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Preface

Scheffé’s old book (The Analysis of Variance, Wiley, 1959) still seems to be best for
the basic ANOVA theory. Indeed, his interpretation of the identification conditions on
the main and interaction effects in a two-way layout is excellent, while some text-
books give an erroneous explanation even of this. Miller’s book Beyond ANOVA
(BANOVA; Chapman & Hall/CRC, 1998) intended to go beyond this a long time
after Scheffé and succeeded to some extent in bringing new ideas into the book – such
as multiple comparison procedures, monotone hypothesis, bootstrap methods, and
empirical Bayes. He also gave detailed explanations of the departures from the under-
lying assumptions in ANOVA – such as non-normality, unequal variances, and cor-
related errors. So, he gave very nicely the basics of applied statistics. However, I think
this would still be insufficient for dealing with real data, especially with regard to the
points below, and there is a real need for an advanced book on ANOVA (AANOVA).
Thus, this book intends to provide some new technologies for data analysis following
the precise and exact basic theory of ANOVA.

A Unifying Approach to the Shape and Change-point
Hypotheses

The shape hypothesis (e.g., monotone) is essential in dose–response analysis, where a
rigid parametric model is usually difficult to assume. It appears also when comparing
treatments based on ordered categorical data. Then, the isotonic regression is the most
well-known approach to the monotone hypothesis in the normal one-way layout
model. It has been, however, introduced rather intuitively and has no obvious optimal-
ity for restricted parameter spaces like this. Further, the restricted maximum likelihood
approach employed in the isotonic regression is too complicated to extend to non-
normal distributions, to the analysis of interaction effects, and also to other shape con-
straints such as convexity and sigmoidicity. Therefore, in the BANOVA book by
Miller, a choice of Abelson and Tukey’s maximin linear contrast test is recommended
for isotonic inference to escape from the complicated calculations of the isotonic
regression. However, such a one-degree-of-freedom contrast test cannot keep high



power against the wide range of the monotone hypothesis, even by a careful choice of
the contrast. Instead, the author’s approach is robust against the wide range of the
monotone hypothesis and can be extended in a systematic way to various interesting
problems, including analysis of the two-way interaction effects. It starts from a com-
plete class lemma for the tests against the general restricted alternative, suggesting the
use of singly, doubly, and triply accumulated statistics as the basic statistics for the
monotone, convexity, and sigmoidicity hypotheses, respectively. It also suggests
two-way accumulated statistics for two-way data with natural ordering in rows and
columns. Two promising statistics derived from these basic statistics are the cumula-
tive chi-squared statistics and the maximal contrast statistics. The cumulative chi-
squared is very robust and nicely characterized as a directional goodness-of-fit test
statistic. In contrast, the maximal contrast statistic is characterized as an efficient score
test for the change-point hypothesis. It should be stressed here that there is a close
relationship between the monotone hypothesis and the step change-point model.
Actually, each component of the step change-point model is a particular monotone
contrast, forming the basis of the monotone hypothesis in the sense that every mon-
otone contrast can be expressed by a unique and positive linear combination of the
step change-point contrasts. The unification of the monotone and step change-point
hypotheses is also important in practice, since in monitoring the spontaneous report-
ing of the adverse events of a drug, for example, it is interesting to detect a change
point as well as a general increasing tendency of reporting. The idea is extended to
convexity and slope change-point models, and sigmoidicity and inflection point
models, thus giving a unifying approach to the shape and change-point hypotheses
generally. The basic statistics of the newly proposed approach are very simple and
have a nice Markov property for elegant and exact probability calculation, not only
for the normal distribution but also for the Poisson and multinomial distributions. This
approach is of so simple a structure that many of the procedures for a one-way layout
model can be extended in a systematic way to two-way data, leading to the two-way
accumulated statistics. These approaches have been shown repeatedly to have excel-
lent power (see Chapters 6 to 11 and 13 to 15).

The Analysis of Two-way Data

One of the central topics of data science is the analysis of interactions in the general-
ized sense. In a narrow sense, interactions are a departure from the additive effects of
two factors. However, in the one-way layout the main effects of a treatment also
become the interaction effects between the treatment and the response if the response
is given by a categorical response instead of quantitative measurements. In this case
the data yij are the frequency of cell (i, j) for the ith treatment and the jth categorical
response. If we denote the probability of cell (i, j) by pij, the treatment effect is a
change of the profile (pi1, pi2,…, pib) of the ith treatment, and the interaction effects
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in terms of pij are concerned. In this case, however, the naïve additive model is often
inappropriate and a log linear model

log pij = μ + αi + βj + αβ ij

is assumed. Then, the interaction factor (αβ)ij denotes the treatment effects. In this
sense the regression analysis is also a sort of interaction analysis between the expla-
nation and the response variables. Further, the logit model, the probit model, the inde-
pendence test of a contingency table, and the canonical correlation analysis are all
regarded as a sort of interaction analysis. In previous books, however, interaction anal-
ysis has been paid less attention than it deserves, and mainly an overall F- or χ2- test
has been described in the two-way ANOVA. Now, there are several immanent pro-
blems in the analysis of two-way data which are not described everywhere.

1. The characteristics of the rows and columns – such as controllable, indicative,
variational, and response – should be taken into consideration.

2. The degrees of freedom are often so large that an overall analysis can tell
almost nothing about the details of the data. In contrast, the multiple compar-
ison procedures based on one-degree-of-freedom contrasts as taken in
BANOVA (1998) are too lacking in power and also the test result is usually
unclear.

3. There is often natural ordering in the rows and/or columns, which should be
taken into account in the analysis. The isotonic regression is, however, too
complicated for the analysis of two-way interaction effects.

In the usual two-way ANOVA with controllable factors in the rows and columns,
the purpose of the experiment will be to determine the best combination of the two
factors that gives the highest productivity. However, let us consider an example of
the international adaptability test of rice varieties, where the rows represent the
44 regions [e.g., Niigata (Japan), Seoul, Nepal, Egypt, and Mexico] and the columns
represent the 18 varieties of rice [e.g., Rafaelo, Koshihikari, Belle Patna, and Hybrid].
Then the columns are controllable but the rows are indicative, and the problem is by
no means to choose the best combination of row and column as in the usual ANOVA.
Instead, the purpose should be to assign an optimal variety to each region. Then, the
row-wise multiple comparison procedures for grouping rows with a similar response
profile to columns and assigning a common variety to those regions in the same group
should be an attractive approach. As another example, let us consider a dose–response
analysis based on the ordered categorical data in a phase II clinical trial. Then,
the rows represent dose levels and are controllable. The columns are the response vari-
ables and the data are characterized by the ordinal rows and columns. Of course, the
purpose of the trial is to choose an optimal dose level based on the ordered categorical
responses. Then, applying the step change-point contrasts to rows should be an attrac-
tive approach to detecting the effective dose. There are several ideas for dealing with
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the ordered columns, including the two-way accumulated statistics. The approach
should be regarded as a sort of profile analysis and can also be applied to the analysis
of repeated measurements. These examples show that each of the two-way data
requires its own analysis. Indeed, the analysis of two-way data is a rich source of inter-
esting theories and applications (see Chapters 10, 11, 13, and 14).

Multiple Decision Processes

Unification of non-inferiority, equivalence, and superiority tests

Around the 1980s there were several serious problems in the statistical analysis of
clinical trials in Japan, among which two major problems were the multiplicity prob-
lem and non-significance regarded as equivalence. These were also international pro-
blems. The outline of the latter problem is as follows.
In a phase III trial for a new drug application in Japan, the drug used to be compared

with an active control instead of a placebo, and admitted for publication if it was eval-
uated as equivalent to the control in terms of efficacy and safety. Then the problem
was that the non-significance by the usual t orWilcoxon test had long been regarded as
proof of equivalence in Japan. This was stupid, since non-significance can so easily be
achieved by an imprecise clinical trial with a small sample size. The author (and sev-
eral others) fought against this, and introduced a non-inferiority test which requires
rejecting the handicapped null hypothesis

Hnon0 p1 ≤ p0−Δ

against the one-sided alternative

Hnon1 p1 > p0−Δ

where p1 and p0 are the efficacy rates of the test and control drugs, respectively.
Further, the author found that usually Δ = 0 10, with one-sided significance level

0.05, would be appropriate in the sense that the approximately equal observed efficacy
proportions of two drugs will clear the non-inferiority criterion by the usual sample
sizes employed in Japanese phase III clinical trials. Actually, the Japanese Statistical
Guideline employed the procedure six years in advance of the International Guideline
(ICH E9), which employed it in 1998. However, there still remains the problem of
how to justify the usual practice of superiority testing after proving non-inferiority.
This has been overcome by a unifying approach to non-inferiority and superiority tests
based on multiple decision processes. It nicely combines the one- and two-sided tests,
replacing the usual simple confidence interval for normal means by a more useful con-
fidence region. It does not require a pre-choice of the non-inferiority or superiority
test, or the one- or two-sided test. The procedure gives essentially the power of the
one-sided test, keeping the two-sided statistical inference without any prior informa-
tion (see Chapter 4 and Section 5.4).
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Mixed and Random Effects Model

In the factorial experiments, if all the factors except error are fixed effects, it is called a
fixed effects model. If the factors are all random except for a general mean, it is called
a random effects model. If both types of factor are involved in the experiment, it is
called a mixed effects model. In this book mainly fixed effects models are described,
but there are cases where it is better to consider the effects of a factor to be random; we
discuss basic ideas regarding mixed and random effects models in Chapter 12. In par-
ticular, the recent development of the mixed effects model in the engineering field
profile analysis is introduced in Chapter 13. There is a factor like the variation factor
which is dealt with as fixed in the laboratory, but acts as if it were random in the exten-
sion to the real world. Therefore, this is a problem of interpretation of data rather than
of mathematics (see Chapters 12 and 13).

Software and Tables

The algorithms for calculating the p-value of the maximal contrast statistics intro-
duced in this book have been developed widely and extensively by my colleague
and I decided to support some of them on my website. They are based on Markov
properties of the component statistics. As described in the text, they are simple in prin-
ciple; the reader is also recommended to develop their own algorithms. Presently, the
probabilities of popular distributions such as the normal, t, F, and chi-squared are
obtained very easily on the Internet (see keisan.casio.com, for example), so only a
few tables are given in the Appendix, which are not available everywhere. Among
them, Tables A and B are original ones calculated by the proposed algorithm.

Examples

Finally it should be stressed that all the newly introduced methods have originated
from real problems which the author experienced in his activities in the real field
of statistical quality control, clinical trials, and the evaluation of the New Drug Appli-
cation from the regulatory side. There are naturally plenty of real examples supplied in
this book, compared with previous books. Also, this book is not restricted to ANOVA
in the narrow sense, but extends these methodologies to discrete data (including con-
tingency tables). Thus, the book intends to provide some advanced techniques
for applied statistics beyond the previous elementary books for ANOVA.
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Notation and Abbreviations

Notation

Asterisks on the number
(e.g., 2 23∗ or 3 12∗∗ : statistical significance at level 0.05 or 0.01
Column vector: bold lowercase italic letter, v
Matrix: bold uppercase italic letter: M
Transpose of vector and matrix: v , M
Observation vector: one-way,

y = y11, y12,…, y1n1 , y21,…, y2n2 ,…, ya1,…,yana

= y1, y2,…,ya , yi = yi1,…,yini

two-way,

y = y111, y112,…, y11n, y121,…, y12n,…, yab1,…,yabn

= y11, y12,…,yab , yij = yij1,…,yijn

Dot and bar notation: one-way,

yi =
ni
j= 1yij, yi =

ni
j= 1yij ni

two-way,

yi k =
b
j= 1yijk , yi k =

b
j= 1yijk b

yi = b
j = 1

n
k = 1yijk, yi = b

j= 1
n
k = 1yijk bn



Dot and bar notation
in vectors: one-way,

y i = y1 ,y2 ,…,ya , y i = y1 ,y2 ,…,ya

two-way,

y i j = y11 ,y12 ,…,yab , y i j = y11 ,y12 ,…,yab

y i = y1 ,y2 ,…,ya , y i = y1 ,…,ya ,

yi = yi1 ,yi2 ,…,yib = yi j

0n: a zero vector of size n, the suffix is omitted when it is
obvious

jn: a vector of size n with all elements unity, the suffix is omit-
ted when it is obvious

In: an identity matrix of size n, the suffix is omitted when it is
obvious

Pa: an a−1 × a orthonormal matrix satisfying
PaPa = Ia−1, PaPa = Ia−ja ja

|A|: determinant of a matrix A
tr(A): trace of a matrix A
v 2: squared norm of a vector v = v1,…,vn : v 2 = v21 + + v2n
D= diag λi , i= 1,…, n
and Dν:

a diagonal matrix with diagonal elements λ1, …, λn
arranged in dictionary order and Dν = diag λνi

A B: direct (Kronecker’s) product of two matrices

A=

a11 a1l

ak1 akl

and B= bij A B=

a11B a1lB

ak1B aklB

Kronecker’s delta δij: δij = 1 if i= j, 0 otherwise
a b: a is nearly equal to b
N(μ, σ2): normal distribution with mean μ and variance σ2

N(μ, Ω): multivariate normal distribution with mean μ and variance–
covariance matrix Ω

zα: upper α point of standard normal distribution N(0, 1)
tν(α): upper α point of t-distribution with degrees of freedom ν
χ2ν α : upper α point of χ2-distribution with degrees of freedom ν
Fν1,ν2 α : upper α point of F-distribution with degrees of free-

dom (ν1, ν2)
qa, ν(α): upper α point of Studentized range
B(n, p): binomial distribution
M(n, p): multinomial distribution
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H(y R1, C1,N): hypergeometric distribution
MH(yij yi , y j),
MH(yij Ri, Cj, N):

multivariate hypergeometric distribution for two-way data

f(y, θ) and p(y, θ): density function and probability function
Pr (A), Pr {A}: probability of event A
L(y, θ), L(θ): likelihood function
E(y) and E(y): expectation
E(y B) and E(y B): conditional exception given B
V(y) and V(y): variance and variance–covariance matrix
V(y B) and V(y B): conditional variance and variance- covariance matrix

given B
Cov(x, y): covariance
Cor(x, y): correlation
In(θ): Fisher’s amount of information
In(θ): Fisher’s information matrix

Abbreviations

ANOVA: analysis of variance
BIBD: balanced incomplete block design
BLUE: best linear unbiased estimator
BLUP: best linear unbiased predictor
df: degrees of freedom
FDA: Food and Drug Administration (USA)
ICH E9: statistical principles for clinical trials by International Conference on

Harmonization
LS: least squares
MLE: maximum likelihood estimator
MSE: mean square error
PMDA: Pharmaceutical and Medical Device Agency of Japan
REML: residual maximum likelihood
SD: standard deviation
SE: standard error
SLB: simultaneous lower bound
SN ratio: signal-to-noise ratio
WLS: weighted least squares
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1

Introduction to Design and
Analysis of Experiments

1.1 Why Simultaneous Experiments?

Let us consider the problem of estimating the weight μ of a material W using four
measurements by a balance. The statistical model for this experiment is written as

yi = μ + ei, i= 1, 2, 3, 4,

where the ei are uncorrelated with expectation zero (unbiasedness) and equal variance
σ2. Then, a natural estimator

μ = y = y1 + y2 + y3 + y4 4

is an unbiased estimator of μ with minimum variance σ2/4 among all the linear unbi-
ased estimators of μ. Further, if the normal distribution is assumed for the error ei, then
μ is the minimum variance unbiased estimator of μ among all the unbiased estimators,
not necessarily linear.
In contrast, when there are four unknown means μ1, μ2, μ3, μ4, we can estimate all

the μi with variance σ
2/4 and unbiasedness simultaneously by the same four measure-

ments. This is achieved by measuring the total weight and the differences among the
μi’s according to the following design, where ± means putting the material on the
right or left side of the balance:

y1 = μ1 + μ2 + μ3 + μ4 + e1,
y2 = μ1 + μ2−μ3−μ4 + e2,
y3 = μ1−μ2 + μ3−μ4 + e3,
y4 = μ1−μ2−μ3 + μ4 + e4

(1.1)
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Then, the estimators

μ1 = y1 + y2 + y3 + y4 4,

μ2 = y1 + y2−y3−y4 4,

μ3 = y1−y2 + y3−y4 4,

μ4 = y1−y2−y3 + y4 4

are the best linear unbiased estimators (BLUE; see Section 2.1), each with variance
σ2/4. Therefore, a naïve method to replicate four measurements for each μi to achieve
variance σ2/4 is a considerable waste of time. More generally, when the number of
measurements n is a multiple of 4, we can form the unbiased estimator of all nweights
with variance σ2/n. This is achieved by applying a Hadamard matrix for the coeffi-
cients of μi’s on the right-hand side of equation (1.1) (see Section 15.3 for details,
as well as the definition of a Hadamard matrix).

1.2 Interaction Effects

Simultaneous experiments are not only necessary for the efficiency of the estimator,
but also for detecting interaction effects. The data in Table 1.1 show the result of
16 experiments (with averages in parentheses) for improving a printing machine with
an aluminum plate. The measurements are fixing time (s); the shorter, the better. The
factor F is the amount of ink and G the drying temperature. The plots of averages are
given in Fig. 1.1.
From Fig. 1.1, (F2, G1) is suggested as the best combination. On the contrary, if we

compare the amount of ink first, fixing at the drying temperature 280 C (G2), we shall
erroneously choose F1. Then we may fix the ink level at F1 and try to compare the
drying temperature. We may reach the conclusion that (F1, G2) should be an optimal
combination without trying the best combination, (F2, G1). In this example the optimal
level of ink is reversed according to the levels G1 and G2 of the other factor. If there
is such an interaction effect between the two factors, then a one-factor-at-a-time

Table 1.1 Fixing time of special aluminum printing.

Temperature

Ink supply G1 170 C G2 280 C

F1 : large 5.9 3.7 4.6 4.4 5.7 5.0 4.9 2.1
(4.65) (4.43)

F2 : small 4.7 3.3 4.5 1.0 8.2 5.9 10.7 8.5
(3.38) (8.33)
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experiment will fail to find the optimal combination. In contrast, if there is no such
interaction effect, then the effects of the two factors are called additive. In this case,
denoting the mean for the combinations (Fi, Gj) by μij, the equation

μij = μi + μ j−μ (1.2)

holds, where the dot and overbar denote the sum and average with respect to the suffix
replaced by the dot throughout the book. Therefore, μ implies the overall average
(general mean), for example. If equation (1.2) holds, then the plot of the averages
becomes like that in Fig. 1.2. Although in this case a one-factor-at-a-time experiment
will also reach the correct decision, simultaneous experiments to detect the interaction
effects are strongly recommended in the early stage of the experiment.

Fixing time (s)

G2G1

10

0

2

4

6

8

F1

F2

Figure 1.1 Average plots at (Fi,Gj).

Fixing time (s)

G2

F1

F2

G1

Figure 1.2 No interaction.
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1.3 Choice of Factors and Their Levels

A cause affecting the target value is called a factor. Usually, there are assumed
to be many affecting factors at the beginning of an experiment. To write down
all those factors, a ‘cause-and-effect diagram’ like in Fig. 1.3 is useful. This uses
the thick and thin bones of a fish to express the rough and detailed causes,
arranged in order of operation. In drawing up the diagram it is necessary to collect
as many opinions as possible from the various participants in the different areas.
However, it is impossible to include all factors in the diagram at the very begin-
ning of the experiment, so it is necessary to examine the past data or carry out
some preliminary experiments. Further, it is essential to obtain as much informa-
tion as possible on the interaction effects among those factors. For every factor
employed in the experiment, several levels are set up – such as the place of origin
of materials A1, A2, and the reaction temperature 170 C, 280 C, . The levels of
the nominal variable are naturally determined by the environment of the experiment.
However, choosing the levels of the quantitative factor is rather arbitrary. Therefore,
sometimes sequential experiments are required first to outline the response surface
roughly then design precise experiments near the suggested optimal points. In
Fig. 1.1, for example, the optimal level of temperature G with respect to F2 is
unknown – either below G1 or between G1 and G2. Therefore, in the first stage of
the experiment, it is desirable to design the experiment so as to obtain an outline
of the response curve. The choice of factors and their levels are discussed in more
detail in Cox (1958).

Target value: 
Thickness of 

synthetic fiber 

Blocking Spin
angle

Motor 

Viscosity 

Pump 

Density 

Composition Density 

Temperature 

Vomit amount Stretch 

Viscous material Coagulating agent 

Figure 1.3 Cause-and-effect diagram.
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1.4 Classification of Factors

This topic is discussed more in Japan than in other countries, and we follow here the
definition of Takeuchi (1984).

(1) Controllable factor. The level of the controllable factor can be determined by the
experimenter and is reproducible. The purpose of the experiment is often to find the
optimal level of this factor.

(2) Indicative factor. This factor is reproducible but not controllable by the exper-
imenter. The region in the international adaptability test of rice varieties is a typical
example, while the variety is a controllable factor. In this case the region is not the
purpose of the optimal choice, and the purpose is to choose an optimal variety for each
region – so that an interaction analysis between the controllable and indicative factors
is of major interest.

(3) Covariate factor. This factor is reproducible but impossible to define before the
experiment. It is known only after the experiment, and used to enhance the precision
of the estimate of the main effects by adjusting its effect. The covariate in the analysis
of covariance is a typical example.

(4) Variation (noise) factor. This factor is reproducible and possible to specify only in
laboratory experiments. In the real world it is not reproducible and acts as if it were
noise. In the real world it is quite common for users to not follow exactly the specifica-
tions of the producer. For example, a drug for an infectious disease may be used before
identifying the causal germ intended by the producer, or administered to a subject with
some kidney difficulty who has been excluded in the trial. Such a factor is called a noise
factor in the Taguchi method.

(5) Block factor. This factor is not reproducible but can be introduced to eliminate
the systematic error in fertility of land or temperature change with passage of time, for
example.

(6) Response factor. This factor appears typically as a categorical response to a con-
tingency table and there are two important cases: nominal and ordinal. The response is
usually not called a factor, but mathematically it can be regarded and dealt with as a
factor, with categories just like levels.

One should also refer to Cox (1958) for a classification of the factors from another
viewpoint.

1.5 Fixed or Random Effects Model?

Among the factors introduced in Section 1.4, the controllable, indicative and covariate
factors are regarded as fixed effects. The variation factor is dealt with as fixed in the
laboratory but dealt with as random in extending laboratory results to the real world.
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Therefore, the levels specified in the laboratory should be wide enough to cover the
wide range of real applications. The block is premised to have no interaction with
other factors, so that the treatment either as fixed or random does not affect the result.
However, it is necessarily random in the recovery of inter-block information in the
incomplete block design (see Section 9.2).
The definition of fixed and random effects models was first introduced by Eisenhart

(1947), but there is also the comment that these are mathematically equivalent and
the definitions are rather misleading. Although it is a little controversial, the distinc-
tion of fixed and random still seems to be useful for the interpretation and application
of experimental results, and is discussed in detail in Chapters 12 and 13.

1.6 Fisher’s Three Principles of Experiments vs.
Noise Factor

To compare the treatments in experiments, Fisher (1960) introduced three principles:
(1) randomization, (2) replication and (3) local control.
To explain randomization, Fisher introduced the sensory test of tasting a cup of tea

made with milk. The problem then is to know whether it is true or not that a lady can
declare correctly whether the milk or the tea infusion was added to the cup first. The
experiment consists of mixing eight cups of tea, four in one way and four in the other,
and presenting them to the subject for judgment. There are, however, numerous
uncontrollable causes which may influence the result: the requirement that all the cups
are exactly alike is impossible; the strength of the tea infusion may change between
pouring the first and last cup; and the temperature at which the tea is tasted will change
in the course of the experiment. One procedure that is used to escape from such sys-
tematic noise is to randomize the order of the eight cups for tasting. This process con-
verts the systematic noise to random error, giving the basis of statistical inference.
Secondly, it is necessary to replicate the experiments to raise the sensitivity of com-

parison. It is also necessary to separate and evaluate the noise from treatment effects,
since the outcomes of experiments under the same experimental conditions can vary
due to unknown noise. The treatment effects of interest should be beyond such ran-
dom fluctuations, and to ensure this several replications of experiments are necessary
to evaluate the effects of noise.
Local control is a technique to ensure homogeneity within a small area for com-

paring treatments by splitting the total area with large deviations of noise. In field
experiments for comparing a plant varieties, the whole area is partitioned into n
blocks so that the fertility becomes homogeneous within each block. Then, the pre-
cision of comparisons is improved compared with randomized experiments of all an
treatments.
Fisher’s idea to enhance the precision of comparisons is useful in laboratory experi-

ments in the first stage of research development. However, in a clinical trial for com-
paring antibiotics, for example, too rigid a definition of the target population and the
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causal germs may not coincide with real clinical treatment. This is because, in the real
world, antibiotics may be used by patients with some kidney trouble who might be
excluded from the trial, by older patients beyond the range of the trial, before identi-
fying the causal germ exactly, or with poor compliance of the taking interval. There-
fore, in the final stage of research development it is required to introduce purposely
variations in users and environments in the experiments to achieve a robust product in
the real world. It should be noted here that the purpose of experiments is not to know
all about the sample, but to know all about the background population from which the
sample is taken – so the experiment should be designed to simulate or represent well
the target population.

1.7 Generalized Interaction

A central topic of data science is the analysis of interaction in a generalized sense. In
a narrow sense, it is the departure from the additive effects of two factors. If the effect
of one factor differs according to the levels of the other factor, then the departure
becomes large (as in the example of Section 1.2).
In the one-way layout also, the main effects of a treatment become the interaction

between the treatment and the response if the response is given by a categorical
response instead of quantitative measurements. In this case, the data yij are the fre-
quency of the (i, j) cell for the ith treatment and the jth categorical response. If we
denote the probability of cell (i, j) by pij, then the treatment effect is a change in
the profile (pi1, pi2,…, pib) of the ith treatment and the interaction effects in terms
of pij are concerned. In this case, however, a naïve additive model like (1.2) is often
inappropriate, and the log linear model

logpij = μ+ αi + βj + αβ ij

is assumed. Then, the factor (αβ)ij denotes the ith treatment effect. In this sense, the
regression analysis is also a sort of interaction analysis between the explanation and
the response variables. Further, the logit model, probit model, independence test of
a contingency table, and canonical correlation analysis are all regarded as a sort of
interaction analysis. One should also refer to Section 7.1 regarding this idea.

1.8 Immanent Problems in the Analysis of
Interaction Effects

In spite of its importance, the analysis of interaction is paid much less attention than
it deserves, and often in textbooks only an overall F- or χ2-test is described. However,
the degrees of freedom for interaction are usually large, and such an overall test cannot
tell any detail of the data – even if the test result is highly significant. The degrees of free-
domare explained indetail inSection2.5.5. In contrast, themultiple comparisonprocedure
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based on one degree of freedom statistics is far less powerful and the interpretation of
the result is usually unclear. Usually in the text books it is recommended to estimate
the combination effectμij by the cellmean yij , if the interaction exists. However, it often
occurs that only a few degrees of freedom can explain the interaction very well, and in
this case we can recover information for μij from other cells and improve the naïve
estimate yij of μij. This also implies that it is possible to separate the essential inter-
action from the noisy part without replicated experiments. Further, the purpose of the
interaction analysis has many aspects – although the textbooks usually only describe
how to find an optimal combination of the controllable factors. In this regard the clas-
sification of factors plays an essential role (see Chapters 10, 11, 13, and 14).

1.9 Classification of Factors in the Analysis of
Interaction Effects

In case of a two-factor experiment, one factor should be controllable since otherwise
the experiment cannot result in any action. In case of controllable vs. controllable, the
purpose of the experiment will be to specify the optimal combination of the levels of
those two factors for the best productivity. Most of the textbooks describe this situ-
ation. However, the usual F test is not useful in practice, and the simple interaction
model derived from the multiple comparison approach would be more useful.
In case of controllable vs. indicative, the indicative factor is not the object of optimi-

zation but the purpose is to specify the optimal level of the controllable factor for each
level of the indicative factor. In the international adaptability test of rice varieties, for
example, the purpose is obviously not to select an overall best combination but to specify
an optimal variety (controllable) for each region (indicative). Then, it should be incon-
venient toholdanoptimal variety for eachof a lot of regions in theworld, and themultiple
comparison procedure for grouping regions with similar response profiles is required.
The case of controllable vs. variation is most controversial. If the purpose is to max-

imize the characteristic value, then the interaction is a sort of noise in extending the lab-
oratory result to the real world, where the variation factor cannot be specified rigidly and
may take diverse levels. Therefore, it is necessary to search for a robust level of the con-
trollable factor to give a large and stable output beyond the random fluctuations of the
variation factor. Testing main effects by interaction effects in the mixed effects model of
controllable vs. variation factors is one method in this line (see Section 12.3.5).

1.10 Pseudo Interaction Effects (Simpson’s Paradox)
in Categorical Data

In case of categorical responses, the data are presented as the number of subjects sat-
isfying a specified attribute. Binary (1, 0) data with or without the specified attribute
are a typical example. In such cases it is controversial how to define the interaction
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effects, see Darroch (1974). In most cases an additive model is inappropriate, and is
replaced by a multiplicative model. The numerical example in Table 1.2 will explain
well how the additive model is inappropriate, where k = 1 denotes useful and k = 2
useless. In Table 1.2 it is obvious that drug 1 and drug 2 are equivalent in usefulness
for each of the young and old patients, respectively. Therefore, it seems that the two
drugs should be equivalent for (young + old) patients. However, the collapsed sub-
table for all the subjects apparently suggests that drug 1 is better than drug 2. This
contradiction is known as Simpson’s paradox (Simpson, 1951), and occurs by addi-
tive operation according to the additive model of the drug and age effects. The correct
interpretation of the data is that both drugs are equally useful for young patients and
equally useless for old patients. Drug 1 is employed more frequently for young
patients (where the useful cases are easily obtained) than old patients, and as a result
the useful cases are seen more in drug 1 than drug 2. By applying the multiplicative
model we can escape from this erroneous conclusion (Fienberg, 1980) – see
Section 14.3.2 (1).

1.11 Upper Bias by Statistical Optimization

As a simple example, suppose we have random samples y11,…, y1n and y21,…,
y2n from the normal population N(μ1, σ2) and N(μ2, σ2), respectively, where
μ1 = μ2 = μ. Then, if we select the population corresponding to the maximum of
y1 and y2 , and estimate the population mean by the maximal sample, an easy calcu-
lation leads to

E max y1 , y2 = μ + σ nπ

showing the upper bias as an estimate of the population mean μ. The bias is induced by
treating the sample employed for selection (optimization) as if it were a random sam-
ple for estimation; this is called selection bias.
A similar problem inevitably occurs in variable selection in the linear regression

model, see Copas (1983), for example. It should be noted here again that the purpose
of the data analysis is not to explain well the current data, but to predict what will
happen in the future based on the current data. The estimation based on the data
employed for optimization is too optimistic to predict the future. Thus, the Akaike’s

Table 1.2 Simpson’s paradox.

Young j = 1 Old j = 2 Young + old

(k = 1) (k = 2) (k = 1) (k = 2) (k = 1) (k = 2)

Drug (i = 1) 120 40 10 30 130 70
Drug (i = 2) 30 10 40 120 70 130
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information criterion (AIC) approach or penalized likelihood is justified. One should
also refer to Efron and Tibshirani (1993) for the bootstrap as a non-parametric method
of model validation.

1.12 Stage of Experiments: Exploratory,
Explanatory or Confirmatory?

Finally, most important in designing experiments is to define the target of the
experiments clearly. For this purpose it is useful to define the three stages of
experiments. The first stage is exploratory, whose purpose is to discover a prom-
ising hypothesis in the actual science – such as industry and clinical medicine. At
this stage the exploring data analysis, analysis of variance, regression analysis,
and many other statistical methods are applied. Data dredging is allowed to some
extent, but it is most inappropriate to take the result as a conclusion. This stage
only proposes some interesting hypotheses, which should be confirmed in the fol-
lowing stages. The second stage is explanatory, whose purpose is to clarify the
hypothesis under rigid experimental conditions. The design and analysis of
experiments following Fisher’s principle will be successfully applied. The third
stage is confirmatory, whose purpose is to confirm that the result of laboratory
experiments is robust enough in the actual world. The robust design of Taguchi
is useful here. It should be noted that in these stages of experiments, the essence
of the statistical method for summarizing and analyzing data does not change; the
change is in the interpretation and degree of confidence of the analytical results.
Finally, follow-up analysis of the post-market data is inevitable, since it is impos-
sible to predict all that will happen in the future by pre-market research, even if
the most precise and detailed experiments were performed.
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2

Basic Estimation Theory

Methods for extracting some systematic variation from noisy data are described.
First, some basic theorems are given. Then, a linear model to explain the systematic
part and the least squares (LS) method for analyzing it are introduced. The principal
result is the best linear unbiased estimator (BLUE). Other important topics are the
maximum likelihood estimator (MLE) for a generalized linear model and sufficient
statistics.

2.1 Best Linear Unbiased Estimator

Suppose we have a simple model for estimating a weight μ by n experiments,

yi = μ+ ei, i= 1,…, n 2 1

Then μ is a systematic part and the ei represent random error. It is the work of a
statistician to specify μ out of the noisy data. Maybe most people will intuitively take
the sample mean y as an estimate for μ, but it is by no means obvious for y to be a
good estimator in any sense. Of course, under the assumptions (2.4) ~ (2.6) of unbia-
sedness, equal variance and uncorrelated error, y converges to μ in probability by the
law of large numbers. However, there are many other estimators that can satisfy such a
consistency requirement in large data.
There will be no objection to declaring that the estimator T1(y) is a better estimator

than T2(y) if, for any γ1, γ2 ≥ 0,

Pr μ−γ1 ≤ T1 y ≤ μ+ γ2 ≥ Pr μ−γ1 ≤ T2 y ≤ μ+ γ2 (2.2)
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holds, where y = y1,…, yn denotes an observation vector and the prime implies a
transpose of a vector or a matrix throughout this book. A vector is usually a column
vector and expressed by a bold-type letter. However, there exists no estimator which is
best in this criterion uniformly for any unknown value of μ. Suppose, for example, a
trivial estimator T3 y μ0 that specifies μ= μ0 for any observation y. Then it is a bet-
ter estimator than any other estimator when μ is actually μ0, but it cannot be a good
estimator when actually μ is not equal to μ0. Therefore, let us introduce a criterion of
mean squared error (MSE):

E T y −μ 2

This is a weaker condition than (2.2), since if equation (2.2) holds, then we obvi-

ously have E T1 y −μ 2 ≤E T2 y −μ 2. However, in this criterion too the trivial
estimator T3 y μ0 becomes best, attainingMSE= 0 when μ= μ0. Therefore, we fur-
ther request the estimator to be unbiased:

E T y = μ (2.3)

for any μ, and consider minimizing theMSE under the unbiased condition (2.3). Then,
the MSE is nothing but a variance. If such an estimator exists, we call it a minimum
variance (or best) unbiased estimator. If we restrict to the linear estimator T y = l y,
the situation becomes easier. Let us assume

E ei = 0, i= 1, …, n unbiased , (2.4)

V ei = σ2, i= 1,…, n equal variance , (2.5)

Cov ei,ei = 0, i, i = 1,…, n; i i uncorrelated (2.6)

naturally for the error, then the problem of the BLUE is formulated as minimizing
V(l y) under the condition E l y = μ. Mathematically, it reduces to minimizing
l l = il

2
i subject to l jn = ili = 1, where jn = 1, …, 1 is an n -dimensional column

vector of unity throughout this book and the suffix is omitted if it is obvious. This
can be solved at once, giving l = n−1 j. Namely, y is a BLUE of μ. The BLUE is
obtained generally by the LS method of Section 2.3, without solving the respective
minimization problem.

2.2 General Minimum Variance Unbiased Estimator

If μ is a median in model (2.1), then there are many non-linear estimators, like the
sample median ỹ and the Hodges–Lehman estimator, the median of all the combina-
tions yi + yj 2, and it is still not obvious in what sense y is a good estimator. If we
assume a normal distribution of error in addition to the conditions (2.4) ~ (2.6), then
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the sample mean y is a minimum variance unbiased estimator among all unbiased
estimators, called the best unbiased estimator. There are various ways to prove this,
and we apply Rao’s theorem here. Later, in Section 2.5, another proof based on
sufficient statistics will be given.

Theorem 2.1. Rao’s theorem. Let θ be an unknown parameter vector of the distri-
bution of a random vector y. Then a necessary and sufficient condition for an unbiased
estimator ĝ of a function g(θ) of θ to be a minimum variance unbiased estimator is that
ĝ is uncorrelated with every unbiased estimator h(y) of zero.

Proof

Necessity: For any unbiased estimator h(y) of zero, a linear combination g + λh is also
an unbiased estimator of g(θ). Since its variance is

V g+ λ h =V g + 2λCov g, h + λ2V h ,

we can choose λ so that V g+ λ h ≤V g , improving the variance of ĝ unless Cov
(ĝ, h) is zero. This proves that Cov g, h = 0 is a necessary condition.

Sufficiency: Suppose that ĝ is uncorrelated with any unbiased estimator h of zero. Let
ĝ∗ be any other unbiased estimator of g. Since g−g∗ becomes an unbiased estimator of
zero, an equation

Cov g,g−g∗ = V g − Cov g,g∗ = 0

holds. Then, since an inequality

0 ≤V g−g∗ = V g −2Cov g,g∗ +V g∗ =V g∗ −V g

holds, ĝ is a minimum variance unbiased estimator of g(θ).

Now, assuming the normality of the error ei in addition to (2.4) ~ (2.6), the prob-
ability density function of y is given by

f y = 2πσ2 −n 2
exp− i yi−μ

2

2σ2

This is a density function of the normal distribution with mean μ and variance σ2.
If h(y) is an unbiased estimator of zero, we have

h y × f y dy= 0 (2.7)

By the partial derivation of (2.7) with respect to μ, we have

i yi−μ σ2 × h y × f y dy= n σ2 y −μ × h y × f y dy = 0
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This equation suggests that y is uncorrelated with h(y), that is, y is a minimum
variance unbiased estimator of its expectation μ.
On the contrary, for y to be a minimum variance unbiased estimator, the distribu-

tion of ei in (2.1) must be normal (Kagan et al., 1973).

2.3 Efficiency of Unbiased Estimator

To consider the behavior of sample mean y under non-normal distributions, it is con-
venient to consider the t-distribution (Fig. 2.1) specified by degrees of freedom ν:

fν y =
1

ν1 2B 2−1,ν 2
1 +

y−μ 2

ν

− ν + 1 2

, (2.8)

where B 2−1,ν 2 is a beta function. At ν= ∞ this coincides with the normal distri-
bution, and when ν= 1 it is the Cauchy distribution representing a long-tailed distri-
bution with both mean and variance divergent. Before comparing the estimation
efficiency of sample mean y and median ỹ, we describe Cramér–Rao’s theorem,
which gives the lower bound of variance of an unbiased estimator generally.

Theorem 2.2. Cramér–Rao’s lower bound. Let the density function of
y= y1,…, yn be f (y, θ). Then the variance of any unbiased estimator T(y) of θ satis-
fies an inequality

V T ≥ I −1n θ , (2.9)

fv( y)

0.4

43210–1–2–3–4

0.2

–5 5

0.1

0.00.0

v= 1

v= 10

v= 5

v= 2

v= ∞

y

0.30.3

Figure 2.1 t-distribution fν(y).
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where

In θ = −E
∂2 log f y, θ

∂θ2
=E

∂log f y, θ
∂θ

2

(2.10)

is called Fisher’s amount of information. In the case of a discrete distribution P(y, θ),
we can simply replace f( y, θ) by P( y, θ) in (2.10).

Proof. Since T(y) is an unbiased estimator of θ, the equation

T y × f y, θ dy = θ (2.11)

holds. Under an appropriate regularity condition such as exchangeability of derivation
and integration, the derivation of (2.11) with respect to θ is obtained as

T y ×
∂log f y, θ

∂θ
× f y, θ dy = 1 (2.12)

Further, by the derivation of f y, θ dy = 1 by θ, we have

∂f y, θ
∂θ

dy =
∂log f y, θ

∂θ
× f y, θ dy = 0 (2.13)

Then, equations (2.12) and (2.13) imply

E T y −θ ×
∂log f y, θ

∂θ
= 1 (2.14)

In contrast, for any random variable g, h and a real number λ, the equation

E g+ λh 2 =E g2 + 2λE g× h + λ2E h2 ≥ 0 (2.15)

holds generally. If inequality (2.15) holds for any real number λ, we have

E g2 ×E h2 − E g× h 2 ≥ 0, (2.16)

which is Schwarz’s inequality. Applying (2.16) to (2.14), we get

E T y −θ 2 ×E
∂log f y, θ

∂θ

2

≥ 1

and this is one form of (2.9) and (2.10), since V T =E T y −θ 2. Next, since
we have

∂2 log f y, θ

∂θ2
=

∂

∂θ

1
f y, θ

∂f y, θ
∂θ

=
1

f y, θ
∂2f y, θ

∂θ2
−

1
f 2 y, θ

∂f y, θ
∂θ

2
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and E
1

f y, θ
∂2f y, θ

∂θ2
=

∂2f y, θ

∂θ2
dy = 0, by the derivation of (2.13) we get

E
∂2 log f y, θ

∂θ2
= −E

∂log f y, θ
∂θ

2

,

which gives another form of (2.10).

If the elements of y= y1,…, yn are independent following the probability density
function f(yi, θ), In(θ) can be expressed as In θ = n I1 θ , where

I1 θ = −E
∂2 log f yi, θ

∂θ2
=E

∂log f yi, θ

∂θ

2

is Fisher’s amount of information per one datum.
An unbiased estimator which satisfies Cramér–Rao’s lower bound is called an

efficient estimator. When y is distributed as the normal distribution N(μ, σ2), it is obvi-
ous that I1 μ = σ−2. Therefore, the lower bound of the variance of an unbiased
estimator based on n independent samples is σ2/n. Since V y = σ2 n, y is not only
a minimum variance unbiased estimator but also an efficient estimator. An efficient
estimator is generally a minimum variance unbiased estimator, but the reverse is not
necessarily true. As a simple example, when y1,…, yn are distributed independently as
N(μ, σ2), the so-called unbiased variance

σ2 = n
i= 1 yi−y

2 n−1 (2.17)

is a minimum variance unbiased estimator of σ2 but it is not an efficient estimator
(see Example 2.2 of Section 2.5.2).
When y1, …, yn are distributed independently as a t-distribution of (2.8), we have

I1 μ = ν+ 1 ν+ 3 and therefore the lower bound of an unbiased estimator of μ is

1
n
×
ν + 3
ν + 1

(2.18)

On the contrary, the variance of sample mean y is

1
n
×

ν

ν−2
(2.19)

For the sample median y ̃, the asymptotic variance

nV y
f −2 μ

4
=
ν

4
B2 1

2
,
ν

2
n ∞ (2.20)
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is known. Then the ratios of (2.18) to (2.19) and (2.20), namely

Eff y =
ν+ 3
ν+ 1

×
ν−2
ν

and Eff y =
ν+ 3
ν+ 1

×
4

νB2
1
2
,
ν

2

are called the efficiency of y and ỹ, respectively. The inverse of the efficiency implies
the necessary sample size to attain Cramér–Rao’s lower bound by the respective esti-
mators. The efficiencies are given in Table 2.1.
From Table 2.1 we see that y behaves well for ν ≥ 5 but its efficiency decreases

below 5, and in particular the efficiency becomes zero at ν= 1 and 2. In contrast, ỹ
keeps relatively high efficiency and is particularly useful at ν= 1 and 2. Actually,
for the Cauchy distribution an extremely large or small datum occurs from time to
time, and y is directly affected by it whereas ỹ is quite stable against such disturbance.
This property of stability is called robustness in statistics. There are various proposals
for the robust estimator when a long-tailed distribution is expected or no prior infor-
mation regarding error is available at all in advance. However, a simple and estab-
lished method is not available, except for a simple estimation problem of a
population mean. Also, the real data may not follow exactly the normal distribution,
but still it will be rare to have to assume such a long-tailed distribution as Cauchy.
Therefore, it is actually usual to base the inference on the linear model and BLUE
by checking the model very carefully and with an appropriate transformation of data
if necessary.
The basis of normality is the central limit theorem, which ensures normality for the

error if it consists of infinitely many casual errors. In contrast, for the growth of crea-
tures, the amount of growth is often proportional to the present size, inviting a product
model instead of an additive model. In this case, the logarithm of the data fits the nor-
mal distribution better. Masuyama (1976) examined widely the germination age of
teeth, the time to produce cancer from X-ray irradiation, and so on, and reported that
the lognormal distribution generally fitted well the time to appearance of effects.
Concentrations of chemical agents in blood have also been said to fit well to a
lognormal distribution, and we have employed this in proving bio-equivalence in

Table 2.1 The efficiency of sample mean y and median y ̃.

ν 1 2 3 4 5 10 ∞

Eff y 0 0 0.5 0.7 0.8 0.945 1
Eff y 0.811 0.833 0.811 0.788 0.769 0.916 0.637
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Section 5.3.6. Power transformation including square and cube roots is also applied
quite often, but in choosing transformations some rationale is desired in addition
to apparent fitness.

As another sort of transformation, an arc sine transformation sin−1 y n of
the data from the binomial distribution B(n, p) is conveniently used for normal
approximation, with mean sin−1 p and stabilized variance 1/(4n).

2.4 Linear Model

In the analysis of variance (ANOVA) and regression analysis also, it is usual to
assume a linear model

yn =Xn × pθp + en, (2.21)

where yn is an n-dimensional observation vector, θp a p -dimensional unknown
parameter vector, e an error vector, and X a design matrix of experiments which gives
the relationship between the observation vector y and the parameter vector θ. We
assume

E e = 0n, (2.22)

V e = σ2In, (2.23)

where 0 denotes a zero vector of an appropriate size, In an identity matrix of order n,
and the suffix will be omitted if it is obvious. The difference is obvious from
Fisher’s information matrix In(θ), which is a function of a relevant parameter θ.
Equation (2.22) corresponds to the assumption (2.4), and (2.23) to (2.5) and (2.6).
The simple model (2.1) of n repetitions is expressed as, for example,

y = jnμ+ e

As a special case of a 1-dimensional parameter, jnμ can also be expressed as μjn,
with μ a scalar multiplier of vector jn. Model (1.1) is also a linear model, and can
be expressed as

y =

y1

y2

y3

y4

=

1 1 1 1

1 1−1−1

1−1 1 −1

1−1−1 1

μ1

μ2

μ3

μ4

+

e1

e2

e3

e4

Also, a regression model

yi = β0 + β1xi + β2x
2
i + ei, i = 1, …, n
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can be expressed as

y=

1 x1 x21

1 x2 x22

1 xn x2n

β0

β1

β2

+

e1

e2

en

The name ‘linear model’ comes from the fact that the systematic part is expressed as
a linear combination of the unknown parameters, and therefore it is no problem to
include a non-linear term x2i in the explanation variables.
Now, the problem of a minimum variance linear unbiased estimator (BLUE) l y of

a linear combination L θ is formulated as a problem of finding l so as to minimize
the variance l l(σ2) subject to l X =L for given X and L . It should be noted that in
the example at the end of Section 2.1, X was j and L = 1. However, it is very
time-consuming to solve this minimization problem each time. Instead, by the LS
method we can obtain BLUE very easily.

2.5 Least Squares Method

2.5.1 LS method and BLUE

Let us define the LS estimator θ by

θ y−Xθ 2 ≤ y−Xθ 2 for any θ , (2.24)

where v 2 denotes a squared norm of a vector v. Then, for any linear estimable func-

tion L θ, the BLUE is uniquely obtained from L θ even when the θ that satisfies (2.24)
is not unique. Here, the linear estimable function L θ implies that there is at least one
linear unbiased estimator for it. The necessary and sufficient condition for the estim-
ability is that L can be expressed by a linear combination of rows of X by the require-
ment E l y = l Xθ =L θ. Therefore, if rank (X) is p, then every linear function L θ
and θ itself is estimable. When rank (X) is smaller than p, every element of θ is not

estimable and θ of (2.24) cannot be determined uniquely. It is important that even

for this case, L θ is uniquely determined for the estimable function L θ.

Example 2.1. One-way ANOVA model. Let us consider the one-way ANOVA
model of Chapter 5:

yij = μi + eij, i= 1,…, a, j= 1, …, m (2.25)
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This model is expressed in the form of (2.21), taking

Xn× a =

jm 0 0

0 jm 0

0 0 jm

, θa =

μ1
μ2

μa

with n = am and p= a. Obviously, rank(X) is a and coincides with the number of
unknown parameters. Therefore, all the parameters μi are estimable. However, the
model (2.25) is often rewritten as

yij = μ+ αi + eij, i= 1, …, a, j= 1,…, m, (2.26)

factorizing μi to a general mean μ and main treatment effect αi. Then, the linear model
is expressed in matrix form as

yn = jn Xα

μ

α
+ en, α = α1,…,αa ,

where Xα is equivalent to Xn× a and p = a + 1. Since rank[ jn Xα] is a, this is the case
where the design matrix is not full rank and every unknown parameter is not estima-
ble. The estimable functions are obviously μ + αi, i= 1,…, a, and their linear combi-
nations. Therefore, αi−αi is estimable but μ and αi themselves are not estimable. The
linear combination in α with sum of coefficients equal to 0, like αi−αi , is called a
contrast, which implies a sort of difference among parameters. In a one-way layout
all the contrasts are estimable, since then μ vanishes.

Theorem 2.3. Gauss–Markov’s theorem.We call the linear model (2.21) under the

assumptions (2.22) and (2.23), Gauss–Markov’s model. With this model, any θ that
satisfies

X Xθ =X y (2.27)

is called an LS estimator. Equation (2.27) is obtained by equating the derivation of

y−Xθ 2 with respect to θ to zero, called a normal equation. Then, for any estimable

function L θ, the BLUE is obtained simply by substituting the LS estimator θ into θ,

as L θ.

Proof. The proof is very simple when the design matrix X is full rank. In this case

equation (2.27) is solved at once to give the solution L θ=L X X −1X y. This is

an unbiased estimator of L θ, since E L θ =E L X X −1X y =L X X −1

X Xθ= L θ. Next, suppose l y to be any linear unbiased estimator of L θ and denote

the difference from L θ by b y. Then we have
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V l y =V L θ−b y =V L θ +V b y −2Cov L θ, b y

=V L θ +V b y −2L X X −1X bσ2

= V L θ +V b y ≥ V L θ

The last equality holds since the equation E l y−L θ =E b y = b Xθ= 0 holds for

any θ, suggesting b X = 0.

There are various methods for proving Theorem 2.3 when rank X = r ≤ p. We
apply here an orthonormal transformation of y to a standard form. Another proof is
obtained in Section 2.5.4 with the aid of a generalized inverse of a matrix.
Let the orthonormal eigenvectors for the non-zero eigenvalues λ1,…,λr > 0 of

X X be denoted by Pp× r,

X XP=PD,

where D= diag λi is a diagonal matrix with diagonal elements λ1,…, λr. Next, let us
define an orthonormal matrix Qn × n−r that is orthogonal to the columns of X. Then

M =
D−1 2P X

Q
(2.28)

is an n × n orthonormal matrix satisfying M M = In, where the notation Dν for a
diagonal matrix is used for the diagonal matrix with diagonal elements λν1, …, λνr
throughout this book. The matrices P and Q are generally not unique, but we can
choose and fix either of them. The column space of Q is nothing but the error space
introduced in Section 2.5.2. We put forward a transformation of y by M as

z =
z1

z2
=M y =

η

0
+ ξ, (2.29)

where z1 and z2 are the partitions of z according to the partition of M (2.28) and
ξ satisfies the same condition E ξ = 0 and V ξ = σ2I as (2.22) and (2.23). In the
standard form (2.29), elements of η=D−1 2P X Xθ =D1 2P θ are linearly independent
of each other and it is obvious that the class of estimable functions of θ is formed by
all linear combinations of η. Since the elements of η are linearly independent, any
estimable function is uniquely expressed by l1η and its unbiased estimator is given
generally by l1z1 + l2z2 with arbitrary vector l2. Then, since z1 and z2 are uncorrelated,
we have

V l1z1 + l2z2 = l1l1σ
2 + l2l2σ

2
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and the variance is minimized at l2 = 0. Therefore, l1z1 = l1D
−1 2P X y is a BLUE

of l1η= l1D
1 2P θ and its variance is l1l1σ

2. Next, multiplying by P on both sides
of the normal equation (2.27), we have

DP θ=P X y, (2.30)

and therefore we have l1z1 = l1D
−1 2P X y = l1D

1 2P θ. Namely, the BLUE of

l1D
1 2P θ is obtained simply by replacing θ with θ that satisfies the normal equation.

2.5.2 Estimation space and error space

In the linear model (2.21), the linear subspace spanned by the columns of X is called
an estimation space and its orthogonal complement is called an error space. The
error space is spanned by the column vectors of Q in (2.28). In this context, the whole

space of observation y is called a sample space. Now, noting equation (2.30), Xθ is
rewritten as

Xθ =X PP θ =XP D−1P X y =ΠXy,

where ΠX =XPD−1P X is a projection matrix onto the estimation space since it is

symmetric, idempotent and keeps Xθ =ΠXXθ unchanged. Then, Xθ is unique as
a projection of y onto the estimation space. Note that when rank X = p, ΠX is simply

X X X −1X . This is natural, sinceXθ is closest to the observation vector y in the sense
of squared distance among the vectors expressed by Xθ (see Fig. 2.2).

In contrast, we call y−Xθ a residual and it is rewritten as

y−Xθ = I−ΠX y=QQ y

O

y

y – Xθ^
2

Xθ

^Xθ

Figure 2.2 Observation vector y and its projection onto the estimation space.
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This is obviously a projection of y onto the error space. Its squared norm

S θ = y−Xθ 2 = y QQ y = Q y 2 (2.31)

is called a residual sum of squares and generally expressed by S. It should be noted

here that Xθ and y−Xθ are uncorrelated by the orthogonality of estimation space and
error space,

Cov Xθ,y−Xθ =ΠXV y I−ΠX = σ2ΠX I−ΠX = 0

This further implies that Xθ and y−Xθ are mutually independent under the normality
assumption. Since every element of Q y is distributed with expectation zero,
equal variance σ2 and uncorrelated, we have

E S θ = n−r σ2

Therefore

σ2 = y−Xθ 2 n−r (2.32)

is an unbiased estimator of σ2, called an unbiased variance. For the numerical

calculation of S θ , the formula below is more convenient:

S θ = y y−y Xθ−θ X y+ θ X Xθ

= y y−θ X y
(2.33)

The necessary calculation is the sum of squares of yi and the inner product of the

estimate θ and X y, which is the right-hand side of the normal equation (2.27). On
the one hand, applying a well-known formula

E U2 = E U 2 +V U (2.34)

for any random variable U to y 2 element-wise and noting equation (2.21), we have

E y 2 = Xθ 2 + nσ2. Therefore, from (2.33),

E Xθ 2 =E y y −E S θ

=E y 2 − n−r σ2 = Xθ 2 + rσ2

If we assume a normal distribution of the error e, then the BLUE L θ is the minimum
variance among all the unbiased estimators. This is verified by applying Theorem 2.1
to the partial derivation of

H θ, σ2 = h y × 2πσ2
−n 2

exp−
y−Xθ 2

2σ2
d y = 0
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with respect to θ. Further, from the two expressions ∂2H θ, σ2 ∂θ2 and
∂H θ, σ2 ∂σ2, the estimator σ2 of equation (2.32) is shown to be a minimum vari-
ance unbiased estimator (see Example 2.2).

Example 2.2. Application of Theorem 2.1 to model y = jnμ+ e with normal error.
The normal equation (2.27) is simply

μ= j j −1j y= n−1 n
i= 1yi = y

The residual sum of squares is obtained from (2.31) or (2.33) as

S μ = n
i= 1 yi−y

2 = n
i= 1y

2
i −y × y = n

i= 1y
2
i −y

2 n

The function H(μ, σ2 ) is given as equation (2.7) and it has already been shown that y
and h(y) are uncorrelated. Then, from ∂2H μ, σ2 ∂μ2, y2 is shown to be uncorrelated
with h(y). Further, from ∂H μ, σ2 ∂σ2, y2i is shown to be uncorrelated with h(y).
Combining these results, the unbiased variance (2.17),

σ2 =
S μ

n−1
=

1
n−1

n
i= 1y

2
i −y

2 n ,

is shown to be a minimum variance unbiased estimator. Under the normality assump-
tion, elements of Q y/σ are distributed independently as the standard normal distribu-
tion and therefore S μ σ2 is distributed as the chi-squared distribution χ2ν with
degrees of freedom ν = n−1 (see Section 2.5.5 for an explanation of degrees of free-
dom and Lemma 2.1 for the chi-squared distribution). Since the variance of χ2ν is 2ν,
the variance of σ2 is V σ2 = 2σ4 n−1 . In contrast, the Cramér–Rao’s lower bound

for σ2 is 2σ4/n from I1 σ2 = 2σ4
−1
. Therefore, σ2 is not an efficient estimator. By the

general theory of this section, μ and σ2 are mutually independent and are utilized in
Section 3.1.4 to derive Student’s t-distribution.

2.5.3 Linear constraints on parameters for solving the
normal equation

ByGauss–Markov’s theorem the BLUE for an estimable function L θ is obtained sim-

ply and uniquely by L θ with any θ satisfying the normal equation. If rank X = r is
equal to the number of unknown parameters p, then the normal equation is solved

uniquely and there is no problem. However, if r < p, then θ is not unique and it is

a problem how to find L θ for the estimable function. We give three ways to obtain

L θ in the following.
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(1) Direct method. Since L θ is estimable, L θ can be obtained directly by linear

combination of the left-hand side of the normal equation X Xθ =X y. Then, the same
linear combination of the right-hand side of the normal equation is nothing but the
BLUE as shown in Example 2.3.

(2) Orthonormal transformation. Transform the linear model to a standard form.
This looks difficult, but for many designs of experiments such a transform is known
and given in later sections.

(3) Linear constraints. Add condition Kθ = 0 to the normal equation so that it

can be solved uniquely. In this case θ will change according to the conditions,

but L θ is uniquely determined. For our purpose the conditions should satisfy:

(a) Intersection of the subspaces spanned by the rows of X and K is 0 .

(b) rank
X

K
= r.

Condition (a) is for the condition Kθ = 0 not to restrict any of the estimable function.

Condition (b) is for the joint equations X Xθ=X y and Kθ= 0 to be solved uniquely

for θ. Condition (a) is also for the column space of X to be unchanged if we restrict the
coefficient θ of Xθ to satisfy Kθ= 0. Further, it is a condition that the minimization
problem of

S θ,γ = y−Xθ 2 + γ Kθ, Kθ = 0

with respect to θ and the Lagrange multiplier γ has a consistent solution γ = 0, see
Hirotsu (1971) for details.

Example 2.3. Estimation of one-way layout model (2.26). The estimable
functions of interest are μ + αi, i = 1, …, a and the contrast L α, L= L1, …, La ,
α = α1,…, αa . Since X = jn Xα , the normal equation is obtained as

X Xθ =

n m m m

m m 0 0

m 0 m 0

m 0 0 m

μ

α
=

y
y1

ya

(2.35)

Equation (2.35) cannot be solved since rank X = a, whereas there are a+ 1 unknown
parameters. Therefore, we apply methods (1), (2), and (3).
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(1) Direct method. The i+ 1st row of (2.35) is

m μ+ αi =m μ+ αi = yi

Therefore, μ+ αi = yi is BLUE for its expectation μ+ αi. Since a BLUE is unique, it
suffices to find one solution. Then, by the condition L j= 0, we have

a
i= 1 Li μ+ αi = a

i= 1Li μ +
a
i= 1 Liαi = a

i= 1 Liαi

and therefore Liyi is BLUE for the contrast L α.

(2) Orthogonal transformation. We can take a−1 orthonormal vectors p1,…,
pa−1 which are orthogonal to each other and also to ja. Let us define

Pa = p1,…, pa−1 , (2.36)

where this definition of Pa is used throughout the book. Then, since a−1 2ja Pa is an
a× a orthonormal matrix, we have

PaPa = Ia−a
−1ja ja, PaPa = Ia−1 (2.37)

Now, since

X X
0

pi
=m

0

pi
,

0 pi , i= 1,…, a−1 are the eigenvectors of X X with respect to the eigenvalue m.
Also, since

X X
a

ja
=m a+ 1

a

ja
,

a ja is an eigenvector with respect to the eigenvaluem a+ 1 . Therefore, every col-
umn of

P =
a a+ 1 −1 2a 0

a a+ 1 −1 2ja Pa

forms orthonormal eigenvectors for a non-zero eigenvalues of X X and we get

P X XP=D =
m a+ 1 0

0 mIa−1
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Then we have an orthonormal transformation M (2.28) of y as

M =
D−1 2P X

Q
=

n−1 2jn
m−1 2PaXα

Q

(2.38)

Finally, we get a standard form (2.29) as

z=M y=

n−1 2y

m−1 2Pa

y1

ya

Q y

=

n1 2 μ+ α

m1 2Paα

0

+ ξ (2.39)

Every row of Paα represents an orthonormalized contrast in α, and Pa y1 ,…,ya
gives its BLUE. Further, from PaPaα = I−a−1jj α= I−a−1jj y1 ,…,ya we have

αi−α = yi −y . In contrast, from the first row of (2.39) we have μ+ α = y and

combining them we get μ + αi = yi . Thus, an orthonormal transformation of y
works nicely for taking out estimable functions and their BLUE.

(3) Linear constraints. It is obvious that only one condition is necessary and
sufficient. Among various conditions to satisfy the requirements, we give two exam-
ples below.

(a) Add K = 1 0 to the normal equation (2.35), which is obviously not expressible
by a linear combination of rows of X . This is equivalent to setting μ = 0, and the solu-
tion is obtained at once as

μ= 0, αi = yi , i= 1,…, a (2.40)

(b) AddK = 0 j , which is equivalent to setting αi = 0, and the solution is obtained
easily as

μ = y , αi = yi −y , i= 1,…, a (2.41)

Since μ and αi are non-estimable, (2.40) and (2.41) give different solutions. However,
both solutions give the same BLUE for the estimable functions:

μ+ αi = μ+ αi = yi , αi−αi = αi−αi = yi −yi
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2.5.4 Generalized inverse of a matrix

Another method of proving Gauss–Markov’s theorem is the application of the gen-
eralized inverse of a matrix. When there is a consistent equation

Ax = v (2.42)

and if A− v is a solution to it, A− is called a generalized inverse. Of course, A− is
not necessarily unique. We introduce several theorems regarding the generalized
inverse.

Theorem 2.4. Generalized inverse of a matrix. A− is a generalized inverse of a
matrix A if and only if

AA−1A=A (2.43)

Proof. Let A be (a1, …, an). If A
− is a generalized inverse of A, then x=A−ai is a

solution of the consistent equation Ax= ai, namely AA−ai = ai holds for
i= 1, …, a. This proves at once AA−1A=A. Next, suppose there is a consistent equa-
tion (2.42), then

v =Ax =AA−Ax=AA−v

holds for anyA− that satisfies AA−A=A. Namely,A−v is a solution of (2.42). Finally,
it should be noted that rank A− ≥ rank AA−A = rank A .

It is verified that a generalized inverse that satisfies (2.43) exists as follows.
Let rank A = r in the following, then there exist non-singular matrices B m×m
and C n × n which satisfy

BAC =Δ=
Δr 0

0 0
m × n

,

where Δr = diag δ1,…,δr , δi 0, i= 1,…, r is a diagonal matrix. Then it is easily
shown that

Δ− =
Δ−1

r 0

0 0
n ×m

and A− =CΔ−B satisfies equation (2.43), proving Δ− and A− to be the generalized
inverses of Δ and A, respectively.

Theorem 2.5. A matrix H =A−A is an n × n idempotent matrix and rank H = r.

Proof. It is obvious that the following two equations hold:

H2 =A−AA−A=A−A=H

r = rank A = rank AH ≤ rank H ≤ rank A = r
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Theorem 2.6. General solution of Ax = 0. A general solution of Ax = 0 is
expressed as

x= I−H w (2.44)

Proof. It is obvious that Ax = 0 for x satisfying (2.44). Since I−H is also an
idempotent matrix, its rank is equal to tr I−H = tr I − tr H = n−r and therefore
equation (2.44) expresses all the solutions of Ax = 0.

Theorems 2.7 and 2.8 follow at once from Theorems 2.5 and 2.6.

Theorem 2.7. General solution of a consistent equation. A general solution of a
consistent equation Ax= v is expressed as

x=A−v+ I−H w,

where A− is any generalized inverse of the coefficient matrix A.

Theorem 2.8. Unique solution in a consistent equation. A necessary and sufficient
condition for the solution L x to be defined uniquely for x that satisfies a consistent
equation Ax = v is

L H =L

Now we can apply these theorems to the normal equation (2.27) by taking

A=X X,x= θ, v=X y. It is obvious that the normal equation is consistent, since
the left and right sides of the equation belong to the same linear subspace. Defining
any generalized inverse X X − , we obtain

θ = X X −X y (2.45)

For any estimable function L θ, L can be expressed as L = l X X and then

L H = l X X X X −X X = l X X =L

holds, where it is easy to verify that all the linear combinations of X X and X coincide

each other. Namely, L θ is unique by Theorem 2.8. Also, once θ has been expressed as

(2.45), the minimum variance of L θ can be proved in exactly the same way as in the
case when X is full rank.

2.5.5 Distribution theory of the LS estimator

The variance of BLUE L θ of an estimable function L θ is given by

L X X −X σ2I X X X −L =L X X −Lσ2 (2.46)
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If we express L θ as l1η in the standard form of (2.29), then the variance of BLUE

l1η is given by l1l1σ
2. Since l1 is expressed as L PD−1 2, we have

V L θ =L PD−1P Lσ2 (2.47)

PD−1P is nothing but the Moore–Penrose generalized inverse of X X.

If we assume the normality of error e, L θ is distributed as normal with expectation
L θ and variance given by (2.46) or (2.47).

The distribution of S θ (2.31) is easily obtained by the standard form of (2.29).

Namely, if the error e is distributed as normal, the elements of Q y are distributed

independently as N(0, σ2 ) and therefore S θ σ2 is distributed as a chi-squared dis-

tribution with degrees of freedom n−r as the sum of squares of n−r independent
standard normal variables. Let us denote the chi-squared variable with degrees of

freedom ν by χ2ν, then S θ is distributed as σ2χ2n−r. The degrees of freedom (df ) have

already appeared in Sections 2.3 and 2.5.2 as the parameter to define t- and the
chi-squared distribution, respectively. Also, they are explained as follows.

(1) The chi-squared variable with df ν is characterized as the sum of squares of inde-
pendent ν standard normal variables.

(2) When we express the linear model (2.21) in the standard form (2.29), the number of
linearly independent parameters is r. Therefore, n−r is the number obtained from the
sample size n subtracting the number of essential parameters r.

(3) Since X y−Xθ = 0, the elements of y−Xθ are not linearly independent. The

number of linearly independent elements is only n−r. S θ is formally a sum of

squares of n elements. However, it can be rewritten as the sum of squares of n−r ele-
ments and one expression of it is Q y 2. In short, the degrees of freedom are the
dimension of error space in this context.

Regarding the chi-squared distribution, Lemma 2.1 is useful.

Lemma 2.1. Suppose y is distributed as a multivariate normal distribution N(μ,Ω).
Then the necessary and sufficient condition for a quadratic form y Ay to be distributed
as chi-squared is that Aμ= 0 and AΩ is an idempotent matrix. In this case the degrees
of freedom is tr (AΩ). If Aμ 0, it is a non-central chi-squared distribution with
non-centrality parameter μ Aμ.

Proof. These conditions are easily verified by calculating the characteristic function of
the quadratic form and omitted.
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Example 2.4. S θ of (2.31) is a quadratic form of y by A= I−ΠX and V y = σ2I.

Since AE y = I−ΠX Xθ = 0 and σ−2AV y = I−ΠX is idempotent with tr

I−ΠX = n−r,S θ σ2 is distributed as chi-squared with df n−r.

Finally, under the normality assumption, θ andQ y are mutually independent by the

orthogonality of estimation space and error space. Therefore, an estimator L θ of the

estimable function and S θ are mutually independent.

2.6 Maximum Likelihood Estimator

The linear model is suitable for modeling the mean of the normal distribution and
is not necessarily good for a general distribution. As already mentioned in Sections
1.7 and 1.10, a log linear model is more suitable for the categorical data. A well-
known independence model pij = pi × p j is a typical example. As another example,
we consider a dose–response model in a bio-assay, where data are obtained as yi
deaths out of ni experimental animals at dose xi of a poison. Then, as a model of expec-
tation E(yi/ni ) a simple regression model pi = β0 + β1xi for death rate is obviously inap-
propriate, since it is easily beyond unity for large xi when β1 is positive. In this case a
logit linear model

log pi 1−pi = β0 + β1 xi (2.48)

can escape from the restriction on the range of pi, since the range of log pi 1−pi
for 0 ≤ pi ≤ 1 is −∞ ∞ .
The model (2.48) can also be interpreted as follows. Suppose that every experimen-

tal animal has its own threshold and a death occurs when the dose x goes beyond the
threshold. Let us assume a logistic distribution

F x = exp β0 + β1 x 1 + exp β0 + β1 x

for the threshold over the population of experimental animals. Then the death rate pi
for dose xi is pi = Pr X ≤ xi =F xi and this is nothing but the logit linear model
(2.48). A linear model for some function of the expectation parameter like (2.48)
is generally called a generalized linear model, and the function is called a link func-
tion. The link function employed in (2.48) is called a logit function. One should refer
to McCullagh and Nelder (1989) and Agresti (2012) for this type of modeling.
A statistical method employed for the general non-linear model is the maximum like-
lihood method, instead of the LS method for the linear model.
We call the probability density function of y a likelihood function of parameter θ

and express it as L(y, θ) or simply L(θ). The value θ y that maximizes L(θ) is called
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a maximum likelihood estimator (MLE), and intuitively expected to be a good esti-
mator. Actually, when the sample size is large and under an appropriate regularity
condition it asymptotically coincides with θ (consistency), attains Cramér–Rao’s
lower bound (efficiency), distributed as normal, and is called a best asymptotically
normal estimator. In particular, when the underlying distribution is normal in linear
model (2.21) the MLE coincides with the LS estimator.

Example 2.5. MLE for the normal distribution. Let y1,…, yn be distributed inde-
pendently as the normal distribution N (μ, σ2). Then the likelihood function is

L μ, σ2 = 2πσ2 −n 2
exp− i yi−μ

2

2σ2

The maximum likelihood equations are obtained by maximizing log L with respect
to μ and σ2 as follows:

∂logL
∂μ

=
1
σ2 i yi−μ

2 = 0 (2.49)

∂logL
∂σ2

= −
n

2
×

1
σ2

+
1
2σ4 i yi−μ

2 = 0 (2.50)

From equations (2.49) and (2.50), the MLE are obtained as

μ= y , σ2 =
1
n i yi−μ

2

Here, μ is an efficient estimator and σ2 is a consistent and asymptotically efficient
estimator.

In the following we prove the asymptotic consistency, efficiency and normality

of the MLE θ in the simplest case that y1,…, yn are independently and identically dis-
tributed following one parameter probability density function f(y, θ), not necessarily
normal, where we assume some regularity conditions such as an exchange of the
order of integration and derivation. The log likelihood function and its first partial
derivation with respect to θ are obtained as follows:

logL θ = ilog f yi, θ

∂logL θ

∂θ
= i

∂log f yi, θ
∂θ
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Now, n−1∂logL θ ∂θ is an average of independent and identical random
variables so that with n large it converges in probability to its expectation

Eθ0

∂log f y, θ
∂θ

= ξθ0 θ

by the law of large numbers, where we put the true value of θ as θ0. Then, ξθ0 at θ = θ0
is calculated as

ξθ0 θ0 =
∂f y, θ0 ∂ θ0

f y, θ0
× f y,θ0 dy= ∂f y,θ0 ∂θ0 dy (2.51)

The last equation of (2.51) is just the derivation of f y,θ0 dy = 1 with respect to

θ0, which reduces to zero. Therefore, if θ0 is a unique solution of ξθ0 θ = 0, θ con-
verges to θ0 in probability. This is the proof of consistency. Next we expand the

log likelihood function at θ = θ around θ = θ0:

1
n

∂logL θ

∂θ θ = θ =
1
n

∂logL θ

∂θ
θ = θ0 + n θ−θ0

1
n

∂2 logL θ

∂θ2
θ = θ∗ = 0, (2.52)

where θ∗ is some value of θ that satisfies θ∗−θ θ∗−θ0 < 0. The first term of the
middle equation of (2.52) is

1
n

n
i = 1

∂log f yi, θ0
∂θ0

and converges in law by the central limit theorem to the normal distribution with
expectation zero and variance:

V
∂log f yi, θ0

∂θ0
=E

∂log f yi, θ0
∂θ0

2

= I1 θ0 ,

where I1(θ0) is Fisher’s amount of information evaluated at θ = θ0. In contrast, the

coefficient of n θ−θ0 in the second term converges in probability to

E
∂2log f yi, θ0

∂θ0
2 = − I1 θ0

by the law of large numbers. Therefore, n θ−θ0 is asymptotically distributed as

normal, N 0, I −11 θ0 .
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More generally, suppose an observation vector y= y1,…, yn has a likelihood
function L(y, θ) then, under an appropriate regularity condition, the asymptotic

distribution of the MLE θ is shown to be a multivariate normal distribution

n θ−θ0 N 0,I−11 θ0 ,

where I1(θ0) is Fisher’s information matrix per datum.

2.7 Sufficient Statistics

In statistical inference, the concept of sufficient statistics has an essential role. As a
simple example, let us consider the Bernoulli sequence y = y1,…, yn where yi takes
value 0 or 1 independently with probability

Pr Yi = 1 = p and Pr Yi = 0 = 1−p,

respectively. Then, the likelihood function of y is

Πi pyi 1−p 1−yi = p iyi 1−p n− iyi (2.53)

If the parametric inference is made through equation (2.53), it is reasonable to
consider the data y to contribute to the inference only through the statistic
T y = iyi. More exactly, it can be shown that the conditional distribution given
T(y) does not depend on the parameter p, that is, knowing more details about y
beyond T(y) contributes no information regarding p. Since the marginal distribution
of T(y) is

Pr T = t = y1 yn
pt 1−p n− t =

n
t

pt 1−p n− t, (2.54)

we obtain the conditional distribution of y given T(y) as

Pr Y = y t = yi =
pt 1−p n− t

n
t

pt 1−p n− t
= 1

n
t

The summation in equation (2.54) is with respect to y1, …, yn subject to yi = t.

The result shows that there are
n
t

sequences of yi subject to yi = t and each of

them occurs with equal probability. In other words, knowing t = yi, knowing further
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each yi gives no extra information regarding p. Such a statistic T(y) is called
a sufficient statistic.

Definition 2.1. Sufficient statistics. Regarding the probability density function
f (y, θ), if the conditional distribution given a set of statistics t= t1, …, tk does
not depend on parameter θ, then (t1, …, tk) are called sufficient statistics.

Theorem 2.9 gives a necessary and sufficient condition for t to be sufficient
statistics.

Theorem 2.9. Factorization theorem. The necessary and sufficient condition for
t= t1, …, tk to be sufficient statistics is that f (y, θ) is factorized as

f y, θ = c θ × g y × h t, θ (2.55)

Proof. The proof is given for the probability function P(y, θ) of a discrete distribution.

Necessity. For the conditional distribution to be free from parameter θ, the following
equation necessarily holds:

P y, θ

T y = tP y, θ
= g y , (2.56)

where g(y) is free from θ. The denominator on the left-hand side of (2.56) is a
summation with respect to y satisfying T(y) = t so that it should be a function of t
and can be written as c θ × h t, θ . Thus it is necessary for P(y, θ) to be factorized
as c(θ)g(y)h(t, θ).

Sufficiency. If P(y, θ) is factorized as (2.55), we have

T y = tP y, θ = c θ × g∗ t × h t, θ

Then the conditional distribution becomes

c θ × g y × h t, θ c θ × g∗ t × h t, θ = g y g∗ t

and does not depend on θ.

Example 2.6. If y1,…, yn are distributed independently as the normal distribution N
(μ, σ2), then the density function is factorized as

f y, θ = 2πσ2 −n 2
exp−

1
2σ2

n y −μ 2 + i yi−y
2 (2.57)
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Therefore, t= y , i yi−y
2 is a set of sufficient statistics.

Example 2.7. If y1,…, yn are distributed independently as a uniform distribution in
the interval [0, θ], then the density function can be written as

f y, θ =

1
θn

, 0 ≤ y1, , yn ≤ θ,

0, otherwise,

=
1
θn

hv θ−ymax hv ymin ,

where

hv x =
0, x < 0,

1, x ≥ 0

is the Heaviside step function. Therefore, ymax is a sufficient statistic.

Example 2.8. Let y= y1,…, yn be distributed independently according to an
unknown density function f(y). This is regarded as the case of infinite number of
parameters. Let us denote the ordered statistics by

y 1 ≤ ≤ y n

Then the joint density function of the ordered statistics y(1),…, y(n) is

g y 1 ,…,y n = n ×Πi f y i

Actually, the following equation is easily verified:

g y 1 ,…,y n Πidy i = 1,

where the integration is subject to y 1 ≤ ≤ y n . This proves that y(1),…, y(n) are
sufficient statistics because of the factorization

f y =
1
n

× g y 1 , ,y n

The conditional distribution of y given the sufficient statistics gives equal probability
1/ n ! to all the permutations of (y(1),…, y(n)). This distribution is utilized later to
evaluate the p - value of the non-parametric permutation test.
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The following theorem tells how sufficient the sufficient statistics are for statistical
inference. It also gives a method of constructing a minimum variance unbiased
estimator.

Theorem 2.10. Rao–Blackwell. For simplicity, we describe the case of one param-
eter but the theorem holds more generally. Let t be a sufficient statistic for the prob-

ability function P(y, θ) or f (y, θ). Let θ be an arbitrary unbiased estimator of θ and

consider the conditional expectation of θ given t:

θ
∗
=E θ t

Then θ
∗
is also an unbiased estimator and the variance is improved as

V θ
∗

≤V θ (2.58)

Proof. Since t is a sufficient statistic, θ
∗
is a function of t not depending on the

unknown parameter. Then its expectation with respect to t is equivalent to the overall

expectation of θ:

ET θ
∗
T =ET E θ T =E θ = θ

Similarly, we have

V θ =E θ−θ
∗
+ θ

∗
−θ

2

=E θ−θ
∗ 2

+ 2E θ−θ
∗

θ
∗
−θ +E θ

∗
−θ

2
(2.59)

The second expectation of (2.59) is found to be zero by taking the conditional expec-
tation given t first. The first expectation is non-negative and the last expectation is the

variance of θ
∗
, thus proving the inequality (2.58).

This theorem tells us that for any unbiased estimator it is possible to construct
an unbiased estimator based on the sufficient statistics whose variance is equal
to or smaller than the original unbiased estimator. In other words, to search for
the minimum variance unbiased estimator we can restrict to the function of suffi-

cient statistics. This theorem is not restricted to the unbiased estimator. For any θ
there is a function of sufficient statistics improving the MSE with the same expecta-

tion as θ.
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Example 2.9. Assume a Bernoulli sequence y= y1,…, yn which is distributed as
(2.53). Then p = y1 is an unbiased estimator, since it satisfies

E p =E Y1 = 1 × p + 0× 1−p = p

with variance

V p =E p2 − E p 2 = 1 × p + 0× p −p2 = p 1−p

Therefore, we take a conditional expectation of p given the sufficient statistic T = yi.
The conditional distribution of y takes one of the sequences with total number of unity

equal to t at equal probability, that is, 1
n
t

. The conditional expectation is therefore

p∗ =E Y1│t = 1×

n−1
t−1
n
t

+ 0 ×

n−1
t
n
t

=
t

n
,

giving an unbiased estimator again with a smaller variance V p∗ = p 1−p n.

Example 2.10. Suppose y= y1,…, yn is distributed as normalN(μ, 1). In this case it
is obvious that y is a sufficient statistic and y1 is an unbiased estimator of μ.
Therefore,we take a conditional expectation of y1 given the sufficient statistic y .
To obtain the conditional distribution it is convenient to transform the data y to y
and a set of statistics which are independent of y . As one such method, we take an
orthonormal transformation

u=
n−1 2jn
Pn

y,

where we already defined Pn in (2.36) and (2.37). The first element of u is u1 = ny
and the last n−1 elementsu2 are distributed asN 0, In−1 independently of u1. Then
the conditional distribution of

Pnu2 =PnPn y = I−n−1jj y= y−y j

given y is N 0,PnPn . Therefore, the conditional distribution of y =Pnu2 + y j given
y is known to be

N y jn, In−n
−1jn jn (2.60)

The distribution (2.60) is degenerate, since y is fixed. However, in n−1 dimensions
it is a usual multivariate normal distribution. In particular, the conditional distribution
of y1 is N y , 1−n−1 and its conditional expectation is y .
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By definition the observation vector y is itself a sufficient statistic. The discussion
up to here does not contradict this, but we have been implicitly assuming a minimal
dimension of the sufficient statistics. This is called a minimal sufficient statistic and
one should refer to Lehman and Scheffé (1950) for a more rigid definition.

Definition 2.2. Complete sufficient statistics. If a function of sufficient statistics
whose expectation is zero is only zero, the sufficient statistics are called complete.

Suppose there are two unbiased estimators T1 and T2 composed of the complete
sufficient statistics for a parameter, then T1 and T2 should be equal, since

E T1− T2 =E T1 −E T2 = 0

Namely, the unbiased estimator based on the complete sufficient statistics is a unique
and minimum variance unbiased estimator by the Rao–Blackwell theorem. In
Examples 2.9 and 2.10, t and y are complete sufficient statistics so that t/n and y
are minimum variance unbiased estimators of p and μ, respectively. This gives another
proof from the Cramér–Rao’s lower bound or Rao’s Theorem 2.1. More generally, if
the yi are distributed independently as an exponential family

C θ h yi exp− θ1t1 yi + + θktk yi ,

where θ1,…, θk are functionally independent and the range of y for the density to be
positive does not depend on θ, then

tj = itj yi , j= 1, …, k

gives a set of complete sufficient statistics.

Example 2.11. Example 2.5 continued. The density function f(yi, μ, σ
2) of a normal

distribution is written as

f yi, μ,σ
2 exp−

1
2

1
σ2

y2i −
2μ
σ2

yi

Therefore, y2i , yi is a set of complete sufficient statistics.
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3

Basic Test Theory

A test is a statistical method to judge whether a specified value of a parameter is true or
not. The specification is called a null hypothesis, H0. By the nature of the test, a rejec-
tion ofH0 is useful information whereas an acceptance does not make sense unless the
sample size is appropriately chosen for the purpose. When constructing a test it is
important to specify the direction of departure from the null hypothesis, which is
called the alternative hypothesis H1. The null hypothesis H0 can be a single value,
a range, or a simplified structure of parameters with lower dimension. Reduction
of the estimation space of a linear model is an example of the last, and the first is
considered a special case of the last.

3.1 Normal Mean

3.1.1 Setting a null hypothesis and a rejection region

Suppose we have the simple model of Section 2.1:

yi = μ+ ei, i= 1,…, n,

with ei distributed independently as N(0, σ2), where we assume for a while σ2 to be
known for simplicity. Now, the problem is to test the null hypothesis

H0 μ = μ0 3 1

against the alternative hypothesis

H1 μ = μ1, (3.2)
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where μ0 is a past process mean and μ1 is the value after making some change in
the process. A test specifies a region R in the sample space which supports H1 more
than H0 and rejects H0 if the data y belong to R. The region R is therefore called
a rejection region. The rejection region R is characterized by two kinds of
probability:

(1) Probability of error of the first kind Pr y R│H0 . This is the error of rejecting
H0 when it is true.

(2) Probability of error of the second kind Pr y R│H1 : This is the error of accept-
ing H0 when it is not true.

These two probabilities are contrary to each other. For example, it is possible to make
the second kind of error have probability zero by taking R equal to the whole sample
space (always rejecting H0, irrespective of the value of y , but then the first kind of
error has probability unity. In contrast, we can make the first kind of error have prob-
ability zero by setting R equal to the empty set, but then the second kind of error has
probability unity. One approach to avoid such a nonsense rejection region is to set an
upper bound α for the first kind of error probability and to minimize the second kind of
error probability under this condition.
The upper bound α is called a significance level and usually taken as 0.05 or 0.01.

We define the power of a test by

Pr y R H1 = 1−Pr y R H1

This approach is then formulated as an optimization problem of maximizing

Pr y R H1 subject to Pr y R H0 ≤ α

The result is called a rejection region of the most powerful test. Let us define an indi-
cator function of R as

φ y =
1, y R,

0, y R,

then defining a rejection region is equivalent to determining the function φ(y), which
is called a test function. The most powerful test is given by Neyman–Pearson’s fun-
damental lemma.

Theorem 3.1. Neyman–Pearson’s fundamental lemma. When y is distributed
according to a density function f(y, μ), the rejection region of the most powerful test
for testing H0 (3.1) against H1 (3.2) is given by

R f y, μ1 f y, μ0 > c, (3.3)
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where the constant c is determined by

Pr y R H0 = α (3.4)

Proof. Let c be an unknown constant then, for any test φ(y) that satisfies the
condition Pr y R H0 ≤ α, we have

φ y f y, μ1 −cf y, μ0 dy ≥ φ y f y, μ1 dy−cα

Define a particular test function φ∗(y) by

φ∗ y =
1, f y, μ1 −cf y, μ0 > 0,

0, f y, μ1 −cf y, μ0 ≤ 0

Then we have

φ∗ y f y, μ1 −cf y, μ0 dy ≥ φ y f y, μ1 dy−cα

Therefore, if we can define c so as to satisfy E φ∗ y H0 = α, we have

E φ∗ y H1 ≥E φ y H1

and φ∗(y) is the most powerful test function since φ(y) is an arbitrary test function with
significance level α.

Equation (3.3) implies that the data y support μ1 more than μ0, and equation (3.4) tells
us that the probability of the error of the first kind is equal to α. The probability of the
error of the first kind that the test actually has is called the size or risk rate of the test,
whereas the significance level α implies the upper bound of the risk in constructing a
test. To raise the power of a test, the size of the test should be set at the upper bound α,
but this is generally impossible for discrete data.
If we apply equation (3.3) to the normal density N(μ, σ2), we have

R μ1−μ0 y > c

If we assume μ1−μ0 > 0, then a rejection region is obtained as

R y > c

Namely, a larger y supportsH1 more. The value of c is determined from (3.4). Under

H0, y is distributed as N(μ, σ2/n) and the standardized form u = y −μ0 σ2 n is
distributed as N(0, 1). We generally denote the upper 100 α percentile of N(0, 1)
as zα, as shown in Fig. 3.1.
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Then, from

Pr y −μ0 σ2 n > zα = α

we have

c = μ0 + σ n zα

Namely, the rejection region of the most powerful test is given by

R y > μ0 + σ n zα (3.5)

It rejects H0 when y exceeds μ0 more than σ n zα. It should be noted that the
rejection region (3.5) does not depend on μ1, except for the condition μ1−μ0 > 0. That
is, it is most powerful against every μ1 larger than μ0. Therefore, the rejection region
(3.5) is uniformly most powerful against the alternative hypothesis

H1 μ> μ0 (3.6)

Similarly, against the alternative hypothesis

H1 μ< μ0 (3.7)

the rejection region

R y < μ0− σ n zα (3.8)

gives the uniformly most powerful test. The hypotheses H1 (3.6) and H1 (3.7) are
called right and left one-sided alternative hypothesis, respectively. In contrast, for
the two-sided hypothesis

H1 μ μ0 (3.9)

there is obviously no uniformly most powerful test, since it is obvious that the rejec-
tion region R (3.5) is uniformly most powerful against the alternative hypothesis

0

Standard normal density

u

α

N(0,1)

zα

Figure 3.1 An upper 100 α percentile of N(0, 1).
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μ> μ0 but the power of such a rejection region against μ< μ0 becomes less than α.
However, there certainly exists a rejection region R that is more powerful than R
against μ< μ0. Under the one- and two-sided hypotheses (3.6), (3.7), and (3.9), the
assumed distribution is not unique and they are called a composite hypothesis. In con-
trast, under H0 (3.1) and H1 (3.2) the distribution is uniquely determined and they are
called a simple hypothesis. Another type of composite hypothesis will be introduced
in Section 3.1.4.
An approach to finding a reasonable test against the two-sided alternative is to

request for the power of the test not to go down under the significance level α.
A test which satisfies this property is called an unbiased test. The rejection region
of the most powerful level α unbiased test

RU y −μ0 > a or y −μ0 < b

is obtained by determining a and b to satisfy the requirements that the power function
defined in the next section should take a minimum value α at μ = μ0 (see Fig. 3.3).
Then we reach the two-sided rejection region

R2 y −μ0 > σ n zα 2 (3.10)

The rejection region R2 does not depend on the particular value of μ μ0 and is
called a uniformly most powerful unbiased test.
As mentioned above, a rejection region is often expressed by the amount of

test statistic T(y), like T > c or T > c. In this case we can evaluate the significance
by the probability above the observed value T = t evaluated at the null hypothesis
H0. This probability, Pr T ≥ t H0 , is called the p-value. To declare significance when
the p-value is less than α is equivalent to the significance test by rejection region
with significance level α. Generally, having the p-value is a more informative
procedure.

3.1.2 Power function

The power of the one-sided test (3.5) at a particular value μ= μ1 is calculated, noting

that u = y −μ1 σ2 n is distributed as N(0, 1). By a simple calculation we have

Pr y R│μ= μ1 = Pr y > μ0 + σ n zα│μ = μ1

= Pr u + μ1−μ0 σ n > zα

In Fig. 3.2 the power is the upper-tail probability of the shaded area by oblique lines
with respect to the standard normal distribution shifted to the right by the amount of
γ = μ1−μ0 σ n . The left one-sided rejection region R (3.8) should be consid-
ered symmetrically. Similarly, for the two-sided rejection region R2 (3.10) we get
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Pr y R2│μ = μ1 = Pr u +
μ1−μ0
σ n

> zα 2 + Pr u +
μ1−μ0
σ n

< −zα 2

The power is a function of

γ = n μ1−μ0 σ

and increases with it or the absolute value of it. In other words, the power is large when
the departure of μ1 from μ0 is large, n is large, and the variance is small. The power as a
function of γ is called the power function. The outline of the power function for the
rejection regions R1 and R2 is as in Fig. 3.3.

Power

1.0

0.05 Two-sided test

Non-centrality0 γ

Right one-sided testRight one-sided test

Figure 3.3 Power function.

0

N(0,1) N(γ,1)

zα/2

α

α
2

Density

–zα/2 zα

σ
n(μ1– μ0)

γ =

R

R2 R2

u

Figure 3.2 Rejection region R and R2.
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In the introduction of the test above, the treatments of the two hypotheses H0 and
H1 are not symmetrical. If we take small values 0.01 or 0.05 for α as usual and y
belongs to the rejection region, this strongly supports the negation of H0. However,
if y does not belong to the rejection region this does not necessarily support the fact
that H0 is true. In the two-sided rejection region R2 with α= 0 05, for example, power
reach 0.5 at γ = n μ1−μ0 σ = z0 05 2 = 1 96, and for γ smaller than 1.96, the prob-
ability of acceptance is larger than the probability of rejection of the null hypothesis.
This should occur quite often when the departure δ= μ1−μ0 σ is moderate and the
sample size is not large enough. Therefore, it is not appropriate to declare the accept-
ance of H0 by not rejecting H1 unless the sample size has been determined to have a
sufficient power against the amount of departure δ of interest. We often call the com-
plement of a rejection region an acceptance region, but careful interpretation is
strongly recommended. The equivalence test of Section 5.3 is required in this context.

3.1.3 Sample size determination

Suppose we wish to detect a departure μ1−μ0 = kσ at power 1−β, where β is usually
taken as 0.10 or 0.20.

(1) Right one-sided alternative. The power requirement at μ1 = μ0 + kσ is formulated
as follows:

Pr u > zα− n μ1−μ0 σ =Pr u > zα− nk ≥ 1−β

It requests

zα− nk ≤ z1−β = −zβ n ≥ zα + zβ
2
k2

The left one-sided alternative is dealt with similarly, and the same result obtained.

(2) Two-sided alternative. If μ1 = μ0 + kσ k > 0 and 1−β is not small, the
probability that the observation y belongs to the left part of the rejection region R2

is negligible. Therefore, the required sample size is

n ≥ zα 2 + zβ
2
k2

For the same α and β, the required sample size is larger for the two-sided alternative than
the one-sided alternative. This is quite reasonable, since the one-sided alternative could
restrict the direction of departure by prior information.

The one-sided alternative is employed when the direction of departure is clear, for
example, the defective percentage should decrease with improvement of a production
process or the freezing point should go down with contamination. The multiple deci-
sion processes approach of Chapter 4 is attractive in this context, as it unifies nicely
the right and left one-sided and two-sided tests.
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3.1.4 Nuisance parameter

It was for convenience that we assumed σ2 to be known in Section 3.1.1. In this
section we consider a composite null hypothesis

K0 μ= μ0, σ
2 is an arbitrary positive number,

where the distribution under the null hypothesis is not unique. An unknown parameter
like σ2 here, which is not the object of statistical inference but should be taken into
account in the test procedure, is called a nuisance parameter. The usual approach in this
case is to consider a test which keeps the significance level α irrespective of the value of
the nuisance parameter. Such a test is called a similar test and, if there exists a most
powerful test among similar tests, it is called amost powerful similar test. A similar test
is usually constructed by a test statistic whose distribution is free from the nuisance
parameter under the null hypothesis. Therefore, it is generally constructed based on
the conditional distribution given the sufficient statistics under the null hypothesis.
In this problem the statistic

t = y −μ0 σ2 n (3.11)

has been obtained from the standardized statistic y −μ0 σ2 n by replacing σ2

by the unbiased variance σ2 (2.32). If we rewrite t (3.11) as

t =
y −μ0 σ2 n

S μ σ2 n−1
,

then the numerator is distributed as a standard normal distribution and the denomina-

tor is distributed as χ2n−1 n−1 , independently of the numerator (see Example 2.2).
This statistic is called the Student’s t-statistic, and its distribution is Student’s, or
simply the t-distribution with df n−1. The test based on t is called Student’s t, or
simply the t -test. We have already shown the outline of the density function of the
t-distribution in Fig. 2.1. If yi is distributed as N(μ, σ2), namely under the alternative
hypothesis, it is called a non-central t-distribution with non-centrality parameter

γ = n μ−μ0 σ (3.12)

When γ = 0 it is a usual t-distribution.
For the right one-sided composite alternative

K1 μ> μ0, σ
2 is an arbitrary positive number (3.13)

the rejection region

Rt t > tn−1 α (3.14)

gives a uniformly most powerful similar test with significance level α, where tn−1 α
is the upper α point of the t-distribution. Similarly, for the left one-sided alternativeK1
we get a uniformly most powerful similar test

Rt t < − tn−1 α
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For the two-sided alternative

K2 μ μ0, σ
2 is an arbitrary positive number,

we consider the class of unbiased tests as in Section 3.1.1 to obtain

R2t t > tn−1 α 2

This is a uniformly most powerful unbiased test.
The power of the t-test is calculated as a function of the non-centrality parameter

γ (3.12). The t-distribution is asymptotically distributed as normal. Therefore, the
outline of the power function is rather similar to Fig. 3.3 when the sample size is
moderately large.

3.1.5 Non-parametric test for median

There are various test procedures for the normal mean other than the t-test of the
previous section. Suppose that six data points y1,…, y6 are all larger than μ0 in test-
ing the null hypothesis H0 (3.1) against H1 3 6 or K1 (3.13), for example. Such an
outcome is an extreme value supporting the right one-sided hypothesis obtained at
probability 1 26 ≑ 0 016 under H0. In other words, the one-sided p-value is 0.016.
Therefore, we can conclude that the result is significant at level 0.05. This test uses
only the sign of yi−μ0 and is called a sign test. It does not require the normality
assumption of the error e and gives a non-parametric test procedure for the null
hypothesis of the median

K0 Pr y> μ0 = Pr y < μ0 (3.15)

against the right one-sided alternative hypothesis

K1 Pr y> μ0 > Pr y < μ0 (3.16)

However, it is natural that the power of the sign test is considerably lower than the
most powerful tests R (3.5) and Rt (3.14) if the distribution of the error is actually nor-
mal. In contrast, if the distribution of the error is symmetric then the permutation test
and the signed rank sum test below can give a reasonable power.

(1) Permutation test. If we assume symmetry of the error distribution, then the
distribution of y−μ0 under K0 3 15 becomes symmetric at both sides of zero. Let
us define xi = yi−μ0, i= 1, …, n. Then the sum x should be around zero under K0
and take a large positive value under the right one-sided alternative K1 (3.16).
The significance of x can be evaluated by the conditional distribution given
|x1|,…, |xn|. The conditional distribution of xi takes ± x i at equal probability 1/2
underK0 by the symmetry assumption. More exactly, the joint conditional distribution
of x = x1,…,xn given |x|1,…, |x|n takes all the 2

n combinations ± x1 ,…, ± xn at
equal probability 1/2n. Then the p-value of x is given by nx/2

n, where nx is the number
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of sample points with sum X exceeding or equal to the observed value x . For the left
one-sided alternative we may count the number of X below or equal to x . It is
also equal to the number of X exceeding or equal to the observed value −x For
the two-sided test we count the number nx of |X | exceeding or equal to the observed
value |x |, and then the p-value is 2nx /2

n.
If n is moderately large, it is time-consuming to count the number nx. In this

case a normal approximation of the conditional distribution is available. We can
calculate the conditional expectation and variance of

Z =X1 + +Xn (3.17)

given Xi = xi , i= 1,…, n, under K0 as follows. Since Xi takes ± xi at equal prob-
ability 1/2, we have

E Xi =
1
2
× xi +

1
2
× − xi = 0

and V Xi =E X2
i − E Xi

2 =
1
2
× xi

2 +
1
2
× − xi

2−02 = x2i .

Assuming X1,…, Xn are mutually independent, we have

E Z = 0, V Z = n
i = 1x

2
i

Therefore, when n is large the null distribution of the standardized variable

u = x1 + + xn
n
i= 1x

2
i (3.18)

is a standard normal N(0, 1). Therefore, the rejection regions are

u > zα for the right one−sided alternative hypothesis,

u < −zα forthe left one−sided alternative hypothesis,

u > zα 2 forthe two−sided alternative hypothesis

We call this test simply the u-test. This approximation is useful roughly for
n ≥ 10.
It is interesting to note the relationship between the t (3.11) and u (3.18) tests.

It is easy to see that

t = u n−u2 n−1
1 2

(3.19)

Namely, the u-test is equivalent to the t-test employing the critical value of (3.19) at
u= zα or zα 2 instead of tn−1 α or tn−1 α 2 . We denote the value of (3.19) at u= zα by
uα. Then, as shown in Table 3.1, there is not much difference between the two critical
values and at n = ∞ they coincide precisely. Namely, the t-test is an asymptotically
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non-parametric test and gives an asymptotically exact critical value under the assump-
tion of symmetry. This property is called the criterion robustness of the t-test against
a departure from the normal distribution. In other words, the permutation test has
asymptotically equivalent power to the t-test.

(2) Signed rank sum test. In the permutation test we may use the rank of |xi| instead
of using |xi| as it is. Namely, instead of z (3.17) we use

W = Sum of ranks of xi for xi > 0 − Sum of ranks of xi for xi < 0 (3.20)

Then we obtain

E W = 0, V W = n
1i
2 = n n+ 1 2n + 1 6,

assuming there is no tie. The standardized statistic

W n n+ 1 2n+ 1 6

can be evaluated asymptotically as a standard normal distribution N(0, 1). When there
are ties a modification is necessary, but for the quantitative data the chance of
ties is small. The formulae when ties exist are given in Sections 5.2.2 and 5.2.3.
When the sample size is not too large, an exact enumeration is possible, as shown
in Example 3.1.

Example 3.1. The data in Table 3.2 are the extension strength of stainless steel for
10 samples (Moriguti, 1976). The samples are for testing whether the average
μ= 70 kgf mm2 has changed with a change of materials. Since the direction of
change is not specified, we apply the two-sided test. We give three procedures here,
but actually one method should be selected before seeing the data.

(1) t-test. The necessary calculations are as follows:

y = iyi n = 717 0 10 = 71 7,

iy
2
i = 72 82 + 69 72 + + 70 52 = 51453 60,

S μ = iy
2
i −y

2 n= 51453 60−7172 10 = 44 70,

σ2 = S μ n−1 = 44 70 9 = 4 97

Table 3.1 Comparing the critical values of the t (3.11) and u (3.18) tests.

n 10 20 30 50 ∞

α 0.025 0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.025 0.05
tn−1 α 2.262 1.833 2.093 1.729 2.045 1.699 2.010 1.677 1.960 1.645
uα 2.369 1.827 2.125 1.724 2.064 1.696 2.019 1.674 1.960 1.645
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From these statistics we obtain

t = y −μ0 σ2 n = 71 7−70 0 4 97 10 = 2 41∗

Since t9 0 05 2 = 2 23, the result is significant at the two-sided level 0.05. Namely, a
mean shift is suggested.

(2) Permutation test. First we prepare Table 3.2 to calculate the test statistics for
non-parametric tests.

From z = 17 0 and 10
i= 1x

2
i = 73 60 we obtain

u = 17 0 73 60 = 1 98∗

Since this is larger than 1.96, the permutation test also gives a significant result at the
two-sided level 0.05. The result is very similar to that of the t-test.

(3) Signed rank sum test. From Table 3.2 we obtain the statistic W = 39 (3.20) and
by standardization

W
n n+ 1 2n + 1

6
= 39 385 = 1 99∗

This value is very close to u= 1 98, and the same conclusion is obtained. In this case it
is possible to count the number of signed rank sums which are equal to or larger than
39 among all possible outcomes. This is equivalent to counting the rank sum less than
or equal to 8. It can be counted as follows.

Number of minus ranks equal to 1: 1, 2, 3, 4, 5, 6, 7 or 8 8 cases
Number of minus ranks equal to 2: 1 and 2, 3, 4, 5, 6 or 7 6 cases

2 and 3, 4, 5 or 6 4 cases
3 and 4 or 5 2 cases

Number of minus ranks equal to 3: 1, 2 and 3, 4 or 5 3 cases
1, 3 and 4 1 case

Table 3.2 Preparation for calculating statistics.

Sample 1 2 3 4 5 6 7 8 9 10 Total

yi 72.8 69.7 77.4 73.3 71.2 73.4 69.8 68.2 75.7 70.5 117.0
xi=yi−70 2.8 −0.3 2.4 3.3 1.2 3.4 −0.2 −1.8 5.7 0.5 17.0
x2i 7.84 0.09 5.76 10.89 1.44 11.56 0.04 3.24 32.49 0.25 73.6
Rank
of |xi|

7 2 6 8 4 9 1 5 10 3

Signed
rank

7 −2 6 8 4 9 −1 −5 10 3 39
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Therefore, the total number of cases is 24 and the two-sided p-value is obtained as

2 × 24 210 = 0 047 (3.21)

The normal approximation to W = 1 99 gives a p-value 0.0469, which is very close
to (3.21).

In the above example all the tests give similar results and this is a general tendency,
unless the underlying distribution is considerably long tailed or skewed. For a long-
tailed distribution the rank sum test behaves better than others. For the skewed
distribution the rank sum test also has a poor power. The test with df 1, like the permu-
tation test or the signed rank sum test in this section, can keep the significance level
correct under the null hypothesis and is called robust. However, the test with df 1 is
not necessarily robust regarding power. Actually, we can choose various scores to form
a linear score test, each of which is specialized to a particular alternative, but this is not
powerful enough against the other alternatives out of its target. Multiple degrees of free-
dom will be necessary against the long-tailed or skewed distributions (see also the
remarks after Examples 5.8 and 5.10). Refer to Pesarin (2001) or Pesarin and Salmaso
(2010) for extensive theory and applications of the permutation test.

3.2 Normal Variance

3.2.1 Setting a null hypothesis and a rejection region

Let us go back to a simple model again,

yi = μ+ ei, i = 1, …, n,

with ei distributed independently as N(0, σ
2), where σ2 is a parameter of interest while

μ is a nuisance parameter. Now, the problem is to test the null hypothesis

H0 σ2 = σ20
against one of the alternative hypotheses:

right one−sided H1 σ2 > σ20,

left one−sided H1 σ2 < σ20,

two−sided H2 σ2 σ20

When μ is known, the sufficient statistic S = yi−μ
2 σ20 under H0 is distributed as

chi-squared with df n, and gives a uniformly most powerful test:

R1 against H1 S > χ2n α , (3.22)

and R1 against H1 S < χ2n 1−α , (3.23)
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respectively. The problem is not so simple for two-sided inference. Usually we assign
α/2 to both sides and employ

R2 against H2 S > χ2n α 2 or S < χ2n 1−α 2 , (3.24)

but this is not unbiased. The critical values of the uniformly most powerful unbiased
test are given in Table 3.3 (Takeuchi, 1963), and are obtained as follows.
Let the rejection region of the most powerful unbiased test be

RU S > a or S < b

with the corresponding level α test function

φ S =
1, S RU ,

0, S RU

Since

S = n
i= 1 yi−μ

2 σ20 = σ2 σ20 × n
i= 1 yi−μ

2 σ2 = σ2 σ20 χ2n

Table 3.3 Critical values of the uniformly most powerful unbiased test.

α= 0 05 α= 0 01

df Upper bound Lower bound Upper bound Lower bound

2 9.530 0.0847 13.286 0.0175
3 11.192 0.296 15.127 0.101
4 12.802 0.607 16.901 0.264
5 14.368 0.989 18.621 0.496
6 15.897 1.425 20.296 0.786
7 17.392 1.903 21.931 1.122
8 18.860 2.414 23.533 1.498
9 20.305 2.953 25.106 1.907
10 21.729 3.516 26.653 2.344
11 23.135 4.100 28.178 2.807
12 24.525 4.701 29.683 3.291
13 26.900 5.319 31.171 3.795
14 27.263 5.948 32.641 4.316
15 28.614 6.591 34.097 4.883
16 29.955 7.245 35.540 5.404
17 31.286 7.910 36.971 5.968
18 32.607 8.584 38.390 6.544
19 33.921 9.267 39.798 7.131
20 35.227 9.958 41.197 7.729
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is a multiple of chi-squared variable and depends only on the unknown parameter
δ= σ2 σ20, we denote the power function by P δ =E φ S . Then, a and b are deter-
mined by solving the two equations

P δ δ = 1 = α and ∂P δ ∂δ δ= 1 = 0,

which implies that P(δ) takes a minimum value α at the null hypothesis σ2 = σ20 (see
also Ramachandran, 1958).

When μ is unknown, the statistic S= n
i= 1 yi−y

2 σ20 is distributed under H0 as
chi-squared with df n−1 (see Example 2.2). The rejection regions against H1, H1,
and H2 are obtained from (3.22), (3.23), and (3.24) by replacing df n by n−1:

R1 against H1 S > χ2n−1 α ,

R1 against H1 S < χ2n−1 1−α ,

R2 against H2 S > χ2n−1 α 2 or S< χ2n−1 1−α 2

R1 and R1 are uniformly most powerful similar tests. The uniformly most powerful
unbiased test against H2 is obtained from Table 3.3 at df n−1.

3.2.2 Power function

The difference between the μ known and unknown case lies only in the degrees of
freedom, so we describe only the unknown case here. We have already defined the
power function P(δ) in a previous section regarding the unbiased test, which is
obviously calculated for R1 and R2 by the following formulae.
Right one-sided alternative:

P δ = Pr χ2n−1 > δ
−1χ2n−1 α

Two-sided alternative:

P δ = Pr χ2n−1 > δ
−1χ2n−1 α 2 + Pr χ2n−1 < δ

−1χ2n−1 1−α 2

We give the power of the right one-sided test (df 6, α= 0 05) in Table 3.4. It is seen
from this table that the power reaches 0.90 at the ratio δ= 6.
The behavior of the two-sided test at δ 1 or δ 1 is similar to that of the

one-sided test, so we examine the power at δ around 1 taking n = 5 andα= 0 05 with

Table 3.4 Power of the right one-sided test (df 6, α= 0 05).

δ 1.2 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 12.0 15.0

P(δ) 0.105 0.211 0.391 0.539 0.650 0.790 0.866 0.910 0.954 0.974 0.984 0.991
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χ24 0 025 = 11 143, χ24 0 975 = 0 48442, and give the result in Table 3.5. It is seen
that the power goes down below 0.05 at δ= 0 8 and 0 9. That is, this test is not
unbiased and to make it unbiased we have to use the critical value of Table 3.3.

3.3 Confidence Interval

3.3.1 Normal mean

The point estimation of μ has been given in detail in Chapter 2. Actually, however, it is
important to know how the point estimator is close to the true value of μ. The variance
of an estimator is one such measure. Further, by finding appropriate upper and lower
bounds, l(y) and u(y), we often define the interval

l y ≤ μ ≤ u y , (3.25)

which includes the true value of μ at a specified probability 1−α. This procedure is
called interval estimation. Such an interval is usually constructed by inversion of the
acceptance region of a test.
Let y1, …, yn be distributed independently as normal N(μ, σ2) and assume σ2 to be

known. We have already introduced a rejection region y −μ0 > σ n zα 2 (3.10)
with significance level α. By inverting it we have an acceptance region

Pr y −μ0 ≤ σ n zα 2 = 1−α

Solving this equation with respect to μ, we have

y − σ n zα 2 ≤ μ ≤ y + σ n zα 2 (3.26)

Table 3.5 Power of the two-sided test (n = 5, α= 0 05).

δ Pr χ24 < 0 48442 δ Pr χ24 > 11 143 δ P(δ)

0.5 0.0855 0.0002 0.0857
0.6 0.0625 0.0010 0.0635
0.7 0.0477 0.0031 0.0508
0.8 0.0376 0.0075 0.0451
0.9 0.0303 0.0147 0.0451
1.0 0.0250 0.0250 0.0500
1.1 0.0210 0.0383 0.0593
1.2 0.0178 0.0543 0.0722
1.3 0.0153 0.0727 0.0881
1.4 0.0133 0.0931 0.1064
1.5 0.0117 0.1149 0.1266
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in the form of (3.25). The probability that the interval (3.26) includes μ is 1−α. In this
context 1−α is called a confidence coefficient and α is usually taken as 0.05 or 0.10.
We often abbreviate (3.26) as

y ± σ n zα 2 (3.27)

It should be noted that in interpreting this interval estimation, the expression ‘μ is
included in the interval (3.26)’ is not correct, since the random variables are the upper
and lower bounds (3.27) and not μ. The correct expression is ‘the interval (3.26)
includes μ at confidence coefficient 1−α’.
A narrower interval is preferable if the confidence coefficient is the same. The con-

fidence interval constructed from a uniformly most powerful test like (3.26) is uni-
formly optimal in this sense. If the probability that the confidence interval with
confidence coefficient 1−α does not include a non-true value of μ is larger than or
equal to α, then the interval is called an unbiased confidence interval. The confidence
interval constructed from a uniformly most powerful unbiased test is uniformly opti-
mum among the unbiased confidence intervals.
When σ2 is unknown, the confidence interval obtained by inverting the t-test,

y ± σ n tn−1 α 2 ,

is the best unbiased confidence interval with confidence coefficient 1−α.
Since a confidence interval is constructed by inverting a test, the rejection of the

null hypothesis H0 μ = μ0 at significance level α is equivalent for a confidence inter-
val not to include μ0 at confidence coefficient 1−α. Therefore, a confidence interval
can work as a test procedure. Further, if the null hypothesis is rejected by a large
experiment, the departure can be small and may not be important. A confidence inter-
val generally has more information than a binary decision by a statistical test. There-
fore, construction of a confidence interval is strongly recommended.

3.3.2 Normal variance

When μ is unknown, the best unbiased estimator of σ2 is given by

σ2 = n
i= 1 yi−y

2 n−1

The confidence interval is obtained by inversion of the two-sided test in the form

Pr a ≤ n
i= 1

yi−y
2

σ2
≤ b = 1−α (3.28)

In equation (3.28), yi−y
2 σ2 is distributed as χ2n−1 and there are innumerable

combinations of a, b satisfying equation (3.28). A solution is a = χ2n−1 1−α 2 ,
b = χ2n−1 α 2 , for example, but taking upper and lower bounds of an unbiased test
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is preferable to obtain an unbiased confidence interval. If we choose the values a, b
from an unbiased test of σ2, then the unbiased confidence interval is expressed as

yi−y
2

b
,

yi−y
2

a

If μ is known, simply replace y by μ and search a, b for the df n.

3.4 Test Theory in the Linear Model

3.4.1 Construction of F-test

As already stated in Chapter 2, many statistical models in the design of experiments
can be expressed as a linear model

yn =Xn × pθp + en, rank X = r (3.29)

In this section we consider a linear hypothesis Hθ= 0, generally assuming an
independent normal distribution N(0, σ2I) for the error e.
We start from the null hypothesis on the single estimable function,

H0 L θ = 0

Since the least squares estimator L θ is distributed as N L θ,L X X −Lσ2 , the
t-statistic

t =L θ L X X − Lσ2, (3.30)

σ2 = y−Xθ 2 n−r = y y−θ X y n−r (3.31)

is obtained with df n−r. The t-test based on (3.30) gives a uniformly most powerful
similar test for the one-sided alternative and a uniformly most powerful unbiased test
for the two-sided alternative, respectively.
Suppose, more generally, the linear hypothesis of estimable functions

H0 Hq× pθp = 0 (3.32)

In this case, since the least squares estimatorHθ is distributed as a multivariate normal
distribution N Hθ,H X X −H σ2 , we have a chi-squared variable

χ2 = Hθ H X X −H − Hθ σ2 (3.33)

(see Lemma 2.1). Then, replacing σ2 by σ2 (3.31), we can construct an F-test as the
ratio of two independent chi-squared variables.
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Definition 3.1. F-statistic. Suppose there are two independent chi-squared variables
χ21 and χ22 with df f1 and f2, respectively, then the ratio

F =
χ21 f1
χ22 f2

is called the F-statistic and its distribution is the F-distribution with df (f1, f2 ). When
f1 = 1 this is equivalent to the square of the t-statistic with df f2.

Then, for the chi-squared χ2 (3.33),

F = χ2 tr H X X −H − H X X −H σ2 (3.34)

is distributed as F with df tr H X X −H − H X X −H , n−r , where σ2 is the
unbiased variance (3.31) with df n−r. When rank H = 1, namely q= 1 in (3.32),
F (3.34) is equal to the square of t (3.30). However, including the case where H is
not full rank, it is recommended to rewrite the null model as

y=Xθ + e, Hθ = 0 y =X0θ0 + e (3.35)

In Example 3.2 below, equation (3.40) is in the form of H0 (3.32) and equation (3.41)
is in the form of (3.35). Then, we rewrite the original model (3.29) as

y= X0 Π┴
X0
X1

θ0

θ1
+ e (3.36)

where Π┴
X0
= I−ΠX0 and Π┴

X0
X1θ1 expresses the restricted estimation space by the

null hypothesis in a form orthogonal to the null space X0θ0. (3.29) and (3.36) are

constructed to be equivalent as a linear model. Since X0 andΠ┴
X0
X1 are orthogonal

to each other, the normal equation is obtained simply as

X0X0 0

0 X1Π
┴
X0
X1

θ0

θ1
=

X0y

X1Π
┴
X0
y

That is, the LS estimator θ1 = X1Π
┴
X0
X1

−
X1Π

┴
X0
y is distributed as normal with var-

iance X1Π
┴
X0
X1

−
σ2. Therefore, we have another expression of χ2 (3.33),

χ2 = θ1 X1Π
┴
X0
X1 θ1 σ2, (3.37)

with df r− rank X0 (see Lemma 2.1). The F-statistic is constructed as

F =
θ1 X1 Π

┴
X0
X1 θ1 r− rank X0

σ2

It should be noted that r− rank X0 = tr X1Π
┴
X0
X1 X1Π

┴
X0
X1

−
= rank

X1Π
┴
X0
X1 .
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Now, it is very important to understand the chi-squared component (3.33) or (3.37)
corresponding to the alternative hypothesis as the partition of a residual sum of
squares. From (3.36) we have

Π┴
X y

2 = y−X0θ0−Π
┴
X0
X1θ1

2 = Π┴
X0
y−Π┴

X0
X1θ1

2

= Π┴
X0
y 2−θ1 X1Π

┴
X0
X1 θ1

Therefore, the chi-squared component of (3.37) is expressed as

θ1 X1Π
┴
X0
X1 θ1 = Π┴

X0
y 2− Π┴

X y
2,

which is the increase in residual sum of squares from the original model by imposing
the restriction of the alternative hypothesis. Thus, the F-statistic is interpreted as

F =
Increase of residual sum of squares by imposing restriction Decrease of df by the restriction

Residual sum of squares for the original model Corresponding df

This relationship is illustrated in Fig. 3.4. It should be noted that this figure is an exten-
sion of Fig. 2.2 in Section 2.5.2. It is recommended that the reader fit full and null
models of Example 3.2 to this figure.
The example of this procedure is given in Example 3.2, and also in detail in Exam-

ple 10.4 (2) for the analysis of two-way unbalanced data where the usual ANOVA
table cannot be applied as it is.

0

y

Xθ

X
0
θ

0̂

║Π
X0 
y║2⊥

Xθ ̂

Increase of residual sum of squaresIncrease of residual sum of squares

Estimation space

Estimation space under H0

X
0
θ

0

║Π
X  
y║2⊥

Figure 3.4 Construction of F-test.
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3.4.2 Optimality of F-test

In constructing an F-test in the previous section we did not refer to any particular alter-
native hypothesis. This is because a negation of the null hypothesis is implicitly con-
sidered as an alternative. Then, it is naturally expected that the F-test will have equal
power against various directions of departure from the null hypothesis in case of a
multi-dimensional hypothesis. On the contrary, it is obvious that there is no uniformly
most powerful test for the multi-dimensional hypothesis since, if we choose one direc-
tion in the alternative hypothesis, the t-test should be most powerful. Now, the power
of the F-test is determined only by the degrees of freedom and the non-centrality
parameter

γ = θ1 X1Π
┴
X0
X1 θ1 σ2, (3.38)

since χ2 (3.37) is distributed as chi-squared with non-centrality (3.38) under the alter-
native hypothesis. The non-null distribution is called a non-central F-distribution.
Namely, the F-test has the same power against various θ1 if γ is the same. As an exam-
ple, we give γ of the ANOVA in a one-way layout.

Example 3.2. ANOVA in one-way layout. Let us consider the one-way
ANOVA model,

yij = μi + eij, i= 1,…, a, j= 1, …, m, (3.39)

where the errors eij are assumed to be distributed independently as N(0, σ2). The
matrix expression of (3.39) is given in Example 2.1. Then, the null hypothesis of
the homogeneity,

H0 μ1 = = μa

is a linear hypothesis, since it is rewritten as

H0 Paμ= 0 (3.40)

It is also obvious that a linear model under H0 is expressed as

H0 y = jμ+ e (3.41)

We already have the LS estimate μi = yi for the original model (3.39), and the residual
sum of squares is obtained as

Se = i j yij−yi
2
= i jy

2
ij− iyi yi = i jy

2
ij− iy

2
i m

In contrast, under H0 (3.41) we obtain μ= y and the residual sum of squares

S0 = i jy
2
ij−y y = i jy

2
ij−y

2 n, n= am
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In calculating the residual sum of squares, formula (2.33) has been utilized. Then, the
increase in residual sum of squares is obtained as

SH = S0−Se = i jy
2
ij−y

2 n − i jy
2
ij− iy

2
i m = iy

2
i m−y2 n

In this case, rank X = a, rank X0 = 1, and we have finally

F =
SH a−1
Se n−a

(3.42)

for the homogeneity test of H0 (3.40). Since Se represents variation within the same
level of the factor and SH represents variation between different levels, the F-statistic
(3.42) is called a between vs. within variance ratio. By the general theory in Chapter 2,
we already know E Se = n−a σ2. Here we can calculate E(SH) by applying a
well-known formula (2.34):

E SH = i mμi
2 m+ imσ

2 m − nμ 2 n + nσ2 n

= m μi−μ
2 + a−1 σ2

Then, the non-centrality parameter γ (3.38) is obtained as

γ =m μi−μ
2 σ2

This suggests that the F-test has a uniform power on the a−1 -dimensional sphere
centered at μ . It is described in Scheffé (1959) that the F-test is most powerful among
tests with uniform power on the sphere, and the maximal loss in power compared with
the most powerful test in every direction is minimum. The latter property is called
most stringent.

3.5 Likelihood Ratio Test and Efficient Score Test

3.5.1 Likelihood ratio test

Let the likelihood function of the observation vector y = y1, …, yn be L(θ) and con-
sider a simple hypothesis on the parameter θ = θ1, …, θk ,

H0 θ= θ0

The likelihood ratio at θ = θ0 and θ = θ (MLE),

λ =L θ0 L θ

satisfies 0 < λ ≤ 1 and takes a value close to 1 whenH0 is true and close to 0 whenH0 is
false. Therefore, a rejection region like

R λ < c (3.43)

62 ADVANCED ANALYSIS OF VARIANCE



seems reasonable. If the form of likelihood L(θ) is given explicitly, we can determine c
so as to satisfy the requirement of significance level α. In contrast, we can generally
determine an asymptotic rejection region as follows.

Expand log L(θ) around θ= θ up to second order, since the first order vanishes due
to the nature of MLE,

logL θ = logL θ +
∂logL θ

∂θ1
, ,

∂logL θ
∂θk θ = θ

θ−θ

+
1
2

θ−θ
∂2 logL θ
∂θi∂θj

θ = θ�, θ� −θ θ�−θ < 0

θ−θ ,
(3.44)

where θ∗ is some value of θ that satisfies the inequality in (3.44). Let the true value of θ
be θ0, then (3.44) becomes

2log L θ0 L θ = n θ−θ0
1
n

∂2 logL θ
∂θi∂θj

θ = θ�
n θ−θ0 (3.45)

Since asymptotically θ∗ converges to θ0, the matrix in (3.45) converges to −I1 θ0 in
probability. Then we have

−2log L θ0 L θ n θ−θ0 I1 θ0 n θ−θ0

and the right-hand side of this equation is asymptotically distributed as a chi-squared
distribution with df k under H0 (see Section 2.6 and also Lemma 2.1). Therefore, we
have a rejection region

−2logλ> χ2k α

This test is called a likelihood ratio test.

3.5.2 Test based on the efficient score

The partial derivation of the log likelihood function is called an efficient score and we
denote it by ν(θ),

ν θ =
∂logL θ

∂θ1
, ,

∂logL θ
∂θk

We expand each element of v(θ) around θ= θ to obtain

1
n
ν θ = 0+

1
n

∂2 logL θ
∂θ1∂θ1

, ,
∂2 logL θ
∂θ1∂θk

∂2 logL θ
∂θi∂θ1

, ,
∂2 logL θ
∂θi∂θk

∂2 logL θ
∂θk∂θ1

, ,
∂2 logL θ
∂θk∂θk

θ= θ�

n θ−θ (3.46)
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When θ = θ0, the coefficient matrix in (3.46) converges to − I1 θ0 in probability and

n−1 2ν θ0 I1 θ0 × n θ−θ0

is asymptotically distributed as N{0, I1(θ0)}. Therefore

n−1ν θ0 I −11 θ0 ν θ0 > χ2k α

is a rejection region with significance level α. The test based on efficient score is a
locally most powerful test. That is, it is most powerful in the neighborhood of H0

(see Cox and Hinkley, 2000).

3.5.3 Composite hypothesis

Consider testing a composite hypothesis that θ is expressed by a parameter β with
lower dimension k0 than θ,

H0 θ = θ0 = θ β

The likelihood ratio test and the efficient score test are extended to the composite

hypothesis by MLE θ0 = θ β under H0 as follows.

(1) Likelihood ratio test:

R −2log L θ0 L θ = −2log L θ β L θ > χ2k−k0 α (3.47)

(2) Efficient score test:

R n−1ν θ β I−11 θ β ν θ β > χ2k−k0 α (3.48)

The efficient score test is easier to apply, since it needs MLE only under H0 (see
Examples 3.3 and 3.4).

Example 3.3. ANOVA in one-way layout (likelihood ratio test). Let us consider
the one-way ANOVA model

yij = μi + eij, i= 1, , a, j= 1, …, m,

where the error eij are assumed to be distributed independently as N(0, σ2). Then, the
likelihood is expressed as

L μ, σ2 =Πa
i = 1 2πσ2

−m 2
exp−

m
j= 1 yij−μi

2

2σ2

= 2πσ2 −n 2
exp−

1
2σ2

m i yi −μi
2 + i j yij−yi

2
,n= am

(3.49)
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From equation (3.49) we get the MLE

μi = yi , σ
2 =

1
n i j yij−yi

2
, (3.50)

where it should be noted that in (3.50), σ2 is different from the usual unbiased vari-
ance. Finally, we have

L μ, σ2 = 2πσ2 −n 2
exp−

n

2

Under the null hypothesis of homogeneity in μi’s,

H0 μ1 = = μa = μ,

the likelihood is obtained as

L μ, σ2 = 2πσ2 −n 2
exp−

1
2σ2

m i yi −y
2 + i j yij−yi

2

In this case we have MLE

μ= y , σ20 =
1
n i j yij−y

2

and L μ, σ20 = 2πσ20
−n 2

exp−
n

2
.

The rejection region of the likelihood ratio test is obtained in the form of (3.43), but
it is equivalent to

F =
m i yi −y

2 a−1

i j yij−yi
2

a m−1
> c ,

which has already been introduced as the F-test in Example 3.2. Therefore, an exact
test is available in this case.

Example 3.4. Goodness-of-fit test in multinomial distribution (efficient score
test). Let y = y1,…, ya be distributed as a multinomial distribution M(y , p),

L p =
n

y1 ya
py11 × × pyaa p = 1, y = n (3.51)

In this case, since p = 1, the dimension of p is a−1. Therefore, the likelihood (3.51) is
considered as a function of p1,…, pa−1 and pa is replaced by pa = 1−p1− −pa−1.
The efficient score is then calculated as

∂logL p
∂pi

=
yi
pi

+
ya
pa

−1 , i= 1, , a−1
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The (i, i) and (i, j) elements of Fisher’s information matrix are obtained as

−E
∂2 logL p

∂ p2i
= −E −

yi
p2i

+
ya
p2a

−1 = n p−1
i + p−1

a ,

−E
∂2 logL p
∂pi∂pj

= n pa i j ,

respectively. Then, Fisher’s information matrix per datum is expressed as

I1 p = −E
1
n

∂2 logL p
∂pi∂pj

a−1 × a−1

= diag p−1
i + p−1

a jj

We consider a composite null hypothesis

H0 p = p0 = p β

and the MLE under H0 is denoted by p0 = p β , where the dimension of β is assumed

to be k0 < a−1 . Then, the test statistic based on the efficient score is constructed
according to (3.48) as

χ2 = n−1ν p0 I−11 p0 ν p0

= n−1

p−1
1 0 0 0 0 – p−1

a

0 p−1
2 0 0 0 – p−1

a

0 0 0 0 p −1
a−1−p

−1
a

y

p−1
1 0

0 p−1
a−1

+ p−1
a jj

−1

×

p−1
1 0 0 0 0 – p−1

a

0 p−1
2 0 0 0 – p−1

a

0 0 0 0 p−1
a−1 – p−1

a

y ,

(3.52)

where we omit the suffix 0 of MLE p0i under H0 to avoid complex expression.

Equation (3.52) is further simplified by the formula I +AB −1 = I−A I +BA −1B as

diag p−1
i + p−1

a jj
−1

= I + p−1
a p1,…,pa−1 j

−1
diag pi

= diag pi −p−1
a p1,…,pa−1 1 + p−1

a j p1, …,pa−1
−1
j diag pi

= diag pi − p1,…,pa−1 p1,…,pa−1
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Finally, a well-known formula

χ2 = n−1y diag p−1
i a× a diag pi − p1, ,pa p1, ,pa diag p−1

i y

= a
i= 1

yi−npi
2

npi

(3.53)

is obtained, where it should be noted that in equation (3.53) all the cells are dealt with
symmetrically to recover pa. This equation is expressed as

i

Observation of the ith cell − MLEof the ith cell frequency under H0
2

MLEof the ith cell frequency under H0

(3.54)

and called a goodness-of-fit chi-squared, where the summation is with respect to
all the cells of the multinomial distribution. It is asymptotically distributed as a
chi-squared distribution with df

ν= a−1−k0

Equation (3.54) is expressed more simply as

i

observation−fitted value 2

fitted value

Example 3.5. Testing independence in a two-way contingency table. Let each
item be cross-classified according to two attributes and the occurrence probability
of cell (i, j) be denoted by pij, i= 1,…, a, j= 1,…, b. Assuming a multinomial distri-
bution M(y , p) for the cell frequencies yij, we have a likelihood function

L p = n ΠiΠj
1
yij

p
yij
ij p = 1, y = n (3.55)

The null hypothesis that the classification is independent is defined by

H0 pij = pi × p j (3.56)

The MLE for pij of (3.55) is obviously pij = yij n and the MLE under H0 (3.56) is

obtained as p0ij = yi n y j n . Therefore, the likelihood ratio test (3.47) is
obtained as

−2logλ= 2 i j yij logpij−yij logp0ij

= 2 i j yij logyij − i yi logyi − i y j logy j + n log n

BASIC TEST THEORY 67



In contrast, since the estimate of cell frequency under H0 is obtained as

n× yi y j n2 = yi y j n

we have a goodness-of-fit chi-squared

χ2 = i j

yij−yi y j n
2

yi y j n
(3.57)

The degrees of freedom are

ab−1− a+ b−2 = a−1 b−1

because of the constraint p = 1. In the case of a = b= 2, the chi-squared statistic is
expressed in a simple single squared form as

χ2 = 2
i= 1

2
j= 1

yij−yi y j n
2

yi y j n
=
y y11y22−y12y21

2

y1 y2 y 1y 2
(3.58)

This gives good reasoning that the degree of freedom of the chi-squared (3.58) is
unity, although it is composed of four terms.

Example 3.6. Example 3.5 continued. The data of Table 3.6 are from a clinical
trial explained in Example 5.13 of Section 5.3.5, where the total of 233 subjects
are cross-classified by the drugs which they received and the results of treatment.
The chi-squared statistic (3.58) is calculated as

χ2 =
233 87 × 40−25 × 81 2

112 × 121 × 168 × 65
= 3 33

Since χ21 0 05 = 3 84, the result is not significant at significance level 0.05.
The data of Table 3.6 are reanalyzed in Section 5.3.5 as a comparison of two bino-

mial distributions.
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4

Multiple Decision Processes
and an Accompanying
Confidence Region

4.1 Introduction

To test the null hypothesis H0 μ= 0 in the normal model, the two-sided and right or
left one-sided tests have been introduced in Section 3.1. The latter tests are directional
and more powerful than the two-sided omnibus test, because of the prior information
for the directions of change. If the null hypothesisH0 is rejected by the right one-sided
test with significance level α, we conclude that μ> 0 with confidence coefficient 1−α.
However, in this case, if we actually obtain a sufficiently large negative value
supporting H2 μ< 0, we will wish to conclude that μ< 0 instead of accepting H0.
Also, applying a one-sided confidence interval after obtaining a significant result with
a two-sided test is often seen in practice. These common but erroneous procedures
might be justified by the idea of multiple decision processes.

4.2 Determining the Sign of a Normal Mean –

Unification of One- and Two-Sided Tests

Suppose σ2 is known and is unity for simplicity, and assume that the datum y is
distributed as N(μ, 1). If we have n independent observations yi, i= 1, …, n, simply
replace y by n1 2y. in the following equations. In case of unknown σ2, we employ

Advanced Analysis of Variance, First Edition. Chihiro Hirotsu.
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the usual unbiased estimator of variance σ2 2 17 and replace y by n1 2y σ Then,
the critical value is replaced by tn−1 α , where tn−1 α is the upper α point of the
t-distribution with degrees of freedom n−1 .
Let us partition the sample space into three regions:

K1 μ < 0,

K2 μ = 0,

K3 μ > 0

Since they are disjoint, only one of the three K’s is true. Therefore, by testing each
hypothesis with significance level α, without any adjustment, the probability of
rejecting the true hypothesis is at most α (Takeuchi, 1973). We can therefore
apply a one-sided level-α test for K1 and K3, and a two-sided level-α test for
K2, keeping the overall type I error rate at α. Then, the rejection region of each test
is given by

RK1 y ≥ zα,

RK2 y> zα 2 or y < −zα 2,

RK3 y ≤ −zα

(4.1)

Inverting the rejection region (4.1), the acceptance region is obtained as

AK1 y < zα,

AK2 −zα 2 ≤ y ≤ zα 2,

AK3 y > −zα

These regions are sketched in Fig. 4.1, where the black and white circles denote the
inclusion and exclusion of the point, respectively. From Fig. 4.1, the accepted hypoth-
eses are K3 for y > zα 2, K2 and K3 for zα ≤ y ≤ zα 2, K1, K2 and K3 for −zα < y < zα, K1

and K2 for −zα 2 ≤ y ≤ −zα, and only K1 for y< −zα 2.

Ak1

Ak3

Ak2

–zα/2 zα/2zα–zα
y

Figure 4.1 The acceptance region.
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In other words, we can conclude

μ > 0 for y > zα 2,

μ ≥ 0 for zα ≤ y ≤ zα 2,

μ ≤ 0 for −zα 2 ≤ y ≤ −zα,

μ < 0 for y < −zα 2

and the sign cannot be determined for −zα < y< zα, as shown in Fig. 4.2.
Thus, the proposed method can give two-sided inference, keeping essentially the

power of a one-sided test. It should be noted that the direction of departure from
the null hypothesis K2 μ= 0 need not be declared in advance.

4.3 An Improved Confidence Region

Extending the idea of determining the sign, an interesting confidence region is
obtained. Define the acceptance region

AK1
y−μ < zα for μ< 0,

AK2
−zα 2 ≤ y−μ ≤ zα 2 for μ= 0,

AK3
y−μ> −zα for μ> 0

(4.2)

Inverting the acceptance region (4.2), the confidence region with confidence coef-
ficient 1−α is obtained as

y−zα < μ < 0 for y< −zα 2

y−zα < μ ≤ 0 for – zα 2 ≤ y ≤ −zα,

0 > y−zα < μ< y + zα > 0 for−zα < y < zα,

0 ≤ μ < y + zα for zα ≤ y ≤ zα 2

0 < μ< y + zα for zα 2 < y

This confidence region is sketched in Fig. 4.3, where the shaded area including the
solid line is the acceptance region and the dotted line denotes the exclusion. This con-
fidence region holds the conclusion of Section 4.2, and simultaneously gives an upper

μ< 0 μ ≤ 0 μ ≥ 0μ⋚ 0

y

μ>0

–zα/2 –zα zα zα /2

Figure 4.2 The accepted hypotheses.
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bound for μ> 0, a lower bound for μ< 0, and lower and upper bounds when the sign of
μ cannot be determined. Further, compared with the naïve confidence interval

y−zα 2 ≤ μ ≤ y + zα 2 (4.3)

the confidence region gives stricter upper bounds y + zα and 0 at y> −zα and
−zα 2 ≤ y ≤ −zα, respectively. It also gives stricter lower bounds y−zα and 0 at
y< zα and zα ≤ y ≤ zα 2, respectively. This is with the compensation of lowering the
lower bound to 0 at y > zα 2 and raising the upper bound to 0 at < −zα 2, but the merits
of multiple decisions will surpass. Therefore, this method detects the sign of μ very
efficiently and simultaneously gives very sharp lower and upper bounds. Thus, this
method is useful for proving bio-equivalence, where stricter upper and lower bounds
are required (see Section 5.3.6), and also for the unifying approach to prove superi-
ority, equivalence or non-inferiority of a new drug against an active control (see
Section 5.3.2). It is recommended that the reader writes the naïve confidence interval
(4.3) on Fig. 4.3.

Reference

Takeuchi, K. (1973) Methodological basis of mathematical statistics. Toyo-Keizai Shinposha,
Tokyo (in Japanese).

y

y – zα < μ < y+ zα

y – zα < μ < 0

zα

zα /2

–zα /2

0 <μ< y+ zα

0 ≤ μ < y+ zα

y – zα < μ ≤ 0

y – zα < μ < y+ zα

μ

–zα

Figure 4.3 An improved confidence region.
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5

Two-Sample Problem

In this chapter the problem of comparing two populations, two distributions, or two
parameters defining the distributions is discussed. First we introduce in Section 5.1.1
the comparison of two means, assuming equal variance for the two normal distribu-
tions. This is a simple application of the LSmethod to a linear model in Chapters 2 and
3. It is also a special case of a one-way layout model of next section with number of
levels two. The method is essentially a t-test and the confidence interval is obtained as
an inversion of the t-test. In Section 5.3 it is extended to a more useful confidence
region by the method of multiple decision processes introduced in Chapter 4. It is also
extended to comparing two binomial populations, including the case where there are
stratifications by a factor influential on the outcome. A paired t-test is introduced in
Section 5.1.3, and Section 5.1.4 is for comparison of variances. Some non-parametric
approaches are introduced in Section 5.2.

5.1 Normal Theory

5.1.1 Comparison of normal means assuming equal variances

We assume a linear model

yij = μi + eij, i = 1, 2, j= 1,…,ni, (5.1)

where the eij are distributed independently of each other as N(0, σ2). This is a special
case of model (2.25) with a = 2 and unequal number of repetitions ni, expressed in
matrix form as

Advanced Analysis of Variance, First Edition. Chihiro Hirotsu.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.



y =Xμ + e =
jn1 0

0 jn2

μ1

μ2
+

e1

e2

We apply the test theory of Section 3.4 to the null hypothesis of interest

H0 L μ= μ1−μ2 = 0,

where μ= μ1, μ2 , L= 1, −1 . Then the LS estimator is obtained as

L μ= y1 −y2 with variance n−1
1 + n−1

2 σ2

The residual sum of squares is obtained as

S μ = y−Xμ 2 = 2
i= 1

ni
j= 1y

2
ij−

2
i= 1

y2i
ni
,

by formulae (2.31) and (2.33) with df n1 + n2−2. Therefore, the t-statistic

t = y1 −y2 n−1
1 + n−1

2 σ2, (5.2)

with unbiased variance

σ2 = S μ n1 + n2−2 ,

is obtained. The tests against

two-sided alternative hypothesis H1 μ1−μ2 0,

one-sided alternative hypothesis H1 μ1−μ2 > 0,

based on t (5.2) are the uniformly most powerful unbiased test and uniformly most
powerful similar test, respectively. The two-sided test is equivalent to the F-test of
(3.42) at a = 2. It will be a matter of simple algebra to verify F = t2.
A naïve confidence interval

y1 −y2 ± n−1
1 + n−1

2 σ2tn1 + n2 −2 α 2 (5.3)

is obtained as an inversion of the two-sided t-test. However, a more useful confidence
region is given in Section 5.3, unifying the one- and two-sided inference.

Example 5.1. Half-life of NFLX (antibiotic). In Table 5.1 we are interested in
whether there is an extension of the half-life according to the increase in dose. There-
fore, we perform a t-test for the null hypothesis H0 μ1−μ2 = 0 against the one-sided
alternative H1 μ2−μ1 > 0. From the table we obtain

y2 −y1 = 9 28 5−8 34 5 = 0 188
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and S μ = i jy
2
ij− iy

2
i ni = 1 552 + + 1 702− 8 342 5 + 9 282 5 = 0 37340.

Then, σ2 = 0 37332 10−2 = 0 046675 and finally we have

t = 0 188 5−1 + 5−1 × 0 046675 = 1 376

The p-value is 0.103 as a t-distribution with df 8, and the result is not significant at
one-sided α= 0 05.
The one-sided lower bound at confidence coefficient 0.95 is obtained from (5.3) as

μ2−μ1 > 0 188− 5−1 + 5−1 × 0 046675 × 1 86 = −0 066, (5.4)

where 1.86 is the critical value t8(0.05). The interval (5.4) includes 0, corresponding to
the test result that the difference is not significant at one-sided level 0.05.

We notice that the last datum of the first group i= 1 in Table 5.1 is too large com-
pared with the others and looks like an outlier. The t-test is asymptotically equivalent
to the permutation test as shown in Section 3.1.5 (1), and is robust on the whole. How-
ever, it is still sensitive to an outlier, since it causes a bias in estimating the mean and
simultaneously an over-estimate of the variance. Therefore, a preliminary check for
outliers is recommended by the Smirnov–Grubbs test. For a data set y= y1,…, yn
it calculates

max y n −y σ, y −y 1 σ , (5.5)

where y(i) is the ith largest statistic and σ is the root of the usual unbiased variance. The
meaning of the statistic (5.5) will be obvious, and the critical values are given in
Table XIIIa of Barnett and Lewis (1993). This test can also be used for a one-sided
test if the direction of departure is decided before taking data. One should refer to
Barnett and Lewis (1993) for more detailed explanations, including multiple outliers.
Anyway, it should be noted that an outlier test is not like a usual statistical test.
A significant result itself is not of much importance, but it suggests that if we go back
to examining the data it is very likely to reach some reasoning of the outlier – such as
failure of experiment, miswriting, and so on.

Table 5.1 Half-life of NFLX at two doses.

Dosage (mg/kg/day) Half-life (h) Total

25 i= 1 1.55 1.63 1.49 1.53 2.14 8.34
200 i= 2 1.78 1.93 1.80 2.07 1.70 9.28

TWO-SAMPLE PROBLEM 77



Example 5.2. Example 5.1 continued, checking outlier

Data i= 1 : 1.55, 1.63, 1.49 = y 1 , 1.53, 2.14 = y 5 , y = 1 668, σ = 0 2687.

Smirnov–Grubbs statistic: max 2 14−1 668 σ, 1 668−1 49 σ = 1 756∗.

Since the upper 0.01 point is 1.749, the result is significant at level 0.02 two-sided.

Data i= 2 : 1.78, 1.93, 1.80, 2.07 = y 5 , 1.70 = y 1 , y = 1 856, σ = 0 1454.

Smirnov–Grubbs statistic: max 2 07−1 856 σ, 1 856−1 70 σ = 1 472.

Since the upper 0.10 point is 1.602, there is no evidence for an outlier in this data set.

Example 5.3. Example 5.1 continued, eliminating the outlier. After an outlier
check and discussion with the medical doctor, we decided to eliminate the datum
2.14. Then we obtain

y2 −y1 = 9 28 5−6 20 4 = 0 306,

S μ = i jy
2
ij− iy

2
i ni = 1 552 + + 1 702− 6 202 4 + 9 282 5 = 0 09492

σ2 = 0 09484 9−2 = 0 01356

Finally we have

t = 0 306 4−1 + 5−1 × 0 01355 = 3 92∗∗

with p-value 0.003 (one-sided) as a t-distribution with df 7. That is, an increase of half-
life is observed for dose 200 (mg/kg/day) over dose 25 (mg/kg/day). In this case it is
seen that the outlier 2.14 induces a bias in the estimate of difference of means, and also
a large variance within group 1.

The data of Table 5.1 are part of Table 6.9 in Example 6.7, and a full analysis is
given there.

5.1.2 Remark on the unequal variances

We assume the linear model (5.1) and consider the case where the eij are distributed
independently of each other as N 0, σ2i with possible different variances σ21 and σ22.
Then y1 −y2 is still a minimum variance unbiased estimator of μ1−μ2 with variance
σ21 n1 + σ22 n2. In contrast,

σ2i =
ni
j= 1 yij−yi

2
ni−1 , i = 1, 2 (5.6)
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give the minimum variance unbiased estimator of σ2i and intuitively a test statistic

t = y1 −y2 σ21 n1 + σ22 n2 (5.7)

is suggested. However, the null distribution of t (5.7) is different from the
t-distribution and depends on σ22 σ21. If we apply formally the t-distribution with df
n1 + n2−2 , it is known to enhance the type I error. By any other method we cannot
make the test statistic free from σ2i , and this situation is called the Behrens–Fisher
problem.
In practice, a chi-squared approximation dχ2f of σ

2
1 n1 + σ22 n2 is often employed,

adjusting the first two cumulants. However, the meaning of testing equality of means
when there is clearly a difference in variances is not clear. If the mean and variance are
simultaneously increased for one population against the other, then the underlying
normal assumption is suspicious. A simultaneous test of mean and variance might
then be preferable to their separate analyses. Also under this situation an application
of a lognormal distribution might be more reasonable, see the remarks at the end of
Section 2.3. In contrast, since the t-test is asymptotically non-parametric, it is expected
that the unequal variances to some extent may not be so serious (see Section 5.2.1).
Therefore, we do not go deep into this subject.

5.1.3 Paired sample

The data of Table 5.2 are measurements of total cholesterol before and after 6 months’
treatment for 10 subjects. The problem of interest is to evaluate the effects of treat-
ment, and it looks similar to the problem of Section 5.1.1. The necessary calculation
of the left one-sided t-test is given in the table, and we have

y2 −y1 = 2727 10−2942 10 = −21 5,

i jy
2
ij−y

2
i ni = 34009 6 + 19230 = 53239 7,

σ2 = 53239 7 20−2 = 2957 76,

(5.8)

and finally

t = −21 5 10−1 + 10−1 × 2957 76 = −0 884

This result is not significant at one-sided α= 0 05. However, the data in Table 5.2
are the paired data for each subject and we can also apply a t-test to the differences
before and after the treatment instead of analyzing the averages. Now the data are dif-
ferences, given in the fourth column of Table 5.2, which we denote by xj, j= 1,…, 10.
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The null and alternative hypotheses are H0 μx = 0 and H1 μx < 0, where μx denotes
the expectation of xj. Then, the t-statistic is obtained as

t = 10 −21 5 6774 5 10−1 = −2 478∗,

with p-value 0.0175 and significant at level 0.05.
The difference of two kinds of t-test lies in the evaluation of the error variance.

The sum of squares (5.8) for error employed for the usual t-test is dissolved into
two parts:

2
i= 1

n
j= 1y

2
ij−y

2
i n = 2−1Sx + SB, (5.9)

where

Sx =
n
j= 1 xj−x

2
= n

j= 1 y2j−y1j− y2 −y1
2

denotes the error sum of squares of the difference xj. In contrast,

SB = 2
n
j= 1 y j−y

2

denotes the variation of averages among the subjects. Now, suppose a model

yij = μi + βj + eij,

Table 5.2 Cholesterol measurements before and after treatment.

Subject j Before i= 1 After i= 2 Difference Average

1 333 338 5 335.5
2 240 229 −11 234.5
3 364 305 −59 334.5
4 337 301 −36 319.0
5 326 279 −47 302.5
6 279 239 −40 259.0
7 188 210 22 199.0
8 371 339 −32 355.0
9 273 242 −31 257.5
10 231 245 14 238.0

yi = jyij 2942 2727 −215

jy
2
ij 899546 762883 11397

S= jy
2
ij−y

2
i ni 34009.6 19230.1 6774.5
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adding the effect βj of potential amount of cholesterol of each subject to the original
model (5.1). Then it is easy to see the expectations

E Sx = 2 n−1 σ2

E SB = 2 j βj−β
2
+ n−1 σ2

Without effects βj, both components on the right-hand side of (5.9) equally repre-
sent the σ2χ2n−1 but SB suffers from the variation of the βj if they exist. Under the
assumption that the potential amount of cholesterol will not affect the treatment,
the variation of βj can be removed from the error variation and the analysis of differ-
ence based on xj is justified. The ratio of 2−1Sx to SB is 0.068, and the variation
between averages is much larger than the measurement errors in this example. That
is, the reduction of variation among subjects is of larger effect than the reduction of
degrees of freedom of the error. The subject in this experiment is a sort of block, dis-
cussed in Chapter 9, where it is assumed there is no interaction effect between the
block and the treatment.

Example 5.4. The difference of skill between the expert and a beginner. The data
of Table 5.3 are for evaluating the bias of measurements between the expert and a
newly employed beginner (Moriguti, 1976). If there is a bias, the training of the begin-
ner should be continued. We can apply the paired t-test, eliminating the variation in
materials and the two-sided alternative hypothesis is employed. From the table
we have

t = 10 2 2 10 43 856 10−1 = 0 315

This is smaller than t9(0.025), and the difference between the beginner and the expert
is not significant at level 0.05. In this case the difference was not detected even by the
paired t-test, but still the ratio of 2−1Sx to SB is 0.14, suggesting an effect of eliminating
the variation in materials.

5.1.4 Comparison of normal variances

In this section we consider testing the equality of variances of two normal populations
N μi, σ

2
i , i = 1, 2. This test is used also for a preliminary check of the assumption

in comparisons of means in Section 5.1.1, not only for the interest in variances.
Now the estimates of variance given by (5.6) are distributed independently as
σ2i χ

2
ni −1 ni−1 , i= 1, 2. Therefore

F = σ21 σ22 (5.10)
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is distributed as σ21 σ22 ×Fn1 −1,n2 −1, where Ff1, f2 denotes a random variable distrib-
uted as an F-distribution with df (f1, f2). Therefore, under the null hypothesis

H0 σ21 = σ
2
2,

F (5.10) is distributed as Fn1 −1,n2 −1. Then, against each of the alternative hypotheses

right one-sided H1 σ21 > σ
2
2,

two-sided H2 σ21 σ22,

the rejection region is obtained as

R1 F >Fn1 −1,n2 −1 α ,

R2 F >Fn1 −1,n2 −1 α 2 orF <Fn1 −1,n2 −1 1−α 2 ,

respectively. Usually, tabulation for the F-distribution is made for upper tail proba-
bility up to 0.50 and the following relation is applied:

F <Fn1 −1,n2 −1 1−α 2 F <F−1
n2 −1,n1 −1 α 2

for tail probability beyond 0.50.

Table 5.3 Measurements in the chemical analysis.

Material j Expert i= 1 Beginner i= 2 Difference Average

1 47.9 48.2 0.3 48.05
2 50.9 51.8 0.9 51.35
3 51.9 51.8 −0.1 51.85
4 54.0 53.8 −0.2 53.9
5 49.3 46.9 −2.4 48.1
6 49.1 46.6 −2.5 47.85
7 47.1 45.5 −1.6 46.3
8 50.0 50.4 0.4 50.2
9 50.3 53.2 2.9 51.75
10 53.2 57.7 4.5 55.45

x = jxj 2.2

jx
2
j 44.34

S= jx
2
j −x

2 n 43.856

82 ADVANCED ANALYSIS OF VARIANCE



The confidence interval for σ21, σ
2
2 and also the common variance when σ21 and σ22

are regarded as equal are constructed as described in Section 3.3.2. We describe here
the confidence interval for the ratio γ = σ21 σ22. Since F of (5.10) is distributed as
γFn1 −1,n2 −1, we have

Pr Fn1 −1,n2 −1 1−α 2 ≤ γ−1F ≤Fn1 −1,n2 −1 α 2 = 1−α

and therefore the confidence interval for γ with confidence coefficient 1−α is given by

F Fn1 −1,n2 −1 α 2 ≤ γ ≤F ×Fn2 −1,n1 −1 α 2

Example 5.5. Comparing the densities of food between two companies. Two
companies A and B are competitors in some food market. The density is an important
quality of the food, and some data are taken by company B as shown in Table 5.4. It is
a serious problem for companyB if the density is lower than that of companyA. There-
fore, they planned to test the null hypothesis H0 μA = μB against the right one-sided
alternative H1 μA > μB.
Since the variance is also an important quality for a product in a large market, they

planned first a two-sided test at significance level 0.05 for variance. From Table 5.4
the unbiased variances are obtained as

S1 = 765 21−87 32 10 = 3 081 σ 2
1 = 3 081 9 = 0 3423

S2 = 675 37−82 12 10 = 1 329 σ22 = 1 329 9 = 0 1477

The F-statistic is obtained as

F =
0 3423
0 1477

= 2 32,

not significant compared with F9 9 0 05 2 = 4 03. Then, they proceeded to apply a
t-test to the means, assuming equality of variance. The t-statistic is calculated as

t =
87 3
10

−
82 1
10

10−1 + 10−1 3 081 + 1 329

20−2
= 2 35∗

Table 5.4 Density of food (Moriguti, 1976).

Company Density jyij jy
2
ij

A i= 1 9.1 8.1 9.1 9.0 7.8 9.4 8.2 9.1 8.2 9.3 87.3 765.21
B i= 2 8.2 8.6 7.8 7.6 8.4 8.6 8.0 8.1 8.8 8.0 82.1 675.37
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The p-value is 0.015 as a t-distribution with df 18. Since a significant difference has
been suggested, company B should make improvements to raise the density of the
food product.

5.2 Non-parametric Tests

5.2.1 Permutation test

We test the equality of two populations

H0 Pr Y1 ≤ y0 = Pr Y2 ≤ y0 (5.11)

against the alternative hypothesis

H1 Pr Y1 ≤ y0 < Pr Y2 ≤ y0 ,

where y0 is any constant and Yi is a random variable from population i= 1or 2. The
alternative hypothesis H1 implies that population 1 is statistically larger than popula-
tion 2. Let y11, …, y1n1 and y21,…, y2n2 be random samples from two populations.
Then, without any distributional assumption, we can test the hypothesis by evaluating
the statistic

z= y11 + + y1n1 (5.12)

as a random sample from the given finite population

y11,…, y1n1 ; y21,…, y2n2 (5.13)

In Example 5.3 wewere interested in whether population 2 is statistically larger than
population 1 or not. Instead, we may test the statistical smallness of population 1.
Then, the observed z= 6 20 is the smallest among all the random samples of size four
from a population

1 55, 1 63, 1 49, 1 53; 1 78, 1 93, 1 80, 2 07, 1 70

Therefore the one-sided p-value is evaluated as 1
9
4

= 0 008.

In the general case it would be difficult to enumerate all samples of size four with
sum larger than or equal to z. In such a case, a normal approximation is useful just as in
Section 3.1.5 (1). Themean, variance, and covariance of the random sample from pop-
ulation (5.13) are calculated as follows:

E Y1i = μ= n1 + n2
−1 y11 + + y1n1 + y21 + + y2n2 , (5.14)

V Y1i = σ2 =E Y2
1i − E Y1i

2

= n1 + n2
−1 y211 + + y21n1 + y

2
21 + + y22n2 −μ2,

(5.15)
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Cov Y1i, Y1j =E Y1i ×Y1j −E Y1i ×E Y1j

= y11y12 + y11y13 + + y2n2−1y2n2
n1 + n2

2
−μ2

=
n1 + n2 μ 2− y211 + + y21n1 + y221 + + y22n2

2
−

n1 + n2
2

μ2
n1 + n2

2

= −σ2 n1 + n2−1

(5.16)

It should be noted that a negative correlation is induced between two random sam-
ples from a finite population. Thus, the expectation and variance of z (5.12) are
obtained as follows:

E z =E Y1i = n1μ

V z =V Y1i = V Y1i + 2 i< jCov Y1i, Y1j

= n1σ
2 + 2 ×

n1

2

−σ2

n1 + n2−1
=

n1n2
n1 + n2−1

σ2

Finally, we have a normal approximation

u =
z−n1μ

n1n2σ2 n−1
N 0, 1 (5.17)

under H0 (5.11), where n = n1 + n2. Just as in Section 3.1.5 (1), u of (5.17) is related to
t of (5.2) by the equation

t = u n−1−u2 n−2
1 2

Therefore, the t-test is asymptotically equivalent to the non-parametric permutation
test in this case, too.

Example 5.6. Example 5.1 continued

(1) Eliminating outlier. We have

μ= 6 20 + 9 28 9 = 1 720,

σ2 = 9 6204 + 17 3082 9−1 7202 = 0 033667

u = 6 20−4 × 1 720 4 × 5 ×
0 033667

9−1
= −2 34∗∗
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This value corresponds to a lower tail probability 0.0095 of the standard normal
distribution. It is slightly above the exact value 0.008 but does not differ much,
leading to the same conclusion. The normal approximation is improved for non-
extreme cases unlike this example, and moderate sample size.

(2) Full data. We have

μ = 8 34 + 9 28 10 = 1 762

σ2 = 14 2000 + 17 3082 10−1 7622 = 0 046176

u = 8 34−5 × 1 762 5 × 5 ×
0 046176
10−1

= −1 312

This value corresponds to a lower tail probability 0.095 of the standard normal
distribution, and is close to the t-test result in Example 5.1.

Example 5.7. Example 5.5 continued. From Table 5.4 we have

μ = 87 3 + 82 1 20 = 8 47,

σ2 = 765 21 + 675 37 20−8 472 = 0 2881,

u = 87 3−10 × 8 47 10 × 10 ×
0 2881
20−1

= 2 11∗

The one-sided p-value is 0.017, and close to the p-value 0.016 of thet-test.

5.2.2 Rank sum test

The idea of the permutation test is applied to the rank data as it is. If we replace the data
by rank in Example 5.6 (1), we have

3, 4, 1, 2 for i= 1 and 6, 8, 7, 9, 5 for i= 2

Then, the ranks for i= 1 are the four smallest among all the ranks and the conclusion
is the same as in Example 5.6 (1).
For a general case, let rij denote the rank of the jth datum of the ith group.We employ

the rank sum

Wi = ri , i = 1, 2

as the test statistic and usually put the same average rank for the ties. Then we get the
expectation and variance under the null hypothesis (5.11) as

86 ADVANCED ANALYSIS OF VARIANCE



E Wi = ni n1 + n2 + 1 2,

and

V Wi =
n1n2σ2

n1 + n2−1
, σ2 =

1
n1 + n2 i jr

2
ij−

n1 + n2 + 1
2

2

, (5.18)

just like E(z) and V(z) of Section 5.2.1. The test statistic is given by

Wi−ni n1 + n2 + 1 2 V Wi ,

which corresponds to (5.17). If there is no tie, we have simply

V Wi = n1n2 n1 + n2 + 1 12

This test is called the Wilcoxon–Mann–Whitney rank sum or simply Wilcoxon
ranks test.

Example 5.8. Example 5.1 continued. For the full data we have ranks

3, 4, 1, 2, 10 for i= 1 and 6, 8, 7, 9, 5 for i= 2

Therefore we have

W2−n2 n1 + n2 + 1 2

n1n2 n1 + n2 + 1 12
=

35−5 × 11 2

5 × 5 × 11 12
= 1 5667

The upper tail probability as a standard normal distribution is 0.059. By enumer-
ation, there are 19 cases which give the rank sum equal to or larger than 35 and exact

p-value 19 10
5 = 0 075. It is seen that the normal approximation is not so bad for

sample size as small as five per group. Compared with the permutation test, the
rank test is less affected by the outlier. Also, for a long-tailed distribution the rank
test is slightly less affected than the permutation test. However, on the whole they give
similar results for a logistic distribution or a t-distribution with df around 10, for
example.

The permutation test can be applied to any score which is monotonically related to
yi. Further, we can choose the score so as to achieve an asymptotic efficiency of unity
against the most powerful test if the underlying distribution is known. The Wilcoxon
score (rank) is optimum for a logistic distribution. The Fisher–Yates and Van der
Waerden scores are optimum for the normal distribution and for the extreme distribu-
tion, the Savage score is obtained. However, actually the underlying distribution is
unknown and we cannot choose an optimum score. Some adaptive method has been
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proposed to choose an asymptotically optimum score, but we need a large sample size
for the method to work well. Also, any score test with df 1 cannot keep high power
against the wide range of the alternative hypothesis, except for the target alternative.
We therefore introduce some multi-df tests in part (2) of the next section.

5.2.3 Methods for ordered categorical data

(1) Linear score test. The data of Table 5.5 are taken in a phase II clinical trial for
comparing the two doses of a drug, AF3mg and AF6mg, based on the degree of gen-
eral improvement after administration.
The data can be regarded as a sort of rank data of Section 5.2.2 with many ties.

However, we employ here the notation of Section 11.2 for a general a-sample prob-
lem, where we denote the frequency data as in Table 5.5 by yi = yi1, …, yiJ ,
Ri = yi , Cj = y j, N = y , i= 1, 2, j= 1,…, J, J = 6. The Cj subjects in the jth response
category are given the same scorewj, of which a typical example is theWilcoxon aver-
aged rank score

wj =C1 + +Cj−1 + Cj + 1 2, j= 1,…, J

Then, the statistics of a linear score test are

Wi = jwjyij, i= 1, 2

Under the null hypothesis (5.11) of equality of two populations the expectation and
variance of yij can be calculated as a random sample of size Ri from a finite population
(w1,…, w1;…; wJ,…,wJ), where the number of wj is Cj. The calculation is the same
as given in (5.14) ~ (5.16) in Section 5.2.1. We can also calculate them regarding the
yij as random variables from the multivariate hypergeometric distribution

MH yij│Ri, Cj, N
ΠiRi ΠjCj

N ΠiΠjyij

Table 5.5 Degree of general improvement in a phase II trial.

General improvement

Drug Least
favorable

Unfavorable No
good

Slightly
favorable

Favorable Most
favorable

Total

AF3mg 7 4 33 21 10 1 R1 = 76
AF6mg 5 6 21 16 23 6 R2 = 77

Total 12 10 54 37 33 7 153
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This is a special case of the general case of a ≥ 2 in Section 6.3, and detailed and
sophisticated calculations in this line are given by equations (11.3) and (11.4) of
Section 11.2. Anyway, we have

E Wi = Ri N jwjCj, i= 1, 2

V W1 =V W2 =
R1R2

N−1
σ2w,

where

σ2w =N
−1

jw
2
j Cj−

1
N jwjCj

2

is the same as σ2 in (5.15) and (5.18) but indexed by w here to express a particular
score system {wj}. Then the test statistic is given by

W =
N−1

R1R2 σ2w

1 2

W2−
R2

N jwjCj

=
N−1
N

1 2 1
σw

1
R1

+
1
R2

−1 2 W2

R2
−
W1

R1
,

which is asymptotically distributed as N(0, 1) under the null hypothesis H0 (5.11).

Example 5.9. Wilcoxon rank test for Table 5.5. For calculation, it is convenient
to make Table 5.6.

Table 5.6 Calculation of Wilcoxon rank test statistic.

General improvement j

Drug i 1 2 3 4 5 6 Total

1 7 4 33 21 10 1 76
2 5 6 21 16 23 6 77

Cj 12 10 54 37 33 7 153
wj 6.5 17.5 49.5 95 130 150
wjy1j 45.5 70 1633.5 1995 1300 150 5194
wjy2j 32.5 105 1039.5 1520 2990 900 6587
wj Cj 78 175 2673 3515 4290 1050 11781
w2
j Cj 507 3062.5 132313.5 333925 557700 157500 1185008

σ2w = 153
−1 1185008−153−1 11781 2 = 1816 150
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From this table we obtain

W =
153−1

76 × 77 × 1816 150

1 2

6587−
77
153

× 11781 = 2 49∗

and the related two-sided p-value 0.0128.

(2) Max acc.t1 and cumulative chi-squared χ�2. In contrast, there is the problem of
comparing two multinomial distributions M ni, pi , pi = pi1,…, pi6 , i= 1, 2, where
the hypothesis of interest is

p21
p11

≤
p22
p12

≤… ≤
p26
p16

(5.19)

This inequality implies that the distribution of AF6mg is shifted to the right compared
with AF3mg, or simply that AF6mg is statistically larger than AF3mg, while the null
hypothesis H0 is given by all the equalities in (5.19) corresponding to (5.11). Now, the
data are very similar to the transpose of the data of Table 7.1 for comparing five ordered
binomial distributions, as in Table 5.7. For the latter case a monotone hypothesis
Hmon(6.23) in the logit θi = logitpi = log pi 1−pi of the improvement rate pi is
assumed. However, this is mathematically equivalent to the inequality (5.19) if we
consider p1j + p2j = p j as a fixed nuisance parameter. Further, in both cases the
analyses are based on fixed marginal totals Ri = yi , Cj = y j, andN = y . Therefore,
max acc. t1 and the cumulative chi-squared χ∗2 of Section 7.3.1 are applied as they
are to the problem here.

Example 5.10. Max acc. t1 and cumulative chi-squared χ�2 for Table 5.5.
Following the procedures explained in Section 7.3.1 (2) or 11.5.2 (2), we make the
2 × 2 collapsed sub-tables for all the five cut points in the columns of Table 5.5 and
calculate the goodness-of-fit chi-squares as given in Table 5.8. Then, the maximal
statistic is t24 = 10 651 and its two-sided p-value as the maximal statistic is 0.0033.
The calculation of the p-value for this type of maximal statistic is not so easy. How-
ever, a very elegant and efficient formula is obtained in Section 7.3.1 (1) (c). The

cumulative chi-squared χ∗2 is obtained as 5
i= 1t

2
i = 18 80 as the sum of chi-squares

Table 5.7 Transpose of the data in Table 7.1.

Dosage (mg)

Improvement 100 150 200 225 300 Total

No 16 18 9 9 5 57
Yes 20 23 27 26 9 105
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Table 5.8 Collapsing columns of Table 5.5 at five cut points.

General improvement j

Drug i 1 2 ~ 6 1, 2 3 ~ 6 1 ~ 3 4 ~ 6 1 ~ 4 5, 6 1 ~ 5 6

1 7 69 11 65 44 32 65 11 75 1
2 5 72 11 66 32 45 48 29 71 6

t21 = 0 3906 t22 = 0 0011 t23 = 4 0832 t24 = 10 6514 t25 = 3 6746



from the sub-tables. Its approximate p-value is 0.01 two-sided, see Section 7.3.1
(2) for the calculation. The χ∗2 is inevitably two-sided because of the sum of squares,
while the max acc. t1 and linear score test can be applied both to one- and two-sided
tests. The data of Table 5.5 are part of Table 11.8, and a full analysis is given in
Section 11.5.

The non-parametric tests, such as the permutation and linear score test, are
robust in the sense that they keep the nominal significance level against various
underlying distributions. However, such non-parametric tests with df 1 cannot
keep high power against the wide range of the alternative hypotheses. In contrast,
the kth sub-table of Table 5.8 is understood as yielding a score test statistic of a
particular score system

wj = 0 for j= 1, …, k;wj = 1 for j= k + 1, …, J, k = 1, …, J−1

Thus, max acc. t1 and the cumulative chi-squared χ∗2 come from the multiple score
systems and are characterized as multi-df statistics. In the analysis of Table 5.5, the p-
values are 0.0128 for theWilcoxon test, 0.0033 for max acc. t1, and 0.01 for the cumu-
lative chi-squared χ∗2. Of course they vary according to the response pattern, but max
acc. t1 and the cumulative chi-squared χ∗2 are characterized to keep high power
against the wide range of the monotone hypotheses. In Table 5.5 there is a step change
in the ratio p2j/p1j between j= 4 and 5, and max acc. t1 responded reasonably well to
this pattern. However, it can also respond well to a linear trend, as demonstrated in
later sections.

5.3 Unifying Approach to Non-inferiority, Equivalence
and Superiority Tests

5.3.1 Introduction

Around the 1980s there were several serious problems in the statistical analysis of
clinical trials for new drug applications in Japan, among which two major problems
were the multiplicity problem and the non-significance regarded as equivalence. The
outline of the latter problem is as follows.
In a confirmatory phase III trial for a new drug application, a drug used to be com-

pared with an active control instead of a placebo in Japan, and be admitted for pub-
lication if it was evaluated as equivalent to the control in efficacy. This is because
drugs have multiple characteristics, and equivalence in efficacy is considered to be
satisfactory if there is any advantage such as mildness or ease of administration. Then,
the problem was that the non-significance by the usual t- or Wilcoxon test had long
been regarded as proof of equivalence in Japan. This was stupid, since equivalence
can so easily be achieved by an imprecise clinical trial with a small sample size. In
contrast, it is true that it is too severe to request proof of superiority of a new drug
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over an established active control by the usual significance test. This requires too
many subjects and too much time to prove superiority, even for a good drug, which
results in a delay in introducing good drugs to the market. To overcome this situation,
a non-inferiority test has been introduced, which requires rejecting the handicapped
null hypothesis in the normal model

Hnon0 μ1−μ2 ≤ −δ

against the one-sided alternative

Hnon1 μ1−μ2 > −δ,

in favor of the test drug, where μ1 and μ2 are the normal means of the test and control
drugs, respectively, and δ a non-inferiority margin. This is a positive proof instead of the
classical negative proof, and never cleared by an imprecise clinical trial. It also never
means that an inferior drug in the amount of –δ in the mean difference actually goes out
through the screening process, and gives a very nice practical procedure. As stated later,
we can make the outgoing mean difference approximately equal to or slightly above 0
by adjusting the non-inferiority margin. However, there still remains a multiplicity
problem of how to justify the usual practice of superiority testing after proving non-
inferiority. This has been overcome by a unifying approach to non-inferiority and
superiority tests based on the multiple decision processes of Hirotsu (2007); it nicely
combines the one- and two-sided tests and the handicapped test, replacing the usual
simple confidence interval for normal means by a more useful confidence region. This
is an application of the confidence region introduced in Section 4.3.

5.3.2 Unifying approach via multiple decision processes

(1) Method. Let the response of treatments be denoted by yij and assume them to be
independently distributed asN μi, σ

2 , j= 1,…, ni,where i= 1 stands for the test drug,
i= 2 for the control, and ni is the repetition number. We partition the parameter space
into three regions:

K1 μ1−μ2 < 0

K2 μ1−μ2 = 0

K3 μ1−μ2 > 0

Then, for K1, K2, and K3, we can take the acceptance regions with confidence coef-
ficient 1−α as

AK1 y1 −y2 − μ1−μ2 < Tα for μ1−μ2 < 0,

AK2 −Tα 2 ≤ y1 −y2 − μ1−μ2 ≤ Tα 2 for μ1−μ2 = 0,

AK3 y1 −y2 − μ1−μ2 > −Tα for μ1−μ2 > 0,
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respectively, where yi , i= 1, 2, is the sample mean and

Tα = σ
1
n1

+
1
n2

tn1 + n2 −2 α ,

with σ2 the usual unbiased estimate of variance σ2 employed in (5.3) and tf(α) the
upper α point of the t-distribution with df f. Since the partition is disjoint, the overall
significance level of this procedure is α, so that the union of these acceptance regions
form an acceptance region with confidence coefficient exactly 1−α. Then, by invert-
ing the acceptance region into the regions for μ1−μ2, we have the confidence region
for μ1−μ2 with confidence coefficient 1−α as

0 < μ1−μ2 < y1 −y2 + Tα for Tα 2 < y1 −y2 ,

0 ≤ μ1−μ2 < y1 −y2 + Tα for Tα ≤ y1 −y2 ≤ Tα 2,

y1 −y2 −Tα < μ1−μ2 < y1 −y2 + Tα for −Tα < y1 −y2 < Tα

y1 −y2 −Tα < μ1−μ2 ≤ 0 for −Tα 2 ≤ y1 −y2 ≤ −Tα,

y1 −y2 −Tα < μ1−μ2 < 0 for y1 −y2 < −Tα 2,

(5.20)

see also Fig. 5.1, where the shaded area is the acceptance region. It is seen that the
upper and lower bounds of this confidence region are essentially the same as those

Tα/2

Tα

− Tα

− Tα/2

y–1 − y–2
0 < μ1 − μ2 < y–1 − y–2 + Tα 

0 ≤ μ1 − μ2 < y–1  − y–2 + Tα 

y–1  − y–2  − Tα  < μ1 − μ2 < y–1 − y–2 + Tα 

y–1 − y–2 − Tα  < μ1 − μ2 < y–1 − y–2 + Tα 

y–1 − y–2 − Tα  < μ1 − μ2 ≤ 0

y–1 − y–2 − Tα  < μ1 − μ2 < 0

µ1 − µ2

Figure 5.1 A confidence region with confidence coefficient 1−α.
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of the conventional confidence interval with confidence coefficient 1−2α, which is
given by the two parallel dotted lines

y1 −y2 −Tα ≤ μ1−μ2 ≤ y1 −y2 +Tα,

but raise the inclusion probability of μ1−μ2 = 0 up to 1−α by widening the region at
y1 −y2 > Tα.
For the non-inferiority test we further introduce two regions

K−δ μ1−μ2 = −δ,

K −
−δ μ1−μ2 < −δ

It should be noted that K −
−δ and K−δ are disjoint and both are included in K1. We have

therefore

K1 K −
−δ =K

−
−δ, K1 K−δ =K−δ, K −

−δ K−δ =ϕ,

K1 K2 =K
−
−δ K2 =K−δ K2 =ϕ,

(5.21)

where ϕ is an empty set. Then we can testK −
−δ andK−δ beforeK1 without adjusting the

significance level α according to the closed test procedure (Section 6.4.4).
If they are rejected, we can also test K1 and K2 without adjusting the significance

level. Therefore, we first apply the one-sided α test for the null hypothesisK −
−δ and if it

is not rejected, the non-inferiority at the margin δ cannot be achieved. If it is rejected,
we proceed to testing for K−δ by a two-sided α test. If it is not rejected, we can declare
only the non-inferiority: μ1−μ2 ≥ −δ. If it is rejected, we proceed to testing for K1 by a
one-sided α test. If it is not rejected, we can declare only one step above the non-infe-
riority: μ1−μ2 > −δ. If it is rejected, we proceed to testing for K2 by a two-sided α test.
If it is not rejected, we can declare up to the equivalence: μ1−μ2 ≥ 0 and if it is rejected,
then we can declare the superiority: μ1−μ2 > 0. The multiple decision processes are
summarized below by setting α at 0.05.

1. If y1 + δ−y2 < T0 05, then non-inferiority is not achieved.

2. If T0 05 ≤ y1 + δ−y2 ≤T0 025, then declare weak non-inferiority: μ1−μ2 ≥ −δ.

3. If y1 + δ−y2 > T0 025 and y1 −y2 < T0 05, then declare strong non-inferiority:
μ1−μ2 > −δ.

4. If T0 05 ≤ y1 −y2 ≤ T0 025, then declare at least equivalence: μ1−μ2 ≥ 0.

5. If y1 −y2 > T0 025, then declare superiority: μ1−μ2 > 0.

This could include the non-inferiority test of ICH E9 (the International Statistical
Guideline; Lewis, 1999) via one-sided level 0.025 as its step 3 and superiority test
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as its step 5, while having an intermediate decision: at least equivalent between those
two steps. Further, the non-inferiority has been made precise in two parts with and
without equality to the non-inferiority margin, and could include the old Japanese
practice via one-sided level 0.05 as weak non-inferiority at step 2. Thus it could give
a very good unifying approach to the ICH E9 and the old Japanese Guideline
(Koseisho, 1992).
Here we recommend requesting

y1 −y2 ≥ −T0 025 (5.22)

for the non-inferiority of steps 2 and 3, since otherwise the confidence region is
totally below 0 and seems not to deserve the name of non-inferiority (even if it clears
the non-inferiority margin). It should be noted that y1 −y2 < −T0 025 is the region
where the null hypothesis K2 is rejected in the negative direction by the usual two-
sided 0.05 significance test. This is therefore a device to avoid asserting the non-
inferiority by a very large trial when actually the inequality −δ ≤ μ1−μ2 < 0 holds
and y1 −y2 is significantly different from zero in the negative direction. By this device
we can hold essentially the same power with the one-sided 0.05 test while having
even less consumer’s risk than the one-sided 0.025 test for large n, as described in
(2) and (3) below.
In some areas the non-inferiority margin may be decided to be a clinically relevant

quantity. However, there are also many cases where it is difficult to decide such a
quantity and the non-inferiority margin is introduced just as an operating parameter
for approving a slightly better drug in terms of efficacy compared with the standard.
We discuss this point further in Section 5.3.5.
In the non-inferiority trial it has been recommended to include a placebo

for assessing the sensitivity of the trial. Let the response of the placebo be denoted
by μ0, and assume

A μ0 < μ2−δ

Then we can apply the closed test procedure starting from testing the null
hypothesis

Kp μ1 ≤ μ0

against

K +
p μ1 > μ0

since, by the assumption A, Kp is included in K −
−δ. The assumption A should be sat-

isfied by taking the non-inferiority margin δ sufficiently smaller than the true differ-
ence μ2−μ0 between the active control and the placebo. It should be noted that the
assumption A assures that the negation of K −

−δ implies also μ1 > μ0.

(2) Consideration of producer’s risk. For convenience, we consider (1−producer’s
risk) and call it power. It is defined as the probability that the test drug can clear the
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non-inferiority criterion when μ1−μ2 = 0. Then, for the conventional confidence inter-
val with confidence coefficient 1−2α, the power is simply the probability

Pr y1 −y2 > Tα−δ μ1−μ2 = 0

with α= 0 05 for the old Japanese practice and 0.025 for the ICH E9. For simplicity,
we assume σ to be known (or ni sufficiently large), and then it is

Pr u > zα−
1
n1

+
1
n2

−1 2

δ σ , (5.23)

where u is distributed as N(0, 1).

For the proposed method, the probability is obtained after some calculations as

Pr u>max −z0 025, z0 05 −
1
n1

+
1
n2

−1 2

δ σ (5.24)

The non-inferiority margin δ/σ is usually taken around 1/3, and if we assume
n1 = n2 = n then we have

z0 05 −
2
n

−1 2

δ σ > −z0 025

for n ≤ 233, so that region (5.24) is equivalent to region (5.23) with α= 0 05. On the
contrary, if n is larger than 233 then the power is at least 0.975, so that regarding the
power, the proposed method is essentially equivalent to a one-sided 0.05 test (the old
Japanese practice). More precisely, for unknown σ

Pr T0 05 −
1
n1

+
1
n2

−1 2 δ

σ
> −T0 025

δ

σ
=
1
3

is 0.99 at n = 198, 0.54 at n = 233, and 0.01 at n = 269, so that the normal approxima-
tion doesn’t differ much from the exact theory. We compare the exact power of the
proposed method with one-sided 0.05 and 0.025 tests for several n’s in Table 5.9. It is
seen that the power of the proposed method is essentially equal to a one-sided 0.05 test
unless n is extremely large, as suggested by the normal theory. In contrast, if n is
extremely large, the power of all the tests approaches unity and the differences are
very small.

(3) Consideration of consumer’s risk. The consumer’s risk is defined as the prob-
ability that the test drug may clear the non-inferiority criterion when actually
μ1−μ2 = −δ. It is obviously 0.05 and 0.025 for the classical one-sided 0.05
and 0.025 level tests, respectively. Since it has been verified that the normal
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approximation works well for the proposed method in the previous section, we
employ it again here for simplicity. Then, by definition of the consumer’s risk, we
have Pr T0 05 ≤ y1 + δ−y2 y1 −y2 ≥ −T0 025 . After some calculations the
consumer’s risk is obtained as

Pr u >max
1
n1

+
1
n2

−1 2

δ σ−z0 025, z0 05 (5.25)

Again we assume δ σ = 1 3, then up to n1 = n2 = 233 this probability is 0.05 but after
this point it begins to decrease according to n and at n= 277 it becomes even less than
0.025, which is the consumer’s risk of the one-sided 0.025 test. If δ/σ is taken at 1/2,
the probability goes below 0.05 and 0.025 at n as small as 104 and 124, respectively. It
is seen that the lower bound of (5.25) goes up with increasing δ and n, and this is a very
useful property, avoiding setting an inappropriately large margin. It also implies that a
trial which intends to prove the non-inferiority of a test drug that is actually inferior to
the control by an extremely large number of subjects should be unsuccessful. This is
the effect of requesting inequality (5.22) for non-inferiority.

5.3.3 Extension to the binomial distribution model

The test for non-inferiority was introduced originally for the binomial model and
asymptotically it can be dealt with similarly to the normal model. Now, suppose
we are comparing two efficacy rates p1, p2 of the test and control drugs based on the
samples y1, y2 for which we assume the binomial distributions B ni, pi , i= 1, 2. Just
like with the normal theory in Section 5.3.2, we first partition the space of p1− p2 into
three regions:

K1 p1−p2 < 0,

K2 p1−p2 = 0,

K3 p1−p2 > 0

Table 5.9 Power comparison at δ σ = 1 3.

n1 = n2

Test 100 198 233 269

0.05 test 0.7593 0.9522 0.9743 0.9867
0.025 test 0.6501 0.9113 0.9485 0.9712
Proposed test 0.7593 0.9521 0.9718 0.9750
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We further introduce two regions

K−δ p1−p2 = −δ

K −
−δ p1−p2 < −δ

with δ some pre-specified non-inferiority margin. We have the same relationship
among the hypotheses Ki as in (5.21), and by the asymptotic theory we can proceed
similarly to Section 5.3.2. The only difficulty arising differently from the previous
section is that the variance estimators for standardization are different for the null
hypothesisK1 and the handicapped hypothesis K−δ. This arises from the characteristic
of the binomial distribution that the variance depends on the mean whereas the mean
and variance are independent parameters in the normal model. Fortunately, however,
it is seen that the naïve variance estimator

V0 =
1
n1

+
1
n2

y1 + y2
n1 + n2

1−
y1 + y2
n1 + n2

for y1 n1−y2 n2 underK2 is also valid under the handicapped hypothesisK−δ. More
exactly, Dunnett and Gent (1977) show that the variance estimator

Vδ =
1
n1

p2δ−δ 1−p2δ + δ +
1
n2
p2δ 1−p2δ (5.26)

with

p2δ = y1 + y2 + n1δ n1 + n2 (5.27)

is appropriate for the handicapped non-inferiority test if the sample sizes are nearly
balanced. Then, substituting p2δ of (5.27) into (5.26) and expanding it with respect
to δ, we have

Vδ V0 + δ ×
n1−n2
n1n2

1−2
y1 + y2
n1 + n2

−δ2 ×
n21−n1n2 + n22
n1n2 n1 + n2

Further, putting p20 = y1 + y2 n1 + n2 we have

Vδ− V0

Vδ

δ

8p20 1−p20
2 2p20−1

n1−n2
n1 + n2

+ δ (5.28)

That is, the relative error of using V0 instead of Vδ is the order of δ
2 if n1 and

n2 are nearly equal. Usually, δ is taken around 0.1 and the error of using V0 instead

of Vδ is practically negligible; therefore we can simply use V0 throughout all the
steps of this unifying procedure. Actually, in Example 5.8 the value of (5.28) is only
0.002. By this approximation, we can summarize the multiple decision processes as
follows, where pi = yi ni, i= 1, 2.
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1. If p1 + δ−p2 V0 < z0 05, then non-inferiority is not achieved.

2. If z0 05 ≤ p1 + δ−p2 V0 ≤ z0 025, then declare weak non-inferiority:
p1−p2 ≥ −δ.

3. If p1 + δ−p2 V0 > z0 025 and p1−p2 V0 < z0 05, then declare strong
non-inferiority: p1−p2 > −δ.

4. If z0 05 ≤ p1−p2 V0 ≤ z0 025, then declare at least equivalence: p1−p2 ≥ 0.

5. If p1−p2 V0 > z0 025, then declare superiority: p1−p2 > 0.

In the non-inferiority tests (2. and 3.), it is also useful to impose the requirement

p1−p2 V0 > −z0 025,

which corresponds to (5.22). By this alteration, the power for weak and strong non-
inferiority is kept essentially the same and the consumer’s risk is reduced just as in
Section 5.3.2.

5.3.4 Extension to the stratified data analysis

As a typical example from a phase III clinical trial, the test and control drugs are often
compared in several different classes. The data of Table 5.10 are for comparing a
new drug against an active control in the infectious disease of respiratory organs.
The result is known to be highly affected by the existence of pseudomonas. Therefore,

Table 5.10 A phase III trial in the infectious disease of respiratory organs.

Pseudomonas Drug
Effectiveness

Total
i j k = 1 − k = 2 (+)

1 (Detected) 1 (Active) 15 21 36
2 (Control) 13 10 23

Total 28 31 59

2 (No) 1 (Active) 7 20 27
2 (Control) 9 34 43

Total 16 54 70

Total 1 (Active) 22 41 63
2 (Control) 22 44 66
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achievements are shown in each class of pseudomonas detected or not. The analysis
ignoring this classification is quite misleading, often suffering from Simpson’s
paradox as described in Section 1.10. One standard approach to avoiding Simpson’s
paradox is testing interaction effects assuming a log linear model (see Section 14.3).
Instead, in this section we first test the constancy of the differences in efficacy rates
between test and control drugs through stratification. Then, if the constancy model is
not rejected, we proceed to estimating the constant difference.

(1) Model with a constant difference of efficacy rates through the stratification.
Let yij be the number of successful patients (denoted by k = 2 in the table) for the jth
drug in the ith class, where j= 1 for the test drug and 2 for the control, and i= 1,…, a,
a = 2, in Table 5.10. We assume a binomial distribution B(nij, pij) for yij and test the
null hypothesis of constant difference

H0 pi1−pi2≡Δ, i= 1, …, a (5.29)

Under the full model, the likelihood is given by

L1 =Πa
i= 1Π

2
j= 1

nij
yij

p
yij
ij 1−pij

nij−yij

and the MLE is obtained as pij = yij nij, i= 1,…, a, j= 1, 2. Under the composite
hypothesis H0 (5.29), the MLE is obtained from the partial derivations of the log-
likelihood

logL0 = log Πa
i = 1

ni1
yi1

pyi1i1 1−pi1
ni1−yi1 ni2

yi2
pi1−Δ yi2 1−pi1 +Δ ni2 −yi2

with respect to pi1 and Δ. Then, the likelihood ratio test statistic is given by

2log L1 L0

with df a−1.

Example 5.11. Analysis of Table 5.10. An algorithm for calculating the MLE
and the likelihood ratio test statistic is given in Hirotsu et al. (1997). Then,
2log L1 L0 = 1 39 with df = a−1 = 1 is obtained by the algorithm. The p-value is
0.24 and non-significant at p = 0 15, which is the probability usually employed for
model checking.

(2) Estimation of efficacy difference with skewness correction. First, a naïve
weighted mean for estimating Δ under the constant difference model (5.29) is given
in Hirotsu et al. (1997) as
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Δ=
V −1 Δ1 Δ1 + +V −1 Δa Δa

V −1 Δ1 + +V −1 Δa

Δi =
yi1
ni1

−
yi2
ni2

, i = 1, …, a, V Δi =
1
ni1

+
1
ni2

yi
ni

ni −yi
ni

, i= 1,…, a

(5.30)

with variance

V Δ = V −1 Δ1 + +V −1 Δa
−1

Then, a naïve confidence interval with confidence coefficient 1−2a is obtained as

Δ−V1 2 Δ zα ≤Δ ≤Δ+V1 2 Δ zα (5.31)

As shown in Table 5.11, this naïve method (NAI) gives a reasonable result if the
sample size is around 50 in each class. However, in the stratified analysis there will

Table 5.11 Consumer’s risk at non-inferiority margin δ= 0. 1.

(p12, p22, p32) Method ni1 = 10,10,10 ni1 = 10,20,10 ni1 = 100,100,100
ni2 = 10,10,10 ni2 = 20,10,20 ni2 = 100,100,100

YTH 0.0540 0.0529 0.0516
(0.7, 0.7, 0.7) NAI 0.0569 0.0566 0.0515

ES1 0.0522 0.0534 0.0517
ES2 0.0518 0.0529 0.0516

YTH 0.0517 0.0567 0.0541
(0.5, 0.5, 0.5) NAI 0.0527 0.0551 0.0514

ES1 0.0506 0.0564 0.0539
ES2 0.0501 0.0548 0.0532

YTH 0.0579 0.0545 0.0509
(0.3, 0.3, 0.3) NAI 0.0675 0.0599 0.0526

ES1 0.0513 0.0523 0.0511
ES2 0.0522 0.0518 0.0510

YTH 0.0528 0.0549 0.0517
(0.5, 0.6, 0.7) NAI 0.0545 0.0554 0.0511

ES1 0.0516 0.0547 0.0518
ES2 0.0510 0.0541 0.0516

YTH 0.0559 0.0541 0.0510
(0.3, 0.4, 0.5) NAI 0.0575 0.0541 0.0507

ES1 0.0527 0.0535 0.0506
ES2 0.0525 0.0524 0.0504
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often be a class of size as small as 10. Under these circumstances, the normal approx-
imation based on the efficient score

T Δ = ∂logL0 ∂Δ

with skewness correction by Bartlett (1953) works better. Since the nuisance para-
meters pi1, i = 1, …, a, are included in the efficient score T(Δ), we substitute the solu-
tion pi1(Δ) of the likelihood equation

∂logL0

∂pi1
=

yi1−ni1pi1
pi1 1−pi1

+
yi2−ni2 pi1−Δ

pi1−Δ 1−pi1 +Δ
= 0 (5.32)

This substitution causes a bias in the expectation of T(Δ). Although the bias of order
n−1 2 vanishes, the skewness of that order comes out. For the skewness correction we
actually replace T(Δ) by

T∗ Δ = σ2Δ
−1 2

T Δ −6−1γ σ2Δ
−1
T2 Δ −1

σ2Δ = i n−1
i1 pi1 1−pi1 + n−1

i2 pi1−Δ 1−pi1 +Δ
−1

γ = σ2Δ
−3 2

ib
3
i

ni1
p2i1

−
ni1

1−pi1
2 + i 1−bi

3 ni2

1−pi1 +Δ 2 −
ni2

pi1−Δ 2

bi =
ni2pi1 1−pi1

ni1 pi1−Δ 1−pi1 +Δ + ni2pi1 1−pi1

(5.33)

Since T∗(Δ) is a monotone decreasing function of Δ, we can solve two equations

T∗ ΔL = zα and T∗ ΔU = −zα (5.34)

to obtain lower and upper confidence bounds for Δ. In the numerical calculation we
use the naïve estimator (5.30) for the initial value of Δ to solve equation (5.32) for
pi1, i= 1, …, a. Then, we substitute the solution into (5.33) to obtain the function
T∗(Δ) and solve the two equations in (5.34). We go back to (5.32) to calculate
pi1, i= 1, …, a, by the renewed Δ, respectively, by the two equations of (5.34). The
computer program for this is also given in Hirotsu et al. (1997). This program can
be used to compare two binomial distributions by setting a = 1.
We can apply the confidence interval to the simultaneous tests of non-inferiority and

superiority. It is an extension of the procedure of Section 5.3.3. Let ΔL(α) and ΔU(α) be
the lower and upper confidence bounds defined by (5.34). Then we have the following
multiple decision processes at significance level 0.05.

1. If ΔL 0 05 < −δ, then non-inferiority is not achieved.

2. If ΔL 0 05 ≥ −δ andΔL 0 025 ≤ −δ, then declare weak non-inferiority:
p1−p2 ≥ −δ.
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3. If ΔL 0 025 > −δ andΔL 0 05 < 0, then declare strong non-inferiority:
p1−p2 > −δ.

4. IfΔL 0 025 ≤ 0 andΔL 0 05 ≥ 0, then declare at least equivalence: p1−p2 ≥ 0.

5. If ΔL 0 025 > 0, then declare superiority: p1−p2 > 0.

In the non-inferiority tests (2. and 3.), it is also useful to impose the requirement

ΔU 0 025 ≥ 0

or

Δ V1 2 Δ ≥ −z0 025,

which corresponds to (5.22). By this alteration the power for weak and strong non-
inferiority is kept essentially the same, and the consumer’s risk is reduced just as
in Section 5.3.2.

Example 5.12. Example 5.11 continued. Since a constant difference model was
not rejected, we calculate ΔL from T∗ ΔL = zα 2 at α= 0 05 to obtain
ΔL = −0 1078. Since it is below the non-inferiority margin −0 10, non-inferiority
has not been proved and the analysis is finished here. The lower bound by the naïve
estimate (5.31) is −0.1098 and leads to the same conclusion. The naïve method is not
as bad with this size of clinical trial.

In Table 5.11 we compare the risk of declaring non-inferiority when actually
pi1−pi2≡ −0 1 by simulation of 105 repetitions for each. The methods compared
are the handicapped test of Yanagawa et al. (1994) (YTH), the naïve confidence inter-
val (NAI), the normal approximation of efficient score (ES1), and the efficient score
with skewness correction (ES2). The YTH tests the null hypothesis H0 pi1−pi2≡Δi,
i= 1, …, a against H1 pi1−pi2 >Δi, i= 1, …, a by Mantel–Haenszel’s method,
and we apply it with Δi≡Δ. As a result, it becomes a normal approximation
method for iyi2 and similar to ES1. However, it is different from ES1, which is
based on the weighted sum of yi2. From Table 5.11 it is seen that ES2 works
well for all situations. The naïve method also works well when the sample size is mod-
erately large.

5.3.5 Meaning of non-inferiority test and a rationale
of switching to superiority test

There is an objection to the procedure of switching to a superiority test after obtaining
favorable data which were not expected in the planning stage. In this section we dis-
cuss the problem, assuming a very simple but typical situation of non-inferiority
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testing of K−δ against K +
−δ p1−p2 > −δ and superiority testing of K2 against K3,

denoted by K0 in Table 5.12. We assume p2 = 0 7 and power of the non-inferiority
test 1−β = 0 9, and summarize the required sample size per arm for some combina-
tions of α and δ in Table 5.12.
We should consider p1 = 0 75 and 0 80 as quite acceptable against p2 = 0 7, and the

required sample size for a successful trial in Table 5.12 seems too great except for
those cases marked by a dagger (†). Especially, such a scale of the superiority test
δ= 0 is usually unfeasible in Japan, and led to introducing non-inferiority tests with
δ= 0 1 and α= 0 05 one-sided in the old Japanese Guideline (Koseisho, 1992) (see
also Hirotsu, 1986). The change of α from 0.05 to 0.025 increases the required sample
size by more than 20%, and seems unnecessary. Now, suppose the situation p1 = 0 80,
p2 = 0 70, δ = 0 1, α= 0 05, and n1 = n2 = 80 , then the acceptance region for K−0 1 at
step 2 of Section 5.3.3 given by replacing V0 by 2 80 × 0 75 × 0 25 becomes

p10−p20 ≥ V0 × z0 05−0 10 = 0 013 (slightly above 0). Interestingly, in a trial around
p1 = p2 = 0 75, n = 100 per arm with δ= 0 1 and α= 0 05 the approximately zero
outcome (p10−p20= 0) just clears the non-inferiority test and this was also a reason
why we introduced a non-inferiority test with δ = 0 1 and α= 0 05 in Koseisho
(1992) (see Hirotsu, 1986, 2004; Hirotsu and Hothorn, 2003 for more details).
Mathematically, the non-inferiority margin δ is defined as the maximal tolerable
difference but the above discussion suggests that it is simply a device to approve
the new drug with slightly better efficacy rate compared with the standard drug. It
should be noted that the outgoing quality level p1 passing through the non-inferiority
test of K−δ is by no means p2−δ, but expected to be much higher. In contrast, in the
normal model there may be some cases where δ is interpreted as a clinically relevant
quantity.
To discuss the switching procedure from non-inferiority to superiority test, it is cru-

cial that K −
−δ and K1 are not disjoint hypotheses but K −

−δ implies K1 K −
−δ K1 . Now

suppose we have p1 = 0 80, p2 = 0 70. Then, to get approval for the new drug, the
required sample size 389 for K2 is too large, so we employ the non-inferiority test with
δ= 0 1,β = 0 1, which requires n = 98 per arm under the current rule of α= 0 025 one-
sided (Table 5.12). Then the test has approximate power

Table 5.12 Required sample size per arm p2 = 0 7, β = 0 1 .

Efficacy of test drug

K0 K−0 05 K−0 10

0.025 0.025 0.05 0.025 0.05

p1 = 0 7 − 1766 1439 442 360
p1 = 0 7 + 0 05 1658 418 341 186†2 152†2

p1 = 0 7 + 0 10 389 173†2 141†2 98†2 80†2
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P= Pr u > 1 96−
0 1

0 75 × 0 25 × 2 98 1 2
= 0 366 for superiority,

P = Pr u> 1 645−
0 1

0 75 × 0 25 × 2 98 1 2
= 0 489 for at least equivalence,

respectively. So, it does not happen that a trial planned as a non-inferiority test could
clear the superiority or at least the equivalence criterion, but it occurs quite often. Fur-
ther, since K−0 10: p1−p2 = −0 1 is just an operating hypothesis and the true hypoth-
esis (estimate) that the experimenter has is p1−p2 = 0 1, the switching procedure
should be justified.

Example 5.13. An example of the switching procedure in the binomial model.
The data in Table 5.13 are from a phase III randomized, double-blind clinical
trial comparing the efficacy of the test and control drugs in chronic urticaria
(Nishiyama et al., 2001).
We set δ at 0.1 and apply the procedure introduced in Section 5.3.3. First V0 is

obtained as

V0 =
1
112

+
1
121

×
168
233

×
65
233

= 0 0034583

Then we calculate

p1 + δ−p2 V0 =
87
112

+ 0 1−
81
121

0 0034583 = 3 526

This value is larger than z0.025, and we proceed to the next step. Since

p1−p2 V0 =
87
112

−
81
121

0 0034583 = 1 826 (5.35)

is larger than z0.05 but smaller than z0.025, at least equivalence: p1−p2 ≥ 0 has been
proved. According to ICH E9 and the old Japanese Guideline also, only the

Table 5.13 Phase III trial for chronic urticarial.

Response

Drug Improved Not improved Total

Test 87 25 112
Control 81 40 121
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non-inferiority can be asserted in this case but at least equivalence seems to be a more
appropriate conclusion from the achievement of the trial p1 = 0 78, p2 = 0 67 . In this
case Vδ in (5.26) is 0.003444 and the relative error (5.28) is equal to 0.002, suggesting
that the difference is negligible.
Incidentally, it is worthwhile noting that the square of (5.35), 1 8262 = 3 33, coin-

cides exactly with the χ2 obtained in Example 3.6. This is verified by noting that

p1−p2 V0 =
y1 n1−y2 n2

n−1
1 + n−1

2 y1 + y2 n1 + n2 1− y1 + y2 n1 + n2

=
n1 + n2 y1 n2−y2 −y2 n1−y1

n1n2 y1 + y2 n1 + n2− y1 + y2
(5.36)

Now, by the notation of Example 3.6, y1 = y11, n2−y2 = y22, y2 = y21, n1−y1 = y12
and the square of (5.36) is exactly equal to (3.58).

5.3.6 Bio-equivalence

The topic discussed so far is closely related to bio-equivalence, where the mean levels
μ1, μ2 of two drugs are required to satisfy

0 80 ≤ μ1 μ2 ≤ 1 25 (5.37)

This is usually confirmed by showing the 0.90 confidence interval for μ1/μ2 to be
within the range of (5.37). In this section we assume a lognormal model for the phar-
maco-kinetic measurements yij for two drugs i= 1, 2:

log yij = logμi + eij, i= 1 2;j = 1,…, ni

where the measurement errors eij are identically and independently distributed as
N(0, σ2). Let xij = log yij, then the usual approach for assuring bio-equivalence is to
require the 0.90 confidence interval

x1 −x2 − σ
1
n1

+
1
n2
tn1 + n2 −2 0 05

≤ logμ1− logμ2 ≤ x1 −x2 + σ
1
n1

+
1
n2
tn1 + n2 −2 0 05

(5.38)

to be totally inside the range (log 0.80, log 1.25). The procedure assures that the con-
sumer’s risk, defined in this case as the probability of wrongly declaring the ratio μ1/μ2
truly beyond the interval (5.36) to be equivalent, is less than or equal to 0.05 for the
respective departures up and down. Now, for this problem we can also apply the
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confidence region (5.20) introduced in Section 5.3.2. As stated there, the confidence
region raises the confidence coefficient up to 0.95 by widening the interval at
x1 −x2 ≥ T0 05 and x1 −x2 ≤ −T0 05. However, widening the confidence interval obvi-
ously does not increase the probability of declaring equivalence in any case, so that the
consumer’s risk is not increased. The producer’s risk, defined as the probability of
failing to declare equivalence for the ratio μ1/μ2 truly inside the interval (5.37), should
also be unchanged by this alteration, since the difference is only in the case when
x1 −x2 ≥ T0 05. Suppose x1 −x2 ≥ T0 05, for example, then both lower confidence lim-
its of 0 (by the proposed method) and x1 −x2 −T0 05 (by the classical approach) exceed
log 0.80 (negative value) with probability 1. A similar argument holds for the upper
bound when x1 −x2 ≤ −T0 05. That is, the risk of accepting μi’s beyond the range of
(5.37) and also the risk of rejecting μi’s truly inside the interval (5.37) are exactly the
same for both methods (5.20) and (5.38). It should, however, be noted that even if the
equivalence criterion has been satisfied by a confidence interval, some discussion
would be necessary if it could not include μ1 μ2 = 1. We therefore propose requesting
0 to be included in the confidence interval for declaring equivalence, in addition to
clearing the lower and upper bounds (log 0.80 and log 1.25), respectively. Then,
the probability of including 0 in the confidence region when μ1 and μ2 are truly equiv-
alent (μ1 μ2 = 1) is surely 0.95 for the new approach (5.20), while it is 0.90 for the
conventional confidence interval (5.38). This could be an advantage of the proposed
approach (5.20) over the conventional confidence interval (5.38).

Example 5.14. Proving bio-equivalence between Japanese and Caucasians. As
an example, we apply the method to the data taken for a bridging study and given
in Table 5.14, which are the log10 Cmax for Japanese and Caucasians after prescribing
6 mg of a drug on an empty stomach (Hirotsu, 2004). In a bridging study it is essential
to prove that the bio-availability is approximately the same between the Japanese and
the Caucasians. We denote the Japanese and Caucasian data by x1j, j= 1,…,n1 and
x2j, j= 1,…,n2, respectively. Then we have the summary statistics

x1 = 1 518, x2 = 1 457, S1 = x1j−x1
2
= 0 1255, S2 = x2j−x2

2
= 0 1086

Since the equivalence test is sensitive to outliers, we first check for outliers by the
Smirnov–Grubbs test. We have

Table 5.14 Comparison of log10 Cmax between Japanese and Caucasians at
6 mg dose.

Japanese n = 20 : 1.567, 1.515, 1.500, 1.591, 1.624, 1.691, 1.531, 1.456, 1.351,
1.478, 1.461, 1.571, 1.565, 1.586, 1.406, 1.488, 1.500, 1.577,
1.500, 1.407

Caucasians n= 13 : 1.455, 1.375, 1.474, 1.650, 1.464, 1.375, 1.479, 1.413, 1.423,
1.389, 1.441, 1.650, 1.348
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x16−x1 σ = 1 691−1 518 0 0066 = 2 13 for Japanese,

x24−x2 σ = 1 650−1 457 0 0091 = 2 03 for Caucasians

These values are not significant for the two-sided test at level 0.10.
Now we proceed to the equivalence test. The pooled estimate of variance

σ2 = 0.007553 and the critical values are obtained as T0 05 = 0 053 and T0 025 = 0 063,
respectively. Therefore, the mean difference x1 −x2 = 1 518−1 457 = 0 061 is non-
significant at two-sided α= 0 05 but significant at one-sided α= 0 05, so that we have
the confidence interval by (5.20) with confidence coefficient 0.95:

0 ≤ log10μ1− log10μ2 ≤ 0 061 + 0 053 = 0 114

or

1 ≤ μ1 μ2 ≤ 1 30 (5.39)

The interval (5.39) includes 1 (equality of means,) and although the upper limit is
slightly over the usual criterion of 1.25 for bio-equivalence, it would be acceptable
in considering the data not from a cross-over trial. On the contrary, the conventional
confidence interval (5.38): 1 02 ≤ μ1 μ2 ≤ 1 30 excludes 1 and some discussion will be
necessary before asserting the equivalence of Cmax between Japanese and Caucasians.
The data at 3 mg dose are also given in Table 5.15 (Hirotsu, 2004). For these data

the confidence interval (5.20) at α= 0 05 is obtained as 0 80 ≤ μ1 μ2 ≤ 1 14, which
coincides with the naïve confidence interval at confidence coefficient 0.90. Thus,
the usual criterion of bio-equivalence is satisfied for 3 mg dose. Incidentally, the smal-
lest datum 0.848 in the Japanese data is significant at approximately two-sided level
0.05 by the Smirnov–Grubbs test. If we eliminate this datum, the Japanese and Cau-
casian data become even closer.

5.3.7 Concluding remarks

The ICH E9 Guideline discusses the non-inferiority and superiority tests separately,
and recommends a one-sided α= 0 025 test for the former and usually a two-sided
α= 0 05 test is applied to the latter. In contrast, according to the old Japanese Statis-
tical Guideline (Koseisho, 1992), Japan used to employ one-sided α= 0 05 for the

Table 5.15 Comparison of log10Cmax between Japanese and Caucasians at 3 mg dose.

Japanese n= 12 : 1.206, 1.042, 1.148, 1.198, 1.132, 1.039, 0.848, 1.171, 1.176,
1.101, 1.252, 1.082

Caucasian n = 13 : 0.964, 0.983, 1.041, 1.083, 1.215, 1.104, 1.041, 1.405, 1.253,
1.228, 1.121, 1.114, 1.199
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non-inferiority test and it had a very big impact when changing α to 0.025. It should be
noted, however, that the approaches are not contradictory but lie along the same line
with slightly different position, although an explanation will be necessary on why
to change α in the superiority and non-inferiority tests under ICH E9. Now, the
newly proposed procedure in Sections 5.3.2 ~ 5.3.4 consistently uses α= 0 05 for
all tests (one- or two-sided) in the process, and as a result keeps the family-wise
type I error rate at 0.05. It could include the non-inferiority test of ICH E9 as its step
3 and the superiority test as its step 5, while having an intermediate decision: at least
equivalent between those two steps. Further, the non-inferiority test has been made
precise in two parts (with and without equality) for the non-inferiority margin, and
could include the old Japanese practice as weak non-inferiority at step 2. Thus, it could
give a very good compromise justifying simultaneously the ICH E9 and the old Jap-
anese Guideline. Ideally, the significance level α or α/2, and also the non-inferiority
margin δ in the non-inferiority test, should be chosen optimally to control the outgoing
quality level of drugs passing through these testing processes – but this is a very dif-
ficult problem. Then, it will be attractive to have such multiple decisions changing the
strength of evidence of the relative efficacy of the test drug against the control accord-
ing to the achievement of the clinical trial. It should be noted that this procedure
improves the consumer’s risk even against a one-sided 0.025 test in a large trial, while
keeping the producer’s risk essentially the same as for the one-sided 0.05 test. The
confidence region is useful also for proving bio-equivalence.
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6

One-Way Layout,
Normal Model

In this chapter we first introduce an overall ANOVA of a one-way layout by the F-test.
Then, Section 6.2 presents a homogeneity test of variances. Section 6.3 gives a non-
parametric approach. We introduce multiple comparison approaches in Section 6.4,
which are more useful in various aspects of applied statistics. Finally, Section 6.5
shows directional tests when there is a natural ordering in the levels of treatment, such
as temperature, concentration, and dose levels.

6.1 Analysis of Variance (Overall F-Test)

We extend the t-test in a two-sample problem to comparisons of a treatments. We
assume a statistical model

yij = μi + eij, i= 1, …, a, j= 1,…, ni, (6.1)

where the error eij are assumed to be distributed independently as N(0, σ2). We are
interested in testing the null hypothesis of the homogeneity in μi,

H0 μ1 = = μa (6.2)

The case of equal number of repetitions, ni ≡m, has already been discussed in
Example 3.2. We use n = n for the total sample size, as before. The LS estimate
for model (6.1) is μi = yi again, and the residual sum of squares is obtained as

Se =
a
i= 1

ni
j= 1 yij−yi

2
= a

i= 1
ni
j= 1y

2
ij−

a
i= 1yi yi = y2ij− y2i ni

Advanced Analysis of Variance, First Edition. Chihiro Hirotsu.
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Under H0 (6.2) we obtain μ= y and the residual sum of squares is obtained as

S0 = y2ij−y y = y2ij−y
2 n (6.3)

For the calculation of these residual sums of squares, formula (2.33) has been uti-
lized. Then, the increase in residual sum of squares is obtained as

SH = S0−Se = y2ij−y
2 n − y2ij− y2i ni = y2i ni−y

2 n (6.4)

In this case, rank X = a and rank X0 = 1, and we have finally the F-statistic

F =
SH a−1
Se n−a

(6.5)

The F-statistic (6.5) is called a between vs. within variance ratio. The expectations of
SH and Se are calculated similarly to Example 3.2:

E Se = n−a σ2

E SH = a−1 σ2 + ini μi−μ
2,μ = iniμi n

Therefore, the unbiased variance is obtained as

σ2 = Se n−a (6.6)

The non-centrality parameter γ (3.38) is now

γ = ini μi−μ
2 σ2 (6.7)

These results are summarized in the ANOVA Table 6.1. It should be noted that
actually, S0 and SH are calculated first and Se is calculated by subtracting SH from
S0 Se = S0−SH . The sum of squares S0 (6.3) is called a total sum of squares, since
it expresses the total variation of the data. In this context, S0 is written as ST, denoting
the total sum of squares, and hereafter we employ this notation in the ANOVA table.
In contrast, SH (6.4) is the sum of squares for treatments.

Table 6.1 ANOVA table for one-way layout.

Factor Sum of
squares

df Mean sum of
squares

F Non-
centrality

Treatment SH (6.4) a−1 SH a−1 F (6.5) γ (6.7)
Error Se n−a σ2 = Se n−a (6.6)

Total S0 (6.3) n−1
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6.2 Testing the Equality of Variances

The F-test in the previous section assumes an equality of variances among treatments.
The F-test is asymptotically equivalent to a permutation test, and robust like the t-test
against departures from the underlying assumptions. However, if there is a large
heterogeneity among variances, it is necessary to control the error in the experiments
or reconsider modeling. We mention here three methods of testing the equality of
variances in the normal model:

yij = μi + eij, i= 1,…, a, j = 1, …, ni,

eij N 0,σ2i and mutually independent,

Hσ σ21 = = σ2a = σ2

If the null hypothesis Hσ holds, then this model reduces to model (6.1).

6.2.1 Likelihood ratio test (Bartlett’s test)

We define the sum of squares for the ith population by Si = jy
2
ij−y

2
i ni. Then the

statistics Si σ2i , i= 1,…, a are distributed independently from each other as a chi-
squared distribution with df ni−1 . Therefore, the joint distribution is

f S1, ,Sa = 2aΠa
i= 1 Γ

ni−1
2

σ2i

−1

Πa
i= 1

Si
2 σ2i

ni −3 2

exp −
1
2

a
i= 1

Si
σ2i
(6.8)

We denote the right-hand side of (6.8) by L σ21,…,σ2a , which is a likelihood func-

tion with respect to σ2i . From ∂logL σ21, …,σ2a ∂σ2i = 0, we obtain the MLE

σ2i = Si ni−1 , i= 1, …, a

The likelihood function L∗ under Hσ satisfies

logL∗ = const −
ni−1
2

logσ2−
Si

2σ2

and we have the MLE

σ2 = Si ni−1

Denoting the likelihood ratio by λ, we obtain the test statistic

−2logλ = 2 logL σ21, …,σ2a – logL∗ σ2

= n−a log
ni−1 σ2i
n−a

−
1

n−a
ni−1 logσ2i

(6.9)
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This equation is a logarithmic function of the ratio of the arithmetic and geometric
means. When the ni are moderately large and under Hσ, the test statistic (6.9) is dis-
tributed as chi-square with df a−1. A better approximation is obtained by Bartlett’s
correction

B= −2logλ 1 +
1

ni−1
−

1
n−a

3 a−1 ,

called Bartlett’s test. This test does not need a particular table of critical values, and
can be applied to the unbalanced case without difficulty.

6.2.2 Hartley’s test

The test statistic is given by

Fmax =maxi σ
2
i mini σ

2
i

This test gives high power when two variances are extreme and the others are rather
homogeneous and located in the middle of these two. The critical values are given in
Hartley (1950) when the repetition numbers are equal among the groups.

6.2.3 Cochran’s test

The test statistic is given by

G=maxi σ
2
i iσ

2
i

This test gives high power when one population is outlying. The critical values are
given in Cochran (1941) when the repetition numbers are equal among the groups.

Example 6.1. Magnetic strength of a ferrite core. The data of Table 6.2 are the
measurements of magnetic strength (μ) of a ferrite core by four different treatments.
Table 6.3 is prepared for calculation of the sum of squares.

Table 6.2 Magnetic strength (μ) of a ferrite core (Moriguti, 1976).

Treatment Data Total (Total)2

A1 10.8 9.9 10.7 10.4 9.7 51.5 2652.25
A2 10.7 10.6 11.0 10.8 10.9 54.0 2916.00
A3 11.9 11.2 11.0 11.1 11.3 56.5 3192.25
A4 11.4 10.7 10.9 11.3 11.7 56.0 3136.00

Total 218.0 11896.50
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(1) Testing the equality of variances by Bartlett’s test. The sums of squares are
obtained as follows:

S1 = 531 39−51 52 5 = 0 94 with df n1−1 = 4,

S2 = 583 30−54 02 5 = 0 10 with df n2−1 = 4,

S3 = 638 95−56 52 5 = 0 50 with df n3−1 = 4,

S4 = 627 84−56 02 5 = 0 64 with df n4−1 = 4

The test statistic (6.9) is obtained as

20−4 log
0 94 + 0 10 + 0 50 + 0 64

20−4
−

1
20−4

4log
0 94
4

+ 4log
0 10
4

+ 4log
0 50
4

+ 4log
0 64
4

= 4 30

The coefficient for improvement is

1 +
1
4
× 4−

1
20−4

3 × 3
−1

= 0 906,

and Bartlett’s test statistic B is obtained as 3.90 by the product. This is smaller than
χ23 0 05 = 7 81, and the null hypothesis Hσ is not rejected.
For reference, Hartley’s test statistic is

Fmax = 0 94 4 0 10 4 = 9 4

and it is smaller than the upper 0.05 tail point 20.6.
Cochran’s test statistic is

G=
0 94 4

0 94 + 0 10 + 0 50 + 0 64 4
= 0 431,

which is smaller than the upper 0.05 tail point 0.629.
There is no significant difference suggested among variances by the three methods.

Of course, the reader is obliged to choose one method before seeing the data.

Table 6.3 Squared data.

Treatment (Data)2 Total

A1 116.64 98.01 114.49 108.16 94.09 531.39
A2 114.49 112.36 121.00 116.64 118.81 583.30
A3 141.61 125.44 121.00 123.21 127.69 638.95
A4 129.96 114.49 118.81 127.69 136.89 627.84

Total 2381.48
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(2) ANOVA. The sums of squares are obtained as follows:

ST = 2381 48−218 02 20 = 5 28by 6 3 ,

SH = 11896 5 5−218 02 20 = 3 10 by 6 4 ,

Se = ST −SH = 2 18

Then, the F-statistic is obtained by (6.5) as

F =
3 10 4−1
2 18 20−4

= 7 58∗∗

Since F3, 16 0 01 = 5 29, the result is highly significant. These calculations are sum-
marized in the ANOVA Table 6.4.

The maximal strength is obtained by treatment A3, so we derive a confidence interval
for μ3. However, there is not much difference between A3 and A4, and some multiple
comparison procedure and related simultaneous confidence interval of the next
sectionwill bemore appropriate. A naïve confidence interval for μ3 at confidence coef-
ficient 0.90 is obtained from y3 = 11 3, σ2 = 0 136 with df 16 and t16 0 05 = 1 746 as

μ3 11 3 ± 0 136 5 × 1 746 = 11 3 ± 0 3

6.3 Linear Score Test (Non-parametric Test)

In this section we derive a method for a linear score test for the ordered categorical
data, which can include permutation test and rank test with or without ties. Following
and extending Section 5.2.3 for a two-sample problem, we use the notation
yi = yi1,…, yib , Ri = yi , Cj = y j, N = y , i = 1, …,a, j= 1,…, b. The Cj subjects in
the jth response category are given the same score wj, a typical example of which
is the Wilcoxon averaged rank score

wj =C1 + +Cj−1 + Cj + 1 2, j = 1, …, b (6.10)

Table 6.4 ANOVA table for one-way layout.

Factor Sum of squares df Mean sum
of squares

F Non-centrality

Treatment SH = 3 10 3 1.03 7.58∗∗
ini μi−μ

2 σ2

Error Se = 2 18 16 σ2 = 0 136

Total ST = 5 28 19
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Then, the statistic of a linear score test is

Wi = jwjyij, i= 1, …,a

The expectation and variance of Wi can be calculated as a random sample of size Ri

from a finite population of given scores, where the number of wj is Cj. However, it is
more easily calculated by a multivariate hypergeometric distribution

MH yij Ri, Cj, N
ΠiRi ΠjCj

N ΠiΠjyij

The detailed calculation is shown in Section 11.2. It should be noted that this struc-
ture of data is the frequency in the two-way table of the treatment levels and ordered
categorical responses, and thus will be treated more generally in Chapter 11. Anyway,
we get from (11.3) and (11.4)

E Wi = Ri N j wjCj , i= 1, …,a,

V Wi =
Ri N−Ri

N−1
σ2w,

where

σ2w =N
−1

j w2
j Cj −N −1

j wjCj

2

is the same as σ2 in (5.15) and (5.18). The covariance of Wi and Wi can also be
obtained easily from the multivariate hypergeometric distribution, and we have an
overall test statistic for the homogeneity of populations as

W2 =
1
σ2w

i W
2
i Ri −

1
N j wjCj

2
×
N−1
N

,

which is asymptotically distributed as a chi-squared distribution with df a−1 under the
null hypothesis of homogeneity of treatments. This test is called the Kruskal–Wallis
test when the averaged rank (6.10) is employed as score. The other methods described
in Section 5.2.3 (2) – such as max acc. t1 and the cumulative chi-squared statistic – are
introduced in Section 7.3.

Example 6.2. Kruskal–Wallis test for Table 6.2.We apply the Kruskal–Wallis test
for the data of Table 6.2. Rewriting the table as rank data, we prepare Table 6.5 for the
necessary calculations. Then we have the test statistic
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Table 6.5 Calculation of Kruskal–Wallis test statistic.

Rank j

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total

A1 1 1 1 1 1 5
A2 1 1 1 1 1 5
A3 1 1 1 1 1 5
A4 1 1 1 1 1 5

Cj 1 1 1 1 3 2 2 2 1 1 2 1 1 1 20
wj (6.15) 1 2 3 4 6 8.5 10.5 12.5 14 15 16.5 18 19 20

wjy1j 1 2 3 0 6 8.5 0 0 0 0 0 0 0 0 20.5
wjy2j 0 0 0 4 6 8.5 10.5 12.5 0 0 0 0 0 0 41.5
wjy3j 0 0 0 0 0 0 0 12.5 14 15 16.5 0 0 20 78
wjy4j 0 0 0 0 6 0 10.5 0 0 0 16.5 18 19 0 70
wj Cj 1 2 3 4 18 17 21 25 14 15 33 18 19 20 210
w2
j Cj 1 4 9 16 108 144.5 220.5 312.5 196 225 544.5 324 361 400 2866

σ2w = 20
−1 2866−20−1 210 2 = 33 05



W2 =
1

33 05
20 52 + 41 52 + 782 + 702

5
−

1
20

× 2102 ×
19
20

= 12 08∗∗

Since χ23 0 01 = 11 34, the statistic is highly significant and the result coincides
well with the F-test in Example 6.1 (2).

6.4 Multiple Comparisons

6.4.1 Introduction

In the 1980s a sensational event happened, in that the new drug applications from
Japan to the FDA (US Food and Drug Administration) were rejected one after another
because of the defectiveness of the statistical procedures for dealing with the multi-
plicity problems. One of these procedures was the multiple comparison procedure
developed already in the early 1960s, but this was not known widely among Japanese
practitioners and caused considerable confusion. Another problem was that of apply-
ing various statistical tests to a set of data and taking the most favorable result. At that
time the results of the t andWilcoxon tests were written simultaneously in the report of
the two-sample problem, for example, which of course makes the significance level of
a test meaningless. Now it is required to define a statistical method to apply before
taking data or before opening the key at latest in a phase III trial.
In a clinical trial, multiple characteristics of a treatment is also a big problem –

known as the problem of multiple endpoints. In a simple example of lowering blood
pressure, where the systolic or diastolic blood pressure is of interest, is the effect of
lowering pressure by 30 mmHg from 200 or 160 mmHg regarded as equivalent and
how can we deal with the circadian rhythm, which usually amounts to a 20 mmHg
difference between the day and night? To select a target characteristic after taking data
obviously causes a false positive. Further, Armitage and Palmer (1986) pointed out
stratified analyses as one of the most awkward multiplicity problems. In infectious
diseases, for example, the effects of a new drug and an active control can be reversed
in acute and chronic patients. This is statistically a problem of interaction between the
drug and the status of the disease, and of course it is not allowed to declare the effec-
tiveness of a new drug in a particular status of disease after seeing all the data.
A proper approach would be to define such an interaction between the drug and
the status of the disease in advance, based on sufficient clinical evidence, and to prove
it in the trial.
In contrast, the multiple comparison procedures developed in statistics are the pro-

cedures for dealing with the multiple degrees of freedom which arise in comparisons
of more than two treatments. In the one-way ANOVA model

yij = μi + eij, i = 1, …, a, j= 1,…,ni,
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where the error eij are assumed to be distributed independently as N(0, σ2), for exam-
ple, the overall null hypothesis in μi,

H0 μ1 = = μa, (6.11)

can be decomposed into various sub-hypotheses. One of the simplest is to takeH0 as a
set of paired comparisons,

Hij μi = μj, 1 ≤ i< j ≤ a

In this case, testing each Hij at level α obviously causes a false positive and an
appropriate procedure for adjustment is required. In Section 6.4.2 we develop
statistical methods for the known structure of sub-hypotheses, as in this example.
A general approach without any particular structure is given in Section 6.4.3 and
in Section 6.4.4 a closed test procedure is given, which can be applied without adjust-
ing the level α.
In this section we assume normal independent errors and the multiple comparisons

of binomial probabilities are discussed in Section 7.2. Further, row-wise multiple
comparisons in two-way data are developed in Chapters 10, 11, and 13.

6.4.2 Multiple comparison procedures for some given structures
of sub-hypotheses

(1) Tukey’s method for paired comparisons. We consider a set of paired
comparisons,

Hij μi = μj, 1 ≤ i< j ≤ a (6.12)

A test of a simple homogeneity hypothesis like (6.11) cannot bring useful information,
such as which of the treatments is recommended, even if the test results are statistically
significant. Therefore, comparisons like (6.12) are preferable, but repetitions of the t-
test obviously suffer from a large false positive. In this case we can take a maximal t-
statistic max1 ≤ i< j ≤ a ti, j,

ti, j = yi −yj n−1
i + n−1

j σ2,

σ2 = a
i= 1

ni
j= 1 yij−yi

2
n−a ,

as a test statistic, where σ2 is equal to Se n−a (6.6) in ANOVA Table 6.1. When all
the repetition numbers are equal, the distribution of 2max1 ≤ i< j ≤ a ti, j is nothing but
that of the Studentized range and the upper tail points qa, n−a α are tabulated. Also, a
simple integration formula for exact calculation of the p-value has been given by
Hochberg and Tamhane (1987). When the repetition numbers are not equal, it has
been shown by Hayter (1984) that the tail probability for equal number of repetitions
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gives a very precise and conservative approximation. In contrast, the use of a one-
sided Studentized range was suggested in Hirotsu (1976) and extended by Hayter
(1990). Although Tukey’s method was originally intended for paired comparisons,
it can be extended to all the contrasts L μ and the simultaneous confidence interval
is obtained as follows:

L μ L y i ± 2 m
−1

Li σqa, n−a α , (6.13)

where y i = y1 ,…,ya is a vector of sample means, L= L1,…,La , and we assume
equal numberm of repetitions in (6.13). It should be noted that the (i) is not a label of a
vector but implies a running variable to specify the vector.

(2) Scheffé’s method for comparing all the contrasts. The null hypothesis (6.11) is
also equivalent to

HL L μ = 0, L j= 0 (6.14)

The t-statistic corresponding to (6.14) is given by

tL =L y i L diag n−1
i Lσ2

Since L j= 0, we have

L y i

2
= L diag n−1 2

i diag n1 2
i yi −y j

2

≤ L diag n−1
i L ini yi −y

2 ,

where the inequality is due to Schwarz’s inequality. Then we have

t2L
a−1

≤ ini yi −y
2 a−1

σ2
(6.15)

However, the right-hand side of equation of (6.15) is nothing but an F-statistic with df
a−1, n−a in the one-way ANOVA, so the statistic tL for any contrast L μ is eval-
uated by the F-distribution. That is, the simultaneous confidence interval is
obtained as

L μ L y i ± a−1 L diag n−1
i L σ2Fa−1, n−a α (6.16)

This method is applicable when the sample sizes are not equal. One should refer to
Scheffé (1953) for detailed comparisons of Scheffé’s and Tukey’s methods.
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Example 6.3. Example 6.1 continued. We construct simultaneous confidence
intervals for the contrasts μj− μi, 1 ≤ i< j ≤ 4, c1 = μ2 + μ3 + μ4 3−μ1, and
c2 = μ3 + μ4 2− μ1 + μ2 2 by each of Scheffé’s and Tukey’s methods. Now,
a= 4, ni ≡m = 5, q4,16 0 05 = 4 046, F3,16 0 05 = 3 24, and we already have
σ = 0 136 = 0 369 in ANOVA Table 6.5. The calculations of (6.13) and (6.16)
are quite easy, and the results are summarized in Table 6.6.
It is seen that the range of intervals for paired comparisons is smaller for Tukey’s

method than for Scheffé’s method, and the reverse is true for general contrasts like
c1 and c2.

(3) Dunnett’s method for comparing treatments with a standard. A typical
situation often encountered in a clinical trial is comparing treatments with a
standard, which is indexed by 1. In this case a set of sub-hypotheses of interest are
expressed as

Hi1 μi = μ1, i= 2,…, a

The t-statistic corresponding to Hi1 is given by

ti, 1 = yi −y1 n−1
i + n−1

1 σ2

When n2 = = na, the upper tail points of the maximal statistic, maxi ti,1, are given
by Dunnett (1964). Also, a simple integration formula for exact calculation of the
p-value is shown by Hochberg and Tamhane (1987).

Example 6.4. From Dunnett’s original paper. This example is concerned with
the effect of certain drugs on the fat content of the breast muscle in cockerels.

Table 6.6 Simultaneous confidence intervals by Tukey’s and Scheffé’s methods.

Contrast Point
estimates

Tukey Scheffé

Lower
bound

Upper
bound

Lower
bound

Upper
bound

μ2− μ1 0.5 −0.168 1.168 −0.228 1.228
μ3− μ1 1.0 0.332 1.668 0.272 1.728
μ4− μ1 0.9 0.232 1.568 0.172 1.628
μ3− μ2 0.5 −0.168 1.168 −0.228 1.228
μ4− μ2 0.4 −0.268 1.068 −0.328 1.128
μ4− μ3 −0.1 −0.768 0.568 −0.828 0.628
c1 0.8 0.132 1.468 0.206 1.394
c2 0.7 0.032 1.368 0.186 1.214
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In the experiment, 80 cockerels were divided at random into four treatment groups.
The birds in group A were the untreated controls, while groups B, C, and D
received, respectively, stilbesterol and two levels of acetyl enheptin in their diets.
Birds from each group were sacrificed at specified times (four levels) for the
purpose of certain measurements. One of these was the fat content of the breast
muscle.
The analysis of variance for the 4 × 4 two-way data with repetition five at each

cell was performed to obtain the unbiased variance σ2 = 0 1086 with df 64. The
absence of an interaction between treatments and sacrifice times was shown,
justifying the comparisons of treatment groups based on the overall means
y i = 2 493, 2 398, 2 240, 2 494 .
Now, the main comparisons of interest to the experimenter were between each of

the three treatments and the control. The one differing most from the control is treat-
ment C, and the standardized difference is obtained as

t3, 1 = 2 240−2 493 1 20 + 1 20 0 1086 = 2 43∗

To evaluate this value as Student’s t obviously suffers from a false positive, since
treatment C was selected because of the extreme outcome. By the table given in the
paper specific to the comparison of the best treatment with the control, the critical
values are 2.41 and 3.02 for two-sided levels 0.05 and 0.01, respectively. Therefore,
we can state that treatment C is significantly different from the control at two-sided
level 0.05. The other two treatments can be tested by the closed step-down procedures
of Section 6.4.4, and it is found that neither of them is significant.
It is commented in the paper, however, that this is a bit surprising, since group D –

which received the same drug at twice the dose – does not show any apparent differ-
ence from the control. Whether one should conclude in this instance that a real treat-
ment effect has been demonstrated, which for some reason is not manifested at the
higher dose level, depends on the experimenter’s prior knowledge regarding the prop-
erties of this particular drug, together with his assessment of the likelihood of the
observed effect’s being due to a chance occurrence or a flaw in the conduct of the
experiment. Thus, a statistical analysis is by no means a conclusion, but only supports
scientifically the real-world decision.

6.4.3 General approach without any particular structure
of sub-hypotheses

(1) Bonferroni’s inequality. Let us consider simultaneous tests of a set of basic
hypotheses H1, …, HK and any subset of it, namely

j JHj,J 1,…, K ,
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where we identify Hj and the set of μ satisfying Hj. We also assume none of
the hypotheses H1, …, HK can be expressed by the intersection of the other
hypotheses. Let the rejection region of each of H1, …, HK be R1, …, RK. Then
we should determine R1, …, RK, so that the probability of wrongly rejecting at
least one of H1, …, HK when they are true is less than or equal to α. That is,
we choose the rejection regions so as to satisfy

Pr R1 RK H1 HK ≤ α

We can choose Rj satisfying

Pr Rj Hj ≤ α K, (6.17)

since then we have

Pr R1 RK H1 HK ≤ K
j= 1 Pr Rj H1 HK

≤ K
j= 1 Pr Rj Hj

≤K × α K = α

where the first inequality is due to Bonferroni’s inequality.

Next, suppose the rejection region is expressed by a test statistic Tj in the form

Rj Tj ≥ cj

as usual. Then define

αj tj =Pr Tj > tj Hj

for the observed test statistic tj, which is called the p-value in the situation of multiple
comparisons. When Hj is true we have

Pr αj tj ≤ p Hj = Pr Pr Tj > tj Hj ≤ p Hj

= Pr 1−F tj ≤ p Hj = p,
(6.18)

and therefore the rejection region given by (6.17) is equivalent to rejecting the
hypothesis when αj tj ≤ α K for observed tj. In equation (6.18) we used the fact that
the distribution function F(Tj) of Tj follows a uniform distribution.
Unless the rejection regions Rj are mutually exclusive, the procedure according to

Bonferroni’s inequality is obviously conservative and should be inefficient when K is
moderately large. Further, while the minimal p-value is naturally compared with α/K,
the next one seems not necessarily to be compared with α/K. From these view points,
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several improvements have been made to Bonferroni’s procedure. Among them,
Holm (1979) and Schaffer (1986) are particularly important.

(2) Holm’s procedure. Let the ordered p-values be denoted by α 1 ≤ ≤ α K and
the corresponding hypotheses by H(1),…, H(K). Then we have Theorem 6.1 by
Holm (1979).

Theorem 6.1. Holm’s theorem. Let j∗ be the minimal j that satisfies
α j > α K− j+ 1 . Then, due to the multiple comparison procedure rejecting
H 1 ,…, H j∗ −1 and accepting H j∗ ,…, H K , the probability of rejecting at least
one true hypothesis wrongly is less than or equal to α.

Proof. Let the set of true hypotheses be denoted by J 1,…, K and the number of
elements included in J be m. Then it is sufficient to prove that the probability of
accepting all the hypotheses H j , j J is larger than or equal to 1−α. We have the
following inequalities:

Pr αj >
α

m
, j J j JHj = 1− Pr αj ≤

α

m
, j J j JHj

= 1− Pr j JHj αj ≤
α

m j JHj

≥ 1− j J Pr αj ≤
α

m j JHj

≥ 1−m× α m = 1−α

That is, it is verified that for all true hypotheses Hj the probability Pr αj > α m
is larger than or equal to 1−α. However, since the number of elements included in
J is m, the event

αj ≤
α

m
, j J

implies that at least m largest p-values – namely α K ,…, α K−m + 1 – are larger than
α/m. Therefore we have

α K−m+ 1 > α m=
α

K− K−m + 1 + 1

and the test procedures should have stopped at K−m+ 1 or before. This implies that
for any j satisfying αj > α m, the hypothesis Hj should be accepted.

It is obvious that Holm’s procedure improves the naïve Bonferroni procedure. When
there is an inclusive relationship among the subsets of (H1,…,HK), Holm’s procedure
is further improved by Schaffer (1986).

ONE-WAY LAYOUT, NORMAL MODEL 127



6.4.4 Closed test procedure

While the procedures of the previous section can be applied widely without any par-
ticular structure among sub-hypotheses, we can construct multiple comparison proce-
dures more efficiently for some given structures of sub-hypotheses as mentioned in
Section 6.4.2. Then there is a case that we can test sub-hypotheses in an appropriate
order without adjusting the significance level. The procedure is given by Theorem 6.2
of Marcus et al. (1976).

Theorem 6.2. Marcus et al.’s theorem (1976). In the set of sub-hypotheses, let us
assign a test φ with significance level α to every intersection of sub-hypotheses. Then
a multiple comparison procedure of the significance level α is constructed by testing
the null hypothesis Hβ if and only if all the null hypotheses included in Hβ have been
rejected. That is, the probability of rejecting at least one true hypothesis by this pro-
cedure is less than or equal to α.

Proof. Define the events A and B as follows:

A – any true hypothesis ωβ is rejected;

B – the intersection ωτ of all the true hypotheses is rejected by φτ.

For ωβ to be rejected, all the null hypotheses included in ωβ have to be rejected by the
assumption of the theorem and therefore A implies B. That is, A B=A holds. How-
ever, since the intersection ωτ is one of the true hypotheses and the significance level
of φτ is α we have

P A =P A B =P B P A B ≤ α× 1 = α,

where P(A) denotes the probability of event A.

An application of a closed test procedure has been given in Section 5.3.2 (2) and
will be given also in Section 6.5.3 (1) (g) to define the dose–response pattern. A closed
Tukey test procedure and step-down Dunnett procedure are described by Hochberg
and Tamhane (1987) and Bretz et al. (2011), as examples.

6.5 Directional Tests

6.5.1 Introduction

The shape hypothesis, like the monotone hypothesis, is inevitable in the dose–
response analysis where a rigid parametric model is usually difficult to assume.
It appears also in comparing treatments based on ordered categorical data
(Section 5.2.3). The omnibus F-test is obviously inappropriate against these restricted
alternatives. Then, the isotonic regression is the most well-known approach to the
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monotone hypothesis in the normal one-way layout model (Barlow et al., 1972;
Robertson et al., 1988). It was, however, introduced rather intuitively by Bartholo-
mew (1959a,b), and has no obvious optimality for the restricted parameter space like
this monotone hypothesis. Further, the restricted maximum likelihood approach
employed in the isotonic regression is too complicated to extend to the non-normal
distributions, including the discrete distributions, to the analysis of interaction effects,
and also to other shape constraints such as convexity and sigmoidicity. Therefore, in
the book of BANOVA (Miller, 1998), a choice of Abelson and Tukey’s (1963) max-
imin linear contrast test is recommended for the monotone hypothesis, to escape from
the complicated calculations of the isotonic regression. However, such a 1 df contrast
test cannot keep high power against the wide range of monotone hypotheses, even by
careful choice of contrasts. Actually, it is stated in Robertson et al. (1988) that if no
prior information is available concerning the location of the true mean vector, and if
the likelihood ratio test is viable, then such a contrast test cannot be recommended.
Instead, we propose a more robust approach against the wide range of monotone
hypotheses, which can be extended in a systematic way to various interesting pro-
blems such as convexity and sigmoidicity hypotheses, and also to the order-restricted
inference in interaction effects. It starts from a complete class lemma for the tests
against the general restricted alternative in Hirotsu (1982). It suggests the use of accu-
mulated statistics as the basic statistics in case of the monotone hypothesis. Two
promising statistics derived from the basic cumulative statistics and belonging to
the complete class are the maximal contrast statistic (max acc. t1) and the cumulative
chi-squared statistic χ∗2. Although χ∗2 does not belong to the complete class in the
strict sense, it has been verified to have high power widely against the two-sided order
restricted hypotheses. It is very robust and nicely characterized as a directional good-
ness-of-fit test statistic (Hirotsu, 1986). In contrast, max acc. t1 strictly belongs to the
complete class and is characterized also as an efficient score test for the step change-
point hypothesis as shown in Section 6.5.3 (1) (b). The basic statistics are very simple
compared with the restricted MLE, and have a very nice Markov property for prob-
ability calculation (Hirotsu, 2013; Hirotsu et al., 1992, 1997, 2016). It leads to a very
elegant and exact algorithm for probability calculation not only for the normal distri-
bution, but also for the general univariate exponential family including the Poisson
and binomial distributions. As shown in Section 6.5.3 (1) (e) and (f ), max acc. t1
is essential for forming the simultaneous confidence intervals of the monotone
contrasts satisfying the inevitable properties of the uniqueness and positivity of the
linear combination (see Hirotsu and Srivastava, 2000; Hirotsu et al., 2011). Hirotsu
(1997) and Hirotsu and Marumo (2002) proved a close relationship between the mon-
otone hypothesis and the step change-point hypothesis, unifying those two topics
developed independently in the two different streams of statistics. Let us consider
a set of all the monotone contrasts, which defines a convex polyhedral cone. Then,
very interestingly, every corner vector of the polyhedral cone represents a step
change-point contrast, suggesting a close relationship between the monotone hypoth-
esis and the step change-point model. Actually, every step change-point contrast is a
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special case of the monotone contrast and every monotone contrast can be expressed
by a unique and positive linear combination of step change-point contrasts (see Exam-
ple 6.5). This leads to a very interesting approach to defining the dose–response pat-
tern without assuming any parametric model (see Section 6.5.3 (1) (g)).
This unification is also practically important, since in monitoring the spontaneous

reporting of the adverse events of a drug, for example, it is interesting to detect a
change-point as well as the general increasing tendency of the reportings as shown
in Example 8.1 of Section 8.1. This unification approach extends also to the convexity
and slope change-point models, and the sigmoid and inflection point models. These
basics are the doubly and triply accumulated statistics, respectively. The accumulated
statistics have so simple a structure that many of the procedures for a one-way layout
model can be extended in a systematic way to two- and three-way data in Chapters 10,
11, 13, and 14. In particular, this leads to the two-way accumulated statistics in
Section 11.5. Further, the power of the proposed method has been evaluated repeat-
edly and proved to be excellent compared with the isotonic regression and some other
maximal contrast type test statistics. Thus, this unification is truly unifying in the
sense that:

(1) it unifies the approaches to shape and change-point hypotheses, which have been
developed independently in the two different streams of statistics;

(2) monotone, convex, and sigmoid hypotheses are approached in a systematic way,
corresponding to step, slope, and inflection change-point models, respectively;

(3) a general univariate exponential family is approached in a systematic way, not
restricted to the normal distribution;

(4) two-way data are approached in a systematic way, not restricted to one-way data.

The theory and application of singly, doubly, triply, and two-way accumulated sta-
tistics are the original work of this book.

6.5.2 General theory for unifying approach to shape and
change-point hypotheses

Let be a class of tests for testing the alternative hypothesis K on μ and Pφ(μ) the
power function of test φ. Then, is an essentially complete class of tests if there
always exists some φ2 such that Pφ1

μ ≤Pφ2
μ , μ K, for any φ1 . If strict

inequality holds for at least one μ K, then is called a complete class. We first give
an essentially complete class for testing the multivariate one-sided alternative in
normal means.

Lemma 6.1. Complete class lemma for a normal model (Takeuchi, 1979). Let
y= y1,…, ya be a sample from a multivariate normal distribution N(μ,Ω ), with
Ω a known non-singular covariance matrix. The prime on the matrix (vector) denotes
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a transpose of the matrix (vector). Then, an essentially complete class of tests for H0

μ= 0 against a multivariate one-sided alternative K μ ≥ 0 with at least one inequality
strong is given by all the test functions that are increasing in every element of Ω−1y
and with convex acceptance region, where the inequality for a vector implies the ine-
quality for every element of the vector.

Proof. Let f(y, μ ) be a probability density function of y and G(μ) a prior distribution
defined for μ ≥ 0. Then the class of Bayes test

R f y, μ f y,0 dG μ > c

corresponding to all possible a priori distribution G(μ) forms an essentially complete
class (Wald, 1950). For the normal density we have

R exp −2−1μ Ω−1μ × exp μ Ω−1y dG μ > c

Since this is a weighted mean of the convex function exp μ Ω−1y , the acceptance
region should be a convex region of y (Birnbaum, 1955). Let y1 and y2 be two points
in the sample space satisfying Ω−1y1 ≥Ω

−1y2, then the inequality μ Ω−1 y1−y2 ≥ 0
holds for any μ K. This implies

f y1, μ f y1,0 dG μ ≥ f y2, μ f y2,0 dG μ

That is, if y2 R then y1 R. In other words, the essentially complete class is given by
all the tests that are increasing in every element ofΩ−1y and with a convex acceptance
region.

.Corollary to Lemma 6.1 (Hirotsu, 1982). Suppose an observation vector y is
distributed as an a-variate normal distribution with mean vector μ and known covar-
iance matrix Ω. Then an essentially complete class of tests for testing the null
hypothesis

K0 A μ= 0

against a restricted alternative

K1 A μ ≥ 0

with A a p × a full rank matrix is formed by all the tests that are increasing in every
element of

A A −1A Ω−1 y−E0 y A∗ y

and with convex acceptance region, where E0 y A∗ y denotes the conditional expec-
tation of y given the sufficient statistics A∗ y under the null hypothesis K0.
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Proof. Let [A A∗] denote any non-degenerate (full rank) linear transformation of y
satisfying A∗ ΩA= 0. Then A∗ y is a set of sufficient statistics under K0 and independ-
ent ofA y. Therefore, a similar test should be formed based onA ywhich is distributed
as N(A μ,AΩA). An essentially complete class is then formed by all the tests that are

increasing in every element of A ΩA −1A y and with convex acceptance region. Fur-
ther, let us introduce an a × a−p matrixB that satisfies A B= 0 andA∗ B= Ip. This is
easily justified, since B and ΩA∗ form the same linear subspace orthogonal to the

column space of A. Then we have a relation A∗ = B Ω−1B
−1
B Ω−1. By inverting

both sides of

A∗

A
Ω A∗ A =

A∗ ΩA∗ 0

0 A ΩA

and using the expression

A∗ A
−1

=
B

A A −1A I−A∗B

we get A ΩA −1A y= A A −1A I−A∗B Ω−1y = A A −1A Ω−1 y−BA∗ y . On
one hand, we have under the null hypothesis

E0 y A∗ y =
A∗

A

−1

E0

A∗

A
y A∗ y

=
A∗

A

−1
A∗ y

0
=BA∗ y

and this completes the proof. By a similar argument we have the conditional
variance

V0 y A∗ y =
A∗

A

−1

V0

A∗

A
y A∗ y A∗ A

−1

=
A∗

A

−1 0 0

0 A ΩA
A∗ A

−1

=Ω−B BΩ−1B
−1
B

=Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω (6.19)
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Lemma 6.2. Complete class lemma for a general case (Hirotsu, 1982).More gen-
erally, suppose an a-dimensional observation vector y is distributed following the like-
lihood function L(y, θ) and consider testing the null hypothesis K0 A θ = 0 against a
restricted alternative K1 A θ ≥ 0 with A a p × a full rank matrix. Then, a complete
class of tests is formed by all those tests that are increasing in every element of

A A −1A ν θ0 and with convex acceptance region, where ν θ0 is an efficient score

vector evaluated at MLE θ0 under K0.

Proof. Let θ be the MLE of θ following asymptotically a multivariate normal
distribution. Then, by virtue of the Corollary to Lemma 6.1, the essentially complete
class is given by all the tests that are increasing in every element of

A Γ −1
0 A

−1
A θ = A A −1A Γ0 θ −E0 θ A∗ θ and with convex acceptance

region, where Γ0 is Fisher’s information matrix under K0. However,

Γ0 θ −E0 θ A∗ θ is asymptotically equivalent to the efficient score vector

ν θ0 evaluated at the MLE θ0 under K0. Therefore, the essentially complete class

of tests is formed by all the tests that are increasing in every element of

A A −1A ν θ0 and with a convex acceptance region. It should be noted that the

asymptotic null distribution of ν θ0 is normal with mean zero and covariance matrix

Γ0−Γ0B B Γ0B
−1B Γ0, by virtue of (6.19). Usually, Γ0 is consistently estimated

by the value of minus the second derivation of the log likelihood function

evaluated at θ0.

In Lemma 6.2 the vector ν θ0 is essentially the observation vector y for the inde-

pendent univariate exponential family

L y, θ =Πka θk b yk exp θkyk , (6.20)

since it is equal to y−E y θ0 , where E y θ0 is the expectation of y evaluated at the
MLE θ0 under K0, and therefore a function of the sufficient statistics under the null
model. Those sufficient statistics are the constants in developing a similar test. The
distribution (6.20) includes the normal, binomial, Poisson distributions and also a

contingency table. We therefore call A A −1A y a key vector generally for testing
the restricted alternative A θ ≥ 0. Next, we give Lemma 6.3 for the interpretation of

the coefficient matrix A A −1A .
For contingency tables with ordered categories Cohen and Sackrowitz (1991) give

the class of all tests that are simultaneously exact, unbiased and admissible.

Lemma 6.3. Corner vectors of the restricted alternative hypothesis. Every col-

umn of the coefficient matrix A A A −1 represents a corner vector of the polyhedral
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cone defined by the restricted alternative A θ ≥ 0. In other words, all the θ that satisfy

A θ ≥ 0 can be expressed as a positive linear combination of the columns of A A A −1,
except for the constant term orthogonal to A.

Proof. We consider any θ that satisfies

A θ ≥ 0 (6.21)

Since there are additional degrees of freedom in θ, we impose a restriction

B θ = 0 (6.22)

by a non-singular matrix B satisfying A B= 0without violating the inequality A θ ≥ 0.
We can assume the matrix [A B] to be non-singular. Then, all the θ that satisfy (6.21)
and (6.22) can be expressed as such θ satisfying

B

A
θ =

0

h

with some h ≥ 0. Then, for all those θ we have

θ = A A A −1A +B B B −1B θ =A A A −1h

since A A A −1A +B B B −1B is an identity matrix as the sum of projection matri-
ces orthogonal to each other and of full rank. Thus, all those θ can be expressed by a

positive linear combination of the columns of A A A −1. Now, excluding the condi-
tion (6.22) we have an expression for θ satisfying (6.21):

θ=Bη+ A A A −1h, h ≥ 0

with η an arbitrary vector of coefficients, which completes the proof.

Lemma 6.3 implies that the matrix A A A −1 is more directly concerned with the
restricted alternative A θ ≥ 0 than the defining matrix A itself. Thus, the key vector

A A −1A y is interpreted as a projection of the observation vector y onto the corner
vector of the cone. For a given model and given A, the key vector can sometimes be
very simple and give reasonable test statistics.

Example 6.5. Monotone and step change-point hypotheses in the exponential
family (6.20). The simple ordered alternative (monotone hypothesis) in the natural
parameter θ,

Hmon θ1 ≤ θ2 ≤ ≤ θa with at least one inequality strong,

can be rewritten in matrix form as

Hmon Daθ ≥ 0 (6.23)
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by the first-order differential matrix

Da =

−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 0 0 −1 1 a−1 × a

(6.24)

In this case we have an explicit form of the corner vectors as

DaDa
−1
Da =

1
a

− a−1 1 1 1

− a−2 − a−2 2 2

−1 −1 −1 a−1 a−1 × a

(6.25)

Usually, the first-order differential matrix Da is considered essential for defining the

monotone hypothesisHmon (6.23), but actually the rows of DaDa
−1
Da are the corner

vectors of the convex polyhedral cone defined by Hmon and more closely related to
Hmon in the sense that every vector belonging to Hmon can be expressed by a unique
and positive linear combination of these rows. Also, from equation (6.25) a close rela-
tionship between the monotone and step change-point hypotheses is suggested. That
is, every element of the step change-point hypothesis represents the corner vector of
the polyhedral cone defined by Hmon (6.23). Actually, every step change-point con-
trast is a particular monotone contrast and acts as the base of all the monotone con-
trasts. Finally, the key vector is explicitly given by

DaDa
−1
Da y =

Ya a −Y1

2 Ya a −Y2

a−1 Ya a −Ya−1

suggesting the accumulated statistics

Yk =
k
i= 1yi, k = 1,…,a−1 (6.26)

as the basic statistics, since the general mean Ya/a is the sufficient statistic correspond-
ing to a general mean θ under the null model. Then, max acc. t1 and the cumulative
chi-squared χ∗2 are developed based on the accumulated statistics in the following
sections.
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6.5.3 Monotone and step change-point hypotheses

(1) Maximal contrast method for testing and estimating the dose–response
pattern

(a) Max acc. t1. In a phase II clinical trial, as one of the typical situations, it is simul-
taneously requested to prove a drug as truly effective by showing a monotone
dose response and also to obtain information (estimates) on the recommended
dose for ordinary clinical treatments (ICH E9). Then, multiple comparisons of
the dose–response patterns of interest are preferable to an overall testing of the null
hypothesis or a fitting of a particular parametric model (such as logistic regression).
Actually, the most popular practice in a clinical trial is to select the best-fit model
approach among the candidate models. For this purpose the maximal accumulated t-
test (max acc. t1) for the monotone hypothesis is introduced in this section and
compared with other maximal contrast tests for estimating the dose–response pat-
tern. The simultaneous lower bounds obtained by the inversion of max acc. t1
are shown to be useful for this purpose, and to have some advantage in giving
the lower confidence bound of the efficacy difference between the estimated optimal
dose and the base level.
Suppose the yij, i= 1,…,a; j = 1,…,ni are distributed independently as N(μi, σ

2)
and σ2 is known. The density function is proportional to exp μi yi σ2 , so that
in this case y of the previous section is a vector of yi σ2, i= 1,…,a. We therefore

replace yi by yi σ2 to obtain Yk =
k
i= 1yi σ2, k = 1,…,a−1, in (6.26). Then, after

standardization we have

tk =
1
Nk

+
1
N∗
k

σ2
−1
2

Y∗
k −Yk , k = 1,…,a−1 (6.27)

as the basic statistics, where for convenience we newly define

Yk = y1 + + yk , Yk = Yk Nk, Nk = n1 + + nk,

Y∗
k = yk + 1 + + ya , Y

∗
k = Y

∗
k N∗

k , N
∗
k = nk + 1 + + na

The max acc. t1 defined by max t1,…, ta−1 is the maximal standardized statistic
of (6.27). Equation (6.27) is interpreted as the standardized difference between the
averaged responses up to k and from k+1 to the end, k = 1,…,a−1, and max acc.
t1 is the maximum of them.

(b) Max acc. t1 as an efficient score test of the step change-point hypothesis. The
kth component (6.27) of max acc. t1 is nothing but a standardized efficient score for
testing the kth step change-point hypothesis, which is defined as
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Mk

yij = μ+ eij, i= 1,…,k, j = 1,…, ni,

yij = μ+Δ+ eij, i= k + 1,…,a, j = 1, …, ni

Now, assuming the independent normal model, we have the log likelihood function
for the kth step change-point hypothesis as

logL= const −

k
i = 1

ni
j= 1 yij−μ

2
+ a

i = k + 1
ni
j= 1 yij−μ−Δ

2

2σ2

Then it is easy to verify that the efficient score with respect to Δ evaluated at the null
hypothesis is

∂logL
∂Δ

Δ= 0, μ= y =
1
Nk

+
1
N∗
k

σ2
−1

Y∗
k −Yk

Thus, max acc. t1 is appropriate also for testing the step change-point hypothesis
Mk, k = 1,…, a−1 with unknown k.

(c) Markov property. Since the component tk is essentially the cumulative sum of
independent variables yi up to k, the first-order Markov property is obtained for the
sequence of tk, which leads to a very elegant and efficient algorithm for probability
calculation. However, we need Lemma 6.5 for an exact proof of the Markov property,
since the tk are standardized by the sufficient statics under the null model. As a prep-
aration, we give Lemma 6.4 on the conditional distribution of a multivariate normal
distribution.

Lemma 6.4. Formula for the conditional distribution of a multivariate normal
distribution. Let z= z1, z2 be distributed as a multivariate normal distribution

N
μ1

μ2
,

A B

B D

−1

, where the mean vector μ and the covariance matrix Ω are

partitioned according to the partition of z. Then, the conditional distribution
f z1 z2 of z1 given z2 is normal, N μ1 +K z2−μ2 , A−1 , where K = −A−1B.

Proof. By the form of the density function of the multivariate normal distribution, it is
obvious that the conditional distribution is also normal. We therefore need only to
calculate the conditional mean and variance. We have a formula for the inverse of
a partitioned matrix:

Ω=
A−1 +A−1B D−B A−1B

−1
B A−1 −A−1B D−B A−1B

−1

− D−B A−1B
−1
B A−1 D−B A−1B

−1
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Then, for K = −A−1B, we have Cov z1 −Kz2,z2 = 0 and therefore z1 −Kz2 and z2 are
mutually independent. This implies

E z1 −Kz2 z2 =E z1 −Kz2 = μ1−Kμ2,

V z1 −Kz2 z2 =V z1 −Kz2 =A−1,

which completes the proof.

Lemma 6.5. Equivalence theorem of Markov property (Hirotsu et al., 1992).
If z= z1,…,za is distributed as a multivariate normal distribution with a non-singular
covariance matrix and with no two elements mutually independent, then the following
three statements are equivalent.

1. The Markov property

f z1,…,zl zl+ 1,…,zn = f z1,…,zl zl+ 1 , l< n

holds for the conditional densities of zi.

2. The inverse of the covariance matrix of z is a tri-diagonal matrix with no
i, i± 1 th element equal to zero.

3. The correlation matrix of z has the structure Cor zi, zj = γi γj, i ≤ j.

Proof
2. 1. Following the notation of Lemma 6.4, if Ω−1 is a tri-diagonal matrix then all
the elements of B are 0 except an element at the extreme left and lowest. Then, for any
partition the conditional distribution f z1 z2 depends only on the first element of z2
by virtue of Lemma 6.4.

1. 2. Let z1 = z1, z2 = z2,…, za , then A is a scalar and B is an a−1 -dimensional
row vector. For the conditional distribution f z1 z2 to be dependent only on z2
it is necessary and sufficient that the first element of B is non-zero and all other
elements are zero. Then obviously A−1Bz2 is a function of only z2. Next consider
the partition z1 = z1,z2 , z2 = z3, …, za and the corresponding partitioned covari-
ance matrix. Then A is a 2 × 2 matrix and B a 2 × a−2 matrix with first row 0. Then
we have

A−1Bz2 =
A12b2
A22b2

z2

where Aij is the (i, j)th element of A−1 and b2 is the second row of B. Since A22 is
non-zero, it is necessary and sufficient that the first element of b2 is non-zero and
all other elements are zero for A−1Bz2 to be a function of only z3. Continuing the same
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argument, it is proved that Ω−1 should be a tri-diagonal matrix with all i, i ± 1 ele-
ments non-zero.

2. 3. This proof is purely a problem of linear algebra. Define two matrices

L γ1,…, γn =

1 γ1 γ2 γ1 γ3 … γ1 γn

γ1 γ2 1 γ2 γ3 … γ2 γn

γ1 γ3 γ2 γ3 1 … γ3 γn

γ1 γn γ2 γn γ3 γn … 1

,

H d1,…, dn =

1 d1 0 0 0

d1 1 d2 0 0

0 d2 1 d3 0

0 0 d3 1 0

0 0 1 dn−2 0

0 0 dn−2 1 dn−1

0 0 0 dn−1 1

,

where L andH are non-singular matrices with γi 0, di 0 for all i. To show 2. 3. it
is sufficient to show that H−1 takes the form of L. Now, the co-factors of H are
expressed as

Hjj = H d1, …, dj−2 × H dj+ 1,…, dn−1

Hjk = −1 j+ k H d1,…, dj−2 × dj dk−1 × H dk + 1, …, dn−1 , k ≥ j+ 1,

where H d1, …, dk is the determinant ofH d1,…, dk . Since they are all non-zero,
by the assumption we have

Hij

Hjj
=
Hik

Hjk
= −1 i+ jdi dj−1

D d1,…, di−2
D d1,…, dj−2

, 1 ≤ i < j ≤ k ≤ n−1,

and this implies that H−1 is in the form of L.
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3. 2. Let L γ1,…, γk = det L γ1, …, γk . Then the co-factors of L are
expressed as

Ljj = L γ1,…, γj−1 ,γj+ 1 , ,γn ,

Ljj+ 1 = − L γ1,…,γj−1 × L γj+ 2 ,…,γn ×
γ2j − γ2j−1 γ2j+ 2− γ2j+ 1

γjγj+ 1 γ
2
j+ 2

,

Ljk = 0, k > j + 1,

and this implies that L−1 is a tri-diagonal matrix.

To show the Markov property of the components t = t1,…, ta−1 of max acc. t1 we
may show either 2. or 3. Then it is most easy to show that the variance–covariance
matrix of t is

V t =

1 λ1 λ2 λ1 λ3 … λ1 λa−1

λ1 λ2 1 λ2 λ3 … λ2 λa−1

λ1 λ3 λ2 λ3 1 … λ3 λa−1

λ1 λa−1 λ2 λa−1 λ3 λa−1 … 1

(6.28)

where λk =Nk N∗
k and it is exactly in the form 3. of Lemma 6.5.

(d) Algorithm for calculating p-value. For the algorithm in the normal distribution
we define the conditional joint probability of (t1,…, tk):
Fk tk , t0 σ =Pr t1 < t0,…, tk < t0 tk,σ , k = 1,…, a−1. Then we have

Fk + 1 tk + 1, t0 σ =Pr t1 < t0,…, tk < t0, tk + 1 < t0 tk + 1,σ

=
tk

Pr t1 < t0,…, tk < t0, tk + 1 < t0 tk, tk + 1,σ × fk tk tk + 1 dtk (6.29)

= tk

Fk tk, t0 σ × fk tk tk + 1 dtk if tk + 1 < t0

0, otherwise,

(6.30)

where fk tk tk + 1 is the conditional distribution of tk given tk + 1. This is easily obtained

as the normal density N λk λk + 1 tk + 1, λk + 1−λk λk + 1 under the null hypothesis

by virtue of Lemma 6.4. For the non-null distribution the expectations of tk and tk + 1
should be taken into consideration appropriately. Equation (6.29) is due to the law
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of total probability and (6.30) to the Markov property of the sequence tk,k = 1,…,a−1.
The p-value is obtained at the final step as

p = 1−Fa ta, t0 σ , (6.31)

where t0 is the observed maximum value. To run the formula (6.30) up to k = a,
we need to define ta = −∞ so that the inequality ta < t0 holds always, where the
conditional density fa−1 ta−1 ta is the unconditional density of the standard normal
distribution.
When σ is unknown and replaced by σ in formula (6.31), the expectation

with respect to σ σ is required to obtain the p-value. Its distribution is a constant
times the chi-distribution with df f of σ and there is no difficulty in executing the
calculation.

We denote the rejection region of max acc. t1 by

R max t1,…, ta−1 > Tα n, f ,

where Tα(n, f) is an upper α point of the null distribution of max acc. t1 with
n= n1, …, na and f the degrees of freedom of σ.

Generally, the multiple integrations are computationally very hard even for a
moderate a, but the recursion formula (6.30) converts the multiple integrations to
repetitions of the single integration and works very efficiently for any number of
levels. The FORTRAN program for p-value is given by Hirotsu et al. (1997). It
can also be used to calculate the percentiles. For the balanced case, Tα(n, f) is
obtained from tα(a, f) in Table A of the Appendix, where the tabulation is indexed
by a and f.

(e) Characterization of max acc. t1. The max acc. t1 is characterized by the
following.

1. It comes out directly from a complete class lemma for the test of the monotone
hypothesis Hmon (Hirotsu, 1982).

2. The components of max acc. t1 are essentially the projections of the observation
vector y= y1 ,…, ya onto the corner vectors of the convex polyhedral cone
defined by Hmon and consequently all the monotone contrasts can be expressed
byauniqueandpositive linear combinationof those components (HirotsuandMar-
umo, 2002). For this reason we may call σtk, k = 1,…,a−1 , the basic contrasts.

3. Accordingly, the simultaneous confidence intervals based on the basic contrasts
of max acc. t1 can be extended uniquely to all the monotone contrasts, whose
significance can therefore be evaluated (Hirotsu and Srivastava, 2000).

4. An exact and very efficient algorithm for calculating the distribution function is
available for any a due to the Markov property of the successive components of
max acc. t1.
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5. It has been shown on several occasions that max acc. t1 keeps high power
against a wide range of ordered alternative hypotheses Hmon compared with
other well-known tests such as χ2 of Bartholomew (1959a,b) and Williams
(1971) (see Hirotsu et al., 1992).

6. max acc. t1 is also an efficient score for testing the step change-point hypothesis
and therefore gives a unifying approach to the shape and change-point
hypotheses.

In spite of these attractive features, there have been several attempts to add some
monotone contrasts to the a−1 basic contrasts of max acc. t1, intending to detect
some response patterns more efficiently. However, if we add another monotone con-
trast to the basic contrasts, the uniqueness is lost and if we replace some of the basic
contrasts by other contrasts, then the positivity will be lost in 2. and 3. It is even
remarkable that adding a linear trend contrast to the basic contrasts cannot improve
the power at all for detecting the linear trend (see Section 6.5.3 (1) (h) and Hirotsu
et al. (2011) for more details). Also, by these changes of the basic contrasts the Mar-
kov property fails and the recursion formula of 4. for an efficient calculation is no
longer available.

(f) Simultaneous lower bounds (SLB) for the isotonic contrasts. Now, considering
the natural ordering, the monotone patterns of interest are given generally by

μ1 = = μi < μi+ 1 ≤ ≤ μj−1 < μj = = μa, (6.32)

whose size is defined by

μ i, j =
njμj + + naμa

N∗
j−1

−
n1μ1 + + niμi

Ni
, 1 ≤ i< j ≤ a, (6.33)

representing the difference between the highest and lowest dose levels under the
model (6.32). If the estimated response pattern is (6.32), the optimum level should
be j in considering that the lower level is safer with a good cost performance. We rep-
resent a strictly monotone pattern by a linear regression model

μ linear μk = β0 + β1k

In this case the difference between the highest and lowest dose levels corresponding to
(6.33) is given by

Δμ linear = a−1 β1

since β1 represents the difference between the subsequent dose levels. If this pat-
tern is suggested, then the optimum level should be a. It should be noted here
that every monotone contrast – including the linear regression type – can be
expressed by a unique and positive linear combination of the basic contrasts
μ k, k + 1 ,k = 1,…,a−1.
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Now, the simultaneous lower confidence bounds SLB k,k + 1 of the basic con-
trasts μ k, k + 1 can be obtained directly by the inversion of max acc. t1 as

SLB k,k + 1 = Y∗
k −Yk −σ

1
Nk

+
1
N∗
k

1 2

Tα n, N−a (6.34)

Then they are uniquely extended to the general monotone contrasts of interest, (6.33)
and Δμ(linear) by a positive linear combination such as

SLB i, j+ 1 =
Nj

N
SLB j, j+ 1 +

N∗
i

N
SLB i, i + 1 , i ≤ j, (6.35)

SLB linear = a−1
1
N

a−1
k = 1 N∗

k
k−1
i= 1 k− i ni +Nk

a
i= k + 1 i−k ni

−1

× a−1
k = 1

1
Nk

+
1
N∗
k

−1

SLB k,k + 1

(6.36)

The proof of formula (6.36) is a little complicated, but given in Hirotsu et al. (2011).
Further, by the monotone assumption in μ, the bound SLB(i, j) is improved as

μ i, j ≥maxi ≤ l <m ≤ j SLB l, m (6.37)

Again it should be stressed that it is only max acc. t1 that can give such a unique and
positive extension of the SLB of the basic contrasts to all the monotone contrasts.
Then, an interesting method is to choose a pattern which gives the highest lower con-
fidence bound among the monotone contrasts (6.34)~(6.37).

(g) Method for estimating the dose–response pattern based on max acc. t1. This
idea of estimating the dose–response pattern can be combined with the classical closed
test procedure, which is a decision-theoretic approach. We apply max acc. t1 down-
ward until it becomes non-significant for the first time. Suppose it stops after exactly k
rejections, which we call k-stopping. If k = 0, we accept the null hypothesis. The sug-
gested model with k-stopping is μ1 = = μa−k < μa−k + 1 ≤ ≤ μa. Then we proceed to
compare the lower confidence bounds SLB a−k,a−k + 1 ,…,SLB a−k,a , corre-
sponding to (6.33) with i = a−k and j= a−k + 1, …, a and choose the one which gives
the highest lower confidence bound. For a−1 -stopping we include SLB (linear) for
the candidate model μ (linear). This procedure indeed satisfies the requirements to
confirm the existence of the dose response by a significance test, giving simultane-
ously the optimal dose level and the lower confidence bound of the difference between
the optimal and base levels.

Example 6.6. Study of red cell counts after dosage of a medicine. The study was a
balanced one-way layout with rats at four dose levels (10, 100, 1000, 10,000 ppm)
with repetition number five (Furukawa and Tango, 1993). For the data, Furukawa
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and Tango proved a significant decrease in red cell counts by linear regression anal-
ysis. Since the approach by max acc. t1 has been given here as a right one-sided test,
we subtract the original data from 10 as given in Table 6.7, with box plot as shown
in Fig. 6.1.
The SLB for the basic change-point contrasts are obtained by (6.34)

as SLB 1, 2 = 0 177, SLB 2, 3 = 0 131, SLB 3, 4 = 0 002. They are extended to
SLB i, j+ 1 by (6.35) and SLB(linear) by (6.36), as shown in Table 6.8 (1). The
improved lower bounds from formula (6.37) are shown in Table 6.8 (2), where
the trace of improvements is shown by . These alterations suggest that the approach
of a rigid linear regression model might be inappropriate. Now, applying the
closed test downward by max acc. t1, we find it to be significant at all three

Table 6.7 Decrease in red cell counts (10 – original data).

Repetition

Dose 1 2 3 4 5

10 1.94 1.73 1.55 1.49 1.86
100 2.03 2.34 1.95 1.70 1.97
1000 2.34 2.29 2.12 1.95 2.20
10,000 2.00 2.11 2.21 2.09 2.60

1.0

1.5

2.0

R
ed
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el

l c
ou

nt

2.5

3.0

10 100 1000
ppm

10000

Figure 6.1 Decrease in red cell counts.
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steps (3-stopping), since they are 4.242, 3.519, and 2.118 against the critical values
of 2.222, 2.108, and 1.859 at one-sided α= 0 05, respectively. Therefore, we compare
SLB(1, 2), SLB(1, 3), SLB(1, 4), and SLB(linear) to find SLB 1, 3 = SLB 1, 4 =
0 198 as the largest, suggesting a pattern μ1 < μ2 < μ3 = μ4 as the best-fit model. This
coincides very well with a first-glance impression of the box plot in Fig. 6.1.

Example 6.7. Study of the half-life of NFLX after dosage (Hirotsu et al., 2011).
The study was originally a balanced one-way layout of five repetitions with rats,
comparing the half-life of antibiotic NFLX at five dose levels (5, 10, 25, 50, 200
mg/kg/day). The data of 25 and 200 (mg/kg/day) have been utilized in Example
5.1 to explain the two-sample problem. We noticed there that the largest data
point 2.14 of 25 (mg/kg/day) should be an outlier and it is excluded in
Table 6.9, thus giving an example of unbalanced data. The box plots are given
in Fig. 6.2.
The SLB for basic contrasts are obtained as SLB 1, 2 = 0 280, SLB 2, 3 =

0 375, SLB 3, 4 = 0 292, SLB 4, 5 = 0 372 and extended to other monotone con-
trasts SLB i, j+ 1 as shown in Table 6.10. In this case there is no alteration with
formula (6.37), since all the SLB i, j+ 1 satisfy the monotone relationship. Applying

Table 6.8 Simultaneous lower bounds SLB i, j+ 1 for p(i, j).

(1) Basic formula (6.34)

j+ 1

i 2 3 4

1 0.177 0.198 0.135
2 0.131 0.067
3 0.002

SLB linear = 0 159

(2) Improvement by formula (6.37)

j+ 1

i 2 3 4

1 0.177 0.198 0.198
2 0.131 0.131
3 0.002

SLB linear = 0 159
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max acc. t1 downward we stop after three rejections (3-stopping) to accept the hypoth-
esis H μ1 = μ2 < μ3 ≤ μ4 ≤ μ5 . Then, we proceed to compare the SLB(2, 3), SLB(2,
4), and SLB(2, 5) to find SLB 2, 5 = 0 514 as the largest. Therefore, we select the
model μ1 = μ2 < μ3 ≤ μ4 < μ5, which coincides very well again with the box plots in

Table 6.9 Half-life of NFLX (antibiotics).

Dosage (mg/kg/day) Half-life (hr)

5 1.17 1.12 1.07 0.98 1.04
10 1.00 1.21 1.24 1.14 1.34
25 1.55 1.63 1.49 1.53
50 1.21 1.63 1.37 1.50 1.81
200 1.78 1.93 1.80 2.07 1.70

0.5

1.0

1.5hr

2.0

2.5

5 10 25

mg/kg/day

50 200

Figure 6.2 NFLX half-life data.

Table 6.10 SLB i, j + 1 for the isotonic contrasts.

j + 1

i 2 3 4 5

1 0.280 0.378 0.393 0.517
2 0.375 0.389 0.514
3 0.292 0.417
4 0.372

SLB linear = 0 529
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Fig. 6.2. It should be noted that the response pattern can be specified so far without
assuming any parametric model.
A computer program for calculating the SLB as well as the p-value of max acc. t1 is

given on the author’s website.

(h) Power comparisons. The detailed power comparisons of max acc. t1 with other
monotone tests have been made on several occasions. In Table 6.11 we show the
result of comparisons by Hirotsu et al. (1992), where the linear trend test (linear
score), maximin linear test of Abelson and Tukey (1963) (A–T score), restricted
likelihood ratio test of Bartholomew (1959a) (LR), contrast test of Williams
(1971), modified Williams by Marcus (1976), and max acc. t1 are compared. The
underline shows the highest power among the competitors. Then max acc. t1, which
used to be called max t at that time, shows excellent behavior. Only in the bottom
case of very late start-up of the dose–response curve is the modified Williams
slightly better.
Hirotsu et al. (2011) compared max acc. t1 with other maximal contrast tests

including Dunnett’s test (1964), the dose–response method of Maurer et al.
(1995) and Hsu and Berger (1999), the maximal standardized subsequent differ-
ence of means by Liu et al. (2000), and the excellence of max acc. t1 was shown
again. Further, the effects of adding a linear trend contrast to the basic change-
point contrasts of max acc. t1 were investigated by introducing the max acc.
t1 + tl(linear trend contrast) method. Adding the linear trend contrast destroys
the beautiful Markov property of basic contrasts for the probability calculation,
so that a time-consuming calculation is made. The closed tests up- and downward
with α= 0 05 one-sided were employed for each of max acc. t1 and max acc. t1+tl,
followed by choosing the maximal standardized contrast method among the can-
didate models:

M1 μ1 = μ2 = μ3 < μ4,

M2 μ1 = μ2 < μ3 = μ4,

M3 μ1 < μ2 = μ3 = μ4,

M4 μ1 = μ2 < μ3 < μ4,

M5 μ1 < μ2 < μ3 = μ4,

M6 μ1 < μ2 < μ3 < μ4

(6.38)

The SLB method of the previous section cannot be applied to the max acc. t1+tl
method since it doesn’t have such a beautiful structure as described in
Section 6.5.3 (1) (e) 3. It should be noted that in this case the pattern
μ1 < μ2 = μ3 < μ4 is purposely excluded from the candidate models (6.38), since usu-
ally the sigmoid pattern is considered to be more reasonable. The contrasts corre-
sponding to the models of (6.38) are μ(3, 4) for M1, μ(2, 3) for M2, μ(1, 2) for M3,
μ(2, 4) for M4, μ(1, 3) for M5, and μ(1, 4) for M6, respectively. However, in producing
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Table 6.11 (1) Power comparisons by numerical integration.

μ1 μ2 μ3 μ4 max acc. t1 Linear
score

A–
T score

LR Williams Modified
Williams

14.0 11.7 11.8 13.7 13.5 13.0
41.7 41.1 41.1 41.7 41.6 41.3
66.9 66.9 66.9 66.9 66.9 66.9
9.4 5.7 5.8 8.9 8.7 7.9

32.2 25.0 25.1 31.5 31.1 29.3
61.1 52.6 52.7 60.4 60.0 58.6
7.9 3.6 3.8 7.3 7.2 6.3

28.4 16.8 17.6 27.1 26.9 24.8
58.3 42.1 43.7 57.0 56.8 54.6
12.3 8.0 8.0 11.8 11.7 10.9
40.9 36.6 36.3 40.6 40.5 39.9
66.9 66.1 65.9 66.8 66.8 66.8
15.8 14.8 13.7 15.0 13.2 14.0
41.4 40.6 40.3 43.0 37.7 41.7
73.5 68.3 68.3 71.8 65.9 73.0
16.8 16.5 17.2 16.7 15.8 17.8
43.0 38.1 40.2 42.5 37.6 44.5
74.3 64.3 67.3 73.5 65.0 73.4

Table 6.11 (2) Power comparisons by simulation.

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 max acc. t1 Linear
score

A–T
score

LR Williams Modified
Williams

15.0 14.6 13.5 15.0 12.9 13.3
42.5 40.6 40.3 42.8 37.8 42.1
72.8 68.4 68.4 73.1 66.0 72.5
10.7 7.4 6.1 10.2 8.0 7.6
36.9 32.9 29.1 36.7 29.1 31.7
69.9 64.2 60.3 69.9 58.9 65.5
7.5 2.7 2.3 6.6 5.0 4.5
31.8 18.5 15.1 30.5 21.3 22.3
68.4 54.0 47.2 67.8 52.5 59.1
15.2 14.4 13.2 15.1 12.9 13.4
42.7 40.6 40.3 43.0 37.8 42.2
72.5 68.2 68.2 72.7 65.7 72.3
15.1 14.6 14.4 15.3 12.6 13.8
42.2 35.2 39.4 42.8 36.5 44.0
73.9 60.0 66.4 74.3 64.6 75.5
14.5 13.4 14.3 15.0 12.6 14.3
40.9 30.5 38.0 41.8 36.1 44.9
73.7 52.5 64.9 74.1 64.2 76.9



the data for simulation, we actually represent strict inequality by a linear trend, since
we need to specify definitely the model creating the data. Therefore, model M6 is actu-
ally a linear trend and max acc. t1+tl is expected to behave better for M6. We show the
simulation result by 106 replications in Table 6.12. The correct choice of true model is
marked by . Suppose the true model isM1, for example, thenM4 andM6 are accept-
able as well, since they suggest the correct optimal level four. Therefore, we mark by

those models which are not correct but acceptable.
Now by Table 6.12 the two methods are similar on the whole and it is even remark-

able that adding a linear trend contrast to the basic change-point contrasts cannot con-
tribute at all to improving the probability of a correct decision when the true model is a
linear trend. The theoretical basis for this unexpected result is given in the original paper
by Hirotsu et al. (2011). Then, max acc. t1 should be preferred because of the properties
1.~6. in its characterization. Finally, regarding the up- or downward procedure, the latter
is generally recommended unless a rapid start of the dose–response curve like M3 is
expected by prior information, where the upward procedure behaves better.

(2) Cumulative chi-squared statistic for a trend test

(a) Cumulative chi-squared χ ∗2. As an overall directional test like χ2 of Bartholo-
mew (1959a,b), the cumulative chi-squared χ∗2 has been repeatedly shown to have
excellent power. χ∗2 is defined as the sum of squares of the a−1 standardized com-
ponents of max acc. t1 (6.27):

χ∗2 = a−1
k = 1t

2
k (6.39)

Table 6.12 Probability of selecting acceptable models by max acc. t1 and max
acc. t1 + tl

Downward Upward

True
pattern

Selection max
acc. t1

max acc.
t1+tl

max
acc. t1

max acc.
t1+tl

M1 M1 85.1 85.1 62.9 61.9
or (M1, M4,M6) 88.4 88.5 80.1 79.8

M2 M2 67.8 67.7 67.8 67.7
or (M2, M5) 71.2 71.1 72.0 72.0

M3 M3 63.3 63.1 86.0 86.0
or (M3) 63.3 63.1 86.0 86.0

M4 M4 9.2 9.4 27.0 27.0
or (M1, M4,M6) 78.4 78.7 57.0 56.8

M5 M5 27.9 27.9 9.7 9.9
or (M2, M5) 52.1 52.5 20.6 20.8

M6 M6 10.1 9.9 10.1 10.0
or (M1, M4,M6) 49.8 50.3 24.6 24.4
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Therefore, it has an ellipsoidal acceptance region compared with the polygon of max
acc. t1. A sketch of the rejection regions of these test statistics is given in Hirotsu
(1979b). The cumulative chi-squared doesn’t belong to the complete class of tests
for the simple ordered alternative in the strict sense, but is very robust. As a positive
quadratic form of the normal variables, the null and non-null distributions of χ∗2 are
well approximated by a constant times χ2 distribution dχ2f by adjusting the first two
cumulants. More definitely, under the null hypothesis the constants are obtained by
solving

κ1 =E χ∗2 = tr V t = a−1 = df ,

κ2 =V χ∗2 = 2tr V2 t = 2 a−1 + 2
λ1
λ2

+ +
λ1 + + λa−2

λa−1
= 2d2f ,

where V(t) and λk have been given in (6.28). The approximation can be further

improved by adjusting the third cumulant κ3 = 8tr V t 3. The improved upper per-
centile is given by

1 +Δ dχ2f α ,

Δ=
δ

3 f + 2 f + 4
χ2f α

2
−4

f

2
+ 2 χ2f α + 4

f

2
+ 1

f

2
+ 2 ,

δ=
κ1κ3
2κ22

−1 =
tr V t × tr V3 t

tr V2 t 2 −1

In contrast, the upper tail probability is approximated by

Pr χ∗2 ≥ x = Pr χ2f ≥ x d +
2f δ

3 f + 2 f + 4
gp + 12

x

2d
fp+ 1

x

2d
,

gp + 12 s = s2−2 p + 2 s+ p + 1 p+ 2 , p= f 2,

fp+ 1 s =
1

Γ p+ 1
spe−s,

(see Hirotsu, 1979a for details). When the variance σ2 is unknown and replaced by σ2,
the statistic F∗ = χ∗2

σ2 = σ2
df is approximately distributed as an F-distribution with

df (f, f2 ), where χ∗2
σ2 = σ2

implies that σ2 is replaced by σ2 in (6.39) and f2 is the df

of the unbiased variance estimator σ2. In this case the upper percentile is well approxi-
mated by

1 +Δ Ff , f2 α ,

Δ =
δ

3 f + 2 f + 4
f + 2 f + 4 −

2 f + f2 f + 4

1 + f2 f ×Ff , f2 α
+

f + f2 f + f2 + 2

1 + f2 f ×Ff , f2 α
2

(6.40)
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Similarly, the upper tail probability is approximated by

Pr F∗ ≥ z =Pr F f , f2 ≥ z +
δ

3 f + 2 f + 4 B
1
2
f ,
1
2
f2

1 +
fz

f2

−
f + f2
2 fz

f2

f

2

× f + 2 f + 4 −
2 f + f2 f + 4
1 + f2 fz

+
f + f2 f + f2 + 2

1 + f2 fz 2

The accuracy of the approximation (6.40) is practically sufficient, as shown in
Table 6.13.

(b) Characterization of χ ∗2. The cumulative chi-squared χ∗2 is most well character-
ized as a directional goodness-of-fit test of the assumed model. Assuming a balanced
one-way layout with repetition number m and known σ2, the cumulative chi-squared
can be expressed as

χ∗2 = m σ2 P∗
a y i

2, (6.41)

where y i = y1 ,…,ya is a column vector of the averages and

P∗
a =D DaDa

−1
Da

with D a diagonal matrix for standardization so that the squared norm of each
row vector of P∗

a is unity. P∗
a P

∗
a coincides with V(t) of (6.28) with ni ≡m (balanced

case). Now, the χ∗2 can be expanded in the series of independent chi-squared vari-
ables as

χ∗2 = m σ2 a−1
i= 1

a

i i + 1 pia
2 pia y i

2
,

where pia is the ith eigenvector of P∗
a P

∗
a corresponding to the eigenvalue a i i+ 1 .

It is an a-dimensional column vector composed of

pi,a−1 x = i
k = 0 −1 k i

k

i+ k

k

x

k

a−1

k
, x = 0,…, a−1,

Table 6.13 Accuracy of approximation (6.40) at upper five percentile.

n Exact First approx. Δ= 0 Second approx. (6.40)

2 9.66 9.73 9.69
3 5.33 5.39 5.34
5 4.09 4.14 4.08
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and represents Chebyshev’s orthogonal polynomials of order i for a points. This
means that the cumulative chi-squared is expanded in the form

χ∗2 =
a

1 × 2
χ21 +

a

2 × 3
χ22 + +

a

a−1 × a
χ2a−1 , (6.42)

where χ21 , χ
2
2 ,… are linear, quadratic, and so on chi-squared components each with

df 1 and mutually independent, see Hirotsu (1986) for details. This suggests that the
cumulative chi-squared is not only testing the monotone alternative but also an appro-
priate goodness-of-fit test statistic for a hypothesized model against a systematic
departure, mainly but not exclusively linear. It is interesting that the statistic (6.42)
has a quadratic component with weight one-third of the linear component, and the
coefficients are rapidly decreasing. As a byproduct, it is found that the asymptotic
value of f in the chi-squared approximation χ∗2 dχ2f is

lim
a ∞

f = π2 3−3
−1 ≑ 3 45

This should be contrasted with df 1 of the t-test for a linear trend and the infinite
degrees of freedom of the F-test. The t-test corresponds to weight one for the first
component and zero for all others, and the F-test to equal weights of unity for all com-
ponents in the expansion (6.42). Thus, the cumulative chi-squared is known to be a
nicely restricted statistic for the monotone hypothesis, whereas the F-test is omnibus
and the t-test is too restricted. Finally, it should be stressed that χ∗2 is much easier to
handle and interpret compared with χ2.

6.5.4 Convexity and slope change-point hypotheses

(1) General theory. The idea of Section 6.5.3 is further extended to the convexity
hypothesis, which is also an essential shape constraint as the monotone hypothesis
in the non-parametric dose–response analysis. Assume a one-way layout with repe-
tition number ni and consider the convexity hypothesis

Hcon μi−2μi+ 1 + μi+ 2 ≥ 0, i= 1, … ,a−2 with at least one inequality strong

This hypothesis can be rewritten in matrix form as

Hcon Laμ ≥ 0 (6.43)

by a second-order differential matrix

La =

1 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

0 0 0 0 0 1 2 1

(6.44)
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instead of the first-order differential matrix Da (6.24) in the previous section, where μ
is a column vector of μi’s. The null model Laμ= 0 is obviously equivalent to a linear
regression model H0 μi = β0 + β1i, i= 1,… ,a, and the sufficient statistics under the
null model are

Ya = y1 + + ya andTa = y1 + 2y2 + + aya (6.45)

In this case an explicit form of the key vector t= LaLa
−1
Lay i is also obtained,

where y i is a column vector of yi but its expression looks very complicated. How-

ever, it can be shown that the rows of LaLa
−1
Lay i represent the slope change-point

contrasts and are essentially doubly accumulated statistics as follows. First, it is inter-
esting to note that every μ satisfying (6.43) can be expressed as

μ= ΠB +ΠLa μ =B β0,β1 +La LaLa
−1
h, h ≥ 0, (6.46)

where β0 and β1 are arbitrary regression coefficients with B=
1 1 1 1

1 2 3 a
. In

equation (6.46), ΠB =B B B −1B and ΠLa =La LaLa
−1
La are projection matrices

with order 2 and a−2, and orthogonal to each other so that ΠB +ΠLa is an identity
matrix of order a. Then it can be shown that

La LaLa
−1

= b1,b2,… ,ba−2 ,

bk = I−ΠB 00 01 2 a−k−1 , k = 1,… ,a−2,

since we obviously have La 0 0 01 2 a−k−1 = 0 010 0 with unity as its
kth element. Then it is easy to show that B β0, β1 + bkΔk is one expression of the
slope change-point model at time point k + 1:

μ2−μ1 = = μk + 1−μk = βk;μk + 2−μk + 1 = = μa−μa−1 = βk +Δk

Therefore, the kth column of La LaLa
−1

in (6.46) represents a slope change-point
model at time point k + 1, k = 1,… ,a−2, and orthogonal to the linear regression part

B(β0, β1) . Thus, the rows of the key vector t= LaLa
−1
Lay i represent the slope

change-point contrasts, in contrast to the step change-point contrasts of the previous
section. As an example, we give the case of a = 5 below, where bold type denotes the
slope change-point:

L5 L5L5
−1

=
1
10

4 4 2

−4 −1 0

−2 −6 −2

0 −1 −4

2 4 4 5× 3
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Since the components of the key vector are linear functions of y i , we can develop a
similar probability theory to the previous section, noting the second-order Markov
property of the subsequent components in this case. However, this form is not very
convenient for dealing with discrete models, since the linear functions can be negative
and also take non-integer values. Therefore, a more convenient basic variable is
searched for in the following. We obviously have

y i = ΠLa +ΠB y i =Lat+ΠBy i

Since ΠBy i is a function of the sufficient statistics (6.45), we can base our test on s

satisfying y i =Las, s = S1,… ,Sa−2 instead of t discardingΠBy i , where we ignore
the last two rows of the equality. The difference between s and t is only a function of
the sufficient statistics (6.45). By accumulating both sides of the equation y i =Las,
we have

Yk = y1 + … + yk = Sk −Sk−1, k = 1, … , a−2,

where S0 is defined to be 0. Therefore we have

Sk =
k
i= 1Yi = ky1 + k−1 y2 +… + yk , k = 1,… , a−2, (6.47)

and call them the doubly accumulated statistics. This suggests that the method is a
natural extension of max acc. t1, which is based on the singly accumulated statistics.
This idea also makes it possible to develop a distribution theory for discrete models
beyond the normal model in later sections (see also Hirotsu, 2013; Hirotsu et al.,
2016). Now, going back to the normal model, we apply the Corollary to Lemma
6.1 to y i N μ, Ω for testing Hcon (6.43), where y i = y1 ,…, ya and

Ω= diag σ2 ni . Then, our basic standardized statistics s∗k = s∗1,… ,s∗a−2 become
explicit in the form

s∗k = diag m−1 2
k LaΩLa

−1
La y i , k = 1,…, a−2,

where
mk = bkΩ

−1 Ω−B B Ω−1B
−1
B Ω−1bk

is the kth diagonal element of the variance of LaΩLa
−1
Lay i , namely LaΩLa

−1
,

which is also the conditional variance of LaLa
−1
LaΩ

−1y i = LaLa
−1
Lay i σ2.

Thus, s∗k is the standardized version of Sk with mean 0 and variance 1 under the null
model Laμ= 0, which corresponds to tk of (6.27) in Section 6.5.3 (1). Then, two prom-
ising statistics are again the maximal contrast statistic max s∗k and the cumulative chi-
squared χ†2 defined in (5) of this section. We call the former max acc. t2 in contrast to
max acc. t1, which is based on singly accumulated statistics Yk. It is naturally expected
to inheritmanyof the goodproperties ofmax acc. t1,whichhave beenproved in various
situations.
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(2) Max acc. t2 for testing the convexity hypothesis. The doubly accumulated sta-
tistics of independent variables obviously possess the second-order Markov property.
After conditioning by the sufficient statistics, the component statistics s∗k still have that
property. Now, the covariance matrix of s∗k is

diag m−1 2
k LaΩLa

−1
diag m−1 2

k (6.48)

From the form of equation (6.44) and since Ω is a diagonal matrix, it is obvious that
the covariance matrix is an inverse of a penta-diagonal matrix. Then, by similar argu-
ments to Lemma 6.5 that connect the tri-diagonal of an inverse of a covariance matrix
to the first-order Markov property, the second-order Markov property of the sequence
of s∗1,… ,s∗a−2 follows immediately. Then we can give an exact and efficient recursion
formula for calculating the distribution function of max s∗k just as for max acc. t1 in
Section 6.5.3 (1) (d). Define the conditional probability

Fk + 1 s∗k ,s
∗
k + 1, s0 σ = Pr s∗1 < s0,…,s∗k < s0,s

∗
k + 1 < s0 s

∗
k ,s

∗
k + 1, σ ,

where s∗a−1 and s∗a are defined to be −∞ , although their conditional variances are
zero, so that the inequalities related to them hold always. Then we have a recursion
formula

Fk + 2 s∗k + 1,s
∗
k + 2, s0 σ = Pr s∗1 < s0,…,s∗k + 1 < s0,s

∗
k + 2 < s0 s

∗
k + 1,s

∗
k + 2, σ =

s∗k

Pr s∗1 < s0,…,s∗k < s0,s
∗
k + 1 < s0,s

∗
k + 2 < s0 s

∗
k ,s

∗
k + 1,s

∗
k + 2, σ × fk s∗k s

∗
k + 1,s

∗
k + 2 ds∗k

(6.49)

= s∗k

Fk + 1 s∗k ,s
∗
k + 1, s0 σ × fk s∗k s

∗
k + 1,s

∗
k + 2 ds∗k , if s

∗
k + 2 < s0

0, otherwise

(6.50)

Equation (6.49) is due to the law of total probability, and equation (6.50) is due to the
second-order Markov property. The conditional distribution fk s∗k s

∗
k + 1,s

∗
k + 2 is easily

obtained from the correlation structure (6.48) by applying Lemma 6.4. However, the
last two steps of the recursion formula need some caution, since s∗k is defined for
1 ≤ k ≤ a−2, and s∗a−1 and s

∗
a are the constants. We can deal with this simply by extend-

ing the correlation {τij} among s∗k ’s up to 1 ≤ i, j ≤ a by defining τij = 0 if i and/or j is
equal to a−1 or a. By this definition, fa−2 s∗a−2 s

∗
a−1,s

∗
a is nothing but an uncondi-

tional distribution of s∗a−2, for example. Thus we can have

p = 1−Fa s∗a−1, s
∗
a, s0 σ

for max s∗k at the final step.
In the case of unknown σ, we need to replace it by the usual estimate σ and take

expectations with respect to σ. This is equivalent to replacing s0 by χ2ν νs0 in
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(6.50) and taking expectations with respect to χν, where χν is a chi-variable with df ν.
Refer to Hirotsu and Marumo (2002) for more details.

(3) Max acc. t2 as an efficient score test of the slope change-point model. The kth
component of max acc. t2 is nothing but the efficient score for testing the slope
change-point model at i= k + 1, which is defined as

Mk

μi = β0 + β1i, i= 1,…,k + 1,

μi = β
∗
0 + β

∗
1i, i= k + 2,…, a,

where β0 + β1 k + 1 = β∗0 + β
∗
1 k + 1 . Define Δ= β∗1−β1, then the model Mk can be

rewritten as

μi = β
∗
0 +Δ k + 1 + β∗1−Δ i, i= 1,…,k + 1,

μi = β
∗
0 + β

∗
1i, i= k + 2, …, a

Assuming the independent normal model, we have a log likelihood function

logL = const −
1
2σ2

k + 1
i= 1

ni
j = 1 yij−β

∗
0−Δ k + 1 − β∗1−Δ i

2
+ a

i= k + 2
ni
j= 1 yij−β

∗
0−β

∗
1i

2

Then it is easy to verify that the efficient score with respect to Δ evaluated at the null
hypothesis is

∂logL
∂Δ

Δ= 0 =
1
σ2

k + 1
i= 1

1ni
j= 1 yij−β

∗
0−β

∗
1i k + 1− i (6.51)

The essential part of (6.51) is nothing but

Sk =
k + 1
i= 1 k + 1− i yi = ky1 + k−1 y2 + + yk

of (6.47). Therefore, max acc. t2 is appropriate also for testing the slope change-point
hypothesis Mk at unknown k, k = 1, …,a−2.

(4) Power comparisons withmaximin linear and polynomial tests. Max acc. t1 for
the monotone hypothesis has been verified to keep high power for the wide range of
simple ordered alternatives. However, it has been pointed out that these maximal con-
trast type tests will not be so useful if the maximal angle of the polyhedral cone repre-
senting the restricted alternative is large. In particular, an Abelson and Tukey (1963)
type maximin linear test is said to be useful only for the limited case in Robertson et al.
(1988, Sec. 4.2~4.4), although it is recommended in the book of BANOVA by Miller
(1998) to escape from the complicated restricted maximum likelihood approach.
Now, it is a matter of simple algebra to show that the cosines of the maximum angle
are 1 a−1 and 2 a−1 for the monotone and concavity hypotheses, respectively.
This suggests that the max acc. t2 introduced in this section is even more appropriate
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as a directional test than max acc. t1 for the monotone hypothesis. It suggests, how-
ever, that the maximin linear test might also do as well for the convexity or concavity
hypothesis. Therefore, for a = 6 and 8 of the balanced case, the maximin linear tests are
searched for in Hirotsu and Marumo (2002) on the corners, edges, and faces of the
polyhedral cone according to Abelson and Tukey (1963) to obtain the coefficients
for the concavity test

a = 6 −0 5773, 0 2829, 0 2944, 0 2944, 0 2829, −0 5773,

a = 8 −0 6108, 0 1673, 0 2036, 0 2399, 0 2399, 0 2036, 0 1673, −0 6108

For comparison, we add a simple linear test with coefficients of quadratic pattern
a= 6 −5, 1, 4, 4, 1, −5,

a= 8 −7, −1, 3, 5, 5, 3, −1, −7,

which we call a polynomial test according to Hirotsu and Marumo (2002).

In Table 6.14 the powers are compared in the directions of the corner vectors and

also in a quadratic pattern, where the non-centrality parameter m μi−μ
2 σ2 is

fixed at 6 so that the powers are around 0.70. It should be noted that the polynomial
test is the most powerful test against the quadratic pattern alternative, giving the
upper bound for all available tests. Max acc. t2 is seen to keep relatively high power
in the wide range of the concavity hypothesis compared with linear tests. The

Table 6.14 Power comparisons of max acc. t2, maximin, and polynomial
linear tests.

Alternative hypothesis (μ) Max
acc. t2

Maximin
linear

Polynomial
test

−10 8 5 2 −1 −4 0.698 0.657 0.615
−20 2 24 11 −2 −15 0.721 0.657 0.747

a = 6 −15 −2 11 24 2 −20 0.721 0.657 0.747
−4 −1 2 5 8 −10 0.698 0.657 0.615

Quadratic pattern 0.747 0.751 0.790

−7 4 3 2 1 0 −1 −2 0.674 0.623 0.535
−70 −5 60 41 22 3 −16 −35 0.702 0.626 0.696
−35 −10 15 40 23 6 −11 −28 0.710 0.623 0.755

a = 8 −28 −11 6 23 40 15 −10 −35 0.710 0.623 0.755
−35 −16 3 22 41 60 −5 −70 0.702 0.626 0.696
−2 −1 0 1 2 3 4 −7 0.674 0.623 0.535

Quadratic pattern 0.737 0.726 0.790
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polynomial test looks very good when the change-point is located in the middle but
not when it is at the end, so it cannot be recommended generally. Another advantage
of max acc. t2 is that it can suggest a change- point. The maximin linear test looks
generally no good.

(5) Cumulative chi-squared χ †2 for a goodness-of-fit test. According to a complete
class lemma by Hirotsu (1982), again an appropriate statistic for testing the two-sided
version of Hcon is

χ†2 =m P†
a y i

2,

P†
a =D LaLa

−1
La,

where we assume equal repetition number m and D= diag ξ1 2
k δk is for standar-

dization with ξk −1 = 2 k−1 a−k−2 3 a−1 and δk = − 6a a2−1

k k + 1 a−k a−k−1 a−1 2k + 1 −2 k2−1 1 2, k = 1, …, a−2. The statistic
χ†2 is based on the doubly accumulated statistics (6.47), suggesting that it is a
natural extension of χ∗2 (6.41). It can be expanded just like equation (6.42) for χ∗2

in the form

χ†2 =
2a a+ 1

1 × 2 × 3 × 4
χ22 +

2a a+ 1
2 × 3 × 4 × 5

χ23 + +
2a a+ 1

a−2 a−1 a a+ 1
χ2a−1 σ2

(6.52)

The asymptotic value of f, the degrees of freedom of the approximated chi-squared
distribution at a = ∞ , is 1.70 suggesting that χ†2 is a more strongly directed statistic
than χ∗2. Therefore, it is naturally expected to inherit the excellent properties of χ∗2 as
a directional test. Interesting applications of max acc. t2 and cumulative chi-squared
χ†2 are given in the examples of Sections 7.3.2, 7.3.3, and 13.2.

6.5.5 Sigmoid and inflection point hypotheses

(1) General theory. The idea of previous sections is further extended to the sigmoid
hypothesis, which is also an essential shape constraint in the non-parametric dose–
response analysis. The sigmoid hypothesis is defined by

Hsig μ3−2μ2 + μ1 ≥ ≥ μa−2μa−1 + μa−2, with at least one inequality strong,

(6.53)

extending the convexity hypothesis of previous sections. The null hypothesis is
defined by all the equalities in (6.53), which is equivalent to H0 β0 + β1i+ β2i

2.
The sufficient statistics under the null model are a

i= 1yi ,
a
i= 1 iyi , a

i= 1 i2yi .
Equation (6.53) can be expressed in matrix form as Qaμ ≥ 0, just like equation
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(6.43) for the convexity hypothesis Hcon. Qa is a third-order differential matrix and its
explicit form and relationship with the inflection-point model are given by Hirotsu and
Marumo (2002). Then, by similar arguments to the previous section, triply accumu-
lated statistics are derived as the basic variables. They are expressed in terms of doubly
accumulated statistics as

Wk =
k
i= 1Si, k = 1,…, a−3 (6.54)

Then, a set of sufficient statistics can be expressed as Ya, Sa−1, andWa−2. Letw∗
k be the

standardized version of Wk, by the mean and variance under the null model: Qaμ = 0.
Two promising statistics are again the maximal contrast statistic max w∗

k and the

cumulative chi-squared χ#2 = a−2
k = 1w

∗2
k . We call the former max acc. t3, in contrast

to max acc. t1 and t2, which are based on singly and doubly accumulated statistics
Yk and Sk, respectively.

(2) Max acc. t3 for testing the sigmoid hypothesis. The triply accumulated statistics
w∗
k possess the third-order Markov property under the conditional distribution given

the sufficient statistics. Then we can give an exact and efficient recursion formula for
probability calculation of max w∗

k , just as for max acc. t1 and max acc. t2 in previous
sections. Define the conditional probability

Fk + 2 w∗
k ,w

∗
k + 1,w

∗
k + 2, w0 σ =Pr w∗

1 <w0,…,w∗
k + 1 <w0,w

∗
k + 2 <w0 w

∗
k ,w

∗
k + 1,w

∗
k + 2, σ

Then we have a recursion formula

Fk + 3 w∗
k + 1,w

∗
k + 2,w

∗
k + 3, w0 σ = Pr w∗

1 <w0,…,w∗
k + 2 <w0,w∗

k + 3 <w0 w∗
k + 1,w

∗
k + 2,w

∗
k + 3, σ =

w∗
k

Pr w∗
1 <w0,…,w∗

k + 2 <w0,w
∗
k + 3 <w0 w

∗
k , w

∗
k + 1,w

∗
k + 2,w

∗
k + 3, σ × fk w∗

k w
∗
k + 1,w

∗
k + 2,w

∗
k + 3 dw∗

k

(6.55)

= w∗
k

Fk + 2 w∗
k ,w

∗
k + 1,w

∗
k + 2, w0 σ × fk w∗

k w
∗
k + 1,w

∗
k + 2,w

∗
k + 3 dw∗

k , if w
∗
k + 3 <w0,

0, otherwise

(6.56)

Equation (6.55) is due to the law of total probability, and equation (6.56) is due to
the third-order Markov property of w∗

k , k = 1,…, a−3. The p-value is obtained as

p = 1−Fa w∗
a−2,w

∗
a−1,w

∗
a, w0 σ ,

where the triplet (w∗
a−2,w

∗
a−1,w

∗
a) is defined appropriately so as to satisfy the inequal-

ity, always making the distribution fa−3 actually unconditional. In the case of
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unknown σ, an expectation with respect to σ is required just as in previous sections.
One should refer to the original paper of Hirotsu and Marumo (2002) for more
detailed calculations.

(3) Power comparisons with maximin linear and polynomial tests. Now it is a
matter of simple algebra to show that the cosine of the maximum angle is 3 a−1
for the sigmoid hypothesis, which is even larger than those of the monotone and
convexity hypotheses. This suggests that max acc. t3 is even more appropriate than
max acc. t2 as a directional test. It suggests again, however, that the maximin linear
test might also do as well and need to be compared. The coefficients of the maximin
linear test for the sigmoid hypothesis for a = 6 and 8 of the balanced case are as
follows:

a = 6 2, −3, −1, 1, 3, −2,

a = 8 5, −5, −3, −1, 1, 3, 5, −5

A polynomial test with coefficients of cubic pattern is given by

a = 6 5, −7, −4, 4, 7, −5

a = 8 7, −5, −7, −3, 3, 7, 5, −7

In Table 6.15 the powers are compared in the directions of the corner vectors and

also in a cubic pattern, where the non-centrality parameter m μi−μ
2 σ2 is fixed

again at 6 so that the powers are around 0.70. It should be noted that the polynomial
test is the most powerful test against the cubic pattern alternative, and its power gives

Table 6.15 Power comparisons of max acc. t3, maximin, and polynomial
linear tests.

Alternative hypothesis (μ) Max
acc. t3

Maximin
linear

Polynomial
test

a = 6
3 −3 −4 0 9 −5 0.730 0.707 0.697

15 −19 −18 18 19 −15 0.748 0.737 0.774
5 −9 0 4 3 −3 0.730 0.707 0.697

Cubic pattern 0.763 0.780 0.790

a = 8

7 −9 −3 1 3 3 1 −3 0.705 0.665 0.621
21 −17 −24 0 13 15 6 −14 0.730 0.689 0.745
7 −4 −8 −5 5 8 4 −7 0.735 0.690 0.776

14 −6 −15 −13 0 24 17 −21 0.730 0.689 0.745
3 −1 −3 −3 −1 3 9 −7 0.705 0.665 0.621

Cubic pattern 0.751 0.748 0.790
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the upper bound for all available tests. Max acc. t3 is seen to keep relatively high
power in the wide range of the sigmoid hypothesis compared with linear tests. The
polynomial test looks very good when the change-point is located in the middle
but not when it is at the end, so it cannot be recommended generally. The maximin
linear test looks generally no good again.

(4) Cumulative chi-squared statistic χ # 2 for a goodness-of-fit test. According to a
complete class lemma by Hirotsu (1982), again the appropriate statistic for testing the
two-sided version of Hsig (6.53) is

χ#2 =m D QaQa
−1
Qay i

2,

where we assume equal repetition number m and D is a matrix for a standardization
producingw∗

k . The statistic χ
#2 is based on the triply accumulated statistics (6.54), sug-

gesting that it is a natural extension of χ∗2 and χ†2.

6.5.6 Discussion

Since Page (1954, 1961), cumulative sum statistics based approaches have been
widely developed in the statistical process control; see also Montgomery (2012)
for an explanatory example and related topics. More recently, these have also been
extended to the field of environmental statistics (for example, by Manly and Mack-
enzie, 2003). However, as stated in the review paper of Amiri and Allahyari (2012),
most papers assume step, linear trend, and monotonic changes, and it seems that the
slope change-point and inflection point models are not popular in these fields. The
convex and sigmoid restrictions of this chapter are closely related to the slope
change-point and inflection point models, for which the doubly and triply accumu-
lated statistics are newly developed in this book. The basic statistics are so simple that
they can be extended to discrete models almost as they are. These include the binomial
and Poisson distributions of Chapters 7 and 8, respectively, and interesting applica-
tions beyond the statistical process control are given there. They are extended further
to two-way interaction problems in Chapters 10, 11, and 13.
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7

One-Way Layout, Binomial
Populations

7.1 Introduction

The data of binomial, or more generally multinomial, distributions from a one-way
layout are presented as the two-way data of treatment × categorical response, as seen
in Tables 3.6 and 11.8 for example. In those tables we assume a multinomial distri-
bution M ni, pi , pi = pi1,…,pib , pi = 1 for the ith row, i= 1,…, a, where a= b = 2
in Table 3.6. Then, the null hypothesis of homogeneity of treatment effects is
expressed as

H0 p1 = = pa (7.1)

In contrast, in Example 3.5 we have introduced the test of independence hypothesis

H0 pij = pi × p j, i= 1, …, a, j= 1,…, b (7.2)

assuming an overall multinomial distribution with p = 1.We first show that these two
formulations are mathematically equivalent.
Equation (7.2) is equivalent to

pij pi = p j, i = 1,…, a, j= 1,…, b

or

pi1 pi ,…,pib pi are the same for all i= 1,…, a (7.3)
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However, equation (7.3) is equivalent to equation (7.1), where the pij are standar-
dized to satisfy pi = 1. Equation (7.3) implies the response profiles of a rows are the
same, which is the same as declaring no treatment effect. Thus, the null hypothesis of
homogeneity of treatment effects is equivalent to the independence hypothesis in a
two-way contingency table. Therefore, the likelihood ratio test and the goodness-
of-fit chi-squared test derived in Example 3.5 are also useful for the overall homoge-
neity test of treatment effects. It should be noted that these tests are asymptotically
equivalent to conditional tests given all the row and column marginal totals, so that
the difference in sampling schemes is totally irrelevant. We have already seen in
Example 5.13 that the goodness-of-fit chi-squared test is exactly the same with the
test of equality of two binomial probabilities by normal approximation in the
case a = b= 2.
Also, it should be noted that the null hypothesis of independence (7.2) can be

rewritten as

log pij = log pi + log p j

This is equivalent to the null hypothesis of no interaction in the log linear model

log pij = μ+ αi + βj + αβ ij

Therefore, testing the homogeneity of treatment effects is nothing but testing the inter-
action effects as mentioned in Section 1.7. Thus, the topics of this chapter will be more
generally dealt with as an analysis of two-way categorical data. In the meantime, how-
ever, the simplest case of the binomial distribution can also be analyzed as one-way
data. Therefore, we discuss in this chapter only the multiple comparisons and direc-
tional tests of binomial distributions.

7.2 Multiple Comparisons

The multiple comparisons of binomial distributions by the normal approximation are
straightforward. We assume a binomial distribution B(ni, pi) for the ith observation yi.
Then, the average yi in Section 6.4.2 is yi/ni here and the basic statistic for paired
comparisons is yi ni− yj nj. We use

p 1−p = i yi ini 1− i yi ini (7.4)

as a variance estimator under the null hypothesis of homogeneity of pi, which corre-
sponds to σ2 (6.6). Then, the procedures 6.4.2 (1) ~ (3) can be applied as they are by
replacing σ2 with (7.4).
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7.3 Directional Tests

7.3.1 Monotone and step change-point hypotheses

(1) Max acc. t1 in phase II clinical trial for dose finding

(a) Max acc. t1 in the binomial case. We give the result of a typical phase II clinical
trial for dose finding in Table 7.1, where the last three columns are for calculation of
the test statistic.

For the data, the most well-known approach will be that of the Cochran (1955)
and Armitage (1955) test. However, it assumes a linear trend as a principal dose–
response and cannot reserve high power against the wide range of the monotone
hypothesis, in particular against very early or late start-up. Further, it cannot sug-
gest an optimal dose even if it could detect a significant departure from the null
hypothesis. Then, the most appropriate approach to prove the effective dose–
response suggesting simultaneously an optimal dose level will again be max
acc. t1. We assume a binomial distribution B(ni, pi) for the observed number of
‘yes’ (yi) and apply Lemma 6.2 for the monotone hypothesis Hmon (6.23) in the
natural parameter θi = logit pi = log pi 1−pi . It should be noted that a monotone
hypothesis is unchanged by this transformation from an expectation parameter pi
to a natural parameter θi. We have already shown that the key vector in
this case is formed by the accumulated statistics in Example 6.5. Then, the standar-
dized accumulated statistics corresponding to (6.27) of normal case is

tk Yk = tk =
Na−Nk

NaNk
pq

−1 2

p−
Yk
Nk

, k = 1,…, a−1, (7.5)

Table 7.1 Improvement rate of a drug for heart disease.

Improved

Dosage (mg) No Yes Total Nk Yk tk(Yk)

100 16 20 36 36 20
150 18 23 41 77 43 1.319
200 9 27 36 113 70 2.276
225 9 26 35 148 96 1.161
300 5 9 14 162 105 −0.043

Total 57 105 162
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where Yk = y1 +…+ yk,Nk = n1 +…+ nk, p = Ya Na, q= 1−p. It should be noted that
Ya is the sufficient statistic under the null model θ1 = = θa, and the conditional null
distribution of Yk given Ya is a hypergeometric distribution

H Yk│Ya,Nk,Na
Ya
Yk

Na−Ya
Nk −Yk

Na

Nk
(7.6)

with parameters (Ya,Nk,Na). The exact variance of Yk is Nk Na−Nk Na−1 pq
and therefore the variance employed for standardization in (7.5) is Na−1 Na times
an under-estimate, but its effect should be practically negligible.

(b) Markov property. In this case the Markov property of the sequence t1,…, ta−1 is
shown by the form of the joint conditional distribution of Y1,…,Ya−1 given Ya instead
of the covariance structure in the normal case. Now it is well known that the joint null
distribution of yk is factorized in the form

Πa
1

nk
yk

p yk 1−p nk −yk =Πa−1
1 H Yk│Yk + 1, Nk,Nk + 1

×
Na

Ya
pYa 1−p Na −Ya ,

(7.7)

where H Yk│Yk + 1, Nk,Nk + 1 is the probability function of the hypergeometric
distribution (7.6) and the last part is the probability function of the binomial distribu-
tion B(Na, p) for Ya. Then, the conditional joint distribution of Y1,…,Ya−1 given Ya is
given by the first part of (7.7), which is the products of the hypergeometric distribu-
tions. The Markov property of Yk follows immediately from Lemma 7.1, which is an
extension of Lemma 6.5 for the normal distribution to the general non-normal
distribution.

Lemma 7.1. Let f (z1,…, zn) be the density of (z1,…, zn) with respect to the dominat-
ing measure μ1 × × μn. Then the Markov property

f z1,…,zl│zl+ 1,…,zn = f z1,…,zl│zl+ 1 , l< n (7.8)

holds if and only if there is a factorization of f such that

f z1,…,zn = f1 z1, z2 × f2 z2,z3 × × fn−1 zn−1,zn , (7.9)

where the functions f1,…, fn−1 are not necessarily densities.

Proof. Suppose that (7.8) holds, then we have

f z1,…,zn = f zn × f zn−1 zn × f zn−2 zn−1,zn × × f z1 z2,…,zn

= f zn × f zn−1 zn × f zn−2 zn−1 × × f z1 z2
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Therefore, it is necessary for f to be factorized as in (7.9). Next assume (7.9)
and define

f ∗ zl+ 1,…,zm−1; zm =
fl zl, zl+ 1 × × fm−1 zm−1, zm

fl zl, zl+ 1 × × fm−1 zm−1, zm dμl dμm−1

if the denominator is non-zero, and zero otherwise. Then it is easy to verify that
f ∗ zl+ 1,…,zm−1; zm is a version of both of the conditional densities

f zl,…,zm−1│zm,…,zn and f zl,…,zm−1│zm

(c) Algorithm for calculating the p-value. The recursion formula for max acc. t1
corresponding to equation (6.30) is as follows. First, define the conditional probability
given Yk as Fk Yk , t0 = Pr t1 < t0,…, tk < t0 Yk . It should be noted that, differently
from the normal case, the recursion formula is constructed via Yk and not directly
in terms of tk. This is because the factorization of the joint distribution into the pro-
ducts of conditional distributions is obtained in terms of Yk. Then, we have the recur-
sion formula

Fk + 1 Yk + 1, t0 = Pr t1 < t0,…, tk < t0, tk + 1 < t0 Yk + 1

= Yk
Pr t1 < t0,…, tk < t0, tk + 1 < t0 Yk,Yk + 1 fk Yk Yk + 1

=
Yk
Fk Yk, t0 fk Yk Yk + 1 if tk + 1 Yk + 1 < t0 ,

0, otherwise,

(7.10)

where fk Yk Yk + 1 is a conditional distribution of Yk given Yk + 1. In this case it is a
hypergeometric distribution H Yk│Yk + 1, Nk,Nk + 1 . Defining ta Ya = −∞ , we have
the p-value for the observed maximum t0 at the final step as p = 1−Fa Ya , t0 . Thus,
the algorithm is essentially the same as the normal case except that the integration is
now the summation. The algorithm of exact calculation of the p-value for max acc. t1,
in the binomial case, is supported on the author’s website.

Example 7.1. Analysis of Table 7.1. The necessary calculations have been shown in
Table 7.1. Noting that p = 105 162 = 0 648, q = 57 162 = 0 352, we get tk (Yk) as in the
last column of Table 7.1. Therefore, we have max acc. t1 = 2 276 and its right one-
sided p-value calculated by the recursion formula (7.10) is 0.044. A step change is
observed between the dose levels 150 mg and 200 mg.
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We can apply the simultaneous lower bounds (6.34) and (6.35) for

p i, j =
njpj +…+ napa

N∗
j−1

−
n1p1 +…+ nipi

Ni
,1 ≤ i< j ≤ a,

by the normal approximation. For the basic contrasts, it becomes

SLB k,k + 1 = Y ∗
k −Y k − pq

1
Nk

+
1
N∗
k

1 2

Tα n,∞ ,

where Y∗
k = yk + 1 +…+ ya,N∗

k = nk + 1 +…+ na and Yk, Y ∗
k are the averages. The for-

mula (6.37) for improvement is also valid here. In this case, the upper α point
Tα n,∞ = 2 173 α= 0 05 is obtained by the normal theory in Section 6.5.3 (1)
(d) and the simultaneous lower bounds SLB(i, j+ 1) are shown in Table 7.2. The
approximate Tα n,∞ by the balanced case is 2.151 from Table A of the Appendix
at a = 5 and df ∞ , and there is not a big difference from the exact value.

In Table 7.2 the improved lower bounds by formula (6.37) are shown in parenth-
eses. These results clearly show that there is a change-point between dose levels 2 and
3 at one-sided significance level 0.05.

(2) Cumulative chi-squared statistic χ ∗2. The cumulative chi-squared χ∗2 has been
introduced by Takeuchi and Hirotsu (1982) as the sum of t2k of (7.5), just as equation
(6.39) for the normal model. Its distribution is well approximated by a constant times the
chi-squared distribution, and the formulae in Section 6.5.3 (2) (a) are valid with
Ni = n1 +…+ ni andN∗

i = ni+ 1 +…+ na for calculating λi. The original idea of this
was introduced by Taguchi (1966), as an accumulation analysis. Although some math-
ematical refinement was required, it was an initial approach to the efficient analysis of
ordered alternatives.

Table 7.2 Simultaneous lower bounds SLB i, j+ 1 for p i, j .

j+ 1

i 2 3 4 5

1 −0.077 −0.056 −0.118 −0.330
−0.077 (0.008) (0.008) (0.008)

2 0.008 −0.054 −0.266
0.008 (0.008) (0.008)

3 −0.083 −0.267
−0.083 (−0.083)

4 −0.295
−0.295
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Example 7.2. Example 7.1 continued. The cumulative chi-squared statistic is
obtained from Table 7.1 as

χ∗2 = a−1
k = 1t

2
k = 1 3192 + 2 2762 + 1 1612 + −0 043 2 = 8 268

Then we have λ1 = 36 126, λ2 = 77 85, λ3 = 113 49, λ4 = 148 14 from (6.28) and
therefore d2f = 6 326 by the formula in Section 6.5.3 (2) (a). Since df is obviously
4, we have d = 1 58 and f = 2 53. The upper tail probability of 8 268 1 58 = 5 23 as
the chi-squared distribution with df 2.53 is 0.113 by ‘keisan.casio.com’. This is a
two-sided test and slightly conservative compared with the result of max acc. t1,
which suggested significance at 0.05 one-sided. Another example of the application
of max acc. t1 and χ∗2 is given in Example 7.7.

7.3.2 Maximal contrast test for convexity and slope
change-point hypotheses

(1) Weighted doubly accumulated statistics and max acc. t2. In this section we
consider a convexity hypothesis in θi = log pi 1−pi . It is useful for a directional
goodness-of-fit test of the linear regression model and also for confirming a down-
turn in the dose–response. It should be noted here that the convexity hypothesis
depends on the spacing of events, whereas monotony is a property independent
of spacing. Therefore, we consider here a general case of unequal spacing and
denote the time or location of the ith event by xi. Then, the convexity hypothesis
is defined by

Hcon L∗
a θ ≥ 0, with at least one inequality strong, (7.11)

where L∗
a is a second-order differential matrix, defined by

L∗
a =

1
x2−x1

1
x1−x2

+
1

x2−x3

1
x3−x2

0 0 … 0

0
1

x3−x2

1
x2−x3

+
1

x3−x4

1
x4−x3

0 … 0

…

0 0 0 …
1

xa−1−xa−2

1
xa−2−xa−1

+
1

xa−1−xa

1
xa−xa−1 a−2 × a

,

similarly as in Section 6.5.4. It has been shown by Hirotsu and Marumo (2002) that

L∗
a L∗

a L
∗
a

−1
= b1,b2,…,ba−2 ,

bk = I−ΠB 0,…,0,xk + 2−xk + 1,…,xa−xk + 1 ,
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where ΠB =B B B −1B is defined in Section 6.5.4(1) with

B=
1, , 1

x1, ,xa

here reflecting the unequal spacing. This equation reduces to bk in Section 6.5.4 (1) in
the case of equal spacing. Then,

Mk θ = B bk β0 β1Δk =B β0 β1 + bkΔk

is a slope change-point model with change Δk at time point xk + 1 for k = 1,…,a−2.
Therefore, in this case again each corner vector corresponds to a slope change-point
model. The null model H0: L∗

a θ= 0 is obviously equivalent to a linear regression
model H0 θi = β0 + β1xi.

We consider here a general exponential family

a θi b yi exp θiyi , i = 1,…,a (7.12)

as the underlying distribution for dealing with the binomial and Poisson distributions
simultaneously. The function b(yi) is

b yi = yi ni−yi
−1 for the binomial model,

b yi = yi
−1 for the Poisson model

In this case also we can consider the essential part t= L∗
a L

∗
a

−1
L∗
a y of the key vector

z= L∗
a L

∗
a

−1
L∗
a ν θ0 , discarding Ê0(y) from ν θ0 since it is a function of sufficient

statistics

Ya = y1 + y2 + + ya and Ta = x1y1 + x2y2 + + xaya

under H0 θi = β0 + β1xi. After standardization under the null distribution given
(Ya, Ta), the maximal elements based on t and z will coincide. However, this form
of t is still not very convenient for dealing with the discrete model, since the elements
of t can be negative and do not take integer values because of the complicated coef-
ficient matrix. It is so complicated that it looks formidable to develop an exact test. It
should be noted that in case of the normal distribution discussed in Section 6.5.4, it
was rather easy to deal with the linear contrasts in y as they are, since they are dis-
tributed as the normal defined only by mean and variance. Therefore, a more conven-
ient basic variable for dealing with the discrete distribution has been searched for. This
approach has already been introduced in Section 6.5.4 (1), deriving the doubly accu-

mulated statistics in case of equal spacing. First, by noting that L∗
a L∗

a L
∗
a

−1
L∗
a +ΠB

is an identity matrix of order a, we have
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y= L∗
a L∗

a L
∗
a

−1
L∗
a +ΠB y =L∗

a t+ΠBy

In this equation ΠBy is a function of the sufficient statistics (Ya, Ta) and can be dis-
carded for developing a similar test. Then, the similar test should be based on
S= S1,…,Sa−2)’ that satisfies y =L∗

aS instead of t, where we ignore the last two rows
of y =L∗

aS. By accumulating both sides of y =L∗
aS, the equation

Yk = y1 + + yk =
Sk −Sk−1
xk + 1−xk

, k = 1,…,a−2,

is obtained, where S0 is defined to be zero. By accumulating Yk further after multiply-
ing by xk + 1−xk , the equation

Sk =
k
i= 1 xi+ 1−xi Yi = xk + 1−x1 y1 + + xk + 1−xk yk, k = 1,…,a−2, (7.13)

is obtained. In case of equal spacing, the statistics Sk (7.13) reduce to the doubly
accumulated statistics of yk, like (6.47) obtained in Section 6.5.4 (1). The extended
equation (7.13) is a weighted doubly accumulated statistic but might be called sim-
ply the doubly accumulated statistic hereafter, and the maximal standardized ele-
ment s∗m of Sk is employed as the test statistic for the max acc. t2 method. The
component of max acc. t2 is shown to be an efficient score for testing the slope
change-point model Mk by the same arguments as in Section 6.5.4 (3) (see Hirotsu
et al., 2016).

(2) Second-order Markov property and a factorization of the conditional dis-
tribution. In case of the normal distribution, the conditional distribution given the
complete sufficient statistics and its factorization are very simple, resulting in the
respective normal distributions defined by the conditional mean and variance as
described in Section 6.5.4 (2). In case of the Poisson and binomial distributions,
the conditional distribution given Ya only and its factorization into the products of
serial conditional distributions are also well known and have already been utilized
in Section 7.3.1 (1) (b). However, we have an additional conditioning variable Ta
here, and several steps will be required to obtain the exact conditional distribution
in tractable form (Hirotsu, 2013; Hirotsu et al., 2016). The conditional null distri-
bution given (Ya, Ta) is obviously in the form

G y Ya,Ta =C−1
a−1 Ya,Ta Πa

k = 1b yk ,

where the constant Ca−1 Ya,Ta is determined so that the total probability of y is unity
conditionally given Ya and Ta. Then, by the relationship

Sk = Sk−1 + xk + 1−xk Yk, k = 1,…,a−2 (7.14)
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and yk = Yk −Yk−1, we can rewrite the probability function in terms of Sk as

G y Ya,Ta =C−1
a−1 Ya,Ta Πa

k = 1b
Sk −Sk−1
xk + 1−xk

−
Sk−1−Sk−2
xk −xk−1

, (7.15)

where S0 and S−1 are defined to be zero and Sa−1 = xaYa−Ta, Sa = Sa−1 + xa+ 1−xa Ya
with xa+ 1 an arbitrary number. It should be noted that Sa−1 is an extension of the def-
inition (7.13) to k = a−1, but it cannot be done for Sa without introducing a hypothet-
ical value xa + 1. For notational convenience anyway, Sa−1 and Sa are employed as
conditioning variables instead of Ya and Ta. Also, it is sometimes convenient to
use Sa−1 and Ya as conditioning variables. The one-to-one correspondence among
the set of variables (Ya, Ta), Sa−1,Sa , and Sa−1,Ya is obvious. Equation (7.15)
implies the second-order Markov property of the sequence S1,…,Sa−2. The proof
is essentially the same as that of Lemma 7.1. Because of this property, there is avail-
able a very efficient and exact algorithm for calculating the p-value of the maximal
statistic s∗m, as well as the normalizing constant Ca−1 Sa−1,Sa and the moments
for standardization. Now, because of the second-order Markov property, the null dis-
tribution G y Ya,Ta can be factorized in terms of Sk:

G y Ya,Ta =Πa−2
k = 1fk Sk Sk + 1,Sk + 2 ,

where fk Sk Sk + 1,Sk + 2 is the conditional distribution of Sk given Sk + 1 and Sk + 2.
Then, the kth conditional distribution should be in the form

fk Sk Sk + 1,Sk + 2 =C−1
k + 1 Sk + 1,Sk + 2 Ck Sk,Sk + 1 × b

Sk + 2−Sk + 1
xk + 3−xk + 2

−
Sk + 1−Sk
xk + 2−xk + 1

,

k = 1,…,a−2, (7.16)

where Ck + 1 is the normalizing constant and the initial constant is defined as

C1 S1,S2 = b
S1

x2−x1
× b

S2−S1
x3−x2

−
S1

x2−x1
(7.17)

It should be noted that in equation (7.16) the random variable Sk is included also in
the normalizing constant Ck Sk,Sk + 1 of the previous step as the conditioning var-
iable. Starting from C1, all the Ck can be calculated recursively by the equation

Ck + 1 Sk + 1,Sk + 2 = Sk
Ck Sk,Sk + 1 × b

Sk + 2−Sk + 1
xk + 3−xk + 2

−
Sk + 1−Sk
xk + 2−xk + 1

(7.18)

Then, at the final step the overall normalizing constant Ca−1 Sa−1,Sa is obtained and
the distributionG(y) is determined in terms of Sk,k = 1,…,a−2. It should be noted that
Ca−1 Sa−1,Sa is well defined, since Sa−Sa−1 xa+ 1−xa is simply Ya, but in the
following the notationCa−1 Sa−1,Ya is employed instead ofCa−1 Sa−1,Sa . This fac-
torization of the simultaneous distribution follows the same idea as employed in
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Hirotsu et al. (2001) to obtain the exact factorization of the null distribution on the
three-factor interaction in a 2 × J ×K contingency table (see Section 14.1.1 (1) (c)).
In this case, however, the sample space of S= S1,…,Sa−2 is unknown and also
explosive when a is large. Therefore, to execute the recursion formula efficiently, sev-
eral inequalities have been introduced in Hirotsu et al. (2016) and we give a summary
in the following:

Absolute max 0, Sa−1− xa−xk + 1 Ya ≤ Sk ≤
xk + 1−x1
xa−x1

Sa−1, k = 1,…,a−2 (7.19)

Relative
xk + 1−x1
xk −x1

Sk−1 ≤ Sk ≤
1

xa−xk
xa−xk + 1 Sk−1 + xk + 1−xk Sa−1 ,

k = 2,…,a−2
(7.20)

The absolute inequality gives restrictions on Sk in terms of Sa−1 and Ya, which are
constants, and the relative one is useful for the bottom-up procedure to construct con-
ditional probabilities giving the possible range of Sk in terms of Sk−1. This inequality
can be rewritten as

1
xa−xk + 1

xa−xk Sk − xk + 1−xk Sa−1 ≤ Sk−1 ≤
xk −x1
xk + 1−x1

Sk, k = 2,…,a−2, (7.21)

which is useful for defining the range of Sk−1 based on Sk. Further, there is an obvious
relationship among three Sk’s: Sk −Sk−1 xk + 1−xk ≤ Sk + 1−Sk xk + 2−xk + 1 or
equivalently

yk + 1 =
Sk + 1−Sk
xk + 2−xk + 1

−
Sk −Sk−1
xk + 1−xk

≥ 0 (7.22)

These inequalities are general for the exponential family (7.12) and sometimes addi-
tional inequalities are required. For example, for the independent binomial distribution
B(ni, pi) in this section the inequality (7.22) is changed to

0 ≤
Sk + 1−Sk
xk + 2−xk + 1

−
Sk −Sk−1
xk + 1−xk

≤ nk + 1 (7.23)

(3) Constructing conditional probabilities by a bottom-up procedure. The con-
struction of the conditional probabilities fk Sk Sk + 1,Sk + 2 should be bottom-up since
Ck Sk,Sk + 1 is necessary for calculating Ck + 1 Sk + 1,Sk + 2 . First, the possible combi-
nations of S1 and S2 satisfying the inequalities (7.19) and (7.20) are found, and C1(S1,
S2) is calculated by (7.17). For those combinations of S1 and S2, the range of the
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variable S3 can be determined by the inequalities (7.19), (7.20), and (7.22). Then, the
coefficient C2(S2, S3) can be calculated by equation (7.18):

C2 S2,S3 = S1
C1 S1,S2 × b

S3−S2
x4−x3

−
S2−S1
x3−x2

,

where the summation is with respect to S1. In executing the recursion formula, how-
ever, a difficulty arises since the Sk satisfying equation (7.13) does not necessarily take
successive integers differently from Yk. It does not occur in the equal spacing where xk
can be defined as k without any loss of generality. Therefore, the inequalities are con-
verted to Yk, which takes successive integers and generates conformable Sk through
equation (7.14). The inequality for Yk is as follows:

max
Sa−1−Sk−1− xa−xk + 1 Ya

xk + 1−xk
,
Sk−1
xk −x1

,Yk−1 ≤ Yk

≤ min
Sa−1−Sk−1
xa−xk

,
1

xk + 1−xk

xk + 1−x1
xa−x1

Sa−1−Sk−1

(7.24)

A simple example is given below of how to construct the conformable sequence.

Example 7.3. Generating the sequence S conformable to y= 1,1,1,1,1 with
x= 1,2,4,7,8 . In this example the sufficient statistics are Y5 = 1 + 1 + 1 + 1 + 1 = 5
and S5−1 = 7y1 + 6y2 + 4y3 + y4 = 8Y5−T5 = 18. Then, by the absolute inequality
(7.19), the range of S1 =Y1 is obtained as −12 ≤ S1 = Y1 ≤ 18

7 and therefore S1 and
Y1 take 0, 1, and 2. Then, by the inequality (7.24), the conformable Y2 for
Y1,S1 = 0,0 , 1,1 , and (2, 2) are 0 ≤ Y2 ≤ 3, 1 ≤ Y2 ≤ 2, and Y2 = 2, respectively.
Therefore, the respective conformable S2 are (0, 2, 4, 6), (3, 5), and (6) by
S2 = S1 + 2Y2. Then, from the pair (Y2, S2), the conformable Y3 can be determined
by equation (7.24) and S3 from S2 and Y3 by (7.14). The process is summarized in
Table 7.3, where NG implies there is no conformable Y3 satisfying the inequality.
In this example the number of partitions of integer 5 into five integers is 126, among
which only five sequences in Table 7.3 are conformable also to S4 = 18. In contrast,
under equal spacing xk = k , 12 sequences are found to be conformable to the fixed
sufficient statistics Y5 = 5 and S4 = 10.

Now, given the underlying distribution, the initial constant C1(S1, S2) can be cal-
culated by equation (7.17) at stage 2. Then, at stage 3 the normalizing constant C2(S2,
S3) and the conditional probability f1 S1 S2,S3 can be calculated by equations (7.18)
and (7.16), respectively. At stage 4, C3 and f2 are calculated; at stage 5, C4 and f3 are
calculated; and finally, the total probability G y S4,Y5 is obtained by the product of
f1, f2, and f3.
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Example 7.4. Example 7.3 continued.As an example, the Poisson model with mean
Λi can be dealt with by taking θi = logΛi, a θi = exp −Λi = exp −exp θi , and

b yi = yi
−1 =

Si−Si−1
xi+ 1−xi

−
Si−1−Si−2
xi−xi−1

−1

Starting from the initial constant (7.17), the normalizing constants and conditional
probabilities are calculated recursively by (7.18) and (7.16), respectively. To continue
the current example at stage 2, we obtain

C1 0,2 =
0

2−1

−1

×
2−0
4−2

−
0

2−1

−1

= 1

and similarly C1 0,4 = 1 2, C1 0,6 = 1 6, C1 1,5 = 1,C1 2,6 = 1 2. At stage 3,
noting that the pair S2,S3 = 2,14 has only one root S1 = 0, C2(2, 14) is obtained as

C2 2,14 =C1 0,2 ×
14−2
7−4

−
2−0
4−2

−1

=
1
6

and the conditional probability f1 0 2 14 is equal to unity. In contrast, the pair
S2,S3 = 6,15 has two roots S1 = 0 and 2 so that

C2 6,15 =
1
6
×

15−6
3

−
6−0
2

−1

+
1
2
×

15−6
3

−
6−2
2

−1

=
2
3

Then, the conditional probabilities are calculated as

f1 0 6 15 =
2
3

−1

×
1
6
×

15−6
3

−
6−0
2

−1

=
1
4
,

f1 2 6 15 =
2
3

−1

×
1
2
×

15−6
3

−
6−2
2

−1

=
3
4

Table 7.3 Process to determine the conformable sequence.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Y1 = S1 Y2 S2 = S1 + 2Y2 Y3 S3 = S2 + 3Y3 Y4 S4 = S3 + Y4 Y5

0 0 0 NG — — — —

0 1 2 4 14 4 18 5
0 2 4 3 13 5 18 5
0 3 6 3 15 3 18 5
1 1 3 NG — — — —

1 2 5 3 14 4 18 5
2 2 6 3 15 3 18 5
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It should be noted that the inequalities (7.21) and (7.22) are useful for finding out the
roots Sk−1 for the pair Sk,Sk + 1 . Other C2’s are C2 4,13 = 1 2, C2 5,14 = 1, and the
conditional probabilities f1 0 4 13 , f1 1 5 14 are both unity since those pairs (S2, S3)
have only one root S1 = 0 and 1, respectively. The calculations ofC3(S3, S4),C4(S4, Y5)
and the conditional probabilities f2 S2 S3,S4 , f3 S3 S4,Y5 go similarly as C2(S2, S3)
and f1 S1 S2,S3 , and the result is summarized in Table 7.4. In this small example all
the conformable sequences might be written down, but it is generally impossible to
figure out all the sequences even for moderate a and Λi, and the bottom-up procedure
utilizing these inequalities is inevitable.

(4) Recursion formulae for moments and tail probability

(a) Calculating moments. To standardize the test statistics, it is necessary to calcu-
late the mean and variance of Sk,k = 1,…,a−2. They are also calculated recursively by
the formula

E Slk Sa−1,Ya = Sa−2
… Sk + 1 Sk

Slk fk Sk Sk + 1,Sk + 2

× fk + 1 Sk + 1 Sk + 2,Sk + 3 × × fa−2 Sa−2 Sa−1,Ya
(7.25)

(b) Calculating p-value of the convexity test Let s∗k be the standardized version of

Sk, s∗k =
Sk −E Sk
V1 2 Sk

, k = 1,…,a−2. Then the test statistic is

s∗m = max
k = 1, ,a−2

s∗k

For the recursion formula, define the conditional probability

Fk Sk−1,Sk, d = Pr s∗1 < d,…,s∗k < d Sk−1,Sk ,

= Pr S1 < d
∗
1,…,Sk < d

∗
k Sk−1,Sk , k = 2,…,a,

whered∗k =E Sk +V1 2 Sk d, k = 1,…,a−2 and s∗a−1, s
∗
a are defined as −∞ , although

their conditional variances are zero so that the inequality always holds. It should be noted
that the recursion formulae (7.26) ~ (7.28) are given in terms of Sk, since the distribution
theory has been obtained in terms of Sk. This is contrasted with the normal theory, where
the recursion formulae are given directly in terms of s∗k . Correspondingly, d

∗
a−1 and d

∗
a are

set to Sa−1 + δ and Sa + δ, respectively, with δ a positive small number. Then, a recursion
formula for Fk is obtained as

Fk + 1 Sk,Sk + 1, d = Pr S1 < d
∗
1,…,Sk < d

∗
k ,Sk + 1 < d

∗
k + 1 Sk,Sk + 1

= Sk−1
Pr S1 < d

∗
1,…,Sk < d

∗
k ,Sk + 1 < d

∗
k + 1 Sk−1,Sk,Sk + 1

× fk−1 Sk−1 Sk,Sk + 1

(7.26)

178 ADVANCED ANALYSIS OF VARIANCE



Table 7.4 Bottom-up process for constructing the probability distribution.

y1 y2 y3 y4 y5 S1 S2 S3 S4 Y5 C1 C2 C3 f1 f2 f3 G(y│ S4, Y5)

0 1 3 0 1 0 2 14 18 5 1 1/6 7/6 1 1/7 2/3 2/21
0 2 1 2 0 0 4 13 18 5 1/2 1/2 1/4 1 1 1/7 3/21
0 3 0 0 2 0 6 15 18 5 1/6 2/3 2/3 1/4 1 4/21 1/21
1 1 1 1 1 1 5 14 18 5 1 1 − 1 6/7 2/3 12/21
2 0 1 0 2 2 6 15 18 5 1/2 − − 3/4 1 4/21 3/21



=
Pr S1 < d∗1,…,Sk < d∗k Sk−1,Sk × fk−1 Sk−1 Sk,Sk + 1 if Sk + 1 < d∗k + 1 ,

0, otherwise
(7.27)

Equation (7.26) is due to the law of total probability, and equation (7.27) is due to
the second-order Markov property of Sk. Thus, essentially the recursion formula is
obtained as

Fk + 1 Sk,Sk + 1, d = Sk−1
Fk Sk−1,Sk, d × fk−1 Sk−1 Sk,Sk + 1 (7.28)

There is no difficulty in extending the formula to Fa by taking Sa−1 and Ya as fixed
values satisfying the inequality always. Then, the p-value of the observed maximum
s∗m is obtained at the final step by

p = 1−Fa Sa−1,Ya, d at d = s∗m (7.29)

It should be noted that the procedure converts the multiple summation into the rep-
etition of a single summation, so that the calculation is feasible for large a.

Example 7.5. Example 7.3 continued. Again, the procedure is explained via
Example 7.2 with the observed sequence y= 1,1,1,1,1 . First, the moments of Sk
are calculated by method (a) of this section, to obtain

E S1 = 6 7, E S2 = 100 21, E S3 = 295 21,

V S1 = 20 72, V S2 = 500 212, V S3 = 146 212

Then, the standardized statistics are obtained as s∗1 = 0 22361, s∗2 = 0 22361,
s∗3 = −0 08276, and therefore s∗m = 0 22361, which gives d∗1 = 1 000,
d∗2 = 5 000, d∗3 = 14 17628. Of course, d∗4 and d∗5 are set as 18 + δ and Sa + δ with δ
an arbitrary positive constant. Then, the calculation of the p-value by the recursion
formula goes as follows.
First, F2(S1, S2) is set to unity for possible combination of (S1, S2) with S1 < 1 000 and
S2 < 5 000, namely for F2(0, 2) and F2(0, 4), while it is set to zero for other combina-
tions. For convenience, we omit here the constant d = s∗m from the notation F2(S1,
S2, d). Then, the possible combinations of (S2, S3) with S2 < 5 000 and S3 < 14 176 are
found to be (2, 14) and (4, 13). Since these combinations have only one root
S1,S2 = 0,2 and (0, 4), respectively, F3(2, 14) and F3(4, 13) are found to be unity
while F3 is set to zero for other combinations. Then, the F4’s are calculated as

F4 13,18 = 1 × 1 = 1 and F4 14,18 = 1 × 1 7 = 1 7

Finally, Fa(Sa−1,Ya) is calculated as

F5 18,5 = 1 × 1 7 + 1 7 × 2 3 = 5 21
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and therefore the p-value is obtained as

p = 1−5 21 = 16 21 = 0 762

This is the sum of the probabilities of the last three sequences of Table 7.4.

(c) Calculating p-value of the concavity test. To test the concavity hypothesis
H −

con L∗
a θ ≤ 0, with at least one inequality strong, the test should be based on −Sk,

and the maximal statistic

s∗m = max
k = 1, ,a−2

s∗∗k

is calculated from the standardized statistics s∗∗k = −Sk −E −Sk
V1 2 −Sk

, k = 1,…,a−2. Then,

only a slight modification is necessary from convexity test (b). Define the conditional
probability

Fk Sk−1,Sk = Pr s∗∗1 < d,…,s∗∗k < d Sk−1,Sk ,

= Pr S1 > d
∗∗
1 ,…,Sk > d

∗
k Sk−1,Sk , k = 2,…,a,

where

d∗∗k =E Sk −V1 2 Sk d, k = 1,…,a−2, d∗∗a−1 = Sa−1−δ,d
∗∗
a = Sa−δ δ> 0

The recursion formula (7.28) and p-value calculation (7.29) are exactly the same.

(d) Calculating p-value of the two-sided test. The p-value for the two-sided alter-
nativeH ±

con L∗
a θ ≥ 0 or L

∗
a θ ≤ 0 with at least one inequality strong, can be obtained by

defining s∗m =max s∗k =max s∗∗k and

Fk Sk−1,Sk = Pr s∗1 < d,…, s∗k < d Sk−1,Sk ,

= Pr d∗∗1 < S1 < d
∗
1,…,d∗∗k < Sk < d

∗
k Sk−1,Sk , k = 2,…,a

Software for these calculations is provided on the author’s website.

(e) Comparison of computing time. In Table 7.5 we give the number of conformable
sequences and the computing time of probabilities by the methods with or without
recursion formula to the outcome yi ≡ 2, i= 1,…,a, for some a assuming a Poisson
model. The asterisk (∗) implies an estimate by log linear extrapolation. The number
is easily explosive at around a = 15, and the naïve calculation method soon becomes
infeasible.

7.3.3 Cumulative chi-squared test for convexity hypothesis

An important application of the convexity and concavity tests is a directional
goodness-of-fit test of a dose–response model. For this purpose, the cumulative
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chi-squared statistic is proposed. It is denoted by χ† 2 and defined by the sum of

squares of the standardized components of the key vector: χ†2 = a−2
1 s∗2k . Its null dis-

tribution is well approximated by a constant times the chi-squared distribution dχ2f ,
where constants d and f are determined by adjusting the first two cumulants:

df =E a−2
k = 1s

∗2
k = a−2

2d2f =E a−2
k = 1s

∗4
k + 2 1 ≤ k < l ≤ a−2 s∗2k s∗2l − a−2 2

The calculation of the joint moments can be carried out by extending the formula
in Section 7.3.2 (4) (a). If necessary, an improved formula has been obtained by
Hirotsu (1979) which adjusts the first three cumulants. For the χ† 2 -test of the nor-
mal case in Section 6.5.4 (5), a diagonal matrix D was introduced for standardi-
zation. In the more complicated case of L∗

a here, such a matrix is not available
and a simple sum of squares of s∗k is employed. However, the characteristics will
not change greatly.

Table 7.5 Number of conformable Poisson sequences and computing time of
probabilities.

Computing time

a Number of sequences Recursion formula Naïve method

5 55 <1 s <1 s
6 252 <1 s <1 s
7 1,242 <1 s <1 s
8 6,375 <1 s <1 s
9 33,885 <1 s <1 s
10 184,717 <1 s 4 s
11 1,028,172 <1 s 35 s
12 5,820,904 <1 s 268 s (4 m 28 s)
13 33,427,622 <1 s 2,062 s (34 m 22 s)
14 194,299,052 <1 s 15,793 s (4 h 23 m 13 s)
15 1,141,190,188 <1 s 1.5∗ d
20 4.1 × 1012∗ 1 s 1 × 102∗ y
30 8 × 1019∗ 8 s 1 × 1011∗ y
40 1 × 1027∗ 45 s 1 × 1020∗ y

CPU: Intel i7 4770 3.4 GHz, OS: Windows 7 Professional, Compiler: Delphi (Pascal).
s: seconds, m: minutes, h: hours, d: days, y: years.
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Example 7.6. Directional goodness-of-fit test for a logit linear model

(1) max acc. t2. The data in Table 7.6 are taken from Allen et al. (1949). Erythro-
blastosis is a disease in certain newborn infants, and can sometimes be fatal. It is
caused by the transmission of anti-Rh antibody from an Rh− mother into the blood
of an Rh + baby. One form of treatment is an exchange transfusion, in which as much
of the infant’s blood as possible is replaced by a donor’s blood that is free of anti-Rh
antibody. Of a total of 179 cases in which this treatment was used in a Boston hospital,
no infant deaths occurred in the 42 cases in which a female donor was used, whereas
there were 27 infant deaths out of the 137 cases in which a male donor was used.
Cochran (1954) carried out a detailed analysis of the apparent difference between

the male and female donors, and proved the difference to be highly significant. There-
fore, a separate analysis is necessary for males and females. In this case, however, the
interpretation for female donors is obvious, since there is no infant death and a detailed
analysis of the association between deaths and the degree of the disease is required
only for male donors. Then, if the interest lies in the dependence of the death rates
on the degree of the disease, a common procedure for dealing with this type of data
is to assume a logit linear model

log pi 1−pi = β0 + β1xi (7.30)

under the binomial distribution

ni
yi

pyii 1−pi
ni −yi ,

Table 7.6 Mortality by sex of donor and degree of erythroblastosis.

Number of:

Degree of disease Sex of donor Deaths Survivors Total

None M 2 21 23
F 0 10 10

Mild M 2 40 42
F 0 18 18

Moderate M 6 33 39
F 0 10 10

Severe M 17 16 33
F 0 4 4
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since the linear model in pi easily goes out of the range [0,1]. However, the goodness-
of-fit of the model (7.30) should also be confirmed before application. Then, the con-
vexity and/or the concavity test is useful as a directional goodness-of-fit test for the
linearity of model (7.30). The problem can be dealt with by taking

θi = log pi 1−pi a θi = ni 1 + exp θi
−ni b yi = yi ni−yi

−1

=
Si−Si−1
xi+ 1−xi

−
Si−1−Si−2
xi−xi−1

× ni−
Si−Si−1
xi+ 1−xi

−
Si−1−Si−2
xi−xi−1

−1

In this case the initial value of Ci Si,Si+ 1 is

C1 S1,S2 =
S1

x2−x1
× n1−

S1
x2−x1

−1

×
S2−S1
x3−x2

−
S1

x2−x1
× n2−

S2−S1
x3−x2

−
S1

x2−x1

−1

The degree of disease is given by an ordinal qualitative measure in Table 7.6 and ten-
tatively defined as xi = i here. Since this is a binomial case, the inequality (7.23) is
applied instead of (7.22) in executing the recursion formula (7.28). Then, the two-
sided p-value 0.076 is obtained by the formula of Section 7.3.2 (4) (d).

(2) Cumulative chi-squared χ † 2. The cumulative chi-squared is obtained as
χ†2 = 8 545 with d = 1 311 and f = 1 526. The p-value is 0.023 by the chi-squared
approximation. In this size of data, an exact p-value is also available as 0.036 (see
Section 7.3.5 (3)). Some characterization of the power of the cumulative chi-squared
and the two-sided maximal contrast tests is given in the next section.

The result of the goodness-of-fit test suggests that the logit linear model is inappro-
priate and the use of some non-parametric test will be required.

Example 7.7. Example 7.6 continued (non-parametric test). As a non-parametric
test, the common goodness-of-fit χ2 for independence is 29.25 with df 3 and
highly significant at p = 1 98 × 10−6, but it cannot tell us any relationship between
the death rates and the degree of disease. Chassan (1960, 1962) proposed a particular
method of test, taking the degree of disease into consideration and extending the
one-sided test of the two-sample problem. Bartholomew (1963) claimed a defect in
Chassan’s extension and suggested the use of a χ2-test as more appropriate for the
monotone alternative. It should be noted that monotony is an assumption appropriate
for the ordinal qualitative covariate, since it is invariant against spacing. However, as
mentioned in Section 6.5.1, an exact analysis by χ2 is possible only in a limited
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number of cases. Then, max acc. t1 for the monotone hypothesis of the binomial data
in Section 7.3.1 is simple and more appropriate. For Table 7.6 it gives one-sided
p-value 1 2 × 10−6, suggesting a step change-point between moderate and severe.
Thus, it is one of the merits of max acc. t1 that it can suggest an outline of the
response curve without assuming any rigid parametric model (see also
Section 6.5.3 (1)). This implies also that the difference between males and females
is not homogeneous, suggesting a kind of interaction. For the two-sided problem
of the monotone hypothesis, the cumulative chi-squared χ∗ 2 has been proposed in
Section 7.3.1 (2), which gives an approximate p-value 3 5 × 10−8, whereas the exact
two-sided p-value of max acc. t1 is 2 5 × 10−6. The approximation is via a constant
times the chi-squared variable adjusted for the first two cumulants. An improvement
by adjusting the first three cumulants is given in Hirotsu (1979). However, so small a
p-value by the chi-squared approximation is not precise anyway, and should be read
just as very highly significant, whereas the p-value by max acc. t1 is exact by counting
up all possible cases – just as for the convexity test (max acc. t2 proposed in
Section 7.3.2 (4).

7.3.4 Power comparisons

Max acc. t1 for the monotone hypothesis has been verified to keep high power
for the wide range of the monotone hypothesis. For the normal model, max
acc. t2 is also shown in Section 6.5.4 (4) to keep relatively high power in the wide
range of the convexity hypothesis, compared with linear tests. In the following we
compare the power of max acc. t2 and the cumulative chi-squared χ† 2 with the test
of the quadratic term of the logistic regression model by simulation of 10,000
replications, assuming a binomial distribution with ni ≡ 20. We call the last test
a polynomial test according to Hirotsu and Marumo (2002). The comparisons are
made as two-sided tests in the direction of corner vectors, and also for the logistic
quadratic pattern for each of a= 6 and 10. The corner vectors and quadratic pattern
are as follows:

Corner
vector 1

−10 8 5 2 −1 −4

Corner
vector 2

−20 2 24 11 −2 −15

a = 6: Corner
vector 3

−15 −2 11 24 2 −20

Corner
vector 4

−4 −1 2 5 8 −10

Quadratic
pattern

−5 1 4 4 1 −5
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Corner
vector 1

−36 16 13 10 7 4 1 −2 −5 −8

Corner
vector 2

−168 −28 112 87 62 37 12 −13 −38 −63

Corner
vector 3

−189 −70 49 168 122 76 30 −16 −62 −108

Corner
vector 4

−36 −17 2 21 40 26 12 −2 −16 −30

a= 10: Corner
vector 5

−30 −16 −2 12 26 40 21 2 −17 −36

Corner
vector 6

−108 −62 −16 30 76 122 168 49 −70 −189

Corner
vector 7

−63 −38 −13 12 37 62 87 112 −28 −168

Corner
vector 8

−8 −5 −2 1 4 7 10 13 16 −36

Quadratic
pattern

−6 −2 1 3 4 4 3 1 −2 −6

Then obviously the polynomial test is most powerful for the quadratic pattern

among all the available tests. The non-centrality parameter θi−θ
2
is fixed for

the power of the polynomial test to be around 0.80 for the quadratic pattern.
The simulation results are shown in Table 7.7 also for the null model, where Const.

means θi = constant and Slope means the regression model θi = β0 + β1i.
There is observed some conservatism for max acc. t2, but this is inevitable for an

exact discrete test and in the acceptable range. In contrast, the other tests become
sometimes slightly aggressive. The similarity between the corner vectors at the sym-
metric location suggests the reliability of the simulation. It is verified that max acc.
t2 keeps relatively high power in the wide range of the convexity hypothesis. The
quadratic test looks very good when the change-point is located in the middle, but
not when it is at the end. Therefore, it cannot be recommended without prior infor-
mation on the configuration of the mean vector. The cumulative chi-squared χ† 2 looks
to be located between max acc. t2 and the polynomial test. It is expected since the
leading term of χ† 2 is the chi-squared for the quadratic pattern in the expansion in
the independent chi-squared series in the balanced normal model, see (6.52). The
comparison between max acc. t2 and the polynomial test coincides very well with that
of the normal case given in Table 6.14. Another advantage of max acc. t2 is that it can
suggest a change-point.
The exact non-null distributions of max acc. t1 and t2 are also easily available. They

are obtained by a simple modification of the kernel function b(yi) and details are given
for the case of the Poisson distribution in Chapter 8.
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7.3.5 Maximal contrast test for sigmoid and inflection point
hypotheses

(1) Weighted triply accumulated statistics and max acc. t3. The sigmoidicity
hypothesis for a general unequal spacing is defined by

Hsig
1

x3−x1

θ3−θ2
x3−x2

−
θ2−θ1
x2−x1

≥ ≥
1

xa−xa−2

θa−θa−1
xa−xa−1

−
θa−1−θa−2
xa−1−xa−2

, (7.31)

extending the convexity hypothesis of the previous section. The null hypothesis
is defined by all the equalities in (7.31), which is equivalent to
H0 θi = β0 + β1xi + β2x

2
i . Equation (7.31) can be expressed in matrix form as

Q∗
a θ ≥ 0, just like equation (7.11) for the convexity hypothesis in Section 7.3.2 (1).

The explicit form of Q∗
a and its relationship with the inflection point model are given

by Hirotsu and Marumo (2002). As the basic variables from the key vector, the
weighted triply accumulated statistics are derived after similar algebra to deriving
the weighted doubly accumulated statistics for the convexity hypothesis. They are
denoted by Wk and expressed in terms of Si as

Table 7.7 Power comparisons of max acc. t2, χ† 2, and the polynomial test.

Alternative hypothesis (θ) Max acc. t2 Cumulative Polynomial
chi-squared test

Const. 0.047 0.053 0.053
Slope 0.046 0.052 0.046
Corner vector 1 0.681 0.649 0.590

a = 6 Corner vector 2 0.712 0.749 0.750
Corner vector 3 0.715 0.744 0.752
Corner vector 4 0.678 0.650 0.593
Quadratic pattern 0.751 0.804 0.802

Const. 0.048 0.053 0.050
Slope 0.045 0.047 0.052
Corner vector 1 0.644 0.519 0.418
Corner vector 2 0.692 0.682 0.625
Corner vector 3 0.707 0.738 0.726

a = 10 Corner vector 4 0.715 0.760 0.763
Corner vector 5 0.713 0.755 0.772
Corner vector 6 0.709 0.742 0.734
Corner vector 7 0.691 0.684 0.626
Corner vector 8 0.652 0.529 0.422
Quadratic pattern 0.738 0.799 0.808
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Wk =
k
i= 1 xi+ 2−xi Si, k = 1,…, a−2

Then the maximal contrast test is defined by

w∗
m =maxk w

∗
k ,

where w∗
k is the standardized version ofWk,k = 1,…, a−3. The sufficient statistics are

Ya, Sa−1, andWa−2 as described in Section 6.5.5, and we can derive the factorization
of the conditional probability f W1,…, Wa−3│Ya, Sa−1, Wa−2 into the products of

conditional probabilities Πa−3
k = 1 fk Wk│Wk + 1, Wk + 2, Wk + 3 . Here we employed the

notation Wa−2, Wa−1, Wa, but actually they are expressed by the sufficient statistics
Ya, Sa−1, Wa−2. The calculation is essentially the same as given in Section 7.3.2
(3), except the inequalities forWk for efficient execution of the bottom-up procedure.

Absolute: Wa−2− xk + 3−xk + 1 + xk + 4−xk + 2 + + xa−xa−2 ×
xa−1−x1
xa−x1

Sa−1

≤Wk ≤
xk + 1 + xk + 2−x1−x2
xa−1 + xa−x1−x2

Wa−2, k = 1,…, a−3

Relative:
xk + 1 + xk + 2−x1−x2
xk + xk + 1−x1−x2

Wk−1 ≤Wk

≤
xk + 2−xk

xk + 2−xk + + xa−xa−2
Wa−2 +

xk + 3−xk + 1 + + xa−xa−2
xk + 2−xk + + xa−xa−2

Wk−1,

k = 1,…, a−3,

0 ≤
1

xk + 1−xk

Wk −Wk−1

xk + 2−xk
−
Wk−1−Wk−2

xk + 1−xk−1
−

1
xk −xk−1

Wk−1−Wk−2

xk + 1−xk−1
−
Wk−2−Wk−3

xk −xk−2

≤ nk, k = 1,…, a;W−2 =W−1 =W0 = 0

The calculation of moments and the tail probability for the sigmoid test are essentially
the same as given in the previous section for convexity, although the conditioning
variables become three, making the computation a little harder for a large sequence.
The maximal contrast test might be called max acc. t3.

(2) Cumulative chi-squared statistic χ # 2. For a directional goodness-of-fit test, the
cumulative chi-squared statistic

χ#2 = a−3
k = 1w

∗2
k

is proposed again as a promising test. The chi-squared approximation of its distribu-
tion is obtained in exactly the same way as given in Section 7.3.3, just by replacing s∗k
by w∗

k and a−2 by a−3 in calculating the cumulants.
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(3) More direct method for calculating p-value in the non-explosive sequence.
If it is possible to write down all the conformable sequences in the case of a non-
explosive sample space, a simpler method for calculating p-value is available.
First, search for the conformable sequences by the bottom-up procedure, utilizing
efficiently the inequalities, and attach them to the probabilities obtained by the pro-
ducts of conditional probabilities. Then, sum up those probabilities for the sequences
whose test statistics are equal to or larger than the observed test statistic. The proce-
dure is applicable to both the maximal contrast and cumulative chi-squared tests,
and is particularly useful for a directional goodness-of-fit test of the dose–response
curve, where the sequence is usually not large. This method is employed in
Examples 7.6 and 7.8.

Example 7.8. Estimating the upper confidence bound at the lowest dose of an
inverted sigmoidally constrained dose–response curve. The data in Table 7.8 are
from Schmoyer (1984), who summarized and analyzed the experiment of Dalbey
andLock (1982). Schmoyer gave a smoothed estimate of thedose–response curveunder
the sigmoid assumption and an upper confidence bound 0.057 of the risk at the lowest
dose under an additional assumption that the response rate at zero dose is zero, which

improves a naïve estimate 0.095 = 1−0 051 30 at significance level 0.05. Hirotsu

and Srivastava (2000) obtained an upper confidence bound 0.056 under the monotone
assumption of the dose–response curve and 0.035 under the same assumption with
Schmoyer. The proof of sigmoidicity has been, however, based on the normal approx-
imation of the binomial distribution, which might be difficult to assume for the
extremely low and high doses of the experiment. Therefore, we apply the exact
max acc. t3 test developed in this section, (1) ~ (3), to obtain the p-values 0.025
for inverted sigmoidicity, 0.814 for sigmoidicity, and 0.051 for two-sided. In contrast,
the two-sided p-value is 0.056 by the cumulative chi-squared χ# 2. This suggests an
inverted sigmoid departure of the response from a logit linear model. Then, the logit

Table 7.8 Results of diesel fuel aerosol experiment.

Dose xi ni yi yi/ni

8 30 0 0
16 40 1 0.025
24 40 2 0.05
28 10 5 0.5
32 30 12 0.4
48 20 16 0.8
64 10 6 0.6
72 10 10 1.0
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linear regression will give a higher response rate than the true response rate at the low-
est dose, giving a conservative estimate of the risk (see Fig. 7.1). Thus we have a con-
servative upper confidence bound 0.055 of the risk at the lowest dose at significance
level 0.05 by a standard software for logit regression analysis.

It is interesting to see that several different methods suggest a rather similar esti-
mate. Then, the present method should be appealing by an exact test of the sigmoi-
dicity and the maximum likelihood estimation of only two parameters, utilizing the
whole data without any additional assumption like zero response rate at zero dose.
Other methods are utilizing only a part of data.
Finally, while accumulated statistics are very popular in statistical applications, the

use of doubly and triply accumulated statistics is rather novel and expected to have
new applications. Some of the software is provided on the author’s website.
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8

Poisson Process

Max acc. t1 and max acc. t2 for the binomial distribution can be applied almost as they
are for the change-point hypotheses in a Poisson sequence. As a real example, a
sequence of spontaneous reporting of drug adverse events caused by the administra-
tion of some compound drug for interstitial pneumonia is given in Table 8.1. The data
are the number of reportings per month from November 2003 to May 2010 at PMDA
(Pharmaceutical and Medical Device Agency, Japan) and an independent Poisson
sequence is assumed. It is a very serious problem at PMDA how to detect a significant
change of time series in as short a time as possible. Again, we are interested in detect-
ing a change-point as well as a change of general tendency. Then the first choice will
be max acc. t1.

8.1 Max acc. t1 for the Monotone and Step
Change-Point Hypotheses

8.1.1 Max acc. t1 statistic in the Poisson sequence

We assume an independent Poisson distribution Po(Λi) for the observed sequence
yi and apply Lemma 6.2 for θi = logΛi. Then the standardized accumulated statistics
corresponding to (7.5) of the binomial case are

tk Yk = tk =
a−k

ak
Λ

−1 2

Λ−
Yk
k

, k = 1,…, a−1, (8.1)
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where Yk = y1 +…+ yk, Λ= Ya a. It should be noted that Ya is the sufficient statistic
under the null model θ1 = = θa, and the conditional null distribution of Yk given Ya is
a binomial distribution

B Yk│Ya,
k

a

Ya

Yk

k

a

Yk

1−
k

a

Ya −Yk

,

so that the conditional variance given Ya is k a−k a Λ.

8.1.2 Distribution function of max acc. t1 under the null model

In this case the Markov property of tk Yk , k = 1, …, a−1 (8.1) is shown by the form
of the joint conditional distribution of Y1,…,Ya−1 given Ya. Now it is well known that
the joint null distribution of yk at Λi ≡Λ is factorized in the form

Πa
k = 1 e−ΛΛyk yk =

Ya
Πyi

1
a

Ya

×
e−aΛ aΛ Ya

Ya
,

where the last part is the Poisson distribution Po(aΛ) for Ya and the first part is a
multinomial distribution for y1,…, ya given Ya. This part is further factorized into
the products of binomial distributions as

Πa−1
k = 1

Yk + 1

Yk

k

k + 1

Yk 1
k + 1

Yk + 1 −Yk

Table 8.1 Spontaneous reporting of adverse events per month at PMDA.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
yk 1 4 1 1 1 1 3 0 4 1 3 0 2 4 3

k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
yk 3 2 4 1 4 1 4 2 1 2 2 1 0 1 5

k 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
yk 1 4 1 4 2 3 7 3 3 4 1 5 4 5 6

k 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
yk 2 4 9 3 4 1 1 6 3 5 8 1 1 6 3

k 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
yk 3 1 2 3 1 3 4 3 3 5 2 2 0 4 4

k 76 77 78 79
yk 4 2 2 4
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to give the conditional joint distribution of Y1,…,Ya−1 given Ya. Then, the Markov
property of Yk follows immediately from Lemma 7.1. The recursion formula (7.10)
for max acc. t1 is valid as it is, except that the conditional distribution is now a bino-
mial distribution

fk Yk Yk + 1 =
Yk + 1

Yk

k

k + 1

Yk 1
k + 1

Yk + 1 −Yk

Example 8.1. Change-point analysis of Table 8.1. Max acc. t1 is applied by the
estimate of Λ= 2.835. The observed maximum is max tk Yk = 3 497 at April
2006 k = 29 with p-value 0.0096 by the recursion formula (7.10). It should be
noted that large tk(Yk) suggests a shift of mean between k and k + 1, and we call
this a change at k + 1. Therefore, max acc. t1 suggests a shift of means at
k + 1= 30. Then it is interesting to confirm whether it changed to a decreasing
tendency at some point after that time k + 1 = 30 by an appropriate action. For
this purpose, max acc. t2 for the concavity hypothesis can be applied (see
Section 8.2.1).

8.1.3 Max acc. t1 under step change-point model

In the change-point analysis, it is also of interest to make a statistical inference on the
step change-point k. For this purpose, the non-null distribution is obtained first.

(1) Non-null distribution. For the normal model, the maximal accumulated statistics
have been derived as efficient scores for the step change-point and slope change-point
models in Sections 6.5.3 (1) (b) and 6.5.4 (3), respectively. In this section we develop
the non-null distribution for the step change-point model in the mean of a Poisson
sequence:,

Mk

θi = logΛi = θ, i = 1, ,k,

θi = logΛi = θ +Δ, i = k + 1, …,a
(8.2)

Now, it is an easy calculation to obtain the factorization of the joint conditional dis-
tribution given Ya under model (8.2) as

G y│Ya,Δ =Πa−1
i= 1 f

∗
i Yi Yi+ 1 , (8.3)
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where

f ∗i Yi Yi+ 1 =
Yi+ 1

Yi

i

i+ 1

Yi 1
i + 1

Yi + 1 −Yi

, i = 1, …,k−1,

f ∗i Yi Yi+ 1 =C−1
i + 1 Yi+ 1,Δ

Yi+ 1

Yi

i

i+ 1

Yi 1
i + 1

Yi+ 1 −Yi

e−YiΔ, i= k,

f ∗i Yi Yi+ 1 =C−1
i + 1 Yi+ 1,Δ Ci Yi,Δ

Yi+ 1

Yi

i

i+ 1

Yi 1
i + 1

Yi + 1 −Yi

, i= k + 1,…,a−1

with Ci Yi,Δ , k + 1 ≤ i ≤ a, normalizing constants. It should be noted that in
Section 7.3.1 (1) under the null hypothesis of the step change-point model, the coeffi-
cients Ci are known and need not be calculated numerically. For the non-null distri-
bution where such a coefficient is unknown, we can apply a similar recursion formula
to calculate these constants as employed in Section 7.3.2 (2) for the doubly accumu-
lated statistics. The method is particularly useful for obtaining a distribution further
conditioned on Yk to obtain a confidence region for a change-point in the next section.
The method is also systematically extended to the slope change-point model in
Section 8.2. Now we express f ∗i Yi Yi+ 1 as

f ∗i Yi Yi+ 1 =C−1
i+ 1 Yi+ 1 Ci Yi Yi + 1−Yi

−1, i= 1,…,k−1,

f ∗k Yk Yk + 1 =C−1
k + 1 Yk + 1, Δ Ck Yk e−YkΔ Yk + 1−Yk

−1, i= k,

f ∗i Yi Yi+ 1 =C−1
i+ 1 Yi+ 1, Δ Ci Yi, Δ Yi+ 1−Yi

−1, i= k + 1,…,a−1,

(8.4)

by changing the definition of the coefficients Ci slightly, and calculate the constants
recursively starting from C1 = 1/Yi! by

Ci+ 1 Yi+ 1 = Yi
Ci Yi Yi+ 1−Yi

−1, i= 1,…,k−1,

Ck + 1 Yk + 1, Δ = Yk
Ck Yk e−YkΔ Yk + 1−Yk

−1, i= k,

Ci+ 1 Yi+ 1, Δ = Yi
Ci Yi, Δ Yi+ 1−Yi

−1, i= k + 1,…,a−1

(8.5)

The recursion formula (7.10) is valid as it is again, by substituting the conditional
distribution (8.4), and gives a useful method for calculating the power at given Δ.
Equation (8.4) shows also that the accumulated statistic Yk is the efficient score with
respect to Δ for the step change-point model (8.2).

(2) Confidence region for a step change-point.We have given the confidence inter-
val on the amount of change Δ in the sections of Chapter 6. However, in Example 8.1
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we are also interested in the confidence region on the change-point k + 1. As usual, it
is obtained as the set of K + 1 that are not rejected at level α by the test of the null
hypothesis on the change-point,

HK + 1
0 k + 1 =K + 1, (8.6)

against the alternative hypothesis

HK + 1
1 k + 1 K + 1

asserting K + 1 not to be a change-point. An appropriate test statistic is again
maxk tk(Yk) of (8.1), but the maximization is with respect to k = 1,…,a−1,
k K and its null distribution should be defined under the null hypothesisHK + 1

0 . This
statistic is asymptotically equivalent to the likelihood ratio statistic by Worsley
(1986). In this case the null distribution contains a nuisance parameter Δ. However,
according to Worsley (1986), we can make the inference free from Δ by conditioning
on the sufficient statistic YK under HK + 1

0 . The conditional null distribution is most
easily obtained by running the recursion formulae (8.5) and (7.10), fixing YK at the
observed value. This is easily done by altering the inequality for restricting YK to
the one point of the observed value in running the recursion formula for calculating
power in Section 8.1.3 (1). Then, the confidence region eventually collects thoseK + 1
for which tK(YK) is sufficiently close to the observed maximum maxk tk(Yk). Worsley
(1986) proposed a different recursion formula considering independent Markov pro-
cesses for both sides of the assumed change-point. However, our method is most easy
to extend to the second order Markov sequence in Section 8.2. An all in one program
for p-value, power, and confidence region is given in Hirotsu and Tsuruta (2017).

Example 8.2. Example 8.1 continued. We test the null hypothesis (8.6) for
K = 1,…, a−1, applying the recursion formulae (8.5) and (7.10), and collect those
K + 1 with two-sided p-value larger than or equal to 0.10. Then the confidence region
at confidence coefficient 0.90 is obtained as an interval 27 ≤K + 1 ≤ 43.

8.2 Max acc. t2 for the Convex and Slope
Change-Point Hypotheses

8.2.1 Max acc. t2 statistic in the Poisson sequence

The max acc. t2 method based on the statistic Sk has been developed in Section 7.3.2,
assuming a discrete univariate exponential family and that all the procedures for a
binomial distribution are valid also for a Poisson distribution with only a slight

modification. The function b yk is changed to yk
−1, so that we use the function

b yk = Sk −2Sk−1 + Sk−2
−1 in the probability calculation of Section 7.3.2 (2),

since the data are taken every one-month interval. The formulae in 7.3.2 (2) ~ (4)
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are all valid, including the conditional distribution of (7.16), except that nk + 1 is not
necessary in equation (7.23).

Example 8.3. Example 8.1 continued. In this example we are interested in testing a
downturn tendancy and therfore perform a concavity test based on −s∗m. A downturn is
detected at October 2007 K + 1 = 48 with observed maximum −s∗m = 2 858 and
p-value 0.0093 by the formula given in Section 7.3.2 (4) (c).

8.2.2 Max acc. t2 under slope change-point model

(1) Non-null distribution. In this section we consider a slope change-point model at
x= xk + 1 assuming general unequal intervals,

Mk

θi = logΛi = β0 + βkxi, i = 1, …,k + 1,

θi = logΛi = β
∗
0 + β

∗
kxi, i = k + 2,…, a,

where β0 + βkxk + 1 = β
∗
0 + β

∗
kxk + 1. Defining Δk = β

∗
k −βk, model Mk can be rewritten as

Mk
θi = logΛi = β

∗
0 +Δkxk + 1 + β∗k −Δk xi, i = 1, …,k + 1

θi = logΛi = β
∗
0 + β

∗
kxi, i = k + 2,…, a

(8.7)

Then the conditional distribution G y Ya,Ta,Δk is obtained as

G y Ya,Ta,Δk =C−1 Ya,Ta,Δk Πa−2
i= 1

Si+ 2−Si+ 1
xi+ 3−xi+ 2

−
Si+ 1−Si
xi+ 2−xi+ 1

−1

eSkΔk , (8.8)

where the definitions of Ya, Ta, and Si are the same as in Section 7.3.2. The factori-
zation of the conditional distribution G y Ya,Ta,Δk is obtained by a slight modifica-
tion of Section 7.3.2. The idea is very similar to the previous section, and we give only
the result in the following:

f ∗i Si Si+ 1,Si + 2 =C−1
i + 1 Si + 1,Si + 2 Ci Si,Si+ 1

Si + 2−Si + 1
xi + 3−xi + 2

−
Si + 1−Si
xi+ 2−xi + 1

−1

, 1 ≤ i ≤ k−1

f ∗k Sk Sk + 1,Sk + 2 =C−1
k + 1 Sk + 1,Sk + 2, Δk Ck Sk,Sk + 1

Sk+ 2−Sk+ 1
xk+ 3−xk+ 2

−
Sk+ 1−Sk
xk+ 2−xi + 1

−1

eSkΔk , i= k,

f ∗i Si Si+ 1,Si + 2 =C−1
i + 1 Si + 1,Si + 2, Δk Ci Si,Si + 1, Δk

Si + 2−Si + 1
xi + 3−xi + 2

−
Si + 1−Si
xi + 2−xi+ 1

−1

, k + 1 ≤ i ≤ a−2

We can calculate the normalizing constants recursively, noting the change of
kernel for calculating C−1

k + 1 Sk + 1,Sk + 2, Δk at i= k. The overall constant C(Ya, Ta,Δk)
is obtained at the final step. It should be noted that the initial value of the normalizing
constant is

C1 S1,S2 =
S1

x2−x1

−1 S2−S1
x3−x2

−
S1

x2−x1

−1
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If the change-point is at x= x2, then the recursion formula starts from the second
equation. Equation (8.8) shows again that the accumulated statistic Sk is the efficient
score with respect to Δk for the slope change-point model (8.7).

(2) Confidence region for a slope change-point. The confidence set of the change-
point xk + 1 is obtained as the set of xK + 1 that are not rejected at level α by the test of
null hypothesis on the change-point,

HxK + 1
0 xk + 1 = xK + 1,

against the alternative hypothesis,

HxK + 1
1 xk + 1 xK + 1

asserting for xK + 1 not to be a change-point. An appropriate test statistic is again the
maximal standardized statistic of Sk in Section 7.3.2, but the maximization is with
respect to k = 1,…,a−2, k K and its null distribution should be defined under the
null hypothesisHxK + 1

0 . Again we make a conditional inference given the sufficient sta-
tistic SK under HxK + 1

0 to be free from the nuisance parameter ΔK. The conditional null
distribution is most easily obtained by running the recursion formula fixing SK at the
observed value. This is just as in Section 8.1.3 (2).

Example 8.4. Example 8.1 continued. Applying the recursion formula for
K = 1,… , a−2, the confidence region at confidence coefficient 0.90 is obtained as
an interval 35 ≤ xK + 1 ≤ 58.

The non-null distributions of max acc. t1 and t2 in this chapter can be applied to
the binomial distribution by a simple alteration of the kernel function as given in
Example 7.6.
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9

Block Experiments

The role of the block factor has already been mentioned in Sections 1.6 and 5.1.3. In
this chapter we discuss a general a-sample problem and non-parametric tests in block
experiments.

9.1 Complete Randomized Blocks

In comparing a treatments, we prepare b blocks and randomize a treatments in each
block. We assume no-interaction between treatment and block, so that the statistical
model is expressed as

yij = αi + βj + eij, i= 1, …, a, j= 1,…, b, 9 1

where αi denotes the treatment effect, βj the block effect, and the error eij are distrib-
uted independently and identically as normal N(0, σ2). Let y be a column vector of yij
arranged in dictionary order, and model (9.1) be expressed in matrix form as

y =Xαα +Xββ + e,

where α = α1,…,αa , β = β1,…,βb , Xα =

jb 0 0

0 jb 0

0 0 jb n× a

, and Xβ =

Ib

Ib

Ib n× b
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with n= ab. This is a simple linear model, and we can derive an analysis of treatment
effects αwith a nuisance parameter β. However, we can also derive a standard form by
an orthonormal transformation

M =

n−1 2jn
b−1 2PaXα

a−1 2PbXβ

Q

Then it is a matter of simple algebra to derive

M y =

zμ

zα

zβ

ze

=

n1 2 α + β

b1 2Paα

a1 2Pbβ

0

+M e (9.2)

In equation (9.2) the estimable functions are nicely separated, which leads to the par-
tition of sums of squares:

M y 2 = y y = i jy
2
ij

= n−1 jny
2
+ b−1 PaXαy

2 + a−1 PbXβy
2 + Q y 2

= n−1y2 + b−1
iy
2
i −n

−1y2 + a−1
jy
2
j−n

−1y2 + Q y 2

= Sμ + Sα + Sβ + Se

(9.3)

where Sμ is for a general mean and sometimes called a correction term (CT). In con-
trast, the total sum of squares is obtained as

ST = i jy
2
ij−y

2 n (9.4)

and Se is calculated by

Se = ST −Sα−Sβ (9.5)

with df ab−a−b + 1. The unbiased variance is obtained as

σ2 = Se ab−a−b + 1 (9.6)

The components Sβ and Se in equation (9.3) partition the error sum of squares of a
one-way layout into two parts. In other words, Se (9.5) is obtained by eliminating
block effects Sβ from Se in Section 6.1. ST is nothing but S0 in (6.3), and Sα is SH
in (6.4) with ni ≡b. The non-centrality parameter of
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F =
Sα a−1

Se ab−a−b + 1
(9.7)

is

γα = b i αi−α
2 σ2, (9.8)

which is the same as γ (6.6) of a one-way layout when the repetition number is b.
These results are summarized in ANOVA Table 9.1.
Thus, the structure is the same as a one-way layout, except that the error sum of

squares has the block effects Sβ subtracted. Therefore an overall homogeneity test,
Scheffé, Tukey, and Dunnett-type multiple comparisons, and directional tests are per-

formed in the same way as for a one-way layout using the unbiased variance σ2 (9.6).
However, if there is a missing value, then the structure becomes unbalanced and we
have to go back to a general linear statistical inference.

Example 9.1. Measurements of enzymatic activation. The data of Table 9.2 are for
evaluating the methods A1 and A2 to measure enzymatic activation (Hirotsu, 1992).
Two samples from each of eight lots are evaluated by A1 and A2, respectively. From
the totals given in Table 9.2, we easily obtain

Table 9.1 ANOVA table for block experiment.

Factor Sum of
squares

df Mean squares F Non-
centrality

Main effects A Sα (9.3) a−1 Sα a−1 F (9.7) γα (9.8)
Block effects B Sβ (9.3) b−1 Sβ b−1
Error Se (9.5) ab−a−b+ 1 Se ab−a−b + 1 = σ2 (9.6)

Total ST (9.4) ab−1

Table 9.2 Measurements of enzymatic activation.

Lot j

Method i 1 2 3 4 5 6 7 8 Total yi

1 434 431 454 441 428 420 448 432 3488
2 430 436 441 434 423 410 442 432 3448

Total y j 864 867 895 875 851 830 890 864 6936 = y

Difference 4 −5 13 7 5 10 6 0 40 = y1 −y2
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ST = 1720,

Sα = 100,

Sβ = 1510,

Se = ST −Sα−Sβ = 110

These results are summarized in ANOVA Table 9.3. The result is significant at level
0.05 compared with F1, 7 0 05 = 5 59.
If we ignore the variation of the lots and perform the usual ANOVA of a one-way

layout, we should have the error sum of squares

Se = Se + Sβ = 1620

with df 14 = 7 + 7 , which leads to the Fratio

F =
Sα 1
Se 14

= 0 86

and no evidence is obtained for the difference between two measuring methods
because of the large variation among the lots.
On the other hand, we may apply the method for a paired sample in Section 5.1.3

since a = 2. The error sum of squares for the differences is

Se = 4
2 + −5 2 + + 02−402 8 = 220,

with df 7. This is exactly twice the error sum of squares Se here. It corresponds to the
fact that the variance of the differences yi1−yi2 is 2σ

2. Anyway, we have the t-statistic

t =
40 8

220 8−1
= 2 523,

whose square exactly coincides with F in Table 9.3. Thus it has been verified that the
method of this section coincides with the method for a paired sample when a= 2.

Table 9.3 ANOVA table for measurements of enzymatic activation.

Factor Sum of squares df Mean squares F Non-centrality

Main effects A 100 1 100 6.36∗ γα (9.8)
Block effects B 1510 7 215.7
Error 110 7 15 7 = σ2

Total 1720 15
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9.2 Balanced Incomplete Blocks

When an experiment requires a long time or a large space, it will be impossible to carry
out a complete set of a experiments in a block because of its capacity. The possible
number of experiments in a block is called the block size, denoted by k in this section.
The design of experiments in which k is smaller than the number of treatments a is
called an incomplete block design, where a complete set of treatments cannot be per-
formed in a block. Among various incomplete block designs we consider here only the
balanced incomplete block design (BIBD), which satisfies three conditions:

1. a treatments are replicated an equal number r times;

2. b blocks are of equal block size k;

3. every pair of treatments occurs simultaneously in the same number λ of blocks
−λ is called an association number.

Under these conditions, the number of experiments satisfies

n = ar = bk

A treatment appears in r blocks and in each block it meets with k−1 other treat-
ments. In contrast, it meets λ times with each of the other treatments, which leads
to an equation

λ a−1 = r k−1 (9.9)

It should be noted that equation (9.9) is a necessary condition for a BIBD and not a
sufficient condition. The BIBD is expressed by an incidence matrix N a × b com-
posed of 0, 1 elements, where every row represents treatment, every column repre-
sents block, and the (i, j) element is unity if the ith treatment occurs in the jth
block and 0 otherwise. An example of the incidence matrix for BIBD
a = 8, k = 4, b = 14, r = 7,λ= 3 is given below:

N =

1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 1 0 0 1 0 1 1 0 0 1

1 0 0 1 0 1 1 0 0 1 0 1 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0

0 1 0 1 1 0 1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1

0 1 1 0 1 0 0 1 0 1 0 1 1 0 8× 14

(9.10)

BLOCK EXPERIMENTS 205



It is observed in the incidence matrix (9.10) that every row contains seven unities,
every column four unities, and every pair of treatments appears in three blocks simul-
taneously. It is easy to understand the equation

NN =

r λ λ

λ r λ λ

λ λ r
a× a

The structure of the datum yij of the ith treatment in the jth block is

yij = αi + βj + eij, i= 1, …, a, j= 1, …, b, (9.11)

where the error eij are distributed independently as normal N(0, σ2). Let y be a column
vector of yij arranged in dictionary order, and the model (9.11) expressed in matrix
form as

y =Xαα +Xββ+ e (9.12)

where α= α1, …,αa , β= β1, …,βb as before. Noting XαXα = rIa,XβXβ = kIb and
N =XαXβ, we can derive a standard form for BIBD. It should be noted that in the
complete randomized blocks of Section 9.1, XαXβ is an a × b matrix with all the
elements unity.
First we derive a normal equation (2.27) for the linear model (9.12) and eliminate

the block effects β to obtain the adjusted equation (9.13) for treatment effects α:

A Xαα =A y, (9.13)

A =Xα−k
−1XβXβXα

It should be noted that A is expressed as

A= I−ΠXβ Xα, ΠXβ =Xβ XβXβ

−1
Xβ

that is, A is an orthogonal projection of Xα onto the orthogonal subspace of Xβ, thus
eliminating the block effects β. The equation A Xβ = 0 is obvious and equation (9.13)
is called an adjusted equation.
An a × a matrix

A A= rIa−k−1NN

has an obvious eigenvalue zero with related eigenvector j, and the eigenvalue λa/k of
multiplicity a−1 . The a−1 eigenvectors of λa/k can be expressed by the columns
of Pa. Then we can define a−1 orthonormal vectors

λa k −1 2PaA
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The matrix N N has the same non-zero eigenvalues with NN , and in particular the
eigenvalue r−λ of multiplicity a−1 with related eigenvectors PaN. It has further a
zero eigenvalue of multiplicity b−a with related orthonormal eigenvectors Qb sat-
isfying NQb = 0, where Qb is a b × b−a matrix. Finally, we can define an
n × n−b−a + 1 orthonormal matrix Q, which is orthogonal to Xα and Xβ and yields
the error part. In summary, we have an n × n orthonormal transformation

M =

n−1 2jn

k r−λ −1 2PaNXβ

k−1 2QbXβ

λa k −1 2PaA

Q

,

which leads to a standard form

z =M y =

zμ

zβ α

zβ

zα

ze

=

rα + kβ n

r−λ k 1 2Paα + r−λ k −1 2PaNβ

k1 2Qbβ

λa k 1 2Paα

0

+M e (9.14)

The sum of squares is expressed as

M y 2 = y 2 = CT+ ST ,

where CT= y2 n and

ST = i jy
2
ij−y

2 n (9.15)

The partition of the total sum of squares ST is obtained as

ST = Sβ + Sα + Se,

where

Sβ = zβ α
2 + zβ

2 = jy
2
j k−y2 n, (9.16)

Sα = zα
2 = λa k −1 A y 2, (9.17)

Se = ze
2 = Q y 2 = ST −Sα−Sβ (9.18)
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Equation (9.16) is derived since Xβy is a vector of y j and the rows of

r−λ −1 2PaN

Qb b−1 × b

are orthonormal to each other and also orthogonal to jb.
The unbiased variance is

σ2 = Se n−a−b + 1 (9.19)

with df n−a−b+ 1 . The F-test for the homogeneity of treatment effects is con-
structed from Sα and Se as

F =
Sα a−1

Se n−a−b + 1
(9.20)

with non-centrality parameter

γα = λa k Paα
2 σ2 = λa k α Ia−a−1jj α σ2

= λa k i αi−α
2 σ2

(9.21)

These results are summarized in the ANOVA Table 9.4.
The term ‘unadjusted’ for block effects implies that the treatment effects are

involved in the non-centrality, whereas the block effects have been eliminated from
Sα. The Sα here is just like Sα in the one-way layout of Section 6.1, or (9.3) of the
previous section with repetition number λa/k. The ratio of λa/k to the actual repetition
number r is therefore called the efficiency of BIBD. Further, the estimators of the
contrasts

Paα = λa k −1PaA y

Table 9.4 ANOVA table for BIBD.

Factor Sum of
squares

df Mean squares F Non-
centrality

Block
effects B

Sβ (9.16) b−1 Sβ b−1 Unadjusted

Treatment
effects A

Sα (9.17) a−1 Sα a−1 F (9.20) γα (9.21)

Error Se (9.18) n−a−b + 1 Se n−a−b + 1 = σ2 (9.19)

Total ST (9.15) n−1
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are mutually independent with equal variance λa k −1σ2, so it is very easy to make
multiple comparisons or isotonic inference.

Example 9.2. An experiment on the efficacy of eight antibiotics in blocks of size
four. Since a petri dish can contain only four treatments, we employed a design of
BIBD a = 8, k = 4,b= 14, r = 7,λ = 3 whose incidence matrix has been given in
(9.10), and obtained the data of Table 9.5 (Hirotsu, 1976). In Table 9.5 some totals
necessary for calculating sums of squares are shown. Among them, Xαy and Xβy

would be obvious. The term k−1NXβy is the total of the block average k−1Xβy in
which each treatment is assigned. Then, A y adjusts each of the treatment totals by
k−1Xβy to eliminate the block effects. For example, for treatment 1 the treatment total
is 80 + 79 + 73 + 80 + 80 + 79 + 78 = 549 and the block average for adjustment is
172 + 177 + 174 + 178 + 278 + 224 + 179 4 = 345.5. Therefore, the adjusted treat-
ment total is 549−345 5 = 203 5. By this operation the block effects are eliminated
from the treatment effects. Now the sums of squares are obtained as follows:

ST = 80 252 + 792 + + 122−24932 56 = 35795 98,

Sβ = 1722 + + 1832 4−24932 56 = 6466 23,

Sα = 203 52 + + −198 75 2 6 = 29056 29,

Se = ST −Sα−Sβ = 273 46

The unbiased variance is

σ2 = Se n−a−b + 1 = 273 46 35 = 7 81

These results are summarized in the ANOVA Table 9.6. The result is highly
significant.
There is no difficulty in performing the multiple comparisons of treatment effects.

Note again that

Paα = λa k −1PaA y=Paα + λa k −1PaA e, PaA e N 0, λa k σ2 Ia−1

Hence, simply consider A y as a treatment total with an effective repetition number
ne = λa k, which is six instead of seven in this example. In applying Scheffé type mul-
tiple comparisons to a contrast L α, we simply employ a point estimate n−1

e L A y with
variance n−1

e L Lσ2, which leads to a simultaneous confidence interval

L α n−1
e L A y ± n−1

e σ2 a−1 L L Fa−1, n−a−b+ 1 α
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Table 9.5 Efficacy of antibiotics.

Petri dish Total

Antibiotic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Xαy k−1NXβy A y

1 80 79 73 80 80 79 78 549 345.5 203.5
2 53 52 52 56 58 57 54 382 325.5 56.5
3 31 36 33 34 32 35 34 235 296.75 −61.7
4 8 16 13 10 1 10 12 70 271.75 201.75
5 75 75 81 81 80 78 77 547 351.5 195.5
6 56 52 59 53 60 55 57 392 327.5 64.5
7 40 36 30 35 30 32 38 241 298.75 −57.75
8 15 10 9 13 8 10 12 77 275.75 −198.75

Xβy 172 186 177 179 174 176 178 184 278 71 224 132 179 183 2493 2493 0.00



If L= 1 0 0 1 1 0 0 0 −3 , for example, we have 199.5 ± 18 73 at confidence coef-
ficient 0.95.
For pairwise comparisons by Tukey’s method, we use

αi−αi ± n−1
e σ2qa, n−a α

The analysis explained above is based on the treatment differences within a block
and called an intra-block analysis. In contrast, if random effects are assumed for the
blocks with expectation zero, the component zβ(α) also has information on Paα with

larger variance than the intra-block analysis caused by r−λ k −1 2PaNβ in equa-
tion (9.14). There is still a possibility of improving the intra-block estimator of Paα,
called a recovery of inter-block information.

9.3 Non-parametric Method in Block Experiments

9.3.1 Complete randomized blocks

(1) Two-sample problem of the binary data. We consider a paired two-sample
problem of the binary data. We compare two drugs, where the outcome is success
(1) or failure (0). If the outcome is sensitive to various conditions of subjects such
as sex, age, body weight, and so on, an overall randomized experiment will suffer
from those variations. Then, to reduce the noise in comparisons, the two drugs are
assigned to the matched pair with respect to those noise factors. The matched pair
can also be the two places of skin of a subject in the test of pasting drugs, or the
two data of the same subject in a cross-over clinical trial. In this case the matched pair
is considered to be a block of size two. In the case of the normal distribution in
Section 5.1.3, the treatment difference within a block has been analyzed. Similarly,
we define the difference within a block based on a logit model in this section. As
an example we consider the data of Maxwell (1961), where the effects of depression

Table 9.6 ANOVA table for the antibiotic data.

Factor Sum of
squares

df Mean squares F Non-
centrality

Block effects B Sβ = 6466 23 13 Sβ b−1 Unadjusted
Treatment
effects A

Sα = 29056 29 7 4150.9 531.49∗∗ γα (9.21)

Error Se = 273 46 35 Se n−a−b + 1 = σ2 = 7 81

Total ST = 35795 98 55
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treatment change between subjects, depersonalized or not. The treatment effects are
compared on 23 matched pairs. The data structure of the jth matched pair is given in
Table 9.7.

We assume a binomial distribution B(1, pij) for yij, i= 1, 2, in Table 9.7. Then, the
probability of the jth table is given by the products of two binomial distributions and
the probability function for the whole data is

Pr Yij = yij, i= 1, 2, j= 1,…, 23 =ΠiΠj p
yij
ij 1−pij

1−yij

We model the treatment effect by a difference Δ in the logit model as

log p1j 1−p1j = βj +Δ, (9.22)

log p2j 1−p2j = βj (9.23)

As usual, we assume here that there is no interaction between the treatment and the
block. Under the null hypothesis of interest

H0 Δ = 0 (9.24)

the sufficient statistics are obviously y j, j= 1,…, 23. Therefore we can consider the con-
ditional distribution of y1j given y j. By substituting (9.22) and (9.23) into the probability
function, the jth conditional distribution is known to be proportional to eΔy1j ,y1j = 0, 1.
However, when y j = 0or 2, y1j is uniquely 0 or 1 and we can consider only the case
y j = 1, which yields the two types of unlike pair as in Table 9.8. For the unlike pair,
the conditional distribution of y1j given y j is

eΔy1j

y1j
eΔy1j

=
eΔy1j

1 + eΔ
, y1j = 0, 1, (9.25)

where the summation is for y1j = 0 and 1. Finally, the probability function of the whole
data is obtained by the products of (9.25) as

Table 9.7 Data structure of the jth matched pair.

Subject

Data Model

Success 1 Failure 0 Total Success 1 Failure 0 Total

Not depersonalized 1 y1j 1−y1j 1 p1j 1−p1j 1
Depersonalized 2 y2j 1−y2j 1 p2j 1−p2j 1

Total y j 2−y j 2
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Pr Y1j = y1j y j = 1, j= 1,…, 23 =
eΔ

1 + eΔ

t
1

1 + eΔ

r− t

,

where r is the number of unlike pairs and t is the number of y1j = 1 among unlike pairs.
Then, the sufficient statistic for the parameterΔ of interest is t and its distribution given r
is a binomial distribution with probability p= eΔ 1 + eΔ :

Pr T = t r =
r
t

eΔt

1 + eΔ r

Under H0 (9.24), p = 1 2 and therefore the test reduces to testing the null hypothesis
H0 p = 1 2 based on t, which is distributed as B(r, p). This test is called McNemar’s
test. It should be noted that the data are summarized as in Table 9.9, where the number
of unlike pairs is r = x12 + x21, among which the number of y1j = 1 is t = x12. Then, the
p-value is evaluated as a binomial distribution B(r, 1/2). If r and t are moderately large,
the likelihood ratio test and the goodness-of-fit test are easily derived.

Likelihood ratio test statistic 2 t log 2t r + r− t log 2 r− t r

Goodness−of− fit test statistic 2t−r 2 r (9.26)

If the null hypothesis is rejected, then the confidence interval for eΔ or Δ is obtained
from the confidence interval for p = eΔ 1 + eΔ .

Table 9.9 Maxwell’s data.

Depersonalized

Not depersonalized Success Failure Total

Success x11 x12 x1
Failure x21 x22 x2

Total x 1 x 2 x

Table 9.8 Unlike pair.

Subject

Type 1 Type 2

Success 1 Failure 0 Total Success 1 Failure 0 Total

Not depersonalized 1 1 0 1 0 1 1
Depersonalized 2 0 1 1 1 0 1
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Example 9.3. Quantitative analysis of IgE antibody. Two methods of quantitative
analysis of IgE antibody – RAST and scratch testing – are evaluated within 166 sub-
jects and the result is summarized in Table 9.10 (Furukawa and Tango, 1993).
Table 9.10 is a realization of Table 9.9, where r = 2 + 18 = 20 and t = 2. The two-sided
p-value is calculated as

p = 2
20

0
+

20

1
+

20

2
220 = 0 00040

and highly significant, suggesting a high sensitivity of the scratch method. The good-
ness-of-fit chi-squared test (9.26) gives a similar p-value 0.00035.

(2) a-Sample problem of the binary data. The response is binary as before, but
the number of treatments is a and a complete set can be evaluated in a block – that
is, the block size is a. Now we have data in the form of Table 9.11. Here, all the

Table 9.10 Quantitative analysis of IgE antibody.

Scratch

RAST + − Total

+ 85 2 87
− 18 51 69

Total 103 53 166

Table 9.11 Data structure of the jth matched pair.

Data

Treatment Success 1 Failure 0 Total

1 y1j 1−y1j 1

i yij 1−yij 1

a yaj 1−yaj 1

Total y j a−y j a
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yij are uniquely determined if y j = 0or a and the other cases correspond to an unlike
pair. Under the null hypothesis

H0 All the treatments are equivalent,

the distribution of yij, i = 1, …, a−1 given all the marginal totals in Table 9.11 is a
multivariate hypergeometric distribution. Therefore, the expectation and covariance
are obtained as

E yij = y j a, i = 1,…, a, (9.27)

V yij = y j a 1−y j a , i= 1,…, a, (9.28)

Cov yij,yi j = −V yij a−1 , 1 ≤ i< i ≤ a (9.29)

As a test statistic it is reasonable to compare the number of successes of each treat-
ment in the unlike pair, that is, to test the homogeneity of

ti = j∗yij, i= 1,…, a, (9.30)

where the asterisk implies the summation with respect to the unlike pair. Since the data
from different blocks are independent of each other, the expectation and covariance of
ti are obtained by the summation of (9.27) ~ (9.29) as

E ti = j∗y j a,

V ti = j∗ y j a 1−y j a ,

Cov ti, ti = −V ti a−1 for i i

The variance–covariance matrix of t= t1, …, ta obviously satisfies

V Pat = 1 +
1

a−1
V ti Ia−1 =

a

a−1
V ti Ia−1 (9.31)

Therefore, for the contrast of t= t1,…, ta the variance and covariance can be calcu-
lated as if the ti were independent with variance a a−1 V ti , and this makes it
very easy to make inference based on ti (9.30).

(a) Cochran’s homogeneity test. The chi-squared statistic for the homogeneity test
is given by

χ2 = a
i= 1 ti− t

2 a

a−1
V ti =

a−1 t2i − t2 a

j∗y j− j∗ y
2
j a

(9.32)
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It should be noted that we dealt with the ti as if it were independent with constant
variance a a−1 V ti , although actually they are correlated as the multivariate
hypergeometric distribution. The statistic (9.32) coincides with the statistic (9.26)
when a = 2, where t1 = t, t2 = r− t, and j∗y j = j∗y

2
j = r.

Example 9.4. Cochran’s data (Cochran, 1950). The data of Table 9.12 are a sum-
mary of the culture test of diphtheria bacilli for comparing four culture mediums
A D. The number of treatments and the block size are four, and there are 69 blocks.
There are five patterns of success and failure as shown in Table 9.12, among which the
middle three patterns give an unlike pair – eliminating the cases of four mediums with
all success or all failure.
From this table we easily get

j∗y j = 3 × 2 + 3 × 3 + 2 × 1 = 17 = t ,

j∗y
2
j = 3

2 × 2 + 32 × 3 + 22 × 1 = 49,

and

χ2 =
3 22 + 62 + 32 + 62−172 4

17−49 4
= 8 053∗ (9.33)

This value is significant compared with χ23 0 05 = 7 815.

Because of a simple covariance structure (9.31), the multiple comparison proce-
dures are also easily derived.

Table 9.12 Summary of the culture test a= 4 .

Medium i Pattern of success and failure ti

1 (A) 1 1 0 0 0 t1 = 1 × 2 + 0 × 3 + 0 × 1 = 2
2 (B) 1 1 1 1 0 t2 = 1 × 2 + 1 × 3 + 1 × 1 = 6
3 (C) 1 0 1 0 0 t3 = 0 × 2 + 1 × 3 + 0 × 1 = 3
4 (D) 1 1 1 1 0 t4 = 1 × 2 + 1 × 3 + 1 × 1 = 6

y j 4 3 3 2 0
Number of blocks 4 2 3 1 59 (Total 69)
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(b) Turkey’s method. The pairwise difference

t i; i =
a−1

j∗y j− j∗ y
2
j a

1 2

ti− ti

is compared with qa, ∞ α .

(c) Scheffé’s method. For any contrast iLiti, L = 0,

χ2 =
a−1 iLiti

2

i L
2
i j∗y j− j∗ y

2
j a

is compared with χ2a−1 α .

(d) Dunnett’s method. The difference from the standard

t i; 1 =
a−1

j∗y j− j∗ y
2
j a

1 2

ti− t1 2

is evaluated by the method of Dunnett (1964).

Example 9.5. Example 9.4 continued. We apply Scheffé’s method to the contrast
t2 + t4− t1− t3 = 7. The statistic is

3 × 12−5 2 4 17−
49
4

= 7 737

This value is very close to χ23 0 05 = 7 815, suggesting a difference between the
groups (B, D) and (A, C). Actually, this component explains 96% of the total chi-
squared (9.33).

(3) a-Sample problem of the ordered categorical data. Extending the approach
to binary data of the previous section, we can also develop methods for ordered
categorical data. Extending Table 9.11, the data of the kth block, k = 1,…, n, is
presented in Table 9.13, where the elements yijk take 1 if the ith treatment responds
to the jth category and 0 otherwise. Thus, all the row totals are unity. When
the number of categories b is equal to two, this table reduces to Table 9.11 for
binary data.

Under the null hypothesis of homogeneity

H0 All the treatments are equivalent,
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the distribution of yijk , i= 1,…, a−1, j= 1, …, b−1 given all the marginal totals y jk

and yi k is again a multivariate hypergeometric distribution independent of each other
for different k. Therefore, the expectation and covariance are obtained as

E Yijk = yi k × y jk y k = y jk a, i= 1,…, a, (9.34)

Cov Yijk ,Yi j k = aδii −1 y jk aδjj −y j k a2 a−1 (9.35)

In particular, we note that

V Yijk = y jk a−y jk a2,

V Y jk = 0

By the independence of the blocks, we obtain the expectation and covariance of Yij by
the summation of (9.34) and (9.35) with respect to k as follows:

E Yij = y j a, (9.36)

Cov Yij ,Yi j = n
k = 1 aδii −1 y jk aδjj −y j k a2 a−1 (9.37)

For the test of ordinal effects, the score statistics

ui = k j wjyijk = j wjyij , i= 1,…, a (9.38)

with weights w1 < <wb are introduced. From ui, a homogeneity test is easily
obtained. Also, by considering b−1 step change-point contrasts, the cumulative
chi-squared statistic is constructed.

Table 9.13 Data structure of the kth block, k = 1,…,n.

Ordered categorical response

Treatment 1 j b Total

1 y11k y1jk y1bk 1

i yi1k yijk yibk 1

a ya1k yajk yabk 1

Total y 1k y jk y bk a
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(a) Linear score test. It is easy to derive the expectation of Ui:

E Ui = a−1 b
j= 1 wjy j = u a

The variance of Ui is

V Ui =w a−2 n
k = 1 y jk aδjj −y j k b× bw

= a−1 b
j= 1 w2

j y j −a−1 n
k = 1

b
j= 1 wjy jk

2
,

where w= w1,…,wb . Similarly, the covariance is obtained as

Cov Ui,Ui = − a−1 −1V Ui ,

giving a variance–covariance matrix of U = U1, …,Ua ,

V U = a a−1 V Ui I−a−1jj

Thus, in considering the contrast in U we can deal with the variables Ui as if they
were uncorrelated with equal variance

σ2 = a a−1 V Ui = a−1 −1 b
j= 1 w2

j y j −a−1 n
k = 1

b
j= 1 wjy jk

2

(9.39)

This structure is similar to (9.31) of binary data in the previous section. Then, by the
normal approximation we obtain the chi-squared statistic

χ2 =
1
σ2

a
i= 1 ui−u

2 =
1
σ2

a
i= 1u

2
i −

1
a
u2 (9.40)

with df a−1 .
As an important special case of b = a, if we take a rank within a block as score and if

further there is no tie – namely w= 1, …,a – then all the column totals y jk are unity.
In this case we have simply

σ2 = na a + 1 12 (9.41)

and the chi-squared statistic becomes very simple, which is called Friedman’s (1937)
test. It is very easy to partition χ2 (9.40) to obtain the statistics for multiple compar-
isons.

Turkey’s method: The pairwise difference

ui−ui σ
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is compared with qa, ∞ α .

Scheffé’s method: For any contrast iLiui, L = 0,

χ2 = i Liui
2

σ2 i L
2
i

is compared with χ2a−1 α .

Dunnett’s method: The difference from the standard

u i;1 = ui−u1 2σ

is evaluated by the method of Dunnett (1964).

(b) Cumulative chi-squared test. We apply step change-point contrast, which
implies constructing accumulated statistics as in Table 9.14. This is equivalent to tak-
ing a score like

w1 = =wJ = 1, wJ + 1 = =wb = 0 (9.42)

and we have the variance

σ2J =
1

a−1
J
j = 1y j −

1
a

n
k = 1

J
j= 1y jk

2
(9.43)

Table 9.14 Accumulated data according to step change at J.

Data

Treatment 1 J J+ 1 b Total

1 J
j= 1y1j n− J

j= 1y1j n

i J
j= 1yij n− J

j= 1yij n

a J
j= 1yaj n− J

j= 1yaj n

Total J
j= 1y j an− J

j= 1y j an
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from (9.39) and the Jth chi-squared component

χ2J =
1
σ2J

a
i= 1

J
j= 1yij −

1
a

J
j= 1y j

2

(9.44)

Then, the cumulative chi-squared is defined by

χ∗2 = b−1
J = 1χ

2
J (9.45)

To derive the distribution of χ∗ 2 (9.45), we give a matrix expression

χ∗2 = Pa

σ−1
1 0 0 0 0

σ−1
2 σ−1

2 0 0 0

σ−1
b−1 σ

−1
b−1 σ−1

b−1 0

y

2

,

where y is a vector of yij arranged in dictionary order. Then, a covariance structure of

UiJ =
J
j= 1yij and Ui J = J

j= 1yi j is required. It is obtained for J ≤ J as

Cov UiJ , UiJ =
1
a

J
j= 1y j −

1
a

n
k = 1

J
j= 1y jk

J
j= 1y jk ,

Cov UiJ , Ui J = −
1

a−1
Cov UiJ , UiJ , i i

Similarly, as in the previous section, in considering the contrasts with respect to i
we can regard UiJ and Ui J as uncorrelated, that is,

Cov UiJ , Ui J = δi, i
1

a−1
J
j= 1y j −

1
a

n
k = 1

J
j= 1y jk

J
j= 1y jk , J ≤ J

Let us define a matrix V whose J, J element is

V J, J =
1

a−1
J
j = 1y j −

1
a

n
k = 1

J
j = 1y jk

J
j = 1y jk σJσJ , 1 ≤ J ≤ J ≤ b−1

(9.46)
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Then the constants for the chi-squared approximation of χ∗ 2 by dχ2f are obtained from

df = tr Ia−1 V = a−1 b−1 ,

2d2f = 2tr Ia−1 V 2 = 2 a−1 tr V2 ,

namely

d = tr V2 b−1 ,

f = a−1 b−1 d

As stated in the linear score test statistic, if the response category is rank without tie, all
the formulae become very simple. In this case b is equal to a and all the column totals
y jk are unity. Equations (9.36) and (9.37) become

E Yij = n a,

Cov Yij ,Yi j =
n

a−1
δii −a

−1 δjj −a
−1

Equation (9.39) becomes simply

σ2 =
n

a−1
a
j = 1w

2
j −a

−1 a
j= 1wj

2
(9.47)

Substituting (9.42) into (9.47), we have

σ2J =
n

a a−1
J a−J (9.48)

and V J, J =
J

a−J

J

a−J
instead of (9.43) and (9.46), respectively. Therefore,

tr V2 = a2
1

1 × 2

2

+
1

2 × 3

2

+ +
1

a−1 × a

2

Example 9.6. Coating experiment in the electrolytic bath. Four metal plates are
coated in one electrolytic bath. The purpose of the experiment is to know whether
there is any difference in the thickness of coating by the attached place of metal in
the bath – 25 places are selected, and for each point a set of four data measurements
is taken. These four data measurements are ranked in order of thickness of the coating
(Hirotsu, 1992). The data of the first block in Table 9.15 are in the form of Table 9.16
and coincide exactly with Table 9.13, where a = b and without tie. Since there is no tie,
the simple formulae can be applied.
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Table 9.15 Ranks of four metals at 25 points.

Points

Metal

Total1 2 3 4

1 2 3 1 4 10
2 3 4 2 1 10
3 1 4 2 3 10
4 2 1 3 4 10
5 1 3 4 2 10
6 3 4 1 2 10
7 4 1 3 2 10
8 3 4 2 1 10
9 1 4 2 3 10
10 3 2 4 1 10
11 1 3 4 2 10
12 3 1 4 2 10
13 2 3 1 4 10
14 3 4 2 1 10
15 1 4 3 2 10
16 1 4 3 2 10
17 1 4 2 3 10
18 1 3 2 4 10
19 2 1 3 4 10
20 2 1 3 4 10
21 3 4 2 1 10
22 3 1 2 4 10
23 3 1 2 4 10
24 1 3 2 4 10
25 2 4 3 1 10

Total 52 71 62 65 250

Table 9.16 Data structure of the first block.

Metal

Rank

Total yi 11 2 3 4

1 0 1 0 0 1
2 0 0 1 0 1
3 1 0 0 0 1
4 0 0 0 1 1

Total y j1 1 1 1 1 y 1 = 4
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(a) Friedman’s test.We put wj = j and then ui (9.38) is nothing but the total score of
each metal, given in the last row of Table 9.15. We have

u1 = 52, u2 = 71, u3 = 62, u4 = 65

Since j w2
j = 12 + 22 + 32 + 42 = 30, jwj = 10, we have σ2 = 125 3 from (9.39). It

is also obtained from (9.41) simply as

σ2 =
25 × 4 × 5

12
= 41 6667

Putting these values into (9.40), we have finally

χ2 =
1

41 6667
522 + 712 + 622 + 652−

1
4
× 2502 = 4 45

This value is non-significant as a chi-squared distribution with df 3.

(b) Cumulative chi-squared test. We first prepare Table 9.17 of yij , counting how
many times each metal obtained the ranks 1 ~ 4. Then, we prepare Table 9.18 of

J
j= 1 yij −25 4 , J = 1, 2, 3, which are the components of (9.44).

From this table we obtain

χ∗2 = 3 00 + 3 48 + 10 04 = 16 52

Noting that a = b and there is no tie, the constants for the chi-squared approximation
are obtained from the simplified formulae as

Table 9.17 Table of yij .

Metal i

Rank j

Total1 2 3 4

1 9 6 9 1 25
2 7 1 6 11 25
3 3 11 7 4 25
4 6 7 3 9 25

Total y j 25 25 25 25 100
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Table 9.18 Table of J
j= 1 yij −25 4 .

Metal i

Rank J

1 2 3

1 9−25 4 = 11 4 9 + 6−2 × 25 4 = 10 4 9 + 6 + 9−3 × 25 4 = 21 4
2 7−25 4 = 3 4 7 + 1−2 × 25 4 = −18 4 7 + 1 + 6−3 × 25 4 = −19 4
3 3−25 4 = −13 4 3 + 11−2 × 25 4 = 6 4 3 + 11 + 7−3 × 25 4 = 9 4
4 6−25 4 = −1 4 6 + 7−2 × 25 4 = 2 4 6 + 7 + 3−3 × 25 4 = −11 4

Sum of squares 300/16 464/16 1004/16
σ2J 9 48 25 × 1 × 3

4 × 3
=
25
4

25 × 2 × 2
4 × 3

=
25
3

25 × 3 × 1
4 × 3

=
25
4

Sum ofsquares σ2J 3.00 3.48 10.04



d = =
tr V 2

b−1
=

42

4−1
1

22
+

1

62
+

1

122
= 1 519,

f = a−1 b−1 d = 4−1 2 d = 5 927

The p-value of χ∗2 d = 10 876 is 0.089, as the chi-squared distribution with df 5.927.

9.3.2 Incomplete randomized blocks with block size two

(1) Homogeneity test. In comparing a drugs which are sensitive to subject condi-
tions, every combination of two drugs is compared by matched pair. Let the drugs
i1 and i2 be compared ni1i2 = ni2i1 times, among which the number of unlike pairs
is ri1i2 = ri2i1 . Let yi1i2 be the number of subjects in unlike pairs who were
successful with drug i1 and unsuccessful with drug i2, and yi2i1 be the number of
reverse cases:

yi1i2 + yi2i1 = ri1i2 = ri2i1

Similarly to equations (9.22) and (9.23), we assume the model for i1 < i2

log pi1j 1−pi1j = βj +Δi1i2 ,

log pi2j 1−pi2j = βj

To eliminate βj, we follow the formulation of 9.3.1 (1) and obtain the binomial dis-
tribution for yi1i2 given ri1i2 as

B ri1i2 ,e
Δ i1 i2 1 + eΔ i1 i2

In this experiment we have such a distribution for all the
a
2

combinations of drugs.

Therefore, the data are summarized just like Table 9.19 of professional baseball league
results in Japan in 1981, where the draws are eliminated (Hirotsu, 1983b). The data
(yij, yji) at symmetric positions imply yij victories and yji defeats of i against j. The
probability function is the product of the binomial distribution

Π1 ≤ i< j ≤ a
rij
qij

qij
yij qji

yji ,rij = yij + yji, (9.49)

where

qij = e
Δij 1 + eΔij ,qji = 1−qij, i< j,
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which is the percentage of victories of drug i against j. The null hypothesis of the
homogeneity of the effects of a drugs is expressed as

H0 Δij = 0 qij = qji =
1
2
, 1 ≤ i < j ≤ a (9.50)

and called a hypothesis of symmetry in the two-way square table. Since the expecta-
tion of yij under H0 (9.50) is

E yij = yij + yji 2,

we obtain a goodness-of-fit chi-squared

χ2 = a
i= 1

a
j= 1

yij− yij + yji 2
2

yij + yji 2
= 1 ≤ i< j ≤ a

yij−yji
2

yij + yji
, (9.51)

which is equivalent to (9.26) when a = 2. The degrees of freedom are obtained by a
general formula as

f = a2−a−
a

2
=
a a−1

2
=

a

2

The likelihood ratio test is obtained as

−2logλ= 2 i jyij log
2yij

yij + yji
,

which is asymptotically equivalent to χ2 (9.51).

(2) Bradley–Terry model. A model for probability qij,

qij = γi γi + γj (9.52)

Table 9.19 Score sheet of the Pacific League in Japan in 1981.

Team

Team 1. Fighters 2. Braves 3. Lions 4. Orions 5. Hawks 6. Buffalos

1. Fighters ∗ 14 7 13 16 18
2. Braves 12 ∗ 15 8 16 17
3. Lions 16 9 ∗ 12 14 12
4. Orions 12 17 12 ∗ 13 7
5. Hawks 10 10 11 12 ∗ 11
6. Buffalos 4 8 12 16 13 ∗
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is often assumed and called the Bradley–Terry model. It is equivalent to defining the
difference Δij in log scale as

Δij = logγi− logγj

This model assumes a one-dimensional scale for measuring the strength of the drug,
where each drug is scaled by log γi. Another interpretation is that each drug has a
latent variable y, which is distributed according to an exponential distribution
γ−1i e−yi γi , and drug i defeats j with victory when yi > yj. In this case the probability
that drug i defeats j is

Pr Yi > Yj =
yi > yj

γ−1i e−yi γi × γ−1j e−yj γjdyidyj

= γ−1j e− γ−1i + γ−1j yjdyj = γi γi + γj

and coincides with (9.52). On the one hand, the Bradley–Terry model is equivalent to
a quasi-symmetry model in the next section.

(3) Marginal symmetry and quasi-symmetry model. The symmetry hypothesis
(9.50) is partitioned into two hypotheses: marginal symmetry Hm and quasi-
symmetry Hq.

Hm qi = q i, i = 1, …, a,

Hq qijqjkqki = qjiqikqkj, 1 ≤ i< j < k ≤ a
(9.53)

Marginal symmetry is obviously the symmetry of marginal probabilities. However, if
marginal symmetry holds there is still a possibility of asymmetry on the whole. When
there are equivalent transitions from i to j, j to k, and k to i, for example, marginal
symmetry holds but symmetry on the whole fails. The hypothesis to deny such asym-
metry is the quasi-symmetry Hq. The degrees of freedom for Hm are

fm = a−1

and for Hq,

fq =
a

2
− fm =

a−1

2
(9.54)

Very interestingly, the quasi-symmetry model is equivalent to the Bradley–Terry
model. First it is obvious that if equation (9.52) holds, then equation (9.53) holds.
Next, if equation (9.53) holds then a subset K of it,

K qijqjaqai = qjiqiaqaj, 1 ≤ i< j< a (9.55)
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also holds. Since the degrees of freedom of K is also
a−1
2

, K and Hq are equiv-

alent. From (9.55) we easily have

qij
qij + qji

=
qia qai

qia qai + qja qaj
,

but this is the same form as (9.52), putting γi = qia qai. A so-called three-way deadlock
that i is stronger than j, j is stronger than k, and k is stronger than i is expressed as

qijqjkqki > qjiqikqkj

Therefore, the Bradley–Terry model is a model where there is no three-way deadlock.
The likelihood function under the Bradley–Terry model is obtained by putting

(9.52) into (9.49) as

L=ΠΠ1 ≤ i< j ≤ a
rij

yij yji
×

1

γi + γj
rij Πa

i= 1γi
ti ,

where

ti = j i yij, i= 1,…, a

is the total number of victories of the ith drug or team. To obtain the MLE for γi, we
impose a restriction

iγi =M,

since the γi are determined essentially up to the ratio. Introducing the Lagrange mul-
tiplier λ, we solve ∂ logL−λ iγi−M ∂γi = 0 to obtain

ti
γi
− j i

rij
γi + γj

−λ = 0 (9.56)

By summing up equation (9.56) with respect to i after multiplying γi, we obtain

iti− i jrijqij− λM

= iti− 1 ≤ i< j ≤ arij qij + qji −λM

= iti− 1 ≤ i < j ≤ arij− λM = −λM = 0
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That is, we have λ = 0 and the equations to solve become

γi j i

rij
γi + γj

= ti, (9.57)

iγi =M (9.58)

Equations (9.57) and (9.58) can be solved recursively. Let γ0i be the value at some step
and put it into (9.57) to obtain the estimate at the next step,

γi = ti j i

rij
γ0i + γ0j

(9.59)

Then renew it proportionally by

γi =
Mγi
γi

so as to satisfy equation (9.58), then go back to the procedure (9.59) until convergence
is obtained. The cell frequencies are estimated by

yij = rijγi γi + γj

Another iterative method of obtaining the MLE ŷij more directly is as follows. Let the
initial value be

yij = yji = yij + yji 2 (9.60)

Then apply the iterative scaling procedure to

yi = yi , (9.61)

y j = y j, (9.62)

yij + yji = yij + yji, (9.63)

until convergence is obtained (see Fienberg, 1980 for example). Finally, we obtain test
statistics

Goodness−of− fit χ2 = i j yij−yij
2
yij,

Likelihood ratio λ= 2 i jyij log yij yij

(9.64)

These tests are valid when some combinations are not compared by setting the cell
frequency zero and subtracting the number of those combinations from the degrees
of freedom fq (9.54).
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Example 9.7. Fitting Bradley–Terry model to the data of Table 9.19. By the
iterative scaling of (9.60) ~ (9.63), we obtain the fitted values of Table 9.20.

The goodness-of-fit χ2 (9.64) is 22.39∗ with fq = 10, which is significant at approx-
imately level 0.01, since χ210 0 01 is 23.21. The result presents evidence that the
Bradley–Terry model would not fit well, inviting a more detailed analysis on the
three-way deadlocks. We discuss multiple comparison procedures on the three-way
deadlocks in the next section.

(4) Multiple comparisons in the quasi-symmetry model. The multiple compari-
sons on treatments are the sort of row-wise multiple comparisons of a two-way table,
which will be discussed in detail in Sections 10.3 and 11.3. To define a contrast
for specifying the three-way deadlock, we re-parameterize the probability qij in the
log linear model. We define

αi = log qi a qaa , βj = log qaj qaa , θi j = log qi j qaa qi aqaj

for i , j = 1,…, a−1, following Hirotsu (1983a). We further introduce

μi = αi −βi = log qi a qai , i = 1,…, a−1,

μi j = θi j −θj i = log qi j qj aqai qj i qi aqaj , 1 ≤ i < j ≤ a−1

The conditional inference of the μi and μi j is based on the conditional distribution

Pr Yij = yij│rij, yii =
1

C μi , μi j
ΠΠi< j

rij
yij yji

exp iy
∗
i μi + i < j yi j μi j

(9.65)

Table 9.20 Fitted values to the score sheet of the Pacific League in Japan in 1981.

Team

Team 1. Fighters 2. Braves 3. Lions 4. Orions 5. Hawks 6. Buffalos

1. Fighters ∗ 13.398 12.149 13.697 15.763 12.992
2. Braves 12.602 ∗ 12.310 13.317 15.38 14.391
3. Lions 10.851 11.690 ∗ 12.474 14.475 13.511
4. Orions 11.303 11.683 11.526 ∗ 13.990 12.498
5. Hawks 10.237 10.620 10.525 11.010 ∗ 11.608
6. Buffalos 9.008 10.609 10.489 10.502 12.392 ∗
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where C μi ,μi j is a normalizing constant and y∗i = yi −yi i . In the case of data type
as in Table 9.19, we can simply take yii = 0. As stated in Section 9.3.2 (3), the Bradley–
Terry mode is expressed as the null hypothesis

K0 μi j = 0, 1 ≤ i < j ≤ a−1 (9.66)

in model (9.65). To define a contrast for the three-way deadlock, let d(i, j, h) be an a2-
dimensional vector defined for a triplet (i, j, h) such that the a i−1 + jth, the
a j−1 + hth, and the a h−1 + ith elements are 1, the a i−1 + hth, the
a j−1 + ith, and the a h−1 + jth elements are −1, and all other elements 0 if
1 ≤ i< j< h ≤ a and similarly for other permutations. Let q be an a2-dimensional vector
with log qij as its a i−1 + jth element. Then, the row-wise hypothesis for the i, jth row
is defined by

K0 i; j D i; j q = 0,

where D (i; j) is an a−2 × a2 matrix with d i, j, h , h = 1,…, a, h i, j as its a−2
rows. The null hypothesis K0(i; j) implies that the combination (i, j) does not form a
three-way deadlock with other a−2 treatments. Since

μij = d i, j, a q, d i, j, h = d i, j, a + d j, h, a −d i, h, a

for 1 ≤ i< j< h < a, it is also obvious that the overall null hypothesis K0 (9.66) is equiv-
alent to the hypotheses K0(i; j) holding for all i j.

To test hypotheses K0(i; j), the distribution of yij further conditioned on y∗i can eas-
ily be derived from (9.65). Its use is, however, not practical unless a is typically small.
By a general theory for multinomials, the asymptotic conditional distribution of
y= y11, y12,…, yaa is normal with mean (m11, m12,…,maa) and covariance matrix

Vq =V−VJ J VJ −1J V, where V = diag mij , a diagonal matrix with mij as its

a i−1 + jth diagonal element and J an a2 × a2−2−1 a−1 a−2 full rank matrix
orthogonal to every d (i, j, h). In particular, under the null hypothesis K0 (9.66) the mij

are given by ŷij of (9.61) ~ (9.63) and mii are set to zero.
Let l be a vector of log yij arranged in dictionary order. UnderK0(i; j) we can expand

D’(i; j)l in

D i; j l =D i; j V −1y +O y−1

Since

V D i; j V −1y =D i; j V −1D i; j

we have an asymptotic chi-squared statistic

χ2 i; j = D i; j V −1y D i; j V−1D i; j
−1
D i; j V −1y (9.67)
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with df a−2. In this calculation, mii should be set to an arbitrary number except zero
for defining V −1. It is obvious that it vanishes after multiplying D (i; j) and has no
effect on the result. The statistic (9.67) is obviously a component of the goodness-
of-fit χ2 (9.64). Therefore, we can conservatively compare χ2(i; j) with χ2fq α .

For the between-groups chi-squared, let an a2-dimensional vector d (S1, S2, S3)
defined for disjoint subgroups of rows satisfy both orthogonality to every column
of J and orthogonality to every d (i, j, h) with at least two of i, j, h taken from the same
set S1, S2, or S3. Such a vector can be obtained as the sum of all different
d i, j, h , i S1, j S2, h S3. Then, an appropriate statistic for evaluating the asso-
ciation among three subgroups is

χ2 S1, S2, S3 = d S1, S2, S3 y 2 d S1, S2, S3 Vqd S1, S2, S3 (9.68)

This definition of chi-squared is not consistent with a single degree of freedom com-
ponent chi-squared

χ2 i, j, h = d i, j, h V −1y
2

d i, j, h V −1d i, j, h

The definition (9.68) is, however, to be preferred because it is orthogonal to the
between-rows chi-squared χ2(i; j) defined for i, j from the same set S1, S2, or S3. If
the between-groups chi-squared is not large enough, we can try a two degrees of free-
dom component chi-squared in d (S1, S2, S3)y and d (S4, S5, S6)y, where two of three
subgroups S4, S5, S6 may coincide with S1, S2, or S3.

Example 9.8. Example 9.7 continued for multiple comparisons. Chi-squared dis-
tances between rows are calculated according to (9.67) and given in Table 9.21. The
distance χ2 1; 4 = 14 83 elucidates 66% of the overall chi-squared 22.39 with df
15 by a single component of four degrees of freedom. Since its upper tail probability
as a chi-squared distribution with df 4 is nearly 0.005, a conservative significance
level is 0.075 by Bonferroni’s inequality. Table 9.21 also shows that teams 5 and

Table 9.21 Squared distances between teams of the Pacific League in Japan in 1981.

Team

Team

1. Fighters 2. Braves 3. Lions 4. Orions 5. Hawks 6. Buffalos

1. Fighters 0 7.84 9.59 14.83 6.24 12.89
2. Braves 0 7.53 11.00 4.52 13.17
3. Lions 0 8.53 3.27 13.00
4. Orions 0 5.24 13.84
5. Hawks 0 4.74
6. Buffalos 0
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6 are somewhat distinguishable in that team 5 will not form a three-way deadlock with
any other team and team 6 in the opposite extreme.

These considerations suggest homogeneous subgroups S1 = 1, 2 , S2 = 3, 4 , and
S3 = 6 , with team 5 being merged or not into any of these subgroups. The
observed values of (9.68) for the suggested four kinds of grouping are
χ2 S1, S2, S3 = 12 25, χ2 1, 2, 5 , 3, 4 , 6 = 8 40, χ2 1, 2 , 3, 4, 5 , 6 =
9 96, and χ2 1, 2 , 3, 4 , 5, 6 = 9 96. The between-groups chi-squared
χ2(S1, S2, S3) elucidates nearly 55% of the overall chi-squared with only 1 df and
can explain three conspicuously large components χ2 2 , 4 , 6 = 10 09,
χ2 1 , 3 , 6 = 8 26, and χ2 1 , 4 , 6 = 7 76. Further, if it is added by an
orthogonal component χ2(3; 4) or χ2(1; 2), it can elucidate nearly 90% of the overall
chi-squared. These considerations may suggest a three-way deadlock among S1, S2,
and S3. An interpretation is that team 6 has been too weak against teams 1 and 2,
but strong enough against teams 3 and 4. The ranking would therefore have been chan-
ged if team 6 were absent (see Hirotsu, 1983a for details).

Kuriki (1991) developed Scheffé type multiple comparison procedures concern-
ing the paired comparisons in a normal model. In particular, he derived a distribu-
tion of the largest eigenvalue of a skew-symmetric matrix based on the distribution
of the largest eigenvalue of a complex Wishart matrix by Khatri (1964). He applied
this to the data of Table 9.19 after an arcsine transformation of the binomial
probability, and obtained a conclusion conformable with those obtained in
Example 9.8.
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10

Two-Way Layout,
Normal Model

10.1 Introduction

The analysis of interaction effects is one of the central topics in ANOVA. In previous
books, however, mainly an overall F- or χ2- test has been described. Now, there are
several immanent problems in the analysis of two-way data which are not described
everywhere.

(1) The characteristics of the rows and columns – such as controllable, indicative,
variational, and response – should be taken into consideration.

(2) The degrees of freedom are often so large that an overall analysis can tell almost
nothing about the details of the data. In contrast, the multiple comparison procedures
based on 1 df contrasts as taken in BANOVA (Miller, 1998) are too lacking in power,
and the test result is also usually unclear.

(3) There is often a natural ordering in the rows and/or columns, which should be
taken into account in the analysis.

In the usual two-way ANOVA with the controllable factors in the row and column,
the purpose of the experiment will be to determine the best combination of the two
factors that gives the highest productivity. However, let us consider Example 10.3
in Section 10.3.5, on the international adaptability test of rice varieties. There the rows
represent the 44 regions – such as Niigata (Japan), Seoul, Nepal, Egypt, and Mexico –
and the columns represent the 18 varieties of rice – such as Rafaelo, Koshihikari, Belle
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Patna, and Hybrid. Then, the columns are controllable but the rows are indicative, and
the problem is by nomeans choosing the best combination of the row and column as in
the usual ANOVA. Instead, the purpose should be to assign an optimal variety to each
region. Then the row-wise multiple comparison procedures for grouping rows with a
similar response profile to columns are interesting. Assigning a common optimal vari-
ety to the regions in the same subgroup should be an attractive approach. As another
example, let us consider a dose–response analysis based on the ordered categorical
data in a phase II clinical trial (see Table 11.8 of Section 11.5.2, for example). Then
the rows represent dose levels and are controllable. The columns are the response vari-
ables and the data are characterized by the ordinal rows and columns. Of course, the
purpose of the trial is to choose an optimal dose level based on the ordered categorical
responses. Then, applying the change-point contrast to rows should be an interesting
approach for detecting the effective dose. There are several ideas for dealing with the
ordered response variables. These examples show that all two-way data requires its
own analysis. Indeed, the analysis of two-way data is a rich source of interesting the-
ories and applications (Hirotsu, 1978, 1983a,b, 1991, 1993, 1997, 2009; Hirotsu et al.,
2001, 2003).

10.2 Overall ANOVA of Two-Way Data

Randomized experiments are performed in all ab combinations of treatment A
(a levels) and treatment B (b levels). The purposes of the experiment are various,
as stated in the Introduction. In this section we introduce the basic concept and stand-
ard form of interaction commonly applied to all these cases. The observation in the kth
experiment of the ith level of A and the jth level of B is denoted by yijk, and we assume
a model

yijk = μij + eijk , i= 1,…, a; j= 1, …, b; k = 1, …, m, (10.1)

where μij is the expectation of yijk and the error eijk are assumed to be distributed as
N(0, σ2) independently of each other. The number of repetitions is not necessarily
equal, but we assume an equal number m in this section and give procedures for
the unbalanced data in Section 10.5. Then the total number of experiments is
n= abm. We re-parameterize μij of (10.1) as

μij = μ + αi + βj + αβ ij, (10.2)

where the (αβ)ij express the departure from an additive model and are one form of
interaction effect. However, the number of parameters in (10.2) is ab+ a + b + 1
and therefore these parameters are not one-to-one with μij. We give a more exact def-
inition of interaction effects in the following.
Let the weighted average of μij with respect to weight wj be defined by

Ai =
b
j= 1wjμij = μi ,

b
j= 1wj = 1, i= 1,…, a
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If factor B is the supplier of a material and the possible amount of supplied material by
supplier j is proportional to wj, such an average will make sense. Similarly, the
weighted average

Bj =
a
i= 1viμij = μ j,

a
i= 1vi = 1, j= 1,…, b

is defined. Further, we define the weighted average of Ai or Bj as

μ= a
i= 1viAi =

b
j= 1wjBj (10.3)

and we call it a general mean. We define the differences

αi =Ai−μ, (10.4)

βj =Bj−μ, (10.5)

and call them the main effects of Ai and Bj, respectively. Now, μij−μ j is the ith treat-
ment effect of A specific to the jth level of B, and its average with respect to wj,

jwj μij−μ j , is nothing but the main effect αi. We define the interaction (αβ)ij as
the difference of these two terms,

αβ ij = μij−μ j − μi −μ = μij−μi −μ j + μ, (10.6)

which is the ith treatment effect of A specific to the jth level of B, or the jth treatment
effect of B specific to the ith level of A by symmetry in (10.6). It should be noted that
all these effects depend on the weight system {vi} and {wj}. Further, defining the treat-
ment effects (10.3) ~ (10.6) is equivalent to imposing constraints

iviαi = 0,

jwjβj = 0,

ivi αβ ij = 0,

jwj αβ ij = 0

(10.7)

in model (10.2). Therefore, it looks as if the test of interaction effects generally
depends on how to define the constraints as the identification condition on parameters.
In this regard the following theorem is very important.

Theorem 10.1. Invariance of null hypothesis of interaction (Scheffé, 1959). The
null hypothesis of interaction Hαβ αβ ij = 0, i= 1,…, a, j= 1,…, b, is invariant for
any choice of the weight system.

Proof. We prove that if all the (αβ)ij are equal to zero by some weight system v0i and

w0
j , then all the (αβ)ij are equal to zero also by any other weight system {vi} and
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{wj}. The following formulation is due to Scheffé (1959). Let the effects defined by

the weight system v0i and w0
j be μ0, α0i , β

0
j , αβ 0

ij. If αβ 0
ij ≡ 0 holds, we have

μij = μ0 + α0i + β
0
j

For such μij we redefine the interaction (αβ)ij by any other weight system {vi} and
{wj}. Then we have

Ai =
b
j= 1wjμij = μ

0 + α0i + jwjβ
0
j , i= 1,…, a,

Bj =
a
i= 1viμij = μ0 + iviα

0
i + β

0
j , j= 1,…, b,

μ = μ0 + iviα
0
i + jwjβ

0
j

and therefore we have surely

αβ ij = μij− Ai +Bj−μ = 0

Although the definition of interaction (αβ)ij depends on the employed weight
system, it has been verified by Theorem 10.1 that the null hypothesis

Hαβ αβ ij = 0 μij = μi + μ j−μ (10.8)

is a concept that does not depend on the weight system.
Theorem 10.1 is also concerned with the fact that in the original model (10.2), all

the interaction contrasts αβ ij− αβ i j− αβ ij + αβ i j are estimable while any
contrast in αi or βj is not estimable. After imposing the constraints (10.7), all the
parameters in model (10.2) become estimable but those parameters depend on
the weight system except for interaction contrasts. It should be stressed that only
for the interaction contrasts are the constraints (10.7) regarded just as the identifi-
cation conditions. Similarly, whenHαβ holds the contrasts in the main effects αi and
βj do not depend on the weight system. If the situation is like Fig. 1.2 of no inter-
action, it is obvious that the difference of effects between F2 and F1 is the same by
any weight of the average with respect to the levels of G. In contrast, if the situation
is like Fig. 1.1, it is obvious that a large weight to G2 acts in favor of F1 and the
reverse if a large weight is given to G1, thus the inference depends on the con-
straints imposed.
As stated above, an inference on the interaction contrasts does not depend on the

particular weight system. This implies that a statistical analysis may be possible with-
out any constraint on the parameters. Actually, we can take an orthonormal transfor-
mation as shown in Example 2.3 or Section 9.1.
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Let y be a column vector of yijk arranged in dictionary order and express model
(10.2) as

y= μj+Xαα+Xββ +Xαβ αβ + e,

where Xα = Ia jbm, Xβ = ja Ib jm, Xαβ = Iab jm with Kronecker’s product.
When m= 1, the matrices Xα and Xβ coincide with those in Section 9.1. The orthonor-
mal transformation for the standard form is now

M =

n−1 2jn

bm −1 2PaXα

am −1 2PbXβ

m −1 2 Pa Pb Xαβ

Q

,

where Pa is defined in (2.36) and Q is an n−ab × n n= abm orthonormal matrix
satisfying

Q j Xα Xβ Xαβ = 0

Finally we have a standard form

z=M y=

zμ

zα

zβ

zαβ

ze

=

n1 2 μ + α + β + αβ

bm 1 2Pa α + αβ i

am 1 2Pb β + αβ
j

m 1 2 Pa Pb αβ

0

+M e (10.9)

From (10.9), ze is an unbiased estimator of zero and zαβ is the unbiased estimator of
the interaction contrast Pa Pb αβ . Since no constraint is imposed, α , β , and so
on remain in the equation. The sum of squares is expressed as

M y 2 = y 2 =CT+ ST

and the partition of total sum of squares

ST =
a
i= 1

b
j= 1

m
k = 1y

2
ijk −y

2 n (10.10)

is obtained as

ST = Sα + Sβ + Sαβ + Se,

TWO-WAY LAYOUT, NORMAL MODEL 241



where

Sα = zα
2 = bm −1 a

i= 1y
2
i −y2 n, (10.11)

Sβ = zβ
2
= am −1 b

j= 1y
2
j −y

2 n, (10.12)

Sαβ = zαβ
2
= m −1 a

i= 1
b
j= 1y

2
ij − bm −1 a

i= 1y
2
i − am −1 b

j = 1y
2
j + y

2 n,

(10.13)

Se = Q y 2 = ST −Sα−Sβ−Sαβ (10.14)

The unbiased variance is

σ2 = Se n−ab (10.15)

with df n−ab. The df of Sαβ is

ab− a−1 − b−1 −1 = ab−a−b+ 1 = a−1 b−1

and the F-statistic is given by

F =
Sαβ a−1 b−1

Se n−ab
(10.16)

with non-centrality parameter

γαβ =m Pa Pb αβ
2
σ2

=mμ Ia−a
− jjj Ib−b

− jjj μ σ2

=m a
i= 1

b
j = 1 μij−μi −μ j + μ

2
σ2

(10.17)

When the interaction exists, it is involved in the non-centrality parameter of Sα and
Sβ. If the interaction does not exist, Sα and Sβ are regarded as the sum of squares from a
one-way layout with number of repetitions bm and am, respectively. These results are
summarized in Table 10.1.

Example 10.1. Corrosion resistance of aluminum alloy from Davies (1954). The
data of Table 10.2 are the corrosion resistance of nine aluminum alloys at four sites of
a factory with different chemical atmosphere (Davies, 1954). At each of the sites a
plate made from each alloy was exposed for a year. The plates were then submitted
to four observers, who assessed their condition visually and awarded marks to each
from 0 to 10 according to the degree of resistance to attack. Since, by Davies, there is
no evidence of the effect of observers, we deal with them as mere repetitions. Thus, the
data are regarded as from 4 × 9 experiments with four repetitions. The sums of squares
are obtained as follows, based on the totals given in Table 10.2.
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Table 10.1 ANOVA table for two-way layout.

Factor Sum of squares df Mean squares F Non-centrality

Main effects of A Sα (10.11) a−1 Sα a−1
Main effects of B Sβ (10.12) b−1 Sβ b−1
Interaction Sαβ (10.13) a−1 b−1 Sαβ a−1 b−1 F (10.16) γαβ (10.17)
Error Se (10.14) n−ab Se n−ab = σ2

(10.15)

Total ST (10.10) n−1

Table 10.2 Corrosion resistance of aluminum alloys.

Site i Observer k

Alloy j

yi k1 2 3 4 5 6 7 8 9

1 5 5 5 4 6 6 1 6 7 45
2 4 5 5 4 5 3 1 5 7 39

1 3 7 7 7 7 8 5 4 7 7 59
4 6 5 4 5 7 6 3 6 7 49
y1j 22 22 21 20 26 20 9 24 28 192 (y1 )

1 8 7 7 7 5 4 5 4 5 52
2 7 8 6 7 6 5 3 7 8 57

2 3 9 9 9 9 8 6 7 8 8 73
4 8 8 7 7 5 5 7 4 5 56
y2j 32 32 29 30 24 20 22 23 26 238 (y2 )

1 4 4 5 3 4 3 0 5 5 33
2 1 3 3 2 5 2 0 4 5 25

3 3 5 5 5 6 6 4 3 7 9 50
4 3 3 7 2 3 3 1 6 6 34
y3j 13 15 20 13 18 12 4 22 25 142 (y3 )

1 6 5 6 5 6 4 4 7 5 48
2 1 3 6 5 5 4 3 6 5 38

4 3 5 5 7 6 8 7 5 8 8 59
4 5 3 5 3 5 3 3 7 6 40
y4j 17 16 24 19 24 18 15 28 24 185 (y4 )

y j 84 85 94 82 92 70 50 97 103 757 (y )
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ST = i j ky
2
ijk −y

2 n = 4527−3979 51 = 547 49,

Sα = bm −1
iy
2
i −y2 n = 4108 25−3979 51 = 128 74,

Sβ = am −1
jy
2
j −y

2 n = 4107 69−3979 51 = 128 18,

Sαβ = m −1
i jy

2
ij − bm −1

iy
2
i − am −1

iy
2
j + y

2 n

= 4325 75−4108 25−4107 69 + 3979 51 = 89 32,

Se = ST −Sα−Sβ−Sαβ = 547 49−128 74−128 18−89 32 = 201 25

These results are summarized in ANOVA Table 10.3. The upper tail probability of
F = 2.00 is 0.0086 and the result is highly significant. We therefore do not proceed to
testing the main effects. However, only this result does not tell us any detail of the
interaction structure and cannot lead to any action. A more useful approach will be
row-wise multiple comparisons given in the next section (see Example 10.2 of
Section 10.3.5 (1)).

10.3 Row-wise Multiple Comparisons

10.3.1 Introduction

In this section a method is developed to classify rows and/or columns into subgroups
so that additivity holds within each of the sub-tables made up of the grouped rows or
columns. The method can also be applied to the case where only one observation is
available for each cell, and yields an estimate of the variance in spite of no replicated
observation.
Suppose that we are given two-way observations and assume a model (10.1),

where the eijk are independently and normally distributed with mean 0 and

Table 10.3 ANOVA table for Example 10.1.

Factor Sum of
squares

df Mean
squares

F Non-
centrality

Main effects of A 128.74 3 42.91
Main effects of B 128.18 8 16.02
Interaction 89.32 24 3.72 2.00∗∗ γαβ (10.17)
Error 201.25 108 1.86 = σ2

Total 547.49 143
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variance σ2. In testing the null hypothesis of interaction it is common to apply the
F-test as mentioned in the previous section. If the null hypothesis of interaction
is accepted then the μij can be modeled by μij = μi + μ j−μ , satisfying
μij−μi j−μij + μi j = 0 for all i i and j j . When the null hypothesis is rejected, how-
ever, we are faced with a more complicated model since the degrees of freedom for
interaction are usually large and it is desirable to simplify the structure of interaction.
In practice, it would be helpful if we can classify the levels of each factor into homo-
geneous subgroups so that in each of them the interaction vanishes and the interaction
exists only among the subgroups; that is, μij−μi j−μij + μi j = 0 unless both
i and i , j and j belong to different subgroups. Therefore, we give a method for finding
such a partition so that the probability of judging any partition to be significant when
actually the additive model holds is at most equal to a pre-assigned significance level.
We call such a model of μij a block interaction model. The method is useful for both
types of factor, controllable and indicative. To illustrate some of the ideas, an example
is taken from Johnson and Graybill (1972), which is the yields of corn in bushels per
acre m = 1 . The data are shown in Table 10.4 and plotted in two ways in Figs 10.1
and 10.2, where the rows represent the fertilizer and the columns are soil type. They
suggest the existence of some interaction. Figure 10.1 suggests that rows 1, 2, and 6 do
not interact with the columns and rows 3, 4, and 7 are homogeneous in the same sense.
Similarly, Fig. 10.2 suggests that columns 1 and 2 are homogeneous and column 3
interacts with the rows very differently. On the whole, it is expected that the interac-
tion exists among those subgroups of rows and columns, suggesting the necessity of a
row and/or column-wise multiple comparison procedure for obtaining such a parti-
tion, since those subgroups are not given in advance.

Table 10.4 Yields of corn in bushels per acre (JASA, Johnson and Graybill, 1972).

Liming treatment Pounds
per acre

Minor
elements
added

Soil type

1. Very fine
sandy
loam

2. Sandy
clay
loam

3. Loamy
sand

1. No lime 0 None 11.1 32.6 63.3
2. Course slag 4000 None 15.3 40.8 65.0
3. Medium slag 4000 None 22.7 52.1 58.8
4. Agricultural slag 4000 None 23.8 52.8 61.4
5. Agricultural
limestone

4000 None 25.6 63.1 41.1

6. Agricultural slag 4000 B, Zn, Mn 31.2 59.5 78.1
7. Agricultural
limestone

4000 B, Zn, Mn 25.8 55.3 60.2
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Figure 10.1 Yields of corn in bushels per acre.

0

10

20

30

90

80

70

60

50

40

1 765432
Row number

1

2
3

Column number

Bushels per acre

Figure 10.2 Yields of corn in bushels per acre.
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10.3.2 Interaction elements

(1) Pair-wise interaction element. Re-parameterize the μij of (10.1) as

μ= μ+ + Pa Pb η, (10.18)

where μ is a vector of μij’s arranged in dictionary order, μ + an additive part of μ with
b i−1 + jth element μi + μ j−μ , and η= Pa Pb μ is an interaction part expressed
by a−1 b−1 parameters orthogonal to each other. It is obvious that Hαβ (10.8) is
equivalent to setting η= 0. The contribution of two particular rows, l1 and l2, to η is
given by

L l1; l2 = 0, ,0,
1

2
,0, ,0, −

1

2
,0 ,0 Pb =

1

2
Pb μl1 −μl2 ,

where μi = μi1,…,μib . This is called a pair-wise interaction element between two
rows. If it is known to be zero, one can pool the rows l1 and l2 in further searching
for a significant interaction structure.

An estimate of L(l1; l2) is obtained simply by replacing μl by yl = yl1 , …,ylb in
its defining equation: L l1; l2 = 2−1 2Pb yl1 −yl2 . Then, its size is evaluated by

χ2 l1; l2 =m L l1; l2
2
,

which may be called the chi-squared distance between the rows l1 and l2, since it is dis-
tributed as σ2χ2 with df b−1 and the non-centrality parameter m L(l1; l2)

2. χ2(l1; l2)
is nothing but the interaction sum of squares for the 2 × b data composed of the
l1th and l2th rows.

(2) Interaction element between two subgroups.Without any loss of generality, let
the first subgroup be composed of the first p1 rows and the second subgroup be the
subsequent p2 rows (p1 + p2 ≤ a . Then, the interaction element between the two sub-
groups is defined by

L 1,…,p1; p1 + 1,…,p1 + p2 = p1p2 p1 + p2
−1 2

p2,…,p2, −p1,…, −p1, 0,…, 0 Pb μ
(10.19)

An estimate L 1,…,p1; p1 + 1,…, p1 + p2 is obtained simply by replacing μ in

(10.19) by y i = y1 ,…,ya , a vector of yij arranged in dictionary order. Then its
size is evaluated by

χ2 1,…,p1; p1 + 1,…,p1 + p2 =m L 1,…,p1; p1 + 1,…,p1 + p2
2

This should be called the chi-squared distance between two subgroups. It should be
noted that a pair-wise interaction element is a special case of the interaction element
between two subgroups where p1 = p2 = 1.
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(3) Generalized interaction element among any number of subgroups. Without
any loss of generality, we assume a partition of rows into K subgroups:

H1 1, …, p1 , H2 p1 + 1,…,p1 + p2 , …, HK p1 + + pK−1 + 1,…,p1 + + pK = a

Then the generalized interaction element is defined by

ρ Pb μ, ρ j= 0, ρ 2 = 1, ρi ≡ ζk n Hk
−1 2 for i Hk, k = 1,…, K, (10.20)

with n(Hk) the number of rows in Hk. It should be noted that the ρi are bounded to a
constant for the rows in the same subgroup k. Now, unlike the previous interaction
elements the definition of the generalized interaction element is not unique and there
are several choices of ρ. Therefore, we choose ρ so that the chi-squared distance
becomes largest subject to restrictions (10.20):

χ2 H1,…, HK =maxρ j= 0, ρ 2 = 1m ρ Pb y i

2
, ρi = ζk n Hk

−1 2 for i Hk

(10.21)

LetYk = i Hk
yi andwk = n Hk

−1 2Pb Yk . It should be noted that n Hk
−1 2

has been introduced in (10.20) for normalizing the variance of wk. Then we get an
equation

χ2 H1,…, HK =max∑ n Hk
1 2ζk = 0, ζ 2 = 1m

K
k = 1 ζkwk

2

Therefore, the maximization of (10.21) is actually with respect to ζ = ζ1,…, ζK .
Then, change Yk into i Hk

yi − a−1 a
i= 1yi in the definition of wk, so that

k n Hk
1 2wk becomes zero. By this change of Yk , the maximal value remains

unchanged by virtue of the relation K
k = 1 n Hk

1 2ζk =
a
i= 1ρi = 0. Define

W = w1,…,wK by the renewed wk. Then χ 2(H1,…, HK) is obtained as the
largest eigenvalue of the matrix m W W with ζ an associated eigenvector. Since
{{n(H1)}

1/2,…, {n(HK)}
1/2} is an eigenvector of m W W corresponding to the zero

root, the orthogonality relation n Hk
1 2ζk = 0 is automatically satisfied as the

two orthogonal eigenvectors of W W.

10.3.3 Simultaneous test procedure for obtaining a block
interaction model

The simultaneous test procedure for obtaining a block interaction model is achieved
by the following distribution theory for a maximal statistic.
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Lemma 10.1. Lemma 1 of Hirotsu (1983a) and Lemma 2.1 of Hirotsu (1983b).
Themaximal value ofm a1,…, aa Pb y i

2 with respect to ai subject to restric-

tions ai = 0, a2i = 1 is the largest eigenvalue W1 of a Wishart matrix, which is
distributed as W σ2Imin a−1, b−1 ,max a−1, b−1 under the null hypothesis of
interaction (10.8).

Proof. See Lemma 1 of Hirotsu (1983a) and also Lemma 2.1 of Hirotsu (1983b).

It should be noted that the maximal statisticW1 in Lemma 10.1 is nothing but a gen-
eralized chi-squared distance amonga subgroups,where each subgroup is composed of
just one row. It is also the largest eigenvalue ofm Z Zwhen Z is an a × b matrix with
yij −yi −y j + y as its (i, j) element, where tr mZ Z = tr mZZ = Sαβ. It is therefore
obvious that all the chi-squared distances of the previous section are bounded above
by the largest eigenvalue of the Wishart matrix in Lemma 10.1. Therefore, the
distribution of W1 can be used as the reference distribution conservatively for all
the chi-squared distances. However, the distribution includes an unknown nuisance
parameter σ2 and there are two cases for dealing with it.

(1) There is repetition. In this case, there is available the usual unbiased estimate of
variance σ2 (10.15). Then, the distribution ofW1 σ2 = W1 σ2 σ2 σ2 is that of the

largest eigenvalue W2 of the Wishart matrix W Imin a−1, b−1 , max a−1, b−1

divided by χ2f f , where χ2f is a chi-squared variable with df f = ab n−1 and independ-
ent of W2. The upper tail probability of W2 is obtained by equation (3.13) and Cor-
ollary 3.2 of Kuriki and Takemura (2001) as

Pr W2 ≥w0
min q,ν −1
i= 0 δq+ ν−1−2iGq + ν−1−2i w0 ,

δq + ν−1−2i = −1 i2q+ ν−2− i
Г

1
2
q + 1 Г

1
2
ν+ 1 Г

1
2
q+ ν−1 − i

πГ q− i Г ν− i i
(10.22)

where q= min a−1, b−1 , ν= max a−1, b−1 , and Gl w0 is the upper tail proba-
bility of the chi-squared distribution with df l. Therefore, the upper tail probability of
W3 =W1 σ2 is given by

Pr W3 ≥w0 =E Pr W2 ≥w0χ
2
f f ,

where the expectation is taken with respect to χ2f , which is f × σ2 σ2 . That is, replace

w0 byw0χ2f f in (10.22) and take expectations of the resulting equation with respect to

χ2f . It should be noted that the formula (10.22) is an approximation due to the tube
method, and recently an exact method has been proposed byMarco (2014). The upper
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percentiles of the largest eigenvalue of the Wishart matrix are given for α= 0 01 and
0.05 in Table C of the Appendix.

(2) There is no repetition. In this case the statistic W1/Sαβ is free from a nuisance

parameter σ2, where Sαβ = Pa Pb y 2 = i j yij−yi −y j + y
2

is the total

sum of squares for interaction, which is also equal to tr WW = tr W W
when K = a. The upper percentiles hα of the null distribution of W1/Sαβ have been
obtained by Johnson and Graybill (1972): Pr W1 Sαβ ≥ hα = α for α= 0 01
and 0 05. The entries of the table are exact for b= 3, a all numbers, and b = 4,
a= 5, 7, but the others are by approximation (see Johnson and Graybill, 1972 for
details). We can apply the distribution conservatively to any chi-squared distance
divided by Sαβ, since it is bounded above by W1/Sαβ. Also we have

Pr S ≥ hα 1−hα Sαβ−W1 │H0 ≤ α,

where S stands for any chi-squared distance.

The accurate tail probability Pr W1 Sαβ ≥w0 under the null hypothesis for w0 ≥
1
2

is easily calculated by the formula (10.22) just by replacing Gq+ ν−1−2i w0 by
B1

2 q+ ν−1 − i, 12 νq−q−ν+ 1 + i w0 , where Bl,m w0 is the upper tail probability of

beta random variable with parameter (l,m). It is the result of Corollary 3.2 and
equation (3.9) of Kuriki and Takemura (2001).

10.3.4 Constructing a block interaction model

By summing up the significance information of interaction elements, we can derive a
useful block interaction model. We explain the procedure via an example of the yields
of corn (Table 10.4), which is an example without repetition m= 1 .
The chi-squared distances among rows defined in 10.3.2 (1) are calculated as in

Table 10.5 (1). We rearrange the rows to obtain Table 10.5 (2), so that the rows
with a small chi-squared distance are placed close. The clustering algorithm
of rows in Section 11.3.3 can also be applied here based on the chi-squared
distances.
It is obvious that row 5 behaves very differently from the other rows. We therefore

try the chi-squared distance between two subgroups H1 = 1, 2, 3, 4, 6, 7 and
H2 = 5 to find χ2 H1;H2 = 647 80. For the data it is easy to calculate Sαβ =
947.43 and the largest eigenvalue W1 = 943 04. Therefore, the reference value
for any chi-squared distance is obtained as hα 1−hα Sαβ−W1 = 48.37 at
h0 05 = 0 9168 and 101.91 at h0 01 = 0 9587, respectively, from Table 1 of Johnson
and Graybill (1972). The chi-squared distance χ2(H1;H2) is seen to be highly signif-
icant. Then, anypair chosenone fromeachof the subgroupsH11(1, 2, 6) andH12(4, 3, 7)
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of H1 shows somewhat large chi-squared distance. Therefore, we try the chi-squared
distance between the two subgroupsH11 andH12 to find χ2 H11;H12 = 258 67, which
is orthogonal to χ2(H1;H2) and highly significant also at α= 0.01. The sum
χ2 H1;H2 + χ2 H11;H12 = 906 48 is equivalent to the interaction sum of squares
of the proportionally unbalanced 3 × 3 table obtained by collapsing the sub-tables H11

andH12, respectively. The proportionally unbalanced two-way data mean that the rep-
etition number mij of each cell satisfies mij =mi m j m . This explains 95.7% of the
total interaction sum of squares Sαβ = 947.43, reflecting the homogeneity in each
subgroup.
In this case the rows and columns are both nominal and dealt with symmetrically.

The chi-squared distances among columns are calculated as χ2 1;2 = 70 44,
χ2 1;3 = 467 43, and χ2 2;3 = 883 27. The chi-squared distance between two sub-
groups K1 = 1,2 and K2 = 3 is χ2 K1;K2 = 876 99, which is even larger than
χ2(H1;H2) and highly significant. χ2(K1; K2 ) is equal to Sαβ− χ2 1;2 and also to
the interaction sum of squares of the 7 × 2 table obtained by collapsing the subgroup
K1, and explains 93.3% of the total interaction sum of squares. Although χ2(1; 2) is
also significant at level 0.05, its percentage contribution to the total sum of squares Sαβ

Table 10.5 Matrix of squared distance.

(1) Original

Row number 1 2 3 4 5 6 7

1 0 13.4 149.6∗∗ 126.3∗∗ 730.0∗∗ 37.4 174.4∗∗

2 0 84.4∗ 67.0∗ 574.7∗∗ 8.1 103.8∗∗

3 0 1.0 218.9∗∗ 42.8 1.0
4 0 249.5∗∗ 30.8 4.0
5 0 451.5∗∗ 190.8∗∗

6 0 57.6∗

7 0

(2) Rearranged

Row number 1 2 6 4 3 7 5

1 0 13.4 37.4 126.3∗∗ 149.6∗∗ 174.4∗∗ 730.0∗∗

2 0 8.1 67.0∗ 84.4∗ 103.8∗∗ 574.7∗∗

6 0 30.8 42.8 57.6∗ 451.5∗∗

4 0 1.0 4.0 249.5∗∗

3 0 1.0 218.9∗∗

7 0 190.8∗∗

5 0
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is small. It is of course easy to continue the analysis without collapsing columns 1
and 2, but we employ here the model

μ = μ + + q1, q2 6−1 2 1, 1, −2 η1, η2 , (10.23)

where q1 = 42
−1 2 1, 1, 1, 1, −6, 1, 1 , q2 = 6

−1 2 1, 1, −1, −1, 0, 1, −1 . This
model is a simplification of model (10.18) and agrees well with what is suggested
by a first glance at Figs 10.1 and 10.2. The contrast q1 reflects a comparison of H1

and H2, q2 a comparison of H11 and H12. Similarly, the contrast 1, 1, −2 represents
a comparison of K1 and K2.
The LS estimates of η1 and η2 are obtained by replacing μ in equation (10.23) by the

observation vector y and multiplying q1, q2 6−1 2 1, 1, −2 to both sides of it,
that is,

η1,η2 = q1, q2 6−1 2 1, 1, −2 y

They are η1 = −24 542 and η2 = −15 667 in this case, respectively. The departures of
the μij from μ+ = yi + y j−y are given by the last term of (10.23) with ηi replaced by
ηi, i= 1 2. The same and an easier expression of the model (10.23) will be

μij = μi + μ j−μ + ηijwith ηij = ηi j = ηuv if i, i Hu and j, j Kv, (10.24)

where Hu, u= 1,2 3 andKv,v = 1 2, denote homogeneous subgroups of rows and
columns, respectively. It should be noted that we renumbered H11, H12, and H2 as
H1(1, 2, 6), H2(4, 3, 7), and H3(5) for convenience. The model (10.24) deserves
the name of a block interaction model. The LS estimator of parameters in (10.24)
is given by

μij = μ+ + i Hu j Kv
yij n Hu n Kv − i Hu

yi n Hu − j Kv
y j n Kv + y ,

(10.25)

where μ+ = yi + y j−y is an additive part and the last term represents the departure of
the μij from μ + . These are given in Table 10.6 (1) and show nicely the interaction
pattern, where rows are rearranged. These departures coincide with the estimate
q1, q2 6−1 2 1, 1, −2 η1,η2 of the last term of (10.23). For example, the

(1, 1) element is calculated as 42 × 6 −1 2η1 + 6 × 6 −1 2η2 = −4 157 and coincides
with the estimate by the last term of (10.25). In Table 10.6 (2) we give μij by recover-
ing μ+ as well as the coefficients of variance calculated by

V μij = a+ b−1 ab+ a−n Hu b−n Kv abn Hu n Kv σ2 m

(10.26)
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in parentheses. They should be read as V μ11 = 29
72σ

2, V μ12 = 29
72σ

2, V μ13 = 5
9σ

2,
and so on. On the whole, it is observed that those variances of μij of the block inter-
action model reduce to one-half of the variance σ2 of the naïve estimator yij. It should
be noted that formula (10.26) is for a general case and here it is applied for m= 1.
In this case, the usual unbiased estimate σ2 is not available. However, an estimate of

σ2 is obtained by subtracting the estimated interaction effects from the total sum of
squares for the interaction as follows:

σ2 = i j yij−μij
2
f = Sαβ− η 2 f ,

where f = a−1 b−1 − A−1 B−1 with A−1 B−1 the number of orthogonal
interaction contrasts in model (10.23) or (10.24). It should be noted that μij and σ2

are the better estimators of the μij and σ
2 than those which might be obtained assuming

the additive model in separate sub-tables. For the current example, it is obtained as

σ2 = Sαβ−847 79 12−2 = 9 97with df 10

Table 10.6 Estimation of μij.

(1) Departure of the μij from yi + y j−y (2) Estimate μij and its variance

Row i

Column j Columnj

1 2 3 1 2 3

1
− 4.16 − 4.16 8.32

9.0
29
72

37.7
29
72

60.4
5
9

2
− 4.16 − 4.16 8.32

13.7
29
72

45.4
29
72

65.1
5
9

6
− 4.16 − 4.16 8.32

29.6
29
72

58.3
29
72

81.0
5
9

4
1.07 1.07 − 2.13

24.5
29
72

53.2
29
72

60.3
5
9

3
1.07 1.07 − 2.13

23.1
29
72

51.7
29
72

58.8
5
9

7
1.07 1.07 − 2.13

25.6
29
72

54.3
29
72

61.4
5
9

5
9.28 9.28 − 18.55

30.0
4
7

58.7
4
7

41.1 (1)

TWO-WAY LAYOUT, NORMAL MODEL 253



Johnson and Graybill (1972) give three estimates of σ2 as 1.43 (df 3.06), 5 (df 5),
and 11.75 (df 6) without referring to any preference among them. Our estimate is
within their range and seems more reliable because of the larger degrees of freedom.
Therefore, the standardized error (SE) of the μij is around 2.4. Finally, if the column is
considered as an indicative factor, the best choice of treatment will be 6 for loamy
sand and 5 or 6 for soil types 1 and 2. Treatment 6 is characterized to be generally
good for all soil types.

10.3.5 Applications

We give two further such examples.

Example 10.2. Example 10.1 continued. The purpose of the experiment of Example
10.1 was to choose an appropriate alloy for each of four sites, considered to be an
uncontrollable factor. Then, it is preferable if an alloy is suitable for as many sites
as possible, since it would be inconvenient to have to use different alloys at different
sites of a factory. We therefore apply the row-wise multiple comparison procedure of
Section 10.3.3 to the data of Example10.1. The squared distances are obtained as in
Table 10.7.
In this case we already have σ2 = 1 86 with df 108. The degree of freedom is so large

that we can deal with it as if it were a constant, and we evaluate the squared distances
approximately by 1.86 times the largest eigenvalue of the Wishart matrix W{I3, 8}.
Then, the upper percentiles are 42.07 α= 0 05 and 51.19 α= 0 01 . Therefore, S
(2; 4) is significant at level 0.05 and S(2; 3) is highly significant as shown in
Table 10.7. The squared distance between two subgroups (1, 3, 4) and (2) is
S 1, 3, 4; 2 = 64 04 and elucidates 71.70% of the total sum of squares for interaction
Sαβ = 89 32. The averaged responses are as given in Table 10.8. Now the interpretation
is clear, and we conclude that for sites 1, 3, and 4 alloy 9 or 8 would be appropriate and
alloy 1 or 2 for site 2. If the sum of squares among observers is subtracted from the
error sum of squares, the unbiased variance σ2 becomes 0.90 with df 105 and the evi-
dence becomes even stronger. The same conclusion has also been obtained by another
approach in Hirotsu (1983a).

Table 10.7 Matrix of squared distance.

Row number 1 2 3 4

1 0 38.36 8.53 17.69
2 0 52.75∗ ∗ 49.61∗
3 0 11.69
4 0
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Example 10.3. International adaptability test of rice varieties. This example,
given in Hirotsu (1976), is a two-way layout without repetition examining the adapt-
ability of 18 rice varieties to 44 combinations of regions and years. The row-wise mul-
tiple comparison procedure nicely classifies the varieties into four types: Formosan,
Indian, Japanese and Korean, and Hybrid (specific to Mexico). The regions are also
classified properly into six groups: Korea and the northern part of Japan, the southern
part of Japan, tropical regions, Nepal, Egypt, and Mexico (see Hirotsu, 1976 for more
details). For somewhat large data like this we need some automatic procedure for clus-
tering rows. We therefore give an algorithm for clustering rows in Section 11.3.3, so
that the generalized chi-squared distance among clusters is large, achieving simulta-
neously homogeneity within each cluster.

10.3.6 Discussion on testing the interaction effects under no
replicated observation

As seen in the above examples, there are often cases where no replicated observation
is available in the two-way data. Then, the usual unbiased estimate of variance σ2 is
not available and therefore the textbook usually assumes replicated observations as in
Section 10.2. Under these circumstances, Tukey (1949) proposed a test of a 1 df non-
additivity model without repetition. He assumes a particular interaction model

Ψ yij = μ+ αi + βj + gαiβj + eij, i= 1,…, a; j= 1, …, b, (10.27)

with α = β = 0, eij independently distributed as N(0, σ
2) and considers testing the null

hypothesis

Hg g = 0

This is a non-linear model and out of the range of linear statistical inference. How-
ever, there is available an F-test based on

Sg =
αiβjyij

2

α2i β2j
, αi = yi −y , βj = y j−y

S∗e = Sαβ−Sg = yij−yi −y j + y
2
−Sg

Table 10.8 Averaged response.

Alloy j

Site i 1 2 3 4 5 6 7 8 9

1, 3, 4 4.33 4.42 5.42 4.33 5.67 4.17 2.33 6.17 6.42
2 8.00 8.00 7.25 7.50 6.00 5.00 5.50 5.75 6.50
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It is shown that S∗e is distributed as σ2χ2a−1 b−1 −1 independently of Sg under the

null hypothesis Hg. Therefore, the test statistic

F =
Sg 1

S∗e a−1 b−1 −1

is distributed as an F-distribution with df 1; a−1 b−1 −1 under Hg. This is the-
oretically a very interesting and sophisticated 1 df test for interaction, but in practice
the modeling by linear-by-linear interaction based on main effects αi and βj seems too
restricted without any prior information on the interaction. Johnson and Graybill
(1972) extended the model (10.27) to

Ψ yij = μ+ αi + βj + guivj + εij

and Mandel (1971) also proposed the model

Ψ yij = μ + αi + βj +
K
k = 1gkukivkj + εij

These models are more flexible than Tukey’s model (10.27), but still based on lin-
ear-by-linear interaction and might be unclear even if K = 1or 2. In contrast, our block
interaction model is very easy to interpret and seems more robust without assuming
any restricted model in advance. As an exception, for the quantitative factors a simple
response surface model like linear-by-linear can be successful (see Cox, 1958).
A removal interaction by transformation is also described there.

10.4 Directional Inference

In this section we consider the cases where the row and/or column categories follow a
natural ordering such as time, temperature, and dose levels. Then we are interested in
testing some systematic effects such as monotone and convex along the ordered cate-
gories. In case of the normal model with natural ordering in both rows and columns, a
multivariate (two-way) one-sided ordered alternative

T1 μi+ 1j+ 1−μij + 1−μi+ 1j + μij ≥ 0, i = 1,…, a−1; j= 1,…, b−1 (10.28)

and the two-sided version T2 of T1 have been proposed in the literature. In (10.28) the
differences μij + 1−μij and μi+ 1j−μij are increasing in i and j, respectively. Further,
a useful two-sided ordered alternative

T3 μij+ 1−μi j+ 1−μij + μi j ≥ 0, j= 1,…, b−1, i i (10.29)

has been introduced by Hirotsu (1978) when there is a natural ordering only in col-
umns. Hypothesis T3 implies that the differences μij−μi j are tending upwards in j and

256 ADVANCED ANALYSIS OF VARIANCE



are essentially two-sided, since the rows i and i are permutable. It should be noted that
T3 (10.29) is different from the two-sided ordered alternative T2, since there is
assumed no ordering in rows. As stated before, the restricted maximum likelihood
approach is too complicated for these interaction analyses. However, the methods
based on the accumulated statistics can be very naturally extended just by replacing
the orthogonal contrasts by the change-point contrasts as follows. Of course, in apply-
ing these sums of squares they should be divided by the unbiased variance σ2 (10.15)
to cancel out the unknown σ2.

10.4.1 Ordered rows or columns

(1) Overall analysis of ordered columns by the cumulative chi-squared statistic χ� 2.
When testing the null hypothesis of interaction against the two-sided alternative T3,
simply replace the orthogonal contrasts Pb by the change-point contrasts P

∗
b in the usual

sum of squares for interaction to obtain

Sαβ∗ =m Pa P∗
b y i j

2

=
b

1 × 2
χ21 +

b

2 × 3
χ22 + +

b

b−1 × b
χ2b−1 σ2,

(10.30)

where y i j is another expression of y i for the mean observation vector of yij
arranged in dictionary order with a two-way suffix, m the number of repetitions
and χ2 j the chi-squared for Chebyshev’s jth-order orthogonal polynomial with df

a−1. This is obviously a very natural extension of the usual sum of squares

Sαβ = m Pa Pb y i j
2, which is expanded in the form χ21 + χ22 +

+ χ2b−1 σ2. For the statistic Sαβ∗ , a very good chi-squared approximation is available

extending the method of one-way layout in Section 6.5.3 (2) (a) as

κ1 =E χ∗2 = a−1 b−1 = df

κ2 =V χ∗2 = 2 a−1 b−1 + 2
γ1
γ2

+…+
γ1 +…+ γb−1

γb−1
= 2d2f ,

γj = j b− j

An improvement by using κ3 = 8 a−1 tr P∗
b P

∗
b

3
is also applicable. It is divided by

the unbiased variance σ2 to cancel out σ2, for which a very good F-approximation is
available in Hirotsu (1979). A real example of this statistic is given by Hirotsu (1978).
When m= 1 we introduce a particular sum of squares for cancelling out σ2 which has
an inverse characteristic to the systematic statistic like Sαβ∗ (10.30), see Chapter 13.
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(2) Scheffé type multiple comparisons of rows with natural ordering only in
columns. The method of Section 10.3 is also very naturally extended to accommodate
the ordered effects along columns. For the monotone hypothesis, the interaction ele-
ments and their chi-squared distances are defined simply by replacing Pb by P∗

b in
their defining equations of 10.3.2 (1), (2), and (3). Then a reference distribution is
given by the following lemma.

Lemma 10.2. Lemma 3.1 of Hirotsu (1983a). When a ≥ b, the maximum value
of m a1, …, aa P∗

b y i j
2 with respect to ai subject to restrictions

ai = 0, a2i = 1 is the largest eigenvalue W∗
1 of a Wishart matrix distributed as

W σ2P∗
b P

∗
b,a−1 under H0.

Proof. The proof is similar to Lemma 10.1 and omitted.

The convexity hypothesis is also very easily dealt with by replacing Pb by P†
b in the

defining equations of interaction elements. The distribution concerned is the largest
eigenvalue of a Wishart matrix for variance not proportional to an identity matrix,
which is very difficult to handle compared with the case given in (10.22). However,
a very nice chi-squared approximation has been obtained by Hirotsu (2009), which
is described in Section 11.4.2 (2). In its applications to χ∗2 and χ†2 in this section,
the largest eigenvalues of P∗

b P
∗
b and P†

b P
†
b dominate the other eigenvalues and the

chi-squared approximation using the dominant term only is good enough. Actually,
the largest eigenvalue is larger than one-half of tr P∗

b P
∗
b and three-quarters of

tr P†
b P

†
b , for the respective cases. Thus, our approach to the shape and change-point

hypotheses is very easy to extend, even to two-wayproblems, and really unifying. Inter-
esting applications of these methods to the profile analysis of repeated measurements
are given in Chapter 13 according to Hirotsu (1991) and Hirotsu et al. (2003), where
there is no repetition in the cell m= 1 . In Section 10.3.3 (2) the largest eigenvalue
was divided by the total sum of squares Sαβ for interaction. In Chapter 13 we further
introduce the sum of squares which has an inverse characteristic to the systematic sta-
tistic such as χ∗2 or χ†2 to cancel out σ2 in the case where there is natural ordering in
columns.

(3) Multiple comparisons of ordered rows. If there is natural ordering in the rows,
all the permutations of rows make no sense and the multiple comparisons are
restricted to a−1 step change-point contrasts of the cumulative chi-squared statis-
tic Sα∗β =m P∗

a Pb y i j
2,

max acc χ2 P∗
a =maxk m r∗ 1,…,k; k + 1,…,a Pb y i j

2

where r∗ 1,…,k; k + 1,…,a is the kth row of P∗
a denoting the kth step change-point

contrast and the maximization is with respect to k = 1,…,a−1. Max acc. χ2 is a natural
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extension of max acc. t1, so that we call this method max acc. χ2 P∗
a , making clear

the range of maximization. However, in its introductory time, the p-value was eval-
uated by Bonferroni inequality based on the bivariate chi-squared distribution. Later,
in Hirotsu et al. (1992), the exact algorithm for probability calculation was obtained
and formulae in a closed form were given up to a= 5, as well as for max acc. t1 based
on the Markov property of the component statistics. We give an extended algorithm
for the p-value in Section 11.4.3 and an interesting application in Section 11.4.4 (3).
The upper percentiles for χ2 P∗

a divided by σ2 are given for some a, b, and m in
Table B of the Appendix.

10.4.2 Ordered rows and columns

(1) Two-way cumulative chi-squared method. For the two-way two-sided ordered
alternative

T2 μij+ 1−μi j+ 1−μij + μi j ≥ 0, i= 1,…, a−1; j= 1,…, b−1,

or μij+ 1−μi j+ 1−μij + μi j ≤ 0, i= 1,…, a−1; j= 1,…, b−1,

the two-way cumulative chi-squared statistic

Sα∗β∗ =m P∗
a P∗

b y i j
2 (10.31)

is obtained by replacing both of Pa andPb by P∗
a and P∗

b in Sαβ =
m Pa Pb y i j

2 , respectively. For this statistic also a very good chi-squared
approximation is available, extending the method of one-way layout (Section 6.5.3
(2)). The details are given in Section 11.5.1, and we can apply the formula here simply
as the case of Ri ≡ 1 and Cj ≡ 1.

(2) Two-way maximal contrast method. In the case with natural ordering in both
the rows and columns, max acc. χ2 has been extended by Hirotsu (1993, 1997) to

maxmax χ2 =maxkmaxl m r∗ 1,…,k; k + 1,…,a c∗ 1,…, l; l + 1,…,a y i j
2,

(10.32)

where c∗ 1,…, l; l + 1,…,a is the lth row of P∗
b . It is extended also to

max χ∗2 =maxk m r∗ 1,…,k; k + 1,…,a P∗
b y i j

2, (10.33)

maxWil χ2 =maxk m r∗ 1,…,k; k + 1,…,a s y i j
2, (10.34)

where s is an appropriate score vector such asWilcoxon’s rank score. It is obvious that
statistics (10.32) ~ (10.34) are the components of (10.31). An exact analysis is possi-
ble for max max χ2 (10.32) when a and b are not large, while approximate
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distributions are available for (10.33) and (10.34). Thus, the two-way data analysis
is indeed a rich source of interesting statistical theories and applications. The analyt-
ical methods introduced in this chapter are extended to discrete two-way data in
Chapter 11, and interesting examples are given there.

10.5 Easy Method for Unbalanced Data

10.5.1 Introduction

When the repetition number is unequal for each cell, the two-way data are said to be
unbalanced. The analysis of unbalanced two-way data is not so popular compared
with unbalanced one-way data. The reason lies not only in the complexity of calcu-
lation, but also in the non-uniqueness of the hypotheses tested. The meaning of the
null hypothesis of interaction is clear. However, there is confusion in testing the null
hypotheses of the main effects. There are choices to define the main effects by the
simple average or the weighted average proportional to the repetition number. Also,
the problem arises since the main effects of the two factors are not orthogonal to each
other, caused by the unbalance. Further, it is controversial whether the main effects
should be tested under the assumption of no interaction or not. As stated in
Section 10.2, we basically recommend the inference of main effects under the
assumption of no interaction unless there is a particular reason for the inference
of the main effects under the existence of interaction effects. One should refer to
Kutner (1974) for various approaches in this situation. Further, the problem is
more serious for multiple comparison procedures and it seems that there is no estab-
lished approach to multiple comparisons. If there is no empty cell, then an easy
method of this section may give an appropriate procedure both theoretically and
computationally.

10.5.2 Sum of squares based on cell means

We assume model (10.1) with repetition number mij. For the unbalanced two-way
data, a simple standard form is no longer available and we have to go back to the gen-
eral linear model as shown in Section 10.5.7 (2). However, if there is no empty cell
mij ≥ 1, i= 1,…, a, j= 1, …, b we can analyze xij = yij as if it were from a balanced

model with equal repetition m =
1
ab i j

1
mij

−1

. By considering xij we can reduce

the problem of unbalanced data to unequal variance σ2/mij. The F-test is known to be
robust against unequal variance and we can also make adjustments easily since its
structure is known.

260 ADVANCED ANALYSIS OF VARIANCE



Now, the model is the same as in Section 10.2 but we assume an unequal numbermij

of repetitions. First,

Se =
a
i= 1

b
j= 1

mij

k = 1 yijk −yij
2

(10.35)

is distributed as σ2χ2n−ab with df n−ab, n=m . Therefore, Se n−ab is the best unbi-
ased estimator of σ2 as usual. Then, we form the usual sum of squares (10.11) ~
(10.13) of xij with repetition number 1 as

Sα = b
−1

ix
2
i − ab −1x2, (10.36)

Sβ = a
−1

jx
2
j− ab −1x2, (10.37)

Sαβ = i jx
2
ij−b

−1
ix
2
i −a

−1
jx
2
j + ab −1x2 (10.38)

Next, noting that the variance of xij is

V x = diag σ2 mij , x= x11,x12,…,xab , (10.39)

the expectations of the sum of squares (10.36) ~ (10.38) are easily obtained as

E Sα = b i μi −μ
2 + a−1 m σ2,

E Sβ = a j μ j−μ
2
+ b−1 m σ2,

E Sαβ = i j μij−μi −μ j + μ
2
+ a−1 b−1 m σ2, 10 40

suggesting non-centrality parameters similar to the balanced case and easy to
interpret.

10.5.3 Testing the null hypothesis of interaction

To test the null hypothesis

Hαβ μij = μi + μ j−μ ,

a statistic

Fαβ =
mSαβ a−1 b−1

Se n−ab
(10.41)

is suggested by equation (10.40). If the unbalance inmij is small, this is approximately
distributed as an F-statistic with df a−1 b−1 , n−ab . If the unbalance is
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moderate, we can employ the chi-squared approximation dχ2f for Sαβ, adjusting the
first two cumulants under Hαβ by

E Sαβ σ2 = a−1 b−1 m = dE χ2f = df ,

V Sαβ σ2 = 2 fαβ m−1
ij +m−2 = d2V χ2f = 2d2f ,

where

fαβ uij =
a−2 b−2

ab i ju
2
ij +

a−2
a i b−1

juij
2

+
b−2
b j a

−1
iuij

2

Then we have constants for approximation,

f =
a−1 b−1 m 2

fαβ m−1
ij +m−2

, d =
a−1 b−1

mf
(10.42)

Since mSαβ a−1 b−1 = Sαβ σ2 df χ2f f , we can simply consider Fαβ

(10.41) as an F-statistic with df f , n−ab . Therefore, the adjusted method is very
easy using the same statistic (10.41), just by altering the degrees of freedom to (10.42).
If necessary, we can employ the F-approximation of Hirotsu (1979) using the third
term of Laguerre’s orthogonal polynomial expansion. However, this seems unneces-
sary by the simulation results in Table 10.10. By a simple calculation, f (10.42) can be
expressed as

f = a−1 b−1 1−
fαβ m−1

ij −m−1

fαβ m−1
ij +m−2

(10.43)

The last term of (10.43) can be used as a measure of unbalance. Further, since

fαβ m−1
ij +m−2 = a−1 b−1 m2

for mij ≡m, a more simple function

λαβ =m
2fαβ m−1

ij −m−1 a−1 b−1 (10.44)

is a good measure of unbalance.
Since Sαβ = Pa Pb x 2, or Fαβ (10.41), is of so simple a structure, the row and/or

column-wise multiple comparisons in Section 10.3 and directional inference in
Section 10.4 can be applied almost as they are. In this sense, the easy method here
is very useful.
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10.5.4 Testing the null hypothesis of main effects under Hαβ

When the null hypothesis Hαβ is not rejected, we can test the null hypothesis

Hα μij = μ+ βj

by

Fα =
mSα a−1
Se n−ab

, (10.45)

which is approximately distributed as an F-statistic with df a−1, n−ab if the
unbalance is small. If the unbalance is moderate, it is well approximated by the
F-statistic with df f , n−ab , where

f = a−1 1−
fα b−1

j m
−1
ij −m−1

fα b−1
j m

−1
ij +m−2

,

fα ui =
a−2
a iu

2
i

is obtained by adjusting the first two cumulants. A simple measure of unbalance in this
case is

λα =m
2fα b−1

jm
−1
ij −m−1 a−1 (10.46)

By symmetry, the null hypothesis

Hβ μij = μ+ αi

can be tested by

Fβ =
mSβ b−1
Se n−ab

, (10.47)

with

f = b−1 1−
fβ a−1

i m
−1
ij −m−1

fβ a−1
i m

−1
ij +m−2

,

fβ uj =
b−2
b ju

2
j

A simple measure of unbalance in this case is

λβ =m
2fβ a−1

im
−1
ij −m−1 b−1 (10.48)
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The multiple comparison procedures of Chapter 6 are also easily applied, which is a
merit of this easy method. Thus, the analysis of xij = yij gives very simple and useful
procedures only if there is no empty cell and the unbalance is not too heavy.

10.5.5 Accuracy of approximation by easy method

In previous sections the simple measure of unbalance (10.44), (10.46), and (10.48)
have been introduced. Hirotsu (1969) examined the size of the naïve approximate test
without adjustment by the asymptotic expansion of the characteristic function of the
test statistic. The results are given in the fourth column of Table 10.10, where the
designs examined are rather heavily unbalanced (as given in Table 10.9). It is found
that the unbalance measure λ’s are at most 0.1+ for those designs with maximin ratio
of mij up to 4. The increase in type I error is roughly 0.02λ (2λ%), so that the naïve
approximate method will be acceptable for λ up to 0.05. For λ beyond 0.05 the adjust-
ment by the first two cumulants will work well. We therefore make a simulation for
the performance of the adjusted method as well as the naïvemethod, and the results are
shown in Table 10.10.

10.5.6 Simulation

We performed a simulation for the performance of the naïve and adjusted approximate
methods. For each design of D1~D5, the necessary number of independent normal
variables was generated. We took the average of the 12 uniform numbers to generate
a normal random variable. The replication number of simulation is 5 × 105 for each of
D1~D5. At each time, the p-value of each test is calculated, which should be distrib-
uted as a uniform distribution if the test is exact. We show only the percentage of the
p-value less than 0.05 by each method in the fifth and sixth columns of Table 10.10,
but the results are similar for other points. The standard deviation (SD) of the esti-
mated test size by simulation is 0.03(%) as a binomial distribution. Now, the simula-
tion supports the evaluation of the naïve method by the asymptotic expansion of the
characteristic function of the test statistic in the previous section. Then, the adjust-
ments by the first two cumulants work remarkably well, keeping a precise and slightly
conservative test size for all cases.

10.5.7 Comparison with the LS method on real data

Example 10.4. Analysis of Table 10.11. The data of Table 10.11 were originally
from Afifi and Azen (1972); Kutner (1974) dropped 14 data points marked by ∗ ran-
domly to create the unbalanced data for his explanation of various approaches. We
also employ the data for comparisons of the easy method with a standard linear model
approach. The purpose of the experiment was to evaluate the effect of four drugs
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crossed with three experimentally induced diseases. Each drug–disease combination
was applied to six randomly selected dogs. The measurement to be analyzed was the
increase in systolic pressure (mmHg) due to the treatment. First we analyze the data by
our naïve and adjusted methods. Then it is analyzed by a standard linear model.

(1) Analysis by the easy method. The results of analysis by the easy method are
shown in Table 10.12. It is seen that there is only a very small difference between
the naïve and adjusted methods for the unbalance of mij from 3 to 6 in Table 10.11.

Table 10.9 Repetition number.

D1 D2 D3 D4 D5

Column Column Column Column Column

1 2 3 1 2 3 1 2 3 1 2 3 4 5 1 2 3 4 5

Row
1 1 2 2 1 2 2 1 1 4 1 1 1 1 1 2 3 1 1 3
2 2 2 3 2 3 2 1 3 1 2 2 2 2 1 2 1 2 4 1
3 2 2 1 1 3 1 4 1 1 3 3 3 3 3 3 2 1 1 2

Table 10.10 Size of the naïve approximate test and related measure of unbalance.

Simulation

Design Hypothesis λ
Size of naïve

test (%) Naive Adjusted

Hα 0.016 5.03 5.03 4.99
D1 Hβ 0.007 5.01 5.01 4.99

Hαβ 0.047 5.09 5.06 4.95

Hα 0.024 5.04 4.98 4.92
D2 Hβ 0.042 5.07 5.05 4.95

Hαβ 0.079 5.14 5.09 4.92

Hα 0.0001 5.00 4.91 4.91
D3 Hβ 0.0001 5.00 4.92 4.92

Hαβ 0.051 5.10 4.89 4.78

Hα 0.090 5.22 5.15 4.85
D4 Hβ 0.008 5.02 4.98 4.95

Hαβ 0.106 5.29 5.18 4.89

Hα 0.0002 5.00 4.90 4.90
D5 Hβ 0.032 5.10 5.05 4.95

Hαβ 0.093 5.25 5.18 4.92
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(2) Analysis by a linear model. Next we compare the results with a linear statistical
inference. There have been proposed various approaches to the analysis of the unbal-
anced data as described in Kutner (1974). Here we take an approach to testing the
main effects only under the assumption of no interaction, which can avoid the effects
of the identification conditions described by Kutner. First, the sum of squares for the
error is Se = 5040 82 by (10.35) and the unbiased variance is

σ2 = Se n−ab = 5040 817 58−12 = 109 583,

which is used commonly for tests of interaction and main effects.

(a) Test of the null hypothesis Hαβ (10.8). According to the procedure explained in
Section 3.4.1, we need to calculate the residual sum of squares under Hαβ:
μij = μ + αi + βj. For this purpose, we express μ=E y in matrix form as in
Section 10.2. However, to solve the normal equation for the LS estimates it is con-
venient to take the form

y = j X∗
α X∗

β

μ

α�

β�
+ e, (10.49)

where α� = α1, α2, α3 , β� = β1, β2 dropping α4 and β3. This is equivalent to
imposing the constraints α4 = 0 and β3 = 0, but it is obvious that the choice of con-
straints does not affect the inference. It is an easy task to write down explicitly the
design matrix of (10.49) but it is 58 × 1 + 3 + 2 and too large to present here. Then,
the normal equation can be solved easily since the coefficient matrix is non-singular,

Table 10.11 Increase in systolic pressure due to the
treatment.

Drug i

Disease j

1 2 3

1 42, 44, 36, 33, 40∗, 26, 31,−3, 19∗,
13, 19, 22 34∗, 33, 21 25, 25, 24

2 28, 40∗, 23, 31∗, 34, 33, 3, 26, 28,
24, 42, 13 31, 33∗, 36 32, 4, 16

3 28∗, 21∗, 1, −4∗, 11, 9, 21, 1, 2∗,
29, 6∗, 19 7, 1, −6 9, 3, 9∗

4 24, 19∗, 9, 27, 12, 12, 22, 7, 25,
22, −2,15 −5, 16, 15 5, 12, 7∗
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which gives μ = 10 0729, α= 12 5115, 11 7035, −4 5592, 0 , and β= 5 8792,
4 2495, 0 . The residual sum of squares for model (10.49) is obtained as

S0αβ = i j k yijk − μ+ αi + βj
2
= 5771 42

Finally, the sum of squares for interaction is obtained as the increase in residual sum of
squares from Se as

Sαβ = S0αβ−Se = 5771 42−5040 82 = 730 60

with df a−1 b−1 = 6. Then, the F-statistic is obtained as

F =
Sαβ a−1 b−1

σ2
=
730 60 6
109 583

= 1 1112,

whose p-value is 0.3706 and non-significant. Therefore, we proceed to test the main
effects.

(b) Test of the null hypothesis Hα μij = μ+ βj assuming Hαβ. The estimate of μij
under Hα Hαβ is obviously

μij = μ + βj = y j m j

The residual sum of squares is then

S0 α αβ = i j k yijk − μ + βj
2
= i j ky

2
ijk − j y2j m j = 8722 05

The increase in residual sum of squares is therefore

Sα = S0 α αβ −S0αβ = 8722 05−5771 42 = 2950 63

Table 10.12 Analysis of variance by easy method.

Naïve Adjusted df

Factor F-statistics df p-Value df p-Value

Main effects of A 8.9711 (10.45) 3 0.000087∗ ∗ 2.9681 0.000083∗ ∗

Main effects of B 1.6415 (10.47) 2 0.2048 1.9984 0.2048
Interaction 1.1454 (10.41) 6 0.3518 5.876 0.3517
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with df a−1 = 3. The F-statistic is obtained as

F =
Sα a−1

σ2
=
2950 63 3
109 583

= 8 9753,

whose p-value is 8 6 × 10−5 and highly significant.

(c) Test of the null hypothesis Hβ μij = μ +αi assuming Hαβ. The estimate of μij
under Hβ Hαβ is obviously

μij = μ+ αi = yi mi

The residual sum of squares is then

S0 β αβ = i j k yijk − μ + αi
2
= i j ky

2
ijk − i y

2
i mi = 6130 92

The increase in residual sum of squares is therefore

Sβ = S0 β αβ −S0αβ = 6130 92−5771 42 = 359 50

with df b−1 = 2. The F-statistic is obtained as

F =
Sβ b−1

σ2
=
359 50 2
109 583

= 1 640, (10.50)

whose p-value is 0.2051 and non-significant.
These results are summarized in ANOVA Table 10.13.

This result and the easy methods are compared in Table 10.14. It is observed again that
there is very little difference among the procedures compared. Then, our methods are

Table 10.13 ANOVA by a linear model.

Factor Sum of Squares F-statistic df p-Value

Main effects of A 2950.629 8.9753 3 0.000086∗ ∗

Main effects of B 359.503 1.6403 2 0.2051
Interaction A ×B 730.597 1.1112 6 0.3706

Table 10.14 Comparison of p-values of the easy methods with a standard inference.

Factor Linear model Naïve Adjusted df

Main effects of A 0.000086∗∗ 0.000087∗∗ 0.000083∗∗

Main effects of B 0.2051 0.2048 0.2048
Interaction A ×B 0.3706 0.3518 0.3517
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very simple to apply and easy to interpret. Further, it is straightforward to apply our
method to multiple comparisons and directional inference.

Next we try to test the null hypothesis Hβ assuming Hα Hαβ; that is, ignoring the
effects of α instead of adjusting it, which should give the same result as (c) for the bal-
anced case because of the orthogonality of the twomain effects. Then, what shall happen
for the unbalanced data? The residual sum of squares under Hα Hβ Hαβ is obviously

S0 α β αβ = i j ky
2
ijk −y

2 m = 9136 017 (10.51)

and its increase from S0 α αβ is

S∗β = S0 α β αβ −S0 α αβ = j y2j m j −y2 m = 413 975,

with df b−1 = 2. The F-statistic is then

F∗ =
S∗β b−1

σ2
=

413 975 2
5040 82 46

= 1 8887 (10.52)

and the associated p-value is 0.1628. This result suggests a relatively large difference
from other methods because of the influence of the main effect α. The analysis by F
(10.50) escapes from this spurious effect and is called adjusted for α. The Sα in
Table 10.13 are also adjusted for factor B. It should be noted here that the sum of
squares (10.51) is the so-called total sum of squares ST of the ANOVA table. How-
ever, for the unbalanced data the sum of squares Se and Sα, Sβ, Sαβ in Table 10.13 does
not add up to ST. Instead, the sum of Se,Sα,S∗β and Sαβ is equal to ST. Also, Se,S∗α, Sβ,
and Sαβ add up to ST, where

S∗α = S0 α β αβ −S0 β αβ = i y
2
i mi −y2 m

Therefore, sometimes two ANOVA tables are presented where either one of the main
effects is adjusted and the other unadjusted, thus making the sum of squares for
A,B,A×B and error equal to the total sum of squares ST. Including this phenomenon,
the analysis ofunbalanced two-waydata is a little controversial.Ourmethod is essentially
the type II analysis of Yates (1934), but recommends testing the main effects only after
verifying no interaction. The analysis by F (10.52) is type I and generally not recom-
mended. The test of the main effects under the existence of interaction effects in type
III analysis is also not recommended, since it is an analysis of non-estimable parameters
and suffers from the effects of identification conditions if the interaction actually exists.

10.5.8 Estimation of the mean μij

When an interaction exists, μij = xij = yij is BLUE. Therefore, we consider here the
estimation of μij = μ + αi + βj by

μij = xi + x j−x
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It is obvious that this estimator is unbiased. To evaluate the variance of μij, we intro-

duce a vector vij = v11,v12,…,vab , where

vkl =
1
b
δik +

1
a
δjl−

1
ab

, k = 1, …, a, l= 1,…, b

Since μij is expressed as vijx, we have from (10.39) the variance

V μij = vijdiag σ2 mij vij

=
1
ab

1
m
+ b−2

1
a i

1
mij

+ a−2
1
b j

1
mij

+
2
mij

σ2
(10.53)

Equation (10.53) coincides of course with

V μij =
a + b−1
abm

σ2

of the BLUE in the balanced case. The variance V μij (10.53) has been compared
with the BLUE in an unbalanced case by Hirotsu (1969). The difference is negligible
for μ11, μ12, μ22 in D1, whereas BLUE is recommended for the extreme case of
μ13, μ31 in D3 and μ24 in D5. In other cases, the increase of SD is approximately
5%, widening the confidence interval at this rate. An easy method for estimating
the mean is not so important compared with multiple comparisons and directional
inferences, since the LS method is also easily applicable. But still it is useful, since
the difference from BLUE is negligible for a slight unbalance.
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11

Analysis of Two-Way
Categorical Data

11.1 Introduction

An overall goodness-of-fit chi-square (3.57) for independence is a well-known
approach to a contingency table, just like an F-test in the two-way ANOVA. It cannot,
however, give any detailed information on the association between the rows and col-
umns. As an example, we give Table 11.1 which was first analyzed by Hirotsu (1977).
It gives the number of patients cross-classified by their occupation and severity of
illness at their first visit at the National Cancer Institute of Japan. The goodness-of-
fit chi-square is 95.75, with df 18 by (3.57), which is extremely highly significant.
It suggests that there is a strong association between occupation and severity of illness,
probably reflecting the differences of the system at that time for detecting cancer at an
early stage at each enterprise. The result, however, cannot tell us any details of the asso-
ciation. We may evaluate the departure of each cell from independence by the formula

eij = yij−
yi y j

y

yi y j y −yi y −y j

y3
(11.1)

which is asymptotically distributed as a standard normal variable under the null
hypothesis of independence. These are given in parentheses in Table 11.1. There
are observed several large deviations – such as the cells (3, 1), (3, 2), and (10, 1) –
but again they cannot give any clear-cut explanation of the data. Therefore, some
multiple-comparison approaches have been proposed, among which the row- and/
or column-wise multiple comparisons proposed by Hirotsu (1977, 1983) have been
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verified to be useful on several occasions compared with other multiple-comparison
approaches – see Greenacre (1988), Hirotsu (2009), and the examples in Sections
11.3.3 and 11.4.4 (re-analysis of Table 11.1). The row-wise multiple comparisons
are essential if the data are taken as the one-way layout with categorical responses
instead of the usual normal response variables. Then, it is nothing but an analysis
of treatment effects. The multiple comparison procedure proposed first by Hirotsu
(1977, 1983) is essentially of Scheffé type, but the actual procedure was limited to
comparisons of the squared distances between every two rows or two clusters of rows,
which are uniquely defined by the normalization and orthogonality conditions. Then
there was an inevitable loss of power in the procedure. It has been extended to the
generalized squared distance among any number of rows or clusters of rows, as

Table 11.1 Number of cancer patients by occupation and severity of illness at their
first visit at the National Cancer Institute of Japan.

Severity

Occupation 1. Slight 2. Medium 3. Serious Total

1. Professional and technical
workers

148 (2.53) 444 (−2.58) 86 (0.63) 678
((148.5)) ((452.4)) ((77.1))

2. Managers and officials 111 (2.10) 352 (−0.58) 49 (−1.53) 512
((112.1)) ((341.6)) ((58.2))

3. Clerical and related workers 645 (6.68) 1911 (−4.88) 328 (1.04) 2884
((631.4)) ((1924.4)) ((328.1))

4. Sales workers 165 (−2.25) 771 (2.36) 119 (−0.67) 1055
((160.7)) ((764.0)) ((130.3))

5. Farmers, lumbermen,
fishermen, quarrymen

383 (−4.41) 1829 (3.21) 311 (0.72) 2523
((384.3)) ((1827.2)) ((311.5))

6. Workers in transport and
communication systems

96 (2.11) 293 (−1.24) 47 (−0.75) 436
((95.5)) ((290.9)) ((49.6))

7. Craftsmen 98 (1.15) 330 (−0.98) 58 (0.01) 486
((106.4)) ((324.3)) ((55.3))

8. Production process workers 199 (−1.91) 874 (1.03) 155 (0.34) 1228
((187.1)) ((889.3)) ((151.6))

9. Service workers 59 (1.02) 199 (−0.30) 30 (0.79) 288
((63.1)) ((192.2)) ((32.8))

10. Persons without regular
occupations

262 (−4.54) 1320 (2.74) 236 (1.53) 1818
((276.9)) ((1316.6)) ((224.5))

Total 2166 8323 1419 11908
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explained in Section 10.3.2 (3), and the loss of power was dissolved in the process of
Scheffé type multiple comparisons.
An interesting extension of the method is to the one-way layout with ordered cat-

egorical responses. In this case the procedure is essentially unchanged, except for the
definition of the order-sensitive chi-squared distance and the related asymptotic dis-
tribution as explained in Section 10.4.1(2). Then, the reference distribution becomes
that of the largest eigenvalue of aWishart matrix, which is very difficult to handle. The
normal approximation given by Anderson (2003) is quite unsatisfactory, especially
when the first- and second-largest eigenvalues are close to each other. We therefore
propose a chi-squared approximation as a more reasonable one in Section 11.4.2 (2). It
nicely improves the normal approximation of Anderson and also the first-order chi-
squared approximation introduced by Hirotsu (1991).
The row-wise multiple comparisons can be applied to moderately large data with a

hundred rows. Then we need some automatic procedure for clustering. We therefore
give an algorithm for clustering rows in Section 11.3.3, so that the generalized chi-
squared distance among clusters is large, achieving simultaneously homogeneity
within each cluster.

11.2 Overall Goodness-of-Fit Chi-Square

Let a two-way contingency table be denoted by yij a× b
and the row, column,

and grand totals by Ri = yi ,Cj = y j, andN = y , respectively.We assume amultinomial

distribution with cell probabilities pij│p = 1 . The null hypothesis of independ-
ence is

H0 pij = pi p j for all i and j

and the statistical inference is based on the conditional distribution given the sufficient
statistics Ri and Cj under H0, which is the multivariate hypergeometric distribution.
The well-known goodness-of-fit chi-square,

χ2 = a
i=

b
j= 1

yij−RiCj N
2

RiCj N
(11.2)

has already been derived as equation (3.57) in Example 3.5, which is asymptotically
distributed as a chi-squared distribution with df a−1 b−1 under H0.
To partition χ2, we introduce two vectors

r=N −1 2 R1 2
1 , …,R1 2

a , c=N −1 2 C1 2
1 ,…,C1 2

b

and define R a−1 × a and C b−1 × b so that
r
R

and
c
C

are the a- and

b-dimensional orthonormal matrices, respectively. They correspond to Pa andPb in
the ANOVA model of previous sections. Define a column vector z with elements
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zij = yij RiCj N
1 2

arranged in dictionary order. Then, under the null hypothesisH0,
the conditional expectation and variance of R C z as the multivariate hypergeo-
metric distribution given Ri, Cj are

E R C z = 0 a−1 b−1 (11.3)

V R C z = N N−1 I a−1 b−1 (11.4)

with 0n and In the n-dimensional zero vector and the identity matrix, respectively.
It should be noted that in R C z, every row of R makes the orthogonal contrast
in rows and every row of C makes the orthogonal contrast in columns, thus together
making the interaction contrast. In the following we ignore the coefficient
N N−1 in the variance, since our contingency table example is usually large.
Then, every element of R C z is standardized as expectation 0 and variance 1,
orthogonal to each other. The sum of squares

χ2 = R C z 2 (11.5)

is nothing but the goodness-of- fit chi-squared (11.2) and every element of R C z
gives the partition of χ2 into one degree of freedom. The overall goodness-of-fit χ2 test
cannot give any details on the two-way data, even if it were significant (as mentioned
in Section 11.1). It is just like the F -test in the ANOVA model. In contrast, multiple
comparisons based on the 1 df component statistics of (11.5) cannot have reasonable
power if the two-way table is moderately large. Also, the interpretation of the test
results is usually unclear, as stated in Section 11.1 regarding Table 11.1. Then, the
row-wise multiple comparison procedure proposed in Section 10.3 for the ANOVA
model is again an attractive approach. Incidentally, eij of (11.1) is a component of
(11.5) defined by r i; i c j; j z, where

r i; i = R−1
i +N −1

i
−1 2

R1 2
1 Ni, ,R1 2

i−1 Ni , −R
1 2
i Ri,R

1 2
i+ 1 Ni, ,R1 2

a Ni

with Ni = i iRi, i = 1, …, i−1, i+ 1,…,a and c j; j similarly defined.

11.3 Row-wise Multiple Comparisons

11.3.1 Chi-squared distances among rows

(1) Pair-wise chi-squared distance. Those chi-squared distances introduced in this
section are a generalization of those introduced in Section 10.3.2 for discrete data. The
chi-squared distance between the lth and mth rows is defined as a component of
(11.5) like

χ2 l1; l2 = r l1; l2 C z 2 (11.6)
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r l1; l2 = R−1
l1

+R−1
l2

−1 2
0 0R−1 2

l1
0 0−R−12

l2
0 0 , l1, l2 = 1,…, a;l1 l2

(2) Chi-squared distance between two subgroups of rows. Without any loss of
generality, let the first subgroup H1{1, …, p1} be composed of the first p1 rows
and the second subgroup H2 p1 + 1,…,p1 + p2 be composed of the subsequent p2
rows (p1 + p2 ≤ a . Then, the chi-squared distance between the two subgroups is
defined by

χ2 H1;H2 = r H1;H2 C z 2 (11.7)

r H1;H2 = T −1
1 +T −1

2
−1 2 R1 2

1

T1

R1 2
p1

T1

− R1 2
p1 + 1

T2

− R1 2
p1 + p2

T2
0 0 ,

T1 = i H1
Ri, T2 = i H2Ri

(3) Generalized chi-squared distance among any number of subgroups.Without
any loss of generality, we assume a partition of rows into m subgroups:

H1 1, …, p1 , H2 p1 + 1,…,p1 + p2 , …, HK p1 + + pK−1 + 1,…,p1 + + pK = a

Then, the generalized chi-squared distance is defined by

χ2 H1;…;HK =maxρ r= 0, ρ 2 = 1 ρ C z 2, ρi = ζk Ri Tk
1 2for i Hk (11.8)

where Tk = i Hk
Ri.

The maximization is actually with respect to ζ = ζ1,…, ζK under the condition

T1 2
k ζk = 0,

K
k = 1ζ

2
k = 1 (11.9)

Let Ykj = i Hk
yij, k = 1,…, K, denote the frequency of the kth cluster at the jth col-

umn, so that {Ykj} gives a K × b table with the row total Tk collapsing these pooled
rows. Then, equation (11.8) becomes

χ2 H1;…;HK =maxζ ζ

w1

wK

w1 wK ζ

withwk = Tk N −1 2C C−1 2
1 Yk1,…,C−1 2

b Ykb (11.10)
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In particular, we have

w1,…,wK T1 2
1 ,…, T1 2

K = K
k = 1 T1 2

k wk =NC c = 0

suggesting T1 2
1 , …, T1 2

K to be an eigenvector of the matrix w1 wK w1 wK

corresponding to a zero eigenvalue. Then, the maximization with respect to ζ reduces
to the problem of the largest eigenvalue of w1 wK w1 wK and the condition
(11.9) is automatically satisfied.

11.3.2 Reference distribution for simultaneous inference
in clustering rows

All the chi-squared distances (11.6) ~ (11.8) introduced in the previous section are
bounded above by χ2 1 ;…; a =maxρ r= 0, ρ 2 = 1 ρ C z 2 which is the lar-

gest eigenvalue of WW, where W = w1 wa ,wi = Ri N −1 2C C−1 2
1 yi1,…,

C−1 2
b yib . Its asymptotic null distribution is that of the largest eigenvalue of

W Imin a−1, b−1 , max a−1, b−1 , as given in Lemma 10.1 for the ANOVA model.

11.3.3 Clustering algorithm and a stopping rule

To execute the row-wise multiple comparison procedure for a moderately large two-
way table, it is convenient to have software working automatically. We therefore
introduce the clustering algorithm proposed by Hirotsu (2009) to obtain a classifica-
tion of rows such that the generalized squared distance among clusters is significantly
large, achieving simultaneously homogeneity within each cluster. We have already
introduced a chi-squared distance among clusters, and therefore we can propose
the following algorithm based on this.

(1) Specify K, the number of clusters.

(2) Start from a clusters, each of which is composed of one row.

(3) LetG1,…,Ga−k + 1 be the clusters at the kth stage. Find two clustersGi andGi that
give the smallest squared distance χ2 Gi;Gi among all possible combinations of two
clusters fromG1,…,Ga−k + 1. Then, combine these two clusters to form a−k clusters
for the next k + 1 th stage.

(4) Continue procedure 3 until the number of clusters becomes the pre-specified num-
ber K. The resulting partition is denoted by G1,…,GK. Then, make an adjustment by
the next algorithm.

278 ADVANCED ANALYSIS OF VARIANCE



(5) First calculate the squared distance between row 1 and clusters G1 1 ,…,GK 1 ,
whereGk 1 denotes the fact that row 1 is eliminated fromGk. Then classify row 1 into
the cluster that gives the smallest squared distance χ2 1;Gk 1 among k = 1,…, K.
Do the same thing between row 2 and the renewed clusters with row 2 eliminated.
Continue the process repeatedly until no reduction in the generalized squared distance
χ2(G1;…;GK) is obtained.

(6) Stopping rule:We begin with K = 2 and continue the process until the general-
ized squared distance among the clusters G1,…,GK) becomes significant for the
first time at the pre-specified level α1. Then we evaluate the variation within each
cluster by the maximum eigenvalue at level α2. If all K clusters show non-
significant within variation we stop here, concluding that there are K clusters
and giving their interpretation. Example of section 11.4.4 at K = 2 is typical for
this case. If all K clusters show significant within variation we proceed to the
K + 1 th cluster and continue the process. As an intermediate case, let the within
variation be significant for K1 clusters and non-significant for K2 =K−K1) clus-
ters. Then we fix those K2 clusters and apply the clustering procedure anew to the
rows in K1 clusters.

As an example, we obtain a significant classification at K = 2 in Example 11.1
below with two clusters G1(1) and G2(2,…, 8). The within variation in G2 is signif-
icant, so K1= K2 = 1 in this case. We fix and eliminate G1 and apply the clustering
procedure anew to G2. In this particular case we need not adjust the significance level
α1, since it follows the closed testing procedure of Marcus et al. (1976). This suggests
that it is reasonable to take α1 = α2, since otherwise we apply different α’s to G2 in
testing within variation and the clustering procedure, respectively. We apply this gen-
erally in the following, since there is no reason to choose any particular value for α2.
The subgroup G2 was not analyzed separately, but as part of the original table in Hir-
otsu (2009). This leads to putting the coefficient ρi to zero for the eliminated rows in
calculating the generalized squared distance among the clusters from G2. Then, the
maximization does not reduce to the maximum eigenvalue problem and requires a
very complicated optimization procedure. The difference lies only in the treatment
of the column totals of the two-way table, and there is only a slight difference in
the outcome. Therefore, we deal with G2 independently from the eliminated rows
in this book.

Example 11.1. Israeli adults cross-classified by worries and country of origin.
The data in Table 11.2 were reported by Guttman (1971) and have been analyzed
by Greenacre (1988) by the method of Hirotsu (1983). 1554 Israeli adults are
cross-tabulated according to the row categories of principal worries and the column
categories depending on their country of origin, with abbreviations as follows: 1.
ASAF, Asia-Africa; 2. IFAA, Israel, father Asia-Africa; 3. IFI, Israel, father Israel;
4. IFEA, Israel, father Europe-America; 5. EUAM, Europe-America.
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First applying the clustering algorithm to rows, we obtain a highly significant
squared distance 77.90 between clusters G1(1) and G2(2,…, 8) at K = 2 for the
reference value 23.55 at α= 0 05 from the Wishart distribution W (I4, 7). The within
variation 24.66 of the cluster G2 evaluated as the largest root ofW (I4, 6) is significant
with p-value 0.018. Therefore, we separate G1 (Personal economics) and apply the
clustering procedure anew to G2. The generalized chi-squared distances χ2 2; 3,
4, 5, 6, 7, 8 = 20 77 atK = 2 and χ2(2; 8; 3, 4, 5, 6, 7) = 20.99 at K = 3 are non-
significant at significance level 0.05 as the largest eigenvalue of W(I4, 6), and we
obtain a significant result first at K = 4 with chi-squared distance χ2 2; 3,
4, 6; 5, 7;8 = 23 195 and related p-value 0.030. The generalized chi-squared distance
among five clusters G1(1), G2(2), G3(3,4, 6), G5(5, 7), and G8(8) is 91.81, and its
relative contribution to the largest root 92.73 of the original table is 0.99.
Now the software first presents the original data and calculates the Wishart matrix

WW via the vector wk(11.10) with K = a and its largest eigenvalue as 92.73, which is
evaluated as highly significant by the Wishart distributionW(I4 , 7). Then the cluster-
ing algorithm starts for the pre-specified number of clusters K = 2,…,8 . The search
for significant clustering at pre-specified α= 0 05 goes like this. First try K = 2 to find
clustering in G1(1) and G2(2, 3, 4, 5, 6, 7, 8) is highly significant with p-value
0.13 × 10−10. Then check the within variation of sub-clusters to find G2 is inhomoge-
neous with p= 0 018 by the Wishart W(I4, 6). Therefore, after separating G1(1), re-
clustering of G2 starts and obtains a significant clustering first at K = 4 for
G2(2), G3(3,4, 6),G5(5, 7), and G8(8) with generalized squared distribution distance
23.20 and related p-value 0.030. The within variation of sub-clusters G3(3,4, 6) and
G5(5, 7) is evaluated as non-significant with p-values 0.718 and 0.949 by the Wishart
distribution W(I2, 4) and W(I1, 4), respectively. Therefore, the algorithm stops here
and gives a summary of the classification, the generalized squared distance 91.84
among five sub-clusters, and its contribution to the original largest root 92.73.
In this case, however, the number of clusters 5 is too large for a = 8, and the relative

contribution looks excessively high. Therefore we may try another significance level,
α= 0 10 say. Then we can separate row 2 (Other worries) fromG2 with p-value 0.081.

Table 11.2 Israeli adults cross-classified by principal worries and residence area.

Residence area

Worries 1. ASAF 2. IFAA 3. IFI 4. IFEA 5. EUAM

1. Personal economics 104 14 9 16 48
2. Other worries 81 14 12 52 128
3. Sabotage 70 9 7 24 117
4. Enlisted relative 61 8 5 22 104
5. Military situation 97 12 14 28 218
6. More than one worry 20 2 0 6 42
7. Economic situation 4 1 1 2 11
8. Political situation 32 6 7 28 118
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The within variation in the counterpart sub-cluster G3(3, …, 8) is 15.17 with p-value
0.19 byWishart distributionW(I4, 5), and the algorithm stops here. Thus the algorithm
first separates 1 (Personal economics) and then 2 (Other worries) from subgroup G3

related to political matters. The relative contribution of G1(1), G2(2), and G3(3,…, 8)
is still 0.88 and reasonably high.
Since the column categories are also nominal, we can apply the same procedures to

them as rows and obtain a significant clustering F1(1, 2, 3) and F4(4, 5) at K = 2. This
separates the subgroup related to Europe-America from the others. Applying the
largest eigenvalue test to each of F1 and F4, the former is found to be homogeneous.
In contrast, the largest eigenvalue 24.55 of F4 is significant at α= 0 05 and immedi-
ately suggests that F4 should be separated into F4(4) and F5(5), since this is only one
possible classification. The generalized chi-squared distance 90.54 among F1, F4, F5

explains 98% of the largest root 92.73 of the original table. If we employ α = 0 10, we
have the same result.
The collapsed data and the simple departure measure from the independence model

yij /(RiCj/N) of Cox and Snell (1981) are given in Table 11.3. It is seen that G1 is
strongly associated with the cluster F1(1, 2, 3) of columns. G2 is strongly associated
with F4 and the subgroup G3(3, …, 8) is associated with F5. In short, those from
Asia-Africa tend toward personal economics while those from Europe-America tend
more toward the political situation and other worries. The reader is recommended to
compare this analysis with that of Guttman (1971).

11.4 Directional Inference in the Case of Natural
Ordering Only in Columns

11.4.1 Overall analysis

In the case where there is natural ordering in columns, we are interested in distinguish-
ing some systematic departure such as the upward or downward tendency along with
columns. The hypothesis of interest is

T3
pi 1
pi1

≤
pi 2
pi2

≤ ≤
pi b
pib

, i i

Table 11.3 Collapsed data.

Collapsed table Simple departure measure

Cluster F1(1, 2, 3) F4(4) F5(5) F1(1, 2, 3) F4(4) F5(5)

G1(1) 127 16 48 1.75 0.73 0.5
G2(2) 107 52 128 0.98 1.58 0.88
G3(3, …, 8) 356 110 610 0.87 0.89 1.12
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which is a probability version of (10.29) and also an extension of (5.19) in
Section 5.2.3. This is a sort of profile analysis of rows, and order-sensitive squared
distances have been proposed by Hirotsu (1983, 1993, 2009). For the upward and
downward profiles, the cumulative chi-squared has been proposed, which simply
replaces the matrix C by C∗ in the definition of goodness-of-fit χ2 (11.5), where
the jth row of C∗ is

c∗ 1,…, j; j+ 1,…,b =
1
Vj

+
1
V∗
j

−1 2
C1

Vj

Cj

Vj
−

Cj+ 1

V∗
j

−
Cb

V∗
j

(11.11)

Vj =
j
k = 1Ck, V

∗
j =

b
k = j+ 1Ck, for j= 1,…, b−1 (11.12)

We call c∗ 1,…, j; j+ 1,…,b a step change-point contrast between the jth and j+ 1th
columns. Thus, an overall cumulative chi-squared statistic is defined by

χ∗2 = R C∗ z 2 = χ∗21 + + χ∗2b−1 (11.13)

where χ∗2j is the goodness-of-fit chi-square for the a × 2 sub-table obtained by collap-
sing columns 1, …, j and j+ 1,…,b, respectively. This obviously corresponds to Sαβ∗
(10.30) of the normal model in Section 10.4.1(1). The chi-squared approximation of
the null distribution is obtained by extending the method in 6.5.3 (2) (a) to the two-
way contingency table:

κ1 =E χ∗2 = a−1 b−1 = df ,

κ2 =V χ∗2 = 2 a−1 b−1 + 2
γ1
γ2

+…+
γ1 +…+ γb−2

γb−1
= 2d2f ,

γj =Vj V∗
j

This formula is the same as obtained in 10.4.1 (1), except for the definition of γj.
The improved upper percentile and the upper tail probability are obtained by the
method in Section 6.5.3 (2) (a), just by changing the definition of kappa to κ1, κ2,

and κ3 = 8 a−1 tr C∗ C∗ 3
based on

C∗ C∗ =

1 γ1 γ2 γ1 γ3 γ1 γb−1

γ1 γ2 1 γ2 γ3 γ2 γb−1

γ1 γ3 γ2 γ3 1 γ3 γb−1

γ1 γb−1 γ2 γb−1 γ3 γb−1 1
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That is, replacing λi by γj. These formulae coincide with the formulae for the normal
model in Section 10.4.1(1) by altering (11.12) to Vj = j,V∗

j = b− j, or γj = j b− j .

11.4.2 Row-wise multiple comparisons

(1) Chi-squared distances. The chi-squared distance between the lth and mth rows,
the chi-squared distance between two subgroups of rows, and the generalized chi-
squared distance are defined parallel to Section 11.3, simply replacing C by C∗ in
equations (11.6) ~ (11.8),

χ∗2 l1; l2 = r l1; l2 C∗ z 2 (11.14)

χ∗2 H1;H2 = r H1;H2 C∗ z 2 (11.15)

χ∗2 H1;…;HK = maxρ r = 0, ρ 2 = 1 ρ C∗ z 2, ρi = ζk Ri Tk
1 2 for i Hk

(11.16)

Then all the chi-squared distances (11.14) ~ (11.16) are bounded above by
χ∗2 1 ;…; a =maxρ r= 0, ρ 2 = 1 ρ C∗ z 2, which is the largest eigenvalue

W∗
1 of W∗ W∗, where W∗ = w�

1 , …, w∗
a ,w∗

i = Ri N −1 2 C∗ C−1 2
1 yi1,…,

C−1 2
b yib . Its null distribution is that of the largest eigenvalue of the Wishart matrix

W C∗ C∗, a−1 when a ≥ b. The distribution is very hard to handle, but we can give
a very nice chi-squared approximation in the following.

(2) Chi-squared approximation of the distribution of the largest eigenvalue of
the Wishart matrix. The proposed method adjusts the first two cumulants to dχ2f
as before. These cumulants are obtained by asymptotic expansion, applying the
method of Sugiura (1973) as

E W∗
1 = κ1 = qτ1 + 1−

2
q 2 ≤ j ≤ p

τ1τj
τ1−τj

+
2
q 2 ≤ j< k ≤ p

τ1τjτk
τ1−τj τ1−τk

(11.17)

V W∗
1 = κ2 = 2qτ

2
1 +

−2q3 + 32q+ 144
q3 2 ≤ j ≤ p

τ1τj
τ1−τj

2

+
2 q2 + 6q−4

q2 2 ≤ j< k ≤ p
τ21τjτk

τ1−τj τ1−τk

(11.18)

where q = a−1, p = b−1, and τj is the jth largest eigenvalue of C∗ C∗ satisfying
τj = tr C∗ C∗ = b−1. Then E W∗

1 and V W∗
1 are set equal to df and 2d2f, respec-

tively. In particular, in case of b = 3 p = 2 they reduce to

E W∗
1 = κ1 = qτ1 + 1−

2
q

τ1τ2
τ1−τ2

= df (11.19)
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V W∗
1 = κ2 = 2qτ

2
1 +

−2q3 + 32q + 144
q3

τ1τ2
τ1−τ2

2

= 2d2f (11.20)

In the balanced case, where all the column totals are equal, the τj are explicitly

τj =
b

j j+ 1
, j= 1,…,b−1

so that τ1 = 3 2,τ2 = 1 2 for b = 3 and τ1 = 2,τ2 = 2 3, τ3 = 1/3 for b = 4, for example.
Then, for the balanced case the first terms in E W∗

1 and V W∗
1 are dominant when q

is moderately large, since then the largest eigenvalue is large enough compared with
the other eigenvalues. The two-way ANOVA model fits to this situation, and in this
case the approximation by τ1χ2q is suggested by the form of (11.19) and (11.20). It has
actually been shown to behave better than the naïve normal approximation by Ander-
son (2003). However, if the largest and second-largest eigenvalues are close, making
τ1−τ2 small, then the rest of the terms in (11.17) and (11.18) become non-negligible
and we need full terms in these equations. In Table 11.4 we give upper five and one
percentiles calculated by several methods, where 0-approx. is the normal approxima-
tion by Anderson (2003), 1-approx. is the chi-squared approximation by Hirotsu
(1991) using only the dominant terms, and 2-approx. is the chi-squared approximation
using full terms (Hirotsu, 2009). Zonal is the value obtained by Aida and Hirotsu
(1983) through the Zonal polynomial expansion of the cumulative distribution func-
tion of the largest eigenvalue of the Wishart matrix given by James (1964, 1968), and
adopted here as reference value. They employed 120 terms to ensure accuracy up to
two decimal places. It gives a very good reference value, but obtained only in a very
limited case. The vacancies in Table 11.4 mean, for example, that the required accu-
racy has not been achieved even with 120 terms in the Zonal polynomial expansion. It
is seen from this table that the accuracy of the 2-approx. is excellent, whereas the nor-
mal approx. is very poor when the largest and second-largest eigenvalues are close to
each other. The proposed method behaves much better in those least favorable cases.

11.4.3 Multiple comparisons of ordered columns

Because of the natural ordering, not all the permutations of columns make sense and
we are interested in the b−1 step change-point contrasts c∗ 1,…j; j+ 1,…,b
defined in equation (11.11). We have already discussed a mathematically equivalent
model in Section 10.4.1 (3) for the normal distribution, where a method is proposed
for comparing ordered rows. Here we apply the idea to the ordered columns and pro-
pose a maximal statistic

max acc χ2 C∗ =maxj R c∗ 1,…, j; j+ 1, ,b z 2 (11.21)

where the maximization is with respect to j= 1, …, b−1. This is actually the maximal
component of χ∗ 2 defined in (11.13), and detects a cut point of the largest contribution
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Table 11.4 Comparing upper percentiles by several approximation methods.

(1) b= 3

τ1

% a−1 Method 1.2 1.3 1.4 Balanced 1.6 1.7

5 Zonal 15.01 15.62 16.40 17.27 18.21 19.17
0-approx. 12.24 13.26 14.28 15.30 16.32 17.34
1-approx. 13.28 14.39 15.50 16.61 17.71 18.82
2-approx. 15.23 15.45 16.17 17.06 18.02 19.02

10 Zonal 23.78 25.05 26.54 28.14 29.79 31.47
0-approx 20.83 22.56 24.30 26.03 27.77 29.51

5 1-approx. 21.97 23.80 25.63 27.46 29.29 31.12
2-approx. 21.99 24.30 26.13 27.89 29.62 31.36

20 Zonal 39.58 42.12 44.91 47.81 50.76 53.75
0-approx. 36.48 39.52 42.56 45.60 48.64 51.69
1-approx. 37.69 40.83 43.93 47.12 50.26 53.40
2-approx. 38.31 41.62 44.65 47.65 50.66 53.69

5 Zonal 19.72 20.76 21.98 23.28 24.62 25.99
0-approx. 18.03 18.31 19.17 20.23 21.38 22.58
1-approx. 18.10 19.61 21.12 22.63 24.14 25.65
2-approx. 20.14 20.59 21.67 22.97 24.35 25.78

10 Zonal 29.52 31.35 33.37 35.48 37.62 39.80
0-approx. 25.43 28.38 30.62 32.71 34.78 36.84

1 1-approx. 27.85 30.17 32.47 34.81 37.13 39.46
2-approx. 26.36 30.02 32.65 35.04 37.34 39.62

20 Zonal 46.82 50.06 53.50 57.02 60.59
0-approx. 43.75 37.85 51.45 54.97 58.48 61.99
1-approx. 45.08 48.87 52.59 56.35 60.11 63.86
2-approx. 44.61 49.17 53.03 56.75 60.44 64.11

(continued overleaf )
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Table 11.4 (Continued)

(2) b = 4

Case

% a−1 Method 1 Balanced 3 4 5

5 Zonal 22.75 20.92 19.48 23.41 24.06
0-approx. 21.53 19.20 17.14 22.40 23.17
1-approx. 21.29 18.98 16.94 22.14 22.90
2-approx. 22.45 21.40 21.18 23.31 23.90

10 Zonal 36.69 33.35 30.62 37.91 39.28
5 0-approx. 36.09 32.17 28.72 37.53 38.83

1-approx. 35.21 31.38 28.02 36.61 37.88
2-approx. 36.33 32.93 30.17 37.63 38.80

20 Zonal
0-approx. 62.30 55.54 49.59 64.79 67.03
1-approx. 60.40 53.85 48.08 62.82 64.99
2-approx. 61.68 55.54 50.29 63.96 66.01

5 Zonal 30.43 27.72 25.49 31.42 32.35
0-approx. 25.28 22.54 20.12 26.29 27.20
1-approx. 29.01 25.86 23.09 30.17 31.21
2-approx. 30.45 28.60 28.31 31.32 32.16

10 Zonal 37.99
1 0-approx. 41.38 36.89 32.94 43.04 44.52

1-approx. 44.63 39.79 35.52 46.42 48.02
2-approx. 45.41 40.83 36.92 47.18 48.72

20 Zonal
0-approx. 69.79 62.21 55.55 72.53 75.08
1-approx. 72.24 64.40 57.50 75.13 77.72
2-approx. 73.27 65.70 59.06 76.09 78.60

Case 1 Balanced Case 3 Case 4 Case 5

τ2/τ1 0.3 1/3 0.4 0.5 0.6
τ3/τ2 0.5 1/2 0.4 0.5 0.6
τ1−τ2 1.45 4/3 1.15 0.86 0.61
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to χ∗ 2. It is asymptotically distributed as the maximum of the correlated chi-squared
variables under the null hypothesis of independence. We call this method max acc.
χ2(C∗ ). A very efficient algorithm for the p-value calculation is given by Hirotsu
et al. (1992) based on the Markov property of the successive chi-squared components.
The idea is as follows.
Let uj = R c∗ 1,…, j; j + 1,…,b z. Then the asymptotic null distribution of uj

is N 0, Ia−1 with covariance Cov uj,uj = τjj Ia−1, where τjj = γj γj is the (j, j )

element of C∗ C∗, 1 ≤ j ≤ j ≤ b−1. Therefore, χ∗2j = uj2 is distributed as the chi-squared

distribution with df a−1 and the joint distribution of χ∗2j and χ∗2j is a bivariate chi-
squared distribution with correlation τjj . The Markov property exists in uj and we
have the factorization of the joint distribution as

f u1, …,ub−1 = f u1│u2 × × f ub−2│ub−1 × f ub−1

where f uj│uj+ 1 is the conditional normal density ofN τjj + 1uj+ 1, 1−τ2jj+ 1 Ia−1

given uj + 1. Then the conditional distribution of uj
2 1−τ2jj+ 1 given uj+ 1 is the

non-central chi-squared distribution with df a−1 and the non-centrality parameter

τ2jj + 1 uj+ 1
2 1−τ2jj+ 1 thus depending only on uj+ 1

2. It suggests a Markov prop-

erty of the sequence of χ∗2j , j = 1,…,b−1, and leads to the recursion formula for the
distribution of max acc. χ2(C∗ ). The idea is similar to that of Section 6.5.3 (1) (d),
which led to the recursion formula for max acc. t1.
We define the conditional joint probability of ( u1

2,…, uk
2) given uk

2 as

Fk uk
2, c =Pr u1

2 < c,…, uk
2 < c uk

2 , k = 1,…, b−1

Then we have

Fk + 1 uk + 1
2, c = Pr u1

2 < c,…, uk
2 < c, uk + 1

2 < c uk + 1
2

=
uk

2
Pr u1

2 < c,…, uk
2 < c, uk + 1

2 < c uk
2, uk + 1

2

× fk uk
2 uk + 1

2 d uk
2

(11.22)

= uk
2
Fk uk

2, c × fk uk
2 uk + 1

2 d uk
2if uk + 1

2 < c,

0, otherwise,

(11.23)

where fk uk
2 uk + 1

2 is a conditional distribution of uk
2 given uk + 1

2.

Equation (11.22) is from the total probability theory and (11.23) is due to the Markov
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property of the sequence of uk
2, corresponding to (6.29) and (6.30) of max acc. t1,

respectively. The conditional distribution is easily obtained by applying the asymp-
totic expansion of the non-central chi-squared distribution with respect to its non-
centrality parameter as

fk uk
2 uk + 1

2 = ∞
l= 0e

−δ 2 δ 2 l

l 1− τ2k, k + 1
ga−1 + 2l

uk
2

1− τ2k, k + 1
,

δ =
τ2k, k + 1 uk + 1

2

1− τ2k, k + 1
,

where gν(x) is a density function of the chi-squared distribution with df ν. The

p-value is obtained at the final step by 1−Fb, where the integration by ub−1
2 is

unconditional with respect to the chi-squared distribution fb−1 ub−1
2 ub

2 =

ga−1 ub−1
2 .

In contrast, a closed form is given by Hirotsu et al. (1992) up to k = 3 5, expressed

in the summation of the chi-squared distribution function Ga−1 + 2k c 1−τ2k, k + 1 .

Since they exhibit little complication, we give here only a formula for b = 3. This for-
mula for b= 3 coincides with the formula obtained by Siotani (1959) through direct
inversion of the joint characteristic function of the bivariate chi-squared distribution.
These formulae can be applied to Section 10.4.1 (3) with R∗ instead of C∗ :

b= 3 Pr maxχ2 C∗ ≤ c = 1−τ212
f 2 ∞

k = 0τ
2k
12
Γ f 2 + k
Γ f 2 k

G2
f + 2k

c

1− τ212
, f = a−1

11.4.4 Re-analysis of Table 11.1 taking natural ordering
into consideration

(1) Overall analysis by the cumulative chi-squared statistic.As a typical example,
we analyze Table 11.1. The components of the cumulative chi-squared (11.13) are
obtained as the goodness-of-fit chi-square of the two collapsed sub-tables given in
Table 11.5. Then we get

χ∗2 = χ∗21 + χ∗22 = 91 251 + 8 390 = 99 641

The constants for the chi-squared approximation are

d = 1 +
2

b−1
γ1
γ2

= 1 +
2

3−1
2166

8323 + 1419
2166 + 8323

1419
= 1 030,

f = 10−1 × 3−1 d = 17 374
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giving dχ2f = 29 08 α= 0 05 , 35 14 α= 0 01 . In this case the column totals are
highly unbalanced in size, concentrating on medium severity, so the gain in power
is not so much compared with the usual goodness-of-fit chi-square. It suggests
anyway a strong association between occupation and severity of illness, but again
cannot tell us any details of the data, because it is an overall test.

Table 11.5 Calculation of the components of cumulative chi-squared.

Severity Severity

Occupation Slight Medium-Serious Slight-Medium Serious Total

1 148 530 592 86 678
2 111 401 463 49 512
3 645 2239 2556 328 2884
4 165 890 936 119 1055
5 383 2140 2212 311 2523
6 96 340 389 47 436
7 98 388 428 58 486
8 199 1029 1073 155 1228
9 59 229 258 30 288
10 262 1556 1582 236 1818

Total 2166 9742 10489 1419 11908

χ∗21 = 91 251 χ∗22 = 8 390

Table 11.6 Chi-squared distances between two rows (rows rearranged).

Row 10 5 4 8 7 9 2 1 6 3

10 0 0.85 2.52 1.67 8.93 7.72 18.6 18.3 15.3 50.1∗∗

5 0 0.88 0.65 6.86 5.79 15.2 15.9 12.5 47.8∗∗

4 0 1.10 4.71 3.73 9.41 11.4 8.51 23.5∗

8 0 3.83 3.95 10.5 9.29 8.35 23.5∗

7 0 0.41 1.71 0.68 0.82 1.48
9 0 0.30 1.24 0.30 0.85
2 0 2.7 0.35 1.48
1 0 0.92 1.01
6 0 0.16
3 0
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(2) Row-wise multiple comparisons. For reference, we first give the chi-squared
distances (11.14) between two rows in Table 11.6, where the rows are rearranged
so that two rows which give a smaller distance come closer to each other. Applying
the clustering algorithm of Section 11.3.3 based on the cumulative chi-squared
statistics, we have a highly significant chi-squared distance χ∗2 G1;G4 = 90 96
between two clusters G1(1, 2, 3, 6, 7, 9) and G4(4, 5, 8, 10) at K = 2. For reference

value we have τ12 = γ1 γ2 = 0 1734, which gives τ1 = 1 1734, τ2 = 0 8266. These
two eigenvalues are very close, suggesting that this might be a worst case for the
chi-squared approximation beyond the range of Table 11.4 (1). However, it can still
give an approximate critical value 0 541 χ223 541 0 05 = 19 39 by (11.19) and (11.20),
which will be enough to evaluate χ∗2 G1;G4 = 90 96. Since the more accurate critical
value obtained by Aida and Hirotsu (1983) by Zonal polynomial expansion is 21.85
at α= 0 05, the approximation is not so bad. However, we still recommend using the
formula of Section 11.4.2 (2) within the range of Table 11.4 (1) and (2).
To evaluate the within variation of G1 and G4, the largest eigenvalues

W∗
1 G1 = 3 37 andW∗

1 G4 = 2 83 are calculated. Their respective p-values are
obtained as 0.86 and 0.34 by the chi-squared approximation for the largest eigenva-
lues of W C∗

1 C
∗
1,5 andW C∗

4 C
∗
4, 3 , where the matrices C∗

i C
∗
i , i= 1, 4 are calcu-

lated by equation (11.11) for the respective partitioned sub-tables. Thus the
algorithm stops here, declaring that there are two different subgroups of rows.

(3) Comparing ordered columns.We apply the max acc. χ2(C∗ ) (11.21) method of
Section 11.4.3. The components of χ∗ 2 (11.13) have already been calculated in
Table 11.5, and max acc. χ2(C∗ ) is χ∗21 = 91 251. This is evaluated as highly signif-
icant by the formula (b = 3 of Section 11.4.3, suggesting separation between columns
1 and 2. The within variation of the sub-table composed of columns 2 and 3 in the
second cluster is evaluated as the usual goodness-of-fit chi-square, since it is com-
posed of just two columns. It is 5.23 and non-significant as chi-squared with df 9.
The collapsed sub-tables in two ways and a simple departure measure from independ-
ence are given in Table 11.7. Now the interpretation is clear. The cluster G1(1,
2, 3, 6, 7, 9) is characterized by the high proportion in the ‘slight’ category of illness
relative to the cluster G4(4, 5, 8, 10) . This result suggests also a simple block inter-
action model

pij = pi p jθlm l= 1 for i G1, l= 2 for i G4;m= 1 for j F1, m= 2 for j F2

(11.24)

The fitted frequencies by model (11.24) are obtained by an iterative scaling procedure,
keeping the entries of Table 11.7 in addition to all the marginal totals, and given in
Table 11.1 just below the original data in double parentheses. A very nice fit is seen by
adding just one parameter for interaction, where the df for interaction θlmis obviously
1. The goodness-of-fit chi-square of model (11.24) reduces to 8.04 with df 17, from
95.75 for the independence model with df 18. Indeed, the fit is excellent.
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11.5 Analysis of Ordered Rows and Columns

11.5.1 Overall analysis

The idea of the previous section is naturally extended to the case of natural ordering,
both in rows and columns. Now the doubly accumulated chi-square is defined by

χ∗∗2 = R∗ C∗ z 2 (11.25)

where R∗ is defined similarly to C∗ by r∗ 1,…, i; i+ 1,…,a instead of
c∗ 1,…, j; j+ 1,…,b :

r∗ 1,…, i; i+ 1,…,a =
1
Ui

+
1
U∗

i

−1 2 R1

Ui

Ri

Ui
−

Ri+ 1

U∗
i

−
Ra

U∗
i

,

with Ui =
i
k = 1Rk, U∗

i =
a
k = i+ 1Rk for i= 1,…, a−1

(11.26)

We call r∗ 1,…, i; i + 1,…,a also a step change-point contrast between the
ith and i+ 1th rows. χ∗∗2 is equivalent to the sum of squares of the goodness-of-fit

chi-square χ∗∗2ij of all the a−1 b−1 partitions of the original table into 2 × 2

sub-tables – see Table 11.10 (1) and (2), for example. Thus, an overall cumulative
chi-squared statistic is defined by

χ∗∗2 = R∗ C∗ z 2 = χ∗∗211 + + χ∗∗2a−1, b−1 (11.27)

This obviously corresponds to Sα∗β∗ of (10.31). The cumulants for the chi-squared
approximation are given by

κ1 =E χ∗∗2 = a−1 b−1 = df (11.28)

Table 11.7 Collapsed data and simple departure measure.

Collapsed table Simple departure measure

Cluster Slight (F1) Medium-
Serious (F2)

Slight
(F1)

Medium-
Serious (F2)

G1(1, 2, 3, 6, 7, 9) 1157 4127 1.20 0.95
G4(4, 5, 8, 10) 1009 5615 0.84 1.04
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κ2 =V χ∗∗2 = 2 a−1 + 2
λ1
λ2

+…+
λ1 +…+ λa−1

λa−1

× b−1 + 2
γ1
γ2

+…+
γ1 +…+ λγb−1

γb−1
= 2d2f

(11.29)

and κ3 = 8tr R∗ R∗ C∗ C∗ 3
with

R∗ R∗ =

1 λ1 λ2 λ1 λ3 λ1 λa−1

λ1 λ2 1 λ2 λ3 λ2 λa−1

λ1 λ3 λ2 λ3 1 λ3 λa−1

λ1 λa−1 λ2 λa−1 λ3 λa−1 1

and

C∗ C∗ =

1 γ1 γ2 γ1 γ3 γ1 γb−1

γ1 γ2 1 γ2 γ3 γ2 γb−1

γ1 γ3 γ2 γ3 1 γ3 γb−1

γ1 γb−1 γ2 γb−1 γ3 γb−1 1

where λi =Ui U∗
i .

11.5.2 Comparing rows

The data of Table 11.8 are taken from a phase II clinical trial to find an optimal dose
(Hirotsu, 1992). Table 5.5 employed in Section 5.2.3 (1) is a part of this table. Now the
rows represent the dose levels and the columns are the ordered categorical responses
in six levels from unfavorable to excellent recovery. This table is characterized by the
natural ordering in both rows and columns, and the purpose is to compare the rows
based on the response profiles along the ordered columns. Then it seems most appro-
priate to apply the step change-point contrasts to rows. This implies analyzing
Table 11.9 (1) and (2), obtained by separating and collapsing the original table at two
cut points in rows. There are several methods for dealing with the ordered columns.
We consider three typical ways in the following.

(1) Max Wil method. We can apply a Wilcoxon rank sum test to each of
Table 11.9 (1) and (2), and take the maximum of the two. The statistic is described as
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Table 11.8 Original data from phase II trial for an antibiotic.

Improvement

Drug Undesirable Slightly Not useful Slightly Useful Excellent Total
Undesirable useful

Placebo 3 6 37 9 15 1 71
AF3 7 4 33 21 10 1 76
AF6 5 6 21 16 23 6 77

Total 15 16 91 46 48 8 224

Table 11.9 Sub-tables for maximal contrast test for rows.

(1) Collapsing AF3 and AF6

Improvement

Drug Undesirable Slightly Not useful Slightly Useful Excellent Total
Undesirable useful

Placebo 3 6 37 9 15 1 71
AF3
& AF6

12 10 54 37 33 7 153

Total 15 16 91 46 48 8 224

(2) Collapsing placebo and AF3

Improvement

Drug Undesirable Slightly Not useful Slightly Useful Excellent Total
Undesirable useful

Placebo
& AF3

10 10 70 30 25 2 147

AF6 5 6 21 16 23 6 77

Total 15 16 91 46 48 8 224
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maxWil =maxi r∗ 1,…, i; i+ 1,…,a s z , i = 1, 2 (11.30)

where s is Wilcoxon’s rank score:

s =
1
σW

C1
C1 + 1
2

−
N + 1
2

, C2 C1 +
C2 + 1
2

−
N + 1
2

, …,

Cb C1 + +Cb−1 +
Cb + 1
2

−
N + 1
2

,

σ2W = b
j= 1 Cj C1 + +Cj−1 +

Cj + 1
2

−
N + 1
2

2

To calculate the p-value for a moderate sample size, we can apply the normal approx-
imation. Then it is nothing but max acc. t1 of a one-way layout with ni =Ri, i= 1,2 3
and df for error ∞ .

(2) Max χ� 2 method.We can apply also the cumulative chi-squared statistic to each
of Table 11.9 (1) and (2), and take the maximum of the two. The statistic is a variation
of max acc. χ2 and described as

max acc χ∗2 R∗ = maxi r∗ 1,…, i; i+ 1,…,a C∗ z 2, i= 1, 2 (11.31)

The p-value is evaluated approximately as the maximum of the bivariate chi-squared
distributions for a moderate sample size.

(3) Max max χ method. We can also apply the maximal contrast statistic (max acc.
t1) to each of Table 11.9 (1) and (2), and take the maximum of the two. The statistic is
described as

maxmax χ =maximaxj r∗ 1,…, i; i+ 1,…,a c∗ 1,…, j; j+ 1,…,b z

= maxi maxj χ∗∗ij

χ∗∗ij = Y∗∗
ij −

UiVj

N

Ui U∗
i Vj V∗

j

N3

−1 2

(11.32)

where Y∗∗
ij = k ≤ i l ≤ jykl, and Ui,U∗

i , Vj ,V∗
j are defined in (11.26) and (11.12),

respectively. The statistic χ∗∗ij is nothing but the component of χ∗∗2 (11.25) in
Section 11.5.1. The exact algorithm for the distribution function of max max χ
was obtained by Hirotsu (1997). Define a conditional probability

Fk χ ∗∗k = Pr χ ∗∗1 ≤ cj,…,χ ∗∗k ≤ cj│Y∗∗
k

where χ ∗∗k = χ∗∗1k ,…,χ∗∗a−1k ,Y∗∗
k = Y∗∗

1k ,…, Y∗∗
ak and χ ∗∗k ≤ cj means χ∗∗lk ≤ c for

l= 1,…,a−1. Then we have a recursion formula
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Fk + 1 χ ∗∗k + 1 =
Yk

Fk χ ∗∗k × f Y∗∗
k │Y∗∗

k + 1

where f Y∗∗
k │Y∗∗

k + 1 is a conditional probability of Y∗∗
k given Y∗∗

k + 1. To be exact,
define a matrix

A=

1 0 0 0 0

−1 1 0 0 0

0

0

0

−1

0

0

1 0 0

0 1 0

0 −1 1 a × a

Then f Y∗∗
k │Y∗∗

k + 1 is obtained as f AY∗∗
k │AY∗∗

k + 1 , which is a multivariate hypergeo-
metric distribution given the row total AY∗∗

k + 1 and the column total Y∗∗
ak . The p-value is

obtained finally by 1−Fb χ ∗∗b (see Hirotsu, 1997 for more details).

Example 11.2. Analysis of Table 11.8

(1) Overall analysis. The sub-tables for calculating χ∗∗2 are given in Table 11.10 (1)
and (2). Then, from (11.27) we obtain χ∗∗2 = χ∗∗211 + + χ∗∗225 = 31 361. The constants
for the chi-squared approximation are obtained from (11.28) and (11.29) as

d = 1 5125 × 1 2431 = 1 8802,

f = 3−1 × 6−1 1 8802 = 5 319

The p-value of χ∗∗2 evaluated as 1 88χ25 32 is 0.0067. This suggests the effects of the
active drug, but can give no more details.

(2) Comparing dose levels

(a) Max Wil method. The Wilcoxon rank test (11.30) applied to each of Table 11.9
(1) and (2) gives W1 = 1 29 andW2 = 2 76, respectively. Therefore, max Wil is
W2 = 2 76, with p-value 0.005 (one-sided) and 0.011 (two-sided) by the normal
approximation. That is, there is a cut point between AF 3 mg/kg and AF 6 mg/kg,
and AF 6 mg/kg is a strongly recommended dose.

(b) Max χ� 2 method. The cumulative chi-squared (11.31) applied to each of

Table 11.9 (1) and (2) gives χ∗∗21 = 5
j= 1χ

∗∗2
1j = 7 35 and χ∗∗22 = 5

j= 1χ
∗∗2
2j = 24 01,

respectively. Therefore, max acc. χ∗2(R∗ ) is χ∗∗22 = 24 01, with p-value 0.005
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(two-sided) and the same conclusion is obtained as for the max Wil method. It should
be noted that max χ∗2 is essentially a two-sided test, since the basic variable is a sum of
squares, whereas maxWil and max max χ are useful for both one- and two-sided tests.

(c) Max max χ method. The statistic max max χ (11.32) is calculated from
Table 11.9 (1) and (2). It is nothing but the square root of χ∗∗224 = 10 033, with p-value
0.0077 (one-sided) and 0.014 (two-sided), and the same conclusion is obtained as for
the max Wil method. Although in this example it gives a slightly larger p-value than
max Wil and max χ∗2, it depends of course on the data. This test is most attractive for
its exact p-value and applicability to both one- and two-sided tests. It can further sug-
gest that AF 6 mg is characterized by a high proportion of useful and excellent cate-
gories, since a cut point is suggested between columns 4 and 5.
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12

Mixed and Random
Effects Model

In factorial experiments, if all factors except the error are fixed effects, we have a fixed
effects model. If the factors are all random, except for a general mean, we have a ran-
dom effects model. If both types of factor are involved in the experiment, we have a
mixed effects model. In previous sections fixed effects models were mainly discussed,
except for the recovery of inter-block information in the BIBD. However, there are
cases where it is better to consider the effects of a factor to be random, and we discuss
the basic ideas in this chapter. There is a factor like the variation factor which is dealt
with as fixed in the laboratory, but acts as if it were random in extensions to the real
world. Therefore, this is a problem of interpretation of data rather than of mathematics.

12.1 One-Way Random Effects Model

12.1.1 Model and parameters

Let us consider an experiment to produce products by aworkers using a machine. The
yield of the kth experiment by the ith worker is denoted by yik. Denoting the expected
yield of worker i by μi and the measurement error by eik, we have a one-way
layout model

yik = μi + eik, i= 1,…, a, k = 1, …, m

The worker can be a fixed factor but also considered random if they are selected ran-
domly from the population of workers in the factory. Then we are interested in eval-
uating the variation of the population rather than comparing yields μ1, …, μa of the
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selected workers by chance. Therefore, we define the expectation μ and variance σ2α of
μi in the population. We define the difference

αi = μi−μ

and call it a main effect of worker i. Then we have

E αi = 0

V αi = σ2α
Finally we reach a model

yik = μ+ αi + eik, i= 1, …, a, k = 1,…, m, 12 1

wherewe assume αi and eik are distributed independently of each other asN 0,σ2α and N
(0, σ2), respectively. If an expert is expected to produce a high yield with smaller var-
iation, we have to assume a model V eik = σ2i , i= 1, …, a, but we do not consider the
case here. If the assumption of the equality of variance is doubtful, we need to test
this also.

12.1.2 Standard form for test and estimation

Similarly to Chapter 2, we can express the model in matrix form as

y= jn Xα

μ

α
+ en, α = α1,…,αa ,

where n= am, α~N 0,σ2αIa , en N 0,σ2In , α, and en are mutually independ-
ent, and

Xα =

jm 0 0

0 jm 0

0 0 jm
Differently from Examples 2.1 and 2.3, we have

E y = μjn, (12.2)

V y = σ2αXαXα + σ
2In, (12.3)

but the orthonormal transformationM (2.38) is useful also in this case, and we have a
standard form

z =M y =

n−1 2y

m−1 2Pa

y1

ya

Q y

=

n1 2 μ+ α

m1 2Paα

0

+ ξ, (12.4)
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which is distributed as a multivariate normal distribution with

E z =

nμ

0

0

,

V z =

mσ2α + σ
2 0 0

0 mσ2α + σ
2 Ia−1 0

0 0 σ2 In−a

(12.5)

This form suggests that all the elements of z are independent and the statistics

jn y = y

Sα =m
−1 PaXα y

2 =m i yi −y
2

Se = Q y 2 = i k yik −yi
2

= i k yik −y
2−m i yi −y

2

are the complete sufficient statistics. These sums of squares are the same as those of
the fixed effects model given in Section 6.1. As mentioned there, we first calculate

ST = i kyik
2−y2 n (12.6)

and Sα = iy
2
i m−y2 n (12.7)

and then by subtraction Se = ST −Sα (12.8)

By equations (12.4) and (12.5), we have

E Sα = a−1 mσ2α + σ
2

E Se = n−a σ2

Therefore,

σ2 = Se n−a (12.9)

σ2α =m
−1 Sα a−1 −Se n−a (12.10)

are the minimum variance unbiased estimator of σ2 and σ2α with variances

V σ2 = 2σ4 n−a ,

and V σ2α =
2
m2

m σ2α + σ
2 2

a−1
+

σ4

n−a
,

(12.11)

respectively.
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12.1.3 Problems of negative estimators of variance components

It should be noted, however, that σ2α (12.10) can take a negative value, whereas it must
be positive. Therefore an easy modification

σ2α =max σ2α, 0

is often made. This obviously makes a biased estimator, but the mean squared error is
reduced.
The negative best unbiased estimator is a difficult problem, often encountered in the

estimation of variance components. We introduce here the idea of Smith and Murray
(1984) to justify the negative estimator by regarding a certain variance component as a
covariance. For simplicity, we consider a one-way layout model (12.1), where we
assume the normal distribution for yik with covariance structure

Cov yik,yi k =

σ2 + θa, i= i , k = k ,

θa, i= i , k k ,

0, i i

That is, the σ2α previously defined as the variance of worker αi is considered as the
covariance of measurement errors within the same worker. If index k distinguishes
a litter of animals from the same mother, then parameter θa expresses the covariance
among their characteristic values. It is natural to consider a negative value for θa by
competition among the animals for nutrition. Then, the non-negative condition for σ2α
is relaxed to the condition of positive definiteness of the covariance matrix

σ2Im + θajmjm

This condition can still be violated, but the possibility of an inappropriate solution
would be considerably reduced.
The confidence interval for σ2 is easily obtained from the chi-squared distribution

of Se with df n−a. For σ2α the approximate methods are given by Tukey (1951), Mor-
iguti (1954), Bulmer (1957), and Williams (1962). Boardman (1974) compared these
methods by Monte Carlo simulation. In particular, Williams’ method is preferred in
the sense that a true confidence coefficient does not go down below the nominal value.
In contrast, a positive linear combination of the squared normal variables generally

follows the chi-squared distribution approximately; the distribution becomes very
unstable if negative coefficients are included as in (12.10). Therefore, it would be
recommended to estimate σ2α + σ

2 instead of σ2α. In this case we have an estimator

σ2α + σ
2 =

1
m

Sα
a−1

+
Se
a

, (12.12)

V σ2α + σ
2 =

2
m2

m σ2α + σ
2 2

a−1
+

m−1 σ4

a
, (12.13)
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which is more stable. Also, σ2α + σ
2 is a variation of one experiment by one worker

and easy to interpret.
Meanwhile, the variance of the general mean y is mσ2α + σ

2 n from (12.5). This
is estimated simply by

mσ2α + σ
2 n= Sα n a−1

Then, it is easy to see that

y −μ Sα n a−1 1 2

is distributed as a t-distribution with df a−1, which leads to a confidence interval for
the general mean of

μ y ± Sα n a−1 1 2ta−1 α 2 (12.14)

12.1.4 Testing homogeneity of treatment effects

Since the statistics Sα and Se are distributed as mσ2α + σ
2 χ2a−1 and σ2χ2n−a, the rejec-

tion region of the null hypothesis

H0 σ2α = 0

is given by the F-test,

F =
Sα a−1
Se n−a

>Fa−1,n−a α (12.15)

When the null hypothesis fails, the statistic

Fa−1,n−a =
Sα a−1 m σ2α + σ

2

Se n−a σ2
(12.16)

is distributed as an F-distribution with df a−1,n−a . Thus, the power of the test
(12.15) is obtained from

Pr F >Fa−1,n−a α = Pr Fa−1,n−a >
σ2

m σ2α + σ
2
Fa−1,n−a α

The power becomes large when m and the ratio σ2α σ2 are large.

12.1.5 Between and within variance ratio (SN ratio)

Finally, for the confidence interval of the ratio

γ = σ2α σ2 (12.17)
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we have

Pr
1

Fn−a, a−1 α1
≤Fa−1,n−a ≤Fa−1,n−a α2 = 1−α

for Fa−1,n−a (12.16) and for any (α1, α2) satisfying α1 ≥ 0, α2 ≥ 0, α1 + α2 = α, which
leads to the confidence interval with confidence coefficient 1−α,

1
m

1
Fa−1,n−a α2

×
Sα a−1
Se n−a

−1 ≤
σ2α
σ2

≤
1
m

Fn−a, a−1 α1 ×
Sα a−1
Se n−a

−1

(12.18)

Usually,
α1 = α2 = α 2or α1 = α, α2 = 0

is chosen. In the latter case, only the right-hand-side inequality is concerned in
(12.18). The ratio σ2α σ2 is called a signal-to-noise (SN) ratio in engineering.

Example 12.1. Content rate of sulfur in sulfide mineral. Sulfide mineral has been
brought to a factory in many freight cars. Six cars are selected at random, and the con-
tent rate of sulfur is measured for five samples from each car, as given in Table 12.1
(Moriguti, 1976).
The sums of squares are calculated as follows. First, from (12.6) we have

ST = 42 02 + 41 82 + + 40 42 −1228 62 30 = 10 19

and from (12.7)

Sα = 207 02 + 207 52 + 205 02 + 201 92 + 205 12 + 202 12 5−1228 62 30 = 5 59

and then by subtraction

Se = 10 19−5 59 = 4 60

with df 24. These results are summarized in Table 12.2.

Table 12.1 Content rate of sulfur.

Sample j

Car i 1 2 3 4 5 Total Sum of squares

1 42.0 41.8 40.8 41.4 41.0 207.0 8570.84
2 41.4 41.5 41.1 41.6 41.9 207.5 8611.59
3 41.1 40.8 40.2 41.5 41.4 205.0 8406.10
4 40.5 40.8 39.9 39.7 41.0 201.9 8153.99
5 41.2 40.9 40.7 41.3 41.0 205.1 8413.43
6 40.5 40.3 41.0 39.9 40.4 202.1 8169.51

Total 1228.6 50325.46
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It should be noted that Table 12.2 is the same as Table 6.1 for a fixed effects
model, except for the definition of γ. The observed F ratio is highly significant com-
pared with F5, 24 0 01 = 3 90. Therefore, we proceed to estimate the variance com-
ponents. The estimate of σ2 (12.9) is 0.192, as given in Table 12.2, with the estimate of
variance

V σ2 = 2 × 0 1922 24 = 3 07 × 10−3,

which is obtained by substituting σ2 in (12.11).
The estimate of σ2α + σ

2 is, from (12.12),

σ2α + σ
2 = 0 378

and the estimate of its variance is, from (12.13),

V σ2α + σ
2 =

2
m2

m σ2α + σ
2

2

a−1
+

m−1 σ2
2

a
= 2 20 × 10−2

The estimate of the SN ratio is obtained as

γ = σ2α + σ
2 σ2−1 = 0 378 0 192−1 = 0 97

and the confidence interval at confidence coefficient 0.95 is obtained by putting
α1 = α2 = 0 025 in (12.18) as

0 170 ≤ γ ≤ 7 13

Finally, the confidence interval of the general mean is, from (12.14),

μ 40 95 ± 5 59 30 6−1 1 2t6−1 0 05 2 = 40 95 ± 0 50

This suggests the range of sulfur content in the arrived lots by many freight cars.

Table 12.2 ANOVA table for one-way random effects model.

Factor Sum of squares df Mean sum
of squares

F SN ratio

Treatment Sα = 5 59 (12.7) 5 1.118 F = 5 84∗∗ 12 15 γ (12.17)
Error Se = 4 60 (12.8) 24 0.192

Total ST = 10 19 (12.6) 29
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12.2 Two-Way Random Effects Model

12.2.1 Model and parameters

Extending the idea of the previous section, suppose there are many working machines
in the factory and b of them are randomly chosen. The a workers work on all b
machines m times in random order. Let the yield of the kth experiment by the ith
worker on the jth machine be yijk, the expected yield of the ith worker on the jth
machine be μij, and an independent random error with expectation zero be eijk. Then
we have a model

yijk = μij + eijk , i= 1,…, a; j= 1, …, b; k = 1,… , m (12.19)

Let μα, j be the expected yield of machine j over the population of workers and μi, β the
expected yield of worker i over the population of machines. Then the expectation of
μα, j over the population of machines is denoted by μαβ, which is also the expectation
of μi, β over the population of workers and called a general mean. Then

αi = μi,β−μαβ

βj = μα, j−μαβ

αβ ij = μij−μi,β−μα, j + μαβ

are called the main effects of worker i, machine j, and the interaction between them.
The αi and βj are independent, since the workers and machines are independently cho-
sen. The covariance between αi or βj and (αβ)ij is shown to be zero, as follows. In the

calculation of E αi, αβ i j , we take the expectation first with respect to the machine,

fixing the worker, then we have

E αi, αβ i j =E μi,β−μαβ μi ,β−μi ,β−μαβ + μαβ = 0

and similarly for βj. We therefore have a model

μij = μαβ + αi + βj + αβ ij

where αi and βj are independent and their covariances with (αβ)ij are zero. Further
introducing the normality assumption, we have a model in the matrix expression

y = μαβ j+Xαα+Xββ+Xαβ αβ + e,

α N 0, σ2αIa , β N 0, σ2βIb , αβ N 0, σ2αβIab , e N 0, σ2In , n = abm,

α, β, αβ and e are mutually independent

(12.20)

The expression of y is formally equivalent to the fixed effects model in Section 10.2,
but the distribution theory is different. In this model the expectation of y is μαβ j and
the variance–covariance matrix is
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V y = σ2αXαXα + σ
2
βXβXβ + σ

2
αβXαβXαβ + σ

2In

12.2.2 Standard form for test and estimation

In this case also the orthonormal transformation in Section 10.2 is useful as it is. Using

the same notation as (10.9) for M y = zμαβ ,zα,zβ,zαβ,ze , we have

E M y = nμαβ, 0 ,0 ,0 ,0 , (12.21)

V M y =

σ2 + bmσ2α + amσ
2
β +mσ

2
αβ 0 0

0 σ2 + bmσ2α +mσ
2
αβ Ia−1 0

0

0

0

0

0

0

σ2 + amσ2β +mσ
2
αβ Ib−1

0

0

0 0

0 0

0

σ2 +mσ2αβ I a−1 b−1

0

0

0

σ2In−ab

(12.22)

That is, y , Sα = zα
2,Sβ = zβ

2, Sαβ = zαβ
2, and Se = Q y 2 are the complete suf-

ficient statistics and their explicit forms are given in (10.11) ~ (10.14). From the struc-
tures of (12.21) and (12.22), the distributions of these sums of squares are easily
derived as

Sα σ2 + bmσ2α +mσ
2
αβ χ2a−1, (12.23)

Sβ σ2 + amσ2β +mσ
2
αβ χ2b−1, (12.24)

Sαβ σ2 +mσ2αβ χ2a−1 b−1 , (12.25)

Se σ2χ2n−ab (12.26)

We can also easily obtain the minimum variance unbiased estimators of σ2α, σ
2
β, σ

2
αβ ,

and σ2 by equating those statistics to their expectations, namely by solving the
equation

bm 0 m 1

0 am m 1

0 0 m 1

0 0 0 1

σ2α

σ2β

σ2αβ

σ2

=

Sα a−1

Sβ b−1

Sαβ a−1 b−1

Se n−ab
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The explicit forms are as follows:

σ2α = bm −1 Sα
a−1

−
Sαβ

a−1 b−1
, V σ2α =

2

bm 2

σ2 + bm σ2α +m σ2αβ
2

a−1
+

σ2 +m σ2αβ
2

a−1 b−1

σ2β = am −1 Sβ
b−1

−
Sαβ

a−1 b−1
, V σ2β =

2

am 2

σ2 + am σ2β +m σ2αβ
2

b−1
+

σ2 +m σ2αβ
2

a−1 b−1

σ2αβ =m
−1 Sαβ

a−1 b−1
−σ2 ,V σ2αβ =

2
m2

σ2 +m σ2αβ
2

a−1 b−1
+

σ4

n−ab

σ2 = Se n−ab , V σ2 =
2σ4

n−ab

The confidence interval for σ2 is easily obtained by the chi-squared distribution
(12.26) but for other variance components, only the approximate intervals are avail-

able. Also, except for σ2, negative estimators are possible and one should refer to
Smith and Murray (1984) for this situation.

12.2.3 Testing homogeneity of treatment effects

It is easy to construct test procedures on variance components based on the distribu-
tion theory (12.23) ~ (12.26). To test

Hαβ σ2αβ = 0 againstKαβ σ2αβ > 0,

the rejection region Rαβ of size α is

Rαβ
Sαβ a−1 b−1

Se n−ab
>F a−1 b−1 ,n−a α

To test

Hα σ2α = 0 againstKα σ2α > 0,

the procedure is changed according to σ2αβ = 0 or σ2αβ 0, as

Rα
Sα a−1
Se n−ab

>Fa−1,n−a α if σ2αβ = 0,

Rα

Sα a−1
Sαβ a−1 b−1

>Fa−1, a−1 b−1 α if σ2αβ 0

If we have a significant result by the rejection region Rα when σ2αβ 0, it is not clear

which of σ2α or σ
2
αβ is the cause of it because of the distribution (12.23). When σ2αβ = 0,

Sαβ behaves just like Se but usually it is not pooled into Se.
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TestingHβ σ2β = 0 is essentially in the same way asHα. It should be noted here that,
as stated in Section 10.2, the test of a factor does not depend on the definition of factors
in the fixed effects model, but the tests in this section depend on the definition of these
factors. Therefore, one should take care of the interpretation of the main effects when
interaction exists.

12.2.4 Easy method for unbalanced two-way random
effects model

For the unbalanced two-way data, the sufficient statistics are not complete and
uniformly minimum variance unbiased estimators are not available. For various
proposals and reviews, one should refer to Searl (1971) and Khuri and Sahai
(1985). In contrast, Rao (1971a,b) proposed MINQUE, the minimum norm quadratic
unbiased estimator. However, in the unbalanced case the minimal sufficient statistics
are not complete and those estimators have no global optimality, except for being
unbiased. Therefore, an appropriate analytical method is more strongly desired than
a fixed effects model. Under these circumstances, Hirotsu (1968) showed that an easy

estimator based on the sum of squares in xij = yij and the unbiased variance σ
2 behaves

well if there is no empty cell.
Let x be (x11, x12, …, xab ) , then similarly to (12.20) we have

x = μαβjab + Ia jb α+ ja Ib β + Iab αβ + e i j ,

α N 0, σ2αIa , β N 0, σ2βIb , αβ N 0, σ2αβIab ,

e i j N 0, σ2diag m−1
ij ,

α, β, (αβ), and e are mutually independent.
The definition of basic statistics Se, Sα, Sβ, and Sαβ is the same as (10.35) ~ (10.38)

in the fixed effects model of Section 10.5.2. In this case again Se =
a
i= 1

b
j= 1

mij

k = 1 yijk −yij
2
is distributed as σ2χ2n−ab with df n−ab,n =m and mutu-

ally independent with (Sα, Sβ, Sαβ). Therefore, Se n−ab is the best unbiased estima-
tor of σ2 as usual. To calculate the expectations of Sα, Sβ, and Sαβ, we note that the
variance–covariance matrix of x is simply

V x = σ2α Ia jb jb + σ2β ja ja Ib + σ2αβ +m
−1σ2 Iab + σ2diag m−1

ij −m−1

(12.27)

To calculate E(Sα), we further note that

V x i = σ2α + b
−1σ2αβ + bm −1σ2 Ia + b−1σ2β ja ja + b

−2σ2diag j m−1
ij −m−1 ,
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where x i = x1 ,…,xa . Then we have

E Sα = tr bPaPaV x i = a−1 bσ2α + σ
2
αβ +m

−1σ2 , (12.28)

V Sα = 2tr bPaPaV x i
2

= 2 a−1 bσ2α + σ
2
αβ +m

−1σ2
2
+ fα b−1

j m−1
ij −m−1 σ4

(12.29)

Similarly we have

E Sβ = b−1 aσ2β + σ
2
αβ +m

−1σ2 , (12.30)

V Sβ = 2 b−1 aσ2β + σ
2
αβ +m

−1σ2
2
+ fβ a−1

i m−1
ij −m−1 σ4 (12.31)

For Sαβ we have, from V(x) (12.27),

E Sαβ = tr Pa Pb Pa Pb V x = a−1 b−1 σ2αβ +m
−1σ2 , (12.32)

V Sαβ = 2tr Pa Pb Pa Pb V x
2

= 2 a−1 b−1 σ2αβ +m
−1σ2

2
+ fαβ m−1

ij −m−1 σ4
(12.33)

The functions fα, fβ, fαβ in these equations have been defined in Section 10.5.3.
To test

Hαβ σ2αβ = 0 againstKαβ σ2αβ > 0

at significance level α, an approximate rejection region Rαβ,

Rαβ
mSαβ a−1 b−1

Se n−ab
>F a−1 b−1 ,n−a α ,

is suggested by (12.32). The characteristics of this rejection region are exactly the
same as in the fixed effects model in Section 10.5.3. Under the alternative hypothesis
Kαβ, the power is very close to the balanced case of Section 12.2.3 with hypothetical
repetition number m, since the positive σ2αβ reduces the effects of unbalanced mij.
To test

Hα σ2α = 0 againstKα σ2α > 0

the procedure is changed according to σ2αβ = 0 or σ2αβ 0 by the form of (12.28). For
the respective cases, the following rejection regions are suggested:
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Rα
mSα a−1
Se n−ab

>Fa−1,n−a α if σ2αβ = 0

Rα

mSα a−1
Sαβ a−1 b−1

>Fa−1, a−1 b−1 α if σ2αβ 0

The characteristics of the rejection region Rα under the null hypothesis Hα are exactly
the same as in the fixed effects model in Section 10.5.3. When σ2αβ = 0, Sαβ behaves
just like Se but usually it is not pooled into Se. The test statistic of Rα is more
complicated, since the denominator does not follow the chi-squared distribution.
Nevertheless, the size of the rejection region Rα is very close to the nominal value
α, since the positive σ2αβ reduces again the effects of unbalanced mij. This tendency

becomes more prominent under the alternative hypothesis Kα. Testing Hβ σ2β = 0
is discussed similarly to testing Hα. One should refer to Hirotsu (1968) for the details
of these properties.
Next we proceed to estimate the variance components by the moment method.

We already have the expectation and variance of the sum of squares as in
(12.28) ~ (12.33). Then, the unbiased estimators of the variance components are
obtained as

σ 2
α = b

−1 Sα
a−1

−
Sαβ

a−1 b−1
,

σ2β = a
−1 Sβ

b−1
−

Sαβ
a−1 b−1

,

σ2αβ =
Sαβ

a−1 b−1
−
σ2

m
,

σ2 = Se n−ab , V σ2 =
2σ4

n−ab

To calculate the variance of these estimators other than σ2, we need covariances
among the sums of squares in addition to variances. The calculations are tedious
but not difficult by expressing the sums of squares in matrix form in x. We show only
the result in the following (see Hirotsu, 1966 for details):

V σ2α =
2
b2

b

a−1
σ4α +

b b−1
a−1

σ2α +
σ2αβ
b−1

2

+
2b

m a−1
σ2 σ2α +

σ2αβ
b−1

+
b2

m2
− j

1
a i

1
mij

2

+
a−2
a

b2 i

1
b j

1
mij

2

− i j

1

m2
ij

σ2

a−1 b−1

2

,
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V σ2β =
2
a2

a

b−1
σ4β+

a a−1
b−1

σ2β +
σ2αβ
a−1

2

+
2a

m b−1
σ2 σ2β +

σ2αβ
a−1

+
a2

m2
− i

1
b j

1
mij

2

+
b−2
b

a2 j

1
a i

1
mij

2

− i j

1

m2
ij

σ2

a−1 b−1

2

V σ2αβ =
2

a−1 b−1
σ4αβ +

2
m
σ2αβσ

2 +

a−2 b−2
1
ab i j

1

m2
ij

+
a−2
a i

1
b j

1
mij

2

+
b−2
b j

1
a i

1
mij

2

+
1
m2

a−1 b−1
σ4

+
2σ4

m2 n−ab

These formulae coincide with the formulae in Section 12.2.2 if the mij are all equal.
Mostafa (1967) proposed purposely unbalanced two-way designs with repetition

numbers one or two and without an empty cell to reduce the experimental cost. For
the analysis he used the same procedure as proposed by Hirotsu (1966).
Bush and Anderson (1963) evaluated the variances of estimation by the methods

G1 and G2 of Yates (1934) and G3 of Henderson (1953) in various unbalanced
two-way designs. We compare our easy method with their results in Table 12.4 for
those designs given in Table 12.3.We evaluated ourmethod also by the relative varian-
ce of Bush and Anderson, which they introduced to define the relative efficiency of

various designs to the balanced 6 × 6 design. The combinations of σ2αβ, σ
2
α, σ

2
β, σ

2

are also the same as considered by Bush and Anderson (1963). The easy method is
seen to give uniformly minimum variance among compared methods, except for
the case of estimating σ2αβ when σ

2
αβ is small. This case is, however, not so important.

The easy method for a random effects model is more attractive than the fixed effects
model, since the minimal sufficient statistics are not complete and there is no uni-
formly optimum procedure.

Table 12.3 Repetition number.

D1
Column

D2
Column

D3
Column

D4
Column

D5
Column

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 1 1 1 2 3 1 1 1 1 1 4 2 2 2
Row 2 2 2 2 2 3 1 1 2 3 1 4 1 2 2 2

3 3 3 3 3 1 2 1 3 5 4 1 1 2 2 2
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Table 12.4 Comparing the relative variance of several estimators.

σ2αβ σ2αβ σ2αβ σ2 Design G3 G1 G2 H G3 G1 G2 H G3 G1 G2 H

D1 4.88 4.88 4.88 4.45 5.54 5.54 4.58 4.45 3.26 3.26 3.26 2.99
D2 6.12 5.15 4.53 4.45 6.12 5.15 4.53 4.45 3.50 3.15 3.15 2.99

1 1 16 1 D3 6.56 6.25 4.84 4.50 6.56 6.25 4.84 4.50 3.70 3.59 3.59 3.02
D4 9.42 5.24 4.58 4.52 9.42 5.24 4.58 4.52 4.23 3.20 3.20 3.04
D5 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 2.94 2.94 2.94 2.94

D1 1.83 1.83 1.83 1.75 1.80 1.80 1.73 1.74 2.04 2.04 2.04 2.18
D2 2.23 1.78 1.73 1.74 2.23 1.78 1.73 1.74 3.37 2.10 2.10 2.17

1 1 1 1 D3 3.13 2.01 1.85 1.82 2.13 2.01 1.85 1.82 2.65 2.30 2.30 2.44
D4 3.27 1.90 1.85 1.85 3.27 1.90 1.85 1.85 6.27 2.50 2.50 2.61
D5 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.84 1.84 1.84 1.84

D1 1.50 1.50 1.50 1.36 6.49 6.49 5.42 5.31 2.83 2.83 2.83 2.68
D2 1.40 1.38 1.36 1.36 20.7 6.08 5.37 5.31 5.28 2.78 2.78 2.68

16 0 4 1 D3 1.54 1.55 1.42 1.37 11.7 7.30 5.83 5.54 3.85 3.11 3.11 2.80
D4 1.51 1.39 1.36 1.37 47.1 6.44 5.68 5.63 9.74 2.93 2.93 2.86
D5 1.35 1.35 1.35 1.35 5.07 5.07 5.07 5.07 2.55 2.55 2.55 2.55

D1 1.40 1.40 1.40 1.26 1.33 1.33 1.34 1.35 1.55 1.55 1.55 1.90
D2 1.32 1.26 1.26 1.26 4.55 1.34 1.34 1.35 52.9 1.67 1.67 1.86

16 2 1
4

1 D3 1.41 1.41 1.32 1.27 2.35 1.48 1.42 1.39 16.1 1.81 1.81 2.25
D4 1.41 1.27 1.27 1.27 9.79 1.39 1.40 1.40 1.38 2.28 2.28 2.56
D5 1.26 1.26 1.26 1.26 1.30 1.30 1.30 1.30 1.35 1.35 1.35 1.35



12.3 Two-Way Mixed Effects Model

12.3.1 Model and parameters

In the problem of the previous section, let the b machines represent a particular type
and their efficiencies be of concern. Then we have a mixed effects model with the
machines fixed and the workers random. This situation is most controversial, and var-
ious models are proposed, among which we follow the most general model of Scheffé
(1959) in this section (see Miller, 1998 for other models). The related topics are the
recovery of inter-block information in the incomplete block designs (Chapter 9) and
the profile analysis of repeated measurements (Chapter 13).
Similarly to the previous section, let the yield of the kth experiment by the ith

worker on the jth machine be yijk, the expected yield of the ith worker on the jth
machine be μij, and an independent random error with expectation zero be eijk. Then
we have a model

yijk = μij + eijk, i= 1,…, a, j= 1, …, b,k = 1, …, m (12.34)

Let us define a vector

μi = μi1,…,μib , i = 1,…, a, (12.35)

which is regarded as a random sample from the worker population. The expectation
and variance–covariance matrix of μi are denoted by

μ = μ1,…,μb andΩb× b = σjj b× b, (12.36)

respectively, where μ and Ω are fixed parameters. A general mean is defined by

μ = b−1 b
j= 1μj

Then the main effect of the jth machine is defined by

βj = μj−μ

In contrast, the averaged yield of worker i on the b machines is defined by

μi = b
−1 b

j= 1μij,

and the main effect is defined by

αi = μi −μ (12.37)

The effect of worker i on machine j is

μij−μj (12.38)
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and αi is the average of (12.38). The excess of equation (12.38) over (12.37) is called
an interaction, and is expressed by

αβ ij = μij−μj−μi + μ

Thus we have a model

μij = μ + αi + βj + αβ ij, i= 1,…, a, j= 1,…, b,

where αi and (αβ)i1,…, (αβ)ib are random variables not independent of each other.
Their covariance structure is determined by Ω (12.36). In the matrix expression

αi = b−1j μi−μ = b−1j μi−μ,

αβ i =

αβ i1

αβ ib

= I−b−1jj μi−

μ1

μb

+ μj,

and we have

V
αi

αβ i

=

b−1 b−1 b−1

1−b−1 −b−1 −b−1

− b−1 −b−1 1−b−1

Ω

b−1 b−1 b−1

1−b−1 −b−1 −b−1

− b−1 −b−1 1−b−1

Therefore we obtain

V αi = b−2
j j σjj = σ ,

Cov αβ ij, αβ ij = σjj −σj −σ j + σ ,

Cov αi, αβ ij = σj −σ

Assuming the normal distribution N(μ, Ω) for μi, we finally have a model

y = μj+Xαα +Xββ +Xαβ αβ + e

α N 0,σ I

αβ i N 0, σjj −σj −σ j + σ b× b ,

e N 0,σ2In ,

(12.39)

where the interactions (αβ)i are mutually independent for different i’s, the random
error e is independent of other variables α and (αβ)i, and column vectors α, β, and
(αβ) are defined as usual. From (12.39) we have
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E y = μj +Xββ

V y = σ XαXα +Xα Ia σ1 −σ ,…,σb −σ Xαβ

+Xαβ Ia σ1 −σ ,…,σb −σ Xα

+Xαβ Ia σjj −σj −σ j + σ b × b Xαβ + σ
2I

12.3.2 Standard form for test and estimation

We apply the orthonormal transformation M of the previous section again to
obtain

M y= z = zμ,zα,zβ,zαβ,ze

It is easy to see the expectation

E z =

nμ

0

amPbβ

0

0

(12.40)

and after some calculation, the variance is obtained as

V z =

σ2 + bmσ 0 bmσ Pb

0 σ2 + bmσ Ia−1 0

bmPbσ

0

0

0

bm Ia−1 Pbσ

0

σ2Ib−1 +mPbΣb × bPb

0

0

0 0

bm Ia−1 σ Pb 0

0

σ2I a−1 b−1 +
m Ia−1 PbΣb × bPb

0

0

0

σ2In−ab

,

(12.41)

where σ = σ1 , …,σb and Σb × b = σjj −σj −σ j + σ b × b.
Now the structure becomes clear, and we proceed to test the effects of factors. By

the similarity of the structure of y in (12.20) and (12.39), the sums of squares are the
same as in Section 12.2, although their distributions are different.

12.3.3 Null hypothesis Hαβ of interaction and the test statistic

By the form of equation (12.41), the null hypothesis is expressed as

Hαβ PbΣb × bPb = 0
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This is equivalent to the equality

σjj = σj + σ j −σ , j, j = 1,…, b,

or in matrix form

Ωb× b = jσ + σj −σ jj = j σ
−σ 1

1 0
j σ

However, since Ωb× b (12.36) is a positive non-negative definite matrix it must be in
the form

Hαβ Ωb× b = σ jj (12.42)

Then μi (12.35) is in the form

μi = μ+ αi j,

where μ is a fixed vector (12.36) and

αi N 0, σ

represents the random part. Thus, the null hypothesis Hαβ implies that the μi’s are dis-
tributed parallel around the mean vector μ over the worker population. This model
appears as the null model of the profile analysis in Chapter 13.
Under the null hypothesis Hαβ, the statistic Sαβ is distributed as σ2χ2a−1 b−1 and

is independent of Se, which is distributed as σ2χ2n−ab. When Hαβ fails, Sαβ is still
independent of Se but is not a non-central chi-squared distribution. Since
m Ia−1 PbΣb × bPb is a positive matrix, it is statistically larger than under the null
hypothesis, similarly to in the fixed effects model. The expectation is, for example,

E Sαβ = tr σ2I a−1 b−1 +m I PbΣb× bPb

= a−1 b−1 σ2 +m a−1 j σjj−σ ,

and the second term is positive by definition. Thus,

F =
Sαβ a−1 b−1

Se n−ab

of (10.16) in Section 10.2 is appropriate also as a test statistic in this situation. How-
ever, the row- and/or column-wise multiple comparisons would be more useful than
an overall F-test. The row-wise multiple comparisons intend to make a group of work-
ers who have similar response pattern to the types of machine. The purpose of the
column-wise multiple comparisons will be to select a group of machines of high effi-
ciency or robust against the variation factor. Anyway, the distribution theory under the
null hypothesis is the same as the fixed effects model, and the methods of row-wise
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multiple comparisons in Chapter 10 are applicable as they are. The real examples are
given in Chapter 13 for the profile analysis of repeated measurements.

12.3.4 Testing main effects under the null hypothesis Hαβ

Under the null hypothesis Hαβ, the meaning of the test for main effects

Hα σ = 0

and Hβ Pbμ = 0

(12.43)

is clear. The null hypothesis Hα implies that the random part vanishes and Hβ implies

Hβ μ = μj (12.44)

as usual. Since the variance–covariance matrix under Hαβ is

V z =

σ2 + bmσ 0 0

0 σ2 + bmσ Ia−1 0

0

0

0

0

0

0

σ2Ib−1

0

0

0 0

0 0

0

σ2I a−1 b−1

0

0

0

σ2In−ab

, (12.45)

the F-tests are constructed as usual:

Rα
Sα a−1
Se n−ab

>Fa−1, n−ab α ,

Rβ
Sβ b−1
Se n−ab

>Fb−1, n−ab α

12.3.5 Testing main effects Hβ when the null hypothesis Hαβ fails

When the null hypothesis Hαβ fails, the test of Hα makes no sense while the test of Hβ

(12.44) still makes sense. It is testing whether there are differences among the fixed
parameter (machines) beyond the variation factor (interaction between worker and
machine). However, the result should be combined with the column-wise multiple
comparisons of the interaction effects. Usually the rejection region

Fβ =
Sβ b−1

Sαβ a−1 b−1
>Fb−1, a−1 b−1 α

is employed, but Fβ does not follow the F-distribution even under Hβ, since the var-
iance–covariance matrices of zβ and zαβ in (12.41) are not idempotent. However, the
F-test is applied as a first approximation, since the statistics Sβ b−1 and
Sαβ a−1 b−1 have the same expectation
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σ2 +
m

b−1
tr PbΣb× bPb = σ2 +

m

b−1 j σjj−σ

under Hβ. On the contrary, when a ≥ b an exact test is available based on Hotelling’s
T2-statistic.

12.3.6 Exact test of Hβ when the null hypothesis Hαβ fails

Definition 12.1. Hotelling’s T2 statistic. Let ui, i= 1,…q, be distributed independ-
ently as a p-variate normal distribution N(η,Ξ ) with Ξ a positive definite matrix,
where q ≥ p + 1. Define the usual unbiased estimator of η and Ξ by

u =
1
q

q
i= 1ui andΞ=

1
q−1

q
i= 1 ui−u ui−u

Then

T2 = u −η
1
q
Ξ

−1

u −η (12.46)

is called Hotelling’s T2-statistic. The statistic T2 (12.46) is distributed as a constant
times the F-distribution:

q−1 p

q−p
Fp, q−p

When p= 1, this coincides with the square of the t-statistic. If Ξ is replaced by Ξ in
(12.46), the statistic follows a chi-squared distribution with df p. If we discard η
in (12.46),

T 2 = u
1
q
Ξ

−1

u

is distributed as a constant times the non-central F-distribution

q−1 p

q−p
Fp, q−p, δ

with non-centrality parameter δ= qη Ξ−1η.

Now, coming back to the problem of testing Hβ, let us define

ui =m−1 2Pb yi1 , …,yib , i= 1,…, a, (12.47)
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where p = b−1 andq = a. Putting model (12.19) into (12.47), we have

ui =m1 2Pb μi +

ei1

eib

, i= 1,…, a,

which implies that the statistics ui, i= 1,…, a, are distributed independently as

N m1 2Pbμ,σ
2Ib−1 +mPbΩPb

That is, if we estimate Ξ by

Ξ= σ2Ib−1 +mPbΩPb =
1

a−1
q
i= 1 ui−u ui−u ,

then

T 2 = au Ξ
−1
u

is distributed as the non-central F-distribution

a−1 b−1
a− b−1

Fb−1, a−b+ 1,δ , δ= am Pbμ σ2Ib−1 +mPbΩPb
−1
Pbμ

Therefore, for the null hypothesis Hβ μ= μj we have an exact rejection region with
level α as

R
a−b + 1

a−1 b−1
T 2 >Fb−1, a−b + 1 α

To calculate T 2, we note that it is rewritten in a form free from Pb as

T 2 = am

y 1 −y

y b −y

×

1
b
jb jb +

m

a−1
a
i= 1 yij −yi −y j + y × yij −yi −y j + y

b× b

−1

×

y 1 −y

y b −y

(12.48)

(see Hirotsu, 1992 for details). The inversion of this type of matrix in (12.48) can be
avoided by the following lemma.
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Lemma 12.1. For a non-singular matrix A, an equation

a A−1a =
A+ aa

A
−1

holds.

Proof. It is easy to see that

1 a

−a A
=

1 a

−a A+ aa
= A+ aa

Then

1 a

−a A
=

1 −a A−1

0 I
×

1 a

−a A
=

1 + a A−1a 0

−a A
= 1 + a A−1a A

By Lemma 12.1, T 2 is calculated as

1
b jb jb +

m
a−1

a
i= 1 yij −yi −y j + y × yij −yi −y j + y

b × b
+

y 1 −y

y b −y

y 1 −y

y b −y

1
b jb jb +

m
a−1

a
i= 1

yi1 −yi −y 1 + y

yib −yi −y b + y

yi1 −yi −y 1 + y

yib −yi −y b + y

−am

The estimation of βj when the interaction is absent is performed in the same way
as for a fixed effects model, because of the form of the expectation (12.40) and var-
iance (12.45). On the contrary, if the interaction exists then the row- and/or column-
wise multiple comparisons would be more useful than estimating the covariance
matrix Ωb× b.
Finally, the similarity of the model here and the one-way multivariate normal model

should be noted. The model (12.34) can be rewritten in matrix form as

yik = μi + eik,

where yik is a b-dimensional random vector. In the multivariate normal model μi is
assumed to be distributed as N(μ,Ω) independently of eik. In contrast, eik is assumed
to be distributed as N(0, Σe), whereas we assumed Σe to be σ

2Ib in this section. While
the likelihood ratio test is usually applied for testing Ω= 0 in the multivariate
normal model, we partitioned it into two steps, Hαβ Ωb× b = σ jj 12 42 and Hα:
σ = 0 12 43 , and showed the multiple comparison approach to Hαβ. The homoge-
neity of the components of μ is also discussed as the hypothesis Hβ (12.44). One may

MIXED AND RANDOM EFFECTS MODEL 321



consider testing Hαβ and Hα assuming a general error variance Σe, but the distribution
theory becomes very complicated.

12.4 General Linear Mixed Effects Model

The random effects models which have been introduced in Sections 12.1 and 12.2 can
be classified also as mixed effects models, since they have a general mean as a
fixed effect. In this section they are formulated as a general Gaussian linear mixed
effects model.

12.4.1 Gaussian linear mixed effects model

The Gaussian linear mixed effects model is defined by

yn =Xβp +ZUq + en, (12.49)

where Xn × p and Zn × q are given design matrices, β is an unknown parameter vector of
fixed effects, U a random vector, and e a random error vector. Random parts U and e
are assumed to be distributed as N(0, Ψ ) and N(0, Σ), respectively, and mutually inde-
pendent. The covariance matrices Ψ and Σ depend also on some unknown parameters.
Then the marginal distribution of y is normal,

y N Xβ,Σ +ZΨZ (12.50)

This model can be derived in two stages, where in the first stage y is modeled as a
conditional distribution given U:

f y│U = u =
1

2π n 2 Σ 1 2
exp −

1
2
y−Xβ−Zu Σ−1 y−Xβ−Zu , (12.51)

and in the second stage U is modeled by N(0, Ψ ):

f u =
1

2π q 2 Ψ 1 2
exp −

1
2
u Ψ −1u (12.52)

thus leading to
y f y│U = u × f u (12.53)

This formulation is called a hierarchical model, and is useful for estimating random
effects. Refer to Lee and Nelder (2001) for a general hierarchical model, including the
linear mixed effects model here.

Example 12.2. One-way random effects model. We consider for simplicity a bal-
anced model (12.1). It is in the form of (12.49), taking

Xβ = μjn,U =α, Z=Xα,Σ = σ2In andΨ = σ2αIa (12.54)

The expectation and variance of y are E y = μ jn and V y = σ2αXαXα + σ
2In, respec-

tively, as given in (12.2) and (12.3).
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Example 12.3. Ramus bone length from Elston and Grizzle (1962). The data
of Table 12.5 are the length of the ramus bone for randomly selected boys aged
8 ~ 10 years, taken from Table 2 of Elston and Grizzle (1962), where full data for
20 boys and a detailed analysis by mixed effects model are given. The objective of
the study was to establish a normal growth curve for use by orthodontists. For each
boy, the bone length was measured four times at age 8, 8.5, 9, and 9.5 years. At the
first stage we assume a linear regression model for each boy:

yi =Xiβi + ei, i= 1,…, 5,

where

Xi =
1 1 1 1

8 8 5 9 9 5
, βi = βi1,βi2

Since the boys are selected at random, however, we are interested in the average
intercept and slope β = β1,β2 over the population and the dispersion of βi around
the population mean. Therefore, at the second stage βi is modeled by a multivariate
normal distribution N(β, Ψ ). Then we have the mixed effects model (12.49) as

y=

y1

y5

= j X β + I X

b1

b5

+ e,

where we put the common design matrix Xi as X and bi = βi−β. Assuming independ-

ence among the boys, the random part U = b1,…,b5 is modeled by N 0,I Ψ ,
with Ψ usually modeled by a diagonal matrix. In this case Σ may be assumed to
be σ2I20. The detailed analysis of the data is given by Elston and Grizzle (1962). This
type of modeling is often employed in the profile monitoring field of engineering (see
Section 13.1.2).

Table 12.5 Length of the ramus bone (mm).

Age

Boy 8 8.5 9 9.5

1 45.1 45.3 46.1 47.2
2 52.5 53.2 53.3 53.7
3 45.0 47.0 47.3 48.3
4 51.2 51.4 51.6 51.9
5 47.2 47.7 48.4 49.5
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12.4.2 Estimation of parameters

The parameters in model (12.50) are β, Σ and Ψ . The covariance matrices are usually
modeled by fewer parameters like as in model (12.54), and denoted by θ here. There-
fore, the parameters to be estimated are β and θ. The log likelihood function of the
marginal distribution is explicitly

logL β, θ = −
1
2
log V θ −

1
2
y−Xβ V −1 θ y−Xβ , (12.55)

where V θ =Σ +ZΨZ . By the derivation of (12.55) with respect to parameter β, we
get an efficient score for β:

∂logL β, θ
∂β

=X V −1 y−Xβ ,

which leads to the weighted least squares (WLS) estimator β:

X V −1Xβ=X V −1y, (12.56)

However, usually equation (12.56) includes an unknown parameter θ for variance
components. The profile log likelihood for parameter θ is obtained by substituting

β in (12.55) as

logL θ = −
1
2
log V θ −

1
2

y−Xβ V−1 θ y−Xβ (12.57)

However, the use of (12.57) suffers from a bias caused by the substitution of the esti-
mate in β. Therefore, the modified log likelihood

logL∗ θ = −
1
2
log V θ −

1
2

y−Xβ V −1 θ y−Xβ −
1
2
log X V −1 θ X (12.58)

is proposed, and the derivation of (12.58) with respect to θ is set equal to zero. When β

depends on an unknown parameter θ, the equations for β (12.56) and θ need to be
solved iteratively.
The modified log likelihood equals the residual maximum likelihood (REML) of Pat-

terson and Thompson (1971). In the balanced case, REML gives the usual moment esti-
mates of variance components. One should refer toHarville (1977) for a general reviewof
themaximumlikelihoodapproaches tovariancecomponent estimation, includingREML.

Example 12.4. REML in the balanced one-way random effects model. In this case
E y = μjn and V y = σ2αXαXα + σ

2In is a block diagonal matrix, diag (Vi), with ith
diagonal matrix

Vi =

σ2 + σ2α σ2α σ2α

σ2α σ2 + σ2α σ2α

σ2α σ2α σ2 + σ2α m×m
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The parameters to be estimated are therefore μ and θ = σ2,σ2α . Now, Vi has an obvi-
ous eigenvalue σ2 +mσ2α and σ2 of multiplicity m−1, with respective eigenvectors jm
and Pa. Therefore, jn is an eigenvector of V(y) and also V −1 y for eigenvalue
σ2 +mσ2α and its inverse, respectively. This implies that the WLS estimator
(12.56) is simply μ = n−1jny= y , which is free from unknown parameters σ2 and
σ2α. To calculate the terms of (12.58), we note that

V −1
i =

1
σ2

I−
σ2α

σ2 σ2 +m σ2α
jj

Then the second term is

−
1
2

1
σ2

a
i = 1

m
j= 1 yij−y

2
−

σ2α
σ2 σ2 +m σ2α

a
i = 1 yi −my

2 = −
1
2

ST
σ2

−
m σ2αSα

σ2 σ2 +m σ2α

= −
1
2

Se
σ2

−
Sα

σ2 +m σ2α

The first term is obviously

−
1
2
a log σ2 +mσ2α σ2

m−1
,

and the last term is

−
1
2
log

n

σ2
−

mn σ2α
σ2 σ2 +m σ2α

= −
1
2
log

n

σ2 +m σ2α

Therefore, the modified log likelihood (12.58) in this case is

logL∗ θ = −
1
2
a log σ2 +mσ2α σ2

m−1
−
1
2

Se
σ2

+
Sα

σ2 +m σ2α
−
1
2
log

n

σ2 +m σ2α

and we have partial derivations

−2
∂logL∗ θ

∂σ2
=

a−1
σ2 +m σ2α

+
a m−1

σ2
−
Se
σ4

−
Sα

σ2 +m σ2α
2,

(12.59)

−2
∂logL∗ θ

∂ σ2α
=

m a−1
σ2 +m σ2α

−
mSα

σ2 +m σ2α
2

(12.60)

Equating (12.60) to zero, we have at once

σ2 +mσ2α =
Sα
a−1

(12.61)

and substituting (12.61) in (12.59) we get

σ2 =
Se

a m−1

These estimators are exactly the same as those obtained in Section 12.1 by a moment
method.
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12.4.3 Estimation of random effects (BLUP)

The random effects are not model parameters, but it is also of interest to evaluate u. By
the formulation (12.51) ~ (12.53) of the hierarchical model, we have a log likelihood

logL β,θ,u = const −
1
2
log Σ −

1
2
y−Xβ−Zu Σ−1 y−Xβ−Zu

−
1
2
log Ψ θ −

1
2
u Ψ −1u

(12.62)

Differentiating (12.62) by β and u and equating the resulting equations to zero, we get

X Σ−1X X Σ−1Z

Z Σ−1X Z Σ−1Z +Ψ −1 β u =
X Σ−1y

Z Σ−1y
(12.63)

This equation can be solved iteratively, starting from the ordinary least squares (OLS)

estimator β0 = X X −1X y. That is, substituting β0 in the second equation of (12.63)
we solve it to obtain û0. Then we substitute it in the first equation of (12.63) and solve

to obtain the second estimate of β and iterate this procedure until convergence is

attained. Meanwhile, it is usually necessary to estimate θ at each stage by REML using

β at that stage. The estimate û is called the best linear unbiased predictor (BLUP).

Example 12.5. BLUP in the balanced one-way random effects model. In Example

12.4 we already have β = y and the second equation of (12.63) is

mσ−2Ia + σ
−2
α Ia u= σ−2 y i −my jn ,

where y i = y1 ,…,ya . Therefore,

u=m
σ2α

σ2 +m σ2α

y1 −y

ya −y
and we get the predictor of y,

y=Xβ +Zu= y jn +Xαu (12.64)

The (i, j) element of (12.64) is

yij = y +m
σ2α

σ2 +m σ2α
yi −y = 1−wi γ yi +wi γ y , (12.65)

where wi γ = 1 +mγ −1 with γ = σ2α σ2 an SN ratio.
The estimate (12.65) is a Stein type shrinkage estimate with shrinkage factor wi(γ),

which centers a naïve estimator yi toward the general mean y . Empirical Bayes’ inter-
pretation of this type of estimator is given by Laird and Ware (1982) and Madsen and
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Thyregod (2011), for example. Of course we need to replace variance parameters by
appropriate estimators. In this case we can easily obtain γ, as given in Example 12.1,
without iteration.
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13

Profile Analysis of Repeated
Measurements

13.1 Comparing Treatments Based on Upward
or Downward Profiles

13.1.1 Introduction

The data of Table 13.1 are the total cholesterol measurements of 23 subjects
every four weeks for six periods (Hirotsu, 1991). Let the repeated
measurements of the ith subject assigned to the hth treatment be denoted by

yhi = yhi1,…, yhip , i= 1,…, nh; h = 1,…, t, where t and p are the number of treat-
ments and periods, respectively.
In the example of Table 13.1, t = 2, p = 6, n1 = 12, and n2 = 11. The interaction

yhij−yhi −yh j + yh is plotted in Fig. 13.1 for each of active drug h = 1 and placebo
h = 2 . There is no noticeable difference between the plots at first glance. The thick
lines are the averages of the three subgroups – improved, invariant, and deteriorated –
obtained later in this chapter.
In comparing the treatments based on these data, the repeated t-tests at each period

obviously suffer from the multiplicity problem, enhancing the type I error. There
might also be difficulties in combining the different results at six periods into a single
consistent conclusion.

Advanced Analysis of Variance, First Edition. Chihiro Hirotsu.
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13.1.2 Popular approaches

The conventional approach assumes a multivariate normal model

yhi = μh + ehi (13.1)

and compares the mean vectors μ1,…, μt, assuming that the ehi are independently and
identically distributed as N(0, Ω) with serial correlations within subjects. To reduce
the number of unknown parameters, a simple model such as an AR model is some-
times assumed for serial correlations (see Ware, 1985, for example). If the covariance
matrixΩ reduces toΩ= σ20I + σ

2
1 jj , then the standard analysis of a split-plot design

can be applied, with treatment and period as the first and second-order factor, respec-
tively, and subject as block (Aitkin, 1981; Wallenstein, 1982). This would, however,

Table 13.1 Total cholesterol amounts.

Treatment Subject

Period

1 2 3 4 5 6

Drug 1 317 280 275 270 274 266
2 186 189 190 135 197 205
3 377 395 368 334 338 334
4 229 258 282 272 264 265
5 276 310 306 309 300 264
6 272 250 250 255 228 250
7 219 210 236 239 242 221
8 260 245 264 268 317 314
9 284 256 241 242 243 241
10 365 304 294 287 311 302
11 298 321 341 342 357 335
12 274 245 262 263 235 246

Placebo 13 232 205 244 197 218 233
14 367 354 358 333 338 355
15 253 256 247 228 237 235
16 230 218 245 215 230 207
17 190 188 212 201 169 179
18 290 263 291 312 299 279
19 337 337 383 318 361 341
20 283 279 277 264 269 271
21 325 257 288 326 293 275
22 266 258 253 284 245 263
23 338 343 307 274 262 309
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rarely be the case, since serial measurements conceptually contradict the assumption
of randomization over plots.
The general two-stage model of Section 12.4 permits a more general description of

covariance structures through the distribution of subject profiles, and should be an
efficient approach if from past experience there is available a reasonable regression
model to describe the subject profiles. Starting from a regression model as in Example
12.3, it naturally induces a mixed effects model and provides a within-profile corre-
lation model (see Crowder and Hand, 1990 for additional details).
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More recently, profile monitoring has become a popular tool in engineering, where
a sequence of measurements of one or more quality characteristics is taken across time
or some continuum, producing a curve or functional data that represents the quality of
products. This curve is called a profile. In phase I of the monitoring scheme, the his-
torical data are analyzed to see whether they are stable or not. In phase II, the future
observations are monitored using the control limits obtained from the stable data set in
phase I. An introductory overview of this area is given by Woodall et al. (2004).
Among many approaches based on the linear regression model, Williams et al.
(2007) developed a method based on the non-linear parametric model. In contrast,
Jensen et al. (2008) introduced a linear mixed effects model and proposed a monitor-
ing procedure with T2 -statistics based on the BLUP of random effects. They consider
both cases – balanced and unbalanced –where data points are not necessarily the same
for all profiles. Following the simulation result, they conclude that for the balanced
data the simple LS approach to the fixed effects model will be sufficient and the linear
mixed effects model is recommended as robust for the unbalanced case. Jensen and
Birch (2009) extended the mixed effects model to the non-linear profile, and Qiu et al.
(2010) developed a monitoring procedure based on a non-parametric mixed effects
model. Their methods should be very flexible, although large data would be required
for the method to work well.

13.1.3 Statistical model and approach

Another type of non-parametric approach is to assume some systematic trend along
the time axis, as taken in Sections 6.5, 7.3, 11.4, and 11.5. In this case, a reasonable
approach will be to assume a simple mixed effects model

yhi = μhi + ehi, (13.2)

with the μhi independently distributed as N(μh, Ωh); we can try to incorporate the
natural ordering along the time axis in the analysis. The pure measurement errors
at different periods are reasonably assumed to be independent of each other, and also
mutually independent of the μhi. Therefore, the ehi are assumed to be independently
distributed as N(0, σ2I). Given h, this is just Scheffé’s (1959) two-way mixed effects
model with subject as random factor, period as fixed factor, and without replication. In
this case, as in the two-stage model, the covariances among repeated measurements
are thought to arise from the inhomogeneity of the individual profiles along the time
axis rather than the serial correlations.
Now, if there is no treatment effect, then the expected profile of each subject should

be stable over the period, with some random fluctuations around it. In contrast, if a
treatment has any effect, individual profiles should change. The effects may, however,
not be homogeneous over the subjects, who might therefore be classified into several
groups – improved, unchanged, deteriorated, and so on. Actually, some would
respond to the placebo, like subject 23 in Fig. 13.1 (2), and some would not respond
to the active drug, like subject 8 in Fig. 13.1 (1). The difference between the placebo
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and the active drug then lies in the proportions of the responder to each drug. This is
the conceptual difference between models (13.1) and (13.2). That is, the usual
approach of comparing mean vectors – assuming homogeneity within a group – is
quite misleading. The proposed approach should be closer to the usual practice of clin-
ical doctors for evaluating a drug. The equality of the covariance matrices should, of
course, be tested preliminarily in the classical approach (see Morrison, 1976, for
example), but in the proposed approach it shall be the main objective of the experi-
ment. It should also be noted, in comparing covariance matrices, that the usual per-
mutation invariant tests are inappropriate, since we are concerned here with some
systematic change in the profile along the time axis.
Now, the proposed approach is to consider the subject as a variation factor and

classify them into homogeneous subgroups based on their upward or downward
response profiles. The procedure is also regarded as a conditional analysis
given each profile. The classification is done by row-wise multiple comparisons
of interaction in the two-way table with the subject as row factor, period as ordered
column categories, and without replication. The classification naturally induces an
ordering among subgroups, and each treatment is then characterized by the distri-
bution of its own subjects over those subgroups. We do not estimate each profile
by BLUP, but knowing the class to which each profile is assigned should be useful
information.
Renumbering the subjects throughout the treatments, we denote by ykj the

measurement of the kth subject at the jth period, k = 1, …, n, n = nh, for the current
example n being equal to 12 + 11 = 23. The basic statistic to measure the difference in
profiles between subjects k and k is given by

L k;k 2 = 0 02−1 20 0−2−1 20 0 P∗
p y 2 = 2−1 yk −yk P∗

pP
∗
p yk −yk

=
1
2

p−1
l= 1

pl

p− l

1
l

l
j= 1 ykj−yk j − yk −yk

2

,

(13.3)

where yk is the vector of ykj, j= 1, …, p, arranged in dictionary order and we are fol-
lowing the notation in Sections 10.3.1 and 10.3.2. Equation (13.3) is obtained by
replacing Pb by P∗

p in χ2(l1; l2) of Section 10.3.2 (1) for detecting upward or down-
ward departure along the time axis. The sums of squares (13.3) calculated for
Table 13.1 are given in Table 13.2, where the subjects are rearranged so that subjects
with a smaller distance are located closer together. The chi-squared distances between
two subgroups and the generalized chi-squared distances are similarly defined to sec-
tion 10.3.2 (2) and (3) by replacing Pb by P

∗
p , respectively. The clustering algorithm of

Section 11.3.3 is also applicable to this case. Then, the generalized chi-squared dis-

tance ρ P∗
p y 2 is bounded above by the largest eigenvalue W∗

1 of the Wishart
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Table 13.2 The squared distances (13.3) between two rows.

Row 23 3 1 9 10 6 12 13 14 15 16 17 20 21 22 5 2 19 7 18 4 11 8

23 0 0.7 1.0 0.9 1.2 1.5 2.0 4.4 2.1 2.1 3.7 3.6 2.9 4.9 4.6 4.8 4.3 5.9 7.0 7.7 8.8 11.7 16.7
3 0 1.0 1.1 1.8 1.7 1.8 5.1 2.7 2.1 3.2 3.0 3.1 4.6 4.8 3.4 5.5 5.7 6.6 7.4 8.5 11.5 18.4
1 0 0.03 0.3 0.4 0.5 2.5 1.0 0.8 1.6 1.7 1.3 1.8 2.3 2.6 3.0 3.5 3.9 4.2 6.0 8.1 12.7
9 0 0.4 0.3 0.07 2.2 0.7 0.6 1.4 1.5 1.0 1.7 2.0 2.5 2.6 3.2 3.6 3.8 5.6 7.6 11.9
10 0 1.1 0.4 3.3 1.6 1.7 2.8 3.2 2.2 2.6 3.5 4.7 3.6 5.0 5.4 5.6 8.1 10.1 13.7

6 0 1.4 1.3 0.3 0.3 0.8 0.7 0.5 1.1 1.0 1.7 1.9 2.1 2.2 2.6 3.7 5.5 9.7
12 0 1.3 0.5 0.4 0.6 0.4 0.5 0.9 1.0 1.3 2.2 1.9 1.9 2.2 3.4 5.2 9.7
13 0 0.4 0.8 0.7 1.0 0.4 1.4 0.5 2.2 0.3 0.5 0.8 1.0 1.5 4.3 2.3
14 0 0.1 0.5 0.7 0.1 1.2 0.6 1.7 0.7 1.1 1.5 1.8 2.7 4.0 7.1
15 0 0.3 0.5 0.1 1.2 0.7 1.1 1.1 1.1 1.5 1.9 2.7 4.1 8.0
16 0 0.2 0.2 0.8 0.5 0.6 1.3 0.5 0.7 1.0 1.6 2.8 6.8
17 0 0.4 1.0 0.5 0.4 1.8 0.8 0.8 1.2 1.5 3.0 7.6
20 0 0.9 0.3 1.2 0.7 0.7 1.0 1.2 2.0 3.1 6.4
21 0 0.7 1.7 2.5 1.8 1.1 0.9 2.8 3.6 7.0
22 0 1.2 1.1 0.7 0.4 0.5 1.2 2.0 5.0
5 0 3.2 1.3 1.2 1.7 1.8 3.2 9.1
2 0 0.9 1.6 1.9 2.3 3.0 4.4
19 0 0.4 0.7 0.6 1.3 4.3

7 0 0.09 0.4 0.8 3.8
18 0 0.7 0.9 3.5
4 0 0.4 3.5
11 0 2.0
8 0



matrix W σ2P∗
p P

∗
p, n−1 under the null hypothesis of interaction between

subjects and periods. A very nice chi-squared approximation for the distribution of
the largest eigenvalue of the Wishart matrix has already been obtained in
Section 11.4.2 (2).
For the application here the balanced case is of concern, where the largest

eigenvalue is large enough compared with the second largest. Therefore, noting that
the largest root of P∗

p P
∗
p is p/2, we can employ the first approximation p 2 σ2χ21 for

the distribution of W∗
1 , where χ21 is explained below. To execute Scheffé type

multiple comparisons of subject profiles, however, we need to cancel out the unknown
σ2, since there is no repetition at each cell. Therefore, we introduce a denominator sum
of squares which is less affected by a systematic departure among subjects. As one of
these we employ

χ −2 = n
k = 1

p−1
j= 1

ykj−1−ykj− y j−1−y j

p j p− j 1 2

2

,

which was introduced by Hirotsu (1991) as a quadratic form by the generalized
inverse matrix of P∗

pP
∗
p , so as to have an inverse characteristic to W∗

1 . Then, χ
−2 is

expanded in the form

χ −2 = τ−11 χ21 + τ−12 χ22 + + τ−1p−1χ
2
p−1 σ2, (13.4)

where τj = p j j+ 1 is the jth eigenvalue of P∗
p P

∗
p and χ

2
j is the chi-squared com-

ponent of Chebyshev’s j th orthogonal polynomial, each with df n−1 and mutually
independent as in (10.30). This suggests that the χ −2 would be appropriate for eval-
uating σ2 when some systematic departure-like linear trend exists among subjects.
Then, denoting any generalized chi-squared distance by S, the distribution of
S χ−2 is asymptotically bounded above by

τ1χ
2
1 τ−11 χ21 + τ−12 χ22 + + τ−1p−1χ

2
p−1

Therefore, the p-value is evaluated by

p = Pr S χ −2 ≥ s0 = Pr
τ1 χ21

τ−11 χ21 + τ−12 χ22 + + τ−1p−1 χ
2
p−1

≥ s0

= Pr
τ1−s0 τ−11 χ21

τ−12 χ22 + + τ−1p−1 χ
2
p−1

≥ s0

(13.5)

The denominator of (13.5) is a positive linear combination of the independent chi-
squared variables, and is well approximated by a constant times a chi-squared variable
dχ2f with constants obtained by adjusting the first two cumulants,
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df = n−1 τ−12 + + τ−1p−1 ,

d2f = n−1 τ−22 + + τ−2p−1

Since the numerator and denominator are mutually independent, we have an
F-approximation like

p = Pr Fn−1, f ≥ s0 τ−12 + + τ−1p−1 τ1−s0τ
−1
1 (13.6)

Thus, we can use (13.6) as a reference value for clustering subjects.
For the data of Table 13.1, the classification into G1(1, 3, 9, 10, 23),

G2(2, 5, 6, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22), and G3(4, 7, 8, 11, 18) is obtained
at significance level 0.05. The interaction plots for each of these subgroups are given
in Fig. 13.2, where the average response pattern is shown by a thick line. The inter-
pretation is now clear: subgroup G1 is improved, G2 unchanged, and G3 deteriorated.
The observed distribution of subjects from each of two treatment groups over these
three types of subgroup is given in Table 13.3.
It is natural that the placebo is concentrated in the unchanged subgroup. In contrast,

the active drug is very strangely distributed – equally on the three types of subgroup,
and by no means recommended as good. Table 13.3 suggests also that the difference
between the active drug and placebo lies not in the mean profiles, but in the dispersion
of profiles around the mean. Therefore, if we had employed the multivariate normal
model to compare the mean vectors assuming equality of covariance matrices, we
would have failed to detect the difference. Also, both the modified likelihood ratio
test (Bartlett, 1937; Anderson, 2003) and Nagao’s (1973) invariant test for comparing
two Wishart matrices show significance level of approximately 0.25, and are not suc-
cessful in detecting such a systematic difference in covariance matrices along the
time axis.
Finally, the sixth observation of each subject was taken as the post-measurement

four weeks after the final dose, and might better be eliminated from the analysis. There
is, however, not much difference in doing this; only subject 5 of the treatment group
moved from the unchanged subgroup to the deteriorated one.

Example 13.1. From Phase III trial we give another example of comparing two
active drugs for lowering cholesterol using a somewhat larger data set taken every
four weeks for five periods. In this case a classification into five subgroups is
obtained as highly significant. These are summarized in Table 13.4 (1). In this case
the control is also an active drug, while the treatment is a well established one, so
that the majority of the subjects respond well. The observed distribution of sub-
jects from each treatment over those five classes is given in Table 13.4 (2). Then
clearly the treatment drug is shifted in the direction of improved subgroups. The
reader is advised to read Hirotsu (1991) for more details.
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Figure 13.2 Interaction plots for each of three subgroups.
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13.2 Profile Analysis of 24-Hour Measurements
of Blood Pressure

13.2.1 Introduction

There are 48 observations of systolic blood pressure, measured every 30 min-
utes for 24 hours. These measurements are known to normally go down slightly
in the night and a large depression is abnormal, as is a flat pattern or a tendency

Table 13.4 Summary of the classification into five subgroups.

(1) Estimated interaction patterns with mean profiles in the lower row

Period

Subgroup 1 2 3 4 5 Characterization

G1 79.7 −0.2 −40.9 −34.7 −3.8 Very highly improved
402.3 292.0 250.3 257.7 289.3

G2 22.6 8.6 −1.0 −12.1 −18.1 Highly improved
296.6 252.2 241.6 231.5 226.3

G3 14.3 −5.8 −7.9 −5.7 5.1 Improved
278.4 227.8 224.7 228.1 239.6

G4 −17.0 5.5 10.4 6.8 −5.7 Slightly improved
260.1 252.2 256.1 253.6 241.9

G5 −23.4 −7.7 0.9 12.4 17.7 Unchanged or slightly
deteriorated263.4 248.7 256.4 268.9 274.9

(2) Observed distribution for the drug and control

Treatment G1 G2 G3 G4 G5 Total

Drug 3 28 35 14 9 89
Control 0 6 11 33 28 78

Table 13.3 Observed distribution for active drug and placebo.

Class

Treatment G1 : Improved G2 : Unchanged G3 : Deteriorated

Active drug 4 4 4
Placebo 1 9 1
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toward elevation. In the following we call these downward and upward tenden-
cies in the night convex and concave patterns, respectively, since we take the
starting point at 3.00 p.m. As a background to these data, it was first pointed out
by Miller-Craig et al. (1978) that systolic and diastolic blood pressures follow a
circadian pattern, with values being lower at night than during the day. Then, an
inverse pattern has been reported in subjects with autonomic failure by Mann
et al. (1983). Kobrin et al. (1984) reported that the elderly, who have a higher
incidence of cardiovascular disease, may lose this diurnal variation. Following
these reports, O’Brien et al. (1988) analyzed 24-hour ambulatory blood pres-
sure measurements from 123 hypertensive consecutive patients; they classified
these patients into dippers (102 patients, 82.9%) and non-dippers (21 patients,
17.1%), according to whether the difference between mean day-time blood
pressure and mean night-time blood pressure showed the normal circadian var-
iation (dipper) or not (non-dipper). Thus, they first concluded that there is a
group of patients whose 24-hour blood pressure does not follow the normal cir-
cadian pattern and who thus may be at higher risk of cerebrovascular compli-
cations. Ohkubo et al. (1977) defined further the four classes of extreme dipper
(ED), dipper (D), non-dipper (ND), and inverted dipper (ID), finding that the
mortality rate is highest in the inverted dipper subgroup. In these works, how-
ever, the circadian rhythm has been characterized by several parameters, such
as 24-hour mean of measurements, day-time mean, sleep mean, evening acro-
phase, nocturnal nadir, and amplitude (the last is defined as 50% of the differ-
ence between the maximum and minimum of the fitted curve). Although each
parameter is useful and informative, the separate analyses of these parameters
suffer from the multiplicity problem. Also, another process is required to com-
bine these separate analyses into a single conclusion. Further, some parameters
are known to be sensitive to outliers. This, together with the correlations among
parameters, makes the simultaneous inferences very complicated. In this
section we therefore intend to characterize the 24-hour profile of blood pres-
sure measurements on the whole, with particular interest in their convex and
concave patterns.
There have been several attempts to classify subjects based on their time series

profiles, such as blood pressure or total cholesterol amount. Among them, a naïve
method employed by clinical doctors is to classify subjects according to several
prototype patterns. It has been pointed out, however, that there are various diffi-
culties in classifying some hundreds of subjects by sight. Some statistical
approaches have also been proposed, including the method proposed in the previ-
ous section, which succeeded in classifying subjects according to their upward or
downward profile. The 24-hour profile of blood pressure measurements is, how-
ever, characterized by coming back approximately to the initial value after
24 hours, and the previous method should not be successful. Also, in this case,
we cannot assume the independence of measurements, since they are taken every
30 minutes, whereas in the previous example cholesterol measurements were
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taken every month, allowing for an independence assumption between successive
measurements.

13.2.2 Data set and classical approach

The original data set is for 203 elderly subjects taken at the Medical Department of
Keio University. It is too large to present here, so we give only a summary of the
data in Table 13.5. There we have included the average of the change rate,
defined by

Δ= average in day time−average in night time overall average ,

where the day time and night time are tentatively defined as 10 a.m. ~ 8 p.m. and
0 a.m. ~ 6 a.m., respectively. Subjects have been classified as depression, flat, or ele-
vation type, according to Δ ≥ 0 1, −0 1 <Δ < 0 1orΔ ≤ −0 1, respectively, and the
flat and elevation type at night should be treated (see Shimizu, 1994). The classifica-
tion was, however, rather arbitrary. We therefore propose a scientific approach to
comparing the profile on the whole, rather than based on the somewhat arbitrary
amount Δ, and obtain statistically and clinically significant subgroups without pre-
specifying the number of subgroups.

13.2.3 Statistical model and new approach

(1) Model and test statistic. There is apparent serial correlation in the original data.
We therefore tried several methods for deleting this, and found that averaging four
successive points at every four-point interval could yield an approximately inde-
pendent sequence (Hirotsu et al., 2003). Averaging four successive points is also
useful for smoothing a rather noisy sequence without affecting the systematic trend
tendency. We denote the resulting data by ykj, k = 1, …, n; j= 1, …, p and assume
the model

Table 13.5 Summary of blood pressure data n= 203 .

Data profile Mean
(mmHg)

Standard deviation
(mmHg)

Average of 24-hour measurements 137.44 17.47
Minimum of 24-hour measurements 104.07 15.47
Maximum of 24-hour measurements 173.28 22.85
Average of change rate of blood pressure 0.074 0.098
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ykj = μkj + ekj (13.7)

with normally and independently distributed error eij. We do not employ any par-
ticular parametric model for μkj, but assume some systematic change in μkj with
respect to the passage of time. This means that the apparently high correlation
between the two close measurements is modeled by a smooth systematic change
in the mean level, and the casual measurement errors are assumed to be mutually
independent in (13.7). Thus we have two components, μkj and ekj, the former chan-
ging slowly and the latter moving rather quickly and independently. The idea is
similar to the previous section but in contrast to the monotone profile of the pre-
vious section, we intend to catch here those convex and concave systematic
changes which are of clinical interest for blood pressure measurements. These

patterns can be caught by the contrasts P†
p =D LpLp

−1
Lp as developed in

Section 6.5.4 (5). So, we modify the squared distance between two subjects
(13.3) to

L k;k 2 = 0 02−1 20 0−2−1 2 0 0 P†
p y 2 = 2−1 yk −yk P†

pP
†
p yk −yk

so as to reflect the difference represented by convex and concave patterns. The
chi-squared distances between two subgroups and the generalized chi-squared dis-
tances are similarly defined to Section 10.3.2 (2) and (3) by replacing Pb by P†

p ,
respectively. The clustering algorithm of Section 11.3.3 is again applicable to this
case. The generalized chi-squared distance is bounded above by the largest eigen-

value W†
1 of the Wishart matrix W σ2P†

p P
†
p, n−1 under the null hypothesis of

homogeneity of subjects. It is asymptotically distributed as τ2σ2χ22 , where τ2

and χ22 are explained below. To cancel out the unknown σ2 we introduce

S− = kvkvk instead of χ −2, where vk = diag ξiδ
2
i

−1 2
Lp yk −y and ξi and δi

are given in Section 6.5.4 (5). This is a quadratic form by the generalized inverse
matrix of P†

pP
†
p and is simply the weighted sum of squares of the second-order dif-

ferences in subsequent measurements, and less affected by the systematic change.
It is expanded in the form

S− = τ−12 χ22 + τ−13 χ23 + + τ−1p−1χ
2
p−1 σ2, (13.8)

where τk = 2p p+ 1 k−1 k k + 1 k + 2 , k = 2,…, p−1, is the k th eigenvalue
of P†

p P
†
p and χ2 j the Chebyshev’s chi-squared component for the j th orthogonal

polynomial, each with df n−1 and mutually independent as in (13.4), with inverse
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characteristic toW†
1 . This equation is similar to that of Section 6.5.4 (5), but differs in

the degrees of freedom of the chi-squared components.

(2) Distribution of test statistic. By virtue of the expansion (13.8), the p-value of
the generalized chi-squared distance is evaluated by formula (13.9) or (13.10):

p =Pr W†
1 S− ≥ s0 = Pr

τ2 χ22
τ−12 χ22 + τ−13 χ23 + + τ−1p−1 χ

2
p−1

≥ s0

= Pr
τ2−s0 τ−12 χ22

τ−13 χ23 + + τ−1t−1 χ
2
p−1

≥ s0

(13.9)

Now the denominator of (13.9) is a positive linear combination of the independent chi-
squared variables, and is well approximated by a constant times the chi-squared var-
iable dχ2f , with constants obtained by adjusting the first two cumulants,

df = n−1 τ−13 + + τ−1p−1 ,

d2f = n−1 τ−23 + + τ−2p−1

Since the numerator and denominator are mutually independent, we finally obtain

p = Pr Fn−1, f ≥ s0 τ−13 + + τ−1p−1 τ2−s0τ
−1
2 , (13.10)

where Fn−1, f is an F-variable with df n−1, f .

(3) Application. We apply the clustering procedure to the data of n = 203 and p= 6
with the reference distribution (13.10). Originally the number of data points was 48,
but by averaging four successive points at every four-point interval they are reduced to
six points.
First we note that all the classifications beyond K = 2 are highly significant.

However, at K = 3 the classification fails to detect a flat pattern and the homoge-
neity within subgroups is not assured. Since the gain in percentage contribution
from K = 3 to K = 4 is 6.9%, and larger than the 3.0% from K = 4 to K = 5, the first
choice looks to be K = 4. Also, the four subgroups are interpreted as moderately
convex, slightly convex, flat, and concave, and correspond well to Ohkubo
et al.’s (1997) classification of extreme dipper (ED), dipper (D), non-dipper
(ND), and inverted dipper (ID). In the next step from K = 4 to K = 5, however, a
highly convex subgroup (UED) of size six is isolated from the moderately convex
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subgroup, while the other subgroups are adjusted only slightly. Thus, the classifi-
cation of K = 5 is very natural and easy to interpret, separating UED from ED and
giving highly convex (UED), moderately convex (ED), slightly convex (D), flat
(ND), and concave (ID) subgroups. The classification of K = 6 gains us very little
in the generalized squared distance over K = 5, and will not make sense. The proc-
ess of classification and the final results are shown in Table 13.6 and Fig. 13.3,
respectively.

It has been pointed out clinically that the stroke rate is higher in the ND and ID
subgroups (O’Brien et al., 1988), and the mortality risk is higher in the ID sub-
group. However, no significant difference has been reported between ED and
D (Ohkubo et al., 1997). We, however, think that UED might suggest a higher
risk than ED, and encourage further clinical research to verify this. The reader is
recommended to refer to Hirotsu et al. (2003) for a more detailed explanation of
the method of this section.

Table 13.6 Process of classification.

Significance Mean profile
Generalized Percentage

K level 15.00 19.00 23.00 3.00 7.00 11.00 n distance contribution

2 1.12E-1 148 138 126 128 139 147 117 9.43E4 50.3
137 138 136 137 141 132 86

3 8.99E-5 157 145 128 129 143 154 65 1.24E5 66.3
137 132 126 129 136 135 102
137 143 146 145 146 131 36

4 1.34E-6 161 146 126 128 144 157 39 1.37E5 73.2
142 134 125 129 137 142 78
138 138 133 133 140 134 62
134 139 144 148 145 126 24

5 1.92E-7 173 152 119 122 136 160 6 1.43E5 76.2
158 145 129 128 145 155 39
141 134 125 129 136 141 74
137 137 133 133 141 134 60
134 139 144 148 145 126 24

6 1.99E-7 173 152 119 122 136 160 6 1.43E5 79.3
158 145 129 128 145 155 39
140 132 124 128 136 140 75
144 126 128 147 151 129 15
137 143 136 132 139 136 47
133 141 147 147 145 127 21
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Figure 13.3 Interaction plots of blood pressure for each of five sub-classes.
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14

Analysis of Three-Way
Categorical Data

We denote the frequency data cross-classified according to the three attributes A, B, C
by yijk and the associated cell probabilities by pijk , i= 1,…, a, j= 1,…, b, k = 1, …,c.
We denote the vectors of yijk and pijk arranged in dictionary order with respect to
suffix by y and p, respectively. Then there are four different types of sampling scheme
to obtain those data.

(1) The yijk are distributed as an independent Poisson distribution Po(Λ) with
mean Λijk.

(2) The yijk are distributed as a multinomial distribution M y , p with p = 1.

(3) The two-way categorical data yi = yi11, …,yibc following a multinomial distri-
butionM yi , pi , pi = pi11,…,pibc , i = 1,…, a, are obtained at each of a levels of a
factor A.

(4) The one-way categorical data yij = yij1,…,yijc following a multinomial distri-

butionM(yij., pij), pij = pij1,…,pijc are obtained at each of a × b combinations of the
levels of factors A and B.

In this section it is convenient to express three factors as roman or italic according to
the explanation or response attribute. Model 1 is expressed as A×B×C and model 2 is
expressed as A ×B×C, for example. In the following we consider a conditional anal-
ysis given the sufficient statistics under the null model, which are the marginal totals.
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Then the Poisson model need not be discussed separately, since it reduces to the mul-
tinomial model 1 with pijk =Λijk Λ by considering the conditional distribution
given y .

14.1 Analysis of Three-Way Response Data

14.1.1 General theory

In this case the purpose of the analysis is to clarify the association or independence
among the three response factors. The simplest model will be

pijk = pi × p j × p k 14 1

expressing the independence of three factors. Also the meaning of the model

pijk = pij × p k (14.2)

will be straightforward. Then the model

pijk = pi k × p jk p k (14.3)

implies the conditional independence of factors A and B given the level of factor C. To
cover all these models it is convenient to consider a log linear model of pijk:

log pijk = μ + αi + βj + γk + θij +φik + τjk +ωijk (14.4)

and test the interaction effects in order of descent, starting from the highest. Model
(14.3), for example, corresponds to

log pijk = μ+ αi + βj + γk +φik + τjk (14.5)

This can be shown as follows. If (14.3) holds, it is obvious that log pijk is in the form of
(14.5). If we assume (14.5), we have

pi k = exp μ+ αi + γk +φik jexp βj + τjk ,

p jk = exp μ+ βj + γk + τjk iexp αi +φik

and p k = exp μ+ γk iexp αi +φik jexp βj + τjk . Therefore we have

pi k × p jk

p k
= exp μ+ αi + βj + γk +φik + τjk = pijk
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It is similarly shown that the models (14.2) and (14.1) correspond to

log pijk = μ+ αi + βj + γk + θij,

log pijk = μ + αi + βj + γk,

respectively. We call model (14.4) a saturated model. Then we have further a model

logpijk = μ + αi + βj + γk + θij +φik + τjk (14.6)

between it and model (14.5), and it is in this case that Simpson’s paradox occurs by an
additive treatment of the data.
For convenience in dealing with the log linear model (14.4), identification condi-

tions like jθij = 0 were introduced by Birch (1963). Plackett (1981) employed the
constraint that the parameter with suffix i = a, j= b, or k = c is zero on the right-hand
side of (14.4), which gives the explicit expression of those parameters in terms of pijk:

αi = log
pi bc
pabc

,βj = log
paj c
pabc

, γk = log
pabk
pabc

θi j = log
pi j cpabc
pi bcpaj c

, φi k = log
pi bk pabc
pi bcpabk

, τj k = log
paj k pabc
paj cpabk

ωi j k = log
pi j k pi bcpaj cpabk
pi j cpi bk paj k pabc

(14.7)

where the prime on the suffix denotes that the range of the suffixes is restricted to
i = 1,…, a−1; j = 1,…, b−1, and k = 1,…, c−1. In contrast, the pijk are expressed
by the new parameters as

pijk = pabcexp αi + βj + γk + θij +φik + τjk +ωijk

where the parameters with suffix i= a, j = b, or k = c are zero and pabc is defined so
that p = 1.
Both constraints give the same test procedure as long as we follow the strong

heredity principle that for testing an interaction θij, both parents αi and βj should
remain in the model. Therefore we start with the test of model (14.6) against the
saturated model (14.4). Employing the constraints of Plackett, the likelihood function
of the saturated model is

L=
y pyabc

ΠiΠjΠkyijk
exp i yi αi + j y j βj + k y k γk + i j yi j θi j

+ i k yi k φi k + j k y j k τj k + i j k yi j k ωi j k (14.8)

In the following we mention both the conditional and unconditional tests. The
unconditional test based on theMLE is easy to apply and fortunately it often coincides
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asymptotically with the conditional test. We recommend, however, the conditional
test in principle because it gives a similar test. In particular, we recommend an exact
conditional test when it is available.

(1) Test of three-way interaction

(a) Conditional test of the null hypothesis Hω: logpijk = μ+αi + βj + γk + θij
+φik + τjk.We first test the null hypothesisHω (14.6). We consider a conditional anal-
ysis given a set of sufficient statistics under Hω which is obviously yij ,yi k,y jk ,
where we omit the range of the suffix when it is obvious. Then we have

Pr Yijk = yijk yij , yi k,y jk =
1

C ω

exp i j k yi j k ωi j k

ΠiΠjΠkyijk
(14.9)

whereC(ω) is a normalizing constant so that the total probability is unity. In the case of a
2 × 2 × 2 table there is only one randomvariable,which is conveniently specified asY111.
Then the conditional distribution (14.9) reduces to

Pr Yijk = yijk yij ,yi k,y jk =
1

C ω111
exp y111ω111

y111 y11 −y111 y1 1−y111 y1 2−y11 + y111

× y 11−y111 y21 −y 11 + y111 y2 1−y 11 + y111 y2 2−y21 + y 11−y111

with the aid of Table 14.1. The range of the variable Y111 is determined so that all the
2 × 2 × 2 cell frequencies in Table 14.1 are non-negative.
In the general case it is very hard to handle the exact distribution, and the normal

approximation is usually employed. It should be noted here that the cell probabilities
{pijk} are uniquely determined by the given marginal totals pij , pi k,p jk and three-

factor interaction ωi j k . They are determined by the iterative scaling procedure,

Table 14.1 Data of 2 × 2 × 2 table expressed by y111 and two-way marginal totals.

i= 1 i= 2

J k = 1 k = 2 Total k = 1 k = 2 Total

1 y111 y11 −y111 y11 y 11−y111 y21 −y 11 + y111 y21
2 y1 1−y111 y1 2−y11 + y111 y12 y2 1−y 11 + y111 y2 2−y21 + y 11−y111 y22

Total y1 1 y1 2 y1 y2 1 y2 2 y2
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adjusting the marginal totals starting from any three-way table {qijk} whose three-way
interaction is ωi j k , such as

qi j k = exp ωi j k ,

qijk = 1 if i−a j−b k−c = 0
(14.10)

for example, see Fienberg (1980) for iterative scaling procedure. Also define the cell
frequencies mijk(ω) that satisfy

mij ω = yij , mi k ω = yi k, m jk ω = y jk

log
mi j k ω mi bc ω maj c ω mabk ω
mi j c ω mi bk ω maj k ω mabc ω

=ωi j k

(14.11)

whereω is a vector of ωi j k arranged in dictionary order. Themijk(ω) are determined
similarly, starting from the qijk of (14.10) and adjusting two-waymarginal totals (14.11).
Then the asymptotic distribution of {yijk} is normal,

const exp −
1
2 i j k

yijk −mijk ω
2

mijk ω

under the condition

yij
y

πij ,
yi k
y

πi k,
y jk

y
π jk

where πij , πi k , and π jk are the positive numbers that satisfy

jπij = kπi k, iπij = kπ jk, iπi k = jπ jk,

i jπij = 1, i kπi k = 1, j kπ jk = 1

(see Plackett, 1981 for details). This is a degenerated distribution, because of the
constraints

i yijk −mijk ω = 0, j yijk −mijk ω = 0, k yijk −mijk ω = 0

Let A∗ be an ab+ bc+ ca−a−b−c + 1 × abc non-singular matrix, such that A∗ y
forms a set of sufficient statistics under Hω. It can be obtained, for example, by delet-
ing some of the sufficient statistics yij , yi k,y jk so that they become linearly inde-
pendent of each other. Then, by virtue of equation (6.19), the conditional
variance–covariance of y matrix is

Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω (14.12)
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where Ω is a diagonal matrix with mijk(ω) as its diagonal elements arranged in dic-
tionary order. If we allow for A∗ being singular, so that A∗ y represents all of the suf-
ficient statistics yij , yi k,y jk , we can simply employ a generalized inverse of a matrix
in the expression (14.12). An example of the construction of non-singular matrix A∗ is
given in detail in Section 14.2.2 (1) (a).
Let m(ω) be a vector of mijk(ω) arranged in dictionary order. Then the quadratic
form

χ2 ω = y−m ω Ω−1 y−m ω = i j k

yijk −mijk ω
2

mijk ω
(14.13)

is distributed as a chi-squared distribution with df a−1 b−1 c−1 , since

Ω−1 Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω

is easily verified to be an idempotent matrix with trace equal to a−1 b−1 c−1
(see Lemma 2.1). Under the null hypothesis Hω the χ2(0) obtained by putting
ω= 0 in equation (14.13) is distributed as a chi-squared variable with df
a−1 b−1 c−1 , where m(0) is obtained by the iterative scaling procedure for
adjusting two-way marginal totals (14.11), starting from the three-way table {qijk}
with qijk ≡ 1 by putting ωi j k = 0 in (14.10).

(b) Unconditional test of Hω. The goodness-of-fit chi-squared statistic is
obtained as follows. We go back to the multinomial distribution M(y , p) with
p = 1. First, under the saturated model (14.4), the MLEs of the pijk and mijk are
obviously

pijk = yijk y and mijk = yijk, (14.14)

where the hat denotes the MLE. Under the null hypothesis Hω we maximize the like-
lihood function (14.8) at ωi j k ≡ 0. Then, after some calculation, we have the likeli-
hood equation

mij 0 = yij , mi k 0 = yi k, m jk 0 = y jk,

log
mi j k 0 mi bc 0 maj c 0 mabk 0
mi j c 0 mi bk 0 maj k 0 mabc 0

= 0

That is, the unconditional MLE mijk 0 of mijk coincides with mijk(0) obtained by
(14.11) in the previous section. This means that χ2(0) (14.13) is nothing but the
(unconditional) goodness-of-fit chi-squared statistic.
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The likelihood ratio test is then given by

Sω = 2log
L

Lω = 0
= 2 i j kyijklog

yijk
mijk 0

(14.15)

where L and Lω= 0 denote the likelihood evaluated at mijk (14.14) and mijk 0 ,
respectively.

(c) Exact conditional distribution for a 2 × b× c table under Hω. An exact
conditional null distribution under Hω has been obtained for a 2 × b × c table in trac-
table form by Hirotsu et al. (2001). In this case the null distribution under Hω is
formally

Pr Yijk = yijk yij ,yi k,y jk =C−1
c yij ,yi k,y jk; i = 1, 2, j= 1,…, b,k = 1,…, c

×Π2
i= 1Π

b
j= 1Π

c
k = 1 yijk

−1

(14.16)

Usually, the normalizing constant Cc has not been obtained even for a moderately
large table, because of the computational problem. It can, however, be obtained as
follows by a similar recursion formula using the Markov property as in Chapter 6.

Lemma 14.1. Exact null distribution under Hω for 2 × b× c table. Define
y1k = y11k,…,y1b−1k and its partial sum Y1k = y11 + + y1k, where the capital letters
are employed following Chapter 6 to express accumulated statistics instead of the
usual terminology for random variables. Then, the factorization of the distribution
(14.16) is obtained in terms of Y1k as

Pr Yijk = yijk yij ,yi k,y jk =Πc−1
k = 1fk Y1k Y1k + 1, A∗ y ,

fk Y1k Y1k + 1, A
∗ y =C−1

k + 1 Y1k + 1, yi m,y jm; i= 12, j= 1,…, b,m= 1,…, k + 1

×Ck Y1k, yi m,y jm Π2
i= 1Π

b
j= 1 Yijk + 1−Yijk

−1

(14.17)

where Y1jk is a component of Y1k, Y2jk is defined by k
m = 1y jm−Y1jk, and

Ck Y1k, yi m,y jm is the summation of Π2
i= 1Π

b
j= 1Π

k
m= 1 yijm

−1
with respect to yijm

subject to the condition of fixed marginal totals Y1k, yi m,y jm; i= 12, j= 1,…,
b,m= 1,…, k. It is determined by the recursion formula

ANALYSIS OF THREE-WAY CATEGORICAL DATA 353



Ck Y1k, yi m,y jm = Y1k−1
Ck−1 Y1k−1, yi m,y jm Π2

i= 1Π
b
j= 1

Yijk −Yijk−1
−1
, k = 2,…, c

starting from

C1 Y11, yi m,y jm =Π2
i= 1Π

b
j= 1 Yij1

−1

and coincides with Cc of (14.16) at k = c.

Proof. In the log linear model approach of the three-way contingency table, the
model underHω is most controversial and an exact distribution is not known. It makes
the problem difficult that an amalgamation invariance does not hold; that is, for the
collapsed table with respect to k, the null model Hω no longer holds (Darroch, 1974).
However, since sub-table invariance holds, the probability function up to m = 1,...k is
given by

C−1
k + 1 Y1k + 1, yi m,y jm; i= 12, j= 1,…, b,m = 1,…, k + 1 Π2

i= 1Π
b
j= 1Π

k + 1
m = 1 yijm

−1

and it is factorized into a product of two probability functions,

C−1
k Π2

i= 1Π
b
j= 1Π

k
m= 1 yijm

−1
×C−1

k + 1CkΠ2
i= 1Π

b
j= 1 Yijk + 1−Yijk

−1
(14.18)

The latter part of (14.18) is nothing but the conditional distribution of (14.17). It
should be noted that the random variable Y1k is included also in Ck Y1k, yi m,y jm ,
the normalizing constant one step before.
The result of Lemma 14.1 is utilized in Section 14.2.2 (2) (a).

(2) Test of two-way interaction

(a) Conditional test of the null hypothesis Hτ: log pijk = μ+αi + βj + γk + θij +φik

assuming Hω. Next we consider a test of the null hypothesis Hτ τjk = 0, assuming
Hω. The sufficient statistics under Hω Hτ are yi , y j , y k , yi j , yi k , or simply

yij , yi k in a redundant expression, and the sufficient statistics for the parameter
τj k are y j k . Therefore, the inference should be based on y j k conditionally on

yij , yi k . For each i the distribution MH yijk│yij , yi k of yijk under Hτ Hω given

yij , yi k is a multivariate hypergeometric distribution,
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Πb
j= 1yij Πc

k = 1yi k

yi Πc
k = 1 Π

b
j= 1yijk

, i= 1, …, a

The expectation and covariance of this distribution are therefore easily obtained as
follows:

E Yijk│yij , yi k = yij yi k yi ..

Cov Yi1j1k1 , Yi2j2k2│yij , yi k =

yij1 δj1j2yi −yij2 yi k1 δk1k2yi −yi k2
y2i yi −1

, i1 = i2 = i,

0, otherwise

Then, the expectation and covariance of Y jk are obtained as

E Y jk│yij , yi k = iyij yi k yi ,

Cov Y j1k1 , Y j2k2│yij , yi k = i

yij1 δj1j2yi −yij2 yi k1 δk1k2yi −yi k2
y2i yi −1

Let t be a vector of y j k ,

t= y 11,…,y 1c−1 , y 21, …,y 2c−1 ,…,y b−1c−1 (14.19)

and E(t) and V(t) be the expectation and variance–covariance matrix of t. Then the
quadratic form of t,

t−E t V −1 t t−E t (14.20)

is nothing but the efficient score test of Birch (1965), which is asymptotically distrib-
uted as chi-squared with df fτ = b−1 c−1 . The chi-squared approximation of the
statistic (14.20) is good for moderately large yij and yi k, because of the summation
with respect to i.

(b) Unconditional test of Hτ. The unconditional MLE of the cell frequencies
mijk(0, 0) under Hω Hτ satisfies the equation

mi k 0, 0 = yi k, mij 0, 0 = yij , log
mij k 0, 0 mibc 0, 0
mij c 0, 0 mibk 0, 0

= 0

This equation is solved at once, giving

mijk 0, 0 = yij yi k yi

Therefore, the likelihood ratio test is obtained as

Sτ = 2log
Lω = 0

Lτ = 0, ω = 0
= 2 i j kyijklog

mijk 0
mijk 0, 0

(14.21)
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This statistic is asymptotically distributed as chi-squared with df fτ = b−1 c−1
underHω Hτ and the condition yij y πij , yi k y πi k. In contrast, a more con-
venient expression of Sτ is obtained as

Sτ = 2 i j kmijk 0 log
mijk 0

mijk 0, 0

The goodness-of-fit chi-squared asymptotically equivalent to Sτ is

χ2τ = i j k

mijk 0 −mijk 0, 0
2

mijk 0, 0

(c) Unconditional test of the null hypothesis Hφ:log pijk = μ+αi + βj + γk + θij
assuming Hω Hτ . This test is equivalent to the test of the null hypothesis

pi k = pi × p k

in the collapsed two-way table of yi k . Therefore, the goodness-of-fit chi-squared
and the likelihood ratio test are given by

χ2φ = i k

yi k −yi y k y 2

yi y k y

and Sφ = 2 i kyi klog
yi k

yi y k y

= 2 i kyi klogyi k − iyi logyi − ky klogy k + y logy (14.22)

This is also obtained as follows. The MLE under Hω Hτ was mijk 0, 0 = yij yi k yi .
and the MLE under Hω Hτ Hφ is easily obtained as mijk 0, 0, 0 = yij y k y . There-
fore, twice the log likelihood is

Sφ = 2 i j kyijklog
mijk 0, 0
mijk 0, 0, 0

= 2 i j kmijk 0, 0 log
mijk 0, 0
mijk 0, 0, 0

= 2 i j kyijklog
yij yi k yi
yij y k y

= 14 22

(d) Unconditional test of the null hypothesis Hθ:logpijk = μ +αi + βj + γk assuming
Hω Hτ Hφ. This test is equivalent to the test of independence
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pij = pi × p j

in the collapsed two-way table yij . Therefore, the goodness-of-fit chi-squared and
the likelihood ratio test are given by

χ2θ = i j

yij −yi y j y
2

yi y j y

and Sθ = 2 i jyij log
yij

yi y j y

= 2 i jyij logyij − iyi logyi − jy j logy j + y logy

(14.23)

This is also obtained as follows. The MLE under Hω Hτ Hφ Hθ is obviously
mijk 0, 0,0,0 = yi y j y k y2 Therefore,

Sθ = 2 i j kyijklog
mijk 0, 0, 0
mijk 0, 0, 0, 0

= 2 i j kmijk 0, 0, 0 log
mijk 0, 0, 0
mijk 0, 0, 0, 0

= 2 i jyij log
y yij
yi y j

= 14 23

The series of test statistics Sω (14.15), Sτ (14.21), Sφ (14.22), and Sθ (14.23)
is the factorization of the test statistic of the likelihood ratio test of overall
independence,

pijk = pi × p j × p k

against the saturated model. The following equation is easily verified:

2 i j kyijklog
yijk

yi y j y k y2
= 2 i j kyijklog

yijk
mijk 0

+ 2 i j kmijk 0 log
mijk 0

mijk 0, 0
+ 2 i j kmijk 0, 0 log

mijk 0, 0
mijk 0, 0, 0

+ 2 i j kmijk 0, 0, 0 log
mijk 0, 0, 0
mijk 0, 0,0,0
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14.1.2 Cumulative chi-squared statistics for the ordered
categorical responses

(1) Order-restricted inference of the null hypothesis Hω

(a) Assuming simple order effects for all the row, column, and layer categories.
First, from (14.13) and (14.12) we note that

χ2ω 0 = y−m 0 Ω−1 y−m 0 = i j k

yijk −mijk 0
2

mijk 0

is the quadratic form of Pa Pb Pc y−m 0 by the inverse of its variance–
covariance matrix

Pa Pb Pc Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω Pa Pb Pc

= Pa Pb Pc Ω−1 Pa Pb Pc
−1

This is easily verified, since the two-way marginal totals of y and m(0) coincide. For
the assumed order effects we introduce the accumulated statistics

P∗
a P∗

b P∗
c y−m 0

and the sum of squares of its standardized components χ∗∗∗2. The matrix P∗
a is defined

in Section 6.5.3 (2) (b), regarding the cumulative chi-squared χ∗2 in a one-way layout.
Let the diagonal elements of

V∗∗∗ = P∗
a P∗

b P∗
c Ω−ΩA∗ A∗ Ω−1A∗ −1

A∗ Ω P∗
a P∗

b P∗
c (14.24)

be vi j k , and D vi j k = diag vi j k a diagonal matrix of vi j k arranged in dictionary
order. Then the cumulative chi-squared statistic is defined by

χ∗∗∗2ω = D−1 2 vi j k P∗
a P∗

b P∗
c y−m 0 2

where D−1 2 vi j k is a diagonal matrix of v−1 2
i j k . The constants for the chi-squared

approximation dχ2f are obtained as usual by

κ1 =E χ∗∗∗2ω = tr D−1 vi j k V∗∗∗ = a−1 b−1 c−1 = df (14.25)

κ2 =V χ∗∗∗2ω = 2tr D−1 vi j k V∗∗∗ 2
= 2d2f (14.26)
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(b) Assuming simple order effects for the row and column categories. For the
assumed order effects we introduce the two-way accumulated statistic

P∗
a P∗

b Pc y−m 0

Let Vi j , i = 1,…, a−1; j = 1, …, b−1 be a variance–covariance matrix

Vi j = r∗ 1,…, i ; i + 1,…,a c∗ 1,…, j ; j + 1,…,b Pc

× Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω

× r∗ 1,…, i ; i + 1,…,a c∗ 1,…, j ; j + 1,…,b Pc

where r∗ and c∗ are defined as the rows of P∗
a andP∗

b in Sections 10.4.1 (3) and 10.4.2
(2), respectively. That is, each Vi j is a principal c−1 × c−1 sub-matrix of

V∗∗ = P∗
a P∗

b Pc Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω P∗

a P∗
b Pc

Then the two-way cumulative chi-squared is defined by

χ∗∗2ω = P∗
a P∗

b Pc y−m 0 D−1 Vi j P∗
a P∗

b Pc y−m 0

where D Vi j is a block diagonal matrix with Vi j as its diagonal elements in diction-
ary order. The constants for the chi-squared approximation for the statistic χ∗∗2 are
given by

κ1 =E χ∗∗2ω = tr D−1 Vi j V∗∗ = a−1 b−1 c−1 = df

κ2 =V χ∗∗2ω = 2tr D−1 Vi j V∗∗ 2
= 2d2f

(c) Assuming simple order effects only for the row categories. For the assumed
order effects, we introduce the cumulative sum statistic

P∗
a Pb Pc y−m 0

Let Vi be a variance–covariance matrix

Vi = r∗ 1,…, i ; i + 1,…,a Pb Pc Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω

× r∗ 1,…, i ; i + 1,…,a Pb Pc

which is a principal b−1 c−1 × b−1 c−1 sub-matrix of

V∗ = P∗
a Pb Pc Ω−ΩA∗ A∗ Ω−1A∗ −1

A∗ Ω P∗
a Pb Pc
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Then the cumulative chi-squared is defined by

χ∗2ω = P∗
a Pb Pc y−m 0 D−1 Vi P∗

a Pb Pc y−m 0

whereD Vi is a block diagonal matrix with Vi as its diagonal elements in dictionary
order. The constants for the chi-squared approximation for the statistic χ∗ 2 are
given by

κ1 =E χ∗2ω = tr D−1 Vi V∗ = a−1 b−1 c−1 = df ,

κ2 =V χ∗2ω = 2tr D−1 Vi V∗ 2
= 2d2f

(2) Order-restricted inference of the null hypothesisHτ assumingHω.Birch’s test
is easy to extend to a cumulative chi-squared type test, since it is an efficient score test.
We can simply define the accumulated statistics according to the ordered column and/
or layer categories.

(a) Assuming simple order effects for both column and layer categories.We fol-
low the notation of Section 14.1.1 (2) (a) and to define the cumulative sum statistics
we introduce a lower triangular matrix of unities:

Tl =

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 1 1 1 1 1 l× l

Then the two-way accumulated statistics are defined by

t∗∗ = Tb−1 Tc−1 t−E t (14.27)

where t is defined in (14.19). Define the variance–covariance matrix of t∗∗ by

W∗∗ = Tb−1 Tc−1 V t Tb−1 Tc−1

and its diagonal elements by wj k , where V(t) is defined in Section 14.1.1 (2) (a). Fur-
ther, define a diagonal matrix D wj k = diag wj k by diagonal elements wj k

arranged in dictionary order. Then the cumulative chi-squared statistic is defined by

χ∗∗2τ = D−1 2 wj k t∗∗ 2

The constants for the chi-squared approximation for the statistic χ∗∗2τ are given by
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κ1 =E χ∗∗2τ = tr D−1 wj k W∗∗ = b−1 c−1 = df (14.28)

κ2 =V χ∗∗2τ = 2tr D−1 wj k W∗∗ 2
= 2d2f (14.29)

(b) Assuming simple order effects only for the column categories. The accumu-
lated statistics are defined by

t∗ = Tb−1 Ic−1 t

Define the variance–covariance matrix of t∗ by

W∗ = Tb−1 Ic−1 V t Tb−1 Ic−1

and its principal c−1 × c−1 sub-matrix by W j , j = 1,…, b−1. Define a block
diagonal matrix D W j with diagonal elements W j arranged in dictionary order.
Then the cumulative chi-squared statistic and the constants for the chi-squared
approximation are given by

χ∗2τ = t∗ D−1 W j t∗,

κ1 =E χ∗2τ = tr D−1 W j W∗ = b−1 c−1 = df ,

κ2 =V χ∗2τ = 2tr D−1 W j W∗ 2
= 2d2f

There are various variations of max acc. t type test statistics, and some of them are
given later in the examples of this chapter.

14.2 One-Way Experiment with Two-Way
Categorical Responses

14.2.1 General theory

A multinomial distribution M yi ,pijk pi = 1 is assumed at each level of the factor

A: Pr Yijk = yijk, j= 1,…, b; k = 1, …, c = yi ΠjΠk p
yijk
ijk yijk . Therefore, the total

probability function is

Pr Yijk = yijk , i= 1, …, a; j= 1, …, b; k = 1,…, c =Πi yi ΠjΠk p
yijk
ijk yijk
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Employing Plackett’s identification condition we have the likelihood function

L=
Πiyi pyiibc
ΠiΠjΠkyijk

exp j y j βj + k y k γk + i j yi j θi j

+ i k yi k φi k + j k y j k τj k + i j k yi j k ωi j k (14.30)

where it should be noted that pabc has been replaced by pibc and the parameter αi
deleted in (14.8). The definition of the other parameters is the same as in equation
(14.7). In this case the pijk are expressed by the new parameters as

pijk = pibcexp βj + γk + θij +φik + τjk +ωijk

where

pibc = 1 + j exp βj + θij + k exp γk +φik

+ j k exp βj + γk + θij +φik + τj k +ωij k

−1

so that pi = 1. It should be noted that the number of new parameters is a bc−1 and
they are interpreted as follows. In the ith two-way table the interaction between the
factors B and C is expressed as

log
pij k pibc
pij cpibk

, j = 1, …, b−1, k = 1,…, c−1

The hypothesis that the interactions are equivalent for all levels i is expressed as the
null hypothesis

Hω ωi j k = log
pi j k pi bc
pi j cpi bk

− log
paj k pabc
paj cpabk

≡ 0, i = 1,…, a−1, j = 1,…, b−1, k = 1,…, c−1

If the null hypothesisHω is not rejected, we are interested in testing the null hypothesis
of effects of A on B and C by

Hθ θi j = 0, i = 1,…, a−1, j = 1,…, b−1

and Hφ φi k = 0, i = 1,…, a−1, k = 1,…, c−1

assuming Hω. This is the case of Section 14.1.1 (2), and Birch’s test is available in
addition to the likelihood ratio and the goodness-of-fit chi-squared tests. Because
of the similarities of the likelihood function, all the test procedures are found to be
the same as in the previous section and the difference exists only in the interpretation.
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If both hypotheses Hθ and Hφ are rejected, then the independence between factors B
and C is tested by

Hτ τj k = 0, j = 1, …, b−1; k = 1,…, c−1

assuming Hω. If Hτ is not rejected, then the recommended model is

Hω Hτ pijk = pij × pi k

That is, the factors B and C are independent at each level of i but the effects of A on
B and C are different for each i and estimated by

pij =
yij
yi

, pi k =
yi k
yi

Other possible cases are as follows:

Hω Hθ pijk = pi k × a
−1p jk a−1p k (14.31)

Hω Hφ pijk = pij × a
−1p jk a−1p j (14.32)

Hω Hθ Hτ pijk = pi k × a
−1p j (14.33)

Hω Hφ Hτ pijk = pij × a
−1p k (14.34)

Hω Hτ Hφ Hθ pijk = a
−1p j × a

−1p k (14.35)

Models (14.31) and (14.32) are a little strange, since the factor A affects only one of
B or C, while B and C are dependent on each other. Model (14.33) is easy to interpret,
where the factors B and C are independent and the factor A affects only C. Therefore,
the occurrence probability of p j is estimated by the total observations, while pi k is
estimated only by the observation at level i. That is, we have

a−1p j =
y j

y
, pi k =

yi k
yi

Similarly, under Hω Hτ Hφ (14.34) the factors B and C are independent and the
factor A affects only B; the occurrence probabilities are estimated by

pij =
yij
yi

, a−1p k =
y k

y

Finally, under Hω Hτ Hφ Hθ (14.35), the equation

pijk = a
−1p j × a

−1p k

holds. That is, the factors B and C are independent and there is no effect of A on B
and C. The estimates are given by

a−1p j =
y j

y
, a−1p k =

y k

y
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In this section the cell frequencies are estimated by yi pijk , differently from the
y pijk of the previous section. Therefore, we have estimates of the cell frequencies
for the respective models as

Hω Hτ yi pijk = yi ×
yij
yi

×
yi k
yi

=
yij yi k
yi

,

Hω Hθ Hτ yi pijk = yi ×
yi k
yi

y j

y
=
yi ky j

y
,

Hω Hφ Hτ yi pijk = yi ×
yij
yi

y k

y
=
yij y k

y
,

Hω Hτ Hφ Hθ yi pijk = yi ×
y j

y
×
y k

y
=
yi y j y k

y2

As a result, these estimators are equivalent to those obtained in previous sections
under the respective models.

14.2.2 Applications

(1) Application of the cumulative chi-squared statistics. The data of Table 14.2 are
the number of cancer patients cross-classified by age A (four levels, i= 1,…, 4),
metastasis of cancer B (two levels, j = 1, 2), and saturation C (three levels,
k = 1, 2, 3) (Hirotsu, 1992). They are characterized by the natural ordering in age
and saturation. This is the case of A×B×C, but the test statistics are the same as
in the case A×B×C. Assuming a log linear model (14.30), we begin by testing
Hω, the effects of age on metastasis and saturation.

(a) Test of the null hypothesis Hω. This is the case of 14.1.2 (1) (b), with natural
ordering in C instead of B. However, since the factor B is binary, we can also apply
the formula of (a) for χ∗∗∗2ω , taking P∗

b = −21 2, 21 2 and that would be easier.
The expected cell frequencies m(0) under Hω are obtained by the iterative scaling
procedure as in Table 14.3. There is standard software for this, but it is also easy
to calculate.
The conditional variance–covariance matrix of y given the sufficient statistics

yij , yi k,y jk is

Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω (14.36)

from (14.12), where Ω is a diagonal matrix with mijk(0) as its diagonal elements
arranged in dictionary order. The matrix A∗ is determined so as to produce the suffi-
cient statistics. To make it full rank, we employ the same idea which derived equation
(10.49). That is, we express the log linear model under Hω in matrix form as
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Table 14.2 Cancer patients cross-classified by levels of age i, metastasis j, and saturation k.

i= 1 i= 2 i= 3 i= 4

j k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1 9 5 12 10 9 15 6 13 11 8 5 9
2 4 3 5 5 9 16 2 9 18 4 3 9

Total 13 8 17 15 18 31 8 22 29 12 8 18

Table 14.3 Expected cell frequencies under Hω.

i= 1 i= 2 i = 3 i = 4

j k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1 10.02 5.54 10.44 9.70 9.91 14.39 5.08 11.83 13.09 8.20 4.72 9.08
2 2.98 2.46 6.56 5.30 8.09 16.61 2.92 10.17 15.91 3.80 3.28 8.92

Total 13 8 17 15 18 31 8 22 29 12 8 18



log pijk = A∗

μ

α�

β�

γ�

θ�

φ�

τ�

= j X∗
α X∗

β X∗
γ X

∗
θ X

∗
φ X∗

τ

μ

α�

β�

γ�

θ�

φ�

τ�

(14.37)

where α� = α1, α2, α3 , β� = β1 , γ� = γ1, γ2 , θ� = θ11, θ21, θ31 , φ� =
φ11, φ12, φ21, φ22, φ31,φ32 , τ� = τ11, τ12 . Equation (14.37) defines a full rank
coefficient matrix A∗, which should be substituted in (14.36). The calculation is sim-
ple matrix multiplications but too big 24 × 24 to present here. Therefore, we give
only the cumulative statistics

x= P∗
a P∗

b P∗
c y−m 0 =

2 040

3 120

1 247

3 759

−0 400

0 160

and its variance–covariance matrix

V x =V∗∗∗ =

5 201 3 579 2 344 1 604 1 3880 970

3 579 6 786 1 582 3 479 0 970 1 693

2 344 1 582 4 911 3 112 2 403 1 681

1 604 3 479 3 112 8 2541 681 2 933

1 3880 970 2 403 1 681 4 163 2 911

0 970 1 693 1 681 2 933 2 9115 080

(14.38)

by (14.24). It should be noted that the conditional variance (14.36) depends on the
choice of A∗ but V(x) does not depend on it after multiplying P∗

a P∗
b P∗

c . Then

the diagonal matrix D vi j k = diag vi j k is formed by the diagonal elements of
(14.38) and the test statistic is formed as the sum of squares of the standardized accu-
mulated statistics

χ∗∗∗2ω = χ∗∗2ω =
2 0402

5 201
+
3 1202

6 786
+
1 2472

4 911
+
3 7592

8 254
+

−0 400 2

4 163
+
0 1602

5 080
= 4 307
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The constants for the chi-squared approximation are obtained by (14.25) and
(14.26) as

df = E χ∗∗∗2ω = tr D−1 vi j k V∗∗∗ = a−1 b−1 c−1 = 6,

2d2f = 2tr D−1 vi j k V∗∗∗ 2
= 21 972

giving d = 1 831, f = 3 277, and a non-significant p-value 0.266 for χ∗∗∗2ω = 4 307.
Therefore, we proceed to testHθ, the effects of age on metastasis based on yi j assum-
ing Hω.

(b) Test ofHθ assumingHω. This is the pattern of 14.1.2 (2) (b), replacing Hτ byHθ.
We can, however, apply the formula of 14.1.2 (2) (a) for χ∗∗2τ again and it would be
easier. The two-way accumulated statistics are defined by

t∗∗ = T3 T1 t−E t (14.39)

where t is a vector of yi j and it is explicitly t= y11 , y21 , y31 = 26, 34, 30 in
this case. The conditional expectation and covariance of yijk given yi k, y jk are as
follows:

E yijk│yi k, y jk = yi ky jk y k (14.40)

Cov yi1j1k1 , yi2j2k2│yi k, y jk =

yi1 k δi1i2y k −yi2 k y j1k δj1j2y k−y j2k

y2k y k −1
, k1 = k2 = k,

0, otherwise

(14.41)

We define the vector of expectation μθ0 =E y│yi k, y jk and the variance–covariance

matrix Vθ0 =V y│yi k, y jk based on (14.40) and (14.41). They are too big to
present here, but there is no difficulty in the calculation. Then E(t) and V(t) are
calculated as

E t =X∗
θ μθ0 =

21 919

35 935

32 419

and V t =X∗
θ Vθ0X

∗
θ =

7 316 −2 934 −2 570

−2 934 10 584 −4 703

−2 570 −4 703 9 883

.

ANALYSIS OF THREE-WAY CATEGORICAL DATA 367



Therefore we have from (14.39)

t∗∗ = T3 T1 t−E t =

4 081

2 145

−0 273

and the variance–covariance matrix of t∗∗ is obtained as

W∗∗ = T3 T1 V t T3 T1 =

7 316 4 382 1 812

4 382 12 032 4 760

1 812 4 760 7 370

The cumulative chi-squared statistic is obtained by the sum of squares of the standar-
dized elements of t∗∗, and is found to be

χ∗∗2θ =
4 081 2

7 316
+

2 145 2

12 032
+

−0 273 2

7 370
= 2 669

Applying formulae (14.28) and (14.29) for the chi-squared approximation, we obtain

df = 4−1 2−1 = 3

2d2f = 2tr D−1 wj k W∗∗ 2
= 8 138

where D wj k is a diagonal matrix with diagonal elements 7.316, 12.032, 7.370.
Thus, we have d = 1 356 and f = 2 212. The p-value of χ∗∗2θ = 2 669 is 0.30 and not
significant at significance level 0.05.
Similarly we can test Hφ, the effects of age on saturation based on yi k , assuming Hω

conditionally given yij , and y jk. In this case t= y1 1, y1 2,y2 1, y2 2,y3 1, y3 2

= 13, 8, 15, 18, 8, 22 and

t∗∗ = T3 T2 t−E t =

3 270

−2 739

−0 190

0 010

−5 839

5 429

Then, similarly to testingHθ, we obtain χ∗∗2φ = 4 349, d = 1 74, f = 3 44, and the related
p-value 0.284. There is no evidence of the effect of age on saturation.Wemay also test
Hφ by the collapsed two-way table yi k , assuming Hω Hθ. As a conclusion, the
effects of age on metastasis and saturation are not observed.
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Finally, we test the independence between metastasis and saturation throughout age
by the collapsed two-way table y jk given in Table 14.4.
The cumulative chi-squared statistic for the collapsed 2 × 3 table is calculated as

follows:

χ2 1; 2, 3 =
199 33 × 72−15 × 79 2

48 × 151 × 112 × 87
= 3 997,

χ2 1, 2; 3 =
199 65 × 48−39 × 47 2

104 × 95 × 112 × 87
= 3 424,

χ∗2 = 3 585 + 3 424 = 7 421

The constants for the chi-squared approximation are d = 1 29 and f = 1 55. Since 1.29
χ21 55 0 05 = 6 48, the observed value of the cumulative chi-squared is significant at
level 0.05. In conclusion, there is a positive association between metastasis and sat-
uration but the age effect on them is not observed.

(2) Application of max acc. t type statistic to the analysis of the association
between disease and alleles, with particular interest in haplotype analysis. To
analyze the association between disease and allele frequencies at highly polymorphic
loci based on the data as shown in Table l4.5, some statistical tests for a 2 × b con-
tingency table have been employed. Among them, Sham and Curtis (1995) compared
four statistical tests by simulation, including a goodness-of-fit chi-squared test and
multiple comparisons of one cell at a time against the others. For the latter test, Hirotsu
et al. (2001) proposed an exact algorithm called a max one-to-others χ2 test. This test
is a simple modification of max acc. t1 of Section 5.2.3, and obviously appropriate if
there is only one susceptibility allele in the locus. They do not, however, take into
account the natural ordering in the number of CA repeats, whereas an abnormal exten-
sion of CAG repeats has been reported associated with Huntington’s disease. Of
course, differently from CAG repeats, the CA repeats do not correspond to the actual
amino acid arrangement, but still are considered to reflect some indications of the dis-
ease. In consideration of the natural ordering, the max acc. t1 of Section 5.2.3 (2)
would be an appropriate approach. In Hirotsu et al. (2001), a combined test of these
two chi-squares is also proposed when there is no prior information to specify one of

Table 14.4 Table of metastasis and saturation obtained by collapsing age levels.

j k = 1 k = 2 k = 3 Total

1 33 32 47 112
2 15 24 48 87

Total 48 56 95 199
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the alternatives. While the approximate p-values may be obtained easily by Monte
Carlo simulation, it is very important to obtain exact p-values in the context of genome
scans for linkage disequilibrium, where the adjustment for multiplicity of tests
requires us to seek extremely small p-values, not easily estimated by simulation.
The exact p-values of the proposed methods are shown in Table 14.6. Actually, in

the research we made simultaneous analyses for 34 loci on the 19, 20, 21, and 22 chro-
mosomes and it was decided beforehand to apply the combined method with adjust-
ment of the p-values for the number of analyses by Bonferroni inequality. The
obtained p-values multiplied by 34 for the combined test amount only to 0.0038, invit-
ing further research focused on that locus using independent samples.
In contrast, the simultaneous analyses of the two closely linked loci in a chromo-

some have been called a haplotype analysis. As an example, Sham and Curtis
(1995) analyzed the bivariate allele frequencies of DXS548 (192 ~ 206) and
FRAXAC2 (143 ~ 169) as if they were from a 2 × bc two-way table. However, the fre-
quency data are presented in a 2 × b × c contingency table as shown in Table 14.7.
Then it is obvious that we need the analysis of three-way interactions to distinguish
two cases as shown in Table 14.8. In Table 14.8 (1) the probability model
pijk = pij × pi k pi holds, suggesting that the singularities of row 2 and column 3 are
associated with the disease without interaction effects of the row and column on the
disease. In other words, the row and column are conditionally independent given
i= 1 (normal) or 2 (disease). On the contrary, Table 14.8 (2) suggests the interaction
effect pointing out the singularity of the (2, 3) cell associated with the disease, and in
this case the separate analyses of marginal tables collapsing rows or columns are quite

Table 14.6 p-Values of the proposed methods.

Statistics p-Values

Max one-to-others χ2 18.78 (109 vs. others) 0.000059
Max acc. t1 6.59 0.075732
Combined maximal statistic 18.78 (109 vs. others) 0.000113

Table 14.5 Allele frequencies at the D20S95 locus.

97 99 101 103 105 107 109 111 113 115 Total

Schizophrenia 4 30 25 10 17 90 34 37 4 1 252
Normal 5 18 28 6 41 67 5 34 5 5 214

Total 9 48 53 16 58 157 39 71 9 6 466
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Table 14.7 Haplotype allele frequencies at two loci in fragile X and normal
chromosome.

FRAXAC2
DXS548 k
j 1 2 3 4 5 6 7 8 9 10 Total

Fragile X i= 1
1 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0
2 1∗ 3 0 0 9 16 12 0∗ 0∗ 0∗ 41
3 0∗ 5 9 1 11 1 3 0∗ 0∗ 0∗ 30
4 0∗ 0 0∗ 0∗ 0∗ 0∗ 1 0∗ 0∗ 0∗ 1
5 0∗ 0∗ 0∗ 0∗ 0∗ 0 1 0∗ 0∗ 0∗ 1
6 0∗ 1 0∗ 1 9 3 14 0∗ 0∗ 0∗ 28
7 0∗ 0∗ 0∗ 0∗ 1 0∗ 0 0∗ 0∗ 0∗ 1

Total 1 9 9 2 30 20 31 0 0 0 102

Normal i= 2
1 0∗ 0∗ 0∗ 0∗ 0∗ 2∗ 0∗ 0∗ 0∗ 0∗ 2
2 1∗ 7 5 1 17 67 7 4∗ 1∗ 0∗ 110
3 0∗ 4 6 0 3 8 1 0∗ 0∗ 0∗ 22
4 0∗ 1 0∗ 0∗ 0∗ 0∗ 0 0∗ 0∗ 0∗ 1
5 0∗ 0∗ 0∗ 0∗ 0∗ 1 1 0∗ 0∗ 0∗ 2
6 0∗ 2 0∗ 0 3 6 2 0∗ 0∗ 1∗ 14
7 0∗ 0∗ 0∗ 0∗ 0 0∗ 2 0∗ 0∗ 0∗ 2

Total 1 14 11 1 23 84 13 4 1 1 153

Table 14.8 Configuration of pijk (normalizing constant omitted).

Normal i= 1 Disease i= 2

Locus 1 Locus 2 k Locus 1 Locus 2 k

j 1 2 3 4 5 j 1 2 3 4 5

(1) 1 1 1 1 1 1 1 1 1 2 1 1
2 1 1 1 1 1 2 2 2 4 2 2
3 1 1 1 1 1 3 1 1 2 1 1
4 1 1 1 1 1 4 1 1 2 1 1

(2) 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 1 1 4 1 1
3 1 1 1 1 1 3 1 1 1 1 1
4 1 1 1 1 1 4 1 1 1 1 1



misleading. The existence of a three-way interaction suggests more strongly the poten-
tial candidate gene associated with the disease affecting simultaneously the bivariate
allele frequencies. We therefore recommend the analysis of the three-way interaction
first for the haplotype analysis. In particular, we proposemax one-to-others χ2 and two-
way max acc. t1.

(a) Two-way max acc. t1 test. We assume a log linear model

logpijk = μ+ αi + βj + γk + θij +φik + τjk +ωijk

and test the null hypothesis Hω against the alternative hypothesis Hω1:

ω1jk −ω1j−1k −ω1jk−1 +ω1j−1k−1 ≥ 0, j= 2,…, b; k = 2, …, c,

or ω1jk −ω1j−1k −ω1jk−1 +ω1j−1k−1 ≤ 0, j= 2, …, b; k = 2,…, c,

with at least one inequality strong

(14.42)

It is easy to see that Hω1 implies that the relative occurrence probability for disease
against normal is increasing or decreasing as j and k are increasing. Then, by the com-
plete class Lemma 6.2, the appropriate test should be increasing in every

Y∗∗
1jk−Y

∗∗
1jk , j= 1,…, b−1, k = 1, …, c−1, where Y∗∗

1jk =
j
l= 1

k
m= 1y1lm is the two-

way accumulated statistic up to j and k, Y∗∗
1jk the MLE of the accumulated cell fre-

quency under Hω, and a function of the two-way marginal totals A∗ y. Then the most
natural test would be based on the maximum of

χ∗∗2jk =
Y∗∗
1jk − Y∗∗

1jk

2

Vjk
, j= 1,…, b−1; k = 1,…, c−1

with Vjk the appropriate sum of elements of the variance matrix (14.12), where Ω is a
diagonal matrix with yijk =mijk 0 =mijk 0 as diagonal elements arranged in diction-

ary order. The Vjk is explicitly given by ljk Ω−ΩA∗ A∗ Ω−1A∗ −1
A∗ Ω ljk, with

ljk = l1 2 lj b lk c , where li(a) denotes an a-dimensional column vector with
the first i elements unity and the rest zero.
For the exact algorithm of the p-value, define the conditional probability

Fk Y∗∗
1k = Pr χ∗∗2lm < c, l= 1, …, b−1;m= 1,…, k Y∗∗

1k , A
� y (14.43)
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where Y∗∗
1k = Y∗∗

11k,…,Y∗∗
1b−1k . Then we have a recursion formula

Fk + 1 Y∗∗
1k + 1 = Y∗∗

1k
Fk Y∗∗

1k × fk Y∗∗
1k Y

∗∗
1k + 1, A

� y (14.44)

where the summation is with respect to Y∗∗
1k . The conditional distribution

fk Y∗∗
1k Y

∗∗
1k + 1, A

� y is obtained similarly to the formula (14.17), just by noting that
yijk is expressed by the doubly accumulated statistics as

yijk = Y
∗∗
ijk −Y

∗∗
ij−1k −Y

∗∗
ijk−1 + Y

∗∗
ij−1k−1

That is, replacing yijk + 1 = Yijk + 1−Yijk of (14.17) by yijk + 1 = Y∗∗
ijk + 1−Y

∗∗
ij−1k + 1−Y

∗∗
ijk +

Y∗∗
ij−1k. In executing the summation with respect to Y∗∗

1jk, j = 1, …, b−1, in (14.44), it
should be noted that it is defined only in the region

L Y∗∗
1jk + 1,Y

∗∗
1j+ 1k,Y

∗∗
1j+ 1k + 1,y jk ≤ Y∗∗

1jk ≤U Y∗∗
1jk + 1,Y

∗∗
1j+ 1k,Y

∗∗
1j+ 1k + 1,y jk ,

L=max 0,Y∗∗
1j+ 1k − Y∗∗

1j+ 1k + 1 + Y
∗∗
1jk + 1,Y

∗∗
1j+ 1k −

k
m = 1y j+ 1m,Y∗∗

1jk + 1−
j
l= 1y lk + 1 ,

U =min Y∗∗
1j+ 1k,Y

∗∗
1jk + 1,

j
l= 1

k
m = 1y lm,Y∗∗

1jk + 1 + Y
∗∗
1j+ 1k −Y

∗∗
1j+ 1k + 1 + y j+ 1k + 1

L and U are obtained from Table 14.9, which is essentially the same as Table 14.1 so
that every entry of the table expressed by Y∗∗

1jk should be positive.

(b) Max one-to-others chi-squared test. We assume a log linear model

logpijk = μ + αi + βj + γk + θij +φik + τjk +ωijk

and test the null hypothesis Hω against the alternative hypothesis

Hω2 ωijk = 0 for all but one cell i, j, k

The test statistic should naturally be

max χ2jk, j= 1, …, b; k = 1,…, c

where

χ2jk = y1jk −y1jk
2
v1jk

= y2jk −y2jk
2
v2jk

and vijk is a conditional variance of yijk −yijk given as the diagonal element of (14.12).
Then, expressing y1jk by Y∗∗

1jk −Y
∗∗
1j−1k −Y

∗∗
1jk−1 +Y

∗∗
1j−1k−1, the recursion formula for max

χ∗∗2jk can be applied as it is for max χ2jk just by replacing χ∗∗2lm by χ2lm based on
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Table 14.9 Cell frequencies of pooled 2 × 2 × 2 table expressed in the function of Y∗∗
1jk.

Columns

Rows 1 k k + 1 Total

i= 1
1,…, j Y∗∗

1jk Y∗∗
1jk + 1−Y

∗∗
1jk Y∗∗

1jk + 1

j+ 1 Y∗∗
1j+ 1k −Y

∗∗
1jk Y∗∗

1j+ 1k + 1−Y
∗∗
1j+ 1k −Y

∗∗
1jk + 1 +Y

∗∗
1jk Y∗∗

1j+ 1k + 1−Y
∗∗
1jk + 1

Total Y∗∗
1j+ 1k Y∗∗

1j+ 1k + 1−Y
∗∗
1j+ 1k Y∗∗

1j+ 1k + 1

i= 2
1,…, j j

l= 1
k
m= 1y lm−Y∗∗

1jk
j
l = 1y lk + 1− Y∗∗

1jk + 1 +Y
∗∗
1jk

j
l= 1

k + 1
m = 1y lm−Y∗∗

1jk + 1

j+ 1 k
m= 1y j + 1m−Y∗∗

1j+ 1k +Y
∗∗
1jk

y j+ 1k + 1−Y∗∗
1j+ 1k + 1 + Y

∗∗
1j+ 1k + Y

∗∗
1jk + 1−Y

∗∗
1jk

k + 1
m = 1y j+ 1m−Y∗∗

1j+ 1k + 1 +Y
∗∗
1jk + 1

Total j+ 1
l= 1

k
m= 1y lm−Y∗∗

1j+ 1k
j + 1
l = 1y lk + 1− Y∗∗

1j+ 1k + 1 + Y
∗∗
1j+ 1k

j+ 1
l= 1

k + 1
m = 1y lm−Y∗∗

1j+ 1k + 1



Y∗∗
1lm−Y

∗∗
1l−1m−Y

∗∗
1lm−1 +Y

∗∗
1l−1m−1, l = 1, …, b;m = 1, …, k in (14.43). The results

shown in Table 14.10 suggest that there is no three-way interaction and the separate
association analyses for the two loci, FRAXAC2 and DXS548, will be accepted.
Then, in the locus DXS548 a highly significant chi-squared component appears in
each of the two test statistics of the previous section.

In executing the analysis, it should be noted that the three-way table, table 14.7, is
very sparse, obliging some of the yijk to be fixed when the two-way marginal totals
yij , yi k,y jk are fixed. For example, y11k, k = 1,…, 10 must be all zeros, since y11 = 0,
and y21kmust be 0 for k = 1, 2, 3, 4, 5, 7, 8, 9, 10, since y 1k = 0 except at k = 6. Then,
y216 must be 2 since y 16 = 2 and y116 is already known to be zero. By these consid-
erations it is known that all the cells marked ∗ in Table 14.7 are fixed in this par-
ticular data set. Then, this information must be included in calculating the
variance matrix of (14.12). This can be done either by adding the column to A∗,
which is composed of zero elements except for the one unit element corresponding
to the fixed cell, or equivalently by eliminating those fixed cells in advance. Refer to
Hirotsu et al. (2001) for more details.

14.3 Two-Way Experiment with One-Way
Categorical Responses

14.3.1 General theory

Amultinomial distributionM yij ,pijk pij = 1 is assumed at each combination of fac-

tors A and B: Pr Yijk = yijk, k = 1,…, c = yij Πk p
yijk
ijk yijk . Therefore, the total

probability function is

Pr Yijk = yijk, i= 1,…, a, j = 1, …, b; k = 1,…, c =ΠiΠj yij Πk p
yijk
ijk yijk

Assuming a log linear model and employing Plackett’s identification condition, we
again have the likelihood function

Table 14.10 The values of statistics and their p-values.

Statistics p-values

Max one-to-others χ2 4.799 (7, 7) 0.4878
Max acc. t1 4.844 (1–6, 1–5) 0.3747
Combined maximal statistic 4.844 (1–6, 1–5) 0.5344
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L =
ΠiΠjyij p

yij
ijc

ΠiΠjΠkyijk
exp k y k γk + i k yi k φi k + j k y j k τj k + i j k yi j k ωi j k

where it should be noted that pibc is replaced by pijc and the parameters not related to
suffix k are deleted in (14.30). In this case, the pijk’s are expressed by the new para-
meters as

pijk = pijcexp γk +φik + τjk +ωijk

where pijc = 1+ k exp γk +φik + τjk +ωijk
−1
, so that pij = 1. It should be noted

that the number of new parameters is ab c−1 , and they are interpreted as follows.
We are basically interested in comparing abmultinomial distributions. This reduces

to testing whether the functions log pijk pijc are equivalent or not for all
combinations of (i, j). Then, the interaction between the two factors A and B is
expressed by

log
pi j k
pi j c

− log
pi bk
pi bc

− log
paj k
paj c

+ log
pabk
pabc

=ωi j k

If it does not exist, namely under the null hypothesisHω ωi j k = 0, the main effects
of A on C are homogeneous, irrespective of the level j of factor B and expressed by

log
pi 1k
pi 1c

− log
pa1k
pa1c

= = log
pi bk
pi bc

− log
pabk
pabc

=φi k

Similarly, the main effects of B on C are homogeneous, irrespective of the level i of
factor A and expressed by

log
p1j k
p1j c

− log
p1bk
p1bc

= = log
paj k
paj c

− log
pabk
pabc

= τj k

Again, by the similarity of the likelihood function, the test of Hω ωi j k = 0, the test
of Hτ τj k = 0 assuming Hω, and the test of Hφ φi k = 0 assuming Hω Hτ are the
same as given in Section 14.1. The interpretations of the respective models are as
follows.
Under Hω Hτ the equation

pijk = b
−1pi k

holds. That is, for the categorical response C, only the main effect of A exists. Its esti-
mate is given by

b−1pi k = yi k yi
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Under Hω Hτ Hφ the equation

pijk = ab −1p k

holds. That is, there is no effect of A and B on C, and the occurrence probability is
estimated by

ab −1p k = y k y

In this section the cell frequencies are estimated by yij pijk . For the respective mod-
els, they are

Hω Hτ mijk = yij pijk = yij ×
yi k
yi

Hω Hτ Hφ mijk = yij pijk = yij × y k y

These are formally equivalent to those obtained in previous sections.
The modeling in this section is equivalent to that of the logit linear model if the

factor C takes two levels with pij1 + pij2 = 1. In this case we can put

pij1 = pij, pij2 = 1−pij

and from (14.4) we have

log
pij

1−pij
= logpij1− logpij2

= γ1 +φi1 + τj1 +ωij1

(14.45)

We can delete the common suffix 1 in (14.45) and then the equation is nothing but a
logit two-way ANOVA model. Further, if b = 2 (so in the case of a × 2× 2 table),

log
pi11
pi12

− log
pi21
pi22

= log
pi11pi22
pi12pi21

= τ11 +ωi11

is the odds ratio of the ith 2 × 2 table andHω is nothing but the hypothesis of the homo-
geneity of the odds ratios through i= 1,…, a. This example is given in Section 14.3.2
(2) (a) and (b).

14.3.2 Applications

(1) Reanalysis of Table 5.10 from a clinical trial. The data of Table 5.10 are from a
typical phase III clinical trial comparing a new drug against an active control in the
infectious disease of respiratory organs. The effectiveness of a drug in this field is very
sensitive to the existence of pseudomonas, and the results are classified according to
its detected case or not. Therefore it is necessary first to check the interaction of pseu-
domonas vs. drug on the effectiveness by testing the null hypothesisHω. This is essen-
tially the same approach to testing the constancy of the differences of efficacy rates
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between two drugs over the two classes of pseudomonas detected or not in
Section 5.3.4, but we are taking here an approach based on the multiplicative model.
IfHω is not rejected, we can proceed to testing the overall effects of drugs through the
two classes, where we still need to take care of Simpson’s paradox. Classically, the
Breslow-Day test has been employed for the interaction test, but it is asymptotically
equivalent to the likelihood ratio test of Section 14.1.1 (1) (b). If Hω is not rejected,
Mantel-Haenszel’s test is well known for testing the overall effects of drugs in this
field. However, this is nothing but Birch’s test (14.20) of Section 14.1.1 (2) (a),
and is again asymptotically equivalent to the likelihood ratio test of (b). We therefore
give only the likelihood ratio test approach here.

(a) Test of the null hypothesisHω. First we need to calculate the MLE mijk 0 under
Hω by an iterative scaling procedure as explained in Section 14.1.1 (1) (a), and obtained
as in Table 14.11. It should be noted that all the two-way marginal totals are retained.
By insertingmijk 0 in (14.15) we get Sω = 1 243. As a chi-squared variable with df 1,

this is not significant at level 0.05.
Before testing the drug effects τjk, we test the null hypotheses Hθ andHφ. The test of

Hθ is to verify the balance of the pseudomonas detected case or not between the test and
control drugs. The test of Hφ is to verify if the pseudomonas affects the effectiveness
through both drugs.

(b) Test of the null hypothesis Hθ assuming Hω. This is the case of 14.1.1 (2) (b),
replacing Hτ by Hθ. The test statistic is given by (14.21) as

Sθ = 2 i j k yijklogmijk 0 −yijklogmijk 0, 0 (14.46)

Table 14.11 Maximum likelihood estimates mijk 0 under Hω.

Pseudomonas Drug Effectiveness

i j k = 1 − k = 2 + + Total

1 (Detected) 1 (Active) 16.3692 19.6039 36
2 (Control) 11.6039 11.3961 23

Total 28 31 59

2 (No) 1 (Active) 5.6039 21.3961 27
2 (Control) 10.3961 32.6039 43

Total 16 54 70

Total 1 (Active) 22 41 63
2 (Control) 22 44 66
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Since the first term of (14.46) has already been calculated for Sω, only the second term
needs to be calculated. In this case the MLE under Hω Hθ is given by

mijk 0, 0 = yi ky jk y k (14.47)

Substituting (14.47) in (14.46), the test statistic is obtained as Sθ = 6 719. This value is
highly significant as the chi-squared variable with df 1. That is, the pseudomonas
detected case is more often seen in the test drug than in the control.

(c) Test of the null hypothesis Hφ assuming Hω. In this case the MLE under
Hω Hφ is given by

mijk 0, 0 = yij y jk y j (14.48)

Substituting (14.48) in (14.46), the test statistic is obtained as Sφ = 8 888 with the asso-
ciated p -value 0.003 as the chi-squared variable with df 1. That is, the pseudomonas
detected case shows a lower success rate.

Since both of the null hypotheses Hθ and Hφ are rejected, this is a possible case of
Simpson’s paradox. Therefore, we test the drug effects Hτ assuming only Hω.

(d) Test of the null hypothesis Hτ assuming Hω. This is exactly the case of
Section 14.1.1 (2) (b), and Sτ = 0 247 is obtained. Its p-value is by no means signif-
icant. In conclusion, there is no significant difference between the test and control
drugs after adjusting for the effects of pseudomonas. This result is similar to the result
of Example 5.12.

(2) Test of a trend in odds ratios of 2 × 2 × 2 table

(a) Exact analysis. The data of Table 14.12 are from a case–control study on breast
cancer caused by hormone replacement therapy (HRT) (Sala et al., 2000). Long-term
hormone therapy for menopausal disorders has been pointed out to raise the risk of
breast cancer. Therefore, Sala et al. carried out a case–control study on the
effects of duration of therapy and menopausal status at the start of therapy, where
high and low-risk mammographic patterns are taken as case and control,
respectively.
For the data we assume a multivariate generalized hypergeometric distribution

Pr Yijk = yijk yij , yi k,y jk =
1

C ω

exp i yi 11ωi 11

ΠiΠjΠkyijk
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which is a special case of (14.9) with b = c = 2. Then we are interested in verifying an
increased risk of cancer for the case, according to the duration of therapy. Therefore,
we set a one-sided monotone hypothesis

Hω ω111 ≤ ≤ωa−111 (14.49)

This can be dealt with as a special case of (14.42), since the second equation is equiv-
alent to ω111 ≤ ≤ω11c−1 when a= b = 2 and coincides with the situation of this
example. Therefore, an exact one-sided test is available based on Y∗

i11−Y
∗
i11, where

Y∗
i11 is an accumulated statistic with respect to suffix i. The exact p-value is 0.05

one-sided, suggesting an increased risk of cancer according to the duration of HRT
with the case starting therapy before menopause.

The complexity of calculation is almost the same with max acc. t1 for the binomial
data in Chapter 7, except for the range of variables, which is determined with the aid of
Table 14.1. Ohta et al. (2003) developed a method specific to an a× 2 × 2 table, and
made detailed power comparisons with the restricted likelihood test approach of El
Barmi (1997). The powers are rather similar, but the method based on maximal accu-
mulated statistics is much easier to handle. The exact algorithms for the power and
also the confidence region of a change-point are also easily obtained by applying
the methods of Chapter 8. Thus, an ordered a× 2 × 2 table is an important special case
of example in Section 14.2.2 (2) (a).

(b) Useful normal approximation for large data. The data of Table 14.13 are from
Ashford and Sowden (1970), and were used by El Barmi (1997) to illustrate the
restricted maximum likelihood approach to the trend test of the odds ratios. For the
data, we are interested in the effects of age on breathlessness and wheezing. Therefore,
this is an example of Section 14.2 but again the one-sided monotone hypothesis
(14.49) is of interest, similarly to part (a) of this section. However, an exact test is
very time-consuming, since each entry is a little too large in Table 14.13. On the con-
trary, a very nice normal approximation is available in this case. First, the conditional

Table 14.12 Odds ratio for high-risk mammographic patterns according to HRT use
starting time within HRT duration categories.

Duration of therapy (yr) Case–control Status at start of therapy

i j k = 1 before k = 2 (after) Odds ratio

1 < 1 1 (Case) 8 5 1.07
2 (Control) 9 6

2 1 4 1 (Case) 22 20 1.70
2 (Control) 11 17

3 5 ≤ 1 (Case) 18 11 9.82
2 (Control) 2 12
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expectation of Y∗
i11−Y

∗
i11 given all the two-way marginal totals is zero, since the MLE

Y∗
i11 under Hω0 coincides with the conditional expectation of Y∗

i11. Usually, the calcu-
lation of the conditional variance based on (14.12) is a little complicated. However, in
this case an explicit form of it is obtained as

Cov Y∗
i11,Y

∗
i 11 =MiM

∗
i Ma for i ≤ i

where Mi =
i
l= 1 m−1

l11 0 +m−1
l12 0 +m−1

l21 0 +m−1
l21 0

−1
,

M∗
i =

a
l= i+ 1 m−1

l11 0 +m−1
l12 0 +m−1

l21 0 +m−1
l21 0

−1

and the correlation matrix of Y∗
i11 for i= 1,…,a−1 is exactly in the form of (6.28) for

max acc. t1 with Ni =Mi andN∗
i =M

∗
i . Therefore, an algorithm for max acc. t1 can be

applied to the standardized statistic Y∗
i11−Y

∗
i11 M1 2

i as it is. Thus, we obtain the p-
value 0.00015, which is almost the same as obtained by El Barmi. Agresti (2012) also
discuss some ordinal effects of age on breathlessness and wheezing.

Table 14.13 Coal miners classified by breathlessness, wheezing, and age.

Age Breathlessness
Wheeze

i j k = 1 Yes k = 2 (No)

1 (20–24) 1 (Yes) 9 7
2 (No) 95 1841

2 (25–29) 1 (Yes) 23 9
2 (No) 105 1654

3 (30–34) 1 (Yes) 54 19
2 (No) 177 1863

4 (35–39) 1 (Yes) 121 48
2 (No) 257 2357

5 (40–44) 1 (Yes) 169 54
2 (No) 273 1778

6 (45–49) 1 (Yes) 269 88
2 (No) 324 1712

7 (50–54) 1 (Yes) 404 117
2 (No) 245 1324

8 (55–59) 1 (Yes) 406 152
2 (No) 225 967

9 (60–64) 1 (Yes) 372 106
2 (No) 132 526
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15

Design and Analysis of
Experiments by Orthogonal
Arrays

In the early stage of experiments in a factory it is usual to have to consider many fac-
tors simultaneously. It is, however, impossible to perform a multi-way factorial exper-
iment because of its size. It is also unnecessary since higher-order interaction effects
are usually small compared with main and two-way interaction effects, and also dif-
ficult to interpret even if they exist. It should therefore be better to consider it as a sort
of noise at first. Under these circumstances, an orthogonal array is often employed in a
factory to collect the necessary information quickly and efficiently.

15.1 Experiments by Orthogonal Array

15.1.1 Orthogonal array

An experiment was planned for seven factors, each with two levels, as shown in
Table 15.1. Then, every row of Table 15.2 corresponds to an experiment of the total
n = 16 experiments for seven factors. The entries ± 1 of the table imply the level of
factors; in experiment #1, the levels of all seven factors are set at 1, for example.
If we employ all combinations of the seven factors, that is if we take a seven-way

layout, then the number of experiments should be 27 without replication. In contrast,
the experiments in Table 15.2 are composed of 24 experiments and called 27−3 or

Advanced Analysis of Variance, First Edition. Chihiro Hirotsu.
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one-eighth experiment. The statistical model of this experiment can be expressed in
linear form as

y=

y1

y2

y16

=

μ+ α1 + β1 + θ1 + δ1 + ϵ1 +φ1 + γ1 + e1

μ+ α1 + β1 + θ1 + δ2 + ϵ2 +φ2 + γ2 + e2

μ + α2 + β2 + θ2 + δ1 + ϵ1 +φ2 + γ1 + e16

(15.1)

Table 15.1 Factors for improving the fixing time of special aluminum printing.

Factor Level 1 Level 2

A: Concentration of caustic soda 5.0 kg/m2 6.0 kg/m2

B: Temperature of caustic soda 75 C 80 C
C: Time of caustic soda 30 s 40 s
D: Concentration of nitric acid 2.0 kg/m2 3.0 kg/m2

E: Material for printing roller hard gum soft gum
F: Amount of ink large small
G: Drying temperature 170 C 180 C

Table 15.2 Design of 16 experiments.

Experiment # A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 −1 −1 −1 −1
3 1 1 −1 1 −1 1 −1
4 1 1 −1 −1 1 −1 1
5 1 −1 1 −1 1 1 −1
6 1 −1 1 1 −1 −1 1
7 1 −1 −1 −1 −1 1 1
8 1 −1 −1 1 1 −1 −1
9 −1 1 1 1 1 1 −1
10 −1 1 1 −1 −1 −1 1
11 −1 1 −1 1 −1 1 1
12 −1 1 −1 −1 1 −1 −1
13 −1 −1 1 −1 1 1 1
14 −1 −1 1 1 −1 −1 −1
15 −1 −1 −1 −1 −1 1 −1
16 −1 −1 −1 1 1 −1 1
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Then, a standard linear statistical inference can be applied to estimate the main effects
of seven factors and the variance σ2of the error ei. Equivalently, we can employ a lin-
ear model taking the entries ± 1 of Table 15.2 as coefficients:

y=

y1

y2

y16

=

μ + α+ β + θ + δ + ϵ +φ+ γ + e1

μ + α+ β + θ−δ−ϵ−φ−γ + e2

μ−α−β−θ + δ+ ε−φ+ γ + e16

=Xϑ,

where ϑ= μ, α, β, θ, δ, ϵ, φ,γ is an unknown parameter vector. This is equivalent
to imposing identification conditions on the parameters in (15.1) like
α1 + α2 = 0, β1 + β2 = 0, and so on. Then, the design matrix X is obviously orthogonal
and the estimator

ϑ= X X −1X y= 16−1X y

is obtained at once. Each row of X y represents the difference between the sums of yi
corresponding to level 1 and 2, respectively. The degrees of freedom for treatment
effects are 1 × 7 = 7, and therefore the degrees of freedom for the error are
16−7−1 = 8. If we employ the 27 experiments, the degrees of freedom amount to
128−1 = 127 and should be too large for the necessary estimation problem. If we need
to estimate all the interaction effects, the required degrees of freedom are exactly

7

1
+

7

2
+ +

7

7
= 27−1

However, as stated first, the three- and higher-way interactions are usually small and
better to be neglected, at least at an early stage of experiments. This is called the spar-
sity principle.
In the design of Table 15.2 there are still some degrees of freedom for two-way

interaction effects. The contrast to extract the interaction effects is obtained by the
products of signs of parent factors in each experiment. The contrast for the interaction
(αβ) is, for example, obtained as (1, 1, 1, 1, −1, −1, −1, −1, −1, −1, −1, −1, 1, 1, 1, 1) by
the product of the signs of columns A and B. This vector is orthogonal to every column
of X, and therefore the interaction (αβ) is estimable.
Alternatively, the contrast for interaction (βφ) is (1, −1, 1, −1, −1, 1, −1, 1, 1, −1, 1,

−1, −1, 1, −1, 1) by the products of the signs of columns B and F, which coincides with
the column of D. Namely, the effects of D and B×F are confounded and cannot be
estimated separately. Therefore, the design given in Table 15.2 is inappropriate for
estimating interaction (βφ).
In the case of n = 24 = 16 there are 15 orthogonal vectors composed of ± 1, which

are shown as columns of Table 15.3. This table is called an orthogonal array and
expressed as L16(2

15), where L is the initial of the Latin square. For two-level
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Table 15.3 Orthogonal array L16(2
15).

Column number

Row number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Data

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5.9
2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 8.2
3 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 5.7
4 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 4.7
5 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 5.0
6 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 3.3
7 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 3.7
8 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 5.9
9 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 4.9

10 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 4.5
11 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 4.6
12 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1 10.7
13 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 4.4
14 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 8.5
15 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 2.1
16 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1.0

Factor A B A C B F F D A E G
× × × ×
B C G D



experiments, the orthogonal arrays L8(2
7), L32(2

31), and L64(2
63) are employed very

often in the factories. There are also orthogonal arrays such as L9(3
4), L27(3

13), and
L81(3

40) for three-level experiments (Taguchi, 1962), which are omitted here.
The design of Table 15.2 allocates factors A ~ G to columns 1, 2, 4, 10, 12, 8, 15 of

Table 15.3. In choosing the allocation, it is necessary to take care that the expected
interaction effects are not confounded with the main effects. To see the pattern of con-
founding, Table 15.4 is useful. It suggests, for example, that the interaction between
column 2 (B) and 8 (F) appears at column 10, and thus the effects of B×F are con-
founded with the main effect D.
In the aluminum experiment of Table 15.1, the experimenter wished to evaluate the

interaction A×B, B×C, A×D, and F ×G. In L16(2
15) there are still eight degrees of

freedom left, after taking seven degrees of freedom for the main effects. Therefore, it
still seems possible to estimate the four 2 by 2 interaction effects of interest, each with
df 1. It seems very complicated to find such a design by trial and error referring to
Table 15.4. However, with the aid of an interaction diagram we can obtain such a
design very easily.

15.1.2 Planning experiments by interaction diagram

Example 15.1. Planning an experiment for seven factors of Table 15.1 with
interest in the two-way interactionsA×B, B×C, A×D, and F×G. The required
degrees of freedom for the factors of interest are 1 × 7 for main effects and 1 × 4 for
interaction effects, adding to 11. Therefore, the first choice of the orthogonal array will

Table 15.4 Column number where the interaction of two specified columns appears.

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ∗ 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 ∗ 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 ∗ 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 ∗ 1 2 3 12 13 14 15 8 9 10 11
5 4 7 6 1 ∗ 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 ∗ 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 ∗ 15 14 13 12 11 10 9 8
8 9 10 11 12 13 14 15 ∗ 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14 1 ∗ 3 2 5 4 7 6
10 11 8 9 14 15 12 13 2 3 ∗ 1 6 7 4 5
11 10 9 8 15 14 13 12 3 2 1 ∗ 7 6 5 4
12 13 14 15 8 9 10 11 4 5 6 7 ∗ 1 2 3
13 12 15 14 9 8 11 10 5 4 7 6 1 ∗ 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 3 ∗ 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ∗
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be L16(2
15) with 15 degrees of freedom for factors. The required pattern of the inter-

action diagram is expressed in Fig. 15.1, whose meaning is self-explanatory. There are
six patterns of such diagram available for L16(2

15), as shown in Fig. 15.2
(Taguchi, 1962).
Then, the diagram of Fig. 15.1 can be obtained as part of diagram (2) of Fig. 15.2, as

shown in Fig. 15.3. This is nothing but the allocation of Table 15.3 and the rest of the
columns (5, 9, 13, 14) are used for estimating errors.

A F

D

CB

G E

Figure 15.1 The required interaction diagram.
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Figure 15.2 The interaction diagrams for L16(2
15).
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Figure 15.3 The required pattern taken on Fig. 15.2 (2).
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The interaction diagram Fig. 15.2 (3) can also be applied as shown in Fig. 15.4,
while Fig. 15.2 (6) is not useful for this problem.
Finally, in executing the experimentsby the allocationofTable 15.3, all 16 experiments

are randomized. Further, the two levels of each factor are assigned randomly to ± 1.

15.1.3 Analysis of experiments from an orthogonal array

The statistical model for the experiments of Table 15.3 is expressed as

y=

y1

y2

y16

=

μ + α+ β + θ + δ+ ϵ +φ+ γ + αβ + βθ + φγ + αδ + e1

μ+ α+ β + θ−δ−ϵ−φ−γ + αβ + βθ + φγ − αδ + e2

μ−α−β−θ + δ+ ε−φ+ γ + αβ + βθ − φγ − αδ + e16

(15.2)

Then the standard analysis of a linear statistical model can be applied. In contrast,
some particular formulae for the two-level orthogonal array are also available. Obvi-
ously the sum of squares of each factor is obtained from the allocated columns as

S= 1yi− −1yi
2
n,

where n is the number of experiments, and 1yi and −1yi are the sum of data cor-
responding to the sign 1 or −1 of the allocated column, respectively. The residual sum
of squares is obtained by subtracting the sum of squares of factors from the total sum
of squares ST. It is obtained also from the columns not assigned to the factors. Of
course, ST coincides with the sum of squares of all n−1 columns.

Example 15.2. Analysis of experiments of Table 15.3 from Moriguti (1989).
The analysis of variance table is obtained as Table 15.5. The calculations of the sums
of squares for the factors are shown in the table. The total sum of squares is obtained as

7 1 13 12

93

A
2 10 8

D E
4

15

G
11

14

5
F

CB

6

Figure 15.4 The required pattern taken on Fig. 15.2 (3).
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Table 15.5 Analysis of variance table for the aluminum experiment.

Factor Column Σ1 Σ−1 Σ1−Σ−1 Square S df Unbiased variance F

A 1 42.4 40.7 1.7 2.89 0.18 1 0.18 0.16
B 2 49.2 33.9 15.3 234.09 14.63 1 14.63 13.3∗

C 4 44.7 38.4 6.3 39.69 2.48 1 2.48 2.2
D 10 39.8 43.3 −3.5 12.25 0.77 1 0.77 0.7
E 12 42.5 40.6 1.9 3.61 0.23 1 0.23 0.2
F 8 36.3 46.8 −10.5 110.25 6.89 1 6.89 6.2
G 15 32.1 51.0 −18.9 357.21 22.33 1 22.33 20.2∗

A×B 3 40.5 42.6 −2.1 4.41 0.28 1 0.28 0.25
B×C 6 36.2 46.9 −10.7 114.49 7.16 1 7.16 6.5
A×D 11 42.5 40.6 1.9 3.61 0.23 1 0.23 0.2
F ×G 7 51.9 31.2 20.7 428.49 26.78 1 26.78 24.3∗∗

Total 81.96 11
Error (5 9 13 14) Se = 4.39 4 σ2 = 1.10

Total ST = 86.35 15



ST = iy
2
i −y

2 n= 517 95−83 12 16 = 86 35,

with df 15, which is the sum of squares for all 15 columns. Then, the sum of squares
for the error is

Se = 86 35−81 96 = 4 39

with df 15−11 = 4 and the unbiased variance of error is

σ2 = 4 39 4 = 1 10

The F-ratios are obtained by dividing the unbiased variance of factors by that of the
error. By Table 15.5, the factors B,G, and F ×G are statistically significant. Then, the
proposed model is

yijkl = μ + βi +φj + γk + φγ jk + eijkl (15.3)

recovering the parent factor F. This is a model of a three-way layout with repetitions
and one two-way interaction F ×G. The factor B has no interaction with the other fac-
tors and can be analyzed separately. The effect of B is estimated by

β1−β2 = 49 2 8−33 9 8 = 1 91

and its variance is estimated by

1
8
+
1
8

σ2 = 0 275

Then, the confidence interval with confidence coefficient 0.95 is obtained as

β1−β2 1 91 ± 0 2751 2t4 0 05 2 = 1 91 ± 1 46,

and the suggested level will be B2 since the shorter time is preferable.
Since an interaction is observed between factors F and G, we are interested in com-

paring four combinations FG 11 FG 22. The sum of squares for F and G is
obtained as the sum of squares of the columns 8, 15, and 7, amounting to 56.00.
The averages of those four combinations have already been given in Fig. 1.1. It is seen
that the combination (FG)22 shows a high response against the others. Actually, the
contribution of the contrast −1, −1, −1, 1 is

y 22−3
−1 y 11 + y 12 + y 21

2

1 + 3−2 × 3 × 4−1 = 52 52

and explains 94% of the total SFG = 6 89 + 22 33 + 26 78 = 56 00. This contrast is sig-
nificant almost at level 0.01 by Scheffé type multiple comparisons. Among the other
combinations, the first choice will be (FG)21.
It is interesting to estimate the expected mean for the suggested levels of B2, F2, and

G1. It is obtained by a standard analysis of the linear model (15.3), but more simply it
is obtained as
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μ221 = μ+ β2 +φ2 + γ1 + φγ 21

= μ+ β2 + μ+φ2 + γ1 + φγ 21 −μ

= 33 9 8 + 13 5 4−83 1 16 = 2 42 s

(15.4)

The meaning of calculation of (15.4) is self-explanatory. There are two formulae for
the variance of the estimator (15.4). Both formulae give the effective repetition num-
ber ne to obtain the variance of (15.4) in the form of σ2/ne.
Ina’s formula:

ne =
Total number of experiments

Total number of degrees of freedom for factors including a general mean

=
16

1 + 1 + 1 + 1 + 1
=
16
5

= 3 2

Taguchi’s formula:

ne = Sum of inverses of the number of repetitions of terms in 15 4 −1

=
1
8
+
1
4
−

1
16

−1

=
2 + 4−1

16

−1

=
16
5

= 3 2

It should be noted that the negative sign in the estimating equation (15.4) corresponds
to the minus in the summation in Taguchi’s formula. Finally, the confidence interval
with confidence coefficient 0.95 for μ221 is obtained as

μ221 2 42 ± 1 10 3 2t4 0 025

= 2 42 ± 1 63
(15.5)

In Example 15.2 we reached a preferable result (15.5) for the selected factors
(BFG)221. However, it should be noted that experiments by orthogonal array are usu-
ally performed to screen out the abundant possible factors suggested by the workers
actively engaged in the production process, and to find a few promising factors to
improve the quality of the products. Therefore, the analytical result inevitably suffers
from a large selection bias. There is a simulation result of testing the large observed
sum of squares by the small observed sum of squares in the L16(2

15) experiment with
no real factor, which suggests that the probability of declaring some columns signif-
icant at the level 0.05 amounts to 0.30. Therefore, a confirmatory experiment is cer-
tainly necessary for the selected factors, extending the number of levels of each factor.
Finally, there are various devices for an extended use of orthogonal arrays. They

can be used for a split-plot design, not just for completely randomized experiments.
There are methods to allocate the factors with three or four levels to a two-level
orthogonal array. In contrast, the factors with two levels can be allocated to a
three-level orthogonal array. For these extensions, refer to Taguchi (1962).
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15.2 Ordered Categorical Responses in a Highly
Fractional Experiment

The data of Table 15.6 reported by Taguchi and Wu (1980) are the result of an arc-
welding experiment to find the important factors that affect the workability of an
arc-welded section between two steel plates. Workability is the degree of difficulty
in welding the two steel plates together, which was judged in three levels: 1 (easy),
2 (normal), and 3 (difficult). It was a 29−5 experiment for nine factors (A ~ I) with four
interactions A×G, A×H, A×C, G×H of interest. Taguchi and Wu reported three
significant factors D, F, and G by the so-called accumulation analysis. However, the
experiment is so highly fractional, with many factors of interest, that the conclusion
should suffer from large selection bias. Further, the analysis is based on the collapsed
data for the respective factors, so that inevitably it suffers from Simpson’s paradox. It
is essentially difficult to give a proper analytical method for highly fractional catego-
rical data like this. Therefore, it might be inevitable to make some crude analysis first,
although this cannot certainly be a conclusion. One should refer also to Wu and
Hamada (1990), and comments regarding the analysis of this experiment. In this book
we take the approach of conditional analysis based on the cumulative efficient score
for the ordered categorical data, like in this example. However, such a conditional
analysis is not applicable to the original data, since it is so highly fractional.

Table 15.6 Design and workability data for arc-welding experiment.

Experiment # A B C D E F G H I Workability

1 1 1 1 1 1 1 1 1 1 2
2 1 1 2 2 2 2 1 1 2 2
3 1 2 2 1 1 1 1 2 1 2
4 1 2 1 2 2 2 1 2 2 1
5 1 2 2 1 1 2 2 1 2 1
6 1 2 1 2 2 1 2 1 1 3
7 1 1 1 1 1 2 2 2 2 1
8 1 1 2 2 2 1 2 2 1 3
9 2 2 2 1 2 1 1 1 2 2
10 2 2 1 2 1 2 1 1 1 2
11 2 1 1 1 2 1 1 2 2 2
12 2 1 2 2 1 2 1 2 1 2
13 2 1 1 1 2 2 2 1 1 1
14 2 1 2 2 1 1 2 1 2 3
15 2 2 2 1 2 2 2 2 1 2
16 2 2 1 2 1 1 2 2 2 2
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We therefore apply the method to the summarized data (Table 15.7) with respect to
factors D, F, and G. We assume a multinomial distribution and a log linear model for
the cell probability:

logpijkl = μijk + δil +φjl + γkl + ρl,

where the suffix i, j and k are for the factors D, F and G each with two levels, and
ρl, l= 1, 2, 3, is the parameter for the response category, with number of levels three.
It should be noted that it is only a 23−1 experiment, even for the summarized data, and
only half of the combinations are realized. Further, it contains so many zero cells,
making conditional analysis impossible for factors D and G. We therefore deal only
with the null hypothesis Hφ φjl = 0 of factor F.
To derive the sufficient statistics under Hφ we drop the factors ρl, δil and γkl when

i−2 k−2 l−3 = 0, while we leave four combinations of μijk as they are. Then, the
linearly independent sufficient statistics are obtained as

y111 , y221 , y122 , y212 , y1 1, y1 2,y 11, y 12, y 1,y 2 (15.6)

It should be noted here that y1 1 is actually y1111 + y1221, since this is a half exper-
iment. Then, starting from a table with all entries unity, we obtain the maximum like-
lihood estimate ŷijkl by the iterative scaling procedure to keep the sets of sufficient
statistics y111 , y221 , y122 , y212 for μijk , y1 1, y1 2 for δil , y 11, y 12 for γkl, and
y 1,y 2 for ρl. The result is given in Table 15.8 (1).
The variance of the estimated cell frequencies is obtained in the same form as

(14.12), by expressing (15.6) as A∗ y with Ω a diagonal matrix of ŷijkl. For the calcu-
lation of (14.12), a detailed explanation is given in Section 14.2.2 (1) (a). The stan-
dardized residual of each cell is shown in Table 15.8 (2). There is only one linearly
independent residual, so that the degree of freedom for testing Hφ is unity. The stan-
dardized residual of Table 15.8 (2) will suggest weak evidence of the effect of F.
As a worked example, we consider the data of Table 15.9, changing Table 15.7

slightly. The marginal tables and their cumulative chi-squared statistics are shown
in Table 15.10, suggesting some effects for F and D.

Table 15.7 Summarized data with respect to factors D, F, and G.

Factor levels Workability

D F G 1 2 3 Total

1 1 1 0 4 0 4
2 2 1 1 3 0 4
1 2 2 3 1 0 4
2 1 2 0 1 3 4

Total 4 9 3 16
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Table 15.9 Worked example.

Factor levels Workability

D F G 1 2 3 Total

1 1 1 1 2 1 4
2 2 1 1 3 0 4
1 2 2 3 1 0 4
2 1 2 0 1 3 4

Total 5 7 4 16

Table 15.10 The marginal tables for the worked example.

Marginal table 1 Marginal table 2 Marginal table 3

Workability Workability Workability

Factor D 1 2 3 Total Factor F 1 2 3 Total Factor G 1 2 3 Total

1 4 3 1 8 1 1 3 4 8 1 2 5 1 8
2 1 4 3 8 2 4 4 0 8 2 3 2 3 8

Total 5 7 4 16 Total 5 7 4 16 Total 5 7 4 16

χ∗2 = 3 952 χ∗2 = 7 952 χ∗2 = 1 624

Table 15.8 Summarized data with respect to the factors D, F, and G.

Factor levels Workability

D F G 1 2 3 Total

(1) Estimated cell frequencies

1 1 1 0.5529 3.4471 0 4.0000
2 2 1 0.4471 3.5529 0 4.0000
1 2 2 2.4471 1.5529 0 4.0000
2 1 2 0.5529 0.4471 3 4.0000

Total 4.0000 9.0000 3

(2) Standardized residuals

1 1 1 −1.723 1.723 0
2 2 1 1.723 −1.723 0
1 2 2 1.723 −1.723 0
2 1 2 −1.723 1.723 0
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Now, the worked example is only slightly different from the welding experiment,
but there are still two, one, and one degrees of freedom for the conditional analyses of
factors F, D, and G, respectively.
To test the null hypothesis of the factor F, the conditional MLEs of the cell frequen-

cies are calculated as in Table 15.11. From these fitted values we can calculate the
conditional expectation of the sufficient statistics s = y 1 1, y 1 2 forφ= φ11, φ12 as

E s =
1 6020 + 0 6020

2 1465 + 1 1465
=

2 2040

3 2930

The variance–covariance matrix is similarly obtained via (14.12) again as

V s =
0 55148 −0 39300

−0 39300 0 681956

The variance–covariance matrix of the accumulated statistics is easily obtained as

V∗ =
1 0

1 1
V s

1 1

0 1
=

0 55148 0 15848

0 15848 0 44744
(15.7)

Then we obtain the cumulative chi-squared

χ∗2 conditional =
1−2 2040 2

0 55148
+

1 + 3− 2 2040 + 3 2930 2

0 4474
= 7 637∗

The correlation matrix of the components of χ∗ 2 is easily obtained from (15.7) as

C∗ C∗ =
1 0 3190

0 3190 1

Table 15.11 Estimated cell frequencies under Hφ.

Factor levels Workability

D F G 1 2 3 Total

1 1 1 1.6020 2.1465 0.2515 4.0000
2 2 1 0.3980 2.8535 0.7485 4.0000
1 2 2 2.3980 0.8535 0.7485 4.0000
2 1 2 0.6020 1.1465 2.2515 4.0000

Total 5.0000 7.0000 4.0000 16.0000
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Then the constants for the chi-squared approximation are obtained from

df = tr C∗ C∗ = 2, 2d2f = 2tr C∗ C∗ 2
= 4 4070

as d = 1 1018 and f = 1 8152. The upper 0.05 point is calculated as 1 1018 ×
5 628 = 6 20. Therefore, the crude analysis of the marginal table 2 of Table 15.10 will
be supported.
The conditional standardized residuals under the null hypothesis of factor D, con-

ditional on the factors F and G, are all ± 1 249 excluding zero residuals. Hence, a
somewhat large χ∗ 2 value in the marginal table 1 of Table 15.10 should better be con-
sidered as spurious. Similarly, the conditional standardized residuals under the null
hypothesis of factor G, conditional on the factors D and F, are ± 0 2334, suggesting
that the effects of factor G are negligible (see Hirotsu, 1990 for details).

15.3 Optimality of an Orthogonal Array

We generalize the optimality of the weighing experiment with balance in Section 1.1.

Now the problem is to estimate the weight of p materials μ= μ1… , μp by n mea-
surements with a balance. In an experiment we can put each material on the left or
right plate, or there is a choice not to weigh the material in the experiment. This is
formulated mathematically by considering a variable xij which takes 1, −1, or 0
according to whether the jth material is weighed on the left or right plate, or not
weighed at the ith experiment. Then, introducing an n× p design matrix X = xij ,
the statistical model is expressed in linear form as

y=Xμ+ e, (15.8)

where the error e is assumed to be uncorrelated and of equal variance, namely

V e = σ2I

The problem is to select an optimal design X of weighing. There are several defini-
tions of optimality. First, the rank of Xmust be p for the unbiased estimator of μ for all

components to be available. Then, μ= X X −1y is an unbiased estimator of μ with
variance

V μ =M−1σ2,

whereM =X X is Fisher’s information matrix. If there are two designs X1 and X2, and
supposing X1X1−X2X2 to be semi-positive definite, then the design X1 is strongly
recommended since for any parameter l μ, the variance of the estimator l μ by X1

is always less than or equal to that by X2. However, it is rarely the case that such
an optimal design X1 exists. Therefore, usually the following four criteria are used,
where λj, j= 1, …, p are the eigenvalues of M.
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1. D-optimum. Maximize the determinant M =Πλj. It is equivalent to minimiz-
ing the generalized variance V μ . D is the initial of determinant.

2. A-optimum. Minimize tr M−1 = λ−1j . It is equivalent to minimizing the
average of the variance of μj. A is the initial of average.

3. E-optimum. Maximize the minimum of λj, j= 1,…, p. It is equivalent to mini-
mizing the maximum variance of the standardized linear combination l μ,
l l = 1. E is the initial of eigenvalue.

4. Mini-max criterion. Minimize the maximum diagonal element of M−1. It is
equivalent to minimizing the maximum variance of μj, j = 1, …, p.

An orthogonal array of the two levels satisfies all criteria (1) ~ (4) simultaneously.
We start by stating Hotelling’s theory.

Theorem 15.1. Hotelling’s theorem (1944)

(1) By n weighings of p materials with a balance, V μj ≥ σ2 n, j= 1,…, p. That is,
the variance cannot be made smaller than σ2/n for each material.

(2) The necessary and sufficient condition for V μj = σ2 n for some j is xij = 1or−1
for all i and ixijxij = 0 for all j j .

Proof. Without any loss of generality, we can discuss μ1 assuming j= 1. Let the first
column of X (15.8) be x1 and the rest of the columns X2, so that X = x1 X2 . Then, by
simple algebra we have

V μ1 = x1x1−x1X2 X2X2
−1
X2x1

−1
σ2, (15.9)

where an obvious modification is necessary in the case of rank X < p. Now in (15.9)
it is obvious that

x1x1 ≤ n,

x1X2 X2X2
−1
X2x1 ≥ 0

This immediately proves the first part of Theorem 15.1. Then V μ1 is minimized
when

x1x1 = n (15.10)

and

x1X2 X2X2
−1
X2x1 = 0 (15.11)
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Equation (15.10) holds if and only if xi1 = 1 or−1 and not 0 for all i; that means for
material j to be weighed every time, either on the left or right plate.
Equation (15.11) holds if and only if material 1 is weighed the same number of times
on the same or opposite plates to other materials μj, j= 2,…, p. This is an orthogo-
nality relationship between two columns of X, and implies the latter part of the nec-
essary and sufficient condition of Theorem 15.1.

In the case of n = 4n the design matrix X composed of any p columns of a
Hadamard matrix gives X X = nIp and satisfies the necessary and sufficient condition
of Theorem 15.1 for each column. Therefore, it satisfies optimality criteria (2) and (4).
Further, in the weighing problem we have obviously

λj = tr X X ≤ pn

Therefore we have

Πλj ≤ λj p
p
≤ np (15.12)

However, the design matrix from a Hadamard matrix satisfies the equality of equa-
tion (15.12) showing D-optimality. Then it is also E-optimal since it satisfies the
equality of equation (15.13),

minλj ≤ λj p ≤ n (15.13)

Definition 15.1. Hadamard matrix. 1. A square matrix composed of ± 1, each row
of which is orthogonal to other rows. A Hadamard matrix of order n satis-
fies H H = nIn.
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Appendix

Table A Upper percentiles tα(a, f) of max acc. t1.

α= 0 01

a

f 3 4 5 6 7 8

5 3.900 4.203 4.39 4.56 4.70 4.78
10 3.115 3.309 3.44 3.54 3.62 3.68
15 2.908 3.075 3.19 3.27 3.34 3.39
20 2.813 2.968 3.07 3.15 3.21 3.26
25 2.758 2.907 3.01 3.08 3.14 3.19
30 2.723 2.867 2.97 3.04 3.09 3.14
40 2.680 2.819 2.91 2.98 3.04 3.08
60 2.638 2.772 2.86 2.93 2.98 3.02
120 2.598 2.726 2.81 2.88 2.92 2.96
∞ 2.558 2.682 2.764 2.824 2.871 2.909

(continued overleaf )
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Table A (Continued)

α= 0 05

a

f 3 4 5 6 7 8

5 2.441 2.676 2.84 2.95 3.05 3.12
10 2.151 2.333 2.46 2.54 2.62 2.67
15 2.067 2.235 2.35 2.43 2.49 2.54
20 2.027 2.188 2.30 2.37 2.43 2.48
25 2.004 2.161 2.26 2.34 2.40 2.45
30 1.989 2.143 2.24 2.32 2.38 2.43
40 1.970 2.121 2.22 2.29 2.35 2.40
60 1.952 2.100 2.20 2.27 2.32 2.37
120 1.934 2.079 2.18 2.24 2.30 2.34
∞ 1.916 2.058 2.151 2.219 2.271 2.314

α= 0 10

a

f 3 4 5 6 7 8

5 1.873 2.089 2.23 2.34 2.43 2.49
10 1.713 1.894 2.02 2.10 2.17 2.23
15 1.666 1.836 1.95 2.03 2.10 2.15
20 1.643 1.808 1.92 2.00 2.06 2.11
25 1.629 1.792 1.90 1.98 2.04 2.09
30 1.620 1.781 1.89 1.96 2.02 2.07
40 1.609 1.768 1.87 1.95 2.01 2.05
60 1.598 1.755 1.86 1.93 1.99 2.04
120 1.588 1.742 1.84 1.92 1.97 2.02
∞ 1.577 1.730 1.829 1.901 1.956 2.001
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Table B Upper percentiles of max acc. χ 2 P�
a .

α= 0 01

b 2 4 6 8

a 3 4 5 3 4 5 3 4 5 3 4 5

2 17.74 15.96 14.97 21.12 20.10 19.51 24.31 23.63 23.22 27.51 27.01 26.71
3 11.47 11.46 11.46 16.33 16.48 16.58 20.12 20.38 20.56 23.60 23.94 24.18

m 4 10.04 10.33 10.53 15.03 15.44 15.72 18.90 19.40 19.75 22.41 22.99 23.38
5 9.405 9.822 10.10 14.42 14.95 15.31 18.32 18.93 19.35 21.84 22.53 22.99
10 8.468 9.044 9.435 13.48 14.17 14.64 17.39 18.19 18.75 20.94 21.82 22.14
∞ 7.808 8.480 8.944 12.77 13.58 14.14 16.69 17.59 18.21 20.21 21.19 21.86

α= 0 05

b 2 4 6 8

a 3 4 5 3 4 5 3 4 5 3 4 5

2 8.195 8.256 8.287 12.83 13.00 13.10 16.34 16.62 16.79 19.55 19.91 20.14
3 6.262 6.695 6.971 10.86 11.39 11.74 14.41 15.04 15.45 17.63 18.34 18.80

m 4 5.753 6.261 6.595 10.27 10.91 11.32 13.81 14.54 15.02 17.02 17.83 18.37
5 5.520 6.058 6.416 9.995 10.67 11.12 13.52 14.30 14.81 16.73 17.58 18.16
10 5.159 5.739 6.134 9.550 10.29 10.79 13.05 13.90 14.48 16.24 17.18 17.75
∞ 4.894 5.500 5.919 9.210 9.994 10.53 12.69 13.58 14.20 15.86 16.85 17.52

(continued overleaf )



Table B (Continued)

α= 0 10

b 2 4 6 8

a 3 4 5 3 4 5 3 4 5 3 4 5

2 5.440 5.806 6.002 9.841 10.29 10.56 13.21 13.75 14.09 16.28 16.90 17.30
3 4.440 4.934 5.255 8.654 9.288 9.702 11.98 12.72 13.20 15.03 15.85 16.39

m 4 4.161 4.685 5.034 8.292 8.976 9.429 11.60 12.39 12.92 14.62 15.51 16.09
5 4.031 4.566 4.927 8.117 8.824 9.296 11.41 12.23 12.77 14.42 15.34 15.94
10 3.826 4.378 4.756 7.835 8.575 9.076 11.09 11.96 12.54 14.09 15.05 15.67
∞ 3.672 4.235 4.625 7.615 8.382 8.904 10.85 11.75 12.35 13.83 14.83 15.50



Table C Upper percentiles of the largest eigenvalue of Wishart matrix.

W Imin a−1, b−1 , max a−1, b−1

Upper column for α= 0 05 and lower column for α= 0 01

b−1

a−1 1 2 3 4 5 6 7 8 9 10 15 20

2 5.99 8.59 10.74 12.68 14.49 16.21 17.88 19.49 21.06 22.61 29.97 36.94
9.21 12.16 14.57 16.73 18.73 20.64 22.47 24.23 25.95 27.63 35.60 43.08

3 7.82 10.74 13.11 15.24 17.21 19.09 20.88 22.62 24.31 25.96 33.80 41.18
11.35 14.57 17.18 19.50 21.65 23.69 25.64 27.52 29.34 31.12 39.51 47.38

4 9.45 12.68 15.24 17.52 19.63 21.62 23.53 25.37 27.15 28.90 37.13 44.84
13.28 16.73 19.50 21.96 24.24 26.38 28.43 30.41 32.32 34.18 42.95 51.10

5 11.07 14.49 17.21 19.63 21.86 23.95 25.96 27.88 29.75 31.58 40.14 48.14
15.09 18.73 21.65 24.24 26.62 28.86 31.00 33.05 35.04 36.98 46.05 54.48

6 12.59 16.21 19.09 21.62 23.95 26.14 28.23 30.24 32.18 34.07 42.96 51.22
16.81 20.64 23.69 26.38 28.86 31.19 33.40 35.53 37.59 39.59 48.96 57.64

7 14.07 17.88 20.88 23.53 25.96 28.23 30.40 32.48 34.50 36.45 45.62 54.10
18.48 22.47 25.64 28.43 31.00 33.40 35.69 37.89 40.01 42.07 51.71 60.60

8 15.51 19.49 22.62 25.37 27.88 30.24 32.48 34.63 36.70 38.72 48.15 56.86
20.09 24.23 27.52 30.40 33.05 35.53 37.89 40.15 42.33 44.45 54.33 63.42

10 18.31 22.61 25.96 28.90 31.58 34.07 36.45 38.72 40.91 43.04 52.94 62.04
23.21 27.63 31.12 34.18 36.98 39.59 42.07 44.45 46.74 48.95 59.28 68.76



Index

acceptance region, 56, 94, 131
accumulation analysis by Taguchi,

170, 393

Behrens–Fisher problem, 79
Bernoulli sequence, 34, 38
best linear unbiased predictor (BLUP),

326, 332, 333
Bonferroni’s inequality, 125, 126, 233

categorical data (response), 7, 8, 31
one-way, 347, 375
ordered, 118, 217, 218, 275, 292,

358, 393
three-way, 348
two-way, 273, 347, 361

cause-and- effect diagram, 4
change-point contrast, 130, 147, 153
slope, 153
step, 258, 259, 282, 284, 291, 292

change-point model
inflection, 130, 187
slope, 130, 151–154, 156, 172, 173,

196–199
step, 129, 130, 135, 142, 167, 185,

193, 195–197, 218
chi-squared approximation, 150, 170,

182, 188, 275, 282–284, 290, 355,
359, 361, 397

conditional
analysis, 393, 396

covariance, 367
distribution, 34–36, 38, 48, 49, 50,
137, 140

expectation, 37, 38, 50, 276, 367
independence, 348
variance, 50, 276, 364, 366

confidence
coefficient, 57, 73, 93, 94
interval, 56, 57, 76, 83, 102, 103, 108,
109, 118

region, 71, 73, 75, 76, 93, 94, 108
simultaneous interval, 124
unbiased interval, 58

cumulative chi-squared statistic
χ∗ 2, 90, 129, 150, 152, 170, 171, 181,
185, 218, 221, 224, 282, 288, 289,
360, 361, 369, 394, 396

χ∗ ∗ 2, 291, 359, 360, 368
χ∗ ∗ ∗ 2, 358, 364
χ† 2, 158, 182, 184, 185
χ# 2, 158, 161, 188
two-way, 259

degrees of freedom (df), 14, 30, 141,
228–230, 249, 263, 385, 387

design matrix, 18, 20, 323, 385, 397
distribution

binomial, 98, 101, 103, 133, 165–167,
172, 173, 175, 183, 185, 189, 194,
195, 212, 213, 216, 287

bivariate chi-squared, 259, 288, 294
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distribution (cont’d)
Cauchy, 14, 17
chi-squared (χ2-), 30, 61, 63, 67, 119,
171, 222, 275, 302, 319, 352, 355

conditional, 34–36, 38, 49, 50,
137, 140, 168, 173, 174, 194, 195,
231, 353

exponential, 228
F-, 57, 82, 151, 256, 303, 319
hyper geometric, 168, 169
logistic, 31, 87
lognormal, 17, 79
long-tailed, 87
multinomial, 65, 67, 165, 275, 347,
376, 394

multivariate hyper geometric, 88, 119,
215, 216, 218, 275, 276, 279, 354

multivariate normal, 30, 58, 130, 133,
137, 301

non-central chi-squared, 30, 288
non-central F-, 61, 319
normal, 1, 2, 13, 39, 43, 49, 53, 58,
201, 256, 300

Poisson, 133, 172, 173, 193, 347
standard normal, 48
Student’s t-, 24, 48
uniform, 36
t-, 14, 48, 49, 72, 77, 78, 84,
87, 303

Wishart, 280, 281
downturn, 171, 198

effect(s)
additive, 2, 7
fixed, 6, 299, 332
interaction, 2, 3, 7, 239, 376, 383, 385,
387, 391

linear mixed, 322
main, 7, 239, 300, 306, 309, 314, 376,
383, 385, 387

mixed, 323, 331, 332
random, 6, 299

effective repetition number
BIBD, 209
orthogonal array, 392

efficiency of BIBD, 208

efficient score, 62–66, 103, 104, 129,
133, 136–137, 142, 156, 173, 195,
196, 199, 324, 353, 360, 393

equivalence
at least, 95, 104, 106, 107
bio-, 74, 107, 110
test, 74, 92
theorem, 138

error space, 21–23, 31
estimable function(s), 19, 24, 27, 29,

31, 58
estimation space, 22, 23, 31, 60
estimator
best linear unbiased (BLUE), 2, 11, 12,
17, 19, 20, 22–27, 29, 30, 269

efficiency of, 16, 17, 32
least squares (LS), 20, 29, 32, 57–59,
76, 252

maximum likelihood (MLE) (see
maximum likelihood)

minimum variance (best) unbiased, 1,
12–14, 16, 23, 24, 37, 39, 78, 79,
301, 307, 309

experiment(s)
confirmatory, 10, 392
explanatory, 10
exploratory, 10
follow-up, 10
one-factor-at-a-time, 2, 3
simultaneous, 2, 3
stages of, 10

exponential family, 39, 129, 133, 172

factor
block, 5, 81, 201
controllable, 5, 245
covariate, 5
indicative, 5, 245
noise, 5
response, 5
variation, 5, 299, 333

false positive, 121, 122
F-approximation, 151, 161
Fisher’s
amount of information, 15, 16, 33
information matrix, 34, 65, 397

408 INDEX



three principles of experiments, 6
F-statistic, 59, 118, 123, 242, 261,

263, 268

Gauss Markov’s
model, 20
theorem, 20, 24, 28

generalized inverse of a matrix, 21, 28
general mean, 3, 135, 202, 239, 299, 303,

305, 306, 314, 322, 326, 392
goodness-of-fit
chi-square(s), 67, 68, 90, 166, 227,

230, 231, 233, 273, 275, 276, 282,
288, 290, 291, 352, 356, 357, 362

test, 65, 152, 161, 171, 181, 183, 184,
188, 213, 214

Hadamard matrix, 2, 399
heredity principle, 349
Hotelling’s T2-statistic, 319
hypothesis
alternative, 41, 44, 60, 61, 92
composite, 45, 48, 64, 66, 101
convexity (concavity), 130, 132, 157,

160, 171, 185, 186, 195, 197
handicapped, 93, 99
homogeneity, 113, 119, 165, 341
independence, 166, 273, 275, 287,

348, 356, 357
inflection point, 158
left one-sided, 48, 50, 53
linear, 58, 61
monotone, 92, 128, 129, 134–136,

156, 160, 167, 185, 193, 258
null, 41, 48, 53, 213
null for interaction, 239, 240, 245,

257, 316, 317, 362
one-sided, 45
order restricted, 129
restricted alternative, 133, 134
right one-sided, composite,

47–50, 53
sigmoid(icity), 130, 159–161, 187
simple, 45, 62
two-sided, 45, 47, 49, 50, 53, 76
two-way ordered alternative T1, 256

two-way ordered alternative T2,
256, 259

two-way ordered alternative T3, 257

ICH E9, 95, 97, 106, 110
identification condition, 239, 240, 266,

269, 349, 375, 385
incidence matrix, 200
incomplete block design, 6
interaction

controllable vs. controllable,
indicative and variation, 8

diagram, 387–389
effects, 2, 3, 7, 101, 238, 348
element generalized, 248
element pair-wise, 247
element two sub-groups, 247
generalized, 7
linear by linear, 256
plot(s), 329, 331, 336, 337
pseudo, 8
removal by transformation, 256
three-way, 350, 370, 375
treatment and block, 201, 212
treatment and response, 7
two-way, 354

interval estimation, 56, 57
intra-block analysis, 211
isotonic regression, 128, 129
iterative scaling procedure, 350–352,

364, 378, 394

law of large numbers, 11, 33
least squares method, 11, 19, 31, 264
likelihood function, 31, 62, 133, 324,

349, 352, 362, 375
linear estimable function see estimable

function
linear trend, 92, 142, 147, 149, 161, 167
link function, 31

maximum likelihood
equation, 32
estimator (MLE), 31, 32, 62–67, 101,
133, 230, 349, 352, 355–357, 372,
378, 381, 394, 396
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maximum likelihood (cont’d)
method, 31
residual (REML), 324
restricted, 129, 380

mean squared error (MSE), 12, 37
model
additive, 7, 9, 17, 238, 253
block interaction, 248–254,
256, 290

generalized linear, 11, 31
hierarchical, 322, 326
linear, 11, 17–20, 22, 31, 58, 75, 385,
389, 391

linear mixed effects, 322
logit linear l, 31, 183, 377
log linear, 7, 31, 101, 348, 354, 364,
373, 375, 394

multiplicative, 9, 378
multivariate normal, 336
non-linear, 255
one-way ANOVA, 19, 64,
121, 123

one-way layout, 25, 61, 64, 75, 114,
129, 143, 145, 165

one-way random effects, 299, 300,
302, 322, 324

saturated, 349, 352, 357
three-way layout, 391
Tukey’s 1 df non-additivity, 255
two-stage, 322, 331, 332
two-way ANOVA, 237, 238, 284
two-way layout, 255
two-way mixed effects, 314
two-way random effects, 306,
309, 312

modified log likelihood, 324
multiple comparisons
closed test procedure, 122, 125, 128,
143, 144, 147

column-wise, 245, 262, 273, 321
Dunnett(’s) method, 124, 147,
217, 220

row-wise, 238, 244, 245, 254, 255,
258, 262, 273–276, 283, 289,
321, 333

Scheffé(’s) method, 123, 124, 217,
220, 274, 275, 335

Tukey(’s) method, 122–124, 217, 219
multiple decision processes, 71, 75,

92, 99

natural parameter, 134, 167
Neyman–Pearson’s fundamental

lemma, 42
non-centrality parameter, 48, 49, 61, 62,

114, 157, 186, 242, 261, 319
non-inferiority, 95, 98, 104
margin, 93, 96, 97, 99, 104, 105, 110
strong, 95, 104
test, 74, 92, 93, 95, 96, 98, 100,
103–105, 109, 110

weak, 95, 96, 103, 110
normal approximation, 284
normal equation, 20, 22, 24, 25, 29, 32,

59, 206
nuisance parameter, 48, 53, 103, 197,

202, 249, 250

optimal design
A-, 398
D-, 398, 399
E-, 398, 399
mini-max criterion, 398

ordered statistic(s), 36
orthogonal array, 383, 385–387, 392

paired sample, 79, 204
power function, 46, 49, 55, 130
profile log likelihood, 324
p-value, 45, 49, 77, 78, 80, 84, 90, 101,

124, 127, 140, 141, 147, 169, 174,
178, 180, 181, 185, 190, 195, 213,
214, 268, 287, 342, 367, 369, 379

recovery of inter-block information, 6,
211, 314

rejection region, 42–48, 54, 56,
62–64, 82, 303, 308, 310,
311, 320

risk
consumer’s, 96–98, 100, 104, 107,
108, 110

producer’s, 96, 108, 110
of test, 43
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sample space, 72, 175, 189
Schwarz’s inequality, 15, 123
signal-to-noise (SN) ratio, 303,

304, 326
significance level, 42, 43, 45, 48, 56, 63,

68, 71, 72
Simpson’s paradox, 89, 101, 349, 378,

379, 393
skewness correction, 101, 104
sparsity principle, 385
standard form
BIBD, 207
complete randomized blocks, 202
for interaction, 238
linear model, 21
one-way layout, 27
one-way random effects model, 300
two-way layout, 241
two-way mixed effects model, 316
two-way random effects model, 307

stratified analysis, 102, 121
sufficient statistic(s), 11, 34–39, 132,

168, 173, 194, 275, 347, 350,
352, 354

complete, 39, 301, 307
minimal, 39, 312

sum of squares
based on cell means, 260, 261
BIBD, 207, 209
complete randomized blocks, 202
for interaction, 252, 254, 257
one-way layout, 114
one-way random effects model,

301, 304
orthogonal array, 389–392
residual, 23, 60–62, 114, 267,

268, 389
total, 241, 269, 389
two-way layout, 241–244

Taguchi method, 5
test
Abelson-Tukey, 147, 156, 157
Bartlett(’s), 114, 117
Birch(’s), 355, 362, 378
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