mitelman, Brian O’Laughlin, Rob Vollmar,
Peter DeHaan, Jody Zhang, Gaurav Jain, Paul Reilly, Jim Murphy, Darrell
Loverin, Carol Frampton, Kari White, Vera Carr, Matt Chotin, Steve Brein-

Acknowledgments xiv

berg, Susan Lally, Ed Rowe, and David Wadhwani.
Finally, I’d like to thank the technical reviewers of the book, including

Ella Mitelman, Darrell Loverin, Chiedozi Acholonu, Ryan Frishberg, Gau-
rav Jain, Evtim Georgiev, Peter DeHaan, and Tom Kraikit. I can honestly
say that I really enjoy writing, and really hate revising. But it is the review-
ing and subsequent suicidally painful revisions that take the book from a big
steaming pile of words and code into a book that’s ready for the bookshelves
of the world.

Flex 4 Fun

Chapter 1

Introduction

Welcome to this book. I’m glad you’re here! Over the next many pages we’ll
have some fun exploring the graphical and animation side of the Flex 4 SDK.

Flex 4 is a powerful and flexible set of libraries that enable rich client
applications running on the Flash Platform. That’s a mouthful, so here’s an-
other attempt at it: Flex helps you write Flash applications. In particular,
Flex gives you facilities for writing GUI applications that are otherwise dif-
ficult to manage with just the Flash APIs and Flash Pro authoring tool. For
example, Flex provides a rich and extensible component library, data binding
for easy communication between objects in the application, and the declar-
ative MXML language that enables you to write your GUI logic in a very
simple and straightforward way.

But you know all of this: you’ve written some Flex programs already. . .

1.1 Flexpectations

This is not a book on how to write Flex applications overall, or even how to
write Flex 4 applications in particular. Lots of other books exist out there that
cover the basics of the platform: MXML, ActionScript 3, Flex components,
data binding, application architectures, etc. This book is not attempting to
cover that same area, so if that’s what you’re looking for, I invite you to
check out one of the many other books available.

Instead, this book assumes that you have done some Flex programming,
enough to know the basics of MXML and ActionScript, so that when you
look at the simple examples in this book you are not confused. I’m not
expecting you to be an advanced Flex developer, and I don’t assume any

Section 1.2 Chapter 1 · Introduction 17

advanced knowledge for the topics in this book. I’m also not assuming that
you are an expert on Flex 4, although some passing familiarity with some
of the changes might be helpful to understand some of the code that you’ll
see. For example, a new Declarations block and new namespaces in exist
in Flex 4 MXML code, so these might be a surprise if you haven’t seen
Flex 4 applications before. But you can pick up these nuances on the fly,
or check out some of the Flex 4 articles on the devnet site at adobe.com:
http://www.adobe.com/devnet/flex/.

I also expect that you already have the Flash Builder IDE, or a previous
version of the tool, which was formerly known as Flex Builder. If you don’t
have Flash Builder 4 installed, you probably want to get at least the sixty day
trial version, because it will make building and playing with the many sample
applications in this book much easier (more on this at the end of this chapter).
To download the trial version of Flash Builder 4, follow the links from this
book’s resources page, http://booksites.artima.com/flex_4_fun.

Finally, I expect that you know how to access and use the API documen-
tation for the Flex 4 SDK. Rather than cover all of the relevant classes that
I discuss in gory detail down to the last infrequently used property, I leave
some of the details of APIs to the docs since they do a pretty good job of
explaining things. I would rather spend the pages of this book talking in
more detail about the stuff that’s not as obvious. So sometimes I may de-
fer to the docs for a particular item. If you want to know more about that
particular item that I didn’t cover, go find the docs and look it up. You can
view or download the documentation at http://www.adobe.com/devnet/
flex/?view=documentation.

Okay, so if this is the stuff that I’m not covering in the book, just what is
the book about, anyway?

1.2 Flexciting stuff

Sure, there are other books out there on Flex, Flex 4, and RIA technologies
in general—but they usually don’t cover the techniques that help you write
cooler applications. This book is specifically about the graphical and anima-
tion aspects of Flex 4 that enable better user experiences: the “fun” stuff.

Flex sits atop the powerful Flash graphics engine, which provides all
kinds of great capabilities for drawing shapes with various fills and strokes
and even image-processing filters to alter objects’ appearances. The Flex

http://www.adobe.com/devnet/flex/
http://booksites.artima.com/flex_4_fun
http://www.adobe.com/devnet/flex/?view=documentation
http://www.adobe.com/devnet/flex/?view=documentation

Section 1.3 Chapter 1 · Introduction 18

4 release has a new component model that enables a very flexible way of
changing the look of your components. Flex also offers a “states” model
that makes it easy to describe what your application and GUI components
look like at different stages in their life. And Flex provides a rich library of
animation capabilities that makes it possible to animate anything in the GUI,
which enables rich experiences for the user as objects in the GUI gradually
change from one state to another instead of making sudden, discontinuous
changes. These are some of the capabilities that this book will cover in
detail, along with many example programs to show how all of it works.

1.3 Flex 4: A very brief introduction

I’ll talk about various aspects of the new features in Flex 4 in the pages of
this book. But it seems helpful to give an overview of what the Flex 4 release
brings to the Flex SDK. Flex 4 was a significant release in which much of
Flex was re-architected to make the toolkit even more powerful and flexible.
In particular, several areas are worth noting if this is your first view of Flex
4, including the new spark components, the new graphics classes, the new
spark layout system, the new state syntax, new elements of MXML files, and
the new effects system.

Spark components

As of Flex 3, Flex already made it easy to build good-looking applications.
The component set was rich and the standard component skins had a distinc-
tive and designed look. It was also possible to modify the look of the com-
ponents with CSS and with various properties and styles on the components
themselves. But if you wanted a truly custom look to your components, you
had a harder time. For example, you could change the fill color of a Button,
but you could not change its label placement. So you were forced to create
custom components by subclassing and probably writing and copying a lot
of code to get it right. Meanwhile, the standard Flex components had ac-
cumulated a veritable plethora of styles and properties that was starting to
make the component APIs unwieldy.

Flex 4 changed all of this. There is now a new set of “spark” components
based on a new architecture that separates the component’s logic, or how
the component does its job, from its visuals, or how the component looks.
The logic is handled by ActionScript code in the component’s class, such

Section 1.3 Chapter 1 · Introduction 19

as Button.as. The visuals are contained in an MXML file called a “skin,”
where the visual aspects of the component are described with graphical and
sub-component elements.

Now, in order to provide a custom look for a component, a developer or
designer may create their own skin file to give a component a truly unique
look. This skin file can be substituted for the standard skin file by simply
telling the component where the skin file is located. Because the visuals have
been separated from the logic in spark components, they are independent
and the component can use any skin that follows the simple component/skin
contract. You’ll see how this all works with skinning examples in Chapter 6.

Graphics

One of the biggest additions in Flex 4, and one of the most exciting to me
personally, being the graphics geek that I am, is the ability to create graphics
objects directly in Flex. Previously, if you wanted to draw graphics in your
application, such as rendering elements of custom component, you needed
to drop down to ActionScript code and issue calls to the Flash graphics API.
Flex 4 adds higher-level graphics classes directly to the Flex APIs which are
both easier to use and able to be created in MXML. You’ll read all about how
this works in Chapter 2, and you will see how we use this capability to create
custom skins for spark components in Chapter 6.

Spark layout

Flex 3 containers use a layout system that is hard-coded for that container.
For example, a Canvas uses absolute layout, where each child object is po-
sitioned and sized with explicit properties like x, y, width, and height or
constraint properties like left and right instead of being positioned auto-
matically. And a Flex 3 TileList container arranges its children in a grid
of rows and columns.

In Flex 4, layout is independent of containers. Now, you can specify a
layout property for any container, even changing the layout on the fly to get
different layouts at runtime. For example, in Flex 4, there is a TileLayout
class that you can assign to any spark container to manage that container’s
children in rows and columns. In fact, you can even write your own layout
class and use it as the layout property of any of the standard spark contain-
ers to get your own custom container layout.

Section 1.3 Chapter 1 · Introduction 20

Some containers in Flex 4 have predetermined layouts, such as HGroup
and VGroup, but these classes exist just to simplify common cases and also
use the new flexible layout approach internally. For example, HGroup is
essentially just a façade over a Group with a HorizontalLayout.

I do not cover layouts in this book explicitly, other than using various
containers and layouts in the book’s demo applications, but you can read
more about spark layout in the article “Spark layouts with Flex 4” on the
Flex devnet site here: http://www.adobe.com/devnet/flex/articles/
spark_layouts.html.

New state syntax

“View states” are one of the most interesting and powerful features of Flex
GUI programming, allowing you to encode the various states that your ap-
plication or components are in over the life of an application. For example,
some components may exist only in certain states and other components may
change size or orientation between states.

However, the syntax of state programming was always rather tricky, both
to write and to read. State code was better left to Flash Builder’s Design View
tool, a graphical GUI builder that could easily output state-specific code that
would have been difficult to code by hand. But even so, you would still have
state code that was difficult to understand, making the code less maintainable
and making states difficult to use effectively in general.

In Flex 4, a new state syntax was introduced that makes it much easier
to write and read state code, allowing you to write state-specific information
for objects in-line with the object declaration. I’ll talk more about this in
Chapter 4, with example code to show how to use the new syntax.

MXML changes

MXML has gained some new elements since Flex 3 that you will see in
the book’s examples. The changes are relatively minor, but they may be a
mystery to you if you haven’t seen Flex 4 code yet.

A new namespace was introduced for the new spark components in Flex
4: library://ns.adobe.com/flex/spark. You usually refer to this spark
namespace at the top of your MXML file with the abbreviation s, as in
xmlns:s="library://ns.adobe.com/flex/spark". You can still use the
old mx namespace if you want to use Flex 3 objects (some of which have

http://www.adobe.com/devnet/flex/articles/spark_layouts.html
http://www.adobe.com/devnet/flex/articles/spark_layouts.html

Section 1.3 Chapter 1 · Introduction 21

no spark equivalent yet, for example, Canvas and DataGrid), like this:
xmlns:mx="library://ns.adobe.com/flex/mx". Additionally, a new fx
namespace, xmlns:fx="http://ns.adobe.com/mxml/2009", was added
to hold common language elements. Here’s what an Application tag, for
example, might look like in an MXML application that uses spark, mx, and
language elements:

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

The Declarations block is a new addition to support adding non-visual
items to the MXML file. Previously, you could add anything to an MXML
file, regardless of whether it was a component or data structure or an effect
or anything else; as long as the compiler knew how to compile that tag,
you could put it in the code. Being able to use any object in MXML was
convenient, but it made for sometimes messy code in which elements in the
hierarchy of the container being defined by the MXML code were mixed
with objects that did not live in that visual hierarchy. The Declarations
block was introduced in Flex 4 to enforce a separation between the non-
visual items, which go into this block, and the items that are in the visual
hierarchy of the object being defined, like components and graphics.

Effective Flex 4

The last new element of Flex 4 that I’ll mention in this overview is the new
effects system. Effects are what Flex calls animations; they are used to an-
imate changes in the display, such as components moving around or fading
in and out. In order to support some of the new capabilities and classes in
Flex 4, such as the new graphics objects, Flex effects were rewritten to be
more flexible and robust, and several new effects were added to support new
capabilities in recent Flash player versions such as 3D and pixel shaders. I’ll
talk much more about the new Flex effects system in Chapters 9, 10, and 11.

But wait, there’s more!

This overview is just meant to give you a taste of what Flex 4 has to offer.
Many of the details of the new SDK are discussed in this book as we cover

Section 1.4 Chapter 1 · Introduction 22

topics like graphics, components, states, and effects. But there is much more
to the Flex 4 SDK that I don’t discuss in this book because there simply isn’t
room or time enough. If you want to learn more about the improvements in
Flex 4, check out the Flex devnet site at http://www.adobe.com/devnet/
flex/, which has many articles on the various aspects of Flex 4, including
this one on the differences between Flex 3 and Flex 4: http://www.adobe.
com/devnet/flex/articles/flex3and4_differences.html.

1.4 Flextreme programming

I wanted to add a brief word about coding style and architecting Flex ap-
plications. Although it is perfectly legal to have ActionScript (AS) code in
an MXML file, typical applications separate that logic from the declarative
MXML code by having separate files. AS code goes in .as files, MXML
code goes in .mxml files. Many of the demos in this book sprinkle in small
sections of AS code in Script blocks. But note that this is done in the book’s
examples because (a) these demos are quite small, so the amount of AS code
is not too distracting in those MXML files, and (b) the main intent of the de-
mos is to show as simply as possible how the code works. I find it easier to
demonstrate this with one single file (when possible). So don’t do what I do:
separate the logic and the GUI declaration code in your Flex applications.

1.5 Flexamples

One of the highlights of this book is code from nearly seventy applications
written exclusively for the book. Much of the code is shown directly in these
pages, in snippets that are explained by the surrounding text. These excerpts
are usually prefaced by the name of the file they come from, as seen here:

(File: components/DrawingCanvas.as)
addEventListener("mouseDown", mouseDownHandler);

In this example, the code is from the file DrawingCanvas.as in the
components directory. All of the examples in any chapter are in a Flash
Builder project named after the chapter title, with the source code found in
the src directory. So if you’ve downloaded and unzipped the code for the
book onto your system, as explained later in this section, then you could find

http://www.adobe.com/devnet/flex/
http://www.adobe.com/devnet/flex/
http://www.adobe.com/devnet/flex/articles/flex3and4_differences.html
http://www.adobe.com/devnet/flex/articles/flex3and4_differences.html

Section 1.5 Chapter 1 · Introduction 23

this snippet of code in Graphics/src/components/DrawingCanvas.as.
Sometimes several code snippets come from the same file, broken up by ex-
planatory text between them. In these cases, the file name is only listed with
the first such snippet.

All of the code in the book comes from complete applications that you
can download, build, and run yourself. This is probably something you
should plan to do, at least for those parts of the book you want to thoroughly
understand. Also, these applications provide useful code that you can copy
from or start from for projects of your own.

You will want to do three things with these applications: run them, down-
load their code, and build them. So I’ll cover the details of how to do each
of these tasks here.

Running the applications

The easiest way to run the applications is to go to http://booksites.
artima.com/flex_4_fun/apps. This site is set up specifically to allow
you to launch any of the applications in the book. The applications are or-
ganized by chapter. So in order to run any particular application that you
see called out in one of the chapters, go to the site in a browser, select the
chapter that the demo is in, and then choose the application from the list at
the bottom left for that chapter. The application will load into the page and
you can play with it right there.

Of course, the interesting part of most of the demos is not running them,
but seeing the code and tinkering with it. So the next step you’ll want to take
is downloading the code.

Downloading the application code

All of the applications are hosted on the book’s site, http://booksites.
artima.com/flex_4_fun. Like the site where you can run the applications,
the application source is organized per-chapter. The applications for each
chapter are in a single Flash Builder project (see more in the next section
about this). All of the chapter projects are in a single zipfile that you can
download. To get the code for each chapter, just download the zip file and
unzip it somewhere on your local system. Then you can open each project
folder, go into its src directory and explore the files. Or better yet, load the
project into Flash Builder and explore the source code in the IDE.

http://booksites.artima.com/flex_4_fun/apps
http://booksites.artima.com/flex_4_fun/apps
http://booksites.artima.com/flex_4_fun
http://booksites.artima.com/flex_4_fun

Section 1.5 Chapter 1 · Introduction 24

Of course, once you have the source code, it won’t be good enough to
just look at it. You’ll want to build it and start tinkering with it to produce
your own applications. So you’ll want to know how to build the applications.

Building the applications

As I said in the previous section, the source code for the applications is or-
ganized into projects for each chapter. Once you’ve downloaded the source
code and unzipped it, you’ll have a Flash Builder project folder on your local
system. You can now run Flash Builder and load that project into the IDE.

To load any of the chapter projects into Flash Builder, you’ll need to
import it using the following steps:

• In the File menu, select the Import item.

• In the Import sub-menu, select the Other... item. This brings up
the “Import” dialog.

• Open the “General” item, select “Existing Projects into Workspace,”
and click the Next button.

• Click the Browse... button next to the Select root directory item
and navigate to and select the chapter project on your hard drive.

• Click the Finish button in the “Import” dialog.

You should now see the project loaded into the Flash Builder package
explorer window. The source code for all of the applications in the chapter
is in the src/ folder inside the project. To build and run any particular appli-
cation, double-click on that application in the package explorer window and
select Run in the Run menu.

You can also use the command-line compiler that comes with the free
open source Flex SDK. So if you really don’t want to use the Flash Builder
IDE to work with Flex, you can do so; just edit the code in some text-editing
application (or other IDE) and use the command-line compiler to build the
applications. Because this book is targeted at people that are currently doing
Flex development, I expect that most of you already have Flash Builder, or
will want to get it soon to help with your Flex 4 development. But even if
you don’t have the tool, and don’t yet want to spend the money now to buy
it, you can download and install a free fully-functional trial version for sixty

Section 1.5 Chapter 1 · Introduction 25

days. So rather than go through the details of building these applications on
the command line,1 I’m going to just assume that you have Flash Builder 4
(or later) installed.

And that’s it: using the simple steps above, you can download, build,
and run all of the demos in this book. Now get reading. And when you see
a demo described in the book, run it your yourself to see it in action. Better
yet, download and play with the code and see what else you can do.

Now, let’s have some Flex 4 Fun!

1 The details are basically: download the Flex 4 SDK, download the appropriate version
of the Sun Java JDK (JDK 1.5 or later), install the appropriate version of the Flash player, set
some environment variables, and you’re good to go. You can find out more about doing this
on the Flex open-source site if this is what you want to do. But really, just download the free
trial of Flash Builder and use it instead. It’ll save you time and hassle.

Chapter 2

Graphics

Graphics are the heart of GUI applications. Graphical objects are used to
describe the visual appearance of components as well as to create custom
rendering like gradient backgrounds. The richness of the graphics platform
in a GUI toolkit determines how easily you can build rich client applications
with that toolkit. Since Flex sits atop the Flash platform, there is a wealth of
graphics capabilities available, enabling very rich clients indeed.

You can see the use of graphics objects in every Flex 4 component, like
this panel full of controls:

Every one of these components is made up of simple graphics primitives.
The panel consists of a couple of rectangles with a darker fill for its header.
The button is a rounded rectangle filled with a light gradient and stroked

Section 2.1 Chapter 2 · Graphics 27

with a darker border color. The checkbox has a filled and stroked rectangle
for the box and a path object for the check mark. The slider is composed of
a rounded rectangle for the track and a circle for the thumb. And the radio
button has one circle for the button and one for the selection indicator.

You use these same graphics primitives to create very custom and dy-
namic objects on the screen, as seen here:

(Demo: Shapely)

In this drawing application, all of the control panel objects on the left as
well as the scribbled face on the drawing canvas were created with graphic
elements. We’ll see more of the Shapely application later in this chapter as
we explore various shapes and drawing attributes available in Flex 4.

2.1 Flex 4 graphics

Once upon a time (as far back as Flex 3), if you wanted custom graphics, you
had to dive into ActionScript code, override a method or two, create and use
Flash display objects, and issue calls into their Graphics objects. It was the
only way to draw custom graphics from your Flex application. For example,
here’s how you might draw a circle in Flex 3:

Section 2.1 Chapter 2 · Graphics 28

(File: ThreeCircles.mxml)
var component:UIComponent = new UIComponent();

var sprite:Sprite = new Sprite();

sprite.graphics.beginFill(0xff0000);

sprite.graphics.drawEllipse(0, 0, 100, 100);

sprite.graphics.endFill();

component.addChild(sprite);

addElement(component);

Flex 4 provides a new graphics API that allows you to easily create objects
that describe visual elements. The Flex library internally handles the details
of telling Flash how to create and render these objects. For example, here’s
a simple circle using the new graphics classes of Flex 4:

var circle:Ellipse = new Ellipse();

circle.width = 100;

circle.height = 100;

circle.fill = new SolidColor(0x0000ff);

circle.x = 100;

addElement(circle);

And here’s a even better example of the Flex 4 approach, using some of the
new MXML tags:

<s:Ellipse x="200" y="0" width="100" height="100">

<s:fill>

<s:SolidColor color="green"/>

</s:fill>

</s:Ellipse>

You will notice some important differences between the old way of creating
graphics and the new way of doing it in Flex 4:

Declarative The approach of creating graphics in Flex 4, like much of the
rest of Flex, is object-oriented and declarative. You create the graphics
primitive you need, set the properties of that object to tell it how to
draw itself, and add it to the appropriate container in your application.
The old way of drawing in Flex 3 was, by contrast, very manual. You
got a reference to Flash Graphics object and called drawing functions
on that object to tell the object how to render itself.

Section 2.2 Chapter 2 · Graphics 29

MXML Because the new graphic elements are declarative, you can use
MXML markup to describe your visuals. You can now use MXML
to describe the visual aspects of your program, and only dive into
ActionScript for the more programmatic functionality of your appli-
cation, like the business logic. This is particularly important when
customizing the look of Flex 4 components through their skins. These
component skins, which are written in MXML files, hold the graphical
elements that describe the component’s appearance. We will see more
about component skinning in Chapter 6.

Flex-friendly You’ll notice, in the Flex 3 code in the previous example
where we draw into a sprite graphics object, an indirect approach of
adding our sprite to a UIComponent, which is then added to our Flex
application. This is because Flex 3 applications only understand com-
ponents, not raw Flash display objects like our Sprite above. So
whenever we want custom graphics in a Flex 3 application, they need
to be drawn into a custom component, or added into a UIComponent,
or by some other means added indirectly to the Flex display list. The
Flex 4 approach is much more tightly integrated with Flex overall. We
create GraphicElement objects, like the Ellipse in the Flex 4 code
in the example, and add them directly to Flex containers.

For the rest of the chapter, we’ll see the different kinds of graphics ob-
jects that we can create.

2.2 Shapely: a simple drawing tool

As you read through this chapter, learning about strokes and fills and the
various graphic elements that you can use in Flex 4, you will see these objects
in use in the Shapely drawing application seen earlier on page 27. But in
order to understand how the various objects fit into that application, we’ll
first need to understand how the application works in general. Let’s go over
its basic architecture and mechanisms.

The Shapely application is a simple drawing application that allows the
user to select between a small set of shapes (lines, rectangles, ellipses, and
paths) along with different stroke and fill modes for the shapes. The user
can then draw these shapes on the canvas with the mouse. In order to keep
the application simple, both in terms of the UI and the code that we need to

Section 2.2 Chapter 2 · Graphics 30

digest, the application does not expose the full spectrum of graphic primitives
and fill/stroke options that we cover in this chapter. But the application is a
good place from which to start if you want to further enhance it with that
additional functionality yourself.

Some of the code that you will see in the application uses techniques
or functionality in Flex 4 that we have not yet covered. For example, some
of the code in the ControlPanel class uses the new states syntax (which I
talk about in Chapter 4) to change the look of the drawing primitive icons
when the icons are selected. Don’t worry too much about these bits of the
code. The real point in this chapter is to understand how the application UI
is drawn, using the graphics primitives and fills/strokes that we discuss here,
and how the shapes are created by the user when dragging the mouse around.
So let’s get into the code.

First of all, take a look at the application GUI. As you can see in the
screenshot on page 27, a control panel at the left contains buttons that the
user selects to choose the current shape and the drawing options for that
shape. The rest of the window contains a drawing canvas, where the user
drags the mouse to draw shapes. The following sections will cover how the
main application, the control panel, and the drawing canvas work.

The Shapely application class

The top-level application is very simple; it just instantiates and positions the
custom components for the control panel and the drawing canvas:

(File: Shapely.mxml)
<components:ControlPanel id="controlPanel"

width="52" height="100%"

currentStateChange="drawingModeChange()"

drawingStateChange="drawingStateChange(event)"/>

<components:DrawingCanvas id="canvas"

left="52" right="0"

top="0" bottom="0"/>

Some additional logic is in script code to handle setting the drawing state for
the application. The drawing state is determined by actions in the control
panel. A change in the shape to be drawn results, through the event mecha-
nism, in a call to the drawingModeChange() function:

Section 2.2 Chapter 2 · Graphics 31

private function drawingModeChange():void

{

switch (controlPanel.currentState)

{

case "lineMode":

canvas.drawingMode = DrawingCanvas.LINE;

break;

case "rectMode":

canvas.drawingMode = DrawingCanvas.RECT;

break;

case "ellipseMode":

canvas.drawingMode = DrawingCanvas.ELLIPSE;

break;

case "pathMode":

canvas.drawingMode = DrawingCanvas.PATH;

break;

}

}

A change in the stroke or fill controls sends a drawingStateChange event
and results in a call to the drawingStateChange() function:

private function drawingStateChange(

event:DrawingStateChangeEvent):void

{

canvas.stroke = event.stroke;

canvas.fill = event.fill;

}

When the application receives these events, it sets the appropriate state in
the drawing canvas to be used in future drawing operations. These events are
received when the user interacts with the control panel.

The Shapely control panel

Now let’s take a look at the control panel, from the file ControlPanel.as.
This component is a subclass of Group, the simplest Flex 4 container and the
base class for other container classes. ControlPanel is just a basic container
for the various icons that control drawing state.

Section 2.2 Chapter 2 · Graphics 32

Each of the drawing primitive icons (the line, rectangle, ellipse, and path)
have the same structure: a Group contains the icon graphics and listens for
click events to signal that the user wants to switch to this drawing mode. For
example, here is the group container for the line drawing icon:

(File: components/ControlPanel.mxml)
<s:Group id="line" width="40" height="40"

click="setMode(event)">

<!-- group contents -->

</s:Group>

You can see in the previous code that a mouse click results in a call to the
setMode() function. This function sets the drawing mode by setting the
currentState of the component:

private function setMode(event:MouseEvent):void

{

switch (event.currentTarget)

{

case line:

currentState = "lineMode";

break;

case rect:

currentState = "rectMode";

break;

case ellipse:

currentState = "ellipseMode";

break;

case path:

currentState = "pathMode";

break;

}

}

When any icon is clicked, it dispatches an event to this function, which sets
the currentState property according to the button that was clicked. That
change to currentState causes Flex to dispatch a currentStateChanged
event, which is received by the drawingModeChange() function in Shapely
that we saw earlier. This function sets the drawing mode for the canvas
(which we will see later).

Section 2.2 Chapter 2 · Graphics 33

Finally, components at the bottom of the control panel determine the
stroke and fill used when drawing:

Two checkboxes determine whether the object will be stroked and/or
filled. In between the checkboxes are ColorPicker components for the
stroke and the fill gradient (choose both fill colors to be the same to get a
solid color). A preview rectangle between the stroke and fill sections shows
the user what shapes will look like with the current stroke and fill settings.
When any of these settings are changed, the setDrawingState() function
is called. This function will be discussed later, after sections on the stroke
and fill mechanisms for graphics primitives.

That’s it for the control panel; onto the canvas, where the work is done
for creating and drawing the shapes.

The Shapely drawing canvas

The main job of the DrawingCanvas class is handling mouse events and
turning them into shapes on the canvas. It does this by listening first for
mouseDown events, then to further mouseMove and mouseUp events to track
mouse dragging actions by the user. The mouseDown listener is added to the
canvas object in its constructor:

(File: components/DrawingCanvas.as)
addEventListener("mouseDown", mouseDownHandler);

When the user drags the mouse around the canvas, the code creates and ma-
nipulates different shapes according to the drawing mode that the user se-
lected in the control panel. The following constants and variables are used
to track the shape that is created on mouseDown:

Section 2.2 Chapter 2 · Graphics 34

public static const LINE:int = 0;

public static const RECT:int = 1;

public static const ELLIPSE:int = 2;

public static const PATH:int = 3;

public var drawingMode:int = LINE;

The drawingMode property is set by the application code in Shapely in its
drawingModeChange() function, as we saw earlier. This property is used
when we handle mouseDown events in our mouseDownHandler() function.

A mouseDown event on the canvas results in an event which causes a call
to the mouseDownHandler() function. This function creates a new shape
(which we’ll see later, when we discuss shapes) and adds listeners for both
mouseMove and mouseUp events:

addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveHandler);

addEventListener(MouseEvent.MOUSE_UP, mouseUpHandler);

Note that the application only bothers listening for mouseMove and mouseUp
events after receiving an initial mouseDown event. If the user is simply mov-
ing the mouse around without pressing it first, then it does not matter because
they are not drawing a shape. But as soon as the user presses the mouse but-
ton, a shape is created and mouse movement is tracked to allow editing the
shape with drag operations.

A mouse drag causes a call into the mouseMoveHandler() function:

private function mouseMoveHandler(event:MouseEvent):void

{

dragTo(event.localX, event.localY);

}

This function calls the dragTo() function to change the shape currently be-
ing drawn, according to the current location to which the user has dragged
the mouse. When the user releases the mouse button, there is a call to the
mouseUpHandler() function:

private function mouseUpHandler(event:MouseEvent):void

{

dragTo(event.localX, event.localY);

removeEventListener(MouseEvent.MOUSE_MOVE,

mouseMoveHandler);

Section 2.3 Chapter 2 · Graphics 35

removeEventListener(MouseEvent.MOUSE_UP,

mouseUpHandler);

}

As in the mouseMoveHandler() function, we call dragTo() to change the
shape according to this final mouse location. We then remove our move/up
listeners because we no longer care about these events until the next time the
user presses the mouse button down.

That’s it for the main application functionality of Shapely. The rest
of the application code is about the shapes that are created and the drawing
attributes that those shapes have. We’ll see how all of these work as we cover
these topics in the rest of this chapter.

2.3 Graphics primitives: getting into shape

Your first reaction to learning about the graphic elements in Flex might have
been: “What can I draw?” You may think, given that all of the Flex com-
ponents are drawn with these shapes, there would be a myriad of different
shapes to choose from. But in fact, there is just a small set: Line, Rect,
Ellipse, and Path. With just these four shapes, and with the stroke and
fill options that we’ll discuss later, you can draw all kinds of things, from
simple graphics for components, like lines, circles, and rounded rectangles,
to very custom artwork.

In this section, we’ll see how each of these shapes are created and used
in the Shapely application.

The Line class

Lines are the simplest graphics primitive; they are just single-segment con-
nectors between endpoints. You can change what the lines look like using
the stroke properties that we’ll see in Section 2.4, but the basic geometry
of lines is very simple: they start at one point and end at another.

The Line class defines simple endpoint properties for a single line seg-
ment. These two endpoints are described by the (xFrom, yFrom) and (xTo,
yTo) properties. Here are two sample lines created in MXML code:

(File: SimpleObjects.mxml)
<s:Line xFrom="20" yFrom="20" xTo="100" yTo="100">

Section 2.3 Chapter 2 · Graphics 36

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Line>

<s:Line xFrom="30" yFrom="20" xTo="110" yTo="100">

<s:stroke>

<s:SolidColorStroke color="gray" alpha=".8"

weight="5"/>

</s:stroke>

</s:Line>

This MXML code results in the following graphics on the screen:

(Demo: SimpleObjects)

Don’t worry about the stroke objects in the code yet; we’ll read more
about strokes in Section 2.4.

Now let’s see how we create Line objects in the Shapely application.
When the user presses the mouse key down on the drawing canvas, the func-
tion mouseDownHandler() is called and the appropriate shape is created.
When lines are selected, the following code in that function is executed:

(File: components/DrawingCanvas.as)
if (drawingMode == LINE)

{

shape = new Line();

var line:Line = Line(shape);

line.xFrom = event.localX;

line.yFrom = event.localY;

line.xTo = event.localX;

line.yTo = event.localY;

}

Section 2.3 Chapter 2 · Graphics 37

This code creates the line object and sets its x and y from/to properties, just
like in the previous MXML code example. In this case, we’re setting the
from/to points to the same point because the user has not yet dragged the
mouse, so the start and end points of the line are both set to the location of
that initial mouse event.

The line object is then assigned the current stroke attribute, which we’ll
talk about later, and is added to the drawing canvas, which makes it visible
in the application window:

shape.stroke = stroke;

addElement(shape);

A mouse drag caused a call to the mouseMoveHandler() function, which
then calls dragTo(), as we saw earlier. The shape is then changed appropri-
ately. In the case of lines, we simply change the (xTo, yTo) endpoint:

case LINE:

Line(shape).xTo = dragX;

Line(shape).yTo = dragY;

break;

When the user releases the mouse button, the mouseUpHandler() function
is called, which again calls the dragTo() function to set a final (xTo, yTo)
endpoint for the line.

That’s it for lines. They are very simple objects with just two endpoints.
The way that the line between those points is drawn depends on the stroke
property, which we will discuss in Section 2.4.

The Rect class

Many GUI controls use rectangular graphics. Rectangles are useful for defin-
ing the boundaries of objects, like the edges of buttons, or the box of check-
boxes, or the borders of panels and windows. Rectangles are also useful for
defining the backgrounds of containers, such as a gradient background in an
application window. Unlike lines, which have only a stroke object to define
the line characteristics, rectangles have both outline graphics, defined by a
stroke, and interior graphics, defined by a fill.

The Rect object draws a rectangle with optional rounded corners. The
dimensions of the shape are determined by its width and height proper-
ties. The dimensions of the rounded corners, if any, are determined by the

Section 2.3 Chapter 2 · Graphics 38

radiusX and radiusY properties, which apply to all corners of the rectangle.
Some situations call for different rounding on each corner, so there are also
overriding properties, such as bottomLeftRadiusX and similar properties
for the other corners.

Here is an example of creating a simple black square in MXML:

(File: SimpleObjects.mxml)
<s:Rect x="150" y="20" width="80" height="80">

<s:fill>

<s:SolidColor color="0"/>

</s:fill>

</s:Rect>

In the Shapely application, rectangles are created as the user drags the cursor
when the rectangle drawing mode is selected. In the mouseDownHandler()
function, we switch on drawingMode to create the appropriate shape:

(File: components/DrawingCanvas.as)
switch (drawingMode)

{

case RECT:

shape = new Rect();

shape.x = event.localX;

shape.y = event.localY;

break;

Only the location of the object is set; its width and height have the default
value of 0, because the user has not yet dragged out the shape to give it
dimension. The shape is then filled with the current fill object, which
we’ll discuss later:

FilledElement(shape).fill = fill;

Then the object’s stroke is set and it is added to the scene, as we saw in the
earlier Line section.

As the user drags the mouse around and then releases the mouse button,
the dragTo() function is called. This function sets the rectangle’s dimen-
sions according to the new mouse position:

Section 2.3 Chapter 2 · Graphics 39

case RECT:

shape.width = dragX - shape.x;

shape.height = dragY - shape.y;

break;

The Ellipse class

Ellipses are less common in UI controls, although circles (ellipses with equal
width and height values) are useful for components like radio buttons. Circu-
lar controls are also used in custom UIs, where you may not want your but-
tons to look like standard rectangular buttons. Ellipse is similar to Rect; it
is positioned with x and y and sized with width and height.

This code creates a gray circle with a black outline in MXML:

(File: SimpleObjects.mxml)
<s:Ellipse x="20" y="220" width="80" height="80">

<s:fill>

<s:SolidColor color="gray"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Ellipse>

And this is what it looks like:

(Demo: SimpleObjects)

The code for ellipses in Shapely is very similar to that for rectangles,
because both shapes are positioned and sized in the same way. First, the
shape is created based on the value of the drawingMode variable in the
mouseDownHandler() function:

Section 2.3 Chapter 2 · Graphics 40

(File: components/DrawingCanvas.as)
case ELLIPSE:

shape = new Ellipse();

shape.x = event.localX;

shape.y = event.localY;

break;

On mouse move and up events, the shape is resized according to the new
mouse location in the dragTo() function:

case ELLIPSE:

shape.width = dragX - shape.x;

shape.height = dragY - shape.y;

break;

The Path class

Lines, rectangles, and ellipses are great for creating simple shapes and lines.
But if you want an irregular shape, curved lines, or custom artwork from
design tools, you’re going to need to draw Paths. The Path object constructs
a path, filled or empty, from a set of line and curve segments. You specify
the segment information for a path in the data property, which is a String
specifying the various move/line/curve pieces that construct the path. An
optional winding property can be used to specify which side of the path
should be filled (if the fill property is not null).

Several different commands can be used in a Path’s data string. Each
one is abbreviated with a single letter, followed by applicable numerical val-
ues.1 A capital letter indicates the values are absolute coordinates, whereas
a lower case letter indicates a position relative to the current position:

move (example: data="m 10 20") move the pen to the specified location

line (example: data="l 10 20") draw a line to the specified location

horizontal line (example: data="h 10") draw a horizontal line to the spec-
ified x location (a simplification of the line command)

1 The syntax and abbreviations used for the string match those of the Path element of
SVG (Scalable Vector Graphics), a W3C standard vector API.

Section 2.3 Chapter 2 · Graphics 41

vertical line (example: data="v 20") draw a vertical line to the specified
y location (a simplification of the line command)

quadratic Bézier (example: data="q 0 0 10 20") draw a curve2 with one
control point whose x and y are specified first, followed by the x and
y location the curve will draw to.

cubic Bézier (example: data="c 0 0 5 10 10 20") draw a curve with two
control points whose x and y are specified first, followed by the x and
y location the curve will draw to.

close path (example: data="... z") close off the path by drawing a line to
the starting point of the path. This item is optional; if it is not supplied,
the path will end at the last data point.

It is important to note that each drawing operation, whether move, line, or
curve, starts from the current pen position and ends with the pen in the posi-
tion specified in the command. So you only need to move the pen explicitly if
you wish to start a segment from a different location than its current one. For
example, if you want to draw a path that goes from (0, 0) over to (100, 0)
and then down to (100, 100), you could simply type data="H 100 V 100".
Here’s a simple path constructed in MXML:

(File: SimpleObjects.mxml)
<s:Path x="20" y="320" data="L 80 80 V 0 L 0 80 V 0">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

<s:fill>

<s:SolidColor color="gray"/>

</s:fill>

</s:Path>

2 A Bézier curve is specified by anchor points, the endpoints of the curve, and control
points, which specify the path the curve follows between the anchor points. A quadratic
Bézier curve starts at one anchor point going in the direction of a single control point and
ends at the other anchor point coming from the direction of that control point. A cubic Bézier
curve leaves the starting anchor point in a direction of a first control point and arrives at
the endpoint in a direction from a second control point. These curves generally do not pass
through the control points unless those points lie in a straight line between the anchor points.
In the Path data string, the first anchor point is implicitly specified by the current location of
the pen; the curve operations need only specify the control point(s) and ending anchor point.

Section 2.3 Chapter 2 · Graphics 42

Path to confusion
It may not seem like hand-coding paths with complex curves would be
simple at first glance. But upon using the Path API for a while . . .
it’s still not simple. Instead, paths can be easy to code for simple prim-
itives, but more complex paths will probably come from tools instead.
For example, Adobe Illustrator and Adobe Fireworks can export draw-
ings into a format called FXG, which is a simplified form of exactly
the graphics primitives detailed in this chapter. Vector paths are used
extensively in Illustrator, and these shapes output as Path primitives
in the FXG files. So you might want to consider the Path primitive as
something that you may encounter in code that is generated by tools,
but you probably won’t be using it much in your hand-coded graphics.

And this is what that path looks like:

(Demo: SimpleObjects)

Now we’ll create Path objects in Shapely. As with the other shapes,
paths are created in the mouseDownHandler() function. But we do not yet
add data to the path since the user has only told us where it will be located,
not where it will draw to next. Instead, we create the pathPoints Vector
to hold the points of the Path:

(File: components/DrawingCanvas.as)
case PATH:

shape = new Path();

pathPoints =

new <Point>[new Point(event.localX, event.localY)];

break;

Section 2.3 Chapter 2 · Graphics 43

When the user moves the mouse or releases the button, the dragTo() func-
tion is called, where the new point is added to pathPoints and the function
constructPath() is called:

case PATH:

pathPoints[pathPoints.length] = new Point(dragX, dragY);

constructPath();

break;

The constructPath() function turns the set of points in pathPoints into
a data string for the path:

private function constructPath():void

{

var dataString:String = "M " +

pathPoints[0].x + " " + pathPoints[1].y;

for (var i:int = 1; i < pathPoints.length; ++i)

{

var pt:Point = pathPoints[i];

dataString += " L " + pt.x + " " + pt.y;

}

Path(shape).data = dataString;

}

This function walks through pathPoints, turning the first point into a move
operation and subsequent points into line operations in the data string. This
process causes a multi-segment line to be created, starting at the point where
the user first pressed the mouse (the first point in pathPoints) and con-
tinuing through every other point we recorded. Because mouse motion is
handled very quickly, this line-segment approach results in a reasonable ap-
proximation to freehand scribbling because each straight line segment will
only be as long as the distance covered between each mouseMove event.

The reason for the extra layer of indirection with pathPoints is that
we cannot simply edit the existing Path shape’s points, like we do with the
Line, Rect, and Ellipse shapes that we saw earlier. Instead, the only way
to change a Path is to supply a new data string. So we record the path’s
points in a separate data structure and re-create the data string every time
we add a new point.

Section 2.4 Chapter 2 · Graphics 44

Now that we’ve seen the different shapes that are possible to create, it’s
time to talk about the attributes with which the shapes are drawn. Let’s learn
about stroke and fill.

2.4 Strokes of genius: lines and outlines

You may want to draw lines in your UI to achieve a particular effect, like
borders on filled areas, outlines on empty areas, or separator lines between
different elements in the interface. These may be straight or curved lines,
or bounding lines around larger, filled areas. These lines can be drawn in
different ways, with different colors, widths, and joins at the corners. These
line properties are defined as strokes on the objects.

All of the graphics objects in Flex 4 except for BitmapImage, which
we’ll see later, have an optional stroke property that defines the character-
istics of the object’s lines, like their color and width. For the one-dimensional
Line object, the stroke is all there is. The object’s stroke is all that you
see of the object. For the rest of the objects, Path, Rect, and Ellipse, the
stroke is the border line around the object’s filled area.

Strokes come in three varieties: SolidColorStroke, which has a sin-
gle color, and two strokes that use gradients, LinearGradientStroke and
RadialGradientStroke. You’ll see more about gradients later when I dis-
cuss fill objects. For now, we’ll talk about solid color strokes, which is the
common case for lines.3

A stroke has a few properties that are necessary for specific situa-
tions, but for which the defaults are generally sufficient. For example, the
joints and miterLimit properties are useful for controlling how the inter-
sections look with multi-segment stroked objects like Path and Rect. And
the scaleMode property controls how scaling on the object affects the width
of the stroke. Here we’ll focus on just the more common stroke properties
used to achieve particular effects on the stroke.

weight determines the width of the stroke in pixels. A value of 0 is equal
to a one-pixel-wide line, but the line stays at that thickness even when
scaled. This behavior is in contrast to that when weight equals 1,
which also results in a one-pixel-wide line on an unscaled object. But

3 You can see cases of gradients used in strokes in some of the standard Flex 4 component
skins like ButtonSkin. These skins have very subtle effects that call for rich graphic elements
like gradient strokes and fills. But more typical lines and borders are drawn with single colors.

Section 2.4 Chapter 2 · Graphics 45

a line with weight equal to 1 will scale with the object so an object
with a scale factor of 2 will have lines twice as wide as that object with
a scale factor of 1.

color an unsigned integer value that describes the red, green, and blue
(RGB) values that contribute to the final color value. This is a stan-
dard RGB representation in an integer, where the bottom-most (least
significant) byte represent the blue value, the next byte holds the green
value, and the next byte holds the red value. You can picture the color
in hex form as the number 0xRRGGBB. The left-most (most significant)
byte of the 32-bit value is unused.

For convenience, the MXML compiler will turn standard color names
into the appropriate integer values. You can also use the numeric form
of a color in either hex, integer, or HTML-color formats. For example,
a value of "blue" is equivalent to "0xff", "255", and "#FF".

alpha the amount of translucency that the object’s stroke has. A value of 1
causes the stroke to be completely opaque (nothing behind the object’s
stroke can be seen through it). A value of 0 causes the stroke to be
completely transparent (the stroke is not seen at all, and objects behind
it are fully visible). Any value between 0 and 1 causes the stroke to
be translucent, allowing both the stroke and the objects behind it to
be partially visible, with greater values of alpha making the stroke
more opaque. The opacity of the overall object you create is typically
controlled with the object’s alpha property, not the object’s stroke’s
alpha, but if you want separate control over the stroke’s opacity, use
the stroke’s alpha property.

Here is an example of two lines drawn with different strokes:

<s:Line xFrom="20" yFrom="20" xTo="100" yTo="100">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Line>

<s:Line xFrom="100" yFrom="20" xTo="20" yTo="100">

<s:stroke>

<s:SolidColorStroke color="gray"

alpha=".6" weight="10"/>

Section 2.4 Chapter 2 · Graphics 46

</s:stroke>

</s:Line>

The first object is a black line with the default weight (0) and alpha (1).
The second object is a wide gray that is translucent (note that you can see the
black line through the wide gray line), as seen here:

(Demo: SimpleObjects)

The StrokeTest application helps visualize how the various stroke pa-
rameters affect the look of our stroked primitives. This code draws a Rect
object with a stroke:

(File: StrokeTest.mxml)
<s:Rect x="20" y="170" width="30" height="30"

scaleX="{Number(scaleXInput.text)}"

scaleY="{Number(scaleYInput.text)}">

<s:stroke>

<s:SolidColorStroke color="black"

weight="{Number(weightInput.text)}"

miterLimit="{Number(miterLimitInput.text)}"

joints="{jointsInput.selectedItem}"

scaleMode="{scaleModeInput.selectedItem}"/>

</s:stroke>

</s:Rect>

The Rect object takes its scale factors from the text input fields so that you
can see how scaling in either direction affects the results. The stroke object
is an instance of SolidColorStroke with a color of black. The stroke
object has other properties that are bound to the values of the various controls
in the GUI. You can see the results from a nonzero line weight and rounded
joints in this screenshot:

Section 2.5 Chapter 2 · Graphics 47

(Demo: StrokeTest)

The application is pretty simple as Flex applications go. The interesting
part is in how the properties affect the look of the graphic primitive. Be sure
to play with it to get a feel for how the properties interact.

2.5 Fills: it’s what’s on the inside that counts

All of the Flex shapes except Line can have a fill as well as a stroke. The
fill specifies what happens on the interior of the object. So, for example,
a rectangle’s stroke is drawn on the outside of the area and its fill is the
interior of that area. As with stroke, the fill property is optional, so any
of these objects can have a stroke or a fill or both or neither (although
having neither one makes for a pretty useless shape).

Three types of fills are possible. As with stroke, you can fill with a
solid color or a gradient. Additionally, you can fill the area with a bitmap
image. We’ll discuss all of these options next.

Solid color fills

The simplest way to fill an area is with a single solid color. For example,
the drawing canvas of Shapely is filled with a solid white color. Just like
the solid color stroke discussed in Section 2.4, the solid color fill has the
properties color and alpha. These properties are exactly the same for both
strokes and fills; see Section 2.4 for more information on them.

Here is an example of two filled rectangles:

Section 2.5 Chapter 2 · Graphics 48

(File: SimpleObjects.mxml)
<s:Rect x="150" y="20" width="80" height="80">

<s:fill>

<s:SolidColor color="0"/>

</s:fill>

</s:Rect>

<s:Rect x="250" y="20" width="80" height="80">

<s:fill>

<s:SolidColor color="black" alpha=".5"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="black" weight="5"/>

</s:stroke>

</s:Rect>

The first object is a black-filled rectangle with the default weight (0) and
alpha (1). The second object is filled with translucent black (alpha=".5"),
making the result gray since the rectangle is drawn over a white background.
This second rectangle also has a black, wide stroke object. Note that the
opacity of the stroke object is independent of the fill’s opacity.

(Demo: SimpleObjects)

Bitmap fills

Sometimes, you want to fill an area with an image. If you simply want
a rectangular image in the scene, it’s probably easier to use the Image or
BitmapImage class (which we will see more of later in this chapter). But
you can fill any arbitrary shape, like a path, rounded rectangle, or circle,
with an image using a BitmapFill.

Section 2.5 Chapter 2 · Graphics 49

Several properties exist on BitmapFill to define the image resource that
the fill uses and the way the image is displayed in the filled area:

source defines the bitmap that is displayed in the fill. This parameter is
flexible and can be used to specify an embedded image file, an instance
of a Bitmap or BitmapData object, or the class name or instance of a
display object. Typically, you use an embedded image file, like this:
source="@Embed('tree.jpg')").4

smooth defines whether the image is “smoothed” when it is scaled to a dif-
ferent size than the original bitmap image. By default, smooth is false,
which results in using the “nearest neighbor” approach, where pix-
els are chosen from the original image based on which one is closest
to the current pixel being drawn. This approach is the fastest option
when the image is scaled to fit into the fill area, since it requires no
calculations. But scaling without smoothing can result in rendering
artifacts. If smooth is set to true, scaled images will use a simple bi-
linear smoothing algorithm, where the pixels to the left, right, top, and
bottom of the destination pixel are combined to create a blended pixel
value. This property only comes into play when an image is scaled;
an image that is displayed in its original resolution will simply use the
original pixel values with no smoothing applied.

fillMode tells the graphic object how to fill the shape area if the source
bitmap is smaller than the shape in either dimension. Three possible
values are available, all of which are specified in the BitmapFillMode
class (or you can choose to use the equivalent strings, like “scale”
instead of BitmapFillMode.SCALE):

SCALE the default value, which causes the bitmap to be scaled (either
down or up) to fit the dimensions of the shape that it fills.

4 The @Embed directive tells the compiler to bundle the specified resource with the appli-
cation (here an image, but Embed can be applied to other assets as well). With BitmapFill,
as well as with the BitmapImage object you’ll see later in this chapter, any image resource
must be embedded. If you use the Image control from Flex 3, you can also refer to an image
by relative or absolute URL, without embedding the file. If you do not use Embed, the image
will be loaded when the Image component is created, and may not be shown immediately if
there is a loading delay. When Embed is used, the resource is bundled with the application
and is loaded synchronously when the component is created. The Embed approach trades off
faster image loading time with larger application footprint size, since embedded image assets
are packaged into the downloaded application’s SWF file.

Section 2.5 Chapter 2 · Graphics 50

CLIP causes the bitmap to be drawn in its original size, either being
clipped by the size of the region (if the bitmap is larger than the
dimensions of the BitmapImage) or leaving empty space (if the
bitmap is smaller).

REPEAT causes the bitmap image to repeat or tile itself inside the re-
gion, filling the dimensions of the shape.

alpha represents the amount of translucency that the bitmap fill has. This
property acts just like the same property on the solid color fill that we
discussed earlier.

BitmapFill also has properties for positioning and transforming the bitmap
within the filled area. But those parameters are less commonly used and
self-explanatory, so I’ll defer to the SDK documentation.

Here is a simple example of using a BitmapFill on a rectangle object:

(File: SimpleObjects.mxml)
<s:Rect x="350" y="20" width="80" height="80">

<s:fill>

<s:BitmapFill

source="@Embed('images/SanFrancisco.jpg')"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="gray" weight="5"/>

</s:stroke>

</s:Rect>

The rectangle has a fill with just one parameter specified: the source. Note
that the bitmap, by default, scales to fit the area of the object, so little else is
needed unless you want to change the way the image maps into the area.

(Demo: SimpleObjects)

Section 2.5 Chapter 2 · Graphics 51

Gradient fills

Gradients are so useful in creating rich UIs that it is worth taking a moment
to talk more generally about them before diving into the details of the API of
the gradient-based fill classes.

Gradients are used to fill an area with a series of colors. Two types of
gradients are supported in Flex: linear and radial. Linear gradients have a
color change along one dimension (left to right, top to bottom, or along ar-
bitrary degree of rotation). Radial gradients change colors from some center
point out to some perimeter of a circle. Both gradients can be defined with
several colors along the way, so that they can change either from one start
color to a single end color, or they can change from the start color through a
series of other colors (called gradient entries, or sometimes, gradient stops)
along the way before finally reaching the end color.

Gradients provide a simple way to liven up a GUI,
from rich backdrops to 3D effects to interesting
reflection techniques.

Gradients can be used to liven up a GUI in very simple ways, from pro-
viding a rich backdrop to giving components a 3D look, with highlight and
shadow effects that really make 2D objects pop out of the screen. Gradients
can also be used for some special effects like reflections, where the gradient
operates on a translucency value to fade out a reflection for a more realis-
tic look (we’ll see this effect in Chapter 3). It’s definitely worth learning
about the gradient classes so that you can start applying them to your objects
and components. And better yet, gradients are much easier to use with the
new graphic elements defined in Flex 4, so there’s every reason to start using
gradients in your rich client applications.

Both types of gradients, linear and radial, use the same method of speci-
fying the set of colors that the gradient transitions between: GradientEntry.

The GradientEntry class

This class is a simple data structure that holds the information for a partic-
ular gradient stop in a linear or radial gradient. For each entry, we need to
know the color, alpha, and ratio, which is the point in the overall gradient
where the entry’s color is sampled at 100%. In other words, the ratio is the

Section 2.5 Chapter 2 · Graphics 52

point in the overall gradient where the transition from the color in the previ-
ous entry to the color in this entry ends and the transition to the next entry’s
color begins. This information is represented in the following properties:

alpha The translucency of the color for this gradient entry. This value acts
just like the alpha property that we saw earlier for solid color strokes
and fills, except that it holds just for this single object in the set of
gradient entries instead of for the entire fill.

color The color at this point in the gradient, represented as an unsigned
integer. This property is just like the color property in the solid color
stroke and fill discussed earlier, except that this color is true just for
this entry and not for the whole fill.

ratio The point in the gradient where this entry is applied. This is a per-
centage value, with 0 representing the start of the gradient and 1 rep-
resenting the end of the gradient.

A gradient (either linear or radial) consists of a set of GradientEntry ob-
jects which define how the color and translucency of the gradient changes
over the course of the object it fills.

For example, this set of entries defines a gradient that changes smoothly
from black to white to gray:

<s:GradientEntry color="black"/>

<s:GradientEntry color="white"/>

<s:GradientEntry color="gray"/>

Note that this code does not set a ratio value for any of the entries. By
default, the entries spread themselves equally over the available area. Not
defining ratios for these three entries is equivalent to specifying a ratio of 0
for the black entry, .5 for the white entry, and 1 for the final gray entry.

Linear and radial gradient shared properties

Most of the functionality of linear and radial gradients is shared in the com-
mon superclass, GradientBase. These are the more commonly used shared
properties of that class:

entries This property defines an Array of GradientEntry objects, as we
saw in the previous section.

Section 2.5 Chapter 2 · Graphics 53

rotation This property defines the angle of rotation, in degrees, along
which the gradient proceeds. By default, gradients move from left
to right, horizontally. For example, the black/white/gray gradient en-
tries example in the previous section would, by default, show up with
black at the left, white in the middle, and gray at the right. A gradient
moving in a different direction is defined using the rotation property.
For example, a vertical gradient is defined by setting rotation to 90.
Vertical gradients are more common in UI elements because gradients
are often used to give a pseudo 3D lighting effect, where the virtual
light source is somewhere above the scene.

spreadMethod This property defines what happens outside of the defined
gradient area. If the area covered by a gradient does not completely
cover its target object, then it needs to know how to color the remaining
pixels in the object’s area. This property has three possible values,
from the SpreadMethod class: CAP, REPEAT, and REFLECT. CAP causes
the color values at the end of the gradients to extend to the boundaries
of the filled area. REPEAT causes the gradient to repeat itself over and
over to fill the target area. REFLECT is like REPEAT, except each time
it repeats it reverses itself.

There are also properties for positioning the starting point of the gradient
within the filled area (x and y), a property for changing the method of color
interpolation (interpolationMethod), and a property for performing more
complex transformations of the gradient fill (matrix). I’ll just refer you to
the Flex SDK documentation for these less commonly-used properties.

That’s it for the shared properties. Now let’s see how all of this gets put
together in the linear and radial gradient objects, along with some examples
of the visual results.

The LinearGradient class

Linear gradient fills transition through their colors along a straight line. This
type of gradient is useful for backgrounds that are much richer than solid
colors. Linear gradients are also useful for some 3D effects, such as making
UI components look convex or concave, because they are good at mimicking
shadows and highlight drop-off.

The LinearGradient class provides a single property in addition to
those inherited from GradientBase: scaleX. This property is responsible

Section 2.5 Chapter 2 · Graphics 54

for defining the scale factor of the gradient, which is an easy way to define
the area covered by the gradient. By default, the gradient fills the area of the
target object, but this scale factor can be used to define the gradient pattern
over a larger or smaller area. Note that the scale factor is only in the x direc-
tion; no scaling in the y direction exists since the gradient only operates in
one dimension. So if you want the gradient to be half the size of a 100-pixel
wide shape that it fills, you set scaleX = 50.5

Here are some simple examples that show different linear gradient fills
inside Rect objects:

(File: SimpleObjects.mxml)
<s:Rect x="20" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient>

<s:GradientEntry color="black"/>

<s:GradientEntry color="white"/>

<s:GradientEntry color="gray"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

<s:Rect x="120" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0xb0b0b0"/>

<s:GradientEntry color="0x404040"/>

</s:LinearGradient>

5 This use of scaleX seemed non-intuitive to me when I first saw it. I’m used to the
scaleX and scaleY properties, which are on Flash display objects and Flex components,
representing a proportion of an object’s pixel size. So if an object has a width of 100 and
I want it to be 50 pixels wide on the screen, I expect to set a scaleX value of .5. But with
gradient fills, it doesn’t work that way. If a gradient fills an area 100 pixels wide, but I want
it to stop at 50 pixels, I set scaleX to 50. What’s up with that?

It turns out that scaleX for gradient fills means exactly the same thing that it does for
display objects; it is a proportion of that object’s current size. But the key to understanding
scaleX with gradient fills is that a gradient fill has a natural size of one pixel. So by specifying
a scaleX value of 50, we’re actually saying that the gradient should fill 50 times its natural
size, or 50 pixels. One of the confusing things here is that if you don’t specify any value for
scaleX, it fills its object completely. But this is not because the gradient fill has a scale value
of 1 (as do typical objects in Flex and Flash). Instead, the scaleX property has a default value
of NaN, which tells the gradient to fill whatever area it occupies, regardless of size.

Section 2.5 Chapter 2 · Graphics 55

</s:fill>

</s:Rect>

<s:Rect x="220" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0x808080"/>

<s:GradientEntry color="0xa0a0a0" ratio=".25"/>

<s:GradientEntry color="0x202020"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

<s:Rect x="320" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0x808080"/>

<s:GradientEntry color="0x202020" ratio=".1"/>

<s:GradientEntry color="0x404040" ratio=".75"/>

<s:GradientEntry color="0xa0a0a0"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

This code results in the following:

(Demo: SimpleObjects)

The first of these rectangles is the result from the same black/white/gray
gradient entries that we saw earlier. This example uses the default rotation,
so the linear gradient proceeds from left to right. The second example shows
a subtle vertical gradient between two shades of gray, caused by using a
rotation value of 90. This gradient is appropriate for some application
window and container backgrounds.

Section 2.5 Chapter 2 · Graphics 56

The third and fourth examples show the pseudo-3D effects that linear
gradients are sometimes used for. The third object simulates a convex object
lit from above, where the light shows most at the top of the object. The
rounded effect is achieved by having the gradient proceed from one color to
a lighter color at a ratio of .25, then down to a darker color at the bottom.
The final object shows more of a concave effect, with the light showing most
at the bottom of the object.

To see a slightly more involved example, take a look at the example
LinearGradientProperties. The application uses several GUI controls
to allow the user to change the gradient colors, the rotation, and other
properties of the gradient. The gradient is specified with data bindings to
those input values, such as the gradient’s rotation property being set by
the rotationInput text control, and fills a Rect object as follows:

(File: LinearGradientProperties.mxml)
<s:Rect id="rect" width="180" height="180">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

<s:fill>

<s:LinearGradient

rotation="{Number(rotationInput.text)}"

x="{Number(xInput.text)}"

y="{Number(yInput.text)}"

scaleX="{Number(scaleXInput.text)}"

spreadMethod="{spreadMethodInput.selectedItem}">

<s:GradientEntry

color="{startColor.selectedColor}"/>

<s:GradientEntry

color="{endColor.selectedColor}"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

The stroke on the Rect is defined just to give the shape a visual boundary.
When you run the application, you can play with various properties of the
gradient to see how they affect the visual result, as seen here:

Section 2.5 Chapter 2 · Graphics 57

(Demo: LinearGradientProperties)

The RadialGradient class

Radial gradients are useful for some special effects like specular highlights
and spotlights. They help give graphical objects a 3D look by mimicking
circular shadows and highlight drop-off. They are also good for emphasizing
areas of focus through spotlight effects.

Radial gradients in Flex are handled with the RadialGradient class,
which sets up a gradient to start at some center point and radiate outwards
to end at the perimeter of the filled area. This class has three properties,
beyond the shared ones in GradientBase, that help define the way that the
gradient fills the area. The scaleX and scaleY properties act like the scaleX
property in LinearGradient, but since this is a two-dimensional fill, scales
happen in two directions. Like the linear gradient’s scaleX property, these
properties default to a value of NaN, which causes the gradient to fill the
entire area of the object that it is assigned to. So if you don’t need to change
that behavior, you won’t need to set these properties.

The other property of RadialGradient is focalPointRatio, which is
used in conjunction with the rotation property to set the location of the
center point from which the gradient radiates. The gradient radiates outward
toward the boundaries of the gradient area, starting from some point inside.
That point is determined by the rotation parameter, which tells the gradient
the degrees to rotate, and the focalPointRatio, which tells the gradient
where on that rotation axis to place the center. The focalPointRatio is a
value from -1 to 1, with -1 placing the point on the left edge of the gradient
area and 1 placing it on the right edge. A value of 0, the default for this
property, places the value in the middle of the gradient area. Meanwhile, the
rotation property determines the angle of the center line, with the default

Section 2.5 Chapter 2 · Graphics 58

value of 0 being no rotation, so the center line simply extends from left to
right through the middle of the gradient area. For example, a rotation of
45 and a focalPointRatio of .5 will place the center of the gradient at the
lower right corner of the gradient area.

You can play with the relationship of rotation and focalPointRatio
in the RadialGradientProperties demo. Besides showing how these
properties affect the look of the gradient, the application has optional guides
to display the current rotation (the line through the middle of the circle)
and focalPointRatio (the small circle on top of the line). For example,
this screen shot shows a gradient with a rotation of 45 degrees and a
focalPointRatio of .5:

(Demo: RadialGradientProperties)

You can see some simple examples of radial gradients in the following
code from SimpleObjects:

(File: SimpleObjects.mxml)
<s:Ellipse x="120" y="220" width="80" height="80">

<s:fill>

<s:RadialGradient>

<s:GradientEntry color="black"/>

<s:GradientEntry color="white"/>

<s:GradientEntry color="gray"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

<s:Ellipse x="220" y="220" width="80" height="80">

<s:fill>

<s:RadialGradient>

Section 2.5 Chapter 2 · Graphics 59

<s:GradientEntry color="0xf0f0f0"/>

<s:GradientEntry color="0x404040"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

<s:Ellipse x="320" y="220" width="80" height="80">

<s:fill>

<s:RadialGradient rotation="-45"

focalPointRatio=".5">

<s:GradientEntry color="0xf0f0f0"/>

<s:GradientEntry color="0x404040"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

This code results in the following:

(Demo: SimpleObjects)

The first circle uses the gradient entries used in previous examples, where
the gradient starts at black, in the center of the circle, transitions through
white halfway through, and ends at gray at the perimeter of the circle. It’s
not a very effective use of this gradient; I just used it for comparison purposes
to the earlier examples. The other two circles are more representative of the
power of radial gradients.

The second circle transitions from a light gray color in the center to a
darker gray at the edge. This simple, two-color gradient effect really pops the
circle out of the page, giving it a 3D look that belies its simple composition.
The reason that it works so well is that that lighter color in the middle acts
just like a specular highlight. A specular highlight is the reflection of a
light source on an object. On a 3D object with a matte surface, the specular
highlight of most light sources, like the sun, show up as bright spots that

Section 2.6 Chapter 2 · Graphics 60

gradually fade toward their edges to the normal object color. The radial
gradient mimics a specular highlight because it is lighter in the center and
falls off smoothly toward a darker color at the edges.

The third example takes the circle a step closer toward mimicking reality.
The second example works, but only if you don’t actually think about the
light source. If you stop and think about it, it doesn’t make much sense; the
light seems to be coming from the viewer. Unless the viewer is wearing a
miner’s helmet with a light shining directly out from their forehead,6 it’s not
very realistic.

A typical light source is usually one that shines from above, like the
sun or the lights in a room. And a typical light source also isn’t usually
so symmetrically located on the vertical plane between the viewer and the
object being lit. The third circle addresses these problems by offsetting the
gradient center, and therefore the virtual light source, to the upper-right of
the object. It’s a subtle change from the second example, but I like it because
it gives a more real-world feel to the object.

Radial gradients that are offset from dead center of
the object look more natural; the real world rarely
lights objects from the direction of the viewer.

2.6 Setting strokes and fills in Shapely

Now that we’ve talked about stroking and filling objects, we’re finally able
to discuss how the Shapely application sets the drawing state that is used
when creating graphics shapes.

The components at the bottom of Shapely’s control panel determine the
stroke and fill attributes that are used when drawing. The checkbox at the
top controls whether a stroke is used and the checkbox at the bottom controls
whether a fill is used. In between these components are ColorPickers for
the stroke and the fill gradient. And a sample rectangle between the stroke
and fill sections shows the user a preview of what shapes look like with the
current stroke and fill settings:

6This is probably not a demographic that is worth targeting in general, although such
users could be interesting for data-mining applications.

Section 2.6 Chapter 2 · Graphics 61

(Demo: Shapely)

These objects are created by the following code:

(File: components/ControlPanel.mxml)
<s:CheckBox fontSize="9" label="Stroke" id="strokeCB"

selected="true" change="setDrawingState()"/>

<mx:ColorPicker id="strokeColor" change="setDrawingState()"

width="100%" selectedColor="0xff0000"/>

<s:Rect id="sampleRect" x="10" width="100%" height="20"/>

<s:HGroup enabled="{fillCB.selected}">

<mx:ColorPicker id="fillColor"

change="setDrawingState()"

selectedColor="0xffffff"/>

<mx:ColorPicker id="fillGradientColor"

change="setDrawingState()"

selectedColor="0x0"/>

</s:HGroup>

<s:CheckBox id="fillCB" label="Fill" fontSize="9"

change="setDrawingState()"/>

When any of these stroke and fill settings change, the setDrawingState()
event handler function is called:

private function setDrawingState():void

{

var newStroke:IStroke;

var newFill:IFill;

if (fillCB.selected)

{

Section 2.6 Chapter 2 · Graphics 62

if (fillColor.selectedColor ==

fillGradientColor.selectedColor)

newFill = new SolidColor(

fillColor.selectedColor);

else

{

newFill = new LinearGradient();

LinearGradient(newFill).entries = [

new GradientEntry(

fillColor.selectedColor),

new GradientEntry(

fillGradientColor.selectedColor)

];

}

}

if (strokeCB.selected)

newStroke = new SolidColorStroke(

strokeColor.selectedColor);

sampleRect.stroke = newStroke;

sampleRect.fill = newFill;

var drawingChangeEvent:DrawingStateChangeEvent =

new DrawingStateChangeEvent("drawingStateChange",

newStroke, newFill);

dispatchEvent(drawingChangeEvent);

}

The setDrawingState() function sets up the new stroke and fill objects
to be used by both the sampleRect visible in the control panel and future
shapes that are drawn to the canvas. If the stroke checkbox strokeCB is
not selected, the newStroke object will be null and both sampleRect and
future shapes will not be drawn with a stroke. The same thing is true for fills
and the newFill object, based on whether fillCB is selected.

If a stroke is selected, it is set to a simple SolidColorStroke based on
the color selected in the strokeColor ColorPicker control. Fills are a bit
more complicated. To simplify the UI and the explanation of how Shapely
works, the fill color is always specified in terms of a gradient, with a separate
ColorPicker for each color. If both gradient colors are the same, then a
SolidColor fill is created with that color. Otherwise, a LinearGradient

Section 2.7 Chapter 2 · Graphics 63

fill is created. Note that this gradient is always left-to-right; no option exists
to change the gradient direction. Also, the user cannot choose more than
two entries in the gradient and the gradient is always a LinearGradient,
never a RadialGradient. These were conscious decisions made to limit the
complexity of the UI and the code. Changing any or all of these options is
hereby left as an exercise for the reader.7 It shouldn’t be difficult to add these
features using what we learned in this chapter.

Once we’ve set values for the newStroke and newFill objects, we cre-
ate a DrawingStateChangeEvent, which is a simple Event subclass that
contains the new fill and stroke objects to be sent to the event’s listeners.
We dispatch this event, which is received by the drawingStateChange()
function in Shapely:

(File: Shapely.mxml)
private function drawingStateChange(

event:DrawingStateChangeEvent):void

{

canvas.stroke = event.stroke;

canvas.fill = event.fill;

}

2.7 Image is everything

One graphic area that we haven’t covered yet, but which is no less important
than the vector-based shapes we discussed earlier, is images. Images can be
useful in many different places in rich client applications, from the icons in
buttons to photographs in media applications. Images can also be useful in
ways that aren’t obvious, such as capturing GUI objects as bitmap images
and manipulating those objects in visually interesting ways (a technique that
we will see applied later when we discuss Pixel Bender shader-based anima-
tion effects in Chapter 10).

7I’ve always wanted to say “left as an exercise for the reader.” Too many years of math
classes with infuriatingly non-obvious proofs in the textbooks marked with that catch phrase
engendered a sense of vengeance which is only overcome through propagating the same
phrase through my books. But hopefully my use is a bit less devious; I do think that the
details here are obvious and doable. It’s just that they just require more work and code than
is worth delving into in the pages of this book, especially for the goal we’re trying to achieve
here, which is knowledge of how the graphics classes work.

Section 2.7 Chapter 2 · Graphics 64

Here’s a simple application that displays an image, along with controls
that let the user change the way the image is rendered:

(Demo: BitmapImageTest)

The image control in the application is a BitmapImage object, with its
properties determined by the values in the UI controls:

(File: BitmapImageTest.mxml)
<s:BitmapImage source="@Embed(source='images/Bridge.jpg')"

smooth="{smoothInput.selected}"

fillMode="{fillModeInput.selectedItem}"

width="{Number(widthInput.text)}"

height="{Number(heightInput.text)}"/>

The Image and BitmapImage controls display images in a GUI. We focus
on BitmapImage in this chapter, but you may also want to look at the Image
class for your applications. An important limitation exists for BitmapImage;
it can only handle embedded assets (where the bitmap supplied to the object
is loaded at compile time and stored as an asset with the application). If you
want to dynamically load image assets (such as from a network location),
then you’ll want to look into using Image instead. Most of the demos in this
book use embedded assets, so the simpler BitmapImage class does the trick.

A BitmapImage object displays a specified bitmap in a given position (x
and y) and size (width and height). BitmapImage also has the same three
properties source, smooth, and fillMode that are on BitmapFill, so you
might want to refer to the section on BitmapFill earlier in this chapter for
information on these properties.

We can see the results of the different fill modes in the demo applica-
tion, BitmapImageTest. When the user selects different width and height
values, the size of the BitmapImage object changes to the new dimensions.

Section 2.7 Chapter 2 · Graphics 65

To make it more obvious what’s going on in the window, a bounding rectan-
gle is drawn at the selected size. Setting the left, top, right, and bottom
values all to 0 pins the rectangle to the boundaries of its containing group,
which is sized according to the dimensions of the BitmapImage object, so
the rectangle assumes that same size:

<s:Rect left="0" top="0" right="0" bottom="0">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Rect>

When the size is doubled, the image scales to fill the new size:

When the fillMode is changed to clip, the bitmap stays at its original
size, even though the space it occupies (which we can see from the border
rectangle) is much larger:

When repeat is chosen as the fillMode, the bitmap is repeated across
the size of the BitmapImage space:

Section 2.7 Chapter 2 · Graphics 66

You can also play around with the Smooth checkbox to see the pixeliza-
tion artifacts that result from not smoothing during scaling operations. The
impact of these artifacts varies based on the original image, the size of that
image, and the scaling factor.

Reflections, like gradient fills, are one way to make
a 2D interface more rich and 3D-like, by giving the
user the impression that the objects interact like
they would in the real world.

As one final view of how you might use bitmaps and graphics in different
ways in an application (and as a subtle teaser for techniques that we will
elaborate on in the next chapter), let’s see how to create a simple reflection
effect. First, we need a rich background for our application which we’ll get
with a gradient fill:

(File: Reflexion.mxml)
<s:Rect width="100%" height="100%">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0x404040"/>

<s:GradientEntry color="0xf0f0f0"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

Next, we want to display an image with a reflection of itself. This is done
with a VGroup, which automatically stacks the two objects (the image and its
reflection) vertically. The reflection is exactly the same image, but reflected
vertically, so it is scaled it in the y direction:

Section 2.7 Chapter 2 · Graphics 67

<s:VGroup id="reflectionContainer" x="50" y="50" gap="0">

<s:BitmapImage id="image" source="{Harbor}"

x="50" y="50" width="400" height="200"/>

<s:BitmapImage source="{Harbor}" scaleY="-1" alpha=".4"

width="{image.width}" height="{image.height}"/>

</s:VGroup>

You should note a couple of things about this code. First, the gap in the
VGroup is set to 0 because the reflection should start exactly where the image
stops (unless we are trying to mimic the object floating above the reflected
surface). Second, the way that the reflection is achieved is by scaling the
image by -1 in y. This scaling operation effectively inverts the image verti-
cally, which is exactly what we want. Third, a fractional alpha value is set
on the reflection to make it translucent. This is necessary because true re-
flections are never perfect, unless the reflecting surface is a mirror. We want
to mimic an imperfect reflecting surface, so we dim the reflected image by
giving its alpha property a translucent value. The effect is easy to achieve,
and provides a reasonable, if simple, approximation of a reflected image:

(Demo: Reflexion)

Section 2.7 Chapter 2 · Graphics 68

Reflections in the real world are never perfect; the
more we can mimic real-world reflection effects,
the more natural they will seem to the user.

We can improve on this effect, however. The translucent reflection in
this effect, while better than a fully opaque version, just isn’t real enough.
There are other things that we can do to make the reflection much more
realistic. But these techniques require knowledge of Flex filters, which is
both an interesting topic and excellent segue to the next chapter.

Conclusion

In this chapter, we saw how Flex 4 allows you to create shapes with different
stroke and fill properties to create custom graphics for you application, in
either MXML or ActionScript code. You can use these drawing primitives to
create anything from drawing applications to image viewers. These graphics
shapes and attributes are also useful for creating custom component skins, as
we will see in Chapter 6.

In the next chapter, we will see how to use Flex filters to add rich graph-
ical effects to your applications.

Chapter 3

Filters: Easy Image Processing

One of the most important techniques in creating rich user interfaces is image
processing, which allows us to alter the appearance of visual objects. In fact,
just a simple blur can be useful in a wide variety of different visual effects.

For example, take a look at the UponFurtherReflection application,
which builds on the Reflexion application in the previous chapter:

(Demo: UponFurtherReflection)

The reflection of the image is more realistic than it was in the earlier example,
by using a blurring technique.

Although it is interesting to understand some of the fundamentals under-
lying the image processing techniques, one of the greatest things about Flex
and the Flash platform is that we get many image processing-based effects

Section 3.1 Chapter 3 · Filters: Easy Image Processing 70

for free, under the name of “filters.” The filter classes, and the ability to ap-
ply them to any Flash display object, make it easy to apply these techniques
individually to our GUI objects, or to combine them in various ways to make
a truly rich user experience.

Since the filter classes are built into the platform, we can just use them
without worrying too much about the details of how they work. But the
more we understand about the underlying concepts and technologies, the
more effectively we can use the built-in classes. Besides, isn’t understanding
how things work part of the fun of being a software developer?

To understand image processing techniques, and how they are used by
the built-in classes in Flex, we’ll discuss Flex filters.

3.1 Flex filters

Flex filters are operations that work on an original source image (or, more
correctly, on the pixels of a component or graphical object) and result in a
new visual representation of that image. For example, you may attach a filter
to a Button to alter its appearance. The filter takes all of the pixel values
in that Button (the way the Button would normally look on the screen) as
input and produces a new version of the Button as output after applying the
operations specified in the filter. The resulting pixels displayed on the screen
are the filtered output.

One of the handy things with filters is that you, the developer, don’t have
to worry about the fact that the filters are operating on pixel values as input
and producing pixel values as output. Instead, you simply assign one or
more filters to a graphical object, and these filters automatically change the
appearance of that object and the filtered object is displayed in place of the
original object.

Let’s look at a simple example. In SimpleBlur, we apply a blur fil-
ter (which we’ll read more about in Section 3.2) to our Button when it is
clicked. Clicking the button successive times toggles the blur on and off.
The blur filter is created like this:

(File: SimpleBlur.mxml)
<s:BlurFilter id="blur"/>

Section 3.1 Chapter 3 · Filters: Easy Image Processing 71

The BlurFilter class has various properties, but the only one we must
set here is the id, so that the button can reference it:

<s:Button id="b" label="Blur Me" x="50" y="50"

click="b.filters = b.filters.length==0 ? [blur] : []"/>

Clicking on the button toggles its filter off and on based on whether any
filters are currently attached to the button. No filters are active if the filters
property is an empty array (the default). If the array is not empty, it must be
the case that the blur filter is currently set on the button, so we remove it
by setting filters to an empty array. Note that the filters property is
an array of filter objects, so that more than one filter can be applied at the
same time. To attach a filter to an object, you add it to the object’s array
of filters. Conversely, to remove a filter from an object, you remove it
from the filters array. So to attach our blur filter to the button, we write:
filters = [blur], and to remove it, we set filters to an empty array, like
this: filters = [].

The most important thing to notice about this example is how simple it
is to get this interesting visual effect. We applied a blur to our object in one
step (button.filters = [blur]) without thinking about image processing,
box blurs, Gaussian convolution kernels, performance optimizing blur tech-
niques, or anything else. This is the magic of Flex filters; they take standard
image processing techniques and wrap them up into filters which are easy to
create and apply, allowing you to get many interesting and powerful graphi-
cal effects without much effort or code.

All of the Flex filters work this way. The desired filter class is instan-
tiated and applied to the target object by adding it to the filters property
of that object. The Flex filters work on any object of type UIComponent
or GraphicElement, which comprise all of the components and graphics
objects in Flex UIs.1

Of course, the default parameters for the BlurFilter used in the previ-
ous example may not always suit your purposes. So let’s discuss this filter
and other related filters in more detail.

1 It is also possible to display raw Flash DisplayObjects in a Flex application, which are
neither Flex components nor graphic elements. Filtering these objects is possible, using the
Flash filter classes that underlie the Flex filter classes, and then setting the filters property
on those display objects. See the sidebar on page 72 for more information on the difference
between Flex and Flash filters.

Section 3.2 Chapter 3 · Filters: Easy Image Processing 72

Flex filters vs. Flash filters
Flex 3 has no filter classes. Or, rather, Flex 3 programmers use the
Flash filter classes directly. When properties are changed on these
filters, as happens when filters are animated, the application must re-
apply the filters property on the target object. Flex 4, on the other
hand, offers parallel filter classes that wrap these Flash filter classes.
The main piece of additional functionality that the Flex filters provide
over the Flash filters is that they automatically re-apply a changed filter
to the objects that use it. This may not seem like much, but it removes
one of the gotchas with the previous approach to using filters, since it
was all too easy to forget to re-apply filters whenever they changed.

3.2 Blur-based filters

Three Flex filters—BlurFilter, GlowFilter, and DropShadowFilter—
are all based on the underlying technique of blurring an image. In the case
of BlurFilter, the end result is exactly that technique: the filter blurs an
object. For GlowFilter, the end effect is a glow around the original object,
where the glow is blurred to achieve the right look. For DropShadowFilter,
the desired effect is a shadow behind the object, where the shadow itself is
blurred to get a more realistic soft shadow. You can see all of these effects in
this screenshot:

(Demo: BlurGlowShadow)

Each of the buttons has a single filter applied. The first, blurry, button
has a BlurFilter, the second, glowing, button a GlowFilter, and the third,
shadowed, button has a DropShadowFilter, as you can see in the code:

(File: BlurGlowShadow.mxml)
<fx:Declarations>

<s:BlurFilter id="blur"/>

<s:GlowFilter id="glow"/>

<s:DropShadowFilter id="shadow"/>

Section 3.2 Chapter 3 · Filters: Easy Image Processing 73

</fx:Declarations>

<s:HGroup verticalCenter="0" horizontalCenter="0">

<s:Button label="Blur" filters="{[blur]}"/>

<s:Button label="Glow" filters="{[glow]}"/>

<s:Button label="Shadow" filters="{[shadow]}"/>

</s:HGroup>

In order to understand how these filters work, let’s first talk about the
blurring technique in general. Then we’ll talk more about these three blur-
based filters in particular.

The blurring technique

A blur effect is useful in many different situations, from de-emphasizing
items of less importance to motion blur in animations to combinations with
other filters for more complex effects. In fact, blurring is probably one of
the most useful filtering techniques because it is used in combination with so
many others to achieve a wide variety of effects.

Blurring is a fundamental image-processing
technique that is useful on its own, but also in
conjunction with other techniques like drop
shadows and glows.

At the most basic level, a blur is simply a way of combining several
pixel values to calculate the final color value of each pixel in an image. In
particular, each pixel in the resulting image is a combination of its original
pixel value plus the values of its neighboring pixels in some proportion. It
is the details behind “neighboring pixels” and “some proportion” that affect
the result, the quality, and the performance of a blur operation.

One of the simplest blur techniques combines all of the pixels in a rect-
angular region (called a convolution kernel) around a given pixel, averaging
their color values to produce the final pixel value. This approach is called
a box blur because of the rectangular box shape of the area of pixels that
are averaged together. For example, a 3×3 box blur around each pixel com-
bines nine pixels total, using one ninth of each source pixel’s color value to
calculate the final blurred pixel value.

Section 3.2 Chapter 3 · Filters: Easy Image Processing 74

We can apply a box blur filter to an image to get a gentle blur effect.
We can then increase the size of the box to average in more pixel values for
each final pixel value, giving a blurrier result. Here is an example showing a
button with no blur, with a mild 3×3 box blur, and with a more pronounced
5×5 box blur:

(Demo: BlurSize)

This blur technique is sufficient in many cases, but you may sometimes
notice artifacts of the box filter. In particular, source images with horizon-
tal and vertical elements will end up with strong horizontal/vertical artifacts
in the resulting image, where the original areas are not blended with their
surroundings. For example, we can see some artifacts from the simple 3×3
blur of the button above. Zooming in on the button shows how the horizon-
tal and vertical aspects of the original Button are emphasized, creating boxy
artifacts in the result:

To fix these problems, a more involved calculation called a Gaussian blur
is sometimes used, where the surrounding pixels are combined in unequal
proportions, weighting the pixels toward the center more than those at the
edge. The convolution kernel for a true Gaussian blur is not necessarily
a square. Instead, pixels are included in the calculation according to their
distance from the final pixel location. In theory, every pixel in an image
could be part of the convolution kernel. In practice, simplifying assumptions
are made for performance reasons to limit the size of the kernel to a tighter
circle around the final pixel location.

Although the Gaussian blur algorithm is not too complicated to under-
stand, it is considerably more performance-intensive than the box blur. A

Section 3.3 Chapter 3 · Filters: Easy Image Processing 75

simple way to achieve faster near-Gaussian results is to use a multi-pass ap-
proach, in which the box blur is applied several times in succession. This
approach gives the blur a higher quality, reducing the boxy artifacts and re-
sulting in a smoother final result. In the figure below, we see the same three
buttons as before in the top row. In the next row, the blurs on the second and
third buttons have been applied twice, resulting in a smoother blur. In the
final row, the blurring operation is applied three times, making the buttons
even more smoothly blurred:

Here is a closeup view of the 3×3 blur with two passes:

You can see that the horizontal and vertical artifacts are lessened with this
multi-pass approach. Note how all of the pixels inside the bounds of the text
are some shade of gray. Compare this result with that of the previous single-
pass approach which showed some white pixel regions because of box-blur
artifacts. Because of its nice tradeoff of speed and quality, the multi-pass box
blur approach is the one used by the Flex BlurFilter.

3.3 The BlurFilter class

BlurFilter blurs the visual objects to which it is attached. Two ways in
which we can change the result of a BlurFilter are as described in the pre-
vious discussion of the general blur technique: which neighboring pixels we

Section 3.3 Chapter 3 · Filters: Easy Image Processing 76

take into account and how these pixel values are combined. For BlurFilter,
these aspects are manipulated by use of the blurX, blurY, and quality
properties.

blurX, blurY These properties tell the filter how many pixels in the hori-
zontal and vertical directions to use when calculating each final pixel
value. The larger the values of blurX and blurY, the larger the area
that will be used to calculate the final pixel values and the more blurry
the final image will be.

quality Rather than forcing every developer to ponder convolution kernels
and multi-pass techniques, the Flex filters expose a simple quality
property that determines the quality of the result. This property sets
the number of times that the blurring calculation happens successively
on the image. A higher quality value takes longer to complete the
operation since it causes more passes and therefore more calculations.
The need for higher quality depends heavily on the situation, so you
should make the right tradeoff decision for your application.

The value of quality is an integer, although it is typical to use the
constant values in BitmapFilterQuality: LOW (which equals 1, so a
single pass will occur in the blurring operation), MEDIUM (which equals
2), and HIGH (which equals 3). The default is LOW. You can actually use
integer values all the way up to 15, but with the increased performance
cost of each additional calculation, you might want to use a maximum
value of 3, or HIGH, for most quality-sensitive situations. Or better yet,
stick with the default of LOW if that result is good enough; there is no
sense spending CPU cycles needlessly.

Always consider performance implications of UI
decisions you make; if your visual result doesn’t
benefit from a higher quality setting, leave it at the
default value and let your CPU do work where it’s
needed instead.

It’s far easier to understand how these properties affect the results by see-
ing them in action. Run the application FilterProperties, which initially
looks like this:

Section 3.3 Chapter 3 · Filters: Easy Image Processing 77

(Demo: FilterProperties)

By selecting different filters from the drop-down list, you can see the
effects that those filters have on the button, the image, and the gray rectangle
on the right side of the window. For example, here’s what the default blur
filter looks like:

You can change the values of the filter properties in the UI to see what
impact they have on the results. For example, here’s what the button looks
like with the default quality setting of 1 (scaled up so to show the details):

Section 3.4 Chapter 3 · Filters: Easy Image Processing 78

And here’s what that same button looks like when the quality value is
increased to 2:

Notice how the whole button is much more blurry and that many of the sharp-
edge artifacts that a simple box blur causes have gone away in this higher-
quality version. So put the book down and go play with the application.
Get a sense of how the size and quality of the blur filter affect the results in
different types of GUI objects.

Now that we’ve seen the basics of how blurring works and how to use
Flex filters, and the BlurFilter class in particular, to achieve a blur, let’s
look at two other filters that build on the blur technique to provide other
related effects: GlowFilter and DropShadowFilter.

3.4 The GlowFilter class

The GlowFilter class allows you to easily achieve a glow effect on any
visual object by surrounding the object with a colored area that is the same
shape as the object. This effect can be used to draw attention to a particular
object in the UI, because the glow distinguishes its appearance from the other
objects in the UI. This attention-drawing effect is even more pronounced
when the glow is animated to produce a pulsation effect. The colored area is
basically a translucent, blurry shape, so the GlowFilter class builds on the
capabilities and properties of BlurFilter.

blurX, blurY Like the same properties in BlurFilter, these values spec-
ify the size of the area taken into account for blurring any pixels in the
glow shape. These properties effectively set the size of the glow, since
the size of the blurred area determines how far beyond the boundaries
of the shape the glow will extend. A value of 1 creates a glow the same
size as the object that it is filtering. The default is 4.

Section 3.4 Chapter 3 · Filters: Easy Image Processing 79

quality As with the BlurFilter class, the quality property sets the num-
ber of times that the blur on the glow is applied. Higher values result
in a smoother glow, but the default value of LOW is generally sufficient.
When BlurFilter is applied to arbitrary images or components, blur-
ring artifacts may sometimes be obvious. But since glows have a single
color and are usually less pronounced and significant than foreground
images or graphical UI objects, blurring artifacts on the glow are less
noticeable, so a higher quality setting is generally not as important
with GlowFilter as it is with BlurFilter.

GlowFilter has several properties of its own, in addition to the blur-related
properties, which allow you to parameterize various aspects of the glow:

alpha This property, like the alpha property on components and graphic
primitives, determines the level of translucency. In this case, it affects
the translucency of the glow itself. And while the value varies from 0
to 1, like other alpha values, 1 will not give you a fully opaque glow.
The glow still has some translucency and it gets more transparent to-
wards its edges. A value of 0 means completely transparent, which
makes the glow invisible. While an invisible glow is not useful in gen-
eral, animating to and from a value of 0 makes sense for techniques
like a pulsating glow. A value of 1 represents the full opacity of the
glow (not fully opaque, as noted, but as opaque as it’s going to get).

color This unsigned integer value is the base color of the glow. For exam-
ple, a value of 0xff0000 results in a red glow.

inner By default, the glow surrounds the target object. In actuality, it is
under the object as well, although we don’t see it when the glow is
applied to opaque objects. But if you put a glow on a translucent
object (such as a standard Flex button, which is slightly translucent),
you will see the glow both surrounding the object and, dimmed by
the object itself, under it. The inner property reverses the effect at
the borders of the object, so that the glow is only on the inside of the
object, fading out as it approaches the center.

knockout This property can be set to true to cause the filtered object to be
completely transparent. You will still see the glow, but the object itself
will be invisible. The default value is false.

Section 3.4 Chapter 3 · Filters: Easy Image Processing 80

Once again, it is easier to play with this filter’s properties to see the visual
impact that they have. Selecting the glow filter in the FilterProperties
application exposes several glow-specific properties and causes a soft glow
around the target objects to appear:

Setting the inner property causes the objects to look like this:

And setting the knockout property causes this result:

Section 3.5 Chapter 3 · Filters: Easy Image Processing 81

Once again, put the book down and go play with the FilterProperties
application to understand how GlowFilter’s properties affect UI objects.

3.5 The DropShadowFilter class

A drop shadow is a handy effect to have around, giving you an instant way
to make objects stand out from the GUI by having them cast a fake shadow.
This technique is used frequently in user interfaces, giving UI components
a richer feel by making them more substantial and 3D-like. We’re used
to seeing objects in the real world cast shadows, so seeing UI objects cast
shadows makes those objects seem more real. Flex uses a drop shadow for
some components by default, such as the Panel container. Flex also makes
it easy for you to use drop shadows on your UI objects by providing the
DropShadowFilter class.

Drop shadows provide an easy way to make some
objects in your UI stand out by giving them a
substantial, 3D-like appearance.

A DropShadowFilter is essentially a GlowFilter that is offset by some
distance and angle, changing the glow into more of a shadow. The class
exposes all of the same properties that we saw on GlowFilter:

blurX, blurY Just as they do on the BlurFilter and GlowFilter classes,
these properties specify the size of the area taken into account for blur-
ring any pixels in the shadow area. These properties help determine
the overall size of the shadow and how gradually it fades out around
its edges. The size of shadow can imply the sharpness of the light
source casting the shadow. A very tight, crisp shadow is cast by a sin-
gle light source like a spotlight, whereas a muted, larger shadow is cast
by multiple or larger light sources. So in order to get a tighter shadow,
use smaller values for blurX and blurY, or to get a larger shadow use
larger blur sizes.

quality This property acts like it does on the BlurFilter and GlowFilter
classes. The value assigned to quality is the number of times the blur
algorithm is run on the drop shadow, where more passes results in a
smoother effect. This is not as important for drop shadows as it is

Section 3.5 Chapter 3 · Filters: Easy Image Processing 82

for blurring foreground UI objects, since drop shadows by nature have
less detail which would make blurring artifacts more obvious. But if
you need to eliminate any horizontal or vertical artifacts from your
shadows, you can experiment with this property. The default is 1.

alpha This property determines the level of translucency of the shadow,
just as it does for the glow in GlowFilter. Along with the color,
strength, and blurX/blurY properties, the alpha property helps de-
termine the color and contrast of the shadow. The default value is 1.

color This unsigned integer value is the color of the shadow. Shadows are
normally gray, but the color of a drop shadow can be changed to imply
different colored lighting, or just to achieve a color or effect that blends
well with other elements in the UI. The default value is black, although
this ends up creating a gray shadow because of the combination of the
color, the alpha, and the strength properties.

inner As with GlowFilter, this property causes the drop shadow to be
cast inside the object instead of outside of it. By default, the shadow
is behind and outside the target object. The inner property reverses
the effect at the borders of the object, so that the shadow is only on the
inside of the object, fading out as it approaches its center.

knockout This property can be set to true to cause the filtered object to be
completely transparent. You still see the shadow cast by the object,
but the object itself is invisible. The default value is false.

DropShadow also has some unique properties specific to the shadow effect:

distance This property sets the distance, in pixels, of the object’s shadow
from the object itself. A shadow is normally offset by some distance
from the object which casts it (an offset of 0 results in no shadow, since
the shadow is directly behind the object). The distance of this offset
can be used to show that shadowed objects are closer to or further from
the surface on which their shadow is cast. The default value is 4.

angle This property sets the direction in which the shadow is offset by the
distance property. The angle implies the direction of the virtual light
source that is causing the shadow. For example, a shadow that is cast
to the lower right of an object implies a light source to the upper left.
The default value is 45, or down and to the right of the object.

Section 3.5 Chapter 3 · Filters: Easy Image Processing 83

strength This property, along with the blurX and blurY properties, helps
determine the crispness of the shadow, and therefore the type of virtual
lighting. strength determines the contrast between the shadow color
and the colors around it. A higher value causes more contrast and a
stronger shadow. Values range from 0 to 255, with the default being 1.
Fractional values below 1 are also sensible, and values above 1 have
decreasing impact on the results.

hideObject Like knockout, this property makes the shadow-casting object
transparent, while the shadow remains visible.

DropShadowFilter is the final filter to play with in FilterProperties.
Selecting this filter puts a shadow behind the UI elements, causing them to
stand out more from the application:

(Demo: FilterProperties)

As an example of how the properties affect the look and feel of shadows,
I increased the blurX and blurY properties to 15, changed the color to a
light gray, and increased the distance to 20. These changes to the shadow
give the objects a feeling of standing further out from the window; a larger,
lighter, and fuzzier shadow results from objects being further away from the
surface on which their shadows are cast:

Section 3.5 Chapter 3 · Filters: Easy Image Processing 84

(Demo: FilterProperties)

One last time, put down the book and go play with FilterProperties.
I mean it. The interesting part is not in the code itself, but rather in how
the various properties of these filters affect the look of the filters and, more
importantly, the feel of the objects being filtered. Just don’t forget to come
back afterwards and pick the book up again. It won’t read itself.

As a fun way to get a feel for how shadow properties affect the look and
feel of shadowed objects, take a look at the ShiftingShadows demo. In this
application, the mouse acts as a virtual light source for the buttons, causing
the shadows to shift depending on the location of the mouse. For example,
when the mouse is in the upper-left corner of the window, shadows are cast
down and to the right:

(Demo: ShiftingShadows)

As the mouse gets closer to the center of the window, the shadows get
shorter and become centered around the objects, as they would in the real
world with a light source directly in front of shadowed objects:

Section 3.5 Chapter 3 · Filters: Easy Image Processing 85

These shadow effects are implemented by dynamically modifying the angle
and distance properties of the shadow filters.

The DropShadowFilter is declared like this:

(File: ShiftingShadows.mxml)
<s:DropShadowFilter id="shadow" strength=".5"/>

The filter has an id because we refer to it later when changing its properties.
The strength is set to a non-default value to soften the shadows.

Each of the buttons is declared in the same way:

<s:Button width="100" height="50" filters="{[shadow]}"

opaqueBackground="true"/>

Each button uses the same shadow filter to create its own shadow. Each but-
ton also has its opaqueBackground property set to true. This property is
not normally set on buttons, but drop shadows tend to look better on opaque
objects. Otherwise, you see a lighter version of the shadow behind the object
and the effect is not as nice, especially with the moving shadows in this par-
ticular application. So for the purposes of this demo application, the buttons
are made opaque.

The shadow shifting happens in a mouse movement listener on the ap-
plication. Every time the mouse moves in the window, the updateShadow()
handler function is called:

mouseMove="updateShadow(event)"

The updateShadow() function computes the new shadow properties every
time the mouse moves. We take the new mouse position, calculate the angle
of the mouse relative to the center of the window, and translate that into a
shadow angle. We also calculate how far the mouse is from the center of the
window (with 1 being the right edge of the window and 0 being the center)
and multiply that factor times a maximum distance value for the shadow:

Section 3.5 Chapter 3 · Filters: Easy Image Processing 86

private function updateShadow(event:MouseEvent):void

{

// Compute the angle the light source (mouse position)

var tempX:Number = event.stageX - (width / 2);

var tempY:Number = event.stageY - (height / 2);

var angle:Number;

if (tempX != 0)

angle = 180 * Math.atan(tempY / tempX) / Math.PI;

else

angle = (tempY < 0) ? -90 : 90;

if (tempX < 0)

angle += 180;

// Now set the shadow angle to be opposite

// the light source angle

shadow.angle = angle + 180;

// Calculate the distance from the center

var dist:Number =

Math.sqrt(tempX * tempX + tempY * tempY);

var maxDist:Number =

Math.sqrt(width * width + height * height) / 2;

shadow.distance = 15 * (dist / maxDist);

}

As the mouse moves around the window we calculate its angle relative to
the center of the window. We then calculate the shadow’s angle (which is
simply the inverse of the other angle, since the mouse represents the sun and
we want to position the shadow), and the distance to offset the shadow.
This gives the shadows a different feel depending on where the mouse is and
gives the user a different impression of where and how far away the virtual
light source is.

The ShiftingShadows application is not intended to provide code that
you copy for your application. I don’t think that many users would appreci-
ate you changing your application’s virtual light source around as they move
the mouse on the screen. Instead, the demo application is meant to show
two things: how to use the DropShadowFilter class in general, and how
different angles and distances affect the look and feel of drop shadows. No-
tice that as the mouse gets further from the window center the shadows get
more pronounced, as if the objects are positioned further out from the win-

Section 3.6 Chapter 3 · Filters: Easy Image Processing 87

Making light of the situation
Note that the “light source” in this example is infinite (like the suna).
That is, the angle between any of the buttons and the light source is the
same for any particular mouse position.

A local light source casts shadows at different angles depending on
the angle between it and each object. For example, a light source in
the center of the window might cast no shadow on the button directly
below it (as in this demo), but it would cast a shadow to the right on
the buttons at the right edge of the window and a shadow to the left for
buttons on the left edge. In fact, a light source very close to the objects
would cast a shadow shape more complex than the simple shape-of-the-
shadowed-object approach that DropShadowFilter provides. Imagine
a light source sitting right at the top edge of a button. The resulting
shadow would expand to the left and below the left corner and to the
right and below the right corner. But such situations are way beyond
the simple effects we’re going for here. It’s sufficient for our current
purposes to have a simple infinite light source and have it affect all of
the items in the UI equally. Check out the discussion of drop shadows
in Chapter 12 to see how we handle a local light source.

a Okay, so the sun is not an infinite distance away. But 93,000,000 miles is
close enough to infinite in terms of the effect that its position has on items here
on Earth. Objects that are several miles away from each other on Earth have
virtually the same angle between themselves and the sun because their distance
from each other is insignificant when compared to the distance between them
and the sun.

dow background, or as if the virtual light source is actually further away in
that direction. If you use drop shadow filters in your application, try playing
with these and other properties to get the right feel for your UI.

3.6 Other filters

Other Flex filter classes provide other kinds of image-processing effects:

BevelFilter, GradientBevelFilter These two filters allow you to add
a beveled look to your objects, giving them borders that resemble chis-
eled edges. The gradient version enables a more 3D look to the bevels.

Section 3.7 Chapter 3 · Filters: Easy Image Processing 88

GradientGlowFilter This filter builds on the GlowFilter that we dis-
cussed earlier, giving you more flexibility to set the colors in the glow.

ColorMatrixFilter This filter gives you control over the color effects in
an object, allowing you to shift the hue or brightness, or to perform
grayscale effects. It works by separating the red, green, and blue color
channels of each pixel and manipulating each channel individually.

DisplacementMapFilter This filter lets you apply the values in an input
bitmap parameter as multipliers on the filtered object. This technique
allows you to shift the pixels in the filtered object by different values,
according to the data in the bitmap.

ConvolutionFilter This filter is related to the BlurFilter discussed ear-
lier. It provides a matrix of values that specify how much of the sur-
rounding pixel values to take into account when calculating the final
pixel value. But this filter lets you specify the multipliers in the matrix
to allow much more custom effects, instead of just a simple blur.

We could play around with all of these filters, as they all have something to
offer. But I’ll leave that as an exercise for the reader. Instead, we’ll just take a
closer look at one of these other filters: ConvolutionFilter. This filter al-
lows us to play around with very sophisticated image-processing techniques
that you’ve probably seen in image-editing applications.

3.7 ConvolutionFilter

Recall in our earlier discussion of the blur filter that the final pixel value is
calculated by averaging the values of the surrounding pixels. You can think
of this set of input pixels being in a box around the final pixel. To average all
of the pixels together equally, we multiply each pixel value in the box by one
over the number of pixels in the box. So in the case of a 3×3 filter (which is
the case when blurX and blurY equal three, since they specify that the final
result should be blurred by three pixels in the x and y directions), each value
in the box has a multiplier of one ninth.

But what if you wanted to blur the image differently? For example, a
true Gaussian blur has a higher multiplier for pixels closer to the middle and
lower multipliers for pixels at the edge, so that the closest pixel to the middle

Section 3.7 Chapter 3 · Filters: Easy Image Processing 89

has more effect than the other ones used in the operation. Or what if you
want a different effect entirely, and not just a blur?

That’s where ConvolutionFilter comes in. It performs a similar oper-
ation to the blur we saw earlier, but it takes its multipliers for the surrounding
pixels from a matrix of values. In fact, you can think of the BlurFilter as
a specialized case of a ConvolutionFilter, with less flexibility in how the
matrix values are set. Instead of blurX and blurY, you tell it how big the ma-
trix is in x and y, which defines the number of pixels around each final pixel
that will go into the calculation. Then you specify the values for the elements
of the matrix to be multiplied by each of the surrounding pixel values.

For example, a simple convolution filter that acts the same as a 3×3
BlurFilter is specified by a matrix of nine values (3×3), each of which
has the same multiplier of one ninth:

<s:ConvolutionFilter matrixX="3" matrixY="3"

matrix="{[1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9]}"/>

Here, the matrixX and matrixY properties specify the size of the matrix in
x and y and the matrix property specifies the multipliers for those elements.

The example above gives us a simple blur effect. But we’ve already seen
blurs; how about something new?

Look sharp

One of the filtering effects that is common in image editing software is sharp-
ening, where details and edges of the image become more pronounced. This
technique can be used to make some details more obvious or to compensate
for artifacts in an overly blurry image. Or it can be used to just make the
picture look different, giving it a lot of unrealistic, bright, sharp edges.

The sharpening effect is achieved by a convolution filter. The pixels in
the image are combined with each other in a way that highlights the edges.
To achieve the effect, matrix elements are chosen that darken the dark pixels
and brighten the light ones. In particular, we want the sharpening effect to
occur at edges in the original image. Edges are areas of high contrast, where
a dark color is next to a bright color. If we make the dark colors darker and
the bright colors brighter in these areas, we will call more attention to these
edges, thus sharpening the image.

We can achieve this result by multiplying the center pixel in the convolu-
tion kernel by a high multiplier and multiplying the surrounding pixels by a

Section 3.7 Chapter 3 · Filters: Easy Image Processing 90

negative factor, essentially subtracting them from the final pixel value. This
operation makes bright pixels even brighter because they are multiplied by
the large multiplier. Dark colors are also multiplied by the large multiplier,
but if the dark colors are next to bright colors, then the bright colors, mul-
tiplied by the negative factors, drag down the final pixel value for the dark
colors, making the dark colors in edge areas even darker.

Instead of looking at figures and formulas, let’s see an example. In the
Sharpen demo, we create a ConvolutionFilter as follows:

(File: Sharpen.mxml)
<s:ConvolutionFilter id="sharpener"

matrixX="3" matrixY="3"

matrix="{[0, -1, 0, -1, 5, -1, 0, -1, 0]}"/>

The filter is created with a 3×3 matrix, where the element in the middle is
5 and the elements beside, above, and below it are -1. This gives us the
effect that we want, where the center pixel counts much more than the pixels
around it and where the adjacent pixels subtract from the result. This effect
is seen in in the figure below. On the left is the original image, with no filter
applied. On the right, the picture has been sharpened with matrix values of
[0, -1, 0, -1, 5, -1, 0, -1, 0]:

(Demo: Sharpen)

Note, in this image, how the edges of the original image are enhanced, with
crisper skyline and bridge details and highlighted waves.

Now let’s see what happens when we vary the amount of sharpening.
The Sharpen demo has an HSlider component that allows the user to vary
the multiplier of the center pixel:

<s:HSlider id="intensity" minimum="1" maximum="30" value="0"

liveDragging="true" updateComplete="changeIntensity()"/>

Section 3.7 Chapter 3 · Filters: Easy Image Processing 91

A change in the slider value causes a call to the changeIntensity() func-
tion, where the convolution matrix values are calculated based on the value
of the slider. We want to end up with a total multiplier of 1 from the matrix,
to preserve the luminosity (the overall brightness) of the original image, so
the adjacent pixels are calculated to be -(intensity.value - 1)/4, and the
matrix values are set as follows:

private function changeIntensity():void

{

var darkener:Number = -(intensity.value - 1)/4;

sharpener.matrix = [0, darkener, 0,

darkener, intensity.value, darkener,

0, darkener, 0];

}

As the user moves the slider around, we see the impact of the changing values
in the matrix. For example, at the highest value of the slider, we get a very
distorted view of the city scene, where all of the edges have been brightened
to an unrealistic amount:

We have used ConvolutionFilter only for a sharpening technique, but
this flexible filter has many more capabilities. Play around with the matrix
values. Look up algorithms for filtering with convolution kernels and try
them out. See what effects you can get for your applications.

Section 3.8 Chapter 3 · Filters: Easy Image Processing 92

3.8 Pixel shader filters

We’ve seen how Flex filters make many complex image-processing oper-
ations trivial. By simply attaching a filter to an object, you can get lots of
different visual effects from glows to shadows to blurs to sharpening to many
other effects that we didn’t cover. But there’s still a problem with these fil-
ters: they’re all you get. What if you like the approach of filters, but you
want to apply some custom image-processing algorithm that is not achiev-
able with the various filter classes that Flex provides? Well, you can’t. The
set of filter classes is set. You cannot subclass the filter classes, nor can you
plug in your own implementation into the system. So while the set of filters
is rich and powerful, it’s also very limited and inflexible.

Or at least it was limited . . . until Flex 4.
Flash Player 10, which was released in the fall of 2008, included a new

filter that changes everything for Flex filters: ShaderFilter. Flex 4 includes
this filter and gives you infinite flexibility with filtering through the use of
Pixel Bender.

Pixel bender toolkit

Pixel Bender is a technology that shipped in 2008 with Adobe Creative Suite
4. It is available for Adobe Photoshop CS4 and Adobe After Effects CS4.
But more to the point for this book, it is also available for the Flash platform.

Pixel Bender provides pixel shader capabilities. This technology allows
you to provide a small program that is run for every pixel of an image, com-
puting its resulting value from various input images and parameters. For our
purposes, this means that we can provide arbitrary calculations on images
at the pixel level to derive some final result. This sounds an awful lot like
image filtering, doesn’t it?

First things first: go download the Pixel Bender Toolkit application from
Adobe labs at http://labs.adobe.com/technologies/pixelbender/.
The toolkit is an application that lets you develop shader programs and com-
pile them for use in Flash and Flex applications.

Teaching Pixel Bender, although it is a relatively simple language with
C-like syntax, is way beyond the scope of this book, so I’ll just refer you to
the toolkit and the documentation that comes with it. It’s particularly helpful
to load in some of the sample shaders that come with the toolkit and play with
them to see how they work. You can start with these samples to develop your

http://labs.adobe.com/technologies/pixelbender/

Section 3.8 Chapter 3 · Filters: Easy Image Processing 93

own. You can also download other shaders from the Pixel Bender Exchange
at http://www.adobe.com/go/pixelbender.

Even though I’m not proposing to teach how Pixel Bender works overall,
I will go over a simple shader that we can then use in a Flex example.

Grayscaling with pixel bender

The shader we discuss in this section is used in the Grayer Flex example,
which is seen here:

(Demo: Grayer)

This application lets the user drag a slider back and forth, which changes
the image from completely grayscale (when the thumb is on the left) to its
original color version (when the thumb is on the right). These changes are
a bit lost in this book, since we are just showing the grayscale version in
the figure. I suggest you go play with the Grayer application to see it in its
complete, colorful form.

The grayscaler shader used by this Flex application takes an input im-
age and a colorization parameter and produces an image that is a blend
of the original image and the grayscale version of that image. The blend is
determined by the colorization parameter, where a value of 1 results in
the original color image and 0 results in a completely grayscaled image.

The grayscale calculation is based on a standard formula which combines
the red, green, and blue channels of the original image to produce a gray pixel
of a similar intensity with this calculation:

graypixel = red*.11 + green*.33 + blue*.55

http://www.adobe.com/go/pixelbender

Section 3.8 Chapter 3 · Filters: Easy Image Processing 94

The shader works by operating on each pixel of the original image, multi-
plying it times the grayscale formula to derive the gray version of that pixel,
then blending that gray version with the original color pixel in the proportion
determined by the colorization parameter.

The shader has three parameters:: the input image, the colorization
parameter, and the output image. These parameters are declared in the shader
as follows:

(File: shaders/grayscaler.pbk)
parameter float colorization;

input image4 image;

output pixel4 dst;

The only other code in the shader is the function evaluatePixel(), which
is a standard function that all shaders must implement. The Pixel Bender
library calls this function for every pixel of the image and takes the value of
the output parameter, assigned in that function, as the result for that pixel.
The function in grayscaler is as follows:

void evaluatePixel()

{

float4 pixel = sampleNearest(image, outCoord());

float4 grayPixel;

grayPixel.r = pixel.r * .11 +

pixel.g * .33 + pixel.b * .55;

grayPixel.g = grayPixel.r;

grayPixel.b = grayPixel.r;

grayPixel.a = 1.0;

dst = mix(pixel, grayPixel, (1.0 - colorization));

}

The code in the function works like this: First, we get the current pixel
value in the original image, which is the image input. Then we calculate
the grayPixel value according to the grayscale formula shown previously,
accessing the red, green, and blue channels of the original image pixel with
.r, .g, and .b notation. We set all of the red, green, and blue values in the
grayPixel to that same value, and set its alpha value to 1 to make it opaque.
Finally, we blend the calculated grayscale value with the original color value
using the colorization parameter and the built-in mix() function. We

Section 3.8 Chapter 3 · Filters: Easy Image Processing 95

store that result in the dst output parameter, which Pixel Bender uses as the
final pixel value result.

To put the shader into a format for use with Flex applications, we select
the “Export Filter for Flash Player. . . ” menu item in Pixel Bender Toolkit.
This operation produces a pbj file, which is a binary file that the Flash player
can use as a filter.

Once we have a pbj file, we can load the shader into a Flex application
and create a Flex filter from it. In order to do that, we load the pbj file and
create a Shader object:

(File: Grayer.mxml)
[Embed(source="shaders/Grayscaler.pbj",

mimeType="application/octet-stream")]

private static var GrayscalerShaderClass:Class;

[Bindable]

private var grayscalerShader:Shader =

new Shader(new GrayscalerShaderClass());

The Flex filter that uses Pixel Bender shaders is the ShaderFilter class.
The only required property of this class is shader, which is a Shader object.
For this property, we supply the grayscaleShader object:

<s:ShaderFilter id="grayscaler"

shader="{grayscalerShader}"/>

We set the filter on our target object just like we do with all other Flex filters:
by supplying it as an element in the object’s filters array. So in order to
filter our image with the shader filter, we create it with its filters property
initialized appropriately:

<s:BitmapImage source="{GoldenGate}"

filters="{[grayscaler]}"/>

Finally, to change the amount that the image is colored, we set the shader’s
colorization property whenever the slider changes:

<s:HSlider id="slider" minimum="0" maximum="1"

snapInterval=".01" liveDragging="true"

change="grayscaler.colorization = slider.value"/>

Section 3.9 Chapter 3 · Filters: Easy Image Processing 96

Note that we are setting the value on the ShaderFilter object, and not
the underlying shader. Note, also, that the colorization property is not
exposed by either ShaderFilter or the underlying Shader object. The only
place that property exists is in the underlying Pixel Bender shader. Flex
handles the details of taking any property value set on the filter and passing
it through to the underlying shader. In this case, it takes the value of the
colorization property and hands it off to the shader, which uses it inter-
nally to change the grayscale calculation in its evaluatePixel() function.

Note also that we never actually set the input image for the shader. So
how did it know what to filter?

It turns out that the Flash player implementation of Pixel Bender supplies
the first image input for the shader automatically. That image is the bitmap
representation of the target object that is filtered by the ShaderFilter. In
the case of the grayscaler shader, there is only one image input, so we don’t
need to supply anything; Flash tells the shader to use that BitmapImage as
its input image.

The Grayer application is a very simple example of using Pixel Bender
to create and use a custom filter in Flex. The most powerful thing about
this approach to filtering is that you can really do anything with this tech-
nique: given the object being filtered, an arbitrary number of image in-
puts, other parameters you can pass in, and calculations performed in the
evaluatePixel() function, you can get very custom, very cool, and very
flexible effects. With Pixel Bender and ShaderFilter, you get the easy
approach to image processing that Flex filters provides with the power and
flexibility that Pixel Bender’s programming model enables. Go check out the
Pixel Bender Exchange and see what kind of effects are possible using this
powerful combination.

3.9 Upon further reflection

As a final demonstration of using filters, let’s reflect again upon the reflection
technique. The reflection that we created in Section 2.7 was nice, but not
terribly realistic. Even when we made the reflection translucent, to get away
from the perfect-mirror effect of simply inverting the original image, it still
didn’t quite cut it for a reflection that the user would believe. That approach
had a couple of distinct problems.

The first problem was that the reflection, even though it was translucent,

Section 3.9 Chapter 3 · Filters: Easy Image Processing 97

was still a crisp, perfect copy of the original image. No surface in the real
world other than a perfect mirror could produce that result. Instead, real
materials are always somewhat matte and cause reflections to bounce off
imperfectly, scattering the results in different directions instead of sending
the reflected rays out in the exact opposite angle in which they arrived. This
effect causes a more diffuse result in real world reflections.

Techniques that mimic the real world need to mimic
real world surface and light interaction.

The second problem was that real reflections drop off as they get further
away from the reflected object. We rarely see the entire object reflected.
Instead, we see details more clearly in the part of the reflection that is closest
to the reflected object, but the details get hazier the further out the reflection
goes, usually disappearing entirely only part-way through the reflection.

Using what we’ve learned about filters in this chapter and about gradients
in Chapter 2, we can fix both of these problems.

The first problem to solve is that we want the reflection surface to appear
more matte and the reflection to appear more diffuse. Well, that sounds to
me like a blur, and we now know how to get a blur effect very easily. We
declare a BlurFilter like this:

(File: components/ReflexionContainer.mxml)
<s:BlurFilter id="blur" blurX="5" blurY="5" quality="2"/>

We then declare our reflection image to use the blur filter, and we’re done:

<s:BitmapImage id="image" source="{source}" smooth="true"

width="{imageWidth}" height="{imageHeight}"/>

<s:BitmapImage source="{source}" smooth="true"

width="{image.width}" height="{image.height}"

maskType="alpha" scaleY="-1" id="reflection"

filters="{[blur]}">

<!-- contents of BitmapImage discussed later -->

</s:BitmapImage>

Adding the blur gives us a more realistic reflection, seen here:

Section 3.9 Chapter 3 · Filters: Easy Image Processing 98

But the reflection is still too large, extending to the full height of the image
that it is reflecting. To fix this problem and make the reflection get more
diffuse the further it gets from the reflected image, we use a technique of
masking, which is a way of constraining where and how Flex renders objects
based on the properties of other objects. A simple masking operation clips
an object to the bounds of some other object. The way we’re going to use a
mask here is a bit more involved; we’re going to use the alpha channel of a
mask object to tell Flex how much of the reflection image to allow through.
And we’re going to use a linear gradient to decrease that amount as we get
further away from the reflected image. Here’s the code for our mask, which
is inside the reflection BitmapImage that it masks:

<s:mask>

<s:Group>

<s:Rect width="{image.width}"

height="{image.height}">

<s:fill>

<s:LinearGradient rotation="-90">

Section 3.9 Chapter 3 · Filters: Easy Image Processing 99

<s:GradientEntry color="white"

alpha="1"/>

<s:GradientEntry color="white"

alpha="0" ratio=".4"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

</s:Group>

</s:mask>

The gradient goes from fully opaque at the top to fully transparent 40
percent of the way down. This mask, coupled with the reflection’s setting
of maskType="alpha", ensures that the reflection is most visible at the top,
next to the image being reflected, gradually disappearing and becoming com-
pletely invisible 40 percent of the way through the reflection, as seen here:

(Demo: UponFurtherReflection)

Note that the reflection for this application is handled in a separate class,
ReflexionContainer. Putting the reflection effect in a separate file or
class was not necessary for the demo, but it makes the technique much
more flexible in general. You can simply use this component instead of any

Section 3.9 Chapter 3 · Filters: Easy Image Processing 100

BitmapImage and it will display the specified image with its reflection. It au-
tomatically creates a BitmapImage and a reflection of that image in a VGroup
with the reflection technique developed here.

Conclusion

You can see from the examples in this chapter that Flex filters are easy to use
and configure. Whether your needs involve using standard filters like drop
shadows or something completely custom via Pixel Bender shaders, Flex
filters make it simple to provide powerful visual effects for user interfaces.

In the next chapter, we will talk about the new “states” syntax in Flex
4, which provide a useful and powerful way of describing application and
component states in your MXML code.

Chapter 4

States

Most applications enter many different states over time. An application may
have different screens, for example, like a shopping site that enables search-
ing on one screen, search results on another, and shopping cart details on
another. There may be different states of individual components, like a dis-
abled state for a button until the user has entered their billing address.

Flex states allow you to incorporate your mental
model of the different screens of your application
into the application’s MXML GUI code.

One of the innovative things about the Flex platform is that this concept
of states is enabled by the API. Flex provides a way to describe the different
states of your application and components in your MXML code directly. In
this chapter, we will see how states work in Flex 4. Chapter 5 will then
discuss how to use transitions to automate animations between states.

4.1 Component state

Although most of this chapter is about how to set state on an application,
setting state on components is also a powerful feature of Flex 4. In fact,
the feature is so useful that Flex 4 component skins use states to define the
state-specific visuals of the component. So when a button is hovered over,
or pressed, or disabled, the skin for that button reflects those changes by
displaying different graphics depending on the button’s current state. Let’s

Section 4.1 Chapter 4 · States 102

States improvements in Flex 4
The underlying concept and implementation of states did not change
significantly between Flex 3 and Flex 4, but the syntax for states
changed dramatically. States were a powerful mechanism in Flex 3,
but writing correct state code could be very tricky, and reading even
correctly written state code was a chore at best.

For developers of Flex 3 applications, I recommend using the De-
sign View GUI builder in Flash Builder to produce state-dependent
code, because it’s far easier to figure out what to do in a graphical and
property-value-oriented way than it is to hack the necessary MXML
code. Design View produces the states block with the hierarchical
structure of state-dependent override tags. You can then look at the
resulting MXML code that Design View produced and be thankful that
you didn’t have to write it.

Fortunately, Flex 4 came along and completely changed the way that
state code is written. Instead of a block of unreadable state code, we
have a block of state name declarations and then state-dependent values
declared directly in-line on the affected tags. Now the state code is both
easy to write and read, with or without Design View’s assistance.

look at an example to see how this works for components.
In the SearchMe application, which we’ll see throughout this chapter, the

user starts at a screen where they enter a search term into a text input box:

(Demo: SearchMe)

The search button is disabled initially because the text field is empty. The
button is created this way on purpose, becoming enabled only when some-
thing is typed into the input field:

Section 4.2 Chapter 4 · States 103

(File: SearchMe.mxml)
<s:Button x="115" y="121" label="Search"

enabled="{searchInput.text != ''}"

click="runSearch()"/>

When the user enters text into the input field, the button’s enabled property
becomes true, and the button shows up differently on the screen, indicating
that it can now be clicked:

How this button state gets turned into different visuals for the button
is the topic of Chapter 6, so we’ll end our discussion of component states
for now and learn about application state. It is sufficient to understand that
everything we talk about in this chapter applies just as well to individual
components and their skins as it does to entire applications. Now, let’s see
how states are used to define the visuals for the states of an application.

4.2 States syntax

The state of an application or a component in your application is stored as
the value of the currentState property of that object. UIComponent and all
of its subclasses have a currentState property, so any component in your
application has a notion of “state” that can be defined and set. The way that
you define information about the states is by declaring the names of states
that currentState can have and by declaring different values for objects in
these different states.

You put state information in your MXML code in two places: in the
states block and the objects that have state-specific values.

Section 4.3 Chapter 4 · States 104

4.3 The states block

The states block consists of an array of State declarations that are used in
the object in which they are declared. For example, a states block that lists
two states, s1 and s2, looks like this:

<s:states>

<s:State name="s1"/>

<s:State name="s2"/>

</s:states>

In this snippet of code, the states tag declares the states block and each
of the State tags declare a separate, named state. The value of the name
property is important because it is used elsewhere in the code when creating
state-specific values.

Sometimes, you may find it helpful to group states together to make
it easier to declare state values that span several states. For example, you
might have a panel which is the same size in several, but not all, states. In-
stead of setting that size for each state individually, you can specify the same
stateGroups value for each of the states where that value is the same and
use that single group to define the panel’s size. The stateGroups property
is simply a list of strings defining which “groups” a state belongs to. In
the sample code below, from the demo StateGroups, four named states are
collected into two state groups:

(File: StateGroups.mxml)
<s:states>

<s:State name="s1" stateGroups="stateGroupA"/>

<s:State name="s2" stateGroups="stateGroupA"/>

<s:State name="s3" stateGroups="stateGroupB"/>

<s:State name="s4" stateGroups="stateGroupB"/>

</s:states>

In this code, the first two states are in stateGroupA and the other two are in
stateGroupB. When we refer to states in our object tags, which we will see
later, we can use either the state names directly or, if it is more convenient,
the state group names.

One important point to remember about the states block is that the first
state in the list declares the state in which the application starts. So in both

Section 4.4 Chapter 4 · States 105

of our examples above, the application starts in state s1. This point comes
in handy when defining values for objects; if you set a property to a value
that is specific to that starting state, that property will have that value when
the application starts. On the other hand, if there is no state-specific value
assigned to that property, then the property will start out with its default value
(either the non-state-specific value declared if there is one (e.g., x="5"), or
else whatever the default value is for that property on the object). In any case,
just be aware that the first state in the states block determines the starting
values for your objects and the initial view that the user sees.

4.4 Setting state values

The real functionality and power of states comes when we set state-specific
values. Panels may exist in some states and go away in others. Buttons may
have different locations, sizes, or text depending on the application state.
Components may have different looks depending on whether the mouse is
hovering over or pressing on them. These changes are encoded in the objects
whose values change between states, using a simple syntax to define the
different state values.

State values are set using a special syntax that is understood by the com-
piler, so keywords that are meaningful to the states mechanism are not actu-
ally properties on the objects themselves. For example, the includeIn and
excludeFrom keywords (which we will discuss in Section 4.5) are used in-
side tags for objects that do not have properties with those names. Instead,
the compiler sees those keywords and creates the appropriate state data.

Similarly, the syntax for specifying state-specific values (that we will
also see later), such as x.s2="100", uses state syntax that is meaningful to
the compiler (e.g., “.s2”), but not to the object itself. So don’t go looking
for properties on UIComponent with these names; just know that it is some
magic sauce added by the compiler when dealing with MXML code. It is
this compiler magic that makes the state syntax in Flex 4 so much easier to
use than the prior state syntax.

There are two categories of state information set on the affected objects:
state inclusion and state values. These will be described in the remaining
two sections of this chapter.

Section 4.5 Chapter 4 · States 106

4.5 State inclusion

Often, you may want to define states in which an object exists,1 or, con-
versely, states in which it does not. For example, you may want a button to
be visible when the application starts up in state s1, but to go away when the
application changes to state s2. To set this existence information, you use
the includeIn or excludeFrom properties on the object.

The includeIn property lists the states in which the object exists; it does
not exist in any other states that are not named in that list. Conversely, the
excludeFrom property lists those states in which the object does not exist;
the object exists only in states that are not in that list. You should only use
one of these properties on any given object, not both.

Let’s look at an example from the application SearchMe that we saw
earlier in this chapter. When the user types a string into the text input box
and clicks Search, the application brings up a second screen with the results:

(Demo: SearchMe)

1 When I talk about an object’s “existence” in a state, I mean something different than
simple visibility. If you want to control the visibility of a Button, for example, you can
set its visible property to true (visible) or false (invisible), or you can set its alpha
property somewhere between 0 (completely transparent) and 1 (completely opaque). But
whether an object “exists” in a state is determined by whether the object is present in the
display hierarchy of the application. For example, a Button exists in state s1 if it is a child
element of its container in that state (and if the container also exists, on up the display tree).
Conversely, that Button does not exist if is is not parented to any existing container in the
hierarchy. With no parent in the display hierarchy, the object is not part of the hierarchy and
therefore does not exist in it. It might be more correct to say “parented” instead of “exists,”
but I find existence a bit easier to explain.

Section 4.5 Chapter 4 · States 107

This results screen, just like the search screen of the application, is cre-
ated using states to define which elements are visible. First of all, we define
the two states that we will use:

(File: SearchMe.mxml)
<s:states>

<s:State name="searchScreen"/>

<s:State name="resultsScreen"/>

</s:states>

Next, the includeIn syntax is used to declare which elements are visible
in each state. The label, text input, and search button only exist in the
searchScreen state, so they are defined together in a Group that is only
included in that state:

<s:Group includeIn="searchScreen">

<s:Label x="107" y="66" text="Food Item"

fontSize="18" fontWeight="bold"/>

<s:TextInput id="searchInput" x="86" y="91"/>

<s:Button x="115" y="121" label="Search"

enabled="{searchInput.text != ''}"

click="runSearch()"/>

</s:Group>

Similarly, the results screen includes a DataGrid with the results, along with
a button that lets the user return to the search screen:

<s:Group includeIn="resultsScreen">

<mx:DataGrid x="10" y="10" width="280" height="201"

dataProvider="{results}">

<mx:columns>

<mx:DataGridColumn headerText="Common Name"

dataField="name"/>

<mx:DataGridColumn headerText="Latin Name"

dataField="latin"/>

</mx:columns>

</mx:DataGrid>

<s:Button x="104" y="219" label="Search Again"

click="currentState = 'searchScreen'"/>

</s:Group>

Section 4.6 Chapter 4 · States 108

With these groups defined to exist in their respective states, Flex takes care of
displaying the right GUI state at the right time. When the user clicks on the
Search button, the application’s currentState is set to resultsScreen.
This causes the elements that are included only in the searchScreen to go
away and the elements that are included in the resultsScreen to appear.

4.6 State-specific property values

Now that we’ve seen how to automate adding and removing objects from the
scene, let’s see how to automate changing property values between states.
The idea and the syntax here are quite simple: properties have default values
and you can add state-specific qualifiers to those property names to specify
different values in specific states. The syntax uses the property name, fol-
lowed by a period, followed by the name of a state or state group in which
that property will take on the given value. For example, to set the value of x
to 100 in state s1, you write x.s1="100". This is far easier to understand in
code, so let’s look at an example, SearchMe2.

The SearchMe2 example is very similar to the earlier SearchMe example
except that some elements are shared between the screens. In particular, we
would like the user to be able to perform another search on the results screen
without having to return to the initial search screen, so the text input and the
search button will live in both states. But since these elements were in the
middle of the screen in the initial searchScreen state, we’ll have to move
them out of the way to make room for the results screen. Here’s what the
new results screen looks like:

(Demo: SearchMe2)

Section 4.6 Chapter 4 · States 109

To create this screen, we define our search screen elements a bit differ-
ently. For one thing, there is no surrounding Group that is included only in
the searchScreen. Instead, we just have one element, the Label, which is
included only in that state:

(File: SearchMe2.mxml)
<s:Label x="107" y="66" text="Food Item"

fontSize="18" fontWeight="bold"

includeIn="searchScreen"/>

We then define the text input component and the button, which now exist in
both screens, to take on different position values in the two states:

<s:TextInput id="searchInput" x="86" y="91"

x.resultsScreen="84" y.resultsScreen="10"/>

<s:Button x="115" y="121" label="Search"

enabled="{searchInput.text != ''}"

click="runSearch()"

x.resultsScreen="220" y.resultsScreen="10"/>

Here, the input and the button both have default values for x and y. These
define the location of the elements in the first state. But these objects also
have x and y values defined that are state-specific for the resultsScreen
state. These values are set on the x and y properties when the application
enters into the resultsScreen state. In this way, the application defines,
in a declarative way, the values that these shared elements’ properties have
in both states. The Flex states engine handles setting these property values
whenever the application changes state.

And that’s it. All this talk about how powerful the states mechanisms
is and it’s just a matter of some include/exclude statements and some dot-
state-name property declarations. Of course, a lot is happening under the
hood. The compiler is turning these simple declarations into more involved
data structures internally, and the internal Flex runtime logic that changes
the property and style values when states change is fairly involved, but you
don’t have to worry about that. You just define what your components are
like in the different states of your application and you’re done. Then you let
Flex take care of the details of making it work correctly.

Section 4.6 Chapter 4 · States 110

Conclusion

States are a powerful, declarative system for defining the different logical
states that an application, or even a single component, can be in when the
application runs. They are useful for defining anything from the different
screens that a user may see during the course of using the application to the
different states that a button may be in when the user hovers over it or presses
it. They help define the visual differences between these states in a simple
way so that you can structure your code according to how things look in the
different states.

When combined with state transitions, which enable easy animations
between these states, states become even more powerful, enabling the de-
veloper to create a smooth, seamless experience for the user, keeping them
connected to the application. That’s the subject of the next chapter.

Chapter 5

Transitions

Getting lost is always a frustrating experience. You end up wasting so much
time and energy just figuring out where you are and what to do about it.
Getting lost in a GUI is even worse, because it’s so unnecessary.

Transitions can help.
State transitions can help your user understand where they are, how they

got there, and what’s happening next. By animating changes in GUI state,
they help keep the user connected to the application. They help keep the user
from getting lost.

5.1 Don’t lose the user

How often have you found yourself using an application, or navigating a
website, and the entire UI changes out from under you and you have to figure
out what’s where and what do do about it? The “Submit” button moved, the
shopping cart total scrolled off the page, and the search results now cover
the area where you thought you were supposed to enter refining search terms.
This is unfortunately a common experience with GUI applications. When the
application changes to a new screen, even if the new screen shares elements
with the previous one, the typical application erases the current information
and draws the new UI in its place, forcing the user to do the hard work of
parsing all of the information in the new GUI.

This is why Flex transitions were invented; to take the user along for the
ride, bringing them smoothly between the screens and states of the applica-
tion. Transitions enable you to animate changes in state, which helps your
users understand the changes as they happen. Applications must alter the in-

Section 5.2 Chapter 5 · Transitions 112

formation on the screen often during the course of being used. The more that
you can bring your user along with the UI as these changes occur, the faster
they will be able to understand what they need to do and the more productive
they will be.

Transitions are one of the most powerful UI
mechanisms in Flex, since they enable the user to
stay constantly connected to the application
experience.

Transitions work hand in hand with states, which we discussed in Chap-
ter 4. States in Flex are a powerful way to set up the changing behavior
of your application. But the combination of states plus transitions makes
for very compelling user experiences. Transitions provide a way to give a
smooth, continuous experience to the user as they navigate the application
between different states. Repositioned objects glide into their new locations,
objects that go away fade out, objects that appear do so gradually. Anima-
tions can be used for every change to help the user understand the differences
in the new screen.

Flex transitions make it easy to animate changes in GUI state to help the
user more readily understand what these changes are. You simply declare
states, define what components exist in each state and what values properties
should have in each state, then define transitions between the states.

5.2 States and transitions

It might help to picture what transitions are used for. Applications typically
consist of different views as the user progresses through the flow of the ap-
plication. This includes different views of components as they change state
(for example, a button that is depressed looks different than one that is not)
as well as different screens of the overall application UI as the application
changes state (for example, a search screen that accepts input and is then
replaced by a results screen).

In the last example in the previous chapter, SearchMe2, we have two
screens. The first screen has a label, text input box, and button:

Section 5.2 Chapter 5 · Transitions 113

(Demo: SearchMeTransition)

On the next screen, the label has gone away, but the input and button
exist in a different location, and they are joined by a list of results:

This application does not use transitions, so when it runs the label dis-
appears, the text input and button jump to their new location, and the results
suddenly appear. This change results in a discontinuous experience and the
user may be left wondering how they got here and what they should do now.

We could, instead, animate those changes to make it easier to understand
what’s happening when the state changes. Instead of blinking the label out
suddenly, we could fade it out gradually. Once the label is gone, we could
move the input and button into their new locations. These animations help
the user understand that the input and button are the same ones they used on
the first screen. Meanwhile, instead of having the list of results mysteriously

Section 5.3 Chapter 5 · Transitions 114

pop onto the screen when the state changes, we could fade it in, helping the
user to understand that it came into existence during, and because of, the
change to the new state.

The resulting transition approach is in the SearchMeTransition appli-
cation; we’ll see the code for this later in this chapter.

Many more kinds of state changes can be transitioned, and they can be
animated in a myriad of ways (many of which we will see later in the Effects
chapters). But the important point for now is that we not only can animate
these states, but that in many cases we should animate them, to help the user
stay connected to the application. And even better, that Flex transitions make
these state animations very easy.

Two elements are key to using transitions: the Transition object itself
and the animation effect1 that the transition plays.

5.3 The Transition class

The Transition class has very few properties. Its main purpose in life is
to be a holder for the animation effect that will play when the state changes.
But a few other important properties exist that determine when and how the
transition effect plays.

The fromState and toState properties

The fromState and toState properties determine when a transition plays.
The possible values for these properties are the state names specified in the
states block. One other possible value is “*” which means “any state.”
If neither property is set for a Transition, or if both are set to “*,” then
the transition plays when any state change occurs (if no other transition is
specified for that from/to state change). If either or both properties are set,
then the transition plays when the state being transitioned from, to, or from-
and-to are the same as the states named in these properties. For example,

1 The topic of effects is a bit premature, because we have not yet talked about Flex effects,
which are the mechanism used for animations in Flex. But describing how to use effects ends
up requiring knowledge of transitions, so one of them had to come first. It’s like looking
up engineer in the dictionary and reading “see geek,” then flipping to geek and reading “see
engineer.” Some concepts are just inseparable. If this ordering doesn’t work for you, just flip
ahead a few pages, read about effects in Chapters 9, 10, and 11, then come back here and
catch up on transitions. Or be patient and realize that I explain the animation stuff eventually.
In the meantime, I’ll keep things pretty simple in this chapter.

Section 5.3 Chapter 5 · Transitions 115

if only toState is set, then the transition plays whenever a change occurs
from any state to the state named in toState. Transitions that set these
properties are of higher priority than ones that do not, so that you may have
a catch-all transition that plays if no other state-specific transition kicks in,
but transitions with fromState/toState values are chosen first.

For example, in the following code the second transition plays when a
change occurs from any state into state s2. All other state changes cause the
first transition to play:

<s:transitions>

<s:Transition>

...

</s:Transition>

<s:Transition toState="s2">

...

</s:Transition>

</s:transitions>

The autoReverse property

The autoReverse boolean flag tells the transition mechanism whether it
should automatically stop and play a reverse transition if a transition that
is currently running is interrupted by the opposite state change. That re-
verse transition is played from the point in time when the current transition
stopped. For example, if an auto-reversing transition is currently playing
from state s1 to state s2 and a change sets the current state back to s1, then
the system plays the s2 to s1 transition from that interrupted time, if such a
reverse transition exists.

Typically, a state change occurs, a transition plays, and life goes on. But
sometimes, a transition may be in the middle of playing when a user or other
action causes a state change to the state that the component just came from.
For example, the mouse may move over a button, causing a change to the
over state of that button from the previous up state. Suppose a transition
exists to that over state, which plays for a half second. During that time,
the user moves the mouse out of that button, causing a state change back to
the up state. Both transitions can’t play at the same time; that would tell the
button to animate toward the over and the up state at the same time, and the

Section 5.3 Chapter 5 · Transitions 116

results wouldn’t be pretty. So Flex stops the current transition and starts the
new one instead.

Prior to Flex 4, the states mechanism would simply end the previous
transition and start the new one from the beginning. This is alright in many
situations, but can be rather disruptive as we jump forward to the end of some
effect and then start the new one. So the autoReverse flag was introduced
in Flex 4 to create a more seamless way of turning transitions around.

When this flag is true, the current transition stops where it is at and the
reversing transition starts from that same point (but going in the opposite
direction).2 For example, if a component is halfway through a transition
moving it from x = 0 to x = 100 in the first transition and receives a message
to transition back to x = 0, then the first transition stops when the button is at
x = 50 and the reversing transition starts with x at that same value. The net
effect is that the user sees the button stopping and turning around in place to
go back to where it came from, which is much more of the experience they
expect when they cause a reverse transition.

Two important caveats with autoReverse are important to keep in mind:

The reverse transition must exist. Flex does not actually create the reverse
transition (or any other transition) for you; you have to create it your-
self. So when you tell a transition that you want it to autoReverse,
you are not telling it “figure out how to reverse when necessary,” but
rather “if a reverse transition exists, then start it from your stopping
point if you are interrupted by it.”3

The reverse transition must be the exact opposite. The reversing mecha-
nism makes assumptions about the duration of both transitions; it will
start playing the reverse transition at the same time as the forward
transition stopped, but only if their durations are equal. For example,

2 Under the hood, it’s a bit more complicated. The first transition is actually ended, just
as before. It ends the effect and snaps all of the values to their end positions. Then the next
transition is started from the beginning, just as if the autoReverse flag didn’t exist. But then
this second transition is fast-forwarded to the same point in time as the first transition stopped
at and started from that point. And since all of this is done synchronously on the single
Flex thread, the user does not see any screen updates during this stop/end/start/fast-forward
process, so it looks to them just as I’ve described it here; the reverse transition starts where
the first transition ended.

3 Automatically creating the reverse transition has been proposed as a feature for some
future version of Flex, so perhaps this constraint will go away eventually. But that’s not the
case in Flex 4, so it’s an important thing to keep in mind.

Section 5.4 Chapter 5 · Transitions 117

if a transition with a duration of 1000 milliseconds is interrupted three
fourths of the way through, when it has played for 750 milliseconds,
then it will start the reverse transition at the reciprocal time of one
fourth of its duration. If that reverse transition also has a duration of
1000 milliseconds, then it will start 250 milliseconds into it. But if
that transition has a much different duration, say 2000 milliseconds,
then it will start further into it (500 milliseconds in this case), because
it is only looking at the reciprocal of the proportion elapsed of the first
transition. So make sure your transition effects have the same dura-
tions if they are to be reverses of each other.

Also, reverse transitions should really perform the same actions in re-
verse to make sure that automatically reversing will not look incorrect.
For example, if a forward transition is moving then resizing an object,
then the reverse transition should first resize the object, then move it.
Otherwise, if the forward transition is stopped in the middle and the
reverse transition is played, it will probably jump to a completely dif-
ferent action than the one that it was in the middle of, causing a jarring
effect for the user. This requirement extends to things like start delays,
where you may need to use effects like Pause that simply delay exe-
cution or ending of the transition effect to make it the exact opposite
in functionality and timing of its reverse transition effect.

The effect property

This property holds the animation effect that the transition will play during
the state change. We are about to discuss this topic in the next section, right
about . . . now.

5.4 Transition effects

The effect property of Transition defines the animation that will run
when the transition is played. A transition has a just one single effect, al-
though as we will see in Chapter 11, we can compose several effects into
one overall effect through the use of composite effects.

The transition effect brings the power of states and animations together to
make it easy for you to create smooth flows between states of applications,
components, and arbitrary objects in the scene. The “easy” factor comes

Section 5.4 Chapter 5 · Transitions 118

from a transition effect’s ability to automatically pick up the changed values
between states, without you having to specify any values. Also, that tran-
sition effect plays automatically when the state change occurs, without any
extra code. As long as there is a transition declared, that transition will play
whenever a relevant state change occurs.

Rather than you keeping track of the positions of an object in different
states and telling a Move effect the values for those positions, you can merely
declare a Move effect in the transition with no from/to values. That effect
automatically determines the position change and runs the animation appro-
priately. Let’s look at an example.

In the first state of the SimpleTransition application, the button is at
the upper left of the window:

(Demo: SimpleTransition)

In the next state, the button is shifted over to the right:

The button changes location by setting state-specific values for x:

(File: SimpleTransition.mxml)
<s:states>

<s:State name="s1"/>

<s:State name="s2"/>

</s:states>

<s:Button id="button" x="0" x.s2="100"

label="State s1" label.s2="State s2"

click="currentState=(currentState=='s1') ? 's2' : 's1'"/>

Section 5.5 Chapter 5 · Transitions 119

This code says that the button normally lives at x = 0, but when the state
changes to s2, it will be at x = 100. We then define a transition to move the
button smoothly from 0 to 100 like this:

<s:transitions>

<s:Transition>

<s:Move target="{button}"/>

</s:Transition>

</s:transitions>

Note, first of all, that the Move effect (which we will discuss in more detail in
Chapter 9) in the code above does not give any details about where to move
the button from and to. It simply tells the transition to move the button. When
the transition plays, the transition detects where the button currently is and
where it will be in the state that it is transitioning to. The transition then
feeds that information into the Move effect as the values to animate between.

Through the magic of states and transitions, we get this automatic ani-
mation behavior for free. All we have to do is declare what kind of animation
we want to have during a transition and which objects that animation acts on,
and the transition takes care of figuring out how to run that animation.

Use effects without hard-coded from/to values in
your transitions; they will pick up the animation
values from the states.

Also note in the previous code, just for completeness, that we have only
a single transition defined, and that it plays when any state change occurs
because no values are assigned to the fromState and toState properties.

5.5 Example: search transition

Now that we’ve seen the basics of how transition effects work, let’s go back
to our earlier example of the simple search application. On one screen we
have the label, searchLabel, defined in that single state as follows:

(File: SearchMeTransition.mxml)
<s:Label id="searchLabel"

x="107" y="66"

Section 5.5 Chapter 5 · Transitions 120

text="Food Item" fontSize="18"

fontWeight="bold" includeIn="searchScreen"/>

We also have the searchInput and searchButton elements that are located
in different x and y positions in the two states:

<s:TextInput id="searchInput" x="86" y="91"

x.resultsScreen="84" y.resultsScreen="10"/>

<s:Button id="searchButton" x="115" y="121" label="Search"

enabled="{searchInput.text != ''}"

click="runSearch()"

x.resultsScreen="220" y.resultsScreen="10"/>

Finally, we have the searchResults data grid, which only exists in the
resultsScreen state:

<mx:DataGrid id="searchResults"

includeIn="resultsScreen"

x="10" y="38" width="280" height="202"

dataProvider="{results}">

<mx:columns>

<mx:DataGridColumn headerText="Common Name"

dataField="name"/>

<mx:DataGridColumn headerText="Latin Name"

dataField="latin"/>

</mx:columns>

</mx:DataGrid>

I’d like a transition effect that fades the label out, moves the input and button
elements into place, and fades the results list in. If all of these ran at the same
time, the screen would be a mess, with the various elements moving and fad-
ing all on top of one another. While simultaneous animations are appropriate
in some situations, they don’t work as well when the target objects are in the
same area, especially when their actions are different (for example, fading
versus moving).

Animations on different objects may work better if
sequenced after one another if the objects overlap
or the animations are very different in nature.

Section 5.6 Chapter 5 · Transitions 121

I’ll stagger the animations instead. First, the label will fade out. Once it
is gone, the input and button elements have a clear field to move up to the
top of the screen. And once those objects are out of the way, the results list
can be faded into place. Here is the resulting transition:

<s:Transition toState="resultsScreen">

<s:Sequence>

<s:Fade target="{searchLabel}"/>

<s:Move targets="{[searchInput,searchButton]}"/>

<s:AddAction target="{searchResults}"/>

<s:Fade target="{searchResults}"/>

</s:Sequence>

</s:Transition>

Here, the transition runs automatically when currentState is changed to
resultsScreen. A Sequence effect is used to stagger the animations to
run one after the other (we will see more about sequencing animations in
Chapter 11).

First, we run a Fade effect on the searchLabel. It fades out automati-
cally because the transition knows that it is going away between these states.

Next we run a Move effect on the input and button to shift them to their
new locations. This effect picks up the locations of the elements automati-
cally and moves them to their correct positions in the new state.

Next we run an AddAction effect on the resultsList object. We’ll
learn more about this effect in Chapter 11, but it’s there to keep the results
list from appearing until we’re ready to fade it in. Now that the results list is
ready, we Fade it in. Again, Fade knows that it needs to fade the object in,
not out, because the transition knows that the object is coming into existence,
so Fade automatically does the right thing.

Now we’ve gone from an application that suddenly painted a new GUI
screen to one that transitions smoothly to the new screen. Play with the
application to see how it works in practice.

5.6 Example: TransitionMultiple

Let’s look at one more example of a transition effect, TransitionMultiple.
This time we again use a transition effect that acts upon several objects in the

Section 5.6 Chapter 5 · Transitions 122

GUI. We also create transitions that run both to and from the second state, to
see how they differ.

In this application, we have three buttons and a panel. In the default state,
s1, the three buttons are stacked up at the top, left of the screen. There is
also a panel, but it is not yet visible in this state:4

(Demo: TransitionMultiple)

In the other state, s2, the panel has entered and now occupies the same
top, left area that the buttons previously did. Meanwhile, the buttons have
moved to take up positions at the top/right, bottom/right, and bottom/left
corners of the panel,5 as seen here:

Here is the code for this UI. You can see how the property values for the
panel and the buttons are declared in both the s1 and s2 states:

4 It could be that the panel is too shy. But it is more probable that the buttons are in the
way and the panel is waiting politely, as panels do.

5 It’s not clear whether the buttons were upset at being dislodged by the panel, but they
are certainly keeping the poor panel hemmed in on all sides.

Section 5.6 Chapter 5 · Transitions 123

(File: TransitionMultiple.mxml)
<s:Button id="button1" x="0" x.s2="160" y="0" width="40"

click="currentState=(currentState=='s1') ? 's2' : 's1'"/>

<s:Button id="button2" x="0" x.s2="160"

y="25" y.s2="160" width="40"/>

<s:Button id="button3" x="0" y="50" y.s2="160" width="40"/>

<s:Panel id="panel" includeIn="s2" width="150" height="150"/>

In order to make room for the panel, the buttons have to move out of the
way. This transition could work many different ways, but one reasonable
approach is to move the buttons first, then fade the panel in. Or, going in
reverse, fade the panel out and then move the buttons back to the upper-left.

To do this, we create a Sequence effect, which plays its “child” effects
(the effects declared inside the Sequence) one after the other. The three
child effects playing in the sequence are Move, AddAction, and Fade. The
Move is responsible for moving the buttons out of the way. The AddAction
is a helper effect that delays adding the panel to the scene until we are ready
(since we do not want it suddenly appearing before the buttons have moved
out of the way). Finally, the Fade effect fades in the panel. Here is the code
for the transition to state s2:

<s:Transition toState="s2" autoReverse="true">

<s:Sequence>

<s:Move targets="{[button1, button2, button3]}"/>

<s:AddAction target="{panel}"/>

<s:Fade target="{panel}"/>

</s:Sequence>

</s:Transition>

You should note a couple of important things in this code. First, the child
effects act on different targets: the Move effect acts on the three buttons, while
the other two effects act exclusively on the panel. The Sequence effect is
merely an ordering of different effects and does not constrain its child effects
to act on the same objects. Second, note that nowhere do we specify the
values that we are animating from and to; these are derived entirely from the
state information. For example, since button1 has an x location of 0 in the
first state and 320 in the second state, then the Move effect will automatically

Section 5.6 Chapter 5 · Transitions 124

animate button1.x from 0 to 320.6 Similarly, the Fade effect automatically
determines the proper from/to values to fade the object in; it detects that
the panel does not exist in the first state and does exist in the second, so it
animates the transparency of the panel from fully transparent to fully opaque
when it runs.

The code for the reverse transition is similar. The only differences are
that the order of the child effects is different (we fade the panel out first
and then move the buttons back) and that the AddAction effect is no longer
needed because the panel goes away, so we don’t need to tell the Sequence
when it should be added into its container.7 Here is the code:

<s:Transition toState="s1" autoReverse="true">

<s:Sequence>

<s:Fade target="{panel}"/>

<s:Move targets="{[button1, button2, button3]}"/>

</s:Sequence>

</s:Transition>

I have been intentionally vague here about how Flex effects actually work,
because some large and interesting chapters are coming up that cover the
details about effects in general and I don’t want to spoil the surprise. The
main point to understand for now is that a state change may cause a transition
to fire, and that transition plays its effect with the values it picks up from the
current state change.

6 Note, too, that the other buttons are all animating from/to different values; just because
the targets are specified in the same effect does not mean that they are constrained to use the
same from/to values when they are derived from the state information

7 Actually, there is a bit more here than meets the eye. It is sometimes necessary, when
transitioning an object out of the scene, to use a RemoveAction effect. This effect is the oppo-
site of the AddAction effect that we saw in the previous code snippet and tells the Sequence
when its target object should be removed. By default, an object that exists in the previous
state but not in the next state is automatically removed at the beginning of the transition, when
all non-animated state changes occur. However, the Fade effect has logic about removing and
adding items that makes it automatically keep its target object around until it is done fading
it out, so the RemoveAction effect is not necessary in this particular transition. However, if
the Fade effect was not at the beginning of the transition, a RemoveAction effect would be
necessary, because the Fade would not make the object stick around from the beginning of
the Sequence, but rather just for the time that the Fade is operating on the object. You’ll read
more about this in Chapter 11.

Section 5.6 Chapter 5 · Transitions 125

Conclusion

Transitions are one of my favorite things about the Flex platform. In a world
where many platforms make animations hard to figure out, or difficult to use,
or impossible to get right, transitions make it possible to get very powerful
animated effects automatically by requiring only that the developer tell the
system what they want to animate (e.g., button1) and how (e.g., Move), and
the transition system itself figures out the details of how that object changes
between states and runs the animations to get it there. It’s a simple, declara-
tive way of getting very rich GUI effects.

Transitions make it possible to get very powerful
animated effects automatically.

The next chapter covers some fundamental ideas behind animation.

Chapter 6

Skinning Components

You want your application to be familiar to users and yet be special. Flex
4 makes it much easier to customize the look of any component in a way
that simply wasn’t possible before. In this chapter, we’ll take a look at how
components interact with their skins, how you can write simple skins that
perform the basic functions that components need, and how you can create
completely custom component skins to get your own unique look and feel.

One of the major themes behind the whole Flex 4 release is the new com-
ponent model. In Flex 4 the control of each component has been separated
from its appearance. The component is now responsible for the logic of its
behavior (like what a Button does when it is clicked). The component’s
skin is responsible for the visual appearance of the component (like what the
Button’s border looks like).

During the development of Flex 4, there was plenty of feedback from
the Flex developer community requesting a simple mechanism to change
individual, common attributes of components. The result was that the team
exposed style attributes for common cases, but made custom skinning the
way to go for everything else.1

1 For example, the text color of a Button or Label is exposed as the color style. The
chromeColor style lets you change the overall theme color used by a component. These
are just CSS style properties that can be set either directly on the component in MXML or
through CSS styling.

Section 6.1 Chapter 6 · Skinning Components 127

6.1 Components and their skins

My first task while working on the Flex 4 release was to write the new
ScrollBar class under the new component model. When this was done,
I wanted to verify that the new component really could have a custom skin
that wasn’t just some variation on the horizontal and vertical scrollbars that
are usually used.

I wrote a CircularScrollBar component, whose track was a circle and
whose thumb button moved back and forth along that circular track. It was a
truly useless component; I can’t imagine why someone would need a circular
scrollbar. But the project provided a nice sanity-check that someone could,
in fact, write visuals that were completely separate from the underlying logic
of the component.

All components are subclasses of UIComponent. This means that they
all share the basic elements of position, size, and events that the base class
offers. But whereas in Flex 3, the components contained all of the code to
display themselves (like a Button knew how to draw its border, background,
and label), Flex 4 components are instead invisible objects that just handle
the logic and placement of the component. The component’s skin, which is a
child display object of the component, is responsible for what the component
looks like.

This separation enables the component to be more modular and to load
the visuals from a separate object. In particular, it allows you, the application
developer, to define how a component looks in a skin class and then provide
that object to the component. This means that you can benefit from all of the
controlling logic in the component, which you really don’t want to rewrite
yourself, while being able to completely customize the appearance of that
component.

Instead of just talking about this, let’s skin a Button, from the appli-
cation ButtonButton. The top button looks the way you’d expect a Flex
button to look and the bottom looks just like a label:

(Demo: ButtonButton)

Section 6.1 Chapter 6 · Skinning Components 128

As you can see in the code, the top button in the VGroup uses the default
button skin and the other uses a custom skin named JustaLabelSkin:

(File: ButtonButton.mxml)
<s:VGroup horizontalCenter="0" verticalCenter="0">

<s:Button label="Standard Button"/>

<s:Button label="Just a Label Button"

skinClass="skins.JustaLabelSkin"/>

</s:VGroup>

JustaLabelSkin uses the Skin object to define a group of objects in a com-
ponent’s skin in much the same way we use a Group object, the base con-
tainer object in Flex:

(File: skins/JustaLabelSkin.mxml)
<?xml version="1.0" encoding="utf-8"?>

<s:Skin xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Metadata>

[HostComponent("spark.components.Button")]

</fx:Metadata>

<s:states>

<s:State name="up"/>

<s:State name="over"/>

<s:State name="down"/>

<s:State name="disabled"/>

</s:states>

<s:Label id="labelDisplay"/>

</s:Skin>

This Skin file contains three important elements:

• the host component metadata,

• the states of the skin, and

• the skin parts, in this case the Label element.

In the next section we’ll look at each of these elements that make up the skin.

Section 6.2 Chapter 6 · Skinning Components 129

6.2 The skin’s elements

Any given component has a data connection that the skin can set up to grab
information from its host component, a set of skin states that it expects, and
a set of parts. These three items combine to form a contract between com-
ponents and their skins.

Skin data

The first element of the component/skin contract is the data connection,
which is used by the skin to retrieve data from the component. This con-
nection is established when the skin defines some metadata that associates a
hostComponent object with a particular component class. From the button
example above, a connection is established from the button’s skin back to the
button component with this code:

<fx:Metadata>

[HostComponent("spark.components.Button")]

</fx:Metadata>

Once this connection between skin and component is made, the skin can
request data from its component, which is now available to the skin as the
property called hostComponent. For example, a different version of the
current skin class, JustaLabelSkin2, populates the label element of the
skin with data from the hostComponent, as follows:

(File: skins/JustaLabelSkin2.mxml)
<s:Label text="{hostComponent.label}"/>

In this variation on the button skin, the label gets its text value from its but-
ton component directly, by binding to the button’s label property via the
hostComponent property. Compare this approach to the one in the previous
skin where the label got its value by using the skin part id, labelDisplay.
You can think of these two techniques as push versus pull; the button pushing
data into the skin via skin parts versus the skin pulling data from the com-
ponent via the hostComponent property. Both approaches work, but use
different techniques to get information from one side of the component/skin
gap to the other.

Be sure to add this hostComponent metadata to your skins. Even if
your skin code does not access the hostComponent property directly, it still

Section 6.2 Chapter 6 · Skinning Components 130

needs the metadata because Flex may need to use hostComponent internally.
Also, declaring the hostComponent metadata ensures some extra compile-
time checking between the component and the skin.

Skin states

A Button is put into different operational states depending on user actions.
The user may mouse over the button, click on the button, or release the but-
ton. On the other hand, the button may be disabled, in which case it ignores
any of these states.

As the user moves the mouse around the application UI, the button may
enter into one of these states. The skin must be able to respond to that change
and display the appropriate information. Even if the skin does not define
graphics that are any different in any of these states, as in the example, these
standard states need to be defined in the skin so that the Flex Button object
can set the state value.

Part of the component/skin contract is that the skin must support the set
of states that the component may use on the skin. The expected skin states are
documented in metadata on the component and are reflected in the ASDocs
for that class. For example, the Button class in Flex defines the four skin
states up, over, down, and disabled:

[SkinState("up")]

[SkinState("over")]

[SkinState("down")]

[SkinState("disabled")]

Here’s how the example button skin JustaLabelSkin fulfills this contract:

<s:states>

<s:State name="up"/>

<s:State name="over"/>

<s:State name="down"/>

<s:State name="disabled"/>

</s:states>

Even though state changes do not affect JustaLabelSkin, that skin file must
still declare the required states. You’ll see in Section 6.6 how to react to state
changes in a component.

Section 6.3 Chapter 6 · Skinning Components 131

Skin parts

If you’re going to skin a button, scroll bar, or other component, you need
to know which elements are available to customize. Some components may
have certain visuals that they depend on for performing whatever function-
ality is core to the component, or which they use if the parts are there. For
example, a ScrollBar has logic about positioning a thumb part on a track
part, if either part is available in the skin. These elements in the skin are
called skin parts and are defined in the component.

Here, for example, is the part metadata from the ButtonBase class (the
superclass of Button):

[SkinPart(required="false")]

public var labelDisplay:TextBase;

In this code, the component says that an optional part with the name of
labelDisplay exists that must be of type TextBase (which is a superclass
of Label, the component used in the JustaLabelSkin example).

A skin written for a component must, by this contract, supply any skin
parts with appropriate names that are required and may also in addition sup-
ply any optional skin parts. These parts must all be of the type specified by
the component.

Here’s the sole skin part in the JustaLabelSkin file:

<s:Label id="labelDisplay"/>

The labelDisplay object, while not required, certainly makes the button
more useful, since it displays the content of the Button component’s label
property, and since it is the only graphical element in the skin.2 The name of
this object, labelDisplay, is important. The Button component looks for
an element of the required type in the skin with that id and, if it exists, sets
its text property to be the text of the button’s label property.

6.3 Better button skins

Our custom button skin in the previous example leaves much to be desired.
In fact, the “button” doesn’t really look like a button; it’s really just a label

2 A button with no visual elements at all would be truly useless. Maybe there’s a corollary
to the classic "if a tree falls in the forest" philosophical question; if a component has no
visuals, is it really in the interface?

Section 6.3 Chapter 6 · Skinning Components 132

with some hidden button logic. A little graphics would go a long way toward
fixing that problem. In fact, without some graphics to define the bounds of
the button, we can’t even tell what that button area is.

Let’s explore how to make more interesting skins to result in better look-
ing and more interactive components.

One of the powerful things about the new component model in Flex 4
is that the look of the component is really up to you. With the new MXML
graphics tags, the easy state syntax, and the flexibility of declarative markup,
you can define arbitrarily simple or complex skins, depending on what you
want the component to look like. As long as you obey the skin’s contract
with its component that I described in the previous section, everything else
is up to you.

For the rest of this chapter, we’re going to develop incrementally bet-
ter, or just different, skins for the button. To visualize the changes better,
I created the ButtonSkinSampler application, which is like a playground
for experimenting with new skins. This application has a single button in
the middle of the window that uses the currently selected button skin. A
DropDownList in the upper right of the window allows the user to choose
between different skins for the button:

(Demo: ButtonSkinSampler)

Here’s the code to place the button and the skin drop-down list:

(File: ButtonSkinSampler.mxml)
<s:Button id="button" label="Button Label"

horizontalCenter="0" verticalCenter="0"/>

<s:DropDownList id="skinList" right="10" top="10"

dataProvider="{skinDP}" selectedIndex="0"

change="skinChangeHandler()"/>

Section 6.3 Chapter 6 · Skinning Components 133

The skin list is created with a dataProvider that is initialized in script code:

[Bindable]

public var skinDP:ArrayCollection = new ArrayCollection(

[{label:"None", skinClass:null},

{label:"Label", skinClass:skins.JustaLabelSkin},

{label:"Border", skinClass:skins.BorderSkin},

{label:"Padded", skinClass:skins.PaddedBorderSkin},

{label:"Background", skinClass:skins.SolidBackgroundSkin},

{label:"Gradient", skinClass:skins.GradientBackgroundSkin},

{label:"Rounded", skinClass:skins.RoundedSkin},

{label:"Shadowed", skinClass:skins.ShadowedSkin},

{label:"Stateful", skinClass:skins.StatefulSkin},

{label:"Fun", skinClass:skins.FunButtonSkin},

{label:"Animated", skinClass:skins.AnimatedSkin}]);

Each item in the dataProvider list has both a label, which is the text that
is displayed in the drop-down list for that item, and a skinClass, which is a
reference to the skin class that is set on the button when that drop-down item
is selected. The skin class is set when the drop-down list changes, with a call
to the skinChangeHandler() function:

private function skinChangeHandler():void

{

if (skinList.selectedItem.label == "None")

button.clearStyle("skinClass");

else

button.setStyle("skinClass",

skinList.selectedItem.skinClass);

}

A component’s skinClass is set via styles, so changing the skin for the but-
ton requires setting the skinClass style, with a call to button.setStyle().
The only exception is the None item in the list that indicates that that user
wants to use the default skin for Button. This requires clearing the style
setting for skinClass, so clearStyle() is called when None is selected.

This logic around setting the skin for the button based on the drop-down
list selection accomplishes a couple of things. First, it allows an easy frame-
work in which we can add new skins and play with them to compare how they

Section 6.4 Chapter 6 · Skinning Components 134

look and interact. But perhaps more importantly, at least for the purposes of
this chapter, it shows that the skin class for a component is completely sepa-
rate from the logic of that component. The button doesn’t care what skin it
is using or what that skin looks like; we can swap in any skin we desire at
runtime. As long as that skin obeys the skin/component contract discussed
earlier, the component couldn’t care less.

Now, let’s improve that ugly label-only button skin.

6.4 Adding a border

The most obvious problem in the earlier attempt at a button skin was that
it really looked more like a label, and the text wasn’t even centered inside
that area. Labels without borders are fine because they are just informational
elements on the UI. But objects that the user needs to interact with like but-
tons should have a more clearly defined area so that the user knows where to
click the mouse. But perhaps most importantly, the user comes into any UI
experience with a history of knowledge in using other UIs; you should make
your interface easy for them to understand by using similar objects and UI
metaphors, like buttons that look like buttons and not like floating text ob-
jects. Using our knowledge of MXML graphics tags, we can add a border to
the button and then center the text inside of it.

Don’t confuse the user: custom looks in a UI are
fine, but don’t create entirely new metaphors for
standard components or you risk confusion.

The skin class BorderSkin starts from the previous JustaLabelSkin,
but adds the following object:

(File: skins/BorderSkin.mxml)
<s:Rect top="0" left="0" right="0" bottom="0">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Rect>

This rectangle draws a border around the button area, which helps define the
boundaries of the component. The layout constraints top, left, right, and

Section 6.4 Chapter 6 · Skinning Components 135

bottom are used to make sure that the border is stretched to the edges of
the component. But as you can see, this doesn’t actually make for a very
attractive button:

The problem is that the button has been sized to the minimum size that
fits the label text, so that the border is crammed into this tight area with the
text, resulting in a pretty awful looking component. We need to give these
elements some space.

Padding around text objects helps make them
easier to read and avoids making the UI feel
crammed and noisy.

The next drop-down item, Padded, selects the PaddedBorderSkin skin
class, which adds the padding that the button needs. This skin class is a copy
of the previous BorderSkin class, but modifies the labelDisplay element
to the following:

(File: skins/PaddedBorderSkin.mxml)
<s:Label id="labelDisplay"

left="10" right="10" top="5" bottom="5"

horizontalCenter="0" verticalCenter="1"/>

The use of these layout constraints ensures both padding between the text
and the sides of the component and that the text is centered within the overall
component bounds:

Now the button is beginning to look more like a button. But it’s frankly
pretty boring as buttons go; I remember UI widgets that looked like this on
systems in the early 1980’s. Surely we can do better than this dull wire-frame
representation.

Section 6.5 Chapter 6 · Skinning Components 136

6.5 Modernizing the button

Let’s dress the button up a bit and bring it into the new millennium. For
starters, let’s add a colored background. This at least distinguishes the area
inside the button from the white background of the application. The next
item in the drop-down list, Background, selects the SolidBackgroundSkin
skin class. This skin class is copied from the previous PaddedBorderSkin,
but modifies the Rect object to provide a fill as well as the existing stroke.
Note that this Rect object is created before the Label object in the skin,
which puts the background under the label instead of over it:

(File: skins/SolidBackgroundSkin.mxml)
<s:Rect top="0" left="0" right="0" bottom="0">

<s:fill>

<s:SolidColor color="0xc0c0c0"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Rect>

This skin paints the inside of the button with a gray color:

The button now stands out nicely from the window background around it.
But the button is still rather dull and dated-looking, maybe circa late-1980’s.
Let’s jazz up that background a bit.

The next item in the drop-down list, Gradient, loads the skin class
GradientBackgroundSkin. This skin class is just like the previous skin
class, SolidBackgroundSkin, but it modifies the Rect object’s fill to use a
grayscale gradient instead:

(File: skins/GradientBackgroundSkin.mxml)
<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0xf0f0f0"/>

Section 6.5 Chapter 6 · Skinning Components 137

<s:GradientEntry color="0xffffff" ratio=".1"/>

<s:GradientEntry color="0xaaaaaa"/>

</s:LinearGradient>

</s:fill>

This gradient gives the button a modern pseudo-3D look, as gradients often
do, by making it seem like it has a slightly rounded shape, lit from above:

We can modernize the button slightly more by giving it rounded cor-
ners. If you choose the Rounded item from the drop-down list, the button
uses the RoundedSkin skin class. This skin is copied from the previous
GradientBackgroundSkin, but adds rounded corners to the button using
attributes in the Rect element:

(File: skins/RoundedSkin.mxml)
<s:Rect top="0" left="0" right="0" bottom="0"

radiusX="3" radiusY="3">

<!-- rect fill same as before -->

</s:Rect>

You can see that the rounded corners look less dated and dull than the previ-
ous sharp corners:

To heighten the feeling of the button being an object with real presence
in the UI, we can add a drop shadow:

Section 6.6 Chapter 6 · Skinning Components 138

The Shadowed item in the drop-down list loads the ShadowedSkin class
into the button. This is a trivial task, as we saw in Section 3.5. We simply
declare a DropShadowFilter with appropriate properties:

(File: skins/ShadowedSkin.mxml)
<fx:Declarations>

<s:DropShadowFilter id="shadow" strength=".3"/>

</fx:Declarations>

Then we add the shadow to the filters list in the Rect object:

<s:Rect top="0" left="0" right="0" bottom="0"

radiusX="3" radiusY="3" filters="{[shadow]}">

The button is now looking pretty good; it’s distinctive, it’s modern-looking,
it has an attractive shadow, and it has a rich gradient fill, which is very trendy
in today’s UIs. But try to interact with it. When you hover over the button,
and then click on it, notice what happens: nothing. The mouse actions are
actually having an effect; the button detects mouse hover and click actions;
it’s furiously dispatching events under the hood as these things happen. And
the component is also telling the button skin to set its state appropriately as
these actions occur. When the button hovers over the button, the skin is set
to the over state, and when the mouse pressed down on the button the skin
is set to the down state. But none of these exciting changes are reflected in
what the user sees on the screen, so they are left wondering what’s going on
and whether the application has died a cruel and unusually boring death.

Let’s fix this problem: let’s actually tell the user what’s happening in the
UI. Let’s use skin states.

6.6 Using skin states

Visual feedback is a critical factor in good user interfaces. UI design is not
just about making things look pretty; it’s about making functional, intuitive,
and productive interfaces that help the user rather than confuse them.

You can help the user understand the state of the component and the
state of the application overall. Give the user visual cues for simple actions.
Change the look of a component when the mouse is hovering over it to com-
municate that the component is in a different state and is ready to accept a
click action. Change the look when the mouse presses down on a component

Section 6.6 Chapter 6 · Skinning Components 139

to provide a clue that the user is performing that action. Don’t leave the user
guessing—use states to give them important visual cues about exactly what’s
going on.

Help the user understand what’s happening in the
UI by using states in your skins to give visual cues.

Now let’s see how we can help the user understand the button’s state.
If you select the Stateful item in the drop-down list, the button uses the
StatefulSkin skin class. This class starts from where the previous skin,
ShadowedSkin, left off. Initially, the button looks identical to the previous
incarnation on which it is based:

Now move the mouse over the button. Aha! The look of the button
changes as the mouse moves into the button area:

Now click on the button. Aha, again! The button changes its appearance
once more when the button is pressed:

Let’s look at the code that was added in this version of the skin to make
these state indications happen:

(File: skins/StatefulSkin.mxml)
<s:fill>

<s:LinearGradient rotation="90">

Section 6.7 Chapter 6 · Skinning Components 140

<s:GradientEntry color="0xf0f0f0"

color.over="0xc0c0c0" color.down="0xa0a0a0"/>

<s:GradientEntry color="0xffffff"

color.over="0xf0f0f0" color.down="0x808080"

ratio=".1" ratio.down=".2"/>

<s:GradientEntry color="0xaaaaaa"

color.over="0x808080" color.down="0xc0c0c0"/>

</s:LinearGradient>

</s:fill>

You can see that this skin code started with the same linear gradient structure
from before: all of the entries, colors, and ratios are the same for the defaults.
So the button looks the same when it is first shown because it is initially in
the up state, in which these defaults are used. But when the button enters the
over state, which happens when the mouse is over the button and the button
component tells the skin to switch to that state, different colors are used for
all three gradient entries. The new colors are basically darker versions of the
earlier colors, so the button looks similarly lit, but darker.

When the button is clicked, the colors change again, along with the
ratio of the second gradient entry. This time, the colors are changed to
make the button have more of a pushed-in look, so that it looks like the
bottom of the button is being lit from above, as it might if the button were
actually concave.

The actual way in which skins reflect changes to state is completely flex-
ible; I happened to choose this approach because it suited me, but you should
experiment to find a look that you like for your components. The most im-
portant thing is to give the user some visual indication of state change. States
are supported in skins for a good reason; giving the user visual cues for com-
ponent state is a critical feature in good UI design.

At this point, we’ve completed the basics for the button. We have a skin
that looks good and gives effective visual cues when appropriate. But we can
keep going. Let’s add some other features to the skins to have some fun.

6.7 Beyond the basics: adding sparkle to skins

Let’s completely change the look and feel of the button. We currently have
a pretty traditional looking button. Let’s change the button so that it might
fit with a game or a more “fun” UI. Let’s exaggerate the graphics and text

Section 6.7 Chapter 6 · Skinning Components 141

and make everything larger. Select the Fun item in the drop-down list, which
loads the FunButtonSkin skin class into the button:

Several changes have been made to the skin, although none are very
complicated or very different from what we had before.

First of all, the size of the button has changed by making the label text
larger and bold. This increases the minimum size for the button. We also pad
the label more to give more space between the edges of the button and the
text, since the previous padding feels cramped with the larger text. Finally,
the text color is now white, to brighten things up a bit, and the gradient colors
are changed slightly to provide a better contrast with the new white text.

But the biggest change in the skin is how the button behaves. Hover over
the button with your mouse. Whoa! It got bigger!

It changes colors too, like in the previous example. But resizing the
button really makes it pop when the user mouses over it.

Now click it. Hey, the color changed and it grew again!

Section 6.7 Chapter 6 · Skinning Components 142

What’s up with that? Buttons are supposed to stay put, right? You click
them, they react, but they never move or change size. Never!

Although a moving button may be a bit over the top for a standard en-
terprise application, it works quite well in the context of games, especially
for kid-oriented games. The cartoony feel of this interaction makes it very
appealing and useful for making an interface seem more fun, friendly, and
interactive.

Physically distorting or moving a button can
introduce an enhanced level of fun and
interactivity to a UI.

I’ve seen this approach used in some games and gaming console in-
terfaces, especially in applications designed for children. I noticed that in
some situations buttons moved toward the viewer, and in other situations
they moved away from the viewer. It turns out that both approaches work
equally well.

You might expect all buttons to move in toward the screen, as if the button
was actually being pushed by the mouse click. The important element is not
the direction of movement, but rather that the button is moving at all. It
moves in reaction to a hover even, as if to say, “Play me! I’m fun!” And it
moves again in reaction to a click action, as if to say, “Alright! Let’s go!”

Now let’s see how it works. First, here is the new labelDisplay:

(File: skins/FunButtonSkin.mxml)
<s:Label id="labelDisplay" fontSize="20" fontWeight="bold"

left="20" right="20" top="15" bottom="15" color="white"

horizontalCenter="0" verticalCenter="1"

z.over="-20" z.down="-40"/>

You can see, in this code, the changes made to the font, padding, and text
color. You can also see how the label of the button moves for the over and
down states; a new z position is used for both of those states. The ability to
move objects on the z axis is part of the new 3D capabilities added in Flash
Player 10. Negative values move objects out toward the viewer, positive
values move them away (you can read more about the new 3D features in
Section 10.5).

Section 6.7 Chapter 6 · Skinning Components 143

The background rectangle changed, too:

<s:Rect top="0" left="0" right="0" bottom="0"

filters="{[shadow]}" radiusX="6" radiusY="6"

z.over="-20" z.down="-40">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0xd0d0d0"

color.over="0xc0c0c0"

color.down="0xa0a0a0"/>

<s:GradientEntry color="0xf0f0f0"

color.over="0xf0f0f0"

color.down="0x808080"

ratio=".1" ratio.down=".2"/>

<s:GradientEntry color="0xaaaaaa"

color.over="0x808080"

color.down="0xc0c0c0"/>

</s:LinearGradient>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="black" weight="3"/>

</s:stroke>

</s:Rect>

The gradient colors changed slightly to provide more contrast to the white
text, but are otherwise much as they were in the previous skins. The radiusX
and radiusY values were increased to be proportional to the new, larger size
of the button. And the weight of the stroke was increased so that the border
of this button has a more pronounced, bold look.

One final change completes the illusion of this button being moved in 3D;
the shadow reacts to the button movement. If we left the drop shadow alone,
it would look like the window underneath the button was moving along with
the button, which wouldn’t be the right look at all. Instead, we need the
shadow to look as if it stays in place on the background while the button
moves. In fact, we need the shadow to look as if it shadows an object that is
now further away from the window:

<fx:Declarations>

<s:DropShadowFilter id="shadow" strength=".3"

Section 6.7 Chapter 6 · Skinning Components 144

blurX="8" blurY="8"

distance.over="10" distance.down="15"/>

</fx:Declarations>

By changing the distance of the shadow, we make it look as though the
shadow reacts to the movement of the button just like a real shadow would if
an object moved further away from its shadow plane. The values of blurX
and blurY were also increased from their defaults to make the size of the
shadow proportional to the size of this larger button.

Okay, now we have a fun button so we’re done, right? Well, almost.
First, I feel compelled to add some animation.3 We have not yet covered Flex
effects, which provide the animation capabilities of Flex, but I’ll give a quick
demo on how to add animations to skins here. I won’t go into the details
of how the animations work (you’ll see this for yourself in Chapters 9, 10,
and 11), but once you’ve read the later chapters and you’re comfortable with
effects and transitions, come back here and see how those techniques have
been applied to animate the button skin.

If you select the last item in the drop-down list, Animated, you’ll load
the AnimatedSkin class into the button. This skin class starts where the last
skin class, FunButtonSkin left off. We use all of the graphics and posi-
tioning in that skin and simply add some transition effects to animate those
state changes. Go play with the application to get a feel for the animations.
Animations, like chocolate, are much better when experienced directly.

To add animation to this skin file, I simply added a transitions block
to declare the effects to run for the various state transitions. I also added
three id properties, because in order to animate properties on an object, I
need to be able to refer to that object. One of the animations changes the
color on the gradient entries, so I added ids to those three objects. The rest
of the objects that are animated (the drop shadow, the background rectangle,
and the label) already have ids.

The transitions animate all changes between the states. We change three
things when the button goes into each of the states: the color of the gradient
entries for the background, the z position of the background and the label,

3 After spending the entire Flex 4 release working on animation, I see possibilities for
animations everywhere. I guess if I’d worked on List the whole release, I’d try to convert
everything into a List instead. So maybe it’s just petty rationalization justifying my pet
feature in Flex 4, but I think animation adds a level of fun and interaction that goes beyond
what you can get from static graphics.

Section 6.7 Chapter 6 · Skinning Components 145

and the distance of the drop shadow. So three animations run in parallel
during each transition:

(File: skins/AnimatedSkin.mxml)
<s:Transition>

<s:Parallel duration="120">

<s:Animate target="{shadow}">

<s:SimpleMotionPath property="distance"/>

</s:Animate>

<s:Animate targets="{[rect,labelDisplay]}">

<s:SimpleMotionPath property="z"/>

</s:Animate>

<s:AnimateColor targets="{[ge1, ge2, ge3]}"/>

</s:Parallel>

</s:Transition>

The first effect animates the distance property of the drop shadow filter.
When the shadow moves relative to the button, it animates to its new position.
The second effect animates the z property of the rectangle and the label.
When the button moves out or in, that movement in z is animated. The third
effect animates the color property of the gradient entries, so that the button
animates its color change instead of switching gradient colors immediately.

Three transitions are declared for this skin: one that runs when going
into the down state, one that runs when coming out of the down state, and one
that runs for every other state change (the transition shown in the previous
code snippet). All three transitions run essentially the same animation. The
only difference between them is that the ones taking the button into and out
of the down state are quicker than the transition shown in the code, with
a duration of only 50 milliseconds instead of 120 milliseconds. This is
because animating a click operation makes the button feel very sluggish if
the animation is not quick enough.

Click interactions should be immediate, or at least
very quick: clicking is an atomic operation that
usually feels best if the UI looks like it is dispatched
immediately.

Section 6.7 Chapter 6 · Skinning Components 146

In fact, no animation during a click operation is often the best approach.
In some skins I’ve animated, I created transitions just for the other state
transitions, but left the transitions from and to the down state as immediate,
with no animation. In the case of this fun button, the extra magic added by
animation seemed to enhance the fun feeling, so I made that action animated.
Also, the button is moving so far in each direction that it seems reasonable
to give it some time to get to its destination, as opposed to a more standard
button where a click is not such a significant operation. But even in this
case, I had to make the animation quite short to make the button usable at
all. When the animation was too slow, the button felt sluggish and it would
probably frustrate the user of such a component. Remember one of the most
important tenets of using animations in UIs: don’t piss off your user.

Don’t upset the user: Use animations that help the
user, not ones that may look nice but end up
annoying the user.

Conclusion

You can skin many more, and much more complex, components than the
simple Button covered in this chapter. For example, the ScrollBar has
four optional parts to play around with, compared with Button’s single
labelDisplay part. You can also create skinned containers and data con-
tainers as well. We have just covered the basics here for the simple case of
Button, but the same principles and skinning contract apply for every Flex
4 component, so you should be able to go from here.

In fact, a good place to start would be to read the code for the skins
that ship with the Flex 4 SDK. For example, check out the standard skin for
Button, in the ButtonSkin.mxml file.4 If you think we used rich graphics

4 In case you have only seen the Flex classes from the outside, as a user of the Flex
APIs, you should take some time and look at the Flex framework code itself. Since Flex
is an open source project, you can see the code or check out a subversion workspace at
http://opensource.adobe.com. But if you don’t want to go to that trouble since you
probably just use the SDKs that come with the Flash Builder tool, you can also see the source
code inside the sdks directory inside the folder in which you installed Flash Builder. You
can even load the SDK projects into Flash Builder to make browsing the source code easier.

http://opensource.adobe.com

Section 6.7 Chapter 6 · Skinning Components 147

in the custom skin examples in this chapter you should see what goes into
the default skins in Flex. This may give you ideas of how to design your
own skins. It may also be a good place for you to start with your custom skin
development by copying that code and modifying it to give your components
their own unique look.

The main point is that you have easy access to the Flex source code and you should look
at it to learn how things work, such as examining the skin files that ship with the standard
components to see how you might create your own custom skins.

Chapter 7

Animation

Users are very much alive—shouldn’t their applications be alive as well?
Animating elements in the UI creates a rich, lively environment in which
the user can work. Even better: these techniques can help the user actually
enjoy using the application. More importantly, animation can be used to help
the user understand what could otherwise be a complex and confusing user
interface, helping connect them to the different states of the application and
understand what they need to do.

In order to write these kinds of dynamic interfaces, we first need to un-
derstand something about animation.

7.1 Animation defined

Animation is, essentially, the changing of values over time. Typically, es-
pecially as far as GUI applications are concerned, animation changes vi-
sual properties of the objects on the screen, such as their location, size, and
translucency.

Although we think of animation as being moving objects, in reality it is
a series of static images that we interpret as motion. For example, animation
on a computer screen happens by updating static images on the screen as fast
as the refresh rate of the display allows, which is typically about 60 times per
second. Fortunately, our brain is good at lying to us and interprets a series
of images as fluid motion if the animation is done right. This crossover from
images to perceived continuous motion is the premise of flip-book anima-
tion. It is also how movies work, since movies are also just a series of static
images, typically shown on the screen at 24 frames per second. In fact, think

Section 7.2 Chapter 7 · Animation 149

Animation and Flex effects
Flex developers generally create animations using Flex effects, which
are discussed in Chapters 9, 10, and 11. But in order to understand
these higher-level capabilities, I find it helpful to understand the fun-
damental concepts and classes that effects use internally. And chances
are, since you went out and invested in a book on how to do this kind
of stuff, you are probably interested in how it all works. So consider
this chapter and the next one, Chapter 8, as steps toward learning how
to use Flex effects effectively. The current chapter on animation covers
the fundamental concepts behind animation. The next chapter, Chap-
ter 8, covers the capabilities of the Animation class that is used by Flex
effects internally for running their animations. Consider both of these
chapters as getting the fundamentals down so that the material in the
effects chapters makes more sense.

about the meaning of the old word for movies: “moving pictures,” which is
exactly what they are: a series of still images shown in rapid succession that
give the illusion of motion.

If animation is a process of changing values over time, then in order
to perform computer animation we need to figure out how to calculate the
values appropriately to create convincing animations. It is easy in Flex to
change properties, like the x property of a Button to change its location. We
do this by simply setting the property, like this: button.x = 5. But how do
we continually change the property x over time? Well, we could start with a
mechanism for handling periodic callbacks.

7.2 Periodic callbacks

All GUI toolkits that I’ve worked with, including Flex, offer some facility
to call back into application code at some specified frequency. As you saw
before, animation in computer systems is about changing properties over
time. The technique used for changing these properties is typically setting
up a timer to call back into application code at regular intervals, at which
time the application figures out the proper value for the object to have at that
time and sets that value on the object. The typical approaches to handling
periodic callbacks in Flex are the enterFrame event and the Timer class.

Section 7.2 Chapter 7 · Animation 150

Periodic callbacks with enterFrame

Every Flex application has a frameRate, which is a property on the applica-
tion itself. Flex’s default frameRate is 24, which means that the application
window is updated 24 times per second (or as close to that as the Flash player
can handle, given system constraints). But you can change that value in the
Application tag for your application. For example, the following code sets
up an application to run at a rate of 10 frames per second:

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

frameRate="10">

</s:Application>

Whenever the Flash player is about to draw the next frame of the application,
it dispatches an enterFrame event to any listeners. This is a natural place
for applications to plug into if they want to get periodic callbacks. Listen-
ers of this event are guaranteed to get called back at the current rate of the
application, which is typically good enough for most animations.

To be called on the enterFrame event, you simply add a listener for
this event to any component or container that you wish to listen to, or to
the underlying Flash stage itself. For example, to get enterFrame events
for the application example above, we could add an event listener to the
Application tag as follows:

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

frameRate="10"

enterFrame="enterFrameHandler(event)">

</s:Application>

We then need to create a function to handle the enterFrame event callback,
which is listed in the code above as enterFrameHandler(). In our handler
function, we can update our components according to however we want to
animate them. Let’s look at an example.

Moving a button with enterFrame

In the EnterFrameMover application, seen in the figure below, we have a
single button:

Section 7.2 Chapter 7 · Animation 151

(Demo: EnterFrameMover)

The button, when clicked, adds an event listener for the enterFrame
event so that the event results in a call to enterFrameHandler():

(File: EnterFrameMover.mxml)
<s:Button id="button" label="Move Me"

click="addEventListener('enterFrame', enterFrameHandler)"/>

Note that we add the event listener when the button is clicked instead of in
the Application tag, as we did in the earlier code snippet. Adding the event
listener on a button click event gives us two advantages. First, it allows more
flexibility about when we start the animation. The animation starts only
when the user clicks on the button, instead of automatically at application
creation time. Second, it guarantees that the application and button are in a
reasonable state to be moved when our handler function is initially called.

Here is the event handler code that moves our button:

private var moveIncrement:Number = 10;

private function enterFrameHandler(event:Event):void

{

button.x += moveIncrement;

if (button.x + button.width > width)

{

button.x = width - button.width;

moveIncrement = -moveIncrement;

}

else if (button.x < 0)

{

button.x = 0;

moveIncrement = -moveIncrement;

}

}

This code moves the button by moveIncrement pixels every time. When the
button goes beyond the window boundaries, the button is placed back inside
the window and our increment variable is negated. This change reverses the

Section 7.2 Chapter 7 · Animation 152

direction of further button movement until the button hits the window bounds
on the other side.

This seems pretty easy, right? We just set up an event handler, handle
the callbacks, and make any property changes that we want to animate our
UI objects. Ten lines of code later and there’s a moving button in our ap-
plication. Of course it’s far from an animated interface that anyone wants
to actually use, but you can start to see how we might get there. Things are
at least starting to move around on the screen. Now let’s see how to do the
same thing with the Timer class.

Periodic callbacks with Timer

Using the Timer class is similar to using the enterFrame event. The main
difference is that the enterFrame event is already set up to be sent around
the system. All we have to do to animate via enterFrame is to plug into that
existing system by adding a listener and implementing our event handling
function. Using the Timer class requires a bit more effort because we have
to set up and start the Timer before it dispatches the events we care about.
But this little bit of added work also brings added flexibility. Using Timer
allows us to break away from the application frame rate and use an animation
rate that is more tailored to our requirements.

The main elements of a Timer object are its delay, its repeatCount,
and its event listeners:

delay This property sets the amount of time, in milliseconds, between timer
events. This is the rate at which an event handler is called while the
timer is running. For example, a value of 20 means that the timer at-
tempts1 to call its listeners every 20 milliseconds, or about 50 times
per second. You should set the delay to be a value that provides rea-

1 I say “attempts” because the actual rate at which the timer’s listeners are called is
determined by a combination of the delay rate plus any constraints of the operating system
and possibly the browser that your application is running within. For example, the maximum
timer rate in Internet Explorer on Windows is currently about equivalent to the refresh rate of
the computer monitor, typically 60 frames per second, or just over 16 milliseconds between
events ((1000 milliseconds) / (60 frames per second) = 16.67). This means that a delay of
anything less than 16 is irrelevant, because 16 milliseconds is the smallest delay that the
Flash player can handle in this situation. This may seem arbitrary or too constrictive, but
think about it: why would you want to waste CPU cycles on the user’s machine running an
animation faster than the user can possibly see updates to the screen?

Section 7.2 Chapter 7 · Animation 153

sonably smooth animations without running so fast that you’re wasting
CPU cycles needlessly.

repeatCount This property specifies the number of times that the timer
calls its listeners before ending. For a typical animation, you set this
to 0, which means that it continues until you actually stop the timer
with a call to stop(). If you just want to perform an action once with
some initial delay, a repeatCount of 1 makes sense, but for typical
animations you want the timer to keep calling your handlers until you
are done with your animation and ready to stop it.

Other than these properties, the start() and stop() functions exist to get
the timer going or to stop it.

The way you typically use a Timer is by creating it, assigning appropri-
ate values for delay and repeatCount, adding your event handler(s), and
calling start(). Then later, when you want to end the animation, you call
stop(). And that’s about it—the rest of it is up to your timer event handler.

Moving a button with Timer

The observant section-heading reader may have noticed that this section
bears a striking resemblance to the demo section in the earlier enterFrame
discussion. This is not mere coincidence; we are going to perform the same
amazing button-movement animation as before, only this time we use the
Timer class so that you can see the differences in the two approaches. If
you want to picture the application, see the screenshot in that previous ex-
ample; it’s a picture of the application that uses enterFrame, but trust me:
the Timer version of the application looks exactly the same.

If you look at the TimerMover code, you see that the button is declared a
bit differently. Instead of adding a listener to the existing enterFrame event
as we did before, we use the click event to call a new startAnimation()
function to set up our animation:

(File: TimerMover.mxml)
<s:Button id="button" label="Move Me"

click="startAnimation()"/>

The startAnimation() function starts the animation by creating, setting
up, and starting our timer:

Section 7.2 Chapter 7 · Animation 154

private function startAnimation():void

{

var timer:Timer = new Timer(20, 0);

timer.addEventListener(TimerEvent.TIMER, timerHandler);

timer.start();

}

The Timer is constructed with two values: a delay of 20 (which results in
an effective frame rate of 50 frames per second) and a repeatCount of 0,
which causes the timer to run indefinitely. We then add our event handler
to the timer by listening to the TIMER event on TimerEvent. This event
listener tells the timer that we want our timerHandler() function called
every delay milliseconds. Finally, we start() our timer, which causes the
timer to run and start calling our event handler at periodic intervals.

Our event handler code is exactly as it was before, but the function has
been renamed to make it clear that it handles timer events:

private var moveIncrement:Number = 10;

private function timerHandler(event:Event):void

{

button.x += moveIncrement;

if (button.x + button.width > width)

{

button.x = width - button.width;

moveIncrement = -moveIncrement;

}

else if (button.x < 0)

{

button.x = 0;

moveIncrement = -moveIncrement;

}

}

If you run the application, you see just about the same thing as you saw
before: the button, when clicked, starts moving back and forth between the
left and right boundaries of the window. Of course, we are still far from
having a cool UI experience, but it is at least the beginnings of some kind of
animated interaction.

Section 7.3 Chapter 7 · Animation 155

Now run both applications, side by side, and look at the animation. Do
you notice any difference? There should be a significant speed difference
between the two buttons; the one in the TimerMover application is moving
along much faster than the button in the EnterFrameMover application. It’s
easy to understand why this is the case; the EnterFrameMover animation is
running at the frameRate of that application, which defaults to 24 frames per
second, while the TimerMover button is moving at the rate declared in the
Timer constructor, which is about 50 frames per second. We could change
these values to make the rates match, but the difference scratches at the sur-
face of a large issue: frame-based versus time-based animation.

7.3 It’s about time: frame- versus time-based animation

In the previous two examples, the button moved at different speeds, de-
pending on the event-handling rate of the underlying animation. In the
EnterFrameMover case, the button moves ten pixels every 1

24 th of a sec-
ond. In the TimerMover example, the button moves the same ten pixels for
every 1

50 th of a frame. To vary the speed of the button’s movement, then, we
can change the underlying rate of the animations. For example, we can set
a frameRate for the enterFrame example to 50 to give it the same rate as
the Timer example. Or we could change the delay property for the Timer
example to match the frame rate of the enterFrame example.

As an example, take a look at the TimerMoverVariableDelay demo
application, as seen here:

(Demo: TimerMoverVariableDelay)

The TimerMoverVariableDelay application is based on the previous
TimerMover application, but it adds an HSlider that you can use to control
the Timer’s delay property, and hence the speed of the button as it moves
back and forth:

(File: TimerMoverVariableDelay.mxml)
<s:HSlider id="slider" minimum="1" maximum="250" value="20"

change="timer.delay = slider.value"/>

Section 7.3 Chapter 7 · Animation 156

The only other change from the original application is that the timer
variable is declared outside of the startAnimation() function so that its
delay property can be changed with the slider. The functionality of this ver-
sion is the same as before—the button moves back and forth when clicked.
Run the application and play with the slider. Notice how changing the
slider’s value changes two things in the animation: the overall speed of the
button moving back and forth and the number of times the button changes po-
sition each second. These changes are linked, because the number of frame
updates per second determines the speed of the button, since we are mov-
ing the same amount of pixels per update. The more updates there are, the
further the button moves.

But this approach has a problem: what if our animations do not run at the
exact rate that we anticipate? For example, what if we run the TimerMover
example on a horribly slow machine and don’t get anywhere near the re-
quested delay rate? Then we would see the button move at a much slower
speed than the speed we wanted when we set up our animation.

Even worse (and yet very common), what if the machine we are run-
ning on is intermittently busy doing things more CPU-intensive and arguably
more important than animating our button, and Flash doesn’t get around to
servicing our callbacks at a constant rate? Then we would see the button
move at unpredictable speeds, sometimes slower, sometimes faster, depend-
ing on how quickly the system got around to servicing the animation events.

This unpredictability of speed from system to system, or even from frame
to frame on a busy system, is far from ideal. We want our animations to
have the same feel no matter when or where they run. Without some kind
of predictable behavior, it is difficult to design a user experience that feels
consistent and robust across potentially vastly different situations. So how
do we fix this problem?

The answer will come in time. That is, we need to account for time in
our animation calculations. The animations so far have used a static amount
of movement between frames, so the speed of the animated object was de-
pendent on the rate at which those frames were serviced. This is known as
frame-based animation. We need to move to a time-based system instead,
where the speed of objects is based on the actual time elapsed at each frame.
We can make the object appear to move at a constant rate, from frame to
frame and across entire systems, by always calculating the object’s position
according to the time elapsed instead of just how fast the system was able to
service the next animation frame.

Section 7.3 Chapter 7 · Animation 157

Account for time in animation calculations; update
objects based on elapsed time, not just elapsed
frames.

The concept behind time-based animation is simple: with each frame
update, you calculate the amount of time that has elapsed since the previous
position, account for the speed that you want the object to move, and calcu-
late the new position based on this elapsed time and speed. For example, if
you want the button to move at a speed of 500 pixels per second (where one
second equals 1000 milliseconds), then for an elapsed time of 20 millisec-
onds you calculate that the button should move a total of ten pixels (20 ms/
1000 ms/sec) * 500 = .02 * 500 = 10).

Let’s look at another example. For this example we use the Timer mech-
anism because I find it to be more flexible than the enterFrame mechanism,
but you could apply the same approach to either mechanism.

Demo: time-based motion

For this new application, TimeBasedMover, we start from the previous ap-
plication, TimerMoverVariableDelay, which gives us the slider to control
the amount of time between frame updates. That way, we can see the effect
that a varying frame rate has on the overall button speed. The application
looks just like the one in the previous example, with a slider to control the
button animation.

In order to create a time-based version of the animation, we need a couple
more variables for use in our calculations:

speed We need some idea of speed or velocity. This is the amount of move-
ment per time period that we use to calculate the actual amount moved
each frame, depending on how much time has elapsed. In the applica-
tion code, this is a constant that we call pixelsPerSecond, indicating
how many pixels the object moves in an entire second. For any amount
of time that has elapsed, we simply calculate the elapsed fraction of a
second and multiply it times our pixelsPerSecond constant to get the
actual pixels moved in that frame.

elapsed time For every frame, we need to calculate how much time has
elapsed since the last frame. This requires two new things in our

Section 7.3 Chapter 7 · Animation 158

code: a “current time” variable (and a way to measure that current
time) and a “previous time” variable, which was the time at the previ-
ous frame. For the current time (cleverly called currentTime in our
application), we call the Flash function getTimer(), which simply
returns the number of milliseconds since some irrelevant time in the
past. It really doesn’t matter what the return value is; it is only useful
when comparing it to other values, to determine the elapsed time be-
tween two measurements. In order to compare the current time against
the time in the last frame, we store each frame time, after we’re done
with it, in a variable called prevTime. When we first start our anima-
tion, we store the current time in this prevTime variable and thereafter
use that variable to calculate the time delta between the last frame and
the current one.

Since the button is now moving a variable number of pixels per frame, we
need a slightly different mechanism for incrementing the button each time
and determining whether it is moving right or left. We now have a boolean
variable, movingRight which tracks whether the button is moving to the
right or not. When we detect that the button has gone past the window bounds
to the right, we set this to false so that the button moves left. Then for every
frame we calculate the number of pixels the button should move, according
to its speed and the elapsed time since the last frame. We then either add or
subtract that number of pixels based on the movingRight boolean.

Now let’s see the code. The GUI elements, the button and the slider, are
exactly the same as they were in the previous example; it is just the variables
and the timerhandler() function that have been updated to handle the new
time-based animation capability:

(File: TimeBasedMover.mxml)
private const pixelsPerSecond:Number = 500;

private var prevTime:Number;

private var movingRight:Boolean = true;

private var timer:Timer = new Timer(20, 0);

private function timerHandler(event:Event):void

{

var currentTime:Number = getTimer();

var deltaTime:Number = currentTime - prevTime;

var pixelsToMove:Number =

pixelsPerSecond * deltaTime/1000;

Section 7.3 Chapter 7 · Animation 159

var overshoot:Number;

if (movingRight)

{

button.x += pixelsToMove;

if (button.x + button.width > width)

{

overshoot =

button.x + button.width - width;

button.x =

width - button.width - overshoot;

movingRight = false;

}

}

else

{

button.x -= pixelsToMove;

if (button.x < 0)

{

overshoot = button.x;

button.x = -overshoot;

movingRight = true;

}

}

prevTime = currentTime;

}

The startAnimation function is similar to the one in the earlier appli-
cation, TimerMoverVariableDelay, but this time we also initialize the new
prevTime variable to the current time when the animation starts:

private function startAnimation():void

{

timer.addEventListener(TimerEvent.TIMER, timerHandler);

timer.start();

prevTime = getTimer();

}

Much of the logic is similar to what it was before, moving the button
around according to the number of pixels that we calculate. This calculation

Section 7.3 Chapter 7 · Animation 160

is just as we explained earlier: we figure out the amount of milliseconds
elapsed since the last frame and calculate the number of pixels to move based
on the speed of the button (pixels per second) times the fraction of a second
that has elapsed.

The turn-around logic has been upgraded a tad since the previous version
of the application to take into account the overshoot, or the number of
pixels past the boundary that the button went in the last move. This allows us
to calculate the position of the button as if it had bounced off the edge, instead
of simply placing it at the edge when it changes direction. This nuance does
not matter much for high frame rates because the button doesn’t overshoot
by much when little time passes between frames. But for high delays (low
frame rates), this can be a significant impact on the overall speed of the
button, so I upgraded the logic to account for it. It is particularly noticeable
in this version of the application because we now have a variable amount
of movement each frame depending on the delay. In the previous versions,
the button moved ten pixels every frame regardless, so the overshoot value
in those cases could only reach a maximum of ten pixels, which didn’t have
much impact on the visual results.

Other than the changes noted above, the code is much as it was before.
We move the button by the appropriate number of pixels and perform some
logic to turn it around at the boundaries. But the best part is that now our
button is moving at a constant speed, regardless of the frame rate. To see
the impact that this has, run TimeBasedMover and play with the slider. Note
that the button always moves at the same overall rate, even at the extremes
with either very small or very large delays. Yes, a large delay makes the
animation very chunky, but still the button manages to get where it’s going
in the same overall amount of time.

Time-based animation: it’s the only way to go for smooth, predictable,
and pleasing animations.

Conclusion

We’ve seen a lot of information about how to move objects (or at least but-
tons) around on the screen. We’ve seen how you can hook into the event
system of Flex in a couple of different ways and how you can use time-based
animation techniques to get smooth and robust animations.

So we’re done, right?

Section 7.3 Chapter 7 · Animation 161

Well, not quite. We’ve seen how you can make things move on the
screen. But even though there wasn’t much code there, it’s still more boil-
erplate code than I would like to write every time I want to animate any-
thing. That’s why Flex provides animation facilities for developers such as
the Animation class, which you’ll see in the next chapter.

Chapter 8

The Animation Class

In the animation examples in the previous chapter, we set up set up a Timer,
added an event handler to listen for timing updates, and waited around to
get called back in our handler to then calculate the object’s new position and
move it. Although the code wasn’t too difficult to write, we would have to
rewrite that same kind of code every time we wanted to run an animation, and
that gets a bit tedious. In addition, other important animation techniques ex-
ist that we didn’t get to in those examples, like stopping an animation after a
specified time period. Finite animations are more common in real UI anima-
tions than the infinite animations in the earlier examples. And perhaps more
significantly, the animations in the previous chapter were not really that com-
pelling; shifting a button back and forth doesn’t make for an exciting user
interface. For the kinds of animations that compelling UIs demand, we need
more complex animation capabilities that would be very time-consuming to
write with just the techniques that we saw in Chapter 7.

Luckily, Flex provides a timing engine that is a big step up from the
Timer class to handle much of this functionality for us: the Animation class.
You create an instance of the Animation class, tell it the duration you want
it to have, hand it the start and end values, tell it how to call you back, and
it goes off and does the whole thing for you. It still calls your code because
you still need to set the position of the button, but the Animation class even
handles the calculation of that button position for you. Animation has all of
the logic for time-based animation built into it, and only needs to know the
duration and the start/end values and it can figure out everything else. And
the animation automatically finishes when the full duration has elapsed (or
you can set it up to run indefinitely, just like the Timer in the last chapter’s

Section 8.1 Chapter 8 · The Animation Class 163

examples). All you have to write is the code to set up and start the animation
and to handle the callbacks to set the calculated values on the target object.

For example, to construct and play an Animation that animates the x
property of our button object from the left side of the window to the right
over a period of 500 milliseconds, we might do the following:

var anim:Animation = new Animation(500, "x", 0,

width - button.width);

anim.play();

But notice that we haven’t yet told our animation how to contact our code
with animated values as the animation runs. For that, we need to work with
the IAnimationTarget interface.

8.1 Animation targets

IAnimationTarget is an interface in Flex that clients of Animation need
to implement. This approach provides a standard way for classes to declare
that they implement all of the callback methods that Animation may need to
call during the course of an animation. All we’ve seen in our previous exam-
ples are cases where an animation sends out update events while running, but
other events exist in more interesting animations that are useful to listen in
on, such as when the animation starts, when it ends, and when it repeats. The
IAnimationTarget interface declares all of the necessary callback func-
tions and any object that wants to receive callbacks from Animation needs
to provide a class that implements these functions. Here is the interface:

public interface IAnimationTarget

{

function animationStart(animation:Animation):void;

function animationStop(animation:Animation):void;

function animationEnd(animation:Animation):void;

function animationRepeat(animation:Animation):void;

function animationUpdate(animation:Animation):void;

}

This interface encapsulates the functions that are called throughout the life
of a running Animation:

Section 8.1 Chapter 8 · The Animation Class 164

animationStart() This function is called when the animation actually be-
gins. Typically this happens when the animation’s start() function
is called, but a property on Animation called startDelay provides
an optional delay mechanism for animations (which is useful for se-
quencing multiple animations together). If a positive startDelay is
declared on the animation, animationStart() is called only after that
delay expires and the animation actually begins actively playing.

animationStop() This function is called only if the animation is forcibly
stopped, which happens if the animation’s stop() function is called.
This causes the animation to stop in its tracks, sending out this call
followed by an animationEnd() call.

animationEnd() This function is called when an animation ends, which
can happen in one of three ways: The animation’s stop() function
may be called, which stops the animation in its tracks. The animation’s
end() function may be called which, unlike stop(), sends out a final
update call with the end values, even if the animation’s full duration
was not yet reached. Or, finally, the animation may come to a natural
end when its declared duration has elapsed.

animationRepeat() We will see more about repetition later, but briefly
this function is called when a repetition cycle of the animation begins.

animationUpdate() This function is the most important one in the inter-
face, and is the equivalent of the event handlers in the animation ex-
amples in the previous chapter. This function is called for every frame
of the animation, and provides the means for the recipient to set the
animated values calculated by Animation on target object(s).

Each of these functions has just a single parameter; the Animation instance
that called the function. The animation object holds the information that the
handler needs, such as the calculated values during an animationUpdate()
call. For example, to retrieve the calculated value for x during a call to
animationUpdate(), you access the currentValue property, like this:

var xValue:Number = animation.currentValue["x"];

But enough talk—let’s see how the Animation class works in practice.

Section 8.2 Chapter 8 · The Animation Class 165

8.2 Demo: moving a button with the Animation class

This example, AnimationMover, is seen here:

(Demo: AnimationMover)

For this application, we need more than a single MXML file because we
need a separate class that implements the IAnimationTarget interface. I’ve
created an ActionScript class named AnimationTargetDispatcher that
does just this. AnimationTargetDispatcher is a utility class that turns the
function calls into dispatched events, in order to make it easier to deal with
just the animation events we care about. To get a callback just for specific
events, like the update events that we care about, we just need to add an event
listener to an instance of this class, then set the animationTarget property
of Animation to that instance. Then for every call to animationUpdate()
in AnimationTargetDispatcher, we get a callback to our event listeners
for the update event. An AnimationEvent class is found in the same utils
directory that is used by the dispatcher to encapsulate the event constants
(START, END, etc.) and the underlying animation property that holds the
animated values. To create our animation target, we declare it as an MXML
object as follows:

(File: AnimationMover.mxml)
<local:AnimationTargetDispatcher id="animTarget"

update="updateHandler(event)"

end="endHandler(event)"/>

This declaration tells our dispatcher to call us whenever an update or end
event occurs. The update event is the one that deals with turning the ani-
mated value into the new button position. We need the end event to handle
turning the button around and animating it in the other direction. But be-
fore we look at these functions, let’s first see how we finish setting up our
animation object.

Our button looks the same as it did in some of the examples in Chapter 7:

<s:Button id="button" label="Move Me"

click="startAnimation()"/>

Section 8.2 Chapter 8 · The Animation Class 166

AnimationTargetDispatcher

I created the AnimationTargetDispatcher class just to simplify this
demo. But the class is a general-purpose utility that you should con-
sider using if you ever need to use the Animation class directly. The
higher-level Flex effects classes, which we will see in later chapters, are
probably the main animation classes that you will use in your develop-
ment. To a great extent, the Animation class is just an implementation
detail of those classes. But in some cases you may want a lower-level
class that just runs the timing engine without the added capabilities of
effects. And in that case, you may want a quick way to plug into the an-
imation events that the class sends out. AnimationTargetDispatcher
comes in handy for that situation.

The startAnimation() function creates and starts the animation:1

private function startAnimation():void

{

if (button.x == 0)

anim = new Animation(500, "x", 0,

width - button.width);

else

anim = new Animation(500, "x",

width - button.width, 0);

anim.animationTarget = animTarget;

anim.play();

}

The animation is declared with a duration of 500 milliseconds. It operates
on the x property (this determines the lookup key by which the animated
values are stored and retrieved from the animation), which takes the but-

1 You can also create Animation instances in MXML, just like I did for the
AnimationTargetDispatcher instance. I chose to not do so for this example because the
constructor for Animation allows a convenient way to set the parameters that we care about
in this example. If we declared the class in MXML instead, we would need to set up the start
and end values a bit differently, using classes and concepts that we haven’t yet seen. In the
fullness of time and thickness of this chapter, we will discuss these other concepts. At that
time, it will be easier to describe how to set up Animation in MXML. But for the purposes
of these demos and this description, we’ll stick with the handy ActionScript constructor.

Section 8.2 Chapter 8 · The Animation Class 167

ton from one side of the window to the other. Some logic exists for detecting
whether the button is currently on the left of the window (if button.x == 0),
which is used to determine whether to animate from left to right or right to
left. This logic is used later when reversing the animation. The animation
uses our AnimationTargetDispatcher instance as its animationTarget,
which ensures that the handler functions are called for update and end
events. Finally, we play() our animation.

The update handler function is simple:

private function updateHandler(event:AnimationEvent):void

{

button.x = event.animation.currentValue["x"];

}

Notice how much shorter this code is than the update handling code in the
examples in the previous chapter, before we learned about the Animation
class. Instead of calculating elapsed time and movement, we simply use
the value that the animation has calculated for us. Also, we do not need to
worry about the turn-around logic in this handler because we know that the
animation only runs from one side of the window to the other. The animation
has a set duration, after which it simply ends and sends out a final x location
in the correct place at the window’s edge.

Since the animation runs only once in a single direction, we need some
additional logic to handle the back-and-forth behavior from our previous ex-
amples. To perform this action, we need to detect when the animation ends,
which must mean that the button is at the edge of the window, and then
restart the animation going in the other direction. We handle this logic in the
handler for the end event:

private function endHandler(event:AnimationEvent):void

{

startAnimation();

}

The code in endHandler() is simple; we just call the startAnimation()
function that we saw earlier, which already has the logic to determine the
correct direction in which to move the button.

Section 8.3 Chapter 8 · The Animation Class 168

8.3 Repetition, repetition, repetition

The AnimationMover application is pretty slick for an application that per-
forms the awesome task of moving a button back and forth. In just a few
lines of code and a couple of functions we were able to get the same behav-
ior that we saw in the previous chapter’s examples, but with less code than
those earlier examples, which had to account for all of the timing details.
Clearly, the Animation class is saving some effort in creating and running
simple animations.

But some tedious details are still in this code that I would rather see
handled elsewhere. In particular, the logic about detecting the turn-around
of the button and restarting the animation seems like something that ought to
be part of our timing engine. Wouldn’t it be great if Animation knew how
to perform repetition logic?

Allow me to introduce the repetition behavior logic in Animation. This
set of properties tells an animation how many times to run, what to do when
it repeats, and how long to wait before starting each repetition cycle:

repeatCount This property, along with the duration property, how long
the animation runs. Each iteration lasts for duration milliseconds,
with the repeatCount being a multiplier of that duration. An anima-
tion with a 500 millisecond duration and a repeatCount of 3, for
example, runs for a total of 1500 milliseconds. As with Timer, a value
of 0 means the animation should repeat indefinitely. The default value
is 1, which means that the animation does not repeat.

repeatBehavior This property tells the animation how to repeat each time.
Two values are possible, declared as constants in the RepeatBehavior
class: LOOP and REVERSE. A value of LOOP means that the animation
repeats by setting the properties back to their start values and running
again in the same direction to the end values. In our button example,
this means the button always animates from the left to the right side of
the window. A value of REVERSE means that the animation switches
the direction of movement with each repetition. In our button example,
REVERSE reverses the start and end values and moves the button in the
opposite direction each iteration.

repeatDelay This property is an optional delay value that tells the anima-
tion how long to pause before each new repetition cycle. The default

Section 8.3 Chapter 8 · The Animation Class 169

value is 0, which means that the next repetition cycle begins immedi-
ately after the previous one ends.

This repetition behavior is exactly what we need for our animating button
example to get the button to move back and forth. Let’s see how it works
in code, from the AnimationRepeater example. The application UI looks
exactly like the previous AnimationMover example, so check out the screen-
shot on page 165 if you need to refresh your memory.

Two changes were made to the earlier AnimationMover application to
use the repetition logic of Animation. First, the code in startAnimation()
was simplified by removing the turn-around code, where it set up each ani-
mation to move to the right or left depending on the current position of the
button. Instead, the code now sets up a single animation to run forever and
to reverse at the end of each cycle:

(File: AnimationRepeater.as)
private function startAnimation():void

{

anim = new Animation(500, "x", 0, width - button.width);

anim.repeatBehavior = RepeatBehavior.REVERSE;

anim.repeatCount = 0;

anim.animationTarget = animTarget;

anim.play();

}

Notice the single initializer for anim compared to the previous examples
where there were two initializers; the animation is always created to run from
left to right. The repeatBehavior value of REVERSE tells the animation to
reverse each time and switch its start and end values for each iteration. A
value of 0 for the repeatCount tells the animation to run indefinitely.

The only other change to the previous AnimationMover example is the
removal of the endHandler() function. This function existed only to restart
the animation each time it ended. But now that the animation is performing
the reversal for us, we no longer need that function and can remove the han-
dler. Also, our AnimationTargetDispatcher need only dispatch update
events, since we no longer have the handler for end events:

<local:AnimationTargetDispatcher id="animTarget"

update="updateHandler(event)"/>

Section 8.4 Chapter 8 · The Animation Class 170

8.4 Motion paths: more is better

Interesting animations usually involve animating several properties at once,
like the width and height of a resizing object, or the x and y location of a
moving object, or several of these and other properties in parallel. All of the
examples using Animation that we have seen so far have used constructor
arguments for the class to pass in the property name and values used, which
constrained our examples to use just the one property allowed in the con-
structor. But Animation can actually animate several properties in parallel
using motionPaths.

The motionPaths property is a Vector of MotionPath objects. You can
supply any number of MotionPath objects to a single Animation, where
each separate MotionPath describes the attributes for a single property. The
Animation then acts on all of these objects in parallel, calculating values for
each specified property on every frame of the animation, according to the
information in the property’s MotionPath.

MotionPath is the more powerful, and more general, class, but we will
start with its more commonly used subclass, SimpleMotionPath.

The SimpleMotionPath class

SimpleMotionPath is a data structure that provides a property name and
a set of from/to/by values. This information encapsulates everything that
an Animation needs to know about a property to calculate values for the
property at each frame of the animation.

property This variable holds the name of the property being animated.

valueFrom This variable holds the value that the property starts at when the
animation begins.

valueTo This variable holds the value that the property animates to and
therefore ends at when the animation is complete.

valueBy This optional variable holds the amount of change in the prop-
erty between its start and end values. valueBy is optional because if
both valueFrom and valueTo are supplied, then valueBy is ignored.
But if it is more convenient in your situation to declare the amount

Section 8.4 Chapter 8 · The Animation Class 171

of change and either valueFrom or valueTo, then Animation calcu-
lates the unsupplied value by adding or subtracting valueBy from the
from/to value that is supplied.

As an example, the application AnimationRepeater has been rewritten us-
ing SimpleMotionPath, resulting in SimpleMotionPathAnimation. The
application UI looks like just it did in the first example, seen on page 165.

Previously, we had to call into ActionScript code to create the animation:

(File: AnimationRepeater.as)
private function startAnimation():void

{

anim = new Animation(500, "x", 0,

width - button.width);

anim.repeatBehavior = RepeatBehavior.REVERSE;

anim.repeatCount = 0;

anim.animationTarget = animTarget;

anim.play();

}

This use of ActionScript was necessary because it was the only way to pass
the property and value arguments into the animation (because MXML dec-
larations call a no-argument constructor). But with SimpleMotionPath, we
can now declare our Animation in MXML instead:

(File: SimpleMotionPathAnimation.mxml)
<s:Animation id="anim" duration="500"

repeatBehavior="reverse" repeatCount="0"

animationTarget="{animTarget}">

<s:SimpleMotionPath property="x" valueFrom="0"

valueTo="{width - button.width}"/>

</s:Animation>

To play the animation, we just call play() from our button click handler:

<s:Button id="button" label="Move Me" click="anim.play()"/>

You can see from this example that motion paths allow us to take a more
declarative approach to animations and to create our Animation object in

Section 8.4 Chapter 8 · The Animation Class 172

MXML. We just need to set up our Animation object with appropriate prop-
erty values, including motion paths,2 and our animation is ready to go.

As another simple example, let’s extend our button animation to operate
in two dimensions, animating x to the right side of the window and y to the
bottom of the window, as seen here:

(Demo: SimpleMotionPathAnimationXY)

Two changes must be made to the previous example, as seen in the ex-
ample SimpleMotionPathAnimationXY. First, we need to declare another
SimpleMotionPath to hold the information about y, so our new Animation
declaration, including both motion paths, looks like this:

(File: SimpleMotionPathAnimationXY.mxml)
<s:Animation id="anim" duration="500"

repeatBehavior="reverse" repeatCount="0"

animationTarget="{animTarget}">

<s:SimpleMotionPath property="x" valueFrom="0"

valueTo="{width - button.width}"/>

<s:SimpleMotionPath property="y" valueFrom="0"

valueTo="{height - button.height}"/>

</s:Animation>

The second motion path ensures that the animation calculates new values
for y, just as it does for x. The only other thing needed is to grab those
calculated values and set them on the button object. I’ve added one more

2 Note that the motionPaths tag is implicit around the SimpleMotionPath tag, because
motionPaths is the default property of the Animation class. Default properties help make
MXML code more terse and readable, so I use them when I can.

Section 8.4 Chapter 8 · The Animation Class 173

line to updateHandler(), resulting in this new function that sets both x and
y properties:

private function updateHandler(event:AnimationEvent):void

{

button.x = event.animation.currentValue["x"];

button.y = event.animation.currentValue["y"];

}

SimpleMotionPath is like the name says: simple. It’s just about providing
from/to information to an animation for a particular property. But since this
is essentially what an animation does, animating a property from one value
to another, it is quite important and useful. Next we’ll see how to create more
complex and flexible animations using the MotionPath class.

The MotionPath class

The main difference between SimpleMotionPath and its superclass is that
MotionPath allows you to specify multiple values that a property animates
between over the course of an animation. Like its subclass, MotionPath has
a property variable. But instead of defining single from/to values, it takes a
set of Keyframe objects that define several points along a path, which is an
excellent segue to the next section.

The Keyframe class

The word keyframe comes from old cartoon animation, where each frame of
a cartoon was hand-drawn. The typical process for any particular scene or
action was that the senior animator would draw the “keyframe” poses which
really defined the action, and then the junior animator would draw all of the
frames in between (called, not surprisingly, “in-betweens”).

Similarly, in computer animation, we provide start and end values for
object properties and let the animation engine calculate all of the in-between
values. We’ve already seen this with our animation examples so far; we
provide the from and to values and the Animation class calculates the in-
between values. So really, keyframes are nothing new to us. It’s just that we
have only seen situations with two keyframes so far: one at the beginning
and one at the end.

Section 8.4 Chapter 8 · The Animation Class 174

But for more flexible animations, you really want the ability to define
potentially several values along the way during an animation. In this model,
each value you define can be considered another keyframe, and the intervals
in between these keyframes are the times in between when the values are
calculated by the animation.

In order to define these keyframes, you need some kind of data structure
to hold the information. Each keyframe is really a time/value pair; it defines
the time at which you want the property to have that value. Our earlier use
of implicit keyframes, with the from/to pairs, did not need a time property
because the time for each keyframe was assumed. The first keyframe was at
time = 0 and the second was at the full duration of the animation. But when
you have a sequence of several keyframes, you need to know for each one
the time at which the property should be at that value. The Keyframe class
is that data structure.

The Keyframe class has these two properties:

time This is the number of milliseconds from the start of the animation.

value This is the value of the property at the given time.

An optional valueBy property exists, like the similarly named property in
the SimpleMotionPath class, that gives an offset of the value. The system
computes the actual value when the animation is run so that the value equals
the value at the previous keyframe plus this valueBy value. But typically,
keyframes just use a time/value pair.

An important point to note is that the value and valueBy properties
are Objects, not numbers. Most animations work on numeric values, es-
pecially GUI animations that are moving objects around or changing their
size or fading them in and out. But it is possible to create animations that
use non-numeric or complex data types. We will see more about this in the
Section 8.5. For now, just think of the value as a number because it’s easier
to think of it that way and the values are usually numbers anyway.

Now that we know what a Keyframe is, we can see how MotionPath
uses keyframes to define the animation of a given property. MotionPath has
a property, keyframes, which is a Vector of Keyframes, which define the
set of values that the property animates between over time. This is probably
easiest to see with an example:

Section 8.4 Chapter 8 · The Animation Class 175

(Demo: MotionPathAnimation)

In this application, MotionPathAnimation, I have defined a complex
path for the button to follow. The code is mostly copied from the pre-
vious example, SimpleMotionPathAnimationXY, which moved the but-
ton in a straight line from the upper left to the lower right with these two
SimpleMotionPath objects:

(File: SimpleMotionPathAnimationXY.mxml)
<s:SimpleMotionPath property="x" valueFrom="0"

valueTo="{width - button.width}"/>

<s:SimpleMotionPath property="y" valueFrom="0"

valueTo="{height - button.height}"/>

MotionPathAnimation moves the button over to the right, then down, then
back to the left with two MotionPath objects that animate the button’s x and
y properties in three stages:

(File: MotionPathAnimation.mxml)
<s:MotionPath property="x">

<s:Keyframe time="0" value="0"/>

<s:Keyframe time="500"

value="{width - button.width}"/>

<s:Keyframe time="1000"

value="{width - button.width}"/>

<s:Keyframe time="1500" value="0"/>

</s:MotionPath>

<s:MotionPath property="y">

<s:Keyframe time="0" value="0"/>

<s:Keyframe time="500" value="0"/>

Section 8.4 Chapter 8 · The Animation Class 176

<s:Keyframe time="1000"

value="{height - button.height}"/>

<s:Keyframe time="1500"

value="{height - button.height}"/>

</s:MotionPath>

We set up keyframes for x and y at time 0 to start our animation from the
appropriate values. In the interval leading up to time 500, the button moves
toward the right of the window. In the next interval leading up to time 1000,
the button moves down toward the bottom right of the window. And leading
up to the final interval at time 1500, the button moves back toward the bottom
left of the window. Like the earlier examples, this is a repeating/reversing
animation, so the button reverses course at the end and retraces its multiple
steps back to its starting position.

Note that although we use the same time values in this example for both
of these properties, this is not a requirement; it just depends on what you
want your animation to do. For example, if we eliminate the two Keyframe
objects in the middle for our y property, we get an animation that moves y
constantly downward, independent of where the first MotionPath is posi-
tioning the button in x.

The eventual goal for keyframe animation in MotionPath is to allow
more complex, curved animations, where you can define not only multiple
steps along the way, but also more complex paths that the objects take be-
tween those points. For now, objects travel in a purely linear fashion between
these points. So the advantage of having keyframes is more to simplify an-
imations that otherwise would have been composed of several linear anima-
tions into one single segmented path. This composition saves some code and
complexity over running several animations to do that task.3

We have now seen how to get more complex animations by using motion
paths to animate over several properties in parallel, and potentially through
several intervals along the way by using keyframes. Along the way, we men-
tioned that we could animate properties that were not just numbers. The next
section on interpolation shows how this is possible.

3 Keyframes actually came out of a Flex 4 SDK requirement that will be discussed in
Chapter 9 to combine multiple parallel transform effects into a single running animation.
This combination of effects is handled by creating multi-step keyframe sequences. Since
Flex needed this capability internally, it made sense to expose the functionality externally for
other developers to use, to create more complex multi-step animations of their own.

Section 8.5 Chapter 8 · The Animation Class 177

8.5 Interpolation: when numbers just aren’t enough

Interpolation, or calculating values between other known values, is a critical
piece of an animation engine. Without the ability to determine those in-
between values, the animation engine would not be able to determine the
values to set properties to during an animation.

One of the important, new capabilities of effects in Flex 4 is the inter-
polation of non-numeric types. Prior to Flex 4, Flex animations assumed
and operated on purely numeric values. You could animate any property you
wanted . . . as long as it was of type Number. But sometimes you want to ani-
mate objects that aren’t numbers, like Points or Rectangles. Or sometimes
you may want to animate numbers, but in a way that doesn’t just calculate
the animated values by linear interpolation of the numeric endpoints. We
will see why this is sometimes necessary when we discuss color animation
in Section 9.5.

The tricky part with interpolating arbitrary types is that Flex has no idea
how to interpolate a random property type for which it is given start and end
values. If you give an animation a start Rectangle and an end Rectangle,
what should the system do? Or to make the problem even trickier, if you give
it an Object for each endpoint, how does it know what kind of Objects they
are, much less how to calculate in-between values for them?

To handle this functionality, Flex has introduced the concept of type in-
terpolation for effects, via the new IInterpolator interface. You can now
create animations with arbitrary objects and types by implementing this in-
terface. Since Flex cannot possibly know how to interpolate between any
arbitrary typed endpoints, you can tell it how to do so. You supply the inter-
polator and Flex calls your code to perform the interpolation. Flex handles
the rest of the animation calculations to determine the fraction elapsed of an
animation. Then when it is ready to turn that fraction into an actual value for
a given property, it calls the interpolator to calculate the value.

By default, Flex uses the built-in NumberInterpolator so you don’t
have to worry about supplying an interpolator for typical situations involving
numbers. But for any situation that requires custom interpolation, you supply
an interpolator and Flex calls that object to perform the calculation.

An example will help explain how this works. Take a look at the demo
application PointAnimation, seen here:

Section 8.5 Chapter 8 · The Animation Class 178

(Demo: PointAnimation)

This application is based on SimpleMotionPathAnimationXY, which
we discussed earlier. In the previous version of the code, we animated both
x and y using two separate SimpleMotionPath objects to describe their mo-
tion paths:

(File: SimpleMotionPathAnimationXY.mxml)
<s:SimpleMotionPath property="x" valueFrom="0"

valueTo="{width - button.width}"/>

<s:SimpleMotionPath property="y" valueFrom="0"

valueTo="{height - button.height}"/>

In the new version, PointAnimation, we use just one SimpleMotionPath
to achieve the same effect:

(File: PointAnimation.mxml)
<s:SimpleMotionPath property="location"

valueFrom="{startPoint}" valueTo="{endPoint}"/>

We need only one SimpleMotionPath because we are now animating a sin-
gle Point object, which encapsulates both the x and the y properties in the
target object:

[Bindable]

private var startPoint:Point = new Point(0, 0);

[Bindable]

private var endPoint:Point = new Point(200, 200);

Section 8.5 Chapter 8 · The Animation Class 179

Of course, Animation does not know how to animate Point objects by de-
fault, so we have to tell it how to do so. First, we need a custom interpolator,
which I’ve called PointInterpolator:

(File: utils/PointInterpolator.as)
public class PointInterpolator implements IInterpolator

{

public function interpolate(fraction:Number,

startValue:Object, endValue:Object):Object

{

var startPoint:Point = Point(startValue);

var endPoint:Point = Point(endValue);

return new Point(

startPoint.x + fraction *
(endPoint.x - startPoint.x),

startPoint.y + fraction *
(endPoint.y - startPoint.y));

}

public function increment(baseValue:Object,

incrementValue:Object):Object

{

var basePoint:Point = Point(baseValue);

var incrementPoint:Point = Point(incrementValue);

return new Point(basePoint.x + incrementPoint.x,

basePoint.y + incrementPoint.y);

}

public function decrement(baseValue:Object,

decrementValue:Object):Object

{

var basePoint:Point = Point(baseValue);

var decrementPoint:Point = Point(decrementValue);

return new Point(basePoint.x - decrementPoint.x,

basePoint.y - decrementPoint.y);

}

}

This class implements the IInterpolator interface, which has the three
functions implemented in our PointInterpolator class. The most im-

Section 8.5 Chapter 8 · The Animation Class 180

portant function is the first one: interpolate(). It is this function which
Animation calls every frame to calculate the animated value for the current
elapsed fraction of the animation. The function is called with three values:

fraction This is the elapsed fraction of the animation. For example, if
250 milliseconds has elapsed in an animation with a duration of one
second, then fraction equals .25.

startValue, endValue These are the values of the property at the start and
end of the animation.

Note that in the case of animations with more than two keyframes, as we dis-
cussed in the previous section, the fraction, startValue, and endValue
values passed into the interpolate() function are for the current animation
interval, not the overall animation.

Given these function parameters, we can calculate the current animated
value. The approach used in PointInterpolator’s interpolate() func-
tion is a typical parametric calculation in both x and y, where the animated
value is simply the start value, plus the fraction, times the difference between
the start and end values.

The other functions in PointInterpolator, and in any IInterpolator
implementation, are used when an animation is created with a “by” value,
such as the valueBy property of SimpleMotionPath. These functions en-
able Animation to calculate the actual start or end value given one or the
other plus the “by” value. Just as Animation doesn’t know how to calculate
interpolated values for arbitrary types, it doesn’t know how to calculate some
delta from a supplied start or end value if it does not understand the type. So
it relies on a supplied interpolator to perform that calculation.

Now that we have defined our interpolator, we create an instance of it
and give it to the Animation object:

(File: PointAnimation.mxml)
<utils:PointInterpolator id="pointInterpolator"/>

<s:Animation id="anim" duration="500" repeatBehavior="reverse"

repeatCount="0" animationTarget="{animTarget}"

interpolator="{pointInterpolator}">

<s:SimpleMotionPath property="location"

valueFrom="{startPoint}" valueTo="{endPoint}"/>

</s:Animation>

Section 8.5 Chapter 8 · The Animation Class 181

Here, we create an instance of our interpolator, pointInterpolator, and
then supply it to the Animation by setting the interpolator property. By
default, interpolator is set to an instance of NumberInterpolator, so
numeric interpolations happen with no intervention required. But by supply-
ing our own interpolator, we ensure that the animation calls our code to
figure out how to interpolate between our Point values.

The end result of the PointAnimation application is the same as the ear-
lier SimpleMotionPathAnimationXY example; it animates the button from
the upper left to the lower right. In fact, since we could do this animation
before with just two SimpleMotionPath objects acting on x and y individu-
ally, the extra effort in writing a custom interpolator to animate the Point
value doesn’t really seem worth it. Of course, the example was written
mostly to demonstrate how you might write and use a custom interpolator
when you actually need to, and the PointInterpolator was simple to un-
derstand. But in some cases, you might want to take this approach instead
of animating separate properties. For example, I recently wrote an applica-
tion where animating the size and location of an AIR application required
using a Rectangle interpolator on the window’s bounds. In that case, the
custom interpolator was needed because setting the individual x, y, width,
and height properties on the window caused the window to jerk around
on the screen as each property update was handled immediately by the na-
tive window. It worked far better to animate the bounds structure and set
the rectangular native window bounds structure atomically, which was only
possible by animating the more complex Rectangle structure instead of the
individual properties.

Interpolators are useful when a type is not
understood by the system or when you need to
combine multiple property animations into single
data structure animation.

Note that interpolators are not just used at the Animation level; you can
also supply a custom interpolator to a MotionPath or SimpleMotionPath
object. Each motion path being animated by a single Animation is respon-
sible for calculating the animated values for its property, so interpolation
happens at that level. So it is possible to animate, say, a numeric value like
the width of an object at the same time as animating a Point-based location

Section 8.6 Chapter 8 · The Animation Class 182

value inside the same Animation. Also, as with many of the other proper-
ties, Flex effects (which we will discuss starting in the next chapter) accept
custom interpolators, so you don’t have to dive down to the Animation level
to get custom interpolation.

We’ve seen how to handle animating arbitrary types in Flex animations,
which was one of the new capabilities introduced in Flex 4. Now let’s see
another new element in Flex 4 animations: easing.

8.6 Easing does it

In the real world, objects accelerate when they fall with gravity and decel-
erate when moving against gravity. Friction slows objects down. People ac-
celerate into a steady walking speed and decelerate when coming to a stop.
Vehicles accelerate and decelerate when starting and stopping. All of these
motions use non-linear timing. Anything that moves linearly in time, start-
ing, moving, and stopping with the same speed, looks unnatural and robotic.

If we want our applications to feel natural to our users, then we should
use non-linear timing in our animations. Otherwise, the animations simply
look and feel wrong, like a poor attempt to make something whizzy on the
screen, rather than a fluid motion that attempts to integrate with the user’s
real world experience.

Good animations use non-linear timing to achieve
natural motion.

Non-linear timing is the concept behind easing: the ability to change the
timing of how things are moved about on the screen. Acceleration, deceler-
ation, bouncing, springing; all of these and more can be applied to different
UI situations to get an appropriate feel for the application.

Easing was already a powerful capability in Flex effects prior to Flex 4.
You could pick one of several built-in easing functions and tell an animation
to use that easing function when calculating the target values for its objects.

Flex 4 has expanded on that earlier system to provide one that has similar
capabilities, but much more flexibility. The flexibility is both in terms of
the built-in easing classes that you can use by default and in a simple API
that you can implement to provide your own custom easing. First, let’s talk

Section 8.6 Chapter 8 · The Animation Class 183

about the classes that come with the Flex SDK and how to use them in your
applications. Then we’ll see how to implement your own easers if you want
to go beyond the classes that Flex supplies by default.

The ins and outs of easing

Some of the easing classes provide the functionality of easing in and/or out
of an animation. Or if you really want linear timing, the Linear class also
provides the capability of no easing at all. Whether and how much you want
to accelerate in, decelerate out, both, or neither, one of these classes should
suit your needs.

Linear This class provides linear timing, which results in constant mo-
tion, if that’s what you need. Linear timing is equivalent to using
the elapsed fraction of an animation (effectively providing no easing
at all). However, two properties exist on this class that enable ac-
celerating into the motion (easeInFraction) and decelerating out of
it (easeOutFraction). Using these properties creates a motion that
starts off slow, accelerates to some constant speed, and then slows
down at the end.

Sine This class, the default used by Animation and the Flex effects that
we will see in upcoming chapters, provides a gentle acceleration into
the motion and deceleration out of it. Unlike Linear, this class pro-
vides easing that is always either accelerating or decelerating; there
is no period of constant motion. The easeInFraction controls the
percentage of time spent accelerating; the rest of the time is spent de-
celerating. For example, a value of .5 causes the object to accelerate
for the first half and decelerate for the second half (this type of motion
is sometimes called “ease in-out”). A value of 1 causes the object to
start slowly and accelerate all the way through the animation. And a
value of 0 causes the object to start out fast and decelerate throughout
the entire animation.

Power This class, like Sine, provides the ability to accelerate into and then
decelerate out of the motion, using the same easeInFraction to con-
trol how much time is spent in either phase. But an additional pa-
rameter, exponent, controls the shape of the acceleration/deceleration
curves. The internal calculation multiplies the elapsed fraction of the

Section 8.6 Chapter 8 · The Animation Class 184

animation by itself exponent times. The higher the exponent, the
greater the acceleration/deceleration curve. For example, an exponent
of 2 provides a very gentle quadratic acceleration/deceleration mo-
tion, which starts immediately and gradually accelerates, whereas an
exponent of 5 starts out much slower but accelerates much faster.4

Fun easing classes

The other two easing classes in Flex 4, Bounce and Elastic, provide a more
fun easing experience, causing objects to appear more lifelike as they bounce
against or wobble around the end value of an animation. These easing classes
are not appropriate for all situations, but they can help liven up a UI experi-
ence by making it seem more organic and enjoyable:5

Bounce This class causes the object to accelerate toward the end point and
bounce against it several times before stopping.

Elastic This class is like Bounce except instead of bouncing off the end-
point, it shoots past and wobbles around the end like it’s on a spring,
gradually decreasing its oscillations and stopping at the endpoint.

Lifelike motions like bouncing can add fun to an
application.

4 If you used the Flex 3 easing classes, you may wonder what happened to the old
Quadratic, Cubic, Quartic, and Quintic classes. Theses classes don’t exist explicitly
in Flex 4 effects, but their functionality has been subsumed into the single Power function.
By using the exponent property, you can achieve the same behavior as any of these classes.
But since exponent has no limit, you can also achieve any higher-order function instead of
being constrained to the previous level of Quintic. And by setting the easeInFraction
appropriately, you can achieve the old easeIn, easeOut, and easeInOut function behavior,
but since you can set the fraction to anything between 0 and 1, you have much more flexibility
for setting the inflection point between the accelerating and decelerating curves. So the old
functionality of these classes didn’t go away, only the classes did.

5 Whenever I give a presentation with a demo that uses a bounce effect, I never fail to
get smiles or even laughter from the crowd. There is something inherently fun about seeing
objects on the screen mimic lifelike behavior. Just adding a simple bounce to an object can
imbue it with life and happiness in a way that no other amount of smooth gradients, drop
shadows, and beautiful design can. I think this is one of the things that makes cartoons so
enjoyable; it’s inexplicably fun to see simple objects on the screen taking on the attributes
and physical interactions of objects in the real world.

Section 8.6 Chapter 8 · The Animation Class 185

To use any of these easing classes, you simply create the object, sup-
ply property values as appropriate, and then supply the instance to your
Animation object. We can see this in the BounceAnimation example:

(Demo: BounceAnimation)

This example is based SimpleMotionPathAnimation, we which dis-
cussed earlier. First, we declare our Bounce object:

(File: BounceAnimation.mxml)
<s:Bounce id="bounce"/>

Next, we supply this object to the easer property of our Animation. Note
that we have changed this Animation slightly from the version in the earlier
SimpleMotionPathAnimation example. For one thing, it animates the y
property of the button instead of x, and it uses a Bounce easer to give it
a gravity bounce feel as it animates toward the bottom of the window and
bounces against it. Also, we have removed the repetition behavior of the
button to make the example simpler (and because a repeating bounce simply
doesn’t look right):

<s:Animation id="anim" duration="1500"

animationTarget="{animTarget}"

easer="{bounce}">

<s:SimpleMotionPath property="y" valueFrom="0"

Section 8.6 Chapter 8 · The Animation Class 186

valueTo="{height - button.height}"/>

</s:Animation>

Our updateHandler() function was also updated slightly from the previous
version in order to handle animating y instead of x:

private function updateHandler(event:AnimationEvent):void

{

button.y = event.animation.currentValue["y"];

}

And that’s it: all we have to do to get any custom easing behavior is create
and supply an instance of the appropriate easing class to our Animation.
Internally, the Animation class calculates the real elapsed fraction of the
animation, then calls into its easer implementation (the default is Sine with
an easeInFraction of .5) to get the eased fraction, and then passes that
fraction into the interpolator to calculate the animated, eased value for that
animation frame.

The simple part of easing is writing the code that uses the classes. The
trickier part is picking the appropriate easing class for your situation. It helps
to be able to visualize the behavior of the easing classes, which is best done
by watching them in action.

Run the EasingSampler application, seen here:

Section 8.6 Chapter 8 · The Animation Class 187

The code is based on the earlier example, BounceAnimation, except for
the additional code to handle setting up the animation and animating a ball
instead of the button.6 But the logic of creating and running anim is the same
as before; we simply animate the y property of the ball.

The application allows you to set up an animation with any of the built-
in easing classes and to set the properties of those easers. Here we can see
the drop down list showing the easing classes that are available in the SDK
and in the application—Sine, Power, Linear, Bounce, and Elastic (None
indicates no easing):

Once a selection is made, UI controls will appear that allow us to set
the various properties of that easer. For example, if we choose the Power
easer from the drop down list, we see fields for both easeInFraction and
exponent, which allow us to configure these parameters for the resulting
Power instance:

6 Somehow, a ball accelerating toward the bottom of the window just looks better than a
button doing the same thing. Maybe because in the real world we grew up bouncing balls on
the ground and not UI controls.

Section 8.6 Chapter 8 · The Animation Class 188

Each of the possible easers is set up with data bindings to its properties
in the various input fields:

(File: EasingSampler.mxml)
<s:Sine id="sine" easeInFraction="{Number(easeInInput.text)}"/>

<s:Power id="power" easeInFraction="{Number(easeInInput.text)}"

exponent="{Number(exponentInput.text)}"/>

<s:Linear id="linear" easeInFraction="{Number(easeInInput.text)}"

easeOutFraction="{Number(easeOutInput.text)}"/>

<s:Bounce id="bounce"/>

<s:Elastic id="elastic"/>

The Animation is set up with no easer to begin with, but the current selec-
tion in the drop down list causes that property to be configured whenever the
value changes (including when the drop down list is first instantiated and the
value of None is set):

<s:DropDownList id="easingList" selectedItem="None"

width="90" change="easingChangeHandler()">

<s:ArrayCollection>

<fx:String>None</fx:String>

<fx:String>Sine</fx:String>

<fx:String>Power</fx:String>

<fx:String>Linear</fx:String>

Section 8.6 Chapter 8 · The Animation Class 189

<fx:String>Bounce</fx:String>

<fx:String>Elastic</fx:String>

</s:ArrayCollection>

</s:DropDownList>

Changes to the drop down list result in a call to easingChangeHandler():

private function easingChangeHandler():void

{

currentState = easingList.selectedItem;

switch (easingList.selectedItem) {

case "None":

anim.easer = null;

break;

case "Sine":

anim.easer = sine;

break;

case "Power":

anim.easer = power;

break;

case "Linear":

anim.easer = linear;

break;

case "Bounce":

anim.easer = bounce;

break;

case "Elastic":

anim.easer = elastic;

break;

}

}

This function first sets the currentState of the application, which is used
by the various input fields to determine whether they should be visible, ac-
cording to whether they are used by the currently selected item in the easing
list.7 Then the easer property of the animation is set according to the se-
lected item in the drop down list. The item is already configured with the

7 In case I didn’t make this clear in Chapter 4, I love states in Flex. In particular, I love
the new states syntax in Flex 4, which makes UI code like this so easy to write and read.

Section 8.6 Chapter 8 · The Animation Class 190

various settings in the input fields because its values are set through data
binding to those field values. So as soon as we set the easer property, we’re
ready to go. Now we just click on the ball and watch it move.

The first setting is “None,” which causes the animation to have a simple
linear ease with no acceleration or deceleration (this is the default behavior
for Animation if you pass in null for the easer property). You can see that
the motion of the object is very unnatural and just cries out for something
more lifelike, with some natural acceleration and deceleration.

Play with the application, get a feel for how the various easing behaviors
change the nature of the animation. Play with the duration field too; some
of the easing behaviors feel more natural with longer or shorter durations.
For example, Elastic easing benefits from a longer duration, probably be-
cause it is moving much more during the animation, so a short duration ends
up making it feel unnaturally fast.

No single animation behavior fits all situations;
experiment with different approaches to find the
motion that works.

Custom easing

Sometimes, the easing behavior you want for your application may not be
possible with the built-in classes. Maybe it’s a variation on the one of the
built-in classes, or maybe it’s something entirely new. In either case, provid-
ing your own custom easer for an animation is a trivial task. All you have to
do is write an implementation of the IEaser interface. The interface has just
one function that takes a single argument and returns a value:

public interface IEaser

{

function ease(fraction:Number):Number;

}

During each update of an animation, the Animation calculates the elapsed
fraction of its duration and passes that fraction, a number between 0 and
1, into its easer. That easer calculates a new fraction, based on its easing
function, and returns that value. Usually, the return value is also a value

Section 8.6 Chapter 8 · The Animation Class 191

between 0 and 1, although the Elastic easer returns values greater than 1
when it overshoots the endpoint to get its springy effect.

All you have to do in your custom easer is figure out how you want to
alter the elapsed fraction to get the kind of easing effect that you desire. For
example, look at the CustomEaseAnimation application:

(Demo: CustomEaseAnimation)

This application is exactly like the earlier BounceAnimation example,
except that instead of creating and using a Bounce easer, we use our own
easer, CustomEaser:

(File: CustomEaseAnimation.mxml)
<utils:CustomEaser id="customEaser"/>

<s:Animation id="anim" duration="1500"

animationTarget="{animTarget}"

easer="{customEaser}">

<s:SimpleMotionPath property="y" valueFrom="0"

valueTo="{height - button.height}"/>

</s:Animation>

CustomEaser is an implementation of IEaser, where I’ve written my own
ease() function to return an eased fraction. By default, the function simply
returns the fraction passed into the function:

Section 8.6 Chapter 8 · The Animation Class 192

(File: utils/CustomEaser.as)
public function ease(fraction:Number):Number

{

return fraction;

}

This behavior is equivalent to a linear ease, or no ease at all; the eased frac-
tion equals the elapsed fraction of the animation. No acceleration, deceler-
ation, or other timing behavior is applied. But the point of this example is
not the behavior of the default CustomEaser, but rather to be a shell for you
to write and experiment with your own easing behavior. For example, if you
want an easer that reverses the direction of the animation, you could rewrite
ease() to invert the value of the elapsed fraction:

public function ease(fraction:Number):Number

{

return 1 - fraction;

}

Or if you wanted some power function, you could multiply the fraction by
itself. For example, this function calculates a cubic, accelerating result:8

public function ease(fraction:Number):Number

{

return fraction * fraction * fraction;

}

You can really do anything you want in a custom easer to come up with
easing behavior that makes sense for your application. The main constraint
is that you should try to make your fraction map to values between 0 and
1, since the return value is used to calculate the amount of change between
the start and end points of the animation, and values wildly outside of that
range may not give a sensible result.9 But even this constraint is soft, as we
saw with the Elastic easer, which returns values beyond 1 as it wobbles

8 Of course, you don’t need to write your own easer to get this cubic functionality; just
use the built-in Power class with an exponent of 3. But you get the idea.

9 For example, imagine if you are animating a color value between black (0) and blue
(255). If your easer implementation returns a value of 2, the resulting color would be 510
(twice the end value). I don’t know what that would look like, but it wouldn’t be blue.

Section 8.7 Chapter 8 · The Animation Class 193

the animation past the end point. So go: edit the CustomEaser code, play
around with it, and have fun.

Like we discussed earlier for type interpolation, easing capability is not
limited to just the Animation class. You can supply custom easing to any
Keyframe object to get different easing during a single interval of a multi-
step motion path. And the easer object is also used at the effects level,
which is discussed in the coming chapters. The actual implementation of
the property and functionality is at the Animation level, but typical users of
easers supply them at the higher effects level, then the Flex effects pass them
down to the Animation objects they use internally.

8.7 The Animation class and Flex effects

The motion paths, interpolation, and easing capabilities discussed in this
chapter are on the Animation object. But this functionality is also found,
and more commonly used, at the Flex effects level. We covered these fea-
tures in this chapter to show how they work at the underlying Animation
level. But Flex effects expose these same features, and then supply them to
their underlying Animation objects.

In the upcoming chapters on effects, we will see how some of the effects
like Animate use motion paths directly to declare the properties that they
operate on. We will also see how the AnimateColor effect uses custom type
interpolation under the hood to animate values that cannot be interpolated
by straight numeric interpolation. And the easing behavior we discussed in
the previous section can be used on any effect by supplying a value to the
easer property to that effect. So while we showed all of these properties
in the context of the Animation class, which is probably a lower level of
Flex effects than most Flex developers use, you can and should apply these
same techniques to the higher-level Flex effects to get the same powerful
functionality for your applications.

Conclusion

In this chapter, we’ve seen some interesting aspects of the Animation class.
In particular, we’ve seen not only how Animation simplifies the code needed
to run animations, but also how it offers powerful features such as cus-
tom type interpolation and easing. In fact, this is exactly the purpose that

Section 8.7 Chapter 8 · The Animation Class 194

Animation serves for Flex effects; it is the underlying timing engine of those
effect classes.

Now that we’ve seen what’s going on at the Animation level, it’s about
time we talked about Flex effects, which is the subject of the next chapter.

Chapter 9

Flex Effects: The Basics

Flex effects are a set of classes providing task-based ways of animating tar-
get objects, like Move to move objects around, Resize to change objects’
dimensions, and Fade to fade objects in and out. The effects are, like many
Flex objects, declarative in nature, and make it easy to write MXML code
that creates the effect which can later be played on its target object.

You can think of Flex effects as combining the capabilities and API of
Animation, which we discussed in Chapter 8, with the functionality of actu-
ally setting animated values on target objects (which we had to handle our-
selves in those Animation examples). In fact, as I mentioned in the previous
chapter, Flex effects use the Animation class internally to run the actual ani-
mations that calculate the property values for the effects. But once the values
are calculated for each animation frame, the effect takes care of setting those
values on its target object so that you don’t have to get involved once you’ve
created and started the effect.

Flex effects also provide utility properties to make it easier to supply
effect-specific values. For example, since the Move effect is all about chang-
ing x and y values, it exposes the properties xFrom, yFrom, xTo, and yTo,
rather than making you create and populate the underlying motionPaths
object with a list of SimpleMotionPath objects that do the same thing.

Finally, Flex effects have extra logic built into them that builds on what
they know about Flex GUI objects. The Animation class is Flex-agnostic;1

it exists just to run a timer and calculate animated values. But Flex effects
use knowledge of Flex to create more useful and powerful animations. For

1 In fact, I built a library with Animation and its helper classes that has no dependencies
on the rest of the Flex toolkit and posted the resulting “Flexy” library to my blog.

Chapter 9 · Flex Effects: The Basics 196

example, the Fade effect can figure out whether to fade an object in or out
based on state information about the object’s existence or visibility.

Most of the work of effects is done by the Animate class, which is the
superclass of all of the Flex 4 effects. The subclasses of Animate provide
differing types and amounts of added functionality, from simple utility wrap-
pers that expose convenience properties to more complex systems to handle
effect-specific features. We will see some of the simpler and more common
effects in this chapter and then take a look at the more advanced effects in
Chapter 10. But first, here’s a little background.

Flex 4 vs. Flex 3 effects

The effects system in Flex was rewritten in Flex 4 to suit new requirements
for the platform: Flex needed to support animation of arbitrary objects and
arbitrary types.

Previously, except for some corner cases, Flex effects enabled anima-
tion on components only, calling specific functions on those components to
change their properties appropriately. For example, the Move effect in Flex
3 called the move() function on its target objects to change their (x, y)
positions. This worked fine in Flex 3, where UIs were constructed only of
components and such assumptions were always true.

But in Flex 4, different kinds of objects inhabit the UI, such as the new
graphic elements that we saw in Chapter 2. In addition, a new tool exists
for creating Flex applications, Flash Catalyst, which designers can use to
create and animate UI elements, including these graphics objects. It is no
longer possible to assume that animations target only components. Instead,
Flex needed a more general animation system that allows these other non-
component objects to be animated as well.

Also, the former effects system was somewhat constraining because it
could only animate specific types of values. In particular, it only dealt with
Number values. This works fine in the common case, where an application
animates numeric values such as the width or x location of an object. But
what if you want to animate a String object for some specific effect? Or
some more complex data structure object? Or some arbitrary type specific to
your application? Or what if your type is a numeric value but you want to
interpolate in-between values in a way that is not just a linear interpolation
between the endpoints? For example, colors are represented as unsigned in-
tegers, but interpolating colors should not be done by straight numeric inter-

Section 9.1 Chapter 9 · Flex Effects: The Basics 197

polation. Instead, the interpolator should break the color into its component
channels and interpolate those channels separately. If Flex 4 is to support a
wide variety of applications and appeal to designers for creating more rich
user experiences, clearly it needs to support animating arbitrary types as well
as arbitrary objects.

So the effects system in Flex 4 was written to support these goals, build-
ing upon a new framework that allows animation of arbitrary types and ob-
jects. The arbitrary type interpolation capability is provided by the underly-
ing Animation class that effects use, as we saw in Chapter 8. The ability to
animate arbitrary objects comes from the new Animate class.

9.1 The Animate effect

Animate is the superclass of the new effects classes in Flex 4, providing
common functionality that is used by the new effects, including the ability to
target arbitrary objects and types and the creation and playing of the under-
lying Animation class that we discussed earlier. Animate can also be used
directly to animate properties on target objects.

Creating and playing an Animate effect is easy: you provide one or more
target objects to be modified, the names of the properties on the targets
to be animated, and the values that the properties animate between while the
effect plays. You also set some optional parameters on the effect, such as
the duration that the effect should last. Finally, you call play() to start the
effect, or have the effect start automatically as part of a state transition, as
we saw in Chapter 5.

Let’s take a look at an example, AnimateButtons:

(Demo: AnimateButtons)

The Animate effect in this application operates on the x, y, and width
property of the button simultaneously:

Section 9.1 Chapter 9 · Flex Effects: The Basics 198

(File: AnimateButtons.mxml)
<s:Animate id="mover" target="{button}">

<s:SimpleMotionPath property="x"

valueFrom="0" valueTo="100"/>

<s:SimpleMotionPath property="y" valueTo="100"/>

<s:SimpleMotionPath property="width" valueBy="100"/>

</s:Animate>

The button object is defined as follows:

<s:Button id="button" label="Animate Me"

click="mover.play()"/>

Note that the underlying Animation uses motion paths as its mechanism of
supplying properties and values, as we saw in Section 8.4. Most of the Flex
effects, like Move and Resize, expose properties that wrap motion paths
internally. But the general-purpose Animate superclass uses motion paths,
and typically SimpleMotionPath, as the way to get that information. Check
out Section 8.4; supplying motion paths to Animate works exactly as it does
for Animation.

The button animates x between 0 and 100 during the course of the effect
by specifying both the from and to values for that property. y is animated to
a value of 100 from whatever it was before the effect began; the valueFrom
property is optional, as long as you want it to start from its current location.
And width is animated from whatever it is now by 100 pixels, so the size
effectively increases by 100 pixels during the effect. The difference between
these last two ways of specifying the animation amount is that the one using
valueBy always changes the value by the specified amount, whereas the
valueTo version always changes it to the value of 100, regardless of the
initial value.

This example also shows how to use transitions with Animate. As we
saw earlier in Chapter 5, transitions make it easier to declare an effect that
runs when states change, where the values being animated from and to are
picked up automatically by the effect when the transition starts. In this case,
we declare an Animate effect in a transition that animates the same proper-
ties as before, but without specifying the from/to values for the properties:

<s:Transition>

<s:Animate target="{button1}">

Section 9.1 Chapter 9 · Flex Effects: The Basics 199

<s:SimpleMotionPath property="x"/>

<s:SimpleMotionPath property="y"/>

<s:SimpleMotionPath property="width"/>

</s:Animate>

</s:Transition>

The object being animated, button1, is declared with state-dependent values
for the properties that we want to change between states:

<s:Button id="button1" label="Transition Me"

x="200" x.s2="300" y="0" y.s2="100" width.s2="150"

click="currentState=(currentState=='s1') ? 's2' : 's1'"/>

button1 defines different state values for x, y, and width. These values are
picked up by the transition when it runs to populate the from/to values of the
transition effect. Clicking on the button toggles between the two states and
plays the transition effect, resulting in an animation that is very similar to the
effect that is manually played on the button object.

You can see the buttons after both the manually-played effect and the
transition effect have run here:

Notice, in this example, that we are doing similar things with Animate to
what we did in the earlier Animation examples in the previous chapter, but
that the Animate effect handles the additional functionality of actually set-
ting the animated properties on our buttons for us. Animate and Animation
have similar functionality for animating properties between different values.
However, in the case of Animate, we now have a simpler way of specifying
the target object (button) and letting the Animate class handle the details
of setting the animated values on our object. Also, in the case of the button
animating between states using transition effects, the additional details of
specifying the different values to animate from and to are handled for us by
the state transitions mechanism.

Section 9.2 Chapter 9 · Flex Effects: The Basics 200

As we noted earlier, the main purpose of Animate is as the superclass
of the rest of the Flex effects. It provides the main capability that these
effects rely on: associating an Animation with the target objects and proper-
ties being animated and setting the animated values on the object over time.
Typically, you would not use Animate directly, but if you ever find your-
self wanting an effect that does not exist in the current set of effects, then
you may want to use Animate. You can achieve very custom effects just by
using Animate to directly animate an objects properties.2

Now that we’ve seen how Animate works, let’s look at some of the basic
Flex effects that subclass from it.

9.2 The Resize effect

The Resize effect is responsible for animating the width and height of its
target objects. It exposes from/to/by values through the properties named
widthFrom, heightFrom, widthTo, heightTo, widthBy, and heightBy.

At its most basic level, the Resize effect is not much more than a simple
wrapper around the from, to, and by properties of SimpleMotionPath ob-
jects for width and height properties of an Animate effect. In fact, that’s
essentially what’s going on under the covers; Resize bundles up the informa-
tion provided for its width and height from/to/by properties and creates the
appropriate SimpleMotionPath objects internally to run the animation.

However, Resize also provides more capabilities that account for Flex
layout constraints. This capability is not something that is apparent when
manually playing an effect, but is very important when the constraints of an
object change between states, as we will see in the following example.

Resize constraints

Layout constraints are styles or properties on objects that tell the Flex layout
manager how to position those objects. For example, you may want a button
to be positioned ten pixels away from the right border of its container, no

2 Prior to Flex 4, it was sometimes necessary to create a custom effect class if you went
past the built-in functionality of the existing Flex effects. And creating a custom effect class
was not an obvious task. But with the flexible functionality of the Animate effect in Flex
4, creating custom effects should be as easy as declaring and playing an Animate effect that
targets the appropriate object properties.

Section 9.2 Chapter 9 · Flex Effects: The Basics 201

matter what size that container is. Instead of specifying the x property di-
rectly, and having to recalculate it whenever the container size changes, you
simply specify a value for right:

<s:Button id="button" right="10"/>

In some cases, layout constraints specify not only the position of an ob-
ject, but also its size. For example, if you specify both the left and right
constraints of an object, the size of that object is dependent on its container’s
size. In this code, the button is always positioned ten pixels from the left of
its container and has a width equal to its container’s width minus twenty:

<s:Button id="button" left="10" right="10"/>

Let’s look at an example, ResizingConstraints. Suppose we want to
specify different values for the left and right constraints for the button in
different states:

(File: ResizingConstraints.mxml)
<s:Button id="button" left="10" left.s2="50"

right="10" right.s2="50"/>

In the first state, the button looks like this:

(Demo: ResizingConstraints)

In the next state, with different left and right values, the button looks less
wide, like this:

All we have to do to animate this change is to declare a Resize effect as
the Transition for this state change:

Section 9.3 Chapter 9 · Flex Effects: The Basics 202

<s:transitions>

<s:Transition>

<s:Resize target="{button}"/>

</s:Transition>

</s:transitions>

Note that the effect doesn’t specify any width or height information for the
Resize effect; the effect is able to infer these values from the change in the
layout constraints between the states.3 This is the kind of extra logic that is
built into the effects subclasses of Animate. On the surface, they are little
more than utility wrappers around the named-property animating capabilities
of the Animate class. But underneath, they each have extra logic which can
help create very powerful effects with very little code, by using what they
know about Flex GUI objects.

9.3 Transform effects

Three of the effects are grouped together, both logically and technically:
the transform effects Move, Rotate, and Scale. These three effects act on
their target object’s transform matrix. The transform matrix of a Flex ob-
ject is a data structure4 that determines the placement and orientation of the

3 In fact, you really should avoid specifying hard-coded animation properties when run-
ning effects within a transition. For one thing, the hard-coded values may be wrong in some
situations, such as animating from a value that doesn’t equal the current value of that property
when the effect begins. But also, some of the extra logic built into effects only kicks in when
no hard-coded overrides for these properties are supplied. The effects code assumes that if
you supply specific values you must know what you’re doing, and you’ll lose the benefit from
some of the automatic logic that might apply otherwise. So just follow this general rule: for
effects that are run within transitions, set state-specific values on the object itself, not on the
effect. Then the effect picks up the right values automatically.

4 Specifically, this data structure is a matrix that holds information in its rows and
columns about where the object is and how it should be rotated and scaled. Matrices are
useful tools in computer graphics and are very commonly used for describing object place-
ment and orientation. When I first took Linear Algebra in college, I thought that matrices
were just some abstract notion in math meant to make me suffer an early and very dull death.
But in my first computer graphics course later on, I realized they serve a very important pur-
pose in graphics, as a handy and powerful utility for moving objects around (“transforming”
them) between different spaces. For example, matrix math makes it possible to take an object
defined in 3D coordinates and figure out where and how to draw it on the screen, by trans-
forming the points of the object from its local coordinates into the screen’s 2D coordinate

Section 9.3 Chapter 9 · Flex Effects: The Basics 203

object; the object’s (x, y) location, scale factors, and rotation are all han-
dled through this matrix. So although you typically set these attributes of an
object through these other properties (e.g., object.rotation = 45 to rotate
some object by forty five degrees), they affect the object’s underlying trans-
form matrix. Because the transform effects all act on that same underlying
transform matrix, they coordinate their transform changes together. These
transform effects are combined internally into one single transform effect, so
that whenever the object is updated during an animation, all of the effects of
movement, rotation, and scale are applied simultaneously in a single trans-
form operation, thus ensuring that the effects work together to reposition the
object instead of clobbering each others’ efforts.

Because the effects combine internally, some nuances particular to trans-
form effects exist that you should be aware of. Specifically, some effect
properties are shared between transform effects that are running in parallel.
The value of these shared properties is taken from the first of these effects to
be declared. It is good practice to declare the same shared property with the
same value on all effects running together, to make it obvious in reading the
code what is happening at runtime. The shared properties include:

transform center The properties that affect the point around which the tar-
get object is transformed, autoCenterTransform, transformX, and
transformY, are shared. You cannot specify that the transform center
is shared for a Rotate effect and not shared for a Scale effect running
at the same time; the single underlying transform effect uses the value
that was declared first.

repetition Because these effects are combined and run together, the notion
of repetition, as defined by the repeatCount and repeatBehavior
properties, is not always workable. If a single transform effect is run-
ning, then everything should work as defined. But if multiple effects
are combined, then repetition may not work as specified because of
the way that the effects are combined internally. It is a best practice
to hoist the repetition behavior up to a higher level, such as an owning
Parallel or Sequence effect.

system. If you’re interested in doing more with computer graphics and this is all new to you,
I’d encourage you to learn more about matrices and matrix math. But you might pick up a
graphics book on the subject and not try to learn it from my first Linear Algebra professor.

Section 9.3 Chapter 9 · Flex Effects: The Basics 204

The transformation of transform effects in Flex 4
Prior to Flex 4, there were also transform effects: Move, Rotate, and
Zoom. But in Flex 3, these effects operated independently. This re-
sulted in some artifacts where multiple effects on the same object run-
ning in parallel would sometimes trample each other.

For example, a Rotate effect in Flex 3 automatically rotates the object
about its center, but this means that the (x, y) position of the object
changes as a side-effect (since that point is usually at the upper-left of
the object, and that upper-left point changes as the object rotated). So if
a Move effect is running at the same time on the same object, attempting
to set the location of that upper-left point, the effects give conflicting
instructions to the object. One effect tells the upper-left point to rotate
about the object center and the other effect tells that same point to move
to a new location. Similarly, a Zoom effect around the object’s center
changes both the scale factor of the object and its location, which might
conflict with any other Move or Rotate effects running at the same time.

The transform effects in Flex 4 address this issue by combining the ef-
fects internally, making one overall effect that combines the instructions
of movement, rotation, and scaling into a single transform operation that
sets the target object at the right position and orientation at each update.

Along the way, there was also a rename: the new Scale effect takes
the place of the old Zoom effect. Although “zoom” is a good name for a
3D effect that zooms an object out to or away from the viewer, “scale”
seems to fit more with what’s going on in this effect: changing the 2D
scale factors of the object.

All of the transform effects subclass the AnimateTransform effect, which
has all of the machinery for actually combining the different effects inter-
nally and calculating the transform operation for each frame. You do not
call that effect directly, however; instead, you deal with the Move, Rotate,
and Scale subclasses. These classes expose utility properties to gather the
information they care about for each effect and feed that information into the
superclass for the appropriate transform animation. Let’s take a look at these
effects now.

Section 9.3 Chapter 9 · Flex Effects: The Basics 205

The Move effect

The Move effect moves a target object around the scene by changing its (x, y)
location. The effect exposes from/to/by properties for the x and y properties
of the target object in its xFrom, yFrom, xTo, yTo, xBy, and yBy properties.

Animating objects to different locations is a good
way to help the user stay connected to the
changing state of the UI.

Besides this simple exposure of the utility properties for x and y, the Move
effect, like the Resize effect we saw earlier, also handles situations with
layout constraints. For example, in the MovingConstraints application, a
button is positioned with a left constraint differently in two states:

(File: MovingConstraints.mxml)
<s:Button id="button" label="Animate Me"

left="10" left.s2="50"/>

In the first state, the button looks like this:

(Demo: MovingConstraints)

When the application changes to state s2, the button changes location:

Just like the earlier ResizingConstraints example, all we have to do
to animate this change between states is to declare a Move effect for the
appropriate transition:

Section 9.3 Chapter 9 · Flex Effects: The Basics 206

<s:Transition>

<s:Move target="{button}"/>

</s:Transition>

The button slides smoothly from an x position of 10 to 50 when the state
changes to state s2. Although the Move effect ostensibly deals only with the
x and y properties of target objects, it also infers changes on these properties
by looking at changes in constraint values.

Disabling constraints
In some situations, you actually want to ignore layout constraints during
an effect, or even disable them completely while the effect is running.
For example, if you want to move objects around in a container like
HGroup that is trying to arrange the objects in a specific order and
position, then you may need to tell the layout manager to stop doing that
while the effect is running. Check out the disableLayout property
on effects. It unsets layout constraints and tells the layout manager to
avoid running layout on the effect’s target’s container for the duration of
the effect. When the effect finishes, constraints are restored and layout
is allowed to run on the target object again.

The Rotate effect

The Rotate effect exposes properties for a single parameter: the rotation
angle of the target object. The angleFrom, angleTo, and angleBy proper-
ties tell the effect the rotation angle to rotate from, to, and (optionally) by.
The rotation happens by default around the upper-left point of the object—
its (x, y) point—but you can change this rotation center by setting the
autoCenterTransform property to true to rotate about the center of the
object or by setting transformX and transformY to rotate about a specific
point instead.

The Scale effect

The Scale effect exposes properties to scale a target object in both x and y.
Note this operation does not affect the width and height properties of the
object; instead, we are changing the scale factor by which those properties

Section 9.3 Chapter 9 · Flex Effects: The Basics 207

are multiplied to get the actual size of the object on the screen. By default,
the scaleX and scaleY properties of Flex objects are both 1 (no scaling
applied); this effect animates a change to those properties. The from, to,
and by properties of Scale are exposed through its properties scaleXFrom,
scaleYFrom, scaleXTo, scaleYTo, scaleXBy, and scaleYBy.

Transforming a button

Now that we’ve talked about the three transform effects, let’s see them in
action. Suppose we want to move, rotate, and scale an object around its
center all at the same time. We collect the different effects inside a Parallel
effect, which you will read more about in Chapter 11. For now, just think
of it as an effect that plays a collection of child effects simultaneously . . .
because that’s exactly what it does:

(File: TransformedButton.mxml)
<s:Parallel id="transformer" target="{button}">

<s:Move xTo="300" yTo="100" autoCenterTransform="true"/>

<s:Rotate angleBy="90" autoCenterTransform="true"/>

<s:Scale scaleXTo="2" scaleYTo="2"

autoCenterTransform="true"/>

</s:Parallel>

To play this effect, we set up the button to call its play() function:

<s:Button id="button" label="Transform Me" width="100"

click="transformer.play()"/>

Initially, the button looks like this:

(Demo: TransformedButton)

Section 9.3 Chapter 9 · Flex Effects: The Basics 208

After the effects run, the button looks like this:

Similarly, we can set up a transform effect to run when a state transition
takes place:

<s:Transition>

<s:Parallel target="{button1}">

<s:Move autoCenterTransform="true"/>

<s:Rotate autoCenterTransform="true"/>

<s:Scale autoCenterTransform="true"/>

</s:Parallel>

</s:Transition>

Note here, as usual, less instructions to the effects are necessary because
they pick up the appropriate from/to values from the state information on the
target object:

<s:Button id="button1" label="Transition Me" width="100"

x.s2="200" y="30" y.s2="100" rotation.s2="180"

scaleX.s2="2" scaleY.s2="2"

click="currentState = (currentState=='s1') ? 's2' : 's1'"/>

For both buttons, clicking causes the relevant effect to run, either manually or
in a transition. A couple of important things are worth noting in the transform
effect code in this example.

First of all, each effect has the same autoCenterTransform="true"
statement, telling the overall transform effect that all of the operations hap-
pen about the center of the object. As we said before, it’s important to set
this property to the same value in all effects that are run in parallel to make

Section 9.3 Chapter 9 · Flex Effects: The Basics 209

it clear to anyone reading the code that all of the effects share this property
value. In general, you probably want your rotating and scaling operations
to happen about this center, rather than the default upper-left point, so your
transform effects will probably use the same property/value setting. Only
if you are running a Move operation by itself can you ignore this property.
Whether that effect shifts the upper-left or middle point is irrelevant; either
way it is just a shift in the (x, y) position of the object by some offset value.
But in most cases of combining with rotation and scaling you should use
autoCenterTransform="true" on all transform effects.

The other thing to notice is not as obvious from the code, and is related
to our usage of autoCenterTransform="true": the x and y position of
the object in each state, and therefore the values picked up implicitly by the
transform effects, take into account the rotation center. For button1, as with
most GUI objects, the default (x, y) position of an object in the window is
the upper-left of that object. If we rotate or scale that object about its center,
that (x, y) position changes because that upper-left point changes its location
in the window. When we specify x and y for our object, we must take into
account any relevant rotation and scale operations to position it appropriately.
If we set these (x, y) values correctly in the states, any effects we run on the
object do the right thing to animate from and to these values.

To get a better idea of how the transform center and the object position
interacts, let’s look at the RotationLocation example, seen here:

(Demo: RotationLocation)

First, we set up a button to rotate about it’s (x, y) location, which is at its
upper-left. In this case, we don’t change its x and y positions between states,
because we don’t expect those values to change:

(File: RotationLocation.mxml)
<s:Button id="button1" label="Button1"

Section 9.3 Chapter 9 · Flex Effects: The Basics 210

width="100" height="50"

x="50" y="50" rotation.s2="90"/>

For the transition effect on this button, we run a Move and a Rotate on this
object. But we do not specify autoCenterTransform="true" because we
simply want to rotate about the default transform center, which is the object’s
(x, y) location:

<s:Parallel target="{button1}">

<s:Move/>

<s:Rotate/>

</s:Parallel>

For the next button, we specify similar state information, where the object’s
(x, y) location does not change between states:

<s:Button id="button2" label="Button2"

width="100" height="50"

x="150" y="50" rotation.s2="90"/>

In this case, we want the object to rotate about the object’s center, so we
specify our effects appropriately (note that this effect targets two objects,
since we use the same transition effect to operate on the third button, which
we haven’t seen yet):

<s:Parallel targets="{[button2,button3]}">

<s:Move autoCenterTransform="true"/>

<s:Rotate autoCenterTransform="true"/>

</s:Parallel>

Finally, we have a third button that we also want to rotate about its center,
but we specify different (x, y) values for its rotated state:

<s:Button id="button3" label="Button3"

width="100" height="50"

x="250" x.s2="325" y="50" y.s2="25" rotation.s2="90"/>

The transition effect for this last button is the same as that for button2, since
the Parallel effect that we saw earlier targets both objects.

Section 9.3 Chapter 9 · Flex Effects: The Basics 211

Here are the results of running the transition to state s2:

Button1 rotates correctly about its upper-left position and the rotated button
is located at the same (x, y) position, pinned in place as it rotates into its
orientation in state s2. Button2 looks very similar to Button1 in the s2 fig-
ure. But if you run the application, you see a difference when comparing the
animation of Button2 to Button1. A conflict exists between the state infor-
mation for the button, which does not specify a change in location, and the
transition effect requested. On one hand, we told the button that it should not
change x and y between states. But at the same time, we told the transition
effect on that object that it should rotate the object about its center. The net
effect is that the object attempts to follow both commands; the object tries
to rotate about its center while keeping its (x, y) position at the same point,
resulting in a rotation that is neither pinned at the upper-left nor operating
around the object’s center, but which ends up as if the object were pinned at
the upper-left.

Button3 correctly handles both parts of a rotation-about-center transi-
tion; it specifies the correct x and y values for state s2 for an object of its
dimensions that has rotated about its center. When the auto-centering effect
runs on this button, it correctly rotates about the object’s center during the
entire effect and ends up where it should, with its (x, y) position rotated into
a new location.

This dynamic of changing (x, y) locations between states due to rotation
and scaling side-effects may not be common in your code; scaling and ro-
tation are less common effects than moving objects, and you may not have
to deal with the situation often. But if you do, the trick is to figure out the
dimensions of the object before and after the operation and to set the (x, y)
location of the object appropriately, given the transform center that you ask
the effect to use.

Section 9.4 Chapter 9 · Flex Effects: The Basics 212

9.4 The Fade effect

The Fade effect is used to fade objects in or out of the scene, by animating
the object’s alpha property over time. The controls for this effect are simple;
you just set the alphaFrom and alphaTo properties to control the values that
alpha animates between.

Fading objects is a useful technique in state
transitions to smoothly add or remove objects that
are coming into or leaving the UI.

To fade an object in, set the alphaFrom property to 0 and the alphaTo
property to 1; this animates the object’s alpha property from completely
transparent (0) to completely opaque (1). Conversely, to fade an object out,
set alphaFrom to 1 and alphaTo to 0. Leaving out the alphaFrom property
fades to the specified alphaTo value from the object’s current alpha value.

Let’s take a look at an example. FadeButtons is an application showing
various examples of fading buttons in and out, seen here:

(Demo: FadeButtons)

Here is the code for FadeButtons:

(File: FadeButtons.mxml)
<fx:Declarations>

<s:Fade id="fadeInFrom0" alphaFrom="0" alphaTo="1"

target="{button}"/>

<s:Fade id="fadeOutFrom1" alphaFrom="1" alphaTo="0"

target="{button}"/>

<s:Fade id="fadeIn" alphaTo="1" target="{button}"/>

<s:Fade id="fadeOut" alphaTo="0" target="{button}"/>

</fx:Declarations>

Section 9.4 Chapter 9 · Flex Effects: The Basics 213

<s:HGroup>

<s:Button label="Fade In from 0"

click="fadeInFrom0.play()"/>

<s:Button label="Fade Out from 1"

click="fadeOutFrom1.play()"/>

<s:Button label="Fade In" click="fadeIn.play()"/>

<s:Button label="Fade Out" click="fadeOut.play()"/>

</s:HGroup>

<s:Button id="button" x="100" y="100"/>

Note that we use different techniques of fading in and out between the pairs
of Fade effects. The first two effects, triggered by the “Fade In from 0”
and “Fade Out from 1” buttons, fully specify the from/to values for alpha.
The other two, however, only specify the alphaTo property. By leaving out
alphaFrom, these effects implicitly specify that the alphaFrom value should
be determined dynamically when the effect starts. Whatever the button’s
alpha value is when the effect is played is the value that alpha animates
from. Not only is it easier to specify effects without starting values, but it
can make for smoother visual results as well, since starting from the object’s
current value may be better in general than starting from some value specified
in the effect (which may not always be the same as the current value the
object has, depending on what else is happening in the application).

For example, the “Fade In” button behaves exactly the same as the “Fade
In from 0” button, as long as the target button is already invisible. But if
the button is fully opaque already, then the “Fade In” button does nothing,
because it is being told to animate alpha from and to the same value (1). This
is probably the effect you want for fading operations; if you want to fade in
objects, you probably only want to do it when the objects are invisible to
begin with. The “Fade In from 0” button, on the other hand, always starts
from alpha = 0. If the object is currently opaque, this causes it to blink out
to invisible and then fade in.

Fade becomes more powerful when used in state transitions. It automat-
ically picks up information about whether a target object is becoming visible
or invisible and sets the alphaFrom and alphaTo properties automatically.
For example, here’s the code for the AutoFade demo:

(File: AutoFade.mxml)
<s:states>

<s:State name="s1"/>

Section 9.4 Chapter 9 · Flex Effects: The Basics 214

<s:State name="s2"/>

</s:states>

<s:transitions>

<s:Transition>

<s:Fade targets="{[button0, button1, button2]}"/>

</s:Transition>

</s:transitions>

<s:Button label="Toggle State"

click="currentState = (currentState=='s1')?'s2':'s1'"/>

<s:Button id="button0" label="Visible" x="100" y="0"

visible="true" visible.s2="false"/>

<s:Button id="button1" label="Alpha" x="100" y="50"

alpha="0" alpha.s2="1"/>

<s:Button id="button2" label="Existence" x="100" y="100"

includeIn="s2"/>

This application has two states, s1 and s2. The three buttons behave differ-
ently as the application switches between the two states: the Visible button
toggles its visible property, the Alpha button toggles its alpha property,
and the Existence button toggles its existence in the application via the
includeIn state syntax.

When the application first starts, as we can see in the following screen-
shot, only the Visible button is seen:

(Demo: AutoFade)

The Visible button is visible is because it is included in state s1 and has
its visible and alpha properties set to make the object visible in that state.
The Alpha button is not visible because its alpha value equals 0 in the start

Section 9.5 Chapter 9 · Flex Effects: The Basics 215

state, which makes it completely transparent. The Existence button is also
not visible at first because it is excluded from the container in state s1.

When the Toggle State button is clicked, the Visible button fades out
and the other two buttons fade in:

The Fade effect automatically does the right thing to all three buttons
during a state transition. When an object changes its visible or alpha
properties between states, or when it is coming or going from the GUI, Fade
automatically chooses the appropriate alphaFrom and alphaTo values (ei-
ther to 0 or 1, depending on whether it determines that the object is becoming
visible or invisible).

Note that the logic of Fade to make objects appear and disappear at the
right time during a transition may be dependent on the way that multiple ef-
fects are grouped. In general, a Fade effect running alongside other effects
in a Parallel effect does the right thing, but when running in a Sequence
effect (which we will see later), you may need to add an additional effect to
add or remove the object at the right time. We will see more about chore-
ographing this type of effect in Chapter 11.

9.5 The AnimateColor effect

The AnimateColor effect allows you to animate the color of a target object,
like a SolidColor or GradientEntry.

Hue and cry: color animation done wrong

You might assume, given the flexibility of the Animate effect and its ability
to target arbitrary objects, that you could just use the Animate effect directly

Section 9.5 Chapter 9 · Flex Effects: The Basics 216

on colors. And you could . . . but you probably wouldn’t get the result you
were looking for.

By default, Flex 4 effects animate properties using simple numeric in-
terpolation, deriving each animated value (v) with a parametric calculation
based on the starting value (v0), the ending value (v1), and the elapsed frac-
tion of the animation (f), like this: v = v0 + f * (v1 - v0). Colors can be
interpolated in this same numerical way since they are stored in unsigned
integers. However, these integer color values are really more complex struc-
tures, consisting of separate red, green, and blue values that just happen to
be stored in an integer for convenience. Interpolating between integer values
is not the same as interpolating between the colors that they represent; the
red, green, and blue components of the colors need to be treated separately.

As a simple example, here is a calculation of a color value half-way
through an animation from red to blue. The starting value of red is written
in hex as 0xff0000, which is an integer value of 16,711,680. The ending
value of blue is written in hex as 0x0000ff, which is an integer value of
255. The mid-way point between these values is 8,355,967, or 0x7f807f.
This result is a shade of green, with the green component (the 16 bits in the
middle, 0x80) being higher than both the red and blue components. This is
obviously not what we want—passing through a green value on the way from
red to blue just doesn’t look right. That hue has nothing to do with either the
starting or the ending color values we were trying to animate between.

RGB interpolation: color animation done right

If, instead, we break apart the starting and ending colors in the previous
example into their red, green, and blue channels and animate these values
separately, we get something more reasonable. The red value animates from
255 (0xff) to 0, the green value stays at 0 the whole time, and the blue
value animates from 0 to 255 (0xff). The mid-way point for all of these
components is red = 127.5 (0x7f), green = 0, and blue = 127.5 (0x7f). Given
these separate color values, we reconstruct the complete color by putting the
values in their proper places and get the value 0x7f007f, which is a magenta
color. This color is a blend of red and blue hues, which is more what we
would expect in this color animation.

The AnimateColor effect uses the RGBInterpolator class internally in
order to get visually correct color interpolation. RGBInterpolator breaks
the starting and ending colors into their component parts and animates each

Section 9.5 Chapter 9 · Flex Effects: The Basics 217

one separately, composing the results together at each frame to create the
animated color. These colors can be specified by hex values (e.g., 0xff0000
for red, 0x00ff00 for green, 0x0000ff for blue, and so on) or by common
color names for specific colors (such as red, green, and blue).

You can see these two approaches, using Animate and AnimateColor in
the AnimateButtonLabelColor example:

(File: AnimateButtonLabelColor.mxml)
<fx:Declarations>

<s:Animate id="colorAnimBad" target="{button1}">

<s:SimpleMotionPath property="color"

valueFrom="0xff0000" valueTo="0x0000ff"/>

</s:Animate>

<s:AnimateColor id="colorAnim" target="{button}"

colorFrom="red" colorTo="blue"/>

</fx:Declarations>

<s:Button id="button" label="Color My World"

click="colorAnim.play()"/>

<s:Button id="button1" y="30" label="Color Me Poorly"

click="colorAnimBad.play()"/>

Run the example and click on the buttons. You can see, when you click
on the “Color Me Poorly” button, that the colorAnimBad animation, using
Animate, animates the button label through several unrelated colors on the
way to its final blue color. Then when you click on the other button, you can
see how the AnimateColor animation changes that button’s color smoothly
from red through magenta to the blue color at the end.5

The arbitrary type system in Flex 4 allows you to do much more than
just color animation, as we saw in Section 8.5, but color interpolation is
a great example of why we need that capability in general. Users of this
effect don’t even need to know that such a capability exists, but it’s worth
noting because you may sometime want to take advantage of that capability
for completely different reasons, such as animating non-numeric types, or
complex data structures. Or you can just use the AnimateColor effect and
appreciate what the Flex framework does for you.

5 Note that you can get the Animate effect in this example to work exactly the same
as the AnimateColor effect. You simply declare an RGBInterpolator object and set the
interpolator property of the effect to that object. That’s essentially what AnimateColor
does under the hood. But as long as you have AnimateColor, why go to all that trouble?

Section 9.5 Chapter 9 · Flex Effects: The Basics 218

Example: animating gradients

Another thing that is worth noting about the AnimateColor effect is that it
also allows you to target arbitrary objects. We mentioned earlier the abil-
ity in Flex 4 to animate things that are not simply components, which was
a limitation of Flex effects in earlier releases. For AnimateColor, this ca-
pability is essential, because often the color property (which may even be
called something different than “color”) is stored on a separate object alto-
gether. For example, graphic objects like Rect and Ellipse are colored by
the values in their stroke and fill objects. And these objects may be informed
by GradientEntry objects, which are neither components nor graphic el-
ements. They are simply data structures that hold color (and other) data.
So the ability of Flex effects to target arbitrary objects is essential for effects
like AnimateColor to do their job; they have to set that color value no matter
where it’s stored.

As an example of setting the properties of arbitrary objects, let’s look at
the AnimatedGradient demo application. In this application, an ellipse is
given a gradient that is darker at the edge and lighter at the center, and the
properties of that gradient are animated. You can see the initial view of the
application here:

(Demo: AnimatedGradient)

I created the circle with a radial gradient to give it a 3D-like look. The
circle is meant to serve as a button, and when it is pressed by the mouse I
wanted to give it a kind of pushed-in appearance, so I needed to change the
colors in the gradient to give it a darker dimple in the middle, as seen here:

Section 9.5 Chapter 9 · Flex Effects: The Basics 219

Here is the code for the gradient-filled ellipse:

<s:Group mouseDown="currentState='s2'"

mouseUp="currentState='s1'">

<s:Ellipse id="sphere" x="50" y="50"

width="100" height="100">

<s:fill>

<s:RadialGradient id="gradient" >

<s:GradientEntry id="center" color="0x80f080"

color.s2="0x408040" ratio="0"/>

<s:GradientEntry id="middle" color="0x60a060"

color.s2="0x80f080" ratio=".5"/>

<s:GradientEntry id="edge"

color="0x404040" ratio="1"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

</s:Group>

Rather than switching immediately to the depressed state, I want the button
to have a more tactile feeling of being pushed, so I added a transition effect
to animate the gradient between the two states:

<s:Transition>

<s:Parallel duration="500">

<s:AnimateColor targets="{[center,middle]}"/>

</s:Parallel>

</s:Transition>

Section 9.5 Chapter 9 · Flex Effects: The Basics 220

Here, the transition effect targets those elements that have color properties.
Note that we don’t bother animating the edge entry because its colors do not
change between these states. There is no harm in doing so other than the
wasted effort by the effects engine, since it would just create an animation
that updates the property to the same value every frame.

Conclusion

In this chapter, we got our first introduction to Flex effects and saw some of
the more fundamental effects in the system. The effects we covered here, in
addition to the composite effects we will see in Chapter 11, probably consti-
tute most of the effects that are commonly used in applications. The ability
to move, resize, and fade objects, and choreograph them with other effects,
are fundamental to creating rich applications. When combined with state
transitions, this core set of effects provide a powerful toolbox of capabilities
to make rich user experiences and applications that make for happier and
more productive users.

In the next chapter, we will see some additional effects which take ad-
vantage of the new graphics capabilities introduced in Flash Player 10.

Chapter 10

Advanced Flex Effects

In the previous two chapters, I introduced Flex effects and discussed some
of the most common effects that are used to provide great user experiences
for applications. In this chapter, we’ll see more advanced features of effects.
Specifically, this chapter covers effects that build on recent1 capabilities of
the Flash player to provide advanced visual effects like pixel shaders and 3D.

10.1 The AnimateFilter effect

In Chapter 3, we discussed Flex filters and how they provide the ability to ap-
ply easy image processing effects to components and graphical objects: drop
shadows, blurs, glows, and fully customizable Pixel Bender shader filters can
be applied as filters to your objects to get great, rich effects. But these are all
static effects; either an object has a drop shadow or it doesn’t. Meanwhile,
we have this powerful animation system that can target arbitrary objects in
the system; why don’t we animate the properties of the filters to get some
dynamic image processing effects? That’s exactly why the AnimateFilter
class exists.

The AnimateFilter class animates any specified properties on a Flex
filter, allowing you to get dynamic effects like a pulsating glow, or a deep-
ening shadow, or very custom effects with Pixel Bender shaders. The effect
takes two objects to act on: a target object to which the filter is applied and
a bitmapFilter that is applied as a filter on the target object. It also takes a
set of MotionPath objects, like the Animate effect discussed in Chapter 9,
which specify the properties on the filter to be animated and the values they

1 As of Flash Player 10, which is the latest player version as of the release of Flex 4.

Section 10.1 Chapter 10 · Advanced Flex Effects 222

animate between. When played, the effect applies the filter to the object,
animates the properties on the filter, and removes the filter when it is done.2

Let’s see how this works in an example. One useful technique for draw-
ing a user’s attention to something on the screen is a glow around the object.
This can just be a static glow, to give the object a distinctive look. But to
really draw the attention of the user, you could make the glow pulsate. This
effect can be achieved by simply animating the translucency of the glow,
which is controlled by the filter’s alpha property. In this example, we ani-
mate a glow whenever the mouse is over the button, as seen here:

(Demo: GlowingFocus)

The animation is declared and played with this code in GlowingFocus:

(File: GlowingFocus.mxml)
<fx:Script>

private function focusHandler(event:Event):void

{

glowAnim.end();

glowAnim.play([event.currentTarget]);

}

</fx:Script>

<fx:Declarations>

<s:GlowFilter id="glow" color="0x00ffff"

blurX="8" blurY="8"/>

<s:AnimateFilter id="glowAnim" bitmapFilter="{glow}"

repeatCount="0" repeatBehavior="reverse">

<s:SimpleMotionPath property="alpha"

valueFrom="0" valueTo="1"/>

</s:AnimateFilter>

</fx:Declarations>

2 This nuance of adding and removing the specified filter means that the AnimateFilter
effect is appropriate for filter effects which are transient, not persistent. I’ll talk more about
this at the end of this section.

Section 10.1 Chapter 10 · Advanced Flex Effects 223

Meanwhile, we have a grid of buttons, each of which is declared like this:

<s:Button label="Button" focusIn="focusHandler(event)"/>

Whenever one of the buttons has the focus, instead of having the default
focus object provided by the standard Flex button, the button pulsates with
the glow we have defined. To make this work, we handle a focusIn event,
end the current animation (in case the glow is already running on a previously
focused object), and start the effect on the button that gained focus.

The effect is set up with a GlowFilter that has a cyan color and a blur
radius that is double the normal size, to make it more obvious. The effect
is set up to repeat indefinitely, reversing direction each time. It has a single
MotionPath, which operates on the alpha property, animating it from 0 to
1 (the reversing repetition behavior animates it back to 0 every other time).

Note that the alpha property that we are animating is the one on the
bitmapFilter, not the target object. This detail is distinct from the way
that other effects work, where the properties animated are on the target
object. Also note that we have not specified a target for the effect; this is
because we play the effect on different objects, depending on which button
receives the focus. Instead of using the target property on the effect, the
effect uses the value passed into the play() function.

Since AnimateFilter can deal with any Flex filter object, we can just
as easily point it at a ShaderFilter which uses a Pixel Bender shader. As
in the previous glowing button example, AnimateFilter can animate the
properties in a ShaderFilter and, therefore, in the underlying shader itself.
Let’s see how this works in an example:

(Demo: AnimatedCrossfade)

Section 10.1 Chapter 10 · Advanced Flex Effects 224

In the AnimatedCrossfade example, we have a simple image control
that shows a picture. When we click it, we want to show a different picture:

But rather than simply pop the next picture into place, we would like to
animate the change by cross-fading from the current picture to the next:

We accomplish the cross-fade effect by running an AnimateFilter effect
on a Pixel Bender shader that calculates the blend between the two images.

First, let’s see how the image control works. We load two sample im-
ages by embedding the images into the application. We also grab their
BitmapData references for later use in our shader effect:

[Embed(source="images/GoldenGate.jpg")]

[Bindable]

Section 10.1 Chapter 10 · Advanced Flex Effects 225

private var GoldenGate:Class;

private var goldenGateBD:BitmapData;

[Embed(source="images/Harbor.jpg")]

[Bindable]

private var Harbor:Class;

private var harborBD:BitmapData;

private function creationComplete():void

{

goldenGateBD = (new GoldenGate()).bitmapData;

harborBD = (new Harbor()).bitmapData;

}

We then create an Image component and set its source:

<mx:Image id="img" source="{GoldenGate}"

click="clickHandler()"/>

When the image control is clicked, the clickHandler() function is called,
which starts the animation. But first, let’s see what’s going on with the ef-
fect. The effect we use loads a shader that was created in Pixel Bender,
crossfade, which is similar to the example shader of the same name that
ships with the Pixel Bender toolkit. Here is the code for this shader, which
blends a start and end image in some calculated proportion:

(File: shaders/crossfade.pbk)
parameter float progress;

input image4 startImage;

input image4 endImage;

output pixel4 dst;

void evaluatePixel()

{

float4 startPixel =

sampleNearest(startImage, outCoord());

float4 endPixel =

sampleNearest(endImage, outCoord());

dst = mix(startPixel, endPixel, progress);

}

Section 10.1 Chapter 10 · Advanced Flex Effects 226

In this shader, we first declare our input and output parameters. progress
is the elapsed percentage of our animation, where 0 represents the start (at
which we would see just the start image) and 1 represents the end (at which
we would see only the end image). startImage and endImage are the start-
ing and ending bitmaps that the shader blends together. dst is the output of
this shader which is calculated in the evaluatePixel() function.

The functionality of the shader is very simple: it grabs the color value
at the current pixel from both the start image and the end image and then
calls the internal Pixel Bender function mix() which blends these two values
according to the proportion given by the progress variable. We can animate
the results of the shader by changing the value of progress over time via the
AnimateFilter effect.

Since the AnimateFilter class takes a Flex filter, we need to create a fil-
ter from our shader class. We can do this by loading the Pixel Bender shader3

into a ShaderFilter object, then using that filter in the AnimateFilter
declaration:

(File: AnimatedCrossfade.mxml)
<s:ShaderFilter id="crossfadeFilter"

shader="@Embed(source='shaders/crossfade.pbj')"/>

<s:AnimateFilter id="crossfader" target="{img}"

bitmapFilter="{crossfadeFilter}"

effectEnd="effectEndHandler()">

<s:SimpleMotionPath property="progress"

valueFrom="0" valueTo="1"/>

</s:AnimateFilter>

The AnimateFilter effect sets up an animation that changes the progress
parameter in the shader gradually from 0 to 1, which gives us the cross-fade
effect we want. But a couple of other details are necessary to make this effect
work properly. First, we need to set up the image parameters appropriately
when we run the effect. Next, we need to do some cleanup when the effect
is done, which happens in the effectEnd event handler.

The effect starts when we click on the image, which causes a call into
the clickHandler() function:

3 Note that the shader we’re loading is the .pbj file produced by the Pixel Bender Toolkit
from the source code above. See Section 3.8 for more information on creating shaders.

Section 10.1 Chapter 10 · Advanced Flex Effects 227

private var newImageSource:Class;

private function clickHandler():void

{

var bd0:BitmapData;

var bd1:BitmapData;

if (img.source == GoldenGate)

{

newImageSource = Harbor;

bd0 = goldenGateBD;

bd1 = harborBD;

}

else

{

newImageSource = GoldenGate;

bd0 = harborBD;

bd1 = goldenGateBD;

}

crossfadeFilter.shader.data.endImage.input = bd1;

crossfader.play();

}

This function does a couple of things. First, it caches information about
the image that we’re cross-fading to in newImageSource to be used later
when the effect finishes. Second, it supplies the endImage parameter to
the shader filter, so that the filter is all set up and ready to go. Note that
we are not supplying the startImage parameter; this is assumed by the
ShaderFilter to be the object that is being filtered. In our case, we leave
the image control (the filtered object) with its start image until the effect
finishes, so the image control itself supplies the startImage input that is
blended with the endImage value that we set up here. Finally, play() is
called on the crossfader effect we created, which animates progress on
the shader and performs the cross-fade.

When the effect starts, it applies the crossfadeFilter to the image
component, so that what we see on the screen is the filtered image, which
is the calculated result of our shader that is being animated. Underneath,
that image control still has the original source property that it had when it
was clicked, so it still thinks it is showing what we used as the startImage

Section 10.2 Chapter 10 · Advanced Flex Effects 228

parameter to the shader. We need to change that property when the effect
ends and calls the effectEndHandler() function:

private function effectEndHandler():void

{

img.source = newImageSource;

}

When this handler runs, our effect is finished. We change the source param-
eter of the image and the user sees the picture to which we cross-faded.

It’s worth noting that AnimateFilter is specifically useful for transient
filter effects—when you want to add a filter to an object at the start of an
animation, animate the properties of that filter, and then remove the filter
when the animation is done. For effects that simply want to animate the
properties of a filter that is already on an object, and which should stay on the
object when the effect is done, you should use the Animate effect discussed
in Chapter 9. The Animate effect is written specifically to be able to animate
properties on arbitrary objects, and it works like a charm on animating filter
properties. For an example of this technique, look at the PicturePerfekt
example in Chapter 3. The animation in that demo on the grayscaling shader
filter uses Animate to do the job.

Although AnimateFilter can be used for bitmap-based shader transi-
tions, a different effect exists that is especially designed for shader transi-
tions: AnimateTransitionShader.

10.2 The AnimateTransitionShader effect

Like AnimateFilter, the AnimateTransitionShader effect is for animat-
ing filters. But some important distinctions exists between these effects:
AnimateFilter is a general utility effect that animates any Flex filter, while
the AnimateTransitionShader effect is specifically for use with Pixel Ben-
der shaders and state transitions. This effect is usually used indirectly via its
simpler subclasses Wipe and CrossFade, but it’s worth understanding how
this class works in case you want to create custom shader transitions.

This effect has four properties, some of which are supplied automatically
when the effect is used in a transition:

Section 10.2 Chapter 10 · Advanced Flex Effects 229

shaderByteCode This is the pixel shader that the effect runs when it is
played. You can embed the resource and instantiate it to get the re-
quired ByteArray, as shown here for some fictional shader Foo.pbj:

[Embed(source="Foo.pbj",

mimeType="application/octet-stream")]

private static var FooShaderClass:Class;

private static var fooShaderCode:ByteArray =

new FooShaderClass();

Any shader used by this class is expected to conform to a particular
contract so that the class can use the shader generically. In general,
the shader needs to have two image inputs in addition to the first one
that is assumed by Flash (more on that later), a progress value that
is the animated value, and width and height parameters that describe
the dimensions of the input images. Here’s a bit more detail about
each of these:

progress This is a value between 0 and 1 that is animated by the
effect. Your shader should use this property to determine the
animated result, with 0 representing the start of the animation
and 1 representing the end.

image parameters There must be three image inputs. The first of
these is the input assumed by Flash as the object being filtered,
and this image can have any name. The shaders used by the ef-
fect do not actually use this parameter,4 but it is important to
reference this input in your shader code to avoid having Pixel

4 The reason for this is a bit beyond the scope of what we’re talking about here and
not something you need to understand beyond knowing that you have to supply this dummy
variable, but here’s the scoop. It is far easier and more correct to create a transition between
two bitmaps using only those bitmaps, not including the current state of the filtered object.
This is because the filtered object may change in other, unrelated ways in a state transition
that we do not want factored into the result, so we take it out of the equation by simply
using our input images for the shader result and ignoring the filtered object. But since Flash
assumes that you always want to use that object as the first input image, you have to put it in
your shader code and account for the fact that Pixel Bender tries to optimize-out any unused
parameters. It’s a bit of a hack, but the result is shaders that can be used interchangeably
between different transition effects and transitions that can smoothly perform the required
tasks without any oddities of the underlying object causing problems.

Section 10.2 Chapter 10 · Advanced Flex Effects 230

Bender optimize it out when it compiles the shader. For ex-
ample, you can query the pixel value from the current location,
outCoord(), from this input. The other image inputs must be
named from and to. An important caveat about these images is
that they must be the same size; shaders expect to work with in-
puts of the same size, so the AnimateTransitionShader effect
has the same limitation.

width, height These parameters hold the dimensions of the input
images (note again that both images must be of the same size).
Although you may not need these parameters in your shader, the
AnimateTransitionShader effect sets them when it is played,
so your shader must declare the parameters. Note that, like with
the unused first image input, you must reference these parameters
in your shader in order to defeat Pixel Bender’s optimization of
compiling out unused parameters, so even if you do not need
them you should reference them in your shader code.

If you want to see examples of how these parameters are declared and
used, check out the source for the CrossFade.pbk shader used by the
CrossFade effect in the Flex SDK.

shaderProperties This Object is a key/value map that holds any addi-
tional properties specific to your shader that should be set when the
effect starts. The shader properties discussed in the preceding para-
graphs are set automatically by the effect. But if you have any addi-
tional parameters in your shader that need to be set at runtime, this is
how you set the values for those properties. You can set these prop-
erties in the typical ways of setting map values on an object. For ex-
ample, if your shader has a direction parameter that you want to be
equal to 1 when the effect starts, you set that value like this:

shaderEffect.shaderProperties = {direction : 1};

bitmapFrom, bitmapTo These bitmaps are created and supplied automat-
ically when the effect is run in a transition (which is, as the effect’s
name implies, the typical use case). Usually, the effect is run on a
target object in a transition. When the transition effect starts, the ef-
fect captures a bitmap snapshot of the target object in its start and

Section 10.3 Chapter 10 · Advanced Flex Effects 231

end states. You can, optionally, run the effect outside of a transi-
tion, in which case you need to supply these bitmaps yourself. If
you need to capture a bitmap of your object, you might want to use
BitmapUtil.getSnapshot(), which is the function called internally
by the effect to capture a bitmap of components. Note, as we dis-
cussed above, that these from/to bitmaps must be the same size, since
the underlying shader expects to operate on bitmaps of the same size.

AnimateTransitionShader is available for you to use, supplying custom
shaders to create great shader-based effects. But it also exists to handle the
common functionality for two simple effects that you can easily use without
writing any shader code: Wipe and CrossFade. Just like their superclass,
AnimateTransitionShader, these effects are most commonly used in state
transitions, but they can also be used outside of transitions by supplying
bitmaps to the effects.

10.3 The Wipe effect

A common effect to run when changing the look of any object, like switching
between pictures in an image component or between screens of an applica-
tion, is a “wipe” effect. This effect gradually reveals the next version of the
object you are changing to by dragging an invisible line across the object.
On one side of the line is the old version and on the other side the new one.

A wipe effect is a useful technique when you want
to gradually reveal a different version of a GUI
object.

The Wipe effect takes a single direction parameter in addition to the
from/to bitmaps that we discussed in the previous section. The direction
takes one of four String constants defined in the WipeDirection class:
LEFT, RIGHT, UP, or DOWN (which are simply constants for the strings “right,”
“left,” “up,” and “down,” which may be easier to use from MXML code).
This property defines the direction that the wipe moves to reveal the second
object. For example, direction = WipeDirection.LEFT results in a wipe
that starts at the right of the object and proceeds to the left.

Section 10.4 Chapter 10 · Advanced Flex Effects 232

10.4 The CrossFade effect

The CrossFade effect provides an easy way to get a cross-fading transition
between different states of an object. In the AnimatedCrossfade example in
Section 10.1, the AnimateFilter effect was used to animate the progress
parameter of a cross-fading shader. But the Flex SDK comes with a built-in
CrossFade effect that makes even that small amount of effort unnecessary.

Cross-fading between two different states of a visual
element is a powerful technique to keep the user
engaged and informed of the changes between
the two versions.

To use the effect, create a transition with it that targets the object that
we want to cross-fade, and it takes care of capturing bitmap snapshots of the
target before and after and animating the underlying cross-fade shader. As
with the Wipe effect discussed earlier, it is not even apparent, or important,
that this effect uses a Pixel Bender shader to do its job. You just have to
declare it, give it a target, and put it in a transition and it handles all of the
rest of the details.

Let’s see an example of how this effect might be used. In Chapter 9,
we saw in the AnimatedGradient application how we might animate the
gradient of an ellipse to give it a 3D-like effect of being pushed in. In that
case, the gradient was centered around the middle of the object:

(Demo: AnimatedGradient2)

To get the animated effect, we just needed to animate the color property
of two of the gradient entries. Let’s take another swipe at that application, in
the AnimatedGradient2 demo.

Section 10.4 Chapter 10 · Advanced Flex Effects 233

In this version, the initial gradient is centered around a point in the upper-
right portion of the ellipse:

This offset gradient center gives the impression that the light source is
somewhere above and to the right of the viewer, which looks more realistic
than the previous attempt where the virtual light source came from the direc-
tion of the viewer. We offset the gradient center by using the rotation and
focalPointRatio properties of the RadialGradient fill for the ellipse:

(File: AnimatedGradient2.mxml)
<s:Ellipse id="sphere" x="50" y="50" width="100" height="100">

<s:fill>

<s:RadialGradient id="gradient" focalPointRatio=".5"

rotation="-45" focalPointRatio.state2="0">

<s:GradientEntry id="center" color="0x80f080"

color.state2="0x408040" ratio="0"/>

<s:GradientEntry id="middle" color="0x60a060"

color.state2="0x80f080" ratio=".5"/>

<s:GradientEntry id="edge" color="0x404040"

ratio="1"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

Note that the gradient shifts to being centered around the middle again in
state s2, because we want to give the impression that the button is being
pushed in the middle:

Section 10.4 Chapter 10 · Advanced Flex Effects 234

Here is the transition effect that we used before, which animates the gra-
dient entry colors:

<s:AnimateColor targets="{[center,middle]}"/>

If we run this effect now, we get an unpleasant snapping artifact as the
gradient center jumps suddenly from the upper-right to the middle at the
start of the transition. This abrupt change happens because the state change
causes the gradient center to get its new state value immediately upon the
state change occurring. The transition changes the gradient colors grad-
ually, by running AnimateColor on those properties. But any properties
not covered by those effects, including the gradient center, will immediately
adopt their new state values. We can handle this situation by animating the
focalPointRatio property as well:

<s:Parallel>

<s:Animate target="{gradient}">

<s:SimpleMotionPath property="focalPointRatio"/>

</s:Animate>

<s:AnimateColor targets="{[center,middle]}"/>

</s:Parallel>

This gives a smoother animation, moving the gradient center toward the mid-
dle at the same time as the gradient colors are changing. But I found that a
simple cross-fade gave an even better effect, simply blending the visual re-
sults of the two states. And its even easier to code:

<s:CrossFade target="{sphere}"/>

In this version, we don’t need to think about gradients, colors, color anima-
tion, focal point ratios, or anything else. We just use the CrossFade effect,
which captures the before/after images and blends them together to get a nice
cross-fading result instead.

As a final example of AnimateTransitionShader, let’s put together a
few of the techniques and effects described above to show how we might
transition between different components in an application. This code is from
the ShaderTransitions example, shown here:

Section 10.4 Chapter 10 · Advanced Flex Effects 235

(Demo: ShaderTransitions)

In this application, as in the earlier AnimatedCrossfade application, we
have a simple Image control that holds a picture. The source property of that
picture is declared through state syntax to have different values depending
on the state of the application, and when we click on the image it toggles
between the states:

(File: ShaderTransitions.mxml)
<mx:Image id="img" source="{GoldenGate}" source.state2="{Harbor}"

click="currentState=(currentState=='state1') ? 'state2':'state1'"/>

A button in the GUI is also affected by the state change. The button is used
to emphasize the fact that shader-based effects are not just for image objects:

<s:Button id="button" label="To Harbor"

width="90" label.state2="To Bridge"

click="currentState=(currentState=='state1') ? 'state2':'state1'"/>

When the application changes states, it animates the transition using different
shader-based effects, selectable through the radio buttons at the top of the
application.5

5 Note that this isn’t really the way you’d want to write a real application. Don’t make
the users of your applications choose their preferred user experience; just pick an appropriate
transition instead of having them decide. Some freedom is a good thing, but too much can
lead to anarchy, chaos, and a complete breakdown of a functioning society. You don’t want
to be responsible for that, do you? But for the purposes of this explanation, I wanted to have
the user select the transition to see the result.

Section 10.4 Chapter 10 · Advanced Flex Effects 236

Three effects are used in the transition, with one of the effects (Wipe)
having one of four variations depending on the user selection. These effects
are declared in the Declarations block:

<s:CrossFade id="crossfader" targets="{[img,button]}"/>

<s:Wipe id="wiper" targets="{[img,button]}"/>

<s:AnimateTransitionShader id="blackDip"

targets="{[img,button]}"

shaderByteCode="{FadeThroughBlackShaderClass}"/>

The CrossFade and Wipe effects just reference the effect name, assign
an id to be used elsewhere, and set the targets that they act on. The super-
class effect, AnimateTransitionShader, must also set shaderByteCode,
because it has no default shader (unlike the Wipe and CrossFade subclasses,
which internally load and set the shaders that they use). In this case, the
shader transitions its targets by fading them out to black and then back up
into the final state. This shader was loaded in script code like this:

[Embed(source="shaders/FadeThroughBlack.pbj",

mimeType="application/octet-stream")]

[Bindable]

private static var FadeThroughBlackShaderClass:Class;

The Pixel Bender code for that shader is in FadeThroughBlack.pbk.
Its parameters are just like those for the built-in CrossFade shader and its
evaluatePixel() function is quite similar, too:

(File: FadeThroughBlack.pbk)
void evaluatePixel()

{

// Acquire the pixel values from both images

// at the current location

float2 coord = outCoord();

float4 color0 = sampleNearest(src0, coord);

float4 fromPixel = sampleNearest(from, coord);

float4 toPixel = sampleNearest(to, coord);

float4 blackPixel = float4(0, 0, 0, 1.0);

float prog = progress;

if (progress < .5)

Section 10.4 Chapter 10 · Advanced Flex Effects 237

dst = mix(fromPixel, blackPixel,

(progress / .5));

else

dst = mix(blackPixel, toPixel,

((progress - .5) / .5));

// workaround for Flash filter bug that

// replicates last column/row

if (coord.x >= width || coord.y >= height)

dst.a = 0.0;

}

The logic in this shader code works as follows: assign the pixel val-
ues for the from and to images to fromPixel and toPixel, create another
pixel value to represent the color black (blackPixel), then calculate the final
pixel value. If the animated progress parameter is less than .5, which is less
than half-way through the animation, then fade to black by cross-fading be-
tween fromPixel and black. Otherwise, the animation is more than halfway
complete, so cross-fade between black and toPixel. The other code in the
shader is there mainly to keep Pixel Bender from optimizing-out the src0
and width/height parameters (as well as performing a boundary check on
the dimensions).

A single Transition is declared for the application:

(File: ShaderTransitions.mxml)
<s:transitions>

<s:Transition id="transition" effect="{crossfader}"/>

</s:transitions>

This transition uses the CrossFade effect by default, but selecting any of
the radio buttons changes the effect used by the transition. When the state
changes, the transition runs and the specified effect runs. For example, if the
user chooses the “Black” radio button, the handler for that selection sets the
transition effect accordingly:

transition.effect = blackDip;

To run the application, click on the desired transition effect radio but-
ton and then click on either the image itself or the button at the top right.
Note that both objects, the image and the button, transition smoothly to the

Section 10.5 Chapter 10 · Advanced Flex Effects 238

new state. Even though Pixel Bender is all about image processing, the ob-
jects it acts on don’t need to be images. Flex captures images from the be-
fore/after states of those objects and runs the shader on those bitmaps, giving
you smooth transition effects regardless of what the target object is. For ex-
ample, here’s a screenshot of the application during a transition using a Wipe
effect that moves to the right. Note that both the button text and the image
are being wiped to their new values:

I wouldn’t necessarily choose the FadeThroughBlack shader for most of
my button transitions (the other transitions are less jarring for objects that
don’t dramatically change between states), but you can choose the type of
shader effect you need for your situation. And if you need something that is
not provided in the default CrossFade and Wipe effects, then go ahead and
write your own shader and work directly with AnimateTransitionShader.

10.5 3D: A new dimension to Flex effects

In Flash Player 10, the player’s graphics capabilities added a whole new
dimension. Literally: Flash added the ability to position and orient objects in
the third dimension. Up until that point, Flash display objects (and therefore
Flex components) could only be positioned in the x/y plane; you could put
them anywhere you wanted to within the application window, but it was just a
2D surface. External libraries, like PaperVision, took on the work of figuring
out the 3D math and rendering the final pixels into the 2D Flash world, but
Flash itself only understood 2D.

Section 10.5 Chapter 10 · Advanced Flex Effects 239

But as of version 10, Flash display objects can be moved, rotated, and
scaled in three dimensions. Now a display object not only has a x and y
position, but also a z position. Setting z to a negative value makes it larger
(because it is closer to the user than the x/y plane) and setting it to a positive
value makes it smaller, further away from the user. When z is equal to 0,
which is the default, objects reside in the x/y plane as they always did.

Similarly, you can now rotate in 3D as well. The old rotation prop-
erty on objects is a rotation around the z axis (the axis going from the user
into the screen, orthogonal to the x/y plane). Display objects now also have
rotationX and rotationY properties, for rotating around the x axis (left to
right, as seen by the user) and y axis (top to bottom, as seen by the user). I
think of these rotations as the standard wave (rotation, or rotationZ), the
toddler wave (rotationX), and the queen’s wave (rotationY).

Finally, you can also scale in z with the new scaleZ property on display
objects. Just like the old scaleX and scaleY properties scale an object in
the x and y directions, scaleZ scales them in the new z direction, toward and
away from the user.

Flash does not currently offer a complete 3D modeling engine. In par-
ticular, Flash has no “Z buffer,” which means that if you draw 3D-positioned
objects over one another, they are not properly depth-sorted and you end up
with, well, interesting artifacts.6 But you can still get some amazing effects
with just the current capabilities.

With all of these new wonderful 3D graphics capabilities in Flash, it
made sense for Flex to add new effects to enable 3D animations. That’s why
Flex 4 introduced the Move3D, Rotate3D, and Scale3D effects.

These 3D effects are similar to their 2D counterparts (Move, Rotate, and

6 A Z buffer is used by 3D software and hardware to store the z value of each pixel that
is drawn. This approach allows correct depth-sorting on a per-pixel level because any pixel
that lies further away from the viewer than one already drawn into the Z buffer will not be
drawn. Without a Z buffer, each object is simply drawn to the screen in the order in which
is is rendered, with no regard to its 3D position relative to the other objects in the scene.
This approach can result in artifacts because objects that are further away may appear in front
of closer objects just because they were rendered after the closer objects. Working around
this limitation involves careful sorting of objects so that they are rendered in the correct
order, splitting some objects into multiple, smaller pieces to avoid rendering overlap issues,
or simply avoiding the issues entirely by performing simpler 3D tasks that do not result in
these kinds of artifacts. By the way, the Flash rendering approach is called the “painter’s
algorithm,” presumably because it is like painting coats of colors onto a surface, where the
last coat painted is the one that the viewer sees. Or maybe it’s because whoever named it
wasn’t very good at painting and had rendering artifacts all over the walls of their house.

Section 10.5 Chapter 10 · Advanced Flex Effects 240

Scale); they work together to provide cooperative transform effects. In fact,
they are all subclasses of the AnimateTransform class that we discussed
in Section 9.3. The 3D effects are all subclasses of AnimateTransform3D,
which is itself a subclass of AnimateTransform. This means that every-
thing we said earlier about transform effects sharing properties and running
together in a single transform effect instance holds true for 3D effects as well.
In addition, some new 3D projection properties in AnimateTransform3D are
similarly shared among these 3D effects.

Part of the 3D functionality provided by the Flash player for displaying
3D content provides a “perspective projection” calculation when drawing the
objects onto the screen.7 Projection is a standard process in 3D graphics ren-
dering where the system takes information about an object’s location in 3D
space and calculates where the object’s pixels should show up on the applica-
tion window in order to look like they really are 3D objects. Of course, how
that projection is calculated depends on several factors, including where the
“eye” is positioned that you are projecting toward, the distance of the view
plane from the eye, and the width of the view. All of these parameters define
what’s called the “view frustum.” In order to perform the 3D calculations in
the way that you want, Flex needs to know how you want that frustum set up
for the effects, so it exposes a few properties that you can set appropriately.
I’ll skip most of them, like fieldOfView and depthOfField and leave them
for readers that really want to explore 3D to a greater depth. But it is worth
calling out a few that you may have to deal with in your applications:

applyLocalProjection This property tells Flex to set the projection prop-
erties specified on the effect prior to running the effect. If this property
is false then the projection properties of the parent container (where
projection properties are set) are left alone. The default value is true,
so 3D effects always set projection properties by default. This is usu-
ally what you want for simple effects, because you probably also want
the projection centered around the object, which is the purpose of the
autoCenterProjection property.

7 A full discussion of 3D graphics and perspective projection is way beyond the scope
of this little Flex book. If you’re interested in knowing more about the topic, I’d suggest you
first check out the Flash API documentation on some of the new 3D graphics classes, like
PerspectiveProjection. And if that’s not enough, dive into great 3D graphics books like
the classic Computer Graphics: Principles and Practice tome by Foley, van Dam, Feiner and
Hughes. But you shouldn’t need all of this background just to understand the discussion and
examples covered here.

Section 10.5 Chapter 10 · Advanced Flex Effects 241

autoCenterProjection This property tells Flex to set up the projection
properties for the 3D effect to center the view around the target ob-
ject. If you are rotating the object about its center, then the effect
usually looks best when the projection is centered around the object
as well. Without this setting, the projection may cause the object to
look oddly distorted, depending on where the object is relative to the
current projection center (which, by default, is at the center of the par-
ent container). This property defaults to true since it is probably the
value you want for simple 3D effects like a flip rotation. Note that the
applyLocalProjection property must also be set to true for this
property to have any effect.

projectionX, projectionY If you do not want to center the projection
around an object, but want to set it to a particular location, use these
properties to set that point relative to the object itself.

removeLocalProjectionWhenComplete This property controls whether a
projection applied to the parent container, if applyLocalProjection
is true, is removed when the effect finishes. If not, the projection set
on the parent container persists after the effect ends. The default value
for this property is false, so the projection change persists by default.
This may seem counter-intuitive at first; you might expect any changes
made by an effect to be temporary. But depending on what the effect
does, you may want the projection to be persistent. For example, if
you rotate an object into the third dimension, say by forty five degrees
around the y axis, then removing the effect’s projection settings when
it finishes will probably make the object visually jump as the default
projection is re-applied. If the object stays positioned or oriented in
3D when the effect finishes and you want the object to look the same
after the effect as it did during the effect, then you should make sure
the local projection stays set on the parent.

One side-effect of setting the local projection that is not immediately appar-
ent until you hit it is that animating different 3D target objects inside the
same container will, by default, center the parent’s projection around each
target object, causing the other objects that are currently being projected to
jump as their projection is changed. This is to some extent just a limitation
in the current 3D system that you need to work around; each container just
has one projection center, and all of the children of that container share it. A

Section 10.5 Chapter 10 · Advanced Flex Effects 242

couple of workarounds exist for this situation: put 3D objects in their own
containers (or at least in containers that do not have other objects that will be
transformed in 3D), or set the applyLocalProjection property to false
for all of the 3D effects running on the container’s objects so that they all
use the default projection center of the container instead of setting their own
projection when they run.

As with the transform effects that we discussed in Chapter 9, these pro-
jection properties are shared in the single underlying instance of the 3D trans-
form effects. This means that when multiple 3D effects are running in paral-
lel on the same target object, they share the projection properties set on the
first such effect. So it is best to set the same values for these properties on all
3D effects to make it clear when reading the code what is actually happening
at runtime.

Another important detail about the 3D effects is that they change the de-
fault value of a property in the AnimateTransform effect that we haven’t
talked about yet: applyChangesPostLayout. This property is false by
default for the 2D transform effects because you typically want to trans-
form objects in a layout-friendly way. For example, if you Move a but-
ton, you want the layout manager for the button’s container to figure out
how to place the button given its new location. But the situation is differ-
ent for 3D: the Flex layout system does not understand 3D, so it doesn’t
know how to place items correctly given 3D positions and orientations. So
instead of moving and rotating the objects in the transform that the layout
manager uses, the objects are transformed post-layout. That is, all 2D trans-
forms are applied to the object normally, then layout occurs, then the post-
layout changes occur where the object may move further in 3D unbeknownst
to the layout manager. This functionality happens through the use of the
postLayoutTransformOffsets structure in Flex components and graphic
elements. We don’t need to go into more detail on this here, but it is worth
mentioning that the 3D effects all affect this structure by default, and are
therefore not affecting layout by default. So you may get different layout be-
havior by using Move3D to position an object in x and y than you get by using
Move to do the same operation. The value of applyChangesPostLayout is
the reason.

Now that we’ve seen what’s happening for the AnimateTransform3D
superclass and for 3D effects in general, let’s take a look at the actual 3D
effects that you might use in your code.

Section 10.6 Chapter 10 · Advanced Flex Effects 243

10.6 The Move3D effect

This effect moves an object in 3D, including the standard x and y, but also
the z dimension. The properties controlling the effect are similar to those in
the Move effect, but are extended to 3D:

xFrom, yFrom, zFrom These properties define the location that the effect
starts from. If not specified, the current location of the object is used
as the starting place.

xTo, yTo, zTo These properties define the location that the effect moves
the object to. If not specified, the current location of the object is used
as the end location (except in the case of state transitions, where the
end location may come from the state information).

xBy, yBy, zBy These properties define the amount in x and y to move the
object. Given a by value and either a from or to value, the effect
calculates the missing value.

10.7 The Rotate3D effect

The Rotate3D effect is similar to the 2D Rotate effect, but extended into
3D to rotate the target object around any of the three axes. One important
difference from the 2D effect is that no “by” property exists to specify an
angle offset to rotate by; this was done to allow more flexibility in the API
since this effect may allow rotation around an arbitrary axis in the future.
Locking in the “by” property into the current 3D rotation API may have
limited that functionality.

Properties are exposed for the rotation angle of the target object around
each of the three axes. The angleXFrom, angleXTo, and similar properties
for the y and z axes tell the effect the rotation angle and axis to rotate the
object from and to. The rotation happens by default around the upper-left
point of the object—its (x, y) point—but you can change this rotation center
by setting autoCenterTransform to true to rotate about the center of the
object or setting transformX, transformY, and transformZ to rotate about
a specific point.

Section 10.8 Chapter 10 · Advanced Flex Effects 244

10.8 The Scale3D effect

The Scale3D effect is much like the 2D Scale effect, but also animates
scaling in the z direction:

scaleXFrom, scaleYFrom, scaleZFrom These properties define the scale
factors from which the effect starts. If not specified, the current scale
factors of the object is used as the starting values.

scaleXTo, scaleYTo, scaleZTo These properties define the scale factor
to which the effect animates. If not specified, the current scale values
of the object are used as the end values (except in the case of state tran-
sitions, where the end values may come from the state information).

scaleXBy, scaleYBy, scaleZBy These properties define the amount in x,
y, and z to scale the object. Given a by value and either a from or to
value, the effect calculates the other value.

Note that an object that is only in a 2D plane (no point of the object is at
a different z point than any other point of the object) is not affected by a
scale in z, because no z dimension exists on the object that can be scaled.
An example of an object that could be scaled in z (with visible effect) is a
grouped object whose child objects have different z positions or orientations,
like a 3D cube.

3D animations can be used effectively for transient
effects like flipping an object over to reveal
information on the back, or moving a clicked
button in and out to give it more life.

Unless you are writing an application that really uses 3D, where objects
are really positioned and oriented in 3D (the “cover flow” interface in iTunes
come to mind), you may find yourself using 3D animations more for transient
UI effects, like flipping panels over to reveal something on their backside, or
more subtle 3D effects that draw the user’s attention. As an example of this
kind of temporary effect, let’s take a look at the ThreeDButtons example:

Section 10.8 Chapter 10 · Advanced Flex Effects 245

(Demo: ThreeDButtons)

This application shows a grid of 9 buttons, with radio controls at the top
of the window. Hovering the mouse over any of the buttons causes the 3D
effect selected by the radio button to run. The “Rotation” effect rotates the
button 360 degrees around the y (vertical) axis:

Section 10.8 Chapter 10 · Advanced Flex Effects 246

The “Movement” effect moves the button out toward the user and then
back into place on the x/y plane:

In both cases, the button runs the effect once and the button settles back
into place in 2D. The object is only in 3D for the duration of the effect,
demonstrating the kind of transient 3D effect that is typical with these 3D
transform effects.

The hover effect works by handling the mouseOver event for each button,
as we see in this declaration for one of the buttons:

(File: ThreeDButtons.mxml)
<s:Button width="100" height="100"

mouseOver="animateHover(event)"/>

The animateHover() function is defined in script code:

private var animatingTargets:Object = new Object();

private function animateHover(event:MouseEvent):void

{

if (animatingTargets[event.currentTarget] === undefined)

{

var effect:Effect;

Section 10.8 Chapter 10 · Advanced Flex Effects 247

if (rotationButton.selected)

effect = rotator;

else

effect = mover;

effect.target = event.currentTarget;

animatingTargets[event.currentTarget] = effect;

effect.play();

}

}

The logic with the animatingTargets object is a technique to ensure that
we do not repeat an effect on the same button while an effect is already run-
ning. Otherwise, we might either constantly restart an effect or run multiple,
conflicting effects on a button when the mouse moves out of and back over
that button, causing another mouseOver event. To avoid this, we temporarily
add our object as a key in the animatingTargets object map and avoid the
effect-starting logic if the object is already in the map.

To start the effect, we first check which radio button is currently selected
so that we know which effect to run. We then set the effect target to be
the current event target (which is the button whose mouseOver event we are
currently handling), add the target to the animatingTargets map, and play
the effect.

The effects are declared like this:

<s:Rotate3D id="rotator" angleYFrom="0" angleYTo="360"

autoCenterTransform="true"

effectEnd="effectEndHandler(event)"/>

<s:Move3D id="mover" duration="200"

zBy="-30" repeatCount="2"

repeatBehavior="{RepeatBehavior.REVERSE}"

effectEnd="effectEndHandler(event)"/>

The Rotate3D effect is set up to rotate the target object one full rotation
(360 degrees) around the y axis. The effect sets the transform center at the
center the object. By default, the object would rotate around its left edge,
which is not the visual effect we are looking for here. Finally, we register
a handler for the effectEnd event, where we remove the target object from
the animatingTargets map to free it up for future animations:

Section 10.8 Chapter 10 · Advanced Flex Effects 248

private function effectEndHandler(event:EffectEvent):void

{

delete animatingTargets[event.effectInstance.target];

}

The Move3D effect is slightly different because we need the effect to reverse
and repeat. Where the Rotate3D effect rotates all the way around to its orig-
inal orientation, the Move3D needs to reverse to get the object back to where
it started. We put a smaller duration on this effect because with the revers-
ing/repeating behavior we’re running the effect twice, so the default duration
of 500 milliseconds would make the overall effect too long. The movement
is specified by the zBy property, which causes the effect to move its target
object -30 in z (toward the viewer). Then the reverse animation takes the
object back 30 units in z to put it back onto the x/y plane. Finally, we handle
the effectEnd event, like we do with the Rotate3D effect, to remove the
target object from the animatingTargets map. Note that we do not need to
auto-center the transform like we do for the Rotate3D effect because we’re
simply moving the button; the center of transformation is irrelevant.

I wouldn’t suggest making all, or even any, of the buttons in your ap-
plications have either of these behaviors when the mouse hovers over them.
You don’t want to annoy your users with a UI that’s rotating all over the
place as they move the mouse around in the window:

Section 10.8 Chapter 10 · Advanced Flex Effects 249

But similar techniques that flip or move objects in 3D can be effective
and useful when applied appropriately.

Conclusion

In this chapter, we saw how to use some of the Flex 4 effects that take ad-
vantage of recent, powerful graphical capabilities of the Flash player. Since
Flex 4 effects can target any kind of object and any type of property, your
applications can now animate filters and 3D properties of your objects to get
very rich, animated experiences.

In the next chapter, we will wrap up our discussion of Flex effects with
composite and action effects, which are used when creating complex combi-
nations of multiple effects playing together.

Chapter 11

Effect Choreography

Compelling animations often use a combination of effects playing together.
This chapter is about the effects that are used to choreograph these sequences
of effects to get much more complex and interesting results than you can get
with just one effect at a time.

These choreographic effects come in two categories: composite effects,
which allow you to sequence together multiple effects, and action effects,
which perform atomic operations that are useful when used in combination
with other effects.

11.1 Composite effects

When I hear the term “choreography,” I think of dance, Bob Fosse, and a cho-
rus line of rhinestone-clad performers stamping the floor in rhythm. Without
choreography, it’s just a mess of bodies and costumes. When using compos-
ite effects, there’s a similar dynamic; lots of different, complicated things all
running simultaneously. A little careful choreography helps make that UI
dance (but without the rhinestones).

CompositeEffect, through its two subclasses Parallel and Sequence,
exists to help developers play multiple effects in an organized fashion. Often,
you want effects to play at the same time, or one after another, or in some
combination of the two. For example, animating an item’s insertion into
a list may consist of first moving the other items out of the way and then
fading the item in. Making a panel appear in a window may entail fading it
in while also sliding it in from the side. Interesting menu effects may consist
of first opening the menu background then fading in the items in the menu

Section 11.2 Chapter 11 · Effect Choreography 251

one by one. Many different possibilities exist to structure effects together,
but a mechanism is needed to organize the effects to play both together and
one after the other. That’s why the Parallel and Sequence effects exist.

The Parallel and Sequence effects share common elements:

childEffects This array holds the list of effects that are played when the
composite effect is played. The details of when they are played de-
pends on whether the composite effect is a Parallel or Sequence.
childEffects is the default property of the composite effects, so in
MXML code you do not have to use this property explicitly. Com-
posite effects are typically just declared with a set of effects inside of
them, like this:

<s:Parallel>

<s:Move/>

<s:Resize/>

</s:Parallel>

duration, targets These properties act just like they do in other effects,
except in this case they pass the values for these properties to each of
the child effects of the composite effect. Each child effect can over-
ride these properties to substitute their own duration or targets, but
otherwise they simply inherit these property values from the compos-
ite effect.

play() As with other effects, this function starts the composite effect. For
composite effects, this means that the child effects start playing in
the sequence appropriate for the type of composite effect that it is
(Parallel or Sequence).

Now for a closer look at the composite effects: Parallel and Sequence.

11.2 The Parallel effect: keeping it together

The Parallel effect plays all of its child effects simultaneously (in paral-
lel). When play() is called on the Parallel effect, all of the child effects
are started at the same time. The effects may still start at different times

Section 11.2 Chapter 11 · Effect Choreography 252

(if they have startDelays) or end at different times (if they have different
durations), but they will at least all play() at the same time.

Some complex animations are effective when
played simultaneously, such as fading and sliding in
a component, or moving several objects together,
or moving and resizing an object.

The Parallel effect is useful when you want to structure several effects
to play together, such as fading and sliding in a component, or moving sev-
eral objects together, or moving and resizing an object simultaneously. As an
example of this effect, let’s look at the PanelSlideFade application. When
the button is clicked in this application, a Panel moves in from the left side
of the application window. As the Panel moves, it also fades in.

Here is the code for the animation:

(File: PanelSlideFade.mxml)
<fx:Declarations>

<s:Parallel id="slider" target="{panel}">

<s:Move xTo="0"/>

<s:Fade alphaFrom="0" alphaTo="1"/>

</s:Parallel>

</fx:Declarations>

And here is the code for the controls:

<s:Button label="Send in the Panel" click="slider.play()"/>

<s:Panel id="panel" title="The Panel"

width="300" height="200" x="-350" y="40"/>

In this application, the Move and the Fade effects target the panel object,
they both run for the same duration (the default of 500 milliseconds), and
they play at the same time.So the panel slides in as it fades in, becoming
fully opaque as it settles into its final position.

The application initially looks like this:

Section 11.3 Chapter 11 · Effect Choreography 253

(Demo: PanelSlideFade)

When the button is clicked, the panel slides and fades into place:

11.3 The Sequence effect: you follow me?

As its name implies, the Sequence effect runs its child effects in sequence,
one after the other. The act of one child effect ending causes the Sequence
effect to play the next child effect in the series, continuing until all child
effects have played, at which point the Sequence itself ends.

Section 11.3 Chapter 11 · Effect Choreography 254

Some complex animations are more effective when
played one after the other, such as resizing or
clearing an area first to make room for a new
element that moves or fades in.

This effect is useful when you want to run effects in a series, or structure
the effects in a dependent fashion, so that one effect starts when another ends.
The technique is used for visual effects that are dependent, such as resizing
an empty space to make room for an item before then fading it in, or moving
components out of the way to make room for some other component.

As an example, suppose in our previous application that slid the panel
in from the side that there were other components occupying that space. We
still want those objects in the window, but located elsewhere in the UI. In this
case, we need to make room for the panel by moving the objects out of the
way. We could move them in parallel with the panel, but it might make more
sense, and make a more visually clean experience, to perform these actions
separately. That is, we want to move the objects out of the way in the first
part of the action to make room for the panel, then slide the panel into place.

I find this two-part approach better in cases where the objects do not have
the same exact motion. If the objects being shifted to make way for the panel
move the same distance and in the same direction as the panel, then moving
both sets of objects in parallel works. But in the code we’re about to see, the
buttons move one way and the panel moves another. It is less distracting and
noisy to the user to run these actions separately. This ordering of animations
is perfect for a Sequence effect.

When animations are performing very different
tasks, it is less noisy and distracting to run them in an
ordered sequence, rather than in parallel.

We can now see the power of using both Parallel and Sequence to-
gether as we structure some effects to run at the same time (the slide/fade of
the panel) and some to run one after the other (moving the buttons out of the
way first, then playing the parallel sliding effect). Here is some code from
the PanelSequenceParallelSlide application, seen in the screenshots on
page 255 and page 256:

Section 11.3 Chapter 11 · Effect Choreography 255

(File: PanelSequenceParallelSlide.mxml)
<fx:Declarations>

<s:Sequence id="shiftSlideSequence">

<s:Move target="{buttonGroup}" yTo="260"/>

<s:Parallel target="{panel}">

<s:Move xTo="0"/>

<s:Fade alphaFrom="0" alphaTo="1"/>

</s:Parallel>

</s:Sequence>

</fx:Declarations>

<s:Button label="Send in the Panel"

click="shiftSlideSequence.play()"/>

<s:HGroup id="buttonGroup" y="40">

<s:Button label="Some Button"/>

<s:Button label="Some Other Button"/>

</s:HGroup>

<s:Panel id="panel" title="The Panel"

width="300" height="200" x="-350" y="40"/>

Here is what the application initially looks like:

(Demo: PanelSequenceParallelSlide)

And here is what it looks like after the effect plays: the buttons are moved
out of the way and the panel fades and slides into place.

Section 11.4 Chapter 11 · Effect Choreography 256

In this example, note how no targets are declared on the Sequence effect
itself because its child effects act on different targets so it doesn’t serve any
purpose to provide default targets for the parent effect.

With composite effects, and the ability to nest them as seen in this exam-
ple, we can create all kinds of complex and interesting effects and carefully
control the timing of how and when certain effects are executed. Now let’s
see how to run other simple actions as part of these overall composite effects.

11.4 Action effects

Sometimes, in the middle of a complex animation enabled by the composite
effects we just discussed, you want to perform single, atomic actions. For
example, you might want to animate an object moving, then make it suddenly
disappear, then perform some other effect. For this kind of single-shot action,
we use action effects. Several action effects are available, but some that I find
particularly useful are Pause, AddAction, RemoveAction, SetAction, and
CallAction.

The Pause effect is about timing—waiting for a specified amount of time
or until a particular event fires. The AddAction and RemoveAction effects
handle adding and removing elements to and from their parent containers.
The SetAction effect sets a property value. And the CallAction effect
calls a function.

Section 11.5 Chapter 11 · Effect Choreography 257

These action effects are not complex; they perform a simple task and
then they’re done. And they are not like the composite effects covered in the
previous sections. Composite effects are about sequencing multiple effects
to perform some complex action. The action effects are just child effects
that run on target objects. But they are specifically intended to run within
composite effects, not on their own. The kinds of actions they perform could
easily be done without effects in normal procedural code. But they enable
useful functionality to occur in the middle of effects sequences by perform-
ing their actions in the context of larger animations. They help composite
effects do their job of enabling careful choreography of multiple animations.

11.5 The Pause effect: wait for it. . .

The Pause effect does exactly as you would think; it pauses for some du-
ration or until some event occurs. By itself, the effect is useless—it is only
interesting when combined with other effects in a Sequence.

First, let’s see how the effect works. Pause has three main properties:

target This property acts just like it does with other effects we have seen;
it specifies the target that the effect acts on. However, unlike other
effects, the Pause effect can run with no target. If the effect is simply
waiting for its duration to expire, then it needs no target object. But
if the effect is waiting for an event specified by eventName, then a
target object is required (because the target object is responsible for
dispatching that event).

duration This property specifies how long the effect runs. If no eventName
is specified, then the effect simply waits for this duration and then
ends. If eventName is set, then the duration equals the maximum
amount of time that the effect waits for that event, after which the
effect ends, regardless of whether the event was received. So the
duration acts as both a regular effect duration, specifying how long
the effect runs, and as a timeout, specifying how long to spend waiting
for the named event to be received.

eventName This optional property specifies the name of an event for which
the effect listens. If no eventName is supplied, the effect simply runs
quietly in the background until the specified duration expires, at
which time the effect ends.

Section 11.5 Chapter 11 · Effect Choreography 258

If an eventName is specified, then the target of the effect must be able to
dispatch events (it must implement the IEventDispatcher interface), be-
cause the effect internally adds itself as a listener of that event on the target.
The effect ends when either the event is received or the specified duration
elapses, whichever occurs first.

The only reason to ever use the Pause effect is if you want to wait in a
sequence of other effects for either a set amount of time or for some event
to occur. Then the effect provides a useful way to pause the execution of
other effects pending this occurrence. You can usually achieve that same
kind of time delay by adding a startDelay to the next effect, which causes
a delay for the specified amount of time before starting. But sometimes a
startDelay does not fit the purposes. For example, if you need to create the
reverse of some sequence of effects, a Pause is sometimes necessary to take
the place of the reverse of a startDelay.

As we discussed in Chapter 5, when using the autoReverse property
on a transition it is critical to have the reversing transition effects be exact
mirrors of each other, including the total duration.1 If one of the effects
begins with a startDelay, then a Pause in the reverse effect is the best way
to mirror this delay.

As an example, let’s look at the ReversingPause demo. This applica-
tion has a very simple transition that moves it’s target object between states.
However, the effect has a startDelay on it, making it a bit trickier to reverse
because of that asymmetric behavior. Here is the code for the transition:

(File: ReversingPause.mxml)
<s:Transition fromState="s1" toState="s2"

autoReverse="true">

<s:Move target="{button}" startDelay="250"/>

</s:Transition>

The application is seen here:

1 Note, as I mentioned when discussing autoReverse in Chapter 5, that the reverse
transition must actually exist; Flex does not automatically create a reverse transition for you.
So if you have a transition from state s1 to s2 with autoReverse="true", then it will only
reverse on the fly if there is some transition that is declared that will run from state s2 to s1.

Section 11.5 Chapter 11 · Effect Choreography 259

(Demo: ReversingPause)

The reverse transition is not simply a Move of the same 1000 millisec-
onds duration, nor one with a 1250 milliseconds duration that includes the
startDelay amount, nor one with a startDelay itself. None of these mir-
rors the original effect of waiting for 250 milliseconds and then moving the
target for 1000 milliseconds. Although some of these alternatives have the
same total duration, the object is not in the exact opposite place during the
effect, so reversing on the fly does not work correctly. Instead, we need a
reverse effect that moves the target for 1000 milliseconds and then waits at
the end. To get this result, we can use a Sequence and a Pause, in addition
to the Move:

<s:Transition fromState="s2" toState="s1"

autoReverse="true">

<s:Sequence target="{button}">

<s:Move duration="1000"/>

<s:Pause duration="250"/>

</s:Sequence>

</s:Transition>

We’ve shown using Pause for a simple delay in a composite effect. You can
also use the event-waiting capability of the effect to choreograph complex
actions that are dependent upon events in the system. For example, you could
have one effect start when another effect ends, via the EFFECT_END event on
the first effect. Choreographing effects is usually handled within the same
composite effect, such as a Sequence effect which runs one effect after the
other. But with the Pause effect, you could have completely separate effects

Section 11.6 Chapter 11 · Effect Choreography 260

that cause each other to run by waiting on events. Which approach you take
depends on your situation. If you can easily structure your effects together
in a single composite effect like Sequence, then that is probably the more
straightforward way to go. But if you find yourself with separate effects
that are dependent upon each other, you might instead use Pause and the
EFFECT_END event to create that dependency.

11.6 AddAction and RemoveAction

The AddAction and RemoveAction effects coordinate adding and removing
objects from a container. These effects are useful when choreographing a set
of actions that includes objects coming into existence or going away during
a transition. We saw in Chapter 9 that the Fade effect automatically handles
adding and removing a target object in the process of fading it in and out.
This is true when Fade is used in a transition either alone or as child of a
Parallel effect. But when Fade is used in a Sequence effect, or when
other effects are used to get an appearing/disappearing effect in a transition,
then the effects need some help to tell them when to add or remove their
target objects.

Let’s take a look at the AddRemoveTransition example. In this appli-
cation, we have two states and two transitions to animate between them. In
the first state, we see only a button on the screen:

(Demo: AddRemoveTransition)

Section 11.6 Chapter 11 · Effect Choreography 261

Clicking on this button toggles to the other state, in which we see the
same button over toward the right, a panel on the left, and several buttons
below the panel:

Here’s the code for the components:

(File: AddRemoveTransition.mxml)
<s:Button id="button" label="Toggle State" x.s2="310"

click="currentState = (currentState=='s1')?'s2':'s1'"/>

<s:Panel id="panel" title="A Panel"

width="300" height="300" includeIn="s2"/>

<s:HGroup width="300" y="310" id="button12Group"

includeIn="s2">

<s:Button id="button1" label="Button 1"

width="50%" includeIn="s2"/>

<s:Button id="button2" label="Button 2"

width="50%" includeIn="s2"/>

</s:HGroup>

<s:HGroup width="300" y="330" id="button34Group"

includeIn="s2">

<s:Button id="button3" label="Button 3" width="50%"/>

<s:Button id="button4" label="Button 4" width="50%"/>

</s:HGroup>

Section 11.6 Chapter 11 · Effect Choreography 262

Note, in this code, that we have separate includeIn values for button1 and
button2 and their containing HGroup. This is because we handle the buttons
separately in our transitions below, so we need to have them added to their
respective containers at different times.

Now suppose that we want to transition to the second state in the follow-
ing sequence:

1. Move the “Toggle State” button to its place on the right.

2. Scale the panel around its center from 0 to its normal size.

3. Move button2, then button1 into their places.

4. Fade in button3 and button4 together.

The first attempt at this effect might be something like this, where we simply
encode the above sequence of effects as described:

<s:Transition fromState="s1" toState="s2"

autoReverse="true">

<s:Sequence>

<s:Move target="{button}"/>

<s:Scale target="{panel}" scaleXFrom="0"

scaleYFrom="0" autoCenterTransform="true"/>

<s:Move target="{button2}" xFrom="-150"

disableLayout="true"/>

<s:Move target="{button1}" xFrom="-150"

disableLayout="true"/>

<s:Fade target="{button34Group}"/>

</s:Sequence>

</s:Transition>

But if you run this transition (which you can do in the application code by
deleting the various AddAction effects in the final version), you see that you
don’t get at all what you wanted. As soon as you click on the button, the
panel and all of the buttons pop into their final places. When the first effect
finishes moving the “Toggle State” button, the panel disappears and then
scales in from its center. Then buttons 1 and 2 disappear and slide into place
separately. Then buttons 3 and 4 blink out and fade in. Although you can see
the correct animations occur, the overall effect of transitioning objects onto

Section 11.6 Chapter 11 · Effect Choreography 263

the screen is completely ruined by the fact that everything in the second state
simply pops into place at the start of the transition.

The reason that the components suddenly blink in is that the states en-
gine automatically adds items that are in the next state prior to playing the
transition.2 If we do not want these components to appear at that time, then
we need to supply extra information to the transition effect to prevent it from
occurring, or to change when they appear. This is exactly the purpose of the
AddAction effect.

AddAction performs two tasks in a sequence: it removes its target object
from the parent (which the states mechanism has automatically added) when
the overall transition begins3 and then later, when the AddAction effect ac-
tually runs in the sequence, it adds that target object back in. This pair of
actions essentially mutes the normal operation of states to add the object in
when the state changes and delays that step until the AddAction effect runs.

To use AddAction, place the effect immediately before whatever other
effect you use to make an object appear during the transition. For example,
since we want our panel to scale into place, we place the AddAction imme-
diately before the Scale effect. Similarly, we run an AddAction on button2
just prior to moving the button, and so on. The resulting sequence of effects
looks like this:

<s:Transition fromState="s1" toState="s2"

autoReverse="true">

<s:Sequence>

<s:Move target="{button}"/>

<s:AddAction target="{panel}"/>

<s:Scale target="{panel}"

scaleXFrom="0" scaleYFrom="0"

autoCenterTransform="true"/>

<s:AddAction target="{button12Group}"/>

<s:AddAction target="{button2}"/>

<s:Move target="{button2}" xFrom="-150"

2 In fact, the state change has already occurred when a transition begins. The process
of starting the transition is one of the things that happens during the process of changing
the state. The fact that some of the objects are in their prior state is due to the transition
mechanism of restoring the values from the previous state so that they can be animated to the
final state values.

3 See the aside on single-threaded rendering on page 264; there’s a trick here to being
able to add and remove items without the user noticing.

Section 11.6 Chapter 11 · Effect Choreography 264

The magic of single-threaded rendering
You might have noticed that the objects are still being added by the
states mechanism before the transition begins. The AddAction effect
immediately removes them, but won’t the user notice if they are added
and then quickly removed? Well, no—this is the advantage of Flex’s
single-threaded rendering system. These things happen all in the same
sequence of instructions and are complete before control is turned back
over to Flash to render the next screen update. So even though we
may add a component to its container, thus making it displayable in the
window, the component won’t show up if we remove it before returning
control back to Flash. This trick of doing and then undoing actions
prior to returning control back to Flash is at the heart of how transitions
work in general. The state mechanism sets the next state values on all
of the objects, then transitions record these state values and roll back the
properties to their pre-state-change values prior to playing the transition
effect. Since all of this happens before returning from the state-setting
function, Flash is none the wiser and it’s as if nothing happened.

disableLayout="true"/>

<s:AddAction target="{button1}"/>

<s:Move target="{button1}" xFrom="-150"

disableLayout="true"/>

<s:AddAction target="{button34Group}"/>

<s:Fade target="{button34Group}"/>

</s:Sequence>

</s:Transition>

If you run this transition, the final code in the AddRemoveTransition ex-
ample, you see that our sequence of effects occurs just as we outlined previ-
ously. An extra AddAction handles adding button12Group prior to adding
and moving each of its buttons because we are handling the buttons sepa-
rately from their group.

Now for the reverse transition. We would like to have the objects animate
back out of this state in the opposite way that they animated into this state:

1. Fade out button3 and button4 together.

2. Move button1, then button2 off of the screen.

Section 11.6 Chapter 11 · Effect Choreography 265

3. Scale the panel to 0 into its center to make it disappear.

4. Move the “Toggle State” button back to its original place on the left.

Our trivial attempt at this sequence might look like this:

<s:Transition fromState="s2" toState="s1"

autoReverse="true">

<s:Sequence target="{button}">

<s:Fade target="{button34Group}"/>

<s:Move target="{button1}" xTo="-150"

disableLayout="true"/>

<s:Move target="{button2}" xTo="-150"

disableLayout="true"/>

<s:Scale target="{panel}"

scaleXTo="0" scaleYTo="0"

autoCenterTransform="true"/>

<s:Move target="{button}"/>

</s:Sequence>

</s:Transition>

But if you run this transition code (which you can do by deleting the other
effects in the final version of the code in AddRemoveTransition), you’ll see
that this is not what you get at all. In fact, you hardly get any animation.
All of the controls on the left blink out immediately, and finally after a long
delay the button on the right moves back to the left.

Once again, the normal states machinery has defeated our simple attempt
to sequence our effects. Just as we saw in the original state transition, the
states machinery sets up the visibility (or, rather, the existence) of all of the
components of the next state prior to running the transition. In this case,
that means that all of the objects that do not exist in the next state are auto-
matically removed from the GUI. The fact that we want to Fade, Move, and
Scale those objects out during the transition is irrelevant; they simply don’t
exist in the GUI when our transition begins.

This is where the RemoveAction effect comes in. Just like AddAction,
which tells the transition when to add its target object in, the RemoveAction
effect tells the transition when to remove its target object. At the beginning of
the overall transition, a RemoveAction automatically adds its target object
back to its parent container in that the states mechanism removed. Then,
when the effect is played in the sequence, it removes the target object.

Section 11.6 Chapter 11 · Effect Choreography 266

The typical use of RemoveAction is to place it after the effect which is
meant to animate the object out of view. For example, a RemoveAction
is placed after our Scale effect on the panel object so that it scales out
of view and is then removed from the GUI. With the addition of several
RemoveAction effects to keep our target objects around until we’ve had our
way with them, the transition looks like this:

<s:Transition fromState="s2" toState="s1"

autoReverse="true">

<s:Sequence target="{button}">

<s:Fade target="{button34Group}"/>

<s:Move target="{button1}" xTo="-150"

disableLayout="true"/>

<s:RemoveAction target="{button1}"/>

<s:Move target="{button2}" xTo="-150"

disableLayout="true"/>

<s:RemoveAction target="{button2}"/>

<s:RemoveAction target="{button12Group}"/>

<s:Scale target="{panel}"

scaleXTo="0" scaleYTo="0"

autoCenterTransform="true"/>

<s:RemoveAction target="{panel}"/>

<s:Move target="{button}"/>

</s:Sequence>

</s:Transition>

Note, in this code, that there is no RemoveAction after the Fade effect; this
is because auto-removal functionality is built into that effect (because Fade
is commonly used for this exact purpose, to fade objects out of view). In
the reverse transition, when objects are fading in, an AddAction effect is
required in order to delay adding the object until it is faded in. But in this
case, Fade automatically removes the object when it finishes.

If you run this reverse transition in the example, you see that it now
works both ways, and we get exactly the behavior of our two transitions that
we wanted . . . but we’re not quite done yet. If you run the forward transition
again, you’ll see that our panel does not reappear. What happened?

The way that the Scale effect is written in the transitions causes the
target object to always scale in from 0 and out to 0. But if the current scale
factor of our panel is 0, then scaling in from 0 simply leaves us with a 0-scale

Section 11.7 Chapter 11 · Effect Choreography 267

panel. Since our first scaling-out of the panel scales it to 0, then the next time
we try to scale it in, it’s just scaling from/to 0. We could rewrite the Scale
effect to manually scale the panel from/to 0 and 1, thus guaranteeing that the
panel always scales from 0 to 1 when it scales in. But another way to solve
this is to reset the scaling factor values when we’re done scaling it out, by
using the SetAction effect, described in the next section.

11.7 The SetAction effect: assign of the times

The SetAction effect performs a very simple task: it sets a named property
to a specified value.4 As with the other action effects, this effect is intended
for use in effect choreography, when you want to set some value during the
middle of a larger sequence of effects. If you just need to set a value outside
of an effect, you can do that much more simply than by running this action
effect. (Why run an effect to set some foo object’s x property to 5 when you
can simply call foo.x = 5?) But such procedural code is not as easy when
you are in the middle of an effects sequence, which is where SetAction
comes in handy.

SetAction is particularly useful for setting properties to appropriate val-
ues based on what other effects have caused, or what they need. For example,
you could set the height property of an object to zero at the beginning of a
sequence so that a later Resize effect could resize from zero, or you could
set the visible property of an object to false, so that it is then faded in by
a later Fade effect. Or you can restore a value to something sensible after its
value is changed as a side effect of some other operation, which we will see
in the following example.

In the AddRemoveTransition example of the previous section, we saw
how our transition ran correctly the first time, and ran in reverse correctly
after that. But the second time we attempted the forward transition, the panel
refused to show up because its scaleX and scaleY properties had been set
to zero by the Scale effect in the reverse transition:

(File: AddRemoveTransition.mxml)
<s:Scale target="{panel}" scaleXTo="0" scaleYTo="0"

autoCenterTransform="true"/>

4 Note that SetAction works just as well with style names as property names. In Flex
3, there were separate SetStyleAction and SetPropertyAction effects. In Flex 4, the
functionality of these two effects has been combined into the single SetAction effect.

Section 11.7 Chapter 11 · Effect Choreography 268

When the forward transition runs, the Scale effect on the panel does nothing
to counter that zero-scale, because it assumes that the target object has a
reasonable default scale factor that it is scaling up into:

<s:Scale target="{panel}" scaleXFrom="0" scaleYFrom="0"

autoCenterTransform="true"/>

We could fix by this writing this Scale effect to hard-code the scale factor,
like this:

<s:Scale target="{panel}" scaleXFrom="0" scaleXTo="1"

scaleYFrom="0" scaleYTo="1"

autoCenterTransform="true"/>

This solution would certainly work for the current situation, where we know
that our panel should be at a scale of 1 in x and y. But in some situations,
and with other properties, hard-coding the from/to values in effects is not a
“scalable” solution. It is better to let the object and the states mechanism
determine the correct “to” value (and usually the “from” value as well, al-
though here we are specifically trying to scale from a zero-dimension, so
using the “from” values is okay for this example). A better approach would
be to make sure that whatever causes the object to have the zero scale factor
resets the values to something reasonable when it finishes. We can do this
with a SetAction effect.

The SetAction effect takes the name of a property and some value
and assigns that value to the property when the effect is run. For example,
the following code is equivalent to foo.x = 5:

<s:SetAction target="{foo}" property="x" value="5"/>

Since the Scale effect in the reverse transition causes the problem with our
panel’s scale factors, we add SetAction effects to the sequence to reset our
scaling factors back to reasonable values when that effect is done. Including
the RemoveAction that we added after the Scale effect to remove the panel,
the new scaling code now looks like this:

<s:Scale target="{panel}" scaleXTo="0" scaleYTo="0"

autoCenterTransform="true"/>

<s:RemoveAction target="{panel}"/>

<s:SetAction target="{panel}" property="scaleX" value="1"/>

<s:SetAction target="{panel}" property="scaleY" value="1"/>

Section 11.7 Chapter 11 · Effect Choreography 269

Now you can run the code, toggle the states three times and . . . Argh! It’s
still not correct! Now we can at least see the panel scale in, but it happens
in the wrong place. As you can see in the following screenshot, the panel is
now positioned down and to the right of where it should be. In fact, you’ll
notice that the panel is located at the center of its original location. This is a
clue to the problem:

If you think about it, when we scale the panel out, we’re not only setting
the scale factor on the panel, but also its (x, y) location in the window. Since
the panel scales down around its center, it changes not only its scaleX and
scaleY properties, but also its x and y properties as a consequence. To fix the
problem, we need to correct this side-effect of the Scale effect by restoring
x and y to the upper left, via a couple more SetAction effects:

<s:SetAction target="{panel}" property="x" value="0"/>

<s:SetAction target="{panel}" property="y" value="0"/>

Now for the complete, correct code for the reverse transition:

<s:Transition fromState="s2" toState="s1"

autoReverse="true">

<s:Sequence target="{button}">

<s:Fade target="{button34Group}"/>

<s:Move target="{button1}" xTo="-150"

Section 11.8 Chapter 11 · Effect Choreography 270

disableLayout="true"/>

<s:RemoveAction target="{button1}"/>

<s:Move target="{button2}" xTo="-150"

disableLayout="true"/>

<s:RemoveAction target="{button2}"/>

<s:RemoveAction target="{button12Group}"/>

<s:Scale target="{panel}"

scaleXTo="0" scaleYTo="0"

autoCenterTransform="true"/>

<s:RemoveAction target="{panel}"/>

<s:SetAction target="{panel}"

property="scaleX" value="1"/>

<s:SetAction target="{panel}"

property="scaleY" value="1"/>

<s:SetAction target="{panel}"

property="x" value="0"/>

<s:SetAction target="{panel}"

property="y" value="0"/>

<s:Move target="{button}"/>

</s:Sequence>

</s:Transition>

Now, if you run the transition backward and forward, it continues to perform
as desired. The panel is properly restored after the reverse Scale operation
by the timely addition of the four SetAction effects, which reset the scaleX,
scaleY, x, and y properties appropriately.

11.8 CallAction: form versus function

The CallAction effect is a simple mechanism for calling a named function.
You can obviously do this in your procedural code quite easily and don’t
need an effect to do it for you. But this effect is useful when you need
to call a function in the middle of a sequence of effects. It is similar to
the SetAction effect, except where SetAction simply sets the value of a
property on a target object, CallAction calls any arbitrary function on its
target object.

The effect takes a target (just like most other effects), a functionName
string that specifies the function to be called on the target object, and an

Section 11.8 Chapter 11 · Effect Choreography 271

optional args array, which holds the arguments that should be passed into
the function.

Conclusion

This chapter introduced the concept of effect choreography. While compos-
ite and action effects are simple to use and understand, they add powerful
functionality to the overall set of Flex effects. They enable complex and in-
teresting effects when you combine multiple effects on multiple targets for
larger application transitions and animations.

The next chapter will discuss how various techniques covered throughout
the book can be combined to create a rich application user experience.

Chapter 12

Picture Perfekt

To put together just a small sampling of the techniques that we’ve discussed
in the book, this chapter will talk about the PicturePerfekt application.
This application revisits topics in graphics, filters, and animation to end up
with an image viewer that shows how these visual aspects of Flex 4 can be
used to create a rich application experience:

(Demo: PicturePerfekt)

Several subtle effects are happening in the application in addition to the
reflection, including drop shadows for the thumbnails, a glow around the

Section 12.1 Chapter 12 · Picture Perfekt 273

currently-selected thumbnail, and an animated grayscale effect as the mouse
hovers over and out of each thumbnail.

12.1 Reflection

The reflection effect is the same one that we developed in Section 3.9. In fact,
this demo uses the same ReflexionContainer class to view the images:

(File: components/ReflexionContainer.mxml)
<s:BitmapImage id="image"

source="{source}" smooth="true"

width="{imageWidth}" height="{imageHeight}"/>

<s:BitmapImage id="reflection"

source="{source}" smooth="true"

width="{image.width}" height="{image.height}"

maskType="alpha" scaleY="-1" filters="{[blur]}">

<s:mask>

<s:Group>

<s:Rect width="{image.width}">

height="{image.height}"

<s:fill>

<s:LinearGradient rotation="-90">

<s:GradientEntry color="white"

alpha="1"/>

<s:GradientEntry color="white"

alpha="0" ratio=".4"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

</s:Group>

</s:mask>

</s:BitmapImage>

The reflected image is produced by scaling a copy of the image nega-
tively in y. A more realistic version is produced by a combination of blurring
the reflection and using an alpha mask that makes the reflection gradually
more transparent as it gets further from the reflected image. Take a look at

Section 12.2 Chapter 12 · Picture Perfekt 274

Section 3.9 for more information on the technique, and look at the code in
the ReflexionContainer.mxml file in this chapter’s project for the details.

12.2 Drop shadows

The thumbnails in the PicturePerfekt application stand out from the back-
ground with the use of drop shadows, which we discussed in Section 3.5.
Rather than just using the same drop shadow filter for every thumbnail, I
customized each shadow to project in a different direction. I figured if the
main picture is reflecting straight toward the user, then the virtual light source
must be straight overhead. To give the thumbnails a bit more unique look,
I created a shadow for each one that is based on a local light source com-
ing from the middle and above. Notice how the thumbnail on the far left
casts a shadow down and to the left, whereas the one on the far right casts a
shadow down and to the right, and the thumbnail shadows in the middle are
somewhere in between, smoothly changing from left-cast shadows to right-
cast shadows based on where each thumbnail is relative to the middle of the
application window:

Shadows are added to the thumbnails in the function addFilters():

(File: PicturePerfect.as)
private function addFilters():void

{

for (var i:int = 0; i < thumbnails.numElements; ++i)

{

var img:Image =

Image(thumbnails.getElementAt(i));

var shadow:DropShadowFilter =

new spark.filters.DropShadowFilter();

shadow.blurX = 6;

shadow.blurY = 6;

shadow.quality = 2;

shadow.color = 0x808080;

Section 12.3 Chapter 12 · Picture Perfekt 275

shadow.distance = 5;

shadow.angle = 45 +

((thumbnails.numElements - i) *
90 / (thumbnails.numElements));

var newShader:Shader =

new Shader(new GrayscalerShaderClass());

var grayFilter:ShaderFilter =

new ShaderFilter(newShader);

img.filters = [grayFilter, shadow];

}

}

This code creates a DropShadowFilter and changes various properties from
their defaults to get a shadow that is larger, lighter, smoother, and further
away from the target object. Then the angle of the shadow is calculated
to get a shadow direction that is based on the thumbnail’s distance from the
center of the window.

Finally, the shadow filter is set on the thumbnail, along with the grayscale
filter, which we’ll discuss later.

12.3 Selection glow

When the user selects one of the thumbnails, its picture becomes the one dis-
played by the large image in the window. It is helpful to the user to give them
an indication of which thumbnail is selected (besides the obvious indication
that the picture in the thumbnail matches that in the larger, reflected image).

Visual indication of state in an application helps the
user quickly understand what is happening.

I use a large colored glow around the selected thumbnail to indicate the
current selection:

The glow is declared like this:

Section 12.3 Chapter 12 · Picture Perfekt 276

<s:GlowFilter id="glow" color="0xffaa00"

blurX="20" blurY="20"/>

When the user clicks a thumbnail, two things happen: the large image shows
the picture indicated by the thumbnail, and the thumbnail is given a glow.
These changes are made by the changePicture() function, which is called
when a thumbnail receives a click event:

private function changePicture(event:MouseEvent):void

{

var image:Image = Image(event.currentTarget);

picture.source = image.source;

if (currentThumbnailIndex >= 0)

{

var oldSelectedThumbnail:Image =

Image(thumbnails.getElementAt(

currentThumbnailIndex));

var glowIndex:int =

oldSelectedThumbnail.filters.indexOf(glow);

var oldFilters:Array =

oldSelectedThumbnail.filters;

oldFilters.splice(glowIndex, 1);

oldSelectedThumbnail.filters = oldFilters;

}

var filters:Array = image.filters;

filters.splice(1, 0, glow);

image.filters = filters;

currentThumbnailIndex =

thumbnails.getElementIndex(image);

}

The large image gets its new content by setting its source property to be
the same as that of the thumbnail. Then the glow filter is removed from
the thumbnail that it is currently filtering. Finally, the glow is added to the
list of filters on the clicked thumbnail, and we’re done. Note that we’re not
setting the thumbnail’s filters property to an array that just contains the
glow filter; this would remove the shadow and grayscale filters that are also
filtering each thumbnail. We have to add and remove the glow from each
thumbnail dynamically while leaving the other filters in place.

Section 12.4 Chapter 12 · Picture Perfekt 277

12.4 Animated colorization

Finally, I wanted some indication of user interaction with the thumbnails.
Whenever a UI event may occur due to some user action, it’s good to indi-
cate that possibility to the user. For example, when the mouse hovers over
a button, the button should change slightly in appearance to indicate that
pressing on the button will cause a click event.

Whenever a UI event may occur due to some user
action, like when the mouse hovers over a button
that may be clicked, it’s helpful to visually indicate
that possibility to the user.

In this case, I wanted each thumbnail to indicate that a mouse click would
result in the action of replacing the content of the large image with the picture
in the thumbnail. I achieved this effect by using the grayscale shader that we
saw in Section 3.8. To make the application feel more dynamic and alive, I
animated the effect.

Each of the thumbnails is grayscale by default; only the large, reflected
image is in color. This grayscale effect is accomplished with the grayscaler
Pixel Bender shader that we discussed in Section 3.8. We create a new filter
for each thumbnail to allow each filter to act independently and add it to the
filters of each thumbnail in addFilters():

var newShader:Shader =

new Shader(new GrayscalerShaderClass());

var grayFilter:ShaderFilter =

new ShaderFilter(newShader);

img.filters = [grayFilter, shadow];

Meanwhile, each image is declared in the MXML to handle mouseOver and
mouseOut events:

<mx:Image source="{GoldenGate}"

click="changePicture(event)"

mouseOver="mouseOverHandler(event)"

mouseOut="mouseOutHandler(event)"/>

Section 12.4 Chapter 12 · Picture Perfekt 278

When the mouse enters or exits a thumbnail, the mouseOverHandler() or
mouseOutHandler() function is called. These functions call, in turn, the
runColorizingAnim() function. The handlers are the same except for the
second parameter passed into runColorizingAnim(); this value determines
whether the animation will make the thumbnail color (1) or gray (0):

private function mouseOverHandler(event:MouseEvent):void

{

runColorizingAnim(Image(event.currentTarget), 1);

}

private function mouseOutHandler(event:MouseEvent):void

{

runColorizingAnim(Image(event.currentTarget), 0);

}

The runColorizationAnim() function creates and plays an Animate
effect to change the colorization property of the ShaderFilter:

private function runColorizingAnim(image:Image,

endVal:Number):void

{

var target:ShaderFilter =

ShaderFilter(image.filters[0]);

var runningAnim:Animate = currentAnims[target];

if (runningAnim != null)

{

runningAnim.stop();

delete currentAnims[target];

}

var anim:Animate = new Animate(target);

anim.duration = 250;

anim.motionPaths = new <MotionPath>[

new SimpleMotionPath("colorization",

null, endVal)];

anim.play();

anim.addEventListener(EffectEvent.EFFECT_END,

effectEnd);

currentAnims[target] = anim;

}

Section 12.4 Chapter 12 · Picture Perfekt 279

The runningAnim logic is to prevent running multiple animations on
the same target simultaneously. We store each animation in a Dictionary
object, currentAnims, with the target object as the key. If we detect an
animation with that target already in currentAnims, then we stop that ani-
mation and remove it before playing the newly requested animation on the
target. If the animation runs to completion, then a call to the effectEnd()
function removes the entry automatically:

private function effectEnd(event:EffectEvent):void

{

delete currentAnims[event.effectInstance.target];

}

After checking runningAnim, the code creates and plays a new Animate
effect, which is what we use here to animate the colorization parameter on
the shader filter. Rather than create a single Animate effect declaratively and
play it here, we create a new one each time. This dynamic creation enables
us to run and stop several different effects simultaneously, where a single
Animate effect would stop all running instances when stop() is called due
to the runningAnim logic above.

We create the effect to have a shorter duration than the default of 500
milliseconds; we want the colorization effect to be very quick. A single
SimpleMotionPath object is set up to animate the colorization property
on the shader filter, according to whether the thumbnail is being made color
or gray. The null parameter indicates that it will start from whatever current
value of that parameter is, and will animate to the endValue that was passed
into the function.

This animation changes the colorization property just like the ear-
lier Grayer example did in Section 3.8 with a slider. So as the user moves
the mouse into the thumbnail, the picture changes smoothly from grayscale
to color. And when the user moves the mouse out, the picture returns to
grayscale. This animation provides a nice indication that the thumbnail be-
ing hovered over is the one that will provide the picture content if clicked.

Conclusion

This chapter put together a small handful of the techniques that we discussed
elsewhere in the book, from graphic primitives to display the images, to re-

Section 12.4 Chapter 12 · Picture Perfekt 280

flection techniques using gradients and filters, to drop shadow filters for the
thumbnails, to glow filters for thumbnail selection, to animating a grayscal-
ing shader filter. Obviously, we covered much more in the book, and I would
encourage you to experiment with this and other applications to see what
else you can do. Add states to the application and transitions to animate be-
tween them. Use cross-fade effects to change between pictures. Animate
moving the glow between thumbnails. Create custom component skins for
the thumbnails. Have fun.

The next chapter gives some links to resources for more information.

Chapter 13

Go Have Fun

I hope you enjoyed this exploration of the graphics and animation side of
Flex. More importantly, I hope that you learned enough to go create great
user experiences, using some of the techniques and technologies in this book.
Flex is a great platform for rich client applications, and the added facilities
for graphics and animation in Flex 4 enable very rich client applications
indeed (one might even say filthy rich clients1).

There are many things about Flex, Flex 4, and even the graphical and
animation side of Flex that I didn’t cover in this book, both because I wanted
to focus on just the core elements that I found most critical to understand
and because I wanted to finish the book in my lifetime. Fortunately, there are
many resources readily available on the web for further Flexploration. Here
are just a few of them:

My technical blog (http://graphics-geek.blogspot.com)

On this blog, I’ve posted many articles, videos, demos, source code,
and other fun content for graphics and animation development.

Flex devnet site (http://www.adobe.com/devnet/flex/)

This site has lots of articles on Flex and links to other useful resources.

Flex team blog (http://blogs.adobe.com/flex/)

This blog has announcements about various happenings in Flex.

1 Filthy Rich Clients is my previous programming book, co-authored with Romain Guy,
about graphics and animation development for the Java platform. But it’s also a handy phrase
meaning very rich GUI applications.

http://graphics-geek.blogspot.com
http://www.adobe.com/devnet/flex/
http://blogs.adobe.com/flex/

Chapter 13 · Go Have Fun 282

Flex.org (http://flex.org/)

This site aggregates content from the Flex world.

Tour de Flex (http://www.adobe.com/devnet/flex/tourdeflex/)

This awesome Flex application has tons of examples in Flex and lets
you easily see how things work and copy the code for your own appli-
cations. It’s a great way to see what you can do with Flex.

Flex open-source site (http://opensource.adobe.com/flex)

This site hosts the open-source Flex SDK. You can browse the source
code and the documentation or even download the SDK source and
build it. If you really want to know what’s going on in Flex, there’s no
better way to find out than by poking through the SDK source code.

And if you like the writing in this book, but you wish it wasn’t so darned
technical, check out my humor blog at http://chetchat.blogspot.com.
I can’t promise it’ll make you laugh, but I can promise it’ll try.

Now go create great applications in Flex . . . 4 Fun!

http://flex.org/
http://www.adobe.com/devnet/flex/tourdeflex/
http://opensource.adobe.com/flex
http://chetchat.blogspot.com

About the Author

Chet Haase is a graphics geek. During the Flex 4 release, he worked on the
Flex SDK team at Adobe Systems, Inc., and was responsible for Flex effects,
writing the new effects infrastructure and classes for the release. Prior to his
work at Adobe, he worked at Sun Microsystems for several years, and co-
authored the book Filthy Rich Clients about creating rich user experiences
with the Java client platform. He currently works at Google, Inc., on the
Android UI toolkit team. His entire career has been in graphics software,
from the application level to APIs and libraries to drivers for graphics chips.
As long as it puts pixels on the screen, he’s interested. He earned a B.A. in
Mathematics from Carleton College and an M.S. in Computer and Informa-
tion Sciences from the University of Oregon.

Chet frequently posts articles and videos, including a veritable plethora
of Flex graphics and animation tutorials, to his technical blog at http://
graphics-geek.blogspot.com.

Chet also writes and performs comedy; you can see some his work in
this completely unrelated field at http://chetchat.blogspot.com, and in
his book When I am King. . . , which is available at Amazon.com.

Chet lives in Pleasanton, California, with his wife and three kids, with
whom he needs to spend more time, now that this book is finished.

http://graphics-geek.blogspot.com
http://graphics-geek.blogspot.com
http://chetchat.blogspot.com

Index

Page numbers followed by an n refer
to footnotes.

Symbols
@Embed directive

on BitmapFill, 49n
on BitmapImage, 49n

3D effects, 238–249
Move3D, 243, 248
projection properties, 240
Rotate3D, 243, 247
rotation properties, 239
scale properties, 239
Scale3D, 244

A
action effects, 256
AddAction effect, 123
AddRemoveTransition demo, 261
AddRemoveTransition.mxml, 261,

267
Adobe Fireworks, 42
Adobe Illustrator, 42
alpha property

on BitmapFill, 50
on DropShadowFilter, 82
on fill, 47
on GlowFilter, 79
on GradientEntry, 52
on strokes, 45

alphaFrom property
on Fade, 212

alphaTo property
on Fade, 212

angle property
on DropShadowFilter, 82

angleXFrom property
on Rotate3D, 243

angleXTo property
on Rotate3D, 243

angleYFrom property
on Rotate3D, 243

angleYTo property
on Rotate3D, 243

angleZFrom property
on Rotate3D, 243

angleZTo property
on Rotate3D, 243

Animate effect, 197–220
AnimateButtonLabelColor.mxml,

217
AnimateButtons demo, 197
AnimateButtons.mxml, 198
AnimateColor effect, 215–220
AnimatedCrossfade demo, 224
AnimatedCrossfade.mxml, 226
AnimatedGradient demo, 218
AnimatedGradient2 demo, 232
AnimatedGradient2.mxml, 233
AnimatedSkin.mxml, 145
AnimateFilter class, 221–228
AnimateTransform class, 204, 240
AnimateTransform3D class, 240

284

Index 285

AnimateTransitionShader effect,
228–231

animation, 148–194, 222
frame-based, 155–156
periodic callbacks, 149–155
enterFrame events, 150–152
Timer class, 152–155

sequential, 120
simultaneous, 120
time-based, 156–160

elapsed time, 158
speed, 157

Animation class, 162–196
animationEnd() function

on IAnimationTarget, 164
AnimationMover demo, 165
AnimationMover.mxml, 165
animationRepeat() function

on IAnimationTarget, 164
AnimationRepeater.as, 169, 171
animationStart() function

on IAnimationTarget, 164
animationStop() function

on IAnimationTarget, 164
animationUpdate() function

on IAnimationTarget, 164
Application tag, 150
applications, see demos
applyChangesPostLayout property

on AnimateTransform effect,
242

applyLocalProjection property
on 3D effects, 240

autoCenterProjection property
on 3D effects, 241

autoCenterTransform property
on Rotate3D, 243

AutoFade demo, 214
AutoFade.mxml, 213
autoReverse property

caveats

transition must be exact
opposite, 116

transition must exist, 116
on Transition, 115–117

B
Bézier curves, 41n, 41
BitmapFill class, 48
BitmapFillMode class, 49
bitmapFrom property

on AnimateTransition. . .
Shader, 230

BitmapImage class, 64–66
BitmapImageTest demo, 64
BitmapImageTest.mxml, 64
bitmapTo property

on AnimateTransition. . .
Shader, 230

blog, Chet Haase’s, 281
blur-based filters, 72
BlurFilter class, 75–78
BlurGlowShadow demo, 72
BlurGlowShadow.mxml, 72
blurring technique, 73–75
blurs, 73
BlurSize demo, 74
blurX property

on BlurFilter, 76
on DropShadowFilter, 81
on GlowFilter, 78

blurY property
on BlurFilter, 76
on DropShadowFilter, 81
on GlowFilter, 78

borders, 134
BorderSkin.mxml, 134
bottomLeftRadius property

on Rect, 38
Bounce easing class, 184
BounceAnimation demo, 185
BounceAnimation.mxml, 185
box blur, 73

boxy artifacts, 75

Index 286

multi-pass approach, 75
Button class, skin states of, 130
ButtonButton demo, 127
ButtonSkinSampler demo, 132

C
child effects, 123
childEffects property

on CompositeEffect, 251
close path command

on Path, 41
code examples

AddRemoveTransition.mxml,
261, 267

AnimateButtonLabel. . .
Color.mxml, 217

AnimateButtons.mxml, 198
AnimatedCrossfade.mxml,

226
AnimatedGradient2.mxml,

233
AnimatedSkin.mxml, 145
AnimationMover.mxml, 165
AnimationRepeater.as, 169,

171
AutoFade.mxml, 213
BitmapImageTest.mxml, 64
BlurGlowShadow.mxml, 72
BorderSkin.mxml, 134
BounceAnimation.mxml, 185
ControlPanel.mxml, 32, 61
crossfade.pbk, 225
CustomEaseAnimation.mxml,

191
CustomEaser.as, 191
DrawingCanvas.as, 33, 36, 38,

39, 42
EasingSampler.mxml, 188
EnterFrameMover.mxml, 151
FadeButtons.mxml, 212
FadeThroughBlack.pbk, 236
FunButtonSkin.mxml, 142
GlowingFocus.mxml, 222

GradientBackground. . .
Skin.mxml, 136

Grayer.mxml, 95
grayscaler.pbk, 94
LinearGradient. . .

Properties.mxml, 56
MotionPathAnimation.mxml,

175
MovingConstraints.mxml,

205
PaddedBorderSkin.mxml, 135
PanelSequenceParallel. . .

Slide.mxml, 254
PanelSlideFade.mxml, 252
PicturePerfect.as, 274
PointAnimation.mxml, 178,

180
PointInterpolator.as, 179
Reflexion.mxml, 66
ReflexionContainer.mxml,

97, 273
ResizingConstraints.mxml,

201
ReversingPause.mxml, 258
RotationLocation.mxml, 209
RoundedSkin.mxml, 137
SearchMe.mxml, 102, 107
SearchMe2.mxml, 109
SearchMeTransition.mxml,

119
ShaderTransitions.mxml,

235, 237
Shapely.mxml, 30, 63
Sharpen.mxml, 90
ShiftingShadows.mxml, 85
SimpleBlur.mxml, 70
SimpleMotionPath. . .

Animation.mxml, 171
SimpleMotionPath. . .

AnimationXY.mxml, 172,
175, 178

SimpleObjects.mxml, 35, 38,

Index 287

39, 41, 47, 50, 54
SimpleTransition.mxml, 118
SolidBackgroundSkin.mxml,

136
StatefulSkin.mxml, 139
StateGroups.mxml, 104
StrokeTest.mxml, 46
ThreeCircles.mxml, 28
ThreeDButtons.mxml, 246
TimeBasedMover.mxml, 158
TimerMover.mxml, 153
TimerMoverVariable. . .

Delay.mxml, 155
TransformedButton.mxml,

207
TransitionMultiple.mxml,

123
color interpolation, 216–217
color property

on DropShadowFilter, 82
on fill, 47
on GlowFilter, 79
on GradientEntry, 52
on strokes, 45

colorization, 277–279
colorization parameter, 93–96
components

and skins, 126–128
contract with skins, 129–131
control separated from

appearance, 126
setting state-specific values on,

105, 108
states of, 103

composite effects, 250
CompositeEffect class, 250
Computer Graphics: Principles and

Practice, 240n
ControlPanel class, 31
ControlPanel.mxml, 32, 61
convolution kernels

for box blur, 73

for Gaussian blur, 74
ConvolutionFilter class, 88–91
CrossFade effect, 232–238
crossfade.pbk, 225
cubic Bézier command

on Path, 41
currentState property

on components, 32, 103
currentStateChanged events, 32
curved lines, 40
custom easing, 190–193
CustomEaseAnimation demo, 191
CustomEaseAnimation.mxml, 191
CustomEaser.as, 191

D
data property

on Path, 40
decrement() function

on IInterpolator, 180
delay property

on Timer, 152
demos

AddRemoveTransition, 261
AnimateButtons, 197
AnimatedCrossfade, 224
AnimatedGradient, 218
AnimatedGradient2, 232
AnimationMover, 165
AutoFade, 214
BitmapImageTest, 64
BlurGlowShadow, 72
BlurSize, 74
BounceAnimation, 185
building from source, 24
ButtonButton, 127
ButtonSkinSampler, 132
CustomEaseAnimation, 191
downloading source code for,

23
EnterFrameMover, 151
FadeButtons, 212
FilterProperties, 77

Index 288

GlowingFocus, 222
Grayer, 93
LinearGradientProperties,

57
MotionPathAnimation, 175
MovingConstraints, 205
PanelSequenceParallel. . .

Slide, 255
PanelSlideFade, 253
PicturePerfekt, 272
PointAnimation, 178
RadialGradientProperties,

58
Reflexion, 67
ResizingConstraints, 201
ReversingPause, 259
RotationLocation, 209
SearchMe, 102, 106
SearchMe2, 108
SearchMeTransition, 113
ShaderTransitions, 235
Shapely, 27, 61
Sharpen, 90
ShiftingShadows, 84
SimpleMotionPath. . .

AnimationXY, 172
SimpleObjects, 36, 39, 42, 46,

48, 55, 59
SimpleObjects, 50
SimpleTransition, 118
StrokeTest, 47
ThreeDButtons, 245
TimerMoverVariableDelay,

155
TransformedButton, 208
TransitionMultiple, 122
UponFurtherReflection, 69,

99
direction property

on Wipe, 231
distance property

on DropShadowFilter, 82

downloading
demo application code, 23
Flash Builder 4, 17
Flex 4 SDK, 25
Flex 4 SDK API

documentation, 17
Flex 4 SDK source code, 282
Pixel Bender Toolkit, 92
shaders from Pixel Bender

Exchange, 93
DrawingCanvas.as, 33, 36, 38, 39,

42
drawingMode property

on canvas, 31, 34, 36, 38, 39
drawingStateChange events, 31
drop shadows, 81–87, 274
DropShadowFilter class, 81–87
duration property

on CompositeEffect, 251
on Pause, 257

E
easing, 182–194

classes, 183–190
EasingSampler.mxml, 188
effect property

on Transition, 117–119
EFFECT_END events, 259–260
effects

3D, 238–249
action, 256
AddAction, 123
advanced, 221–249
Animate, 197–220
AnimateColor, 215–220
AnimateTransitionShader,

228–231
animating arbitrary types,

196–197
Animation class, 195–196
basics, 195–220
child, 123
choreographing, 250–271

Index 289

color interpolation, 216–217
composite, 250
CrossFade, 232
EFFECT_END, 259–260
Fade, 124, 212–215
Flex 4 versus Flex 3, 196–197
in transitions, 119
Move, 118–119, 205–206
Parallel, 252
Pause, 257
RemoveAction, 124
Resize, 200–202
Rotate, 206
Scale, 206–207
Sequence, 121, 123, 253
sharpening, 89
transform, 202–211
transient, 228
Wipe, 231

Elastic easing class, 184
Ellipse class, 39–40
ellipses, 39–40
@Embed directive

on BitmapFill, 49n
on BitmapImage, 49n

enterFrame events, 150–153, 155
EnterFrameMover demo, 151
EnterFrameMover.mxml, 151
entries property

on GradientBase, 52
event listeners, 150

currentStateChanged events,
32

drawingStateChange events,
31

for button clicks, 151
for mouse events, 33–35

eventName property
on Pause, 257

example programs, see demos
existence, true meaning of, 106n

F
Fade effect, 124, 212–215
FadeButtons demo, 212
FadeButtons.mxml, 212
FadeThroughBlack.pbk, 236
fillMode property

on BitmapFill, 49
on BitmapImage, 64

fills, 47–63
bitmaps, 48–50
gradients, 51–60

gradient stop, 52
linear, 51, 53–57
radial, 51, 57–60

solid colors, 47–48
FilterProperties demos, 77
filters, 69–100

animating, 221
transient effects, 228

filters property
on graphical objects, 71

Filthy Rich Clients, 281
Flex 4

compared with Flex 3, 28–29
Fun, 15–283
improvements in states syntax,

102
Flex filters, 70–100

BevelFilter, 87
BlurFilter, 72
ColorMatrixFilter, 88
ConvolutionFilter, 88
DisplacementMapFilter, 88
DropShadowFilter, 72
GlowFilter, 72
GradientBevelFilter, 87
GradientGlowFilter, 88
versus Flash filters, 72

focalPointRatio property
on RadialGradient, 57

frameRate, 150, 155
fromState property

Index 290

on Transition, 114–115
frustum, view, 240
FunButtonSkin.mxml, 142
FXG format, 42

G
Gaussian blur, 74, 89
GlowFilter class, 78–81
GlowingFocus demo, 222
GlowingFocus.mxml, 222
glows, 275–276
gradient entries, 51, 55, 59
gradient stops, 51, 52
GradientBackgroundSkin.mxml,

136
GradientBase class, 52
GradientEntry class, 52–66
gradients, 51–60

GradientEntry class, 52
linear, 51, 53–57
radial, 51, 57–60

graphics, 26–68
graphics primitives, see shapes
Grayer demo, 93
Grayer.mxml, 95
grayscale calculation, 93
grayscaler.pbk, 94
Group class, 31
Guy, Romain, 281n, 281

H
height property

on Ellipse, 39
on Rect, 38

hideObjects property
on DropShadowFilter, 83

horizontal line command
on Path, 40

hostComponent property
on components, 129

I
IAnimationTarget interface, 163

IEaser interface, 190
IEventDispatcher interface, 258
IInterpolator interface, 177
Image class, 48
images, 63–68
includeFrom property

as a keyword, 105
on objects, 106

includeIn property
as a keyword, 105
on objects, 106

increment() function
on IInterpolator, 180

inner property
on DropShadowFilter, 82
on GlowFilter, 79

interpolate() function
on IInterpolator, 180

interpolation, 177–182
interpolationMethod property

on GradientBase, 53

J
joints property

on strokes, 44

K
Keyframe class, 173–176
keyframes property

on MotionPath, 174
knockout property

on DropShadowFilter, 82
on GlowFilter, 79

L
layout constraints, 135, 200–206
layout managers, 200, 242
Line class, 35–37
line command

on Path, 40
Linear easing class, 183
linear gradients, 51, 53–57
LinearGradient class, 53–57

Index 291

LinearGradientProperties
demo, 57

LinearGradient. . .
Properties.mxml, 56

LinearGradientStroke class, 44
lines, 35–37

stroke of, 37

M
masking technique, 98
matrix property

on GradientBase, 53
miterLimit property

on strokes, 44
motion paths, 178
MotionPath class, 173–176
MotionPathAnimation demo, 175
MotionPathAnimation.mxml, 175
motionPaths property

on Animation, 170
mouse events, 33–35
move command

on Path, 40
Move effect, 118–119, 205–206
Move3D effect, 243, 248
MovingConstraints demo, 205
MovingConstraints.mxml, 205

N
name property

on State, 104
NumberInterpolator class, 177

O
opacity, see also alpha

better for drop shadows, 85
determined by alpha, 45
of fills, 47–48
of glows, 79
of strokes, 45
with gradients, 99

P
PaddedBorderSkin.mxml, 135

painter’s algorithm, 239n
PanelSequenceParallelSlide

demo, 255
PanelSequenceParallel. . .

Slide.mxml, 254
PanelSlideFade demo, 253
PanelSlideFade.mxml, 252
Parallel effects, 252
Path class, 40–44
Pause effect, 257
perspective projection, 240
PerspectiveProjection class,

240n
PicturePerfect.as, 274
PicturePerfekt demo, 272
Pixel Bender

exchange, 93, 96
library, 94
shader filters, 92–96
toolkit, 92, 226

play() function
on CompositeEffect, 251

PointAnimation demo, 178
PointAnimation.mxml, 178, 180
PointInterpolator.as, 179
postLayoutTransformOffsets

structure, 242
Power easing class, 184
projectionX property

on 3D effects, 241
projectionY property

on 3D effects, 241
property variable

in SimpleMotionPath, 170

Q
quadratic Bézier command

on Path, 41
quality property

on BlurFilter, 76
on DropShadowFilter, 82
on GlowFilter, 79

Index 292

R
radial gradients, 51, 57–60

for specular highlights, 57, 60
RadialGradient class, 57–60, 63
RadialGradientProperties

demo, 58
RadialGradientStroke class, 44
radiusX property

on Rect, 38
radiusY property

on Rect, 38
ratio property

on GradientEntry, 52
Rect class, 37–38
rectangles, 37–38
reflections, 66–68, 96–100, 273

blurring of, 69
using alpha property, 67
using scaling, 67
using VGroup, 66–67

Reflexion demo, 67
Reflexion.mxml, 66
ReflexionContainer.mxml, 97,

273
RemoveAction effect, 124
removeLocalProjectionWhen. . .

Complete property
on 3D effects, 241

repeatBehavior property
on Animation, 168

repeatCount property
on Timer, 153
on Animation, 168

repeatDelay property
on Animation, 168

repetition, 168
repetition, 168
repetition, 168
Resize effect, 200–202
ResizingConstraints demo, 201
ResizingConstraints.mxml, 201
reverse transition, 124

ReversingPause demo, 259
ReversingPause.mxml, 258
RGBInterpolator class, 216
Rotate effect, 206
Rotate3D effect, 243, 247
rotation property

on GradientBase, 53
on RadialGradient, 58

RotationLocation demo, 209
RotationLocation.mxml, 209
rotationX property

on display objects, 239
rotationY property

on display objects, 239
rotationZ property

on display objects, 239
RoundedSkin.mxml, 137

S
Scale effect, 206–207
scale properties, 239
Scale3D effect, 244
scaleMode property

on strokes, 44
scaleX property

on display objects, 239
on LinearGradient, 54
on RadialGradient, 57

scaleXBy property
on Scale3D, 244

scaleXFrom property
on Scale3D, 244

scaleXTo property
on Scale3D, 244

scaleY property
on display objects, 239
on RadialGradient, 57

scaleYBy property
on Scale3D, 244

scaleYFrom property
on Scale3D, 244

scaleYTo property
on Scale3D, 244

Index 293

scaleZ property
on display objects, 239

scaleZBy property
on Scale3D, 244

scaleZFrom property
on Scale3D, 244

scaleZTo property
on Scale3D, 244

SearchMe demo, 102, 106
SearchMe.mxml, 102, 107
SearchMe2 demo, 108
SearchMe2.mxml, 109
SearchMeTransition demo, 113
SearchMeTransition.mxml, 119
Sequence effect, 121, 123, 253
shader property

on ShaderFilter, 95
shaderByteCode property

AnimateTransitionShader,
229

ShaderFilter class, 95–96
shaderProperties property

on AnimateTransition. . .
Shader, 230

ShaderTransitions demo, 235
ShaderTransitions.mxml, 235,

237
Shapely demo, 27, 61
Shapely.mxml, 30, 63
shapes, 35–44

ellipses, 39–40
irregular, 40–44
lines, 35–37
paths, 40–44
rectangles, 37–38

Sharpen demo, 90
Sharpen.mxml, 90
sharpening effect, 89
ShiftingShadows demo, 84
ShiftingShadows.mxml, 85
SimpleBlur.mxml, 70

SimpleMotionPath class, 170–173,
180, 198, 200, 279

SimpleMotionPath. . .
Animation.mxml, 171

SimpleMotionPath. . .
AnimationXY demo, 172

SimpleMotionPath. . .
AnimationXY.mxml, 172,
175, 178

SimpleObjects demo, 36, 39, 42,
46, 48, 50, 55, 59

SimpleObjects.mxml, 38, 39, 41,
47, 50, 54, 58

SimpleTransition demo, 118
SimpleTransition.mxml, 118
Sine easing class, 183
skinning components

push versus pull technique, 129
skins

contract with components,
129–131

data element, 129–130
elements of, 129
parts element, 131
states element, 130
states of, 138

smooth property
on BitmapFill, 49
on BitmapImage, 64

SolidBackgroundSkin.mxml, 136
SolidColorStroke class, 44–62
source property

on BitmapFill, 49
on BitmapImage, 64

spark components, 18
specular highlights, 57, 59
spreadMethod property

on GradientBase, 53
StatefulSkin.mxml, 139
stateGroups property

on State, 104
StateGroups.mxml, 104

Index 294

states, 101–110
and transitions, 112
declaring, 104–105
on components, 101–103
setting state-specific values on

components, 105, 108
syntax improvements in Flex 4,

102
states block, 104–105, 114
strength property

on DropShadowFilter, 83
strokes, 44–47
strokes property

on Line, 35
StrokeTest demo, 47
StrokeTest.mxml, 46
SVG, 40n

T
target property

on Pause, 257
targets property

on CompositeEffect, 251
ThreeCircles.mxml, 28
ThreeDButtons demo, 245
ThreeDButtons.mxml, 246
thumbnails, 272–279
time property

on Keyframe, 174
TimeBasedMover.mxml, 158
Timer class, 152–155
TimerMover.mxml, 153
TimerMoverVariableDelay demo,

155
TimerMoverVariable. . .

Delay.mxml, 155
toState property

on Transition, 114–115
Tour de Flex, 282
transform effects, 202–211

transform matrix, 202n
transform matrix, 202n, 202–203
TransformedButton demo, 208

TransformedButton.mxml, 207
transformX property

on Rotate3D, 243
transformY property

on Rotate3D, 243
transformZ

on Rotate3D, 243
transient effects, 228
Transition class, 114–117
TransitionMultiple demo, 122
TransitionMultiple.mxml, 123
transitions, 111–125

AddAction effect, 123
animating state changes, 112

in parallel, 145
catch-all, 115
Fade effect, 124
move effect, 118
RemoveAction effect, 124
reverse, 115–117
sequence effects, 121, 123
sequential animations, 120
simultaneous animations, 120
under the hood, 116n

translucency, see also alpha
determined by alpha, 45
of fills, 47–48
of glows, 79
of strokes, 45

transparency, see translucency

U
UIComponent class, 127
UponFurtherReflection demo,

69, 99

V
value property

on Keyframe, 174
valueBy property

on SimpleMotionPath, 171
valueBy property

on Keyframe, 174

Index 295

valueFrom property
on SimpleMotionPath, 170

valueTo property
on SimpleMotionPath, 170

vector paths, 42
vertical line command

on Path, 41
view frustum, 240

W
weight property

on strokes, 45
When I am King. . . , 283
width property

on Ellipse, 39
on Rect, 38

winding property
on Path, 40

Wipe effect, 231
WipeDirection class, 231

X
x property

on GradientBase, 53
xBy property

on Move3D, 243
xFrom property

on Line, 35–37
on Move3D, 243

xTo property
on Line, 35–37
on Move3D, 243

Y
y property

on GradientBase, 53
yBy property

on Move3D, 243
yFrom property

on Line, 35–37
on Move3D, 243

yTo property
on Line, 35–37

on Move3D, 243

Z
z axis, moving objects on, 142
Z buffer, 239n, 239
zBy property

on Move3D, 243
zFrom property

Move3D, 243
zTo property

on Move3D, 243

	Contents
	Foreword
	Acknowledgments
	Introduction
	Flexpectations
	Flexciting stuff
	Flex 4: A very brief introduction
	Flextreme programming
	Flexamples

	Graphics
	Flex 4 graphics
	Shapely: a simple drawing tool
	Graphics primitives: getting into shape
	Strokes of genius: lines and outlines
	Fills: it's what's on the inside that counts
	Setting strokes and fills in Shapely
	Image is everything

	Filters: Easy Image Processing
	Flex filters
	Blur-based filters
	The BlurFilter class
	The GlowFilter class
	The DropShadowFilter class
	Other filters
	ConvolutionFilter
	Pixel shader filters
	Upon further reflection

	States
	Component state
	States syntax
	The states block
	Setting state values
	State inclusion
	State-specific property values

	Transitions
	Don't lose the user
	States and transitions
	The Transition class
	Transition effects
	Example: search transition
	Example: TransitionMultiple

	Skinning Components
	Components and their skins
	The skin's elements
	Better button skins
	Adding a border
	Modernizing the button
	Using skin states
	Beyond the basics: adding sparkle to skins

	Animation
	Animation defined
	Periodic callbacks
	It's about time: frame- versus time-based animation

	The Animation Class
	Animation targets
	Demo: moving a button with the Animation class
	Repetition, repetition, repetition
	Motion paths: more is better
	Interpolation: when numbers just aren't enough
	Easing does it
	The Animation class and Flex effects

	Flex Effects: The Basics
	The Animate effect
	The Resize effect
	Transform effects
	The Fade effect
	The AnimateColor effect

	Advanced Flex Effects
	The AnimateFilter effect
	The AnimateTransitionShader effect
	The Wipe effect
	The CrossFade effect
	3D: A new dimension to Flex effects
	The Move3D effect
	The Rotate3D effect
	The Scale3D effect

	Effect Choreography
	Composite effects
	The Parallel effect: keeping it together
	The Sequence effect: you follow me?
	Action effects
	The Pause effect: wait for it…
	AddAction and RemoveAction
	The SetAction effect: assign of the times
	CallAction: form versus function

	Picture Perfekt
	Reflection
	Drop shadows
	Selection glow
	Animated colorization

	Go Have Fun
	About the Author
	Index

