
9 781292 022611

ISBN 978-1-29202-261-1

Discrete Mathematics
Richard Johnsonbaugh

Seventh Edition
D

isc
re

te
 M

a
th

e
m

a
tic

s Jo
h

n
so

n
b

a
u

g
h

 Se
ve

n
th

 Ed
itio

n

Discrete Mathematics
Richard Johnsonbaugh

Seventh Edition

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affi liation with or endorsement of this
book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

 Printed in the United States of America

ISBN 10: 1-292-02261-2
ISBN 13: 978-1-292-02261-1

ISBN 10: 1-292-02261-2
ISBN 13: 978-1-292-02261-1

Table of Contents

P E A R S O N C U S T O M L I B R A R Y

I

1. Sets and Logic

1

1Richard Johnsonbaugh

2. Proofs

73

73Richard Johnsonbaugh

3. Functions, Sequences, and Relations

135

135Richard Johnsonbaugh

4. Algorithms

207

207Richard Johnsonbaugh

5. Introduction to Number Theory

259

259Richard Johnsonbaugh

6. Counting Methods and the Pigeonhole Principle

305

305Richard Johnsonbaugh

7. Recurrence Relations

383

383Richard Johnsonbaugh

8. Graph Theory

433

433Richard Johnsonbaugh

9. Trees

507

507Richard Johnsonbaugh

10. Network Models

591

591Richard Johnsonbaugh

11. Boolean Algebras and Combinatorial Circuits

623

623Richard Johnsonbaugh

12. Automata, Grammars, and Languages

665

665Richard Johnsonbaugh

Appendix: Matrices

713

713Richard Johnsonbaugh

II

Appendix: Algebra Review

719

719Richard Johnsonbaugh

Appendix: Pseudocode

733

733Richard Johnsonbaugh

References

741

741Richard Johnsonbaugh

747

747Index

Sets and Logic

1 Sets
2 Propositions
3 Conditional Propositions

and Logical Equivalence
4 Arguments and Rules of

Inference
5 Quantifiers
6 Nested Quantifiers

Problem-Solving Corner:
Quantifiers
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

Logic, logic, logic. Logic is the beginning of wisdom,
Valeris, not the end.

FROM STAR TREK VI: THE UNDISCOVERED COUNTRY

This chapter begins with sets. A set is a collection of objects; order is not taken into
account. Discrete mathematics is concerned with objects such as graphs (sets of vertices
and edges) and Boolean algebras (sets with certain operations defined on them). In this
chapter, we introduce set terminology and notation. In Section 1, we provide a taste of
the logic and proofs to come in the remainder of this chapter.

Logic is the study of reasoning; it is specifically concerned with whether reasoning
is correct. Logic focuses on the relationship among statements as opposed to the content
of any particular statement. Consider, for example, the following argument:

All mathematicians wear sandals.

Anyone who wears sandals is an algebraist.

Therefore, all mathematicians are algebraists.

Technically, logic is of no help in determining whether any of these statements is true;
however, if the first two statements are true, logic assures us that the statement,

All mathematicians are algebraists,

is also true.
Logic is essential in reading and developing proofs. An understanding of logic can

also be useful in clarifying ordinary writing. For example, at one time, the following
ordinance was in effect in Naperville, Illinois: “It shall be unlawful for any person to
keep more than three dogs and three cats upon his property within the city.” Was one of
the citizens, who owned five dogs and no cats, in violation of the ordinance? Think about
this question now, then analyze it (see Exercise 74, Section 2) after reading Section 2.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

1

Sets and Logic

1 ➜ Sets

The concept of set is basic to all of mathematics and mathematical applications. A set
is simply a collection of objects. The objects are sometimes referred to as elements or
members. If a set is finite and not too large, we can describe it by listing the elements in
it. For example, the equation

A = {1, 2, 3, 4} (1.1)

describes a set A made up of the four elements 1, 2, 3, and 4. A set is determined by its
elements and not by any particular order in which the elements might be listed. Thus the
set A might just as well be specified as

A = {1, 3, 4, 2} .

The elements making up a set are assumed to be distinct, and although for some reason
we may have duplicates in our list, only one occurrence of each element is in the set.
For this reason we may also describe the set A defined in (1.1) as

A = {1, 2, 2, 3, 4} .

If a set is a large finite set or an infinite set, we can describe it by listing a property
necessary for membership. For example, the equation

B = {x | x is a positive, even integer} (1.2)

describes the set B made up of all positive, even integers; that is, B consists of the
integers 2, 4, 6, and so on. The vertical bar “|” is read “such that.” Equation (1.2) would
be read “B equals the set of all x such that x is a positive, even integer.” Here the property
necessary for membership is “is a positive, even integer.” Note that the property appears
after the vertical bar.

Some sets of numbers that occur frequently in mathematics generally, and in dis-
crete mathematics in particular, are shown in Figure 1.1. The symbol Z comes from the
German word, Zahlen, for integer. Rational numbers are quotients of integers, thus Q
for quotient. The set of real numbers R can be depicted as consisting of all points on a
straight line extending indefinitely in either direction (see Figure 1.2).†

To denote the negative numbers that belong to one of Z, Q, or R, we use the
superscript minus. For example, Z− denotes the set of negative integers, namely−1,−2,
−3, Similarly, to denote the positive numbers that belong to one of the three sets, we
use the superscript plus. For example, Q+ denotes the set of positive rational numbers.

Symbol Set Example of Members

Z Integers −3, 0, 2, 145
Q Rational numbers −1/3, 0, 24/15
R Real numbers −3,−1.766, 0, 4/15,

√
2, 2.666 . . . , π

Figure 1.1 Sets of numbers.

†The real numbers can be constructed by starting with a more primitive notion such as “set” or “integer,” or
they can be obtained by stating properties (axioms) they are assumed to obey. For our purposes, it suffices to
think of the real numbers as points on a straight line.

2

Sets and Logic

�4 �3 �2

1.766

�1 0 1 2

2.666. . .

3 4

4
15

�2

Figure 1.2 The real number line.

To denote the nonnegative numbers that belong to one of the three sets, we use the
superscript nonneg. For example, Znonneg denotes the set of nonnegative integers, namely
0, 1, 2, 3,

If X is a finite set, we let

|X| = number of elements in X.

We call |X| the cardinality of X.

Example 1.1 For the set A in (1.1), we have |A| = 4, and the cardinality of A is 4. The cardinality of
the set {R, Z} is 2 since it contains two elements, namely the two sets R and Z.

Given a description of a set X such as (1.1) or (1.2) and an element x, we can
determine whether or not x belongs to X. If the members of X are listed as in (1.1), we
simply look to see whether or not x appears in the listing. In a description such as (1.2),
we check to see whether the element x has the property listed. If x is in the set X, we
write x ∈ X, and if x is not in X, we write x /∈ X. For example, 3 ∈ {1, 2, 3, 4}, but

3 /∈ {x | x is a positive, even integer}.

The set with no elements is called the empty (or null or void) set and is denoted
∅. Thus ∅ = { }.

Two sets X and Y are equal and we write X = Y if X and Y have the same
elements. To put it another way, X = Y if the following two conditions hold:

■ For every x, if x ∈ X, then x ∈ Y ,

and

■ For every x, if x ∈ Y , then x ∈ X.

The first condition ensures that every element of X is an element of Y , and the second
condition ensures that every element of Y is an element of X.

Example 1.2 If

A = {1, 3, 2} and B = {2, 3, 2, 1},

by inspection, A and B have the same elements. Therefore A = B.

Example 1.3 Let us verify that if

A = {x | x2 + x− 6 = 0} and B = {2,−3},

then A = B.

3

Sets and Logic

According to the criteria in the paragraph immediately preceding Example 1.2, we
must show that for every x,

if x ∈ A, then x ∈ B, (1.3)

and for every x,

if x ∈ B, then x ∈ A. (1.4)

To verify equation (1.3), suppose that x ∈ A. Then

x2 + x− 6 = 0.

Solving for x, we find that x = 2 or x = −3. In either case, x ∈ B. Therefore, equation
(1.3) holds.

To verify equation (1.4), suppose that x ∈ B. Then x = 2 or x = −3. If x = 2,
then

x2 + x− 6 = 22 + 2− 6 = 0.

Therefore, x ∈ A. If x = −3, then

x2 + x− 6 = (−3)2 + (−3)− 6 = 0.

Again, x∈A. Therefore, equation (1.4) holds. We conclude that A=B.

For a set X to not be equal to a set Y (written X �= Y), X and Y must not have the
same elements: There must be at least one element in X that is not in Y or at least one
element in Y that is not in X (or both).

Example 1.4 Let

A = {1, 2, 3} and B = {2, 4}.
Then A �= B since there is at least one element in A (1 for example) that is not in
B. [Another way to see that A �= B is to note that there is at least one element in B

(namely 4) that is not in A.]

Suppose that X and Y are sets. If every element of X is an element of Y , we say
that X is a subset of Y and write X ⊆ Y . In other words, X is a subset of Y if for every
x, if x ∈ X, then x ∈ Y .

Example 1.5 If

C = {1, 3} and A = {1, 2, 3, 4},
by inspection, every element of C is an element of A. Therefore, C is a subset of A and
we write C ⊆ A.

Example 1.6 Let

X = {x | x2 + x− 2 = 0}.
We show that X ⊆ Z.

We must show that for every x, if x ∈ X, then x ∈ Z. If x ∈ X, then

x2 + x− 2 = 0.

4

Sets and Logic

Solving for x, we obtain x = 1 or x = −2. In either case, x ∈ Z. Therefore, for every x,
if x ∈ X, then x ∈ Z. We conclude that X is a subset of Z and we write X ⊆ Z.

Example 1.7 The set of integers Z is a subset of the set of rational numbers Q. If n ∈ Z, n can
be expressed as a quotient of integers, for example, n = n/1. Therefore n ∈ Q and
Z ⊆ Q.

Example 1.8 The set of rational numbers Q is a subset of the set of real numbers R. If x ∈ Q,
x corresponds to a point on the number line (see Figure 1.2) so x ∈ R.

For X to not be a subset of Y , there must be at least one member of X that is not
in Y .

Example 1.9 Let

X = {x | 3x2 − x− 2 = 0}.
We show that X is not a subset of Z.

If x ∈ X, then

3x2 − x− 2 = 0.

Solving for x, we obtain x = 1 or x = −2/3. Taking x = −2/3, we have x ∈ X but
x /∈ Z. Therefore, X is not a subset of Z.

Any set X is a subset of itself, since any element in X is in X. Also, the empty set
is a subset of every set. If ∅ is not a subset of some set Y , according to the discussion
preceding Example 1.9, there would have to be at least one member of ∅ that is not in
Y . But this cannot happen because the empty set, by definition, has no members.

If X is a subset of Y and X does not equal Y , we say that X is a proper subset of
Y and write X ⊂ Y .

Example 1.10 Let

C = {1, 3} and A = {1, 2, 3, 4}.
Then C is a proper subset of A since C is a subset of A but C does not equal A. We write
C ⊂ A.

Example 1.11 Example 1.7 showed that Z is a subset of Q. In fact, Z is a proper subset of Q because,
for example, 1/2 ∈ Q, but 1/2 �∈ Z.

Example 1.12 Example 1.8 showed that Q is a subset of R. In fact, Q is a proper subset of R because,

for example,
√

2 ∈ R, but
√

2 �∈ Q.

The set of all subsets (proper or not) of a set X, denoted P(X), is called the power
set of X.

Example 1.13 If A = {a, b, c}, the members of P(A) are

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.
All but {a, b, c} are proper subsets of A.

5

Sets and Logic

In Example 1.13,

|A| = 3 and |P(A)| = 23 = 8.

It is worth noting in passing that this result holds in general; that is, the power set of a
set with n elements has 2n elements.

Given two sets X and Y , there are various set operations involving X and Y that
can produce a new set. The set

X ∪ Y = {x | x ∈ X or x ∈ Y}
is called the union of X and Y . The union consists of all elements belonging to either X

or Y (or both).
The set

X ∩ Y = {x | x ∈ X and x ∈ Y}
is called the intersection of X and Y . The intersection consists of all elements belonging
to both X and Y .

The set

X− Y = {x | x ∈ X and x /∈ Y}
is called the difference (or relative complement). The difference X− Y consists of all
elements in X that are not in Y .

Example 1.14 If A = {1, 3, 5} and B = {4, 5, 6}, then

A ∪ B = {1, 3, 4, 5, 6}
A ∩ B = {5}
A− B = {1, 3}
B − A = {4, 6}.

Notice that, in general, A− B �= B − A.

Example 1.15 Since Q ⊆ R,

R ∪Q = R

R ∩Q = Q

Q− R = ∅.

The set R − Q, called the set of irrational numbers, consists of all real numbers that
are not rational.

Sets X and Y are disjoint if X∩Y = ∅.Acollection of sets S is said to be pairwise
disjoint if, whenever X and Y are distinct sets in S, X and Y are disjoint.

Example 1.16 The sets

{1, 4, 5} and {2, 6}
are disjoint. The collection of sets

S = {{1, 4, 5}, {2, 6}, {3}, {7, 8}}
is pairwise disjoint.

6

Sets and Logic

Sometimes we are dealing with sets, all of which are subsets of a set U. This set
U is called a universal set or a universe. The set U must be explicitly given or inferred
from the context. Given a universal set U and a subset X of U, the set U − X is called
the complement of X and is written X.

Example 1.17 Let A = {1, 3, 5}. If U, a universal set, is specified as U = {1, 2, 3, 4, 5}, then A = {2, 4}.
If, on the other hand, a universal set is specified as U = {1, 3, 5, 7, 9}, then A = {7, 9}.
The complement obviously depends on the universe in which we are working.

Example 1.18 Let the universal set be Z. Then Z−, the complement of the set of negative integers, is
Znonneg, the set of nonnegative integers.

Venn diagrams provide pictorial views of sets. In a Venn diagram, a rectangle
depicts a universal set (see Figure 1.3). Subsets of the universal set are drawn as circles.
The inside of a circle represents the members of that set. In Figure 1.3 we see two sets A

and B within the universal set U. Region 1 represents (A ∪ B), the elements in neither
A nor B. Region 2 represents A−B, the elements in A but not in B. Region 3 represents
A∩B, the elements in both A and B. Region 4 represents B−A, the elements in B but
not in A.

U

A B

1

2 3 4

Figure 1.3 A Venn
diagram.

Example 1.19 Particular regions in Venn diagrams are depicted by shading. The set A∪B is shown in
Figure 1.4, and Figure 1.5 represents the set A− B.

A B

U

Figure 1.4 A Venn
diagram of A ∪ B.

A B

U

Figure 1.5 A Venn
diagram of A− B.

CALC PSYCH

COMPSCI9

34 12 47

25 8 16
14

U

Figure 1.6 A Venn diagram of
three sets CALC, PSYCH, and
COMPSCI. The numbers show
how many students belong to the
particular region depicted.

To represent three sets, we use three overlapping circles (see Figure 1.6).

Example 1.20 Among a group of 165 students, 8 are taking calculus, psychology, and computer science;
33 are taking calculus and computer science; 20 are taking calculus and psychology;

7

Sets and Logic

24 are taking psychology and computer science; 79 are taking calculus; 83 are taking
psychology; and 63 are taking computer science. How many are taking none of the three
subjects?

Let CALC, PSYCH, and COMPSCI denote the sets of students taking calcu-
lus, psychology, and computer science, respectively. Let U denote the set of all 165
students (see Figure 1.6). Since 8 students are taking calculus, psychology, and com-
puter science, we write 8 in the region representing CALC ∩ PSYCH ∩ COMPSCI.
Of the 33 students taking calculus and computer science, 8 are also taking psychol-
ogy; thus 25 are taking calculus and computer science but not psychology. We write
25 in the region representing CALC ∩ PSYCH ∩ COMPSCI. Similarly, we write 12
in the region representing CALC ∩ PSYCH ∩ COMPSCI and 16 in the region repre-
senting CALC ∩ PSYCH ∩ COMPSCI. Of the 79 students taking calculus, 45 have
now been accounted for. This leaves 34 students taking only calculus. We write 34 in
the region representing CALC ∩ PSYCH ∩ COMPSCI. Similarly, we write 47 in the
region representing CALC ∩ PSYCH ∩ COMPSCI and 14 in the region representing
CALC∩PSYCH∩COMPSCI. At this point, 156 students have been accounted for. This
leaves 9 students taking none of the three subjects.

A B

U

Figure 1.7 The
shaded region depicts
both (A ∪ B) and
A ∩ B; thus these sets
are equal.

Venn diagrams can also be used to visualize certain properties of sets. For example,
by sketching both (A ∪ B) and A ∩ B (see Figure 1.7), we see that these sets are equal.
A formal proof would show that for every x, if x ∈ (A ∪ B), then x ∈ A ∩ B, and if
x ∈ A ∩B, then x ∈ (A ∪ B). We state many useful properties of sets as Theorem 1.21.

Theorem 1.21 Let U be a universal set and let A, B, and C be subsets of U. The following properties
hold.

(a) Associative laws:

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C)

(b) Commutative laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A

(c) Distributive laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(d) Identity laws:

A ∪∅ = A, A ∩ U = A

(e) Complement laws:

A ∪ A = U, A ∩ A = ∅

(f) Idempotent laws:

A ∪ A = A, A ∩ A = A

(g) Bound laws:

A ∪ U = U, A ∩∅ = ∅

(h) Absorption laws:

A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A

(i) Involution law:

A = A

8

Sets and Logic

(j) 0/1 laws:

∅ = U, U = ∅

(k) De Morgan’s laws for sets:

(A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B

We define the union of an arbitrary family S of sets to be those elements x belonging
to at least one set X in S. Formally,

∪S = {x | x ∈ X for some X ∈ S}.
Similarly, we define the intersection of an arbitrary family S of sets to be those elements
x belonging to every set X in S. Formally,

∩S = {x | x ∈ X for all X ∈ S}.
If

S = {A1, A2, . . . , An},
we write

⋃
S =

n⋃

i=1

Ai,
⋂

S =
n⋂

i=1

Ai,

and if

S = {A1, A2, . . .},
we write

⋃
S =

∞⋃

i=1

Ai,
⋂

S =
∞⋂

i=1

Ai.

Example 1.22 For i ≥ 1, define

Ai = {i, i+ 1, . . .} and S = {A1, A2, . . .}.
Then

⋃
S =

∞⋃

i=1

Ai = {1, 2, . . .},
⋂

S =
∞⋂

i=1

Ai = ∅.

A partition of a set X divides X into nonoverlapping subsets. More formally, a
collection S of nonempty subsets of X is said to be a partition of the set X if every
element in X belongs to exactly one member of S. Notice that if S is a partition of X, S
is pairwise disjoint and ∪S = X.

Example 1.23 Since each element of

X = {1, 2, 3, 4, 5, 6, 7, 8}
is in exactly one member of

S = {{1, 4, 5}, {2, 6}, {3}, {7, 8}} ,
S is a partition of X.

9

Sets and Logic

At the beginning of this section, we pointed out that a set is an unordered collection
of elements; that is, a set is determined by its elements and not by any particular order
in which the elements are listed. Sometimes, however, we do want to take order into
account. An ordered pair of elements, written (a, b), is considered distinct from the
ordered pair (b, a), unless, of course, a = b. To put it another way, (a, b) = (c, d)

precisely when a = c and b = d. If X and Y are sets, we let X× Y denote the set of all
ordered pairs (x, y) where x ∈ X and y ∈ Y . We call X × Y the Cartesian product of
X and Y .

Example 1.24 If X = {1, 2, 3} and Y = {a, b}, then

X× Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
Y ×X = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}
X×X = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
Y × Y = {(a, a), (a, b), (b, a), (b, b)}.

Example 1.24 shows that, in general, X× Y �= Y ×X.
Notice that in Example 1.24, |X×Y | = |X| · |Y | (both are equal to 6). The reason

is that there are 3 ways to choose an element of X for the first member of the ordered
pair, there are 2 ways to choose an element of Y for the second member of the ordered
pair, and 3 · 2 = 6 (see Figure 1.8). The preceding argument holds for arbitrary finite
sets X and Y ; it is always true that |X× Y | = |X| · |Y |.

1 2 3

a a ab b b

(1,a) (1,b) (2,a) (2,b) (3,a) (3,b)

Figure 1.8 |X× Y | = |X| · |Y |, where X = {1, 2, 3} and Y = {a, b}. There
are 3 ways to choose an element of X for the first member of the ordered pair
(shown at the top of the diagram) and, for each of these choices, there are
2 ways to choose an element of Y for the second member of the ordered pair
(shown at the bottom of the diagram). Since there are 3 groups of 2, there are
3 · 2 = 6 elements in X× Y (labeled at the bottom of the figure).

Example 1.25 A restaurant serves four appetizers,

r = ribs, n = nachos, s = shrimp, f = fried cheese,

and three entrees,

c = chicken, b = beef , t = trout.

If we let A = {r, n, s, f } and E = {c, b, t}, the Cartesian product A × E lists the 12
possible dinners consisting of one appetizer and one entree.

Ordered lists need not be restricted to two elements. An n-tuple, written
(a1, a2, . . . , an), takes order into account; that is,

(a1, a2, . . . , an) = (b1, b2, . . . , bn)

precisely when

a1 = b1, a2 = b2, . . . , an = bn.

10

Sets and Logic

The Cartesian product of sets X1, X2, . . . , Xn is defined to be the set of all n-tuples
(x1, x2, . . . , xn) where xi ∈ Xi for i = 1, . . . , n; it is denoted X1 ×X2 × · · · ×Xn.

Example 1.26 If

X = {1, 2}, Y = {a, b}, Z = {α, β},
then

X× Y × Z = {(1, a, α), (1, a, β), (1, b, α), (1, b, β), (2, a, α), (2, a, β),

(2, b, α), (2, b, β)}.

Notice that in Example 1.26, |X× Y × Z| = |X| · |Y | · |Z|. In general,

|X1 ×X2 × · · · ×Xn| = |X1| · |X2| · · · |Xn|.
We leave the proof of this last statement as an exercise.

Example 1.27 If A is a set of appetizers, E is a set of entrees, and D is a set of desserts, the Cartesian
product A×E×D lists all possible dinners consisting of one appetizer, one entree, and
one dessert.

Problem-Solving Tips

To verify that two sets A and B are equal, written A = B, show that for every x, if x ∈ A,
then x ∈ B, and if x ∈ B, then x ∈ A.

To verify that two sets A and B are not equal, written A �= B, find at least one
element that is in A but not in B, or find at least one element that is in B but not in A.
One or the other conditions suffices; you need not (and may not be able to) show both
conditions.

To verify that A is a subset of B, written A ⊆ B, show that for every x, if x ∈ A,
then x ∈ B. Notice that if A is a subset of B, it is possible that A = B.

To verify that A is not a subset of B, find at least one element that is in A but not
in B.

To verify that A is a proper subset of B, written A ⊂ B, verify that A is a subset
of B as described previously, and that A �= B, that is, that there is at least one element
that is in B but not in A.

To visualize relationships among sets, use a Venn diagram. A Venn diagram can
suggest whether a statement about sets is true or false.

A set of elements is determined by its members; order is irrelevant. On the other
hand, ordered pairs and n-tuples take order into account.

Section Review Exercises

†1. What is a set?

2. What is set notation?

3. Describe the sets Z, Q, R, Z+, Q+, R+, Z−, Q−, R−, Znonneg,
Qnonneg, and Rnonneg, and give two examples of members of
each set.

4. If X is a finite set, what is |X|?
5. How do we denote x is an element of the set X?

6. How do we denote x is not an element of the set X?

7. How do we denote the empty set?

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

11

Sets and Logic

8. Define set X is equal to set Y . How do we denote X is equal
to Y?

9. Explain a method of verifying that sets X and Y are equal.

10. Explain a method of verifying that sets X and Y are not equal.

11. Define X is a subset of Y . How do we denote X is a subset
of Y?

12. Explain a method of verifying that X is a subset of Y .

13. Explain a method of verifying that X is not a subset of Y .

14. Define X is a proper subset of Y . How do we denote X is a
proper subset of Y?

15. Explain a method of verifying that X is a proper subset of Y .

16. What is the power set of X? How is it denoted?

17. Define X union Y . How is the union of X and Y denoted?

18. If S is a family of sets, how do we define the union of S? How
is the union denoted?

19. Define X intersect Y . How is the intersection of X and Y

denoted?

20. If S is a family of sets, how do we define the intersection of
S? How is the intersection denoted?

21. Define X and Y are disjoint sets.

22. What is a pairwise disjoint family of sets?

23. Define the difference of sets X and Y . How is the difference
denoted?

24. What is a universal set?

25. What is the complement of the set X? How is it denoted?

26. What is a Venn diagram?

27. Draw a Venn diagram of three sets and identify the set repre-
sented by each region.

28. State the associative laws for sets.

29. State the commutative laws for sets.

30. State the distributive laws for sets.

31. State the identity laws for sets.

32. State the complement laws for sets.

33. State the idempotent laws for sets.

34. State the bound laws for sets.

35. State the absorption laws for sets.

36. State the involution law for sets.

37. State the 0/1 laws for sets.

38. State De Morgan’s laws for sets.

39. What is a partition of a set X?

40. Define the Cartesian product of sets X and Y . How is this
Cartesian product denoted?

41. Define the Cartesian product of the sets X1, X2, . . . , Xn. How
is this Cartesian product denoted?

Exercises

In Exercises 1–16, let the universe be the set U = {1, 2, 3, . . . , 10}.
Let A = {1, 4, 7, 10}, B = {1, 2, 3, 4, 5}, and C = {2, 4, 6, 8}. List
the elements of each set.

1. A ∪ B 2. B ∩ C

3. A− B 4. B − A

5. A 6. U − C

7. U 8. A ∪∅

9. B ∩∅ 10. A ∪ U

11. B ∩ U 12. A ∩ (B ∪ C)

13. B ∩ (C − A)

14. (A ∩ B)− C

15. A ∩ B ∪ C

16. (A ∪ B)− (C − B)

17. What is the cardinality of ∅?

18. What is the cardinality of {∅}?
19. What is the cardinality of {a, b, a, c}?
20. What is the cardinality of {{a}, {a, b}, {a, c}, a, b}?

In Exercises 21–24, show, as in Examples 1.2 and 1.3, that A = B.

21. A = {3, 2, 1}, B = {1, 2, 3}
22. C = {1, 2, 3}, D = {2, 3, 4}, A = {2, 3}, B = C ∩D

23. A = {1, 2, 3}, B = {n | n ∈ Z+ and n2 < 10}
24. A = {x | x2 − 4x+ 4 = 1}, B = {1, 3}
In Exercises 25–28, show, as in Example 1.4, that A �= B.

25. A = {1, 2, 3}, B = ∅

26. A = {1, 2}, B = {x | x3 − 2x2 − x+ 2 = 0}
27. A = {1, 3, 5}, B = {n | n ∈ Z+ and n2 − 1 ≤ n}
28. B = {1, 2, 3, 4}, C = {2, 4, 6, 8}, A = B ∩ C

In Exercises 29–32, determine whether each pair of sets is equal.

29. {1, 2, 2, 3}, {1, 2, 3}
30. {1, 1, 3}, {3, 3, 1} 31. {x | x2 + x = 2}, {1,−1}
32. {x | x ∈ R and 0 < x ≤ 2}, {1, 2}

12

Sets and Logic

In Exercises 33–36, show, as in Examples 1.5 and 1.6, that A ⊆ B.

33. A = {1, 2}, B = {3, 2, 1}
34. A = {1, 2}, B = {x | x3 − 6x2 + 11x = 6}
35. A = {1} × {1, 2}, B = {1} × {1, 2, 3}
36. A = {2n | n ∈ Z+}, B = {n | n ∈ Z+}
In Exercises 37–40, show, as in Example 1.9, that A is not a subset
of B.

37. A = {1, 2, 3}, B = {1, 2}
38. A = {x | x3 − 2x2 − x+ 2 = 0}, B = {1, 2}
39. A={1, 2, 3, 4}, C={5, 6, 7, 8}, B={n | n ∈ A and n+m = 8

for some m ∈ C}
40. A = {1, 2, 3}, B = ∅

In Exercises 41–48, draw a Venn diagram and shade the given set.

41. A ∩ B 42. A− B

43. B ∪ (B − A) 44. (A ∪ B)− B

45. B ∩ (C ∪ A) 46. (A ∪ B) ∩ (C − A)

47. ((C ∩ A)− (B − A)) ∩ C

48. (B − C) ∪ ((B − A) ∩ (C ∪ B))

49. A television commercial for a popular beverage showed the
following Venn diagram

Great Taste Less Filling

What does the shaded area represent?

Exercises 50–54 refer to a group of 191 students, of which 10 are
taking French, business, and music; 36 are taking French and busi-
ness; 20 are taking French and music; 18 are taking business and
music; 65 are taking French; 76 are taking business; and 63 are
taking music.

50. How many are taking French and music but not business?

51. How many are taking business and neither French nor music?

52. How many are taking French or business (or both)?

53. How many are taking music or French (or both) but not
business?

54. How many are taking none of the three subjects?

55. A television poll of 151 persons found that 68 watched “Law
and Disorder”; 61 watched “25”; 52 watched “The Tenors”;
16 watched both “Law and Disorder” and “25”; 25 watched
both “Law and Disorder” and “The Tenors”; 19 watched both
“25” and “The Tenors”; and 26 watched none of these shows.
How many persons watched all three shows?

56. In a group of students, each student is taking a mathemat-
ics course or a computer science course or both. One-fifth of
those taking a mathematics course are also taking a computer
science course, and one-eighth of those taking a computer

science course are also taking a mathematics course. Are
more than one-third of the students taking a mathematics
course?

In Exercises 57–60, let X = {1, 2} and Y = {a, b, c}. List the
elements in each set.

57. X× Y 58. Y ×X

59. X×X 60. Y × Y

In Exercises 61–64, let X = {1, 2}, Y = {a}, and Z = {α, β}. List
the elements of each set.

61. X× Y × Z 62. X× Y × Y

63. X×X×X 64. Y ×X× Y × Z

In Exercises 65–72, give a geometric description of each set in
words. (Consider the elements of the sets to be coordinates.)

65. R × R

66. Z× R

67. R × Z

68. R × Znonneg

69. Z× Z

70. R × R × R

71. R × R × Z

72. R × Z× Z

In Exercises 73–76, list all partitions of the set.

73. {1} 74. {1, 2}
75. {a, b, c} 76. {a, b, c, d}
In Exercises 77–82, answer true or false.

77. {x} ⊆ {x} 78. {x} ∈ {x}
79. {x} ∈ {x, {x}} 80. {x} ⊆ {x, {x}}
81. {2} ⊆ P({1, 2}) 82. {2} ∈ P({1, 2})
83. List the members of P ({a, b}). Which are proper subsets of
{a, b}?

84. List the members of P ({a, b, c, d}). Which are proper subsets
of {a, b, c, d}?

85. If X has 10 members, how many members does P(X) have?
How many proper subsets does X have?

86. If X has n members, how many proper subsets does X have?

In Exercises 87–90, what relation must hold between sets A and B

in order for the given condition to be true?

87. A ∩ B = A 88. A ∪ B = A

89. A ∩ U = ∅ 90. A ∩ B = B

The symmetric difference of two sets A and B is the set

A� B = (A ∪ B)− (A ∩ B).

91. If A = {1, 2, 3} and B = {2, 3, 4, 5}, find A� B.

92. Describe the symmetric difference of sets A and B in words.

13

Sets and Logic

93. Given a universe U, describe A�A, A�A, U�A, and ∅�A.

94. Let C be a circle and let D be the set of all diameters of C. What
is ∩D? (Here, by “diameter” we mean a line segment through
the center of the circle with its endpoints on the circumference
of the circle.)

†�95. Let P denote the set of integers greater than 1. For i ≥ 2, define

Xi = {ik | k ∈ P}.

Describe P −⋃∞
i=2 Xi.

2 ➜ Propositions

Which of sentences (a)–(f) are either true or false (but not both)?

(a) The only positive integers that divide‡ 7 are 1 and 7 itself.

(b) Alfred Hitchcock won an Academy Award in 1940 for directing Rebecca.

(c) For every positive integer n, there is a prime number§ larger than n.

(d) Earth is the only planet in the universe that contains life.

(e) Buy two tickets to the “Unhinged Universe” rock concert for Friday.

(f) x+ 4 = 6.

Sentence (a), which is another way to say that 7 is prime, is true.
Sentence (b) is false. Although Rebecca won the Academy Award for best picture

in 1940, John Ford won the directing award for The Grapes of Wrath. It is a surprising
fact that Alfred Hitchcock never won an Academy Award for directing.

Sentence (c), which is another way to say that the number of primes is infinite,
is true.

Sentence (d) is either true or false (but not both), but no one knows which at this
time.

Sentence (e) is neither true nor false [sentence (e) is a command].
The truth of equation (f) depends on the value of the variable x.
Asentence that is either true or false, but not both, is called a proposition. Sentences

(a)–(d) are propositions, whereas sentences (e) and (f) are not propositions.Aproposition
is typically expressed as a declarative sentence (as opposed to a question, command, etc.).
Propositions are the basic building blocks of any theory of logic.

We will use variables, such as p, q, and r, to represent propositions, much as we
use letters in algebra to represent numbers. We will also use the notation

p: 1+ 1 = 3

to define p to be the proposition 1+ 1 = 3.
In ordinary speech and writing, we combine propositions using connectives such as

and and or. For example, the propositions “It is raining” and “It is cold” can be combined
to form the single proposition “It is raining and it is cold.” The formal definitions of and
and or follow.

†A starred exercise indicates a problem of above-average difficulty.
‡“Divides” means “divides evenly.” More formally, we say that a nonzero integer d divides an integer m if
there is an integer q such that m = dq. We call q the quotient.
§An integer n > 1 is prime if the only positive integers that divide n are 1 and n itself. For example, 2, 3, and
11 are prime numbers.

14

Sets and Logic

Definition 2.1 Let p and q be propositions.
The conjunction of p and q, denoted p ∧ q, is the proposition

p and q.

The disjunction of p and q, denoted p ∨ q, is the proposition

p or q.

Example 2.2 If

p : It is raining,

q : It is cold,

then the conjunction of p and q is

p ∧ q: It is raining and it is cold.

The disjunction of p and q is

p ∨ q: It is raining or it is cold.

The truth value of the conjunction p ∧ q is determined by the truth values of p

and q, and the definition is based upon the usual interpretation of “and.” Consider the
proposition,

p ∧ q: It is raining and it is cold,

of Example 2.2. If it is raining (i.e., p is true) and it is also cold (i.e., q is also true), then
we would consider the proposition,

p ∧ q: It is raining and it is cold,

to be true. However, if it is not raining (i.e., p is false) or it is not cold (i.e., q is false) or
both, then we would consider the proposition,

p ∧ q: It is raining and it is cold,

to be false.
The truth values of propositions such as conjunctions and disjunctions can be

described by truth tables. The truth table of a proposition P made up of the individual
propositions p1, . . . , pn lists all possible combinations of truth values for p1, . . . , pn,

T denoting true and F denoting false, and for each such combination lists the truth value
of P . We use a truth table to formally define the truth value of p ∧ q.

Definition 2.3 The truth value of the proposition p ∧ q is defined by the truth table

p q p ∧ q

T T T
T F F
F T F
F F F

15

Sets and Logic

Notice that, in the truth table in Definition 2.3, all four possible combinations of
truth assignments for p and q are given.

Definition 2.3 states that the conjunction p ∧ q is true provided that p and q are
both true; p ∧ q is false otherwise.

Example 2.4 If

p : A decade is 10 years,

q : A millennium is 100 years,

then p is true, q is false (a millennium is 1000 years), and the conjunction,

p ∧ q: A decade is 10 years and a millennium is 100 years,

is false.

Example 2.5 Most programming languages define “and” exactly as in Definition 2.3. For example, in
the Java programming language, (logical) “and” is denoted &&, and the expression

x < 10 && y > 4

is true precisely when the value of the variable x is less than 10 (i.e., x < 10 is true)
and the value of the variable y is greater than 4 (i.e., y > 4 is also true).

The truth value of the disjunction p ∨ q is also determined by the truth values of
p and q, and the definition is based upon the “inclusive” interpretation of “or.” Consider
the proposition,

p ∨ q: It is raining or it is cold,

of Example 2.2. If it is raining (i.e., p is true) or it is cold (i.e., q is also true) or both,
then we would consider the proposition,

p ∨ q: It is raining or it is cold,

to be true (i.e., p ∨ q is true). If it is not raining (i.e., p is false) and it is not cold (i.e., q

is also false), then we would consider the proposition,

p ∨ q: It is raining or it is cold,

to be false (i.e., p ∨ q is false). The inclusive-or of propositions p and q is true if p or
q, or both, is true, and false otherwise. There is also an exclusive-or (see Exercise 66)
that defines p exor q to be true if p or q, but not both, is true, and false otherwise.

Definition 2.6 The truth value of the proposition p∨ q, called the inclusive-or of p and q, is defined by
the truth table

p q p ∨ q

T T T
T F T
F T T
F F F

16

Sets and Logic

Example 2.7 If

p : A millennium is 100 years,

q : A millennium is 1000 years,

then p is false, q is true, and the disjunction,

p ∨ q: A millennium is 100 years or a millennium is 1000 years,

is true.

Example 2.8 Most programming languages define (inclusive) “or” exactly as in Definition 2.6. For
example, in the Java programming language, (logical) “or” is denoted ||, and the
expression

x < 10 || y > 4

is true precisely when the value of the variable x is less than 10 (i.e., x < 10 is true) or
the value of the variable y is greater than 4 (i.e., y > 4 is true) or both.

In ordinary language, propositions being combined (e.g., p and q combined to
give the proposition p∨ q) are normally related; but in logic, these propositions are not
required to refer to the same subject matter. For example, in logic, we permit propositions
such as

3 < 5 or Paris is the capital of England.

Logic is concerned with the form of propositions and the relation of propositions to each
other and not with the subject matter itself. (The given proposition is true because 3 < 5
is true.)

The final operator on a proposition p that we discuss in this section is the negation
of p.

Definition 2.9 The negation of p, denoted ¬p, is the proposition

not p.

The truth value of the proposition ¬p is defined by the truth table

p ¬p

T F
F T

In English, we sometime write ¬p as “It is not the case that p.” For example, if

p : Paris is the capital of England,

the negation of p could be written

¬p : It is not the case that Paris is the capital of England,

or more simply as

¬p : Paris is not the capital of England.

17

Sets and Logic

Example 2.10 If

p : π was calculated to 1,000,000 decimal digits in 1954,

the negation of p is the proposition

¬p : π was not calculated to 1,000,000 decimal digits in 1954.

It was not until 1973 that 1,000,000 decimal digits of π were computed; so, p is false.
(Since then over one trillion decimal digits of π have been computed.) Since p is false,
¬p is true.

Example 2.11 Most programming languages define “not” exactly as in Definition 2.9. For example, in
the Java programming language, “not” is denoted !, and the expression

!(x < 10)

is true precisely when the value of the variable x is not less than 10 (i.e., x is greater than
or equal to 10).

In expressions involving some or all of the operators¬,∧, and∨, in the absence of
parentheses, we first evaluate¬, then∧, and then∨. We call such a convention operator
precedence. In algebra, operator precedence tells us to evaluate · and / before+ and−.

Example 2.12 Given that propositionp is false, propositionq is true, and proposition r is false, determine
whether the proposition

¬p ∨ q ∧ r

is true or false.
We first evaluate¬p, which is true. We next evaluate q∧ r, which is false. Finally,

we evaluate

¬p ∨ q ∧ r,

which is true.

Example 2.13 Searching the Web

A variety of Web search engines are available (e.g., Google, Yahoo, AltaVista) that
allow the user to enter keywords that the search engine then tries to match with Web
pages. For example, entering mathematics produces a (huge!) list of pages that contain
the word “mathematics.” Some search engines allow the user to use and, or, and not
operators to combine keywords (see Figure 2.1), thus allowing more complex searches.
In the Google search engine, and is the default operator so that, for example, entering
discrete mathematics produces a list of pages containing both of the words “discrete”
and “mathematics.” The or operator is OR, and the not operator is the minus sign −.
Furthermore, enclosing a phrase, typically with embedded spaces, in double quotation
marks causes the phrase to be treated as a single word. For example, to search for pages
containing the keywords

“Alfred Hitchcock” and (Herrmann or Waxman) and (not tv),

18

Sets and Logic

Figure 2.1 The Google search engine, which allows the user to use and (space), or
(OR), and not (−) operators to combine keywords. As shown, Google found about
91,000 Web pages containing “Alfred Hitchcock” and (Herrmann or Waxman) and
(not tv).

the user could enter

"Alfred Hitchcock" Herrmann OR Waxman -tv (2.1)

[For those who have not studied discrete mathematics, clicking on Advanced on the
Google home page yields a page in which the user can fill in boxes to achieve the same
result as (2.1).]

Problem-Solving Tips

Although there may be a shorter way to determine the truth values of a proposition P

formed by combining propositions p1, . . . , pn using operators such as ¬ and ∨, a truth
table will always supply all possible truth values of P for various truth values of the
constituent propositions p1, . . . , pn.

Section Review Exercises

1. What is a proposition?

2. What is a truth table?

3. What is the conjunction of p and q? How is it denoted?

4. Give the truth table for the conjunction of p and q.

5. What is the disjunction of p and q? How is it denoted?

6. Give the truth table for the disjunction of p and q.

7. What is the negation of p? How is it denoted?

8. Give the truth table for the negation of p.

19

Sets and Logic

Exercises

Determine whether each sentence in Exercises 1–11 is a proposi-
tion. If the sentence is a proposition, write its negation. (You are
not being asked for the truth values of the sentences that are propo-
sitions.)

1. 2+ 5 = 19. 2. 6+ 9 = 15.

3. x+ 9 = 15.

4. Waiter, will you serve the nuts—I mean, would you serve the
guests the nuts?

5. For some positive integer n, 19340 = n · 17.

6. Audrey Meadows was the original “Alice” in “The Honey-
mooners.”

7. Peel me a grape.

8. The line “Play it again, Sam” occurs in the movie Casablanca.

9. Every even integer greater than 4 is the sum of two primes.

10. The difference of two primes.

�11. This statement is false.

Exercises 12–15 refer to a coin that is flipped 10 times. Write the
negation of the proposition.

12. Ten heads were obtained.

13. Some heads were obtained.

14. Some heads and some tails were obtained.

15. At least one head was obtained.

Given that proposition p is false, proposition q is true, and proposi-
tion r is false, determine whether each proposition in Exercises 16–
21 is true or false.

16. p ∨ q 17. ¬p ∨ ¬q

18. ¬p ∨ q 19. ¬p ∨ ¬(q ∧ r)

20. ¬(p ∨ q) ∧ (¬p ∨ r)

21. (p ∨ ¬r) ∧ ¬((q ∨ r) ∨ ¬(r ∨ p))

Write the truth table of each proposition in Exercises 22–29.

22. p ∧ ¬q 23. (¬p ∨ ¬q) ∨ p

24. (p ∨ q) ∧ ¬p 25. (p ∧ q) ∧ ¬p

26. (p ∧ q) ∨ (¬p ∨ q) 27. ¬(p ∧ q) ∨ (r ∧ ¬p)

28. (p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q)

29. ¬(p ∧ q) ∨ (¬q ∨ r)

In Exercises 30–32, represent the given proposition symbolically
by letting

p : 5 < 9, q : 9 < 7, r : 5 < 7.

Determine whether each proposition is true or false.

30. 5 < 9 and 9 < 7.

31. It is not the case that (5 < 9 and 9 < 7).

32. 5 < 9 or it is not the case that (9 < 7 and 5 < 7).

In Exercises 33–38, formulate the symbolic expression in words
using

p : Lee takes computer science.
q : Lee takes mathematics.

33. ¬p 34. p ∧ q 35. p ∨ q

36. p ∨ ¬q 37. p ∧ ¬q 38. ¬p ∧ ¬q

In Exercises 39–43, formulate the symbolic expression in words
using

p : You play football.
q : You miss the midterm exam.
r : You pass the course.

39. p ∧ q 40. ¬q ∧ r 41. p ∨ q ∨ r

42. ¬(p ∨ q) ∨ r 43. (p∧q)∨(¬q∧r)

In Exercises 44–48, formulate the symbolic expression in words
using

p : Today is Monday.
q : It is raining.
r : It is hot.

44. p ∨ q 45. ¬p ∧ (q ∨ r)

46. ¬(p ∨ q) ∧ r 47. (p ∧ q) ∧ ¬(r ∨ p)

48. (p ∧ (q ∨ r)) ∧ (r ∨ (q ∨ p))

In Exercises 49–54, represent the proposition symbolically by
letting

p : There is a hurricane.
q : It is raining.

49. There is no hurricane.

50. There is a hurricane and it is raining.

51. There is a hurricane, but it is not raining.

52. There is no hurricane and it is not raining.

53. Either there is a hurricane or it is raining (or both).

54. Either there is a hurricane or it is raining, but there is no
hurricane.

In Exercises 55–59, represent the proposition symbolically by
letting

p : You run 10 laps daily.
q : You are healthy.
r : You take multi-vitamins.

55. You run 10 laps daily, but you are not healthy.

56. You run 10 laps daily, you take multi-vitamins, and you are
healthy.

57. You run 10 laps daily or you take multi-vitamins, and you are
healthy.

20

Sets and Logic

58. You do not run 10 laps daily, you do not take multi-vitamins,
and you are not healthy.

59. Either you are healthy or you do not run 10 laps daily, and you
do not take multi-vitamins.

In Exercises 60–65, represent the proposition symbolically by
letting

p : You heard the “Flying Pigs” rock concert.
q : You heard the “Y2K” rock concert.
r : You have sore eardrums.

60. You heard the “Flying Pigs” rock concert, and you have sore
eardrums.

61. You heard the “Flying Pigs” rock concert, but you do not have
sore eardrums.

62. You heard the “Flying Pigs” rock concert, you heard the “Y2K”
rock concert, and you have sore eardrums.

63. You heard either the “Flying Pigs” rock concert or the “Y2K”
rock concert, but you do not have sore eardrums.

64. You did not hear the “Flying Pigs” rock concert and you did
not hear the “Y2K” rock concert, but you have sore eardrums.

65. It is not the case that: You heard the “Flying Pigs” rock concert
or you heard the “Y2K” rock concert or you do not have sore
eardrums.

66. Give the truth table for the exclusive-or of p and q in which
p exor q is true if either p or q, but not both, is true.

In Exercises 67–73, state the meaning of each sentence if “or” is
interpreted as the inclusive-or; then, state the meaning of each sen-
tence if “or” is interpreted as the exclusive-or (see Exercise 66).
In each case, which meaning do you think is intended?

67. To enter Utopia, you must show a driver’s license or a passport.

68. To enter Utopia, you must possess a driver’s license or a
passport.

69. The prerequisite to data structures is a course in Java or C++.

70. The car comes with a cupholder that heats or cools your drink.

71. We offer $1000 cash or 0 percent interest for two years.

72. Do you want fries or a salad with your burger?

73. The meeting will be canceled if fewer than 10 persons sign up
or at least 3 inches of snow falls.

74. At one time, the following ordinance was in effect in
Naperville, Illinois: “It shall be unlawful for any person to keep
more than three [3] dogs and three [3] cats upon his property
within the city.” Was Charles Marko, who owned five dogs
and no cats, in violation of the ordinance? Explain.

75. Write a command to search the Web for national parks in North
or South Dakota.

76. Write a command to search the Web for information on lung
disease other than cancer.

77. Write a command to search the Web for minor league baseball
teams in Illinois that are not in the Midwest League.

3 ➜ Conditional Propositions and Logical Equivalence

The dean has announced that

If the Mathematics Department gets an additional $60,000,

then it will hire one new faculty member. (3.1)

Statement (3.1) states that on the condition that the Mathematics Department gets an
additional $60,000, then the Mathematics Department will hire one new faculty member.
A proposition such as (3.1) is called a conditional proposition.

Definition 3.1 If p and q are propositions, the proposition

if p then q (3.2)

is called a conditional proposition and is denoted

p→ q.

The proposition p is called the hypothesis (or antecedent) and the proposition q is called
the conclusion (or consequent).

Example 3.2 If we define

p : The Mathematics Department gets an additional $60,000,

q : The Mathematics Department will hire one new faculty member,

21

Sets and Logic

then proposition (3.1) assumes the form (3.2). The hypothesis is the statement “The
Mathematics Department gets an additional $60,000,” and the conclusion is the statement
“The Mathematics Department will hire one new faculty member.”

What is the truth value of the dean’s statement (3.1)? First, suppose that the Mathe-
matics Department gets an additional $60,000. If the Mathematics Department does hire
an additional faculty member, surely the dean’s statement is true. (Using the notation
of Example 3.2, if p and q are both true, then p → q is true.) On the other hand, if
the Mathematics Department gets an additional $60,000 and does not hire an additional
faculty member, the dean is wrong—statement (3.1) is false. (If p is true and q is false,
then p → q is false.) Now, suppose that the Mathematics Department does not get an
additional $60,000. In this case, the Mathematics Department might or might not hire an
additional faculty member. (Perhaps a member of the department retires and someone is
hired to replace the retiree. On the other hand, the department might not hire anyone.)
Surely we would not consider the dean’s statement to be false. Thus, if the Mathemat-
ics Department does not get an additional $60,000, the dean’s statement must be true,
regardless of whether the department hires an additional faculty member or not. (If p

is false, then p → q is true whether q is true or false.) This discussion motivates the
following definition.

Definition 3.3 The truth value of the conditional proposition p→ q is defined by the following truth
table:

p q p→ q

T T T
T F F
F T T
F F T

For those who need additional evidence that we should define p→ q to be
true when p is false, we offer further justification. Most people would agree that the
proposition,

For all real numbers x, if x > 0, then x2 > 0, (3.3)

is true. (In Section 5, we will discuss such “for all” statements formally and in detail.)
In the following discussion, we let P(x) denote x > 0 and Q(x) denote x2 > 0. That
proposition (3.3) is true means that no matter which real number we replace x with, the
proposition

if P(x) then Q(x) (3.4)

that results is true. For example, if x= 3, then P(3) and Q(3) are both true (3 > 0 and
32 > 0 are both true), and, by Definition 3.3, (3.4) is true. Now let us consider the situ-
ation when P(x) is false. If x= − 2, then P(−2) is false (−2 > 0 is false) and Q(−2)

is true [(−2)2 > 0 is true]. In order for proposition (3.4) to be true in this case, we must
define p→ q to be true when p is false and q is true. This is exactly what occurs in the
third line of the truth table of Definition 3.3. If x= 0, then P(0) and Q(0) are both false
(0 > 0 and 02 > 0 are both false). In order for proposition (3.4) to be true in this case, we
must define p→ q to be true when both p and q are false. This is exactly what occurs
in the fourth line of the truth table of Definition 3.3. Even more motivation for defining
p→ q to be true when p is false is given in Exercises 74 and 75.

22

Sets and Logic

Example 3.4 Let

p : 1 > 2, q : 4 < 8.

Then p is false and q is true. Therefore,

p→ q is true, q→ p is false.

In expressions that involve the logical operators ∧, ∨, ¬, and→, the conditional
operator→ is evaluated last. For example,

p ∨ q→ ¬r

is interpreted as

(p ∨ q)→ (¬r).

Example 3.5 Assuming that p is true, q is false, and r is true, find the truth value of each proposition.

(a) p ∧ q→ r

(b) p ∨ q→ ¬r

(c) p ∧ (q→ r)

(d) p→ (q→ r)

(a) We first evaluate p∧q because→ is evaluated last. Since p is true and q is false,
p ∧ q is false. Therefore, p ∧ q → r is true (regardless of whether r is true or
false).

(b) We first evaluate ¬r. Since r is true, ¬r is false. We next evaluate p ∨ q. Since
p is true and q is false, p ∨ q is true. Therefore, p ∨ q→ ¬r is false.

(c) Since q is false, q→ r is true (regardless of whether r is true or false). Since p

is true, p ∧ (q→ r) is true.

(d) Since q is false, q → r is true (regardless of whether r is true or false). Thus,
p→ (q→ r) is true (regardless of whether p is true or false).

A conditional proposition that is true because the hypothesis is false is said to be
true by default or vacuously true. For example, if the proposition,

If the Mathematics Department gets an additional $60,000, then it will hire one
new faculty member,

is true because the Mathematics Department did not get an additional $60,000, we would
say that the proposition is true by default or that it is vacuously true.

Some statements not of the form (3.2) may be rephrased as conditional proposi-
tions, as the next example illustrates.

Example 3.6 Restate each proposition in the form (3.2) of a conditional proposition.

(a) Mary will be a good student if she studies hard.

(b) John takes calculus only if he has sophomore, junior, or senior standing.

(c) When you sing, my ears hurt.

(d) A necessary condition for the Cubs to win the World Series is that they sign a
right-handed relief pitcher.

(e) Asufficient condition for Maria to visit France is that she goes to the Eiffel Tower.

23

Sets and Logic

(a) The hypothesis is the clause following if ; thus an equivalent formulation is

If Mary studies hard, then she will be a good student.

(b) The statement means that in order for John to take calculus, he must have sopho-
more, junior, or senior standing. In particular, if he is a freshman, he may not take
calculus. Thus, we can conclude that if he takes calculus, then he has sophomore,
junior, or senior standing. Therefore an equivalent formulation is

If John takes calculus, then he has sophomore, junior, or senior standing.

Notice that

If John has sophomore, junior, or senior standing, then he takes calculus,

is not an equivalent formulation. If John has sophomore, junior, or senior stand-
ing, he may or may not take calculus. (Although eligible to take calculus, he may
have decided not to.)

The “if p then q” formulation emphasizes the hypothesis, whereas the
“p only if q” formulation emphasizes the conclusion; the difference is only
stylistic.

(c) When means the same as if; thus an equivalent formulation is

If you sing, then my ears hurt.

(d) A necessary condition is just that: a condition that is necessary for a particular
outcome to be achieved. The condition does not guarantee the outcome; but, if
the condition does not hold, the outcome will not be achieved. Here, the given
statement means that if the Cubs win the World Series, we can be sure that they
signed a right-handed relief pitcher since, without such a signing, they would
not have won the World Series. Thus, an equivalent formulation of the given
statement is

If the Cubs win the World Series, then they signed a right-handed relief
pitcher.

The conclusion expresses a necessary condition.
Notice that

If the Cubs sign a right-handed relief pitcher, then they win the World
Series,

is not an equivalent formulation. Signing a right-handed relief pitcher does not
guarantee a World Series win. However, not signing a right-handed relief pitcher
guarantees that they will not win the World Series.

(e) Similarly, a sufficient condition is a condition that suffices to guarantee a partic-
ular outcome. If the condition does not hold, the outcome might be achieved in
other ways or it might not be achieved at all; but if the condition does hold, the
outcome is guaranteed. Here, to be sure that Maria visits France, it suffices for her
to go to the Eiffel Tower. (There are surely other ways to ensure that Maria visits
France; for example, she could go to Lyon.) Thus, an equivalent formulation of
the given statement is

If Maria goes to the Eiffel Tower, then she visits France.

The hypothesis expresses a sufficient condition.
Notice that

If Maria visits France, then she goes to the Eiffel Tower,

is not an equivalent formulation. As we have already noted, there are ways other
than going to the Eiffel Tower to ensure that Maria visits France.

24

Sets and Logic

Example 3.4 shows that the proposition p→ q can be true while the proposition
q→ p is false. We call the proposition q→ p the converse of the proposition p→ q.
Thus a conditional proposition can be true while its converse is false.

Example 3.7 Write the conditional proposition,

If Jerry receives a scholarship, then he will go to college,

and its converse symbolically and in words. Also, assuming that Jerry does not receive
a scholarship, but wins the lottery and goes to college anyway, find the truth value of the
original proposition and its converse.

Let

p : Jerry receives a scholarship,

q : Jerry goes to college.

The given proposition can be written symbolically as p→ q. Since the hypothesis p is
false, the conditional proposition is true.

The converse of the proposition is

If Jerry goes to college, then he receives a scholarship.

The converse can be written symbolically as q→ p. Since the hypothesis q is true and
the conclusion p is false, the converse is false.

Another useful proposition is

p if and only if q,

which is considered to be true precisely when p and q have the same truth values (i.e.,
p and q are both true or p and q are both false).

Definition 3.8 If p and q are propositions, the proposition

p if and only if q

is called a biconditional proposition and is denoted

p↔ q.

The truth value of the proposition p↔ q is defined by the following truth table:

p q p↔ q

T T T
T F F
F T F
F F T

It is traditional in mathematical definitions to use “if” to mean “if and only if.”
Consider, for example, the definition of set equality: If sets X and Y have the same
elements, then X and Y are equal. The meaning of this definition is that sets X and Y

have the same elements if and only if X and Y are equal.
An alternative way to state “p if and only if q” is “p is a necessary and sufficient

condition for q.” The proposition “p if and only if q” is sometimes written “p iff q.”

25

Sets and Logic

Example 3.9 The proposition

1 < 5 if and only if 2 < 8 (3.5)

can be written symbolically as

p↔ q

if we define

p : 1 < 5, q : 2 < 8.

Since both p and q are true, the proposition p↔ q is true.

An alternative way to state (3.5) is: A necessary and sufficient condition for 1 < 5
is that 2 < 8.

In some cases, two different propositions have the same truth values no matter
what truth values their constituent propositions have. Such propositions are said to be
logically equivalent.

Definition 3.10 Suppose that the propositions P and Q are made up of the propositions p1, . . . , pn. We
say that P and Q are logically equivalent and write

P ≡ Q,

provided that, given any truth values of p1, . . . , pn, either P and Q are both true, or P

and Q are both false.

Example 3.11 De Morgan’s Laws for Logic

We will verify the first of De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q,

and leave the second as an exercise (see Exercise 76).
By writing the truth tables for P = ¬(p ∨ q) and Q = ¬p ∧ ¬q, we can verify

that, given any truth values of p and q, either P and Q are both true or P and Q are both
false:

p q ¬(p ∨ q) ¬p ∧ ¬q

T T F F
T F F F
F T F F
F F T T

Thus P and Q are logically equivalent.

Example 3.12 Show that, in Java, the expressions

x < 10 || x > 20

and

!(x >= 10 && x <= 20)

are equivalent. (In Java, >= means ≥, and <= means ≤.)

26

Sets and Logic

If we let p denote the expression x >= 10 and q denote the expression x <= 20,
the expression !(x >= 10 && x <= 20) becomes ¬(p∧ q). By De Morgan’s second
law, ¬(p ∧ q) is equivalent to ¬p ∨ ¬q. Since ¬p translates as x < 10 and ¬q trans-
lates as x > 20,¬p∨¬q translates as x < 10 || x > 20. Therefore, the expressions
x < 10 || x > 20 and !(x >= 10 && x <= 20) are equivalent.

Our next example gives a logically equivalent form of the negation of p→ q.

Example 3.13 Show that the negation of p→ q is logically equivalent to p ∧ ¬q.
We must show that

¬(p→ q) ≡ p ∧ ¬q.

By writing the truth tables for P = ¬(p → q) and Q = p ∧ ¬q, we can verify that,
given any truth values of p and q, either P and Q are both true or P and Q are both
false:

p q ¬(p→ q) p ∧ ¬q

T T F F
T F T T
F T F F
F F F F

Thus P and Q are logically equivalent.

Example 3.14 Use the logical equivalence of ¬(p→ q) and p ∧ ¬q (see Example 3.13) to write the
negation of

If Jerry receives a scholarship, then he goes to college,

symbolically and in words.
We let

p : Jerry receives a scholarship,

q : Jerry goes to college.

The given proposition can be written symbolically as p → q. Its negation is logically
equivalent to p ∧ ¬q. In words, this last expression is

Jerry receives a scholarship and he does not go to college.

We now show that, according to our definitions, p↔ q is logically equivalent to
p→ q and q→ p. In words,

p if and only if q

is logically equivalent to

if p then q and if q then p.

Example 3.15 The truth table shows that

p↔ q ≡ (p→ q) ∧ (q→ p) .

27

Sets and Logic

p q p↔ q p→ q q→ p (p→ q) ∧ (q→ p)

T T T T T T
T F F F T F
F T F T F F
F F T T T T

Consider again the definition of set equality: If setsX andY have the same elements,
then X and Y are equal. We noted that the meaning of this definition is that sets X and
Y have the same elements if and only if X and Y are equal. Example 3.15 shows that
an equivalent formulation is: If sets X and Y have the same elements, then X and Y are
equal, and if X and Y are equal, then X and Y have the same elements.

We conclude this section by defining the contrapositive of a conditional propo-
sition. We will see (in Theorem 3.18) that the contrapositive is an alternative, logically
equivalent form of the conditional proposition. Exercise 77 gives another logically equiv-
alent form of the conditional proposition.

Definition 3.16 The contrapositive (or transposition) of the conditional proposition p→ q is the propo-
sition ¬q→ ¬p.

Notice the difference between the contrapositive and the converse. The converse of
a conditional proposition merely reverses the roles of p and q, whereas the contrapositive
reverses the roles of p and q and negates each of them.

Example 3.17 Write the conditional proposition,

If the network is down, then Dale cannot access the Internet,

symbolically. Write the contrapositive and the converse symbolically and in words.Also,
assuming that the network is not down and Dale can access the Internet, find the truth
value of the original proposition, its contrapositive, and its converse.

Let

p : The network is down,

q : Dale cannot access the Internet.

The given proposition can be written symbolically as p→ q. Since the hypothesis p is
false, the conditional proposition is true.

The contrapositive can be written symbolically as ¬q→ ¬p and, in words,

If Dale can access the Internet, then the network is not down.

Since the hypothesis ¬q and conclusion ¬p are both true, the contrapositive is true.
(Theorem 3.18 will show that the conditional proposition and its contrapositive are
logically equivalent, that is, that they always have the same truth value.)

The converse of the given proposition can be written symbolically as q→ p and,
in words,

If Dale cannot access the Internet, then the network is down.

Since the hypothesis q is false, the converse is true.

An important fact is that a conditional proposition and its contrapositive are
logically equivalent.

28

Sets and Logic

Theorem 3.18 The conditional proposition p → q and its contrapositive ¬q → ¬p are logically
equivalent.

Proof The truth table

p q p→ q ¬q→ ¬p

T T T T
T F F F
F T T T
F F T T

shows that p→ q and ¬q→ ¬p are logically equivalent.

In ordinary language, “if” is often used to mean “if and only if.” Consider the
statement

If you fix my computer, then I’ll pay you $50.

The intended meaning is

If you fix my computer, then I’ll pay you $50, and

if you do not fix my computer, then I will not pay you $50,

which is logically equivalent to (see Theorem 3.18)

If you fix my computer, then I’ll pay you $50, and

if I pay you $50, then you fix my computer,

which, in turn, is logically equivalent to (see Example 3.15)

You fix my computer if and only if I pay you $50.

In ordinary discourse, the intended meaning of statements involving logical operators can
often (but, not always!) be inferred. However, in mathematics and science, precision is
required. Only by carefully defining what we mean by terms such as “if” and “if and only
if” can we obtain unambiguous and precise statements. In particular, logic carefully dis-
tinguishes among conditional, biconditional, converse, and contrapositive propositions.

Problem-Solving Tips

In formal logic, “if” and “if and only if” are quite different. The conditional proposition
p→ q (if p then q) is true except when p is true and q is false. On the other hand, the
biconditional proposition p↔ q (p if and only if q) is true precisely when p and q are
both true or both false.

To determine whether propositions P and Q, made up of the propositions p1, . . . ,

pn, are logically equivalent, write the truth tables for P and Q. If all of the entries for P

and Q are always both true or both false, then P and Q are equivalent. If some entry is
true for one of P or Q and false for the other, then P and Q are not equivalent.

De Morgan’s laws for logic

¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q

give formulas for negating “or” (∨) and negating “and” (∧). Roughly speaking, negating
“or” results in “and,” and negating “and” results in “or.”

Example 3.13 states a very important equivalence

¬(p→ q) ≡ p ∧ ¬q.

29

Sets and Logic

This equivalence shows that the negation of the conditional proposition can be written
using the “and” (∧) operator. Notice that there is no conditional operator on the right-hand
side of the equation.

Section Review Exercises

1. What is a conditional proposition? How is it denoted?

2. Give the truth table for the conditional proposition.

3. In a conditional proposition, what is the hypothesis?

4. In a conditional proposition, what is the conclusion?

5. What is a necessary condition?

6. What is a sufficient condition?

7. What is the converse of p→ q?

8. What is a biconditional proposition? How is it denoted?

9. Give the truth table for the biconditional proposition.

10. What does it mean for P to be logically equivalent to Q?

11. State De Morgan’s laws for logic.

12. What is the contrapositive of p→ q?

Exercises

In Exercises 1–10, restate each proposition in the form (3.2) of a
conditional proposition.

1. Joey will pass the discrete mathematics exam if he studies hard.

2. Rosa may graduate if she has 160 quarter-hours of credits.

3. A necessary condition for Fernando to buy a computer is that
he obtain $2000.

4. A sufficient condition for Katrina to take the algorithms course
is that she pass discrete mathematics.

5. Getting that job requires knowing someone who knows the
boss.

6. You can go to the Super Bowl unless you can’t afford the ticket.

7. You may inspect the aircraft only if you have the proper secu-
rity clearance.

8. When better cars are built, Buick will build them.

9. The audience will go to sleep if the chairperson gives the
lecture.

10. The program is readable only if it is well structured.

11. Write the converse of each proposition in Exercises 1–10.

12. Write the contrapositive of each proposition in Exercises 1–10.

Assuming that p and r are false and that q and s are true, find the
truth value of each proposition in Exercises 13–20.

13. p→ q 14. ¬p→ ¬q

15. ¬(p→ q) 16. (p→ q) ∧ (q→ r)

17. (p→ q)→ r 18. p→ (q→ r)

19. (s→ (p ∧ ¬r)) ∧ ((p→ (r ∨ q)) ∧ s)

20. ((p ∧ ¬q)→ (q ∧ r))→ (s ∨ ¬q)

Exercises 21–30 refer to the propositions p, q, and r; p is true, q

is false, and r’s status is unknown at this time. Tell whether each
proposition is true, is false, or has unknown status at this time.

21. p ∨ r 22. p ∧ r 23. p→ r

24. q→ r 25. r→ p 26. r→ q

27. (p ∧ r)↔ r 28. (p ∨ r)↔ r 29. (q ∧ r)↔ r

30. (q ∨ r)↔ r

Determine the truth value of each proposition in Exercises 31–39.

31. If 3+ 5 < 2, then 1+ 3 = 4.

32. If 3+ 5 < 2, then 1+ 3 �= 4.

33. If 3+ 5 > 2, then 1+ 3 = 4.

34. If 3+ 5 > 2, then 1+ 3 �= 4.

35. 3+ 5 > 2 if and only if 1+ 3 = 4.

36. 3+ 5 < 2 if and only if 1+ 3 = 4.

37. 3+ 5 < 2 if and only if 1+ 3 �= 4.

38. If the earth has six moons, then 1 < 3.

39. If 1 < 3, then the earth has six moons.

In Exercises 40–43, represent the given proposition symbolically
by letting

p : 4 < 2, q : 7 < 10, r : 6 < 6.

40. If 4 < 2, then 7 < 10.

41. If (4 < 2 and 6 < 6), then 7 < 10.

42. If it is not the case that (6 < 6 and 7 is not less than 10), then
6 < 6.

43. 7 < 10 if and only if (4 < 2 and 6 is not less than 6).

In Exercises 44–49, represent the given proposition symbolically
by letting

p : You run 10 laps daily.
q : You are healthy.
r : You take multi-vitamins.

44. If you run 10 laps daily, then you will be healthy.

45. If you do not run 10 laps daily or do not take multi-vitamins,
then you will not be healthy.

30

Sets and Logic

46. Taking multi-vitamins is sufficient for being healthy.

47. You will be healthy if and only if you run 10 laps daily and
take multi-vitamins.

48. If you are healthy, then you run 10 laps daily or you take multi-
vitamins.

49. If you are healthy and run 10 laps daily, then you do not take
multi-vitamins.

In Exercises 50–55, formulate the symbolic expression in words
using

p : Today is Monday,

q : It is raining,

r : It is hot.

50. p→ q 51. ¬q→ (r ∧ p)

52. ¬p→ (q ∨ r) 53. ¬(p ∨ q)↔ r

54. (p ∧ (q ∨ r))→ (r ∨ (q ∨ p))

55. (p ∨ (¬p ∧ ¬(q ∨ r)))→ (p ∨ ¬(r ∨ q))

In Exercises 56–59, write each conditional proposition symboli-
cally. Write the converse and contrapositive of each proposition
symbolically and in words. Also, find the truth value of each con-
ditional proposition, its converse, and its contrapositive.

56. If 4 < 6, then 9 > 12. 57. If 4 > 6, then 9 > 12.

58. |1| < 3 if −3 < 1 < 3. 59. |4| < 3 if −3 < 4 < 3.

For each pair of propositions P and Q in Exercises 60–69, state
whether or not P ≡ Q.

60. P = p, Q = p ∨ q 61. P = p ∧ q, Q = ¬p ∨ ¬q

62. P = p→ q, Q = ¬p ∨ q

63. P = p ∧ (¬q ∨ r), Q = p ∨ (q ∧ ¬r)

64. P = p ∧ (q ∨ r), Q = (p ∨ q) ∧ (p ∨ r)

65. P = p→ q, Q = ¬q→ ¬p

66. P = p→ q, Q = p↔ q

67. P = (p→ q) ∧ (q→ r), Q = p→ r

68. P = (p→ q)→ r, Q = p→ (q→ r)

69. P = (s→ (p ∧ ¬r)) ∧ ((p→ (r ∨ q)) ∧ s), Q = p ∨ t

Using De Morgan’s laws for logic, write the negation of each propo-
sition in Exercises 70–73.

70. Pat will use the treadmill or lift weights.

71. Dale is smart and funny.

72. Shirley will either take the bus or catch a ride to school.

73. Red pepper and onions are required to make chili.

Exercises 74 and 75 provide further motivation for defining p→ q

to be true when p is false. We consider changing the truth table for
p→ q when p is false. For the first change, we call the resulting
operator imp1 (Exercise 74), and, for the second change, we call
the resulting operator imp2 (Exercise 75). In both cases, we see
that pathologies result.

74. Define the truth table for imp1 by

p q p imp1 q

T T T
T F F
F T F
F F T

Show that p imp1 q ≡ q imp1 p.

75. Define the truth table for imp2 by

p q p imp2 q

T T T
T F F
F T T
F F F

(a) Show that

(p imp2 q) ∧ (q imp2 p) �≡ p↔ q. (3.6)

(b) Show that (3.6) remains true if we change the third row of
imp2’s truth table to F T F.

76. Verify the second of De Morgan’s laws ¬(p∧ q) ≡ ¬p∨¬q.

77. Show that (p→ q) ≡ (¬p ∨ q).

4 ➜ Arguments and Rules of Inference

Consider the following sequence of propositions.

The bug is either in module 17 or in module 81.

The bug is a numerical error.

Module 81 has no numerical error. (4.1)

Assuming that these statements are true, it is reasonable to conclude

The bug is in module 17. (4.2)

31

Sets and Logic

This process of drawing a conclusion from a sequence of propositions is called deductive
reasoning. The given propositions, such as (4.1), are called hypotheses or premises, and
the proposition that follows from the hypotheses, such as (4.2), is called the conclusion.
A (deductive) argument consists of hypotheses together with a conclusion. Many proofs
in mathematics and computer science are deductive arguments.

Any argument has the form

If p1 and p2 and · · · and pn, then q. (4.3)

Argument (4.3) is said to be valid if the conclusion follows from the hypotheses; that is,
if p1 and p2 and · · · and pn are true, then q must also be true. This discussion motivates
the following definition.

Definition 4.1 An argument is a sequence of propositions written

p1

p2
...

pn

∴ q

or

p1, p2, . . . , pn/∴ q.

The symbol ∴ is read “therefore.” The propositions p1, p2, . . . , pn are called the
hypotheses (or premises), and the proposition q is called the conclusion. The argument
is valid provided that if p1 and p2 and · · · and pn are all true, then q must also be true;
otherwise, the argument is invalid (or a fallacy).

In a valid argument, we sometimes say that the conclusion follows from the
hypotheses. Notice that we are not saying that the conclusion is true; we are only saying
that if you grant the hypotheses, you must also grant the conclusion. An argument is
valid because of its form, not because of its content.

Each step of an extended argument involves drawing intermediate conclusions.
For the argument as a whole to be valid, each step of the argument must result in a valid,
intermediate conclusion. Rules of inference, brief, valid arguments, are used within a
larger argument.

Example 4.2 Determine whether the argument
p→ q

p

∴ q

is valid.
[First solution] We construct a truth table for all the propositions involved:

p q p→ q p q

T T T T T
T F F T F
F T T F T
F F T F F

32

Sets and Logic

We observe that whenever the hypotheses p→ q and p are true, the conclusion q is also
true; therefore, the argument is valid.

[Second solution] We can avoid writing the truth table by directly verifying that
whenever the hypotheses are true, the conclusion is also true.

Suppose that p → q and p are true. Then q must be true, for otherwise p → q

would be false. Therefore, the argument is valid.

The argument in Example 4.2 is used extensively and is known as the modus
ponens rule of inference or law of detachment. Several useful rules of inference for
propositions, which may be verified using truth tables (see Exercises 24–29), are listed
in Figure 4.1.

Rule of Inference Name Rule of Inference Name

p→ q

p

∴ q Modus ponens

p

q

∴ p ∧ q Conjunction

p→ q

¬q

∴ ¬p Modus tollens

p→ q

q→ r

∴ p→ r Hypothetical syllogism

p

∴ p ∨ q Addition

p ∨ q

¬p

∴ q Disjunctive syllogism

p ∧ q

∴ p Simplification

Figure 4.1 Rules of inference for propositions.

Example 4.3 Which rule of inference is used in the following argument?
If the computer has one gigabyte of memory, then it can run “Blast ’em.” If the

computer can run “Blast ’em,” then the sonics will be impressive. Therefore, if the
computer has one gigabyte of memory, then the sonics will be impressive.

Let p denote the proposition “the computer has one gigabyte of memory,” let q

denote the proposition “the computer can run ‘Blast ’em,’” and let r denote the propo-
sition “the sonics will be impressive.” The argument can be written symbolically as

p→ q

q→ r

∴ p→ r

Therefore, the argument uses the hypothetical syllogism rule of inference.

Example 4.4 Represent the argument
If 2 = 3, then I ate my hat.

I ate my hat.

∴ 2 = 3

symbolically and determine whether the argument is valid.

33

Sets and Logic

If we let

p : 2 = 3, q : I ate my hat,

the argument may be written

p→ q

q

∴ p

If the argument is valid, then whenever p→ q and q are both true, p must also be
true. Suppose that p → q and q are true. This is possible if p is false and q is true. In
this case, p is not true; thus the argument is invalid. This fallacy is known as the fallacy
of affirming the conclusion.

We can also determine whether the argument in Example 4.4 is valid or not by
examining the truth table of Example 4.2. In the third row of the table, the hypotheses
are true and the conclusion is false; thus the argument is invalid.

Example 4.5 Represent the argument

The bug is either in module 17 or in module 81.

The bug is a numerical error.

Module 81 has no numerical error.

∴ The bug is in module 17.

given at the beginning of this section symbolically and show that it is valid.
If we let

p : The bug is in module 17.

q : The bug is in module 81.

r : The bug is a numerical error.

the argument may be written

p ∨ q

r

r→ ¬q

∴ p

From r→ ¬q and r, we may use modus ponens to conclude¬q. From p∨q and¬q, we
may use the disjunctive syllogism to conclude p. Thus the conclusion p follows from
the hypotheses and the argument is valid.

Example 4.6 We are given the following hypotheses: If the Chargers get a good linebacker, then the
Chargers can beat the Broncos. If the Chargers can beat the Broncos, then the Chargers
can beat the Jets. If the Chargers can beat the Broncos, then the Chargers can beat the
Dolphins. The Chargers get a good linebacker. Show by using the rules of inference (see
Figure 4.1) that the conclusion, the Chargers can beat the Jets and the Chargers can beat
the Dolphins, follows from the hypotheses.

34

Sets and Logic

Let p denote the proposition “the Chargers get a good linebacker,” let q denote
the proposition “the Chargers can beat the Broncos,” let r denote the proposition “the
Chargers can beat the Jets,” and let s denote the proposition “the Chargers can beat the
Dolphins.” Then the hypotheses are:

p→ q

q→ r

q→ s

p.

From p → q and q → r, we may use the hypothetical syllogism to conclude p → r.
From p→ r and p, we may use modus ponens to conclude r. From p→ q and q→ s,
we may use the hypothetical syllogism to conclude p→ s. From p→ s and p, we may
use modus ponens to conclude s. From r and s, we may use conjunction to conclude r∧s.
Since r∧s represents the proposition “the Chargers can beat the Jets and the Chargers can
beat the Dolphins,” we conclude that the conclusion does follow from the hypotheses.

Problem-Solving Tips

The validity of a very short argument or proof might be verified using a truth table. In
practice, arguments and proofs use rules of inference.

Section Review Exercises

1. What is deductive reasoning?

2. What is a hypothesis in an argument?

3. What is a premise in an argument?

4. What is a conclusion in an argument?

5. What is a valid argument?

6. What is an invalid argument?

7. State the modus ponens rule of inference.

8. State the modus tollens rule of inference.

9. State the addition rule of inference.

10. State the simplification rule of inference.

11. State the conjunction rule of inference.

12. State the hypothetical syllogism rule of inference.

13. State the disjunctive syllogism rule of inference.

Exercises

Formulate the arguments of Exercises 1–5 symbolically and deter-
mine whether each is valid. Let

p : I study hard. q : I get A’s. r : I get rich.

1. If I study hard, then I get A’s.

I study hard.

∴ I get A’s.

2. If I study hard, then I get A’s.

If I don’t get rich, then I don’t get A’s.

∴ I get rich.

3. I study hard if and only if I get rich.

I get rich.

∴ I study hard.

4. If I study hard or I get rich, then I get A’s.

I get A’s.

∴ If I don’t study hard, then I get rich.

5. If I study hard, then I get A’s or I get rich.

I don’t get A’s and I don’t get rich.

∴ I don’t study hard.

In Exercises 6–10, write the given argument in words and determine
whether each argument is valid. Let

p : 4 megabytes is better than no memory at all.

q : We will buy more memory.

r : We will buy a new computer.

35

Sets and Logic

6. p→ r

p→ q

∴ p→ (r ∧ q)

7. p→ (r ∨ q)

r→ ¬q

∴ p→ r

8. p→ r

r→ q

∴ q

9. ¬r→ ¬p

r

∴ p

10. p→ r

r→ q

p

∴ q

Determine whether each argument in Exercises 11– 15 is valid.

11. p→ q

¬p

∴ ¬q

12. p→ q

¬q

∴ ¬p

13. p ∧ ¬p

∴ q

14. p→ (q→ r)

q→ (p→ r)

∴ (p ∨ q)→ r

15. (p→ q) ∧ (r→ s)

p ∨ r

∴ q ∨ s

16. Show that if

p1, p2/∴ p and p, p3, . . . , pn/∴ c

are valid arguments, the argument

p1, p2, . . . , pn/∴ c

is also valid.

17. Comment on the following argument:

Floppy disk storage is better than nothing.

Nothing is better than a hard disk drive.

∴ Floppy disk storage is better than a hard disk drive.

For each argument in Exercises 18–20, tell which rule of inference
is used.

18. Fishing is a popular sport. Therefore, fishing is a popular sport
or lacrosse is wildly popular in California.

19. If fishing is a popular sport, then lacrosse is wildly popular in
California. Fishing is a popular sport. Therefore, lacrosse is
wildly popular in California.

20. Fishing is a popular sport or lacrosse is wildly popular in
California. Lacrosse is not wildly popular in California. There-
fore, fishing is a popular sport.

In Exercises 21–23, give an argument using rules of inference to
show that the conclusion follows from the hypotheses.

21. Hypotheses: If there is gas in the car, then I will go to the store.
If I go to the store, then I will get a soda. There is gas in the
car. Conclusion: I will get a soda.

22. Hypotheses: If there is gas in the car, then I will go to the store.
If I go to the store, then I will get a soda. I do not get a soda.
Conclusion: There is not gas in the car, or the car transmission
is defective.

23. Hypotheses: If Jill can sing or Dweezle can play, then I’ll
buy the compact disc. Jill can sing. I’ll buy the compact disc
player. Conclusion: I’ll buy the compact disc and the compact
disc player.

24. Show that modus tollens (see Figure 4.1) is valid.

25. Show that addition (see Figure 4.1) is valid.

26. Show that simplification (see Figure 4.1) is valid.

27. Show that conjunction (see Figure 4.1) is valid.

28. Show that hypothetical syllogism (see Figure 4.1) is valid.

29. Show that disjunctive syllogism (see Figure 4.1) is valid.

5 ➜ Quantifiers

The logic in Sections 2 and 3 that deals with propositions is incapable of describing
most of the statements in mathematics and computer science. Consider, for example, the
statement

p : n is an odd integer.

Aproposition is a statement that is either true or false. The statement p is not a proposition,
because whether p is true or false depends on the value of n. For example, p is true if
n= 103 and false if n= 8. Since most of the statements in mathematics and computer
science use variables, we must extend the system of logic to include such statements.

Definition 5.1 Let P(x) be a statement involving the variable x and let D be a set. We call P a proposi-
tional function or predicate (with respect to D) if for each x ∈ D, P(x) is a proposition.
We call D the domain of discourse of P .

In Definition 5.1, the domain of discourse specifies the allowable values for x.

36

Sets and Logic

Example 5.2 Let P(n) be the statement

n is an odd integer.

Then P is a propositional function with domain of discourse Z+ since for each n ∈ Z+,
P(n) is a proposition [i.e., for each n ∈ Z+, P(n) is true or false but not both]. For
example, if n = 1, we obtain the proposition

P(1) : 1 is an odd integer

(which is true). If n = 2, we obtain the proposition

P(2) : 2 is an odd integer

(which is false).

A propositional function P , by itself, is neither true nor false. However, for each
x in the domain of discourse, P(x) is a proposition and is, therefore, either true or false.
We can think of a propositional function as defining a class of propositions, one for each
element in the domain of discourse. For example, if P is a propositional function with
domain of discourse Z+, we obtain the class of propositions

P(1), P(2),

Each of P(1), P(2), . . . is either true or false.

Example 5.3 The following are propositional functions.

(a) n2 + 2n is an odd integer (domain of discourse = Z+).

(b) x2 − x− 6 = 0 (domain of discourse = R).

(c) The baseball player hit over .300 in 2003 (domain of discourse= set of baseball
players).

(d) The restaurant rated over two stars in Chicago magazine (domain of discourse=
restaurants rated in Chicago magazine).

In statement (a), for each positive integer n, we obtain a proposition; therefore,
statement (a) is a propositional function.

Similarly, in statement (b), for each real number x, we obtain a proposition; there-
fore, statement (b) is a propositional function.

We can regard the variable in statement (c) as “baseball player.” Whenever we
substitute a particular baseball player for the variable “baseball player,” the statement
is a proposition. For example, if we substitute “Barry Bonds” for “baseball player,”
statement (c) is

Barry Bonds hit over .300 in 2003,

which is true. If we substitute “Alex Rodriguez” for “baseball player,” statement (c) is

Alex Rodriguez hit over .300 in 2003,

which is false. Thus statement (c) is a propositional function.
Statement (d) is similar in form to statement (c): Here the variable is “restau-

rant.” Whenever we substitute a restaurant rated in Chicago magazine for the variable

37

Sets and Logic

“restaurant,” the statement is a proposition. For example, if we substitute “Yugo Inn”
for “restaurant,” statement (d) is

Yugo Inn rated over two stars in Chicago magazine,

which is false. If we substitute “Le Français” for “restaurant,” statement (d) is

Le Français rated over two stars in Chicago magazine,

which is true. Thus statement (d) is a propositional function.

Most of the statements in mathematics and computer science use terms such as “for
every” and “for some.” For example, in mathematics we have the following theorem:

For every triangle T , the sum of the angles of T is equal to 180◦.

In computer science, we have this theorem:

For some program P , the output of P is P itself.

We now extend the logical system of Sections 2 and 3 so that we can handle statements
that include “for every” and “for some.”

Definition 5.4 Let P be a propositional function with domain of discourse D. The statement

for every x, P(x)

is said to be a universally quantified statement. The symbol ∀ means “for every.” Thus
the statement

for every x, P(x)

may be written

∀x P(x).

The symbol ∀ is called a universal quantifier.
The statement

∀x P(x)

is true if P(x) is true for every x in D. The statement

∀x P(x)

is false if P(x) is false for at least one x in D.

Example 5.5 Consider the universally quantified statement

∀x(x2 ≥ 0).

The domain of discourse is R. The statement is true because, for every real number x, it
is true that the square of x is positive or zero.

According to Definition 5.4, the universally quantified statement

∀x P(x)

is false if for at least one x in the domain of discourse, the proposition P(x) is false.
A value x in the domain of discourse that makes P(x) false is called a counterexample
to the statement

∀x P(x).

38

Sets and Logic

Example 5.6 Consider the universally quantified statement

∀x(x2 − 1 > 0).

The domain of discourse is R. The statement is false since, if x = 1, the proposition

12 − 1 > 0

is false. The value 1 is a counterexample to the statement

∀x(x2 − 1 > 0).

Although there are values of x that make the propositional function true, the counterex-
ample provided shows that the universally quantified statement is false.

Example 5.7 Suppose thatP is a propositional function whose domain of discourse is the set {d1, . . . , dn}.
The following pseudocode determines whether

∀x P(x)

is true or false:

for i = 1 to n

if (¬P(di))

return false

return true

The for loop examines the members di of the domain of discourse one by one. If it finds
a value di for which P(di) is false, the condition ¬P(di) in the if statement is true; so the
code returns false [to indicate that ∀x P(x) is false] and terminates. In this case, di is a
counterexample. If P(di) is true for every di, the condition ¬P(di) in the if statement is
always false. In this case, the for loop runs to completion, after which the code returns
true [to indicate that ∀x P(x) is true] and terminates.

Notice that if ∀x P(x) is true, the for loop necessarily runs to completion so that
every member of the domain of discourse is checked to ensure that P(x) is true for every
x. If ∀x P(x) is false, the for loop terminates as soon as one element x of the domain of
discourse is found for which P(x) is false.

We call the variable x in the propositional function P(x) a free variable. (The idea
is that x is “free” to roam over the domain of discourse.) We call the variable x in the
universally quantified statement

∀x P(x) (5.1)

a bound variable. (The idea is that x is “bound” by the quantifier ∀.)
We previously pointed out that a propositional function does not have a truth value.

On the other hand, Definition 5.4 assigns a truth value to the quantified statement (5.1). In
sum, a statement with free (unquantified) variables is not a proposition, and a statement
with no free variables (no unquantified variables) is a proposition.

39

Sets and Logic

Alternative ways to write

∀x P(x)

are

for all x, P(x)

and

for any x, P(x).

The symbol ∀ may be read “for every,” “for all,” or “for any.”
To prove that

∀x P(x)

is true, we must, in effect, examine every value of x in the domain of discourse and show
that for every x, P(x) is true. One technique for proving that

∀x P(x)

is true is to let x denote an arbitrary element of the domain of discourse D. The argument
then proceeds using the symbol x. Whatever is claimed about x must be true no matter
what value x might have in D. The argument must conclude by proving that P(x) is true.

Sometimes to specify the domain of discourse D, we write a universally quantified
statement as

for every x in D, P(x).

Example 5.8 The universally quantified statement

for every real number x, if x > 1, then x+ 1 > 1

is true. This time we must verify that the statement

if x > 1, then x+ 1 > 1

is true for every real number x.
Let x be any real number whatsoever. It is true that for any real number x, either

x ≤ 1 or x > 1. If x ≤ 1, the conditional proposition

if x > 1, then x+ 1 > 1

is vacuously true. (The proposition is true because the hypothesis x > 1 is false. Recall
that when the hypothesis is false, the conditional proposition is true regardless of whether
the conclusion is true or false.) In most arguments, the vacuous case is omitted.

Now suppose that x > 1. Regardless of the specific value of x, x+ 1 > x. Since

x+ 1 > x and x > 1,

we conclude that x + 1 > 1, so the conclusion is true. If x > 1, the hypothesis and
conclusion are both true; hence the conditional proposition

if x > 1, then x+ 1 > 1

is true.

40

Sets and Logic

We have shown that for every real number x, the proposition

if x > 1, then x+ 1 > 1

is true. Therefore, the universally quantified statement

for every real number x, if x > 1, then x+ 1 > 1

is true.

The method of disproving the statement

∀x P(x)

is quite different from the method used to prove that the statement is true. To show that
the universally quantified statement

∀x P(x)

is false, it is sufficient to find one value x in the domain of discourse for which the
proposition P(x) is false. Such a value, we recall, is called a counterexample to the
universally quantified statement.

We turn next to existentially quantified statements.

Definition 5.9 Let P be a propositional function with domain of discourse D. The statement

there exists x, P(x)

is said to be an existentially quantified statement. The symbol ∃ means “there exists.”
Thus the statement

there exists x, P(x)

may be written

∃x P(x).

The symbol ∃ is called an existential quantifier.
The statement

∃x P(x)

is true if P(x) is true for at least one x in D. The statement

∃x P(x)

is false if P(x) is false for every x in D.

Example 5.10 Consider the existentially quantified statement

∃x
(

x

x2 + 1
= 2

5

)
.

The domain of discourse is R. The statement is true because it is possible to find at least
one real number x for which the proposition

x

x2 + 1
= 2

5

41

Sets and Logic

is true. For example, if x = 2, we obtain the true proposition

2

22 + 1
= 2

5
.

It is not the case that every value of x results in a true proposition. For example, if x = 1,
the proposition

1

12 + 1
= 2

5

is false.

According to Definition 5.9, the existentially quantified statement

∃x P(x)

is false if for every x in the domain of discourse, the proposition P(x) is false.

Example 5.11 To verify that the existentially quantified statement

∃x ∈ R
(

1

x2 + 1
> 1

)

is false, we must show that

1

x2 + 1
> 1

is false for every real number x. Now

1

x2 + 1
> 1

is false precisely when

1

x2 + 1
≤ 1

is true. Thus, we must show that

1

x2 + 1
≤ 1

is true for every real number x. To this end, let x be any real number whatsoever. Since
0 ≤ x2, we may add 1 to both sides of this inequality to obtain 1 ≤ x2 + 1. If we divide
both sides of this last inequality by x2 + 1, we obtain

1

x2 + 1
≤ 1.

Therefore, the statement

1

x2 + 1
≤ 1

is true for every real number x. Thus the statement

1

x2 + 1
> 1

is false for every real number x. We have shown that the existentially quantified statement

∃x
(

1

x2 + 1
> 1

)

is false.

42

Sets and Logic

Example 5.12 Suppose thatP is a propositional function whose domain of discourse is the set {d1, . . . , dn}.
The following pseudocode determines whether

∃x P(x)

is true or false:

for i = 1 to n

if (P(di))

return true

return false

The for loop examines the members di in the domain of discourse one by one. If it finds
a value di for which P(di) is true, the condition P(di) in the if statement is true; so the
code returns true [to indicate that ∃x P(x) is true] and terminates. In this case, the code
found a value in the domain of discourse, namely di, for which P(di) is true. If P(di) is
false for every di, the condition P(di) in the if statement is always false. In this case, the
for loop runs to completion, after which the code returns false [to indicate that ∃x P(x)

is true] and terminates.
Notice that if ∃x P(x) is true, the for loop terminates as soon as one element x

in the domain of discourse is found for which P(x) is true. If ∃x P(x) is false, the for
loop necessarily runs to completion so that every member in the domain of discourse is
checked to ensure that P(x) is false for every x.

Alternative ways to write

∃x P(x)

are

there exists x such that, P(x)

and

for some x, P(x)

and

for at least one x, P(x).

The symbol ∃ may be read “there exists,” “for some,” or “for at least one.”

Example 5.13 Consider the existentially quantified statement

for some n, if n is prime, then n+ 1, n+ 2, n+ 3, and n+ 4 are not prime.

The domain of discourse is Z+. This statement is true because we can find at least one
positive integer n that makes the conditional proposition

if n is prime, then n+ 1, n+ 2, n+ 3, and n+ 4 are not prime

true. For example, if n = 23, we obtain the true proposition

if 23 is prime, then 24, 25, 26, and 27 are not prime.

(This conditional proposition is true because both the hypothesis “23 is prime” and the
conclusion “24, 25, 26, and 27 are not prime” are true.) Some values of n make the

43

Sets and Logic

conditional proposition true (e.g., n = 23, n = 4, n = 47), while others make it false
(e.g., n = 2, n = 101). The point is that we found one value that makes the conditional
proposition

if n is prime, then n+ 1, n+ 2, n+ 3, and n+ 4 are not prime

true. For this reason, the existentially quantified statement

for some n, if n is prime, then n+ 1, n+ 2, n+ 3, and n+ 4 are not prime

is true.

In Example 5.11, we showed that an existentially quantified statement was false by
proving that a related universally quantified statement was true. The following theorem
makes this relationship precise. The theorem generalizes De Morgan’s laws of logic
(Example 3.11).

Theorem 5.14 Generalized De Morgan’s Laws for Logic
If P is a propositional function, each pair of propositions in (a) and (b) has the same
truth values (i.e., either both are true or both are false).

(a) ¬(∀x P(x)); ∃x¬P(x)

(b) ¬(∃x P(x)); ∀x¬P(x)

Proof We prove only part (a) and leave the proof of part (b) to the reader
(Exercise 68).

Suppose that the proposition ¬(∀x P(x)) is true. Then the proposition ∀x P(x)

is false. By Definition 5.4, the proposition ∀x P(x) is false precisely when P(x) is
false for at least one x in the domain of discourse. But if P(x) is false for at least
one x in the domain of discourse, ¬P(x) is true for at least one x in the domain of
discourse. By Definition 5.9, when ¬P(x) is true for at least one x in the domain
of discourse, the proposition ∃x¬P(x) is true. Thus, if the proposition ¬(∀x P(x))

is true, the proposition ∃x¬P(x) is true. Similarly, if the proposition ¬(∀x P(x)) is
false, the proposition ∃x¬P(x) is false.

Therefore, the pair of propositions in part (a) always has the same truth values.

Example 5.15 Let P(x) be the statement

1

x2 + 1
> 1.

In Example 5.11 we showed that

∃x P(x)

is false by verifying that

∀x¬P(x) (5.2)

is true.
The technique can be justified by appealing to Theorem 5.14. After we prove that

proposition (5.2) is true, we may negate (5.2) and conclude that

¬(∀x¬P(x))

44

Sets and Logic

is false. By Theorem 5.14, part (a),

∃x¬¬P(x)

or, equivalently,

∃x P(x)

is also false.

Example 5.16 Write the statement

Every rock fan loves U2,

symbolically. Write its negation symbolically and in words.
Let P(x) be the propositional function “x loves U2.” The given statement can be

written symbolically as

∀x P(x).

The domain of discourse is the set of rock fans.
By Theorem 5.14, part (a), the negation of the preceding proposition ¬(∀x P(x))

is equivalent to

∃x¬P(x).

In words, this last proposition can be stated as: There exists a rock fan who does not
love U2.

Example 5.17 Write the statement

Some birds cannot fly,

symbolically. Write its negation symbolically and in words.
Let P(x) be the propositional function “x flies.” The given statement can be written

symbolically as

∃x¬P(x).

[The statement could also be written ∃x Q(x), where Q(x) is the propositional function
“x cannot fly.” As in algebra, there are many ways to represent text symbolically.] The
domain of discourse is the set of birds.

By Theorem 5.14, part (b), the negation¬(∃x¬P(x)) of the preceding proposition
is equivalent to

∀x¬¬P(x)

or, equivalently,

∀x P(x).

In words, this last proposition can be stated as: Every bird can fly.

A universally quantified proposition generalizes the proposition

P1 ∧ P2 ∧ · · · ∧ Pn (5.3)

in the sense that the individual propositions P1, P2, . . . , Pn are replaced by an arbitrary
family P(x), where x is in the domain of discourse, and (5.3) is replaced by

∀x P(x). (5.4)

45

Sets and Logic

The proposition (5.3) is true if and only if Pi is true for every i = 1, . . . , n. The truth
value of proposition (5.4) is defined similarly: (5.4) is true if and only if P(x) is true for
every x in the domain of discourse.

Example 5.18 Suppose that the domain of discourse of the propositional function P is {−1, 0, 1}. The
propositional function ∀x P(x) is equivalent to

P(−1) ∧ P(0) ∧ P(1).

Similarly, an existentially quantified proposition generalizes the proposition

P1 ∨ P2 ∨ · · · ∨ Pn (5.5)

in the sense that the individual propositions P1, P2, . . . , Pn are replaced by an arbitrary
family P(x), where x is in the domain of discourse, and (5.5) is replaced by

∃x P(x).

Example 5.19 Suppose that the domain of discourse of the propositional function P is {1, 2, 3, 4}. The
propositional function ∃x P(x) is equivalent to

P(1) ∨ P(2) ∨ P(3) ∨ P(4).

The preceding observations explain how Theorem 5.14 generalizes De Morgan’s
laws for logic (Example 3.11). Recall that the first of De Morgan’s law for logic states
that the propositions

¬(P1 ∨ P2 ∨ · · · ∨ Pn) and ¬P1 ∧ ¬P2 ∧ · · · ∧ ¬Pn

have the same truth values. In Theorem 5.14, part (b),

¬P1 ∧ ¬P2 ∧ · · · ∧ ¬Pn

is replaced by

∀x¬P(x)

and

¬(P1 ∨ P2 ∨ · · · ∨ Pn)

is replaced by

¬(∃x P(x)).

Example 5.20 Statements in words often have more than one possible interpretation. Consider the
well-known quotation from Shakespeare’s “The Merchant of Venice”:

All that glitters is not gold.

One possible interpretation of this quotation is: Every object that glitters is not gold.
However, this is surely not what Shakespeare intended. The correct interpretation is:
Some object that glitters is not gold.

If we let P(x) be the propositional function “x glitters” and Q(x) be the proposi-
tional function “x is gold,” the first interpretation becomes

∀x(P(x)→ ¬Q(x)), (5.6)

46

Sets and Logic

and the second interpretation becomes

∃x(P(x) ∧ ¬Q(x)).

Using the result of Example 3.13, we see that the truth values of

∃x(P(x) ∧ ¬Q(x))

and

∃x¬(P(x)→ Q(x))

are the same. By Theorem 5.14, the truth values of

∃x¬(P(x)→ Q(x))

and

¬(∀x P(x)→ Q(x))

are the same. Thus an equivalent way to represent the second interpretation is

¬(∀x P(x)→ Q(x)). (5.7)

Comparing (5.6) and (5.7), we see that the ambiguity results from whether the negation
applies to Q(x) (the first interpretation) or to the entire statement

∀x(P(x)→ Q(x))

(the second interpretation). The correct interpretation of the statement

All that glitters is not gold

results from negating the entire statement.
In positive statements, “any,” “all,” “each,” and “every” have the same meaning.

In negative statements, the situation changes:

Not all x satisfy P(x).

Not each x satisfies P(x).

Not every x satisfies P(x).

are considered to have the same meaning as

For some x, ¬P(x);

whereas

Not any x satisfies P(x).

No x satisfies P(x).

mean

For all x, ¬P(x).

See Exercises 57–66 for other examples.

Rules of Inference for Quantified Statements
We conclude this section by introducing some rules of inference for quantified state-
ments and showing how they can be used with rules of inference for propositions (see
Section 4).

47

Sets and Logic

Suppose that ∀xP(x) is true. By Definition 5.4, P(x) is true for every x in D, the
domain of discourse. In particular, if d is in D, then P(d) is true. We have shown that
the argument

∀xP(x)

∴ P(d) if d ∈ D

is valid. This rule of inference is called universal instantiation. Similar arguments (see
Exercises 74–76) justify the other rules of inference listed in Figure 5.1.

Rule of Inference Name

∀xP(x)

∴ P(d) if d ∈D Universal instantiation

P(d) for every d ∈D

∴ ∀x P(x) Universal generalization

∃xP(x)

∴ P(d) for some d ∈D Existential instantiation

P(d) for some d ∈D

∴ ∃x P(x) Existential generalization

Figure 5.1 Rules of inference for quantified
statements. The domain of discourse is D.

Example 5.21 Given that

for every positive integer n, n2 ≥ n

is true, we may use universal instantiation to conclude that 542 ≥ 54 since 54 is a positive
integer (i.e., a member of the domain of discourse).

Example 5.22 Let P(x) denote the propositional function “x owns a laptop computer,” where the domain
of discourse is the set of students taking MATH 201 (discrete mathematics). Suppose
that Taylor, who is taking MATH 201, owns a laptop computer; in symbols, P(Taylor)
is true. We may then use existential generalization to conclude that ∃x P(x) is true.

Example 5.23 Write the following argument symbolically and then, using rules of inference, show that
the argument is valid.

For every real number x, if x is an integer, then x is a rational number. The number√
2 is not rational. Therefore,

√
2 is not an integer.

48

Sets and Logic

If we let P(x) denote the propositional function “x is an integer” and Q(x) denote
the propositional function “x is rational,” the argument becomes

∀x ∈ R (P(x)→ Q(x))

¬Q(
√

2)

∴ ¬P(
√

2)

Since
√

2 ∈ R, we may use universal instantiation to conclude P(
√

2)→ Q(π). Com-
bining P(

√
2) → Q(π) and ¬Q(π), we may use modus tollens (see Figure 4.1) to

conclude ¬P(
√

2). Thus the argument is valid.

The argument in Example 5.23 is called universal modus tollens.

Example 5.24 We are given these hypotheses: Everyone loves either Microsoft or Apple. Lynn does
not love Microsoft. Show that the conclusion, Lynn loves Apple, follows from the
hypotheses.

Let P(x) denote the propositional function “x loves Microsoft,” and let Q(x)

denote the propositional function “x loves Apple.” The first hypothesis is ∀x(P(x) ∨
Q(x)). By universal instantiation, we have P(Lynn)∨Q(Lynn). The second hypothesis
is ¬P(Lynn). The disjunctive syllogism rule of inference (see Figure 4.1) now gives
Q(Lynn), which represents the proposition “Lynn loves Apple.” We conclude that the
conclusion does follow from the hypotheses.

Problem-Solving Tips

To prove that the universally quantified statement

∀x P(x)

is true, show that for every x in the domain of discourse, the proposition P(x) is true.
Showing that P(x) is true for a particular value x does not prove that

∀x P(x)

is true.
To prove that the existentially quantified statement

∃x P(x)

is true, find one value of x in the domain of discourse for which the proposition P(x) is
true. One value suffices.

To prove that the universally quantified statement

∀x P(x)

is false, find one value of x (a counterexample) in the domain of discourse for which the
proposition P(x) is false.

To prove that the existentially quantified statement

∃x P(x)

is false, show that for every x in the domain of discourse, the proposition P(x) is false.
Showing that P(x) is false for a particular value x does not prove that

∃x P(x)

is false.

49

Sets and Logic

Section Review Exercises

1. What is a propositional function?

2. What is a domain of discourse?

3. What is a universally quantified statement?

4. What is a counterexample?

5. What is an existentially quantified statement?

6. State the generalized De Morgan’s laws for logic.

7. Explain how to prove that a universally quantified statement is
true.

8. Explain how to prove that an existentially quantified statement
is true.

9. Explain how to prove that a universally quantified statement is
false.

10. Explain how to prove that an existentially quantified statement
is false.

11. State the universal instantiation rule of inference.

12. State the universal generalization rule of inference.

13. State the existential instantiation rule of inference.

14. State the existential generalization rule of inference.

Exercises

In Exercises 1–6, tell whether the statement is a propositional
function. For each statement that is a propositional function, give
a domain of discourse.

1. (2n+ 1)2 is an odd integer.

2. Choose an integer between 1 and 10.

3. Let x be a real number.

4. The movie won the Academy Award as the best picture of
1955.

5. 1+ 3 = 4.

6. There exists x such that x < y (x, y real numbers).

Let P(n) be the propositional function “n divides 77.” Write each
proposition in Exercises 7–11 in words and tell whether it is true
or false. The domain of discourse is Z+.

7. P(11) 8. P(1) 9. P(3)

10. ∀n P(n) 11. ∃n P(n)

Let P(x) be the propositional function “x ≥ x2.” Tell whether
each proposition in Exercises 12–20 is true or false. The domain
of discourse is R.

12. P(1) 13. P(2) 14. P(1/2)

15. ∀x P(x) 16. ∃x P(x) 17. ¬(∀x P(x))

18. ¬(∃x P(x)) 19. ∀x¬P(x) 20. ∃x¬P(x)

Suppose that the domain of discourse of the propositional function
P is {1, 2, 3, 4}. Rewrite each propositional function in Exercises
21–27 using only negation, disjunction, and conjunction.

21. ∀x P(x) 22. ∀x¬P(x) 23. ¬(∀x P(x))

24. ∃x P(x) 25. ∃x¬P(x) 26. ¬(∃x P(x))

27. ∀x((x �= 1)→ P(x))

Let P(x) denote the statement “x is taking a math course.” The
domain of discourse is the set of all students. Write each proposi-
tion in Exercises 28–33 in words.

28. ∀x P(x) 29. ∃x P(x)

30. ∀x¬P(x) 31. ∃x¬P(x)

32. ¬(∀x P(x)) 33. ¬(∃x P(x))

34. Write the negation of each proposition in Exercises 28–33 sym-
bolically and in words.

Let P(x) denote the statement “x is a professional athlete,” and let
Q(x) denote the statement “x plays soccer.” The domain of dis-
course is the set of all people. Write each proposition in Exercises
35–42 in words. Determine the truth value of each statement.

35. ∀x (P(x)→ Q(x)) 36. ∃x (P(x)→ Q(x))

37. ∀x (Q(x)→ P(x)) 38. ∃x (Q(x)→ P(x))

39. ∀x (P(x) ∨Q(x)) 40. ∃x (P(x) ∨Q(x))

41. ∀x (P(x) ∧Q(x)) 42. ∃x (P(x) ∧Q(x))

43. Write the negation of each proposition in Exercises 35–42 sym-
bolically and in words.

Let P(x) denote the statement “x is an accountant,” and let Q(x)

denote the statement “x owns a Porsche.” Write each statement in
Exercises 44–47 symbolically.

44. All accountants own Porsches.

45. Some accountant owns a Porsche.

46. All owners of Porsches are accountants.

47. Someone who owns a Porsche is an accountant.

48. Write the negation of each proposition in Exercises 44–47 sym-
bolically and in words.

Determine the truth value of each statement in Exercises 49–54.
The domain of discourse is R. Justify your answers.

49. ∀x(x2 > x) 50. ∃x(x2 > x)

51. ∀x(x > 1→ x2 > x) 52. ∃x(x > 1→ x2 > x)

53. ∀x(x > 1→ x/(x2 + 1) < 1/3)

54. ∃x(x > 1→ x/(x2 + 1) < 1/3)

50

Sets and Logic

55. Write the negation of each proposition in Exercises 49–54
symbolically and in words.

56. Could the pseudocode of Example 5.7 be written as follows?

for i = 1 to n

if (¬P(di))

return false

else

return true

What is the literal meaning of each statement in Exercises 57–66?
What is the intended meaning? Clarify each statement by rephras-
ing it and writing it symbolically.

57. From Dear Abby: All men do not cheat on their wives.

58. From the San Antonio Express-News:All old things don’t covet
twenty-somethings.

59. All 74 hospitals did not report every month.

60. Economist Robert J. Samuelson: Every environmental prob-
lem is not a tragedy.

61. Comment from a Door County alderman: This is still Door
County and we all don’t have a degree.

62. Headline over a Martha Stewart column: All lampshades can’t
be cleaned.

63. Headline in the New York Times: A World Where All Is Not
Sweetness and Light.

64. Headline over a story about subsidized housing: Everyone
can’t afford home.

65. George W. Bush: I understand everybody in this country
doesn’t agree with the decisions I’ve made.

66. From Newsweek: Formal investigations are a sound practice
in the right circumstances, but every circumstance is not right.

67. (a) Use a truth table to prove that if p and q are propositions,
at least one of p→ q or q→ p is true.

(b) Let I(x) be the propositional function “x is an integer”
and let P(x) be the propositional function “x is a positive

number.” The domain of discourse is R. Determine
whether or not the following proof that all integers are
positive or all positive real numbers are integers is cor-
rect.

By part (a),

∀x ((I(x)→ P(x)) ∨ (P(x)→ I(x)))

is true. In words: For all x, if x is an integer, then x is
positive; or if x is positive, then x is an integer. Therefore,
all integers are positive or all positive real numbers are
integers.

68. Prove Theorem 5.14, part (b).

69. Analyze the following comments by film critic Roger Ebert:
No good movie is too long. No bad movie is short enough.
Love Actually is good, but it is too long.

70. Which rule of inference is used in the following argument?
Every rational number is of the form p/q, where p and q are
integers. Therefore, 9.345 is of the form p/q.

In Exercises 71–73, give an argument using rules of inference to
show that the conclusion follows from the hypotheses.

71. Hypotheses: Everyone in the class has a graphing calcula-
tor. Everyone who has a graphing calculator understands the
trigonometric functions. Conclusion: Ralphie, who is in the
class, understands the trigonometric functions.

72. Hypotheses: Ken, a member of the Titans, can hit the ball a
long way. Everyone who can hit the ball a long way can make
a lot of money. Conclusion: Some member of the Titans can
make a lot of money.

73. Hypotheses: Everyone in the discrete mathematics class loves
proofs. Someone in the discrete mathematics class has never
taken calculus. Conclusion: Someone who loves proofs has
never taken calculus.

74. Show that universal generalization (see Figure 5.1) is valid.

75. Show that existential instantiation (see Figure 5.1) is valid.

76. Show that existential generalization (see Figure 5.1) is
valid.

6 ➜ Nested Quantifiers

Consider writing the statement

The sum of any two positive real numbers is positive,

symbolically. We first note that since two numbers are involved, we will need two
variables, say x and y. The assertion can be restated as: If x > 0 and y > 0, then
x + y > 0. The given statement says that the sum of any two positive real numbers is
positive, so we need two universal quantifiers. If we let P(x, y) denote the expression
(x > 0) ∧ (y > 0)→ (x+ y > 0), the given statement can be written symbolically as

∀x∀y P(x, y).

In words, for every x and for every y, if x > 0 and y > 0, then x+ y > 0. The domain
of discourse of the two-variable propositional function P is R × R, which means that

51

Sets and Logic

each variable x and y must belong to the set of real numbers. Multiple quantifiers such
as ∀x∀y are said to be nested quantifiers. In this section we explore nested quantifiers
in detail.

Example 6.1 Restate

∀m∃n(m < n)

in words. The domain of discourse is the set Z× Z.
We may first rephrase this statement as: For every m, there exists n such that

m < n. Less formally, this means that if you take any integer m whatsoever, there is an
integer n greater than m. Another restatement is then: There is no greatest integer.

Example 6.2 Write the assertion

Everybody loves somebody,

symbolically, letting L(x, y) be the statement “x loves y.”
“Everybody” requires universal quantification and “somebody” requires existen-

tial quantification. Thus, the given statement may be written symbolically as

∀x∃y L(x, y).

In words, for every person x, there exists a person y such that x loves y.
Notice that

∃x∀y L(x, y)

is not a correct interpretation of the original statement. This latter statement is: There
exists a person x such that for all y, x loves y. Less formally, someone loves everyone.
The order of quantifiers is important; changing the order can change the meaning.

By definition, the statement

∀x∀y P(x, y),

with domain of discourse X× Y , is true if, for every x ∈ X and for every y ∈ Y , P(x, y)

is true. The statement

∀x∀y P(x, y)

is false if there is at least one x ∈ X and at least one y ∈ Y such that P(x, y) is false.

Example 6.3 Consider the statement

∀x∀y((x > 0) ∧ (y > 0)→ (x+ y > 0)).

The domain of discourse is R×R. This statement is true because, for every real number
x and for every real number y, the conditional proposition

(x > 0) ∧ (y > 0)→ (x+ y > 0)

is true. In words, for every real number x and for every real number y, if x and y are
positive, their sum is positive.

52

Sets and Logic

Example 6.4 Consider the statement

∀x∀y((x > 0) ∧ (y < 0)→ (x+ y �= 0)).

The domain of discourse is R×R. This statement is false because if x = 1 and y = −1,
the conditional proposition

(x > 0) ∧ (y < 0)→ (x+ y �= 0)

is false. We say that the pair x = 1 and y = −1 is a counterexample.

Example 6.5 Suppose that P is a propositional function with domain of discourse {d1, . . . , dn} ×
{d1, . . . , dn}. The following pseudocode determines whether

∀x∀y P(x, y)

is true or false:

for i = 1 to n

for j = 1 to n

if (¬P(di, dj))

return false

return true

The for loops examine members of the domain of discourse. If they find a pair di, dj

for which P(di, dj) is false, the condition ¬P(di, dj) in the if statement is true; so the
code returns false [to indicate that ∀x∀y P(x, y) is false] and terminates. In this case, the
pair di, dj is a counterexample. If P(di, dj) is true for every pair di, dj , the condition
¬P(di, dj) in the if statement is always false. In this case, the for loops run to completion,
after which the code returns true [to indicate that ∀x∀y P(x, y) is true] and terminates.

By definition, the statement

∀x∃y P(x, y),

with domain of discourse X× Y , is true if, for every x ∈ X, there is at least one y ∈ Y

for which P(x, y) is true. The statement

∀x∃y P(x, y)

is false if there is at least one x ∈ X such that P(x, y) is false for every y ∈ Y .

Example 6.6 Consider the statement

∀x∃y(x+ y = 0).

The domain of discourse is R×R. This statement is true because, for every real number
x, there is at least one y (namely y = −x) for which x + y = 0 is true. In words, for
every real number x, there is a number that when added to x makes the sum zero.

Example 6.7 Consider the statement

∀x∃y(x > y).

The domain of discourse is Z+×Z+. This statement is false because there is at least one
x, namely x = 1, such that x > y is false for every positive integer y.

53

Sets and Logic

Example 6.8 Suppose that P is a propositional function with domain of discourse {d1, . . . , dn} ×
{d1, . . . , dn}. The following pseudocode determines whether

∀x∃y P(x, y)

is true or false:

for i = 1 to n

if (¬ exists dj(i))

return false

return true
exists dj(i) {

for j = 1 to n

if (P(di, dj))

return true

return false

}

If for each di, there exists dj such that P(di, dj) is true, then for each i, P(di, dj) is true
for some j. Thus, exists dj(i) returns true for every i. Since¬ exists dj(i) is always false,
the first for loop eventually terminates and true is returned to indicate that ∀x∃y P(x, y)

is true.
If for some di, P(di, dj) is false for every j, then, for this i, P(di, dj) is false for

every j. In this case, the for loop in exists dj(i) runs to termination and false is returned.
Since ¬ exists dj(i) is true, false is returned to indicate that ∀x∃y P(x, y) is false.

By definition, the statement

∃x∀y P(x, y),

with domain of discourse X× Y , is true if there is at least one x ∈ X such that P(x, y)

is true for every y ∈ Y . The statement

∃x∀y P(x, y)

is false if, for every x ∈ X, there is at least one y ∈ Y such that P(x, y) is false.

Example 6.9 Consider the statement

∃x∀y(x ≤ y).

The domain of discourse is Z+ ×Z+. This statement is true because there is at least one
positive integer x (namely x = 1) for which x ≤ y is true for every positive integer y.
In words, there is a smallest positive integer (namely 1).

Example 6.10 Consider the statement

∃x∀y(x ≥ y).

The domain of discourse is Z+ ×Z+. This statement is false because, for every positive
integer x, there is at least one positive integer y, namely y = x + 1, such that x ≥ y is
false. In words, there is no greatest positive integer.

54

Sets and Logic

By definition, the statement

∃x∃y P(x, y),

with domain of discourse X × Y , is true if there is at least one x ∈ X and at least one
y ∈ Y such that P(x, y) is true. The statement

∃x∃y P(x, y)

is false if, for every x ∈ X and for every y ∈ Y , P(x, y) is false.

Example 6.11 Consider the statement

∃x∃y((x > 1) ∧ (y > 1) ∧ (xy = 6)).

The domain of discourse is Z+ ×Z+. This statement is true because there is at least one
integer x > 1 (namely x = 2) and at least one integer y > 1 (namely y = 3) such that
xy = 6. In words, 6 is composite (i.e., not prime).

Example 6.12 Consider the statement

∃x∃y((x > 1) ∧ (y > 1) ∧ (xy = 7)).

The domain of discourse is Z+ × Z+. This statement is false because for every positive
integer x and for every positive integer y,

(x > 1) ∧ (y > 1) ∧ (xy = 7)

is false. In words, 7 is prime.

The generalized De Morgan’s laws for logic (Theorem 5.14) can be used to negate
a proposition containing nested quantifiers.

Example 6.13 Using the generalized De Morgan’s laws for logic, we find that the negation of

∀x∃y P(x, y)

is

¬(∀x∃y P(x, y)) ≡ ∃x¬(∃y P(x, y)) ≡ ∃x∀y¬P(x, y).

Notice how in the negation, ∀ and ∃ are interchanged.

Example 6.14 Write the negation of ∃x∀y(xy < 1), where the domain of discourse is R×R. Determine
the truth value of the given statement and its negation.

Using the generalized De Morgan’s laws for logic, we find that the negation is

¬(∃x∀y(xy < 1)) ≡ ∀x¬(∀y(xy < 1)) ≡ ∀x∃y¬(xy < 1) ≡ ∀x∃y(xy ≥ 1).

The given statement ∃x∀y(xy < 1) is true because there is at least one x (namely x = 0)
such that xy < 1 for every y. Since the given statement is true, its negation is false.

We conclude with a logic game, which presents an alternative way to determine
whether a quantified propositional function is true or false.André Berthiaume contributed
this example.

55

Sets and Logic

Example 6.15 The Logic Game

Given a quantified propositional function such as

∀x∃y P(x, y),

you and your opponent, whom we call Farley, play a logic game. Your goal is to try to
make P(x, y) true, and Farley’s goal is to try to make P(x, y) false. The game begins with
the first (left) quantifier. If the quantifier is ∀, Farley chooses a value for that variable;
if the quantifier is ∃, you choose a value for that variable. The game continues with the
second quantifier. After values are chosen for all the variables, if P(x, y) is true, you win;
if P(x, y) is false, Farley wins. We will show that if you can always win regardless of how
Farley chooses values for the variables, the quantified statement is true, but if Farley can
choose values for the variables so that you cannot win, the quantified statement is false.

Consider the statement

∀x∃y(x+ y = 0).

The domain of discourse is R × R. Since the first quantifier is ∀, Farley goes first and
chooses a value for x. Since the second quantifier is ∃, you go second. Regardless of
what value Farley chose, you can choose y= −x, which makes the statement x+y = 0
true. You can always win the game, so the statement

∀x∃y(x+ y = 0)

is true.
Next, consider the statement

∃x∀y(x+ y = 0).

Again, the domain of discourse is R×R. Since the first quantifier is ∃, you go first and
choose a value for x. Since the second quantifier is ∀, Farley goes second. Regardless of
what value you chose, Farley can always choose a value for y, which makes the statement
x + y = 0 false. (If you choose x = 0, Farley can choose y = 1. If you choose x �= 0,
Farley can choose y = 0.) Farley can always win the game, so the statement

∃x∀y(x+ y = 0)

is false.
We discuss why the game correctly determines the truth value of a quantified

propositional function. Consider

∀x∀y P(x, y).

If Farley can always win the game, this means that Farley can find values for x and y

that make P(x, y) false. In this case, the propositional function is false; the values Farley
found provide a counterexample. If Farley cannot win the game, no counterexample
exists; in this case, the propositional function is true.

Consider

∀x∃y P(x, y).

Farley goes first and chooses a value for x. You choose second. If, no matter what value
Farley chose, you can choose a value for y that makes P(x, y) true, you can always win
the game and the propositional function is true. However, if Farley can choose a value

56

Sets and Logic

for x so that every value you choose for y makes P(x, y) false, then you will always lose
the game and the propositional function is false.

An analysis of the other cases also shows that if you can always win the game, the
propositional function is true; but if Farley can always win the game, the propositional
function is false.

The logic game extends to propositional functions of more than two variables. The
rules are the same and, again, if you can always win the game, the propositional function
is true; but if Farley can always win the game, the propositional function is false.

Problem-Solving Tips

To prove that

∀x∀y P(x, y)

is true, where the domain of discourse is X× Y , you must show that P(x, y) is true for
all values of x ∈ X and y ∈ Y . One technique is to argue that P(x, y) is true using the
symbols x and y to stand for arbitrary elements in X and Y .

To prove that

∀x∀y P(x, y)

is false, where the domain of discourse is X× Y , find one value of x ∈ X and one value
of y ∈ Y (two values suffice—one for x and one for y) that make P(x, y) false.

To prove that

∀x∃y P(x, y)

is true, where the domain of discourse is X× Y , you must show that for all x ∈ X, there
is at least one y ∈ Y such that P(x, y) is true. One technique is to let x stand for an
arbitrary element in X and then find a value for y ∈ Y (one value suffices!) that makes
P(x, y) true.

To prove that

∀x∃y P(x, y)

is false, where the domain of discourse is X × Y , you must show that for at least one
x ∈ X, P(x, y) is false for every y ∈ Y . One technique is to find a value of x ∈ X (again
one value suffices!) that has the property that P(x, y) is false for every y ∈ Y . Having
chosen a value for x, let y stand for an arbitrary element of Y and show that P(x, y) is
always false.

To prove that

∃x∀y P(x, y)

is true, where the domain of discourse is X × Y , you must show that for at least one
x ∈ X, P(x, y) is true for every y ∈ Y . One technique is to find a value of x ∈ X (again
one value suffices!) that has the property that P(x, y) is true for every y ∈ Y . Having
chosen a value for x, let y stand for an arbitrary element of Y and show that P(x, y) is
always true.

To prove that

∃x∀y P(x, y)

is false, where the domain of discourse is X×Y , you must show that for all x ∈ X, there
is at least one y ∈ Y such that P(x, y) is false. One technique is to let x stand for an

57

Sets and Logic

arbitrary element in X and then find a value for y ∈ Y (one value suffices!) that makes
P(x, y) false.

To prove that

∃x∃y P(x, y)

is true, where the domain of discourse is X× Y , find one value of x ∈ X and one value
of y ∈ Y (two values suffice—one for x and one for y) that make P(x, y) true.

To prove that

∃x∃y P(x, y)

is false, where the domain of discourse is X× Y , you must show that P(x, y) is false for
all values of x ∈ X and y ∈ Y . One technique is to argue that P(x, y) is false using the
symbols x and y to stand for arbitrary elements in X and Y .

To negate an expression with nested quantifiers, use the generalized De Morgan’s
laws for logic. Loosely speaking, ∀ and ∃ are interchanged. Don’t forget that the negation
of p→ q is equivalent to p ∧ ¬q.

Section Review Exercises

1. What is the interpretation of ∀x∀yP(x, y)? When is this quan-
tified expression true? When is it false?

2. What is the interpretation of ∀x∃yP(x, y)? When is this quan-
tified expression true? When is it false?

3. What is the interpretation of ∃x∀yP(x, y)? When is this quan-
tified expression true? When is it false?

4. What is the interpretation of ∃x∃yP(x, y)? When is this quan-
tified expression true? When is it false?

5. Give an example to show that, in general, ∀x∃yP(x, y) and
∃x∀yP(x, y) have different meanings.

6. Write the negation of ∀x∀yP(x, y) using the generalized
De Morgan’s laws for logic.

7. Write the negation of ∀x∃yP(x, y) using the generalized
De Morgan’s laws for logic.

8. Write the negation of ∃x∀yP(x, y) using the generalized
De Morgan’s laws for logic.

9. Write the negation of ∃x∃yP(x, y) using the generalized
De Morgan’s laws for logic.

10. Explain the rules for playing the logic game. How can the
logic game be used to determine the truth value of a quantified
expression?

Exercises

In Exercises 1–27, the set D1 consists of three students: Garth, who
is 5 feet 11 inches tall; Erin, who is 5 feet 6 inches tall; and Marty,
who is 6 feet tall. The set D2 consists of four students: Dale, who
is 6 feet tall; Garth, who is 5 feet 11 inches tall; Erin, who is 5 feet
6 inches tall; and Marty, who is 6 feet tall. The set D3 consists of
one student: Dale, who is 6 feet tall. The set D4 consists of three
students: Pat, Sandy, and Gale, each of whom is 5 feet 11 inches tall.

In Exercises 1–9, T1(x, y) is the propositional function “x is
taller than y.” Write each proposition in Exercises 1–4 in words.

1. ∀x∀y T1(x, y) 2. ∀x∃y T1(x, y)

3. ∃x∀y T1(x, y) 4. ∃x∃y T1(x, y)

5. Write the negation of each proposition in Exercises 1–4 in
words and symbolically.

6. Tell whether each proposition in Exercises 1–4 is true or false
if the domain of discourse is D1 ×D1.

7. Tell whether each proposition in Exercises 1–4 is true or false
if the domain of discourse is D2 ×D2.

8. Tell whether each proposition in Exercises 1–4 is true or false
if the domain of discourse is D3 ×D3.

9. Tell whether each proposition in Exercises 1–4 is true or false
if the domain of discourse is D4 ×D4.

In Exercises 10–18, T2(x, y) is the propositional function “x is
taller than or the same height as y.” Write each proposition in
Exercises 10–13 in words.

10. ∀x∀y T2(x, y) 11. ∀x∃y T2(x, y)

12. ∃x∀y T2(x, y) 13. ∃x∃y T2(x, y)

14. Write the negation of each proposition in Exercises 10–13 in
words and symbolically.

58

Sets and Logic

15. Tell whether each proposition in Exercises 10–13 is true or
false if the domain of discourse is D1 × D1. (The set D1 is
defined before Exercise 1.)

16. Tell whether each proposition in Exercises 10–13 is true or
false if the domain of discourse is D2 × D2. (The set D2 is
defined before Exercise 1.)

17. Tell whether each proposition in Exercises 10–13 is true or
false if the domain of discourse is D3 × D3. (The set D3 is
defined before Exercise 1.)

18. Tell whether each proposition in Exercises 10–13 is true or
false if the domain of discourse is D4 × D4. (The set D4 is
defined before Exercise 1.)

In Exercises 19–27, T3(x, y) is the propositional function “if x and
y are distinct persons, then x is taller than y.” Write each propo-
sition in Exercises 19–22 in words.

19. ∀x∀y T3(x, y) 20. ∀x∃y T3(x, y)

21. ∃x∀y T3(x, y) 22. ∃x∃y T3(x, y)

23. Write the negation of each proposition in Exercises 19–22 in
words and symbolically.

24. Tell whether each proposition in Exercises 19–22 is true or
false if the domain of discourse is D1 × D1. (The set D1 is
defined before Exercise 1.)

25. Tell whether each proposition in Exercises 19–22 is true or
false if the domain of discourse is D2 × D2. (The set D2 is
defined before Exercise 1.)

26. Tell whether each proposition in Exercises 19–22 is true or
false if the domain of discourse is D3 × D3. (The set D3 is
defined before Exercise 1.)

27. Tell whether each proposition in Exercises 19–22 is true or
false if the domain of discourse is D4 × D4. (The set D4 is
defined before Exercise 1.)

Let L(x, y) be the propositional function “x loves y.” The domain
of discourse is the Cartesian product of the set of all living people
with itself (i.e., both x and y take on values in the set of all living
people). Write each proposition in Exercises 28–31 symbolically.
Which do you think are true?

28. Someone loves everybody.

29. Everybody loves everybody.

30. Somebody loves somebody.

31. Everybody loves somebody.

32. Write the negation of each proposition in Exercises 28–31 in
words and symbolically.

Let A(x, y) be the propositional function “x attended y’s office
hours” and let E(x) be the propositional function “x is enrolled
in a discrete math class.” Let S be the set of students and let T

denote the set of teachers—all at Hudson University. The domain
of discourse of A is S × T and the domain of discourse of E is S.
Write each proposition in Exercises 33–36 symbolically.

33. Brit attended someone’s office hours.

34. No one attended Professor Sandwich’s office hours.

35. Every discrete math student attended someone’s office hours.

36. All teachers had at least one student attend their office hours.

Let P(x, y) be the propositional function x ≥ y. The domain of
discourse is Z+ × Z+. Tell whether each proposition in Exercises
37–40 is true or false.

37. ∀x∀y P(x, y) 38. ∀x∃y P(x, y)

39. ∃x∀y P(x, y) 40. ∃x∃y P(x, y)

41. Write the negation of each proposition in Exercises 37–40.

Determine the truth value of each statement in Exercises 42–59.
The domain of discourse is R × R. Justify your answers.

42. ∀x∀y(x2 < y + 1) 43. ∀x∃y(x2 < y + 1)

44. ∃x∀y(x2 < y + 1) 45. ∃x∃y(x2 < y + 1)

46. ∃y∀x(x2 < y + 1) 47. ∀y∃x(x2 < y + 1)

48. ∀x∀y(x2 + y2 = 9) 49. ∀x∃y(x2 + y2 = 9)

50. ∃x∀y(x2 + y2 = 9) 51. ∃x∃y(x2 + y2 = 9)

52. ∀x∀y(x2 + y2 ≥ 0) 53. ∀x∃y(x2 + y2 ≥ 0)

54. ∃x∀y(x2 + y2 ≥ 0) 55. ∃x∃y(x2 + y2 ≥ 0)

56. ∀x∀y((x < y)→ (x2 < y2))

57. ∀x∃y((x < y)→ (x2 < y2))

58. ∃x∀y((x < y)→ (x2 < y2))

59. ∃x∃y((x < y)→ (x2 < y2))

60. Write the negation of each proposition in Exercises 42–59.

61. Suppose that P is a propositional function with domain of
discourse {d1, . . . , dn} × {d1, . . . , dn}. Write pseudocode that
determines whether

∃x∀y P(x, y)

is true or false.

62. Suppose that P is a propositional function with domain of
discourse {d1, . . . , dn} × {d1, . . . , dn}. Write pseudocode that
determines whether

∃x∃y P(x, y)

is true or false.

63. Explain how the logic game (Example 6.15) determines
whether each proposition in Exercises 42–59 is true or false.

64. Use the logic game (Example 6.15) to determine whether the
proposition

∀x∀y∃z((z > x) ∧ (z < y))

is true or false. The domain of discourse is Z× Z× Z.

65. Use the logic game (Example 6.15) to determine whether the
proposition

∀x∀y∃z((z < x) ∧ (z < y))

is true or false. The domain of discourse is Z× Z× Z.

66. Use the logic game (Example 6.15) to determine whether the
proposition

∀x∀y∃z((x < y)→ ((z > x) ∧ (z < y)))

is true or false. The domain of discourse is Z× Z× Z.

59

Sets and Logic

67. Use the logic game (Example 6.15) to determine whether the
proposition

∀x∀y∃z((x < y)→ ((z > x) ∧ (z < y)))

is true or false. The domain of discourse is R × R × R.

Assume that ∀x∀y P(x, y) is true and that the domain of discourse
is nonempty. Which of Exercises 68–70 must also be true? Prove
your answer.

68. ∀x∃y P(x, y) 69. ∃x∀y P(x, y) 70. ∃x∃y P(x, y)

Assume that ∃x∀y P(x, y) is true and that the domain of discourse
is nonempty. Which of Exercises 71–73 must also be true? Prove
your answer.

71. ∀x∀y P(x, y) 72. ∀x∃y P(x, y) 73. ∃x∃y P(x, y)

Assume that ∃x∃y P(x, y) is true and that the domain of discourse
is nonempty. Which of Exercises 74–76 must also be true? Prove
your answer.

74. ∀x∀y P(x, y) 75. ∀x∃y P(x, y) 76. ∃x∀y P(x, y)

Assume that ∀x∀y P(x, y) is false and that the domain of discourse
is nonempty. Which of Exercises 77–79 must also be false? Prove
your answer.

77. ∀x∃y P(x, y) 78. ∃x∀y P(x, y) 79. ∃x∃y P(x, y)

Assume that ∀x∃y P(x, y) is false and that the domain of discourse
is nonempty. Which of Exercises 80–82 must also be false? Prove
your answer.

80. ∀x∀y P(x, y)

81. ∃x∀y P(x, y)

82. ∃x∃y P(x, y)

Assume that ∃x∀y P(x, y) is false and that the domain of discourse
is nonempty. Which of Exercises 83–85 must also be false? Prove
your answer.

83. ∀x∀y P(x, y) 84. ∀x∃y P(x, y) 85. ∃x∃y P(x, y)

Assume that ∃x∃y P(x, y) is false and that the domain of discourse
is nonempty. Which of Exercises 86–88 must also be false? Prove
your answer.

86. ∀x∀y P(x, y) 87. ∀x∃y P(x, y) 88. ∃x∀y P(x, y)

Which of Exercises 89–92 is logically equivalent to
¬(∀x∃y P(x, y))? Explain.

89. ∃x¬(∀y P(x, y)) 90. ∀x¬(∃y P(x, y))

91. ∃x∀y¬P(x, y) 92. ∃x∃y¬P(x, y)

93. [Requires calculus] The definition of

lim
x→a

f(x) = L

is: For every ε > 0, there exists δ > 0 such that for all x if
0 < |x − a| < δ, then |f(x)− L| < ε. Write this definition
symbolically using ∀ and ∃.

94. [Requires calculus] Write the negation of the definition of limit
(see Exercise 93) in words and symbolically using ∀ and ∃ but
not ¬.

�95. [Requires calculus] Write the definition of “limx→a f(x) does
not exist” (see Exercise 93) in words and symbolically using
∀ and ∃ but not ¬.

96. Consider the headline: Every school may not be right for
every child. What is the literal meaning? What is the intended
meaning? Clarify the headline by rephrasing it and writing it
symbolically.

Problem-Solving Corner Quantifiers

Problem
Assume that ∀x∃y P(x, y) is true and that the domain
of discourse is nonempty. Which of the following must
also be true? If the statement is true, explain; otherwise,
give a counterexample.

(a) ∀x∀y P(x, y)

(b) ∃x∀y P(x, y)

(c) ∃x∃y P(x, y)

Attacking the Problem
Let’s begin with part (a). We are given that∀x∃y P(x, y)

is true, which says, in words, for every x, there exists
at least one y for which P(x, y) is true. If (a) is also
true, then, in words, for every x, for every y, P(x, y)

is true. Let the words sink in. If for every x, P(x, y) is

true for at least one y, doesn’t it seem unlikely that it
would follow that P(x, y) is true for every y? We sus-
pect that (a) could be false. We’ll need to come up with
a counterexample.

Contrasting statement (b) with the given state-
ment, we see that the quantifiers ∀ and ∃ have been
swapped. There is a difference. In the given true state-
ment ∀x∃y P(x, y), given any x, it’s possible to find a
y, which may depend on x, that makes P(x, y) true.
For statement (b), ∃x∀y P(x, y), to be true, for some x,
P(x, y) would need to be true for every y. Again, let
the words sink in. These two statements seem quite dif-
ferent. We suspect that (b) also could be false. Again,
we’ll need to come up with a counterexample.

Now let’s turn to part (c). We are given that
∀x∃y P(x, y) is true, which says, in words, for every
x, there exists at least one y for which P(x, y) is true.

60

Sets and Logic

For statement (c), ∃x∃y P(x, y), to be true, for some
x and for some y, P(x, y) must be true. But the given
statement says that for every x, there exists at least
one y for which P(x, y) is true. So if we pick one x

(and we know we can since the domain of discourse
is nonempty), the given statement assures us that there
exists at least one y for which P(x, y) is true. Thus
part (c) must be true. In fact, we have just given an
explanation!

Finding a Solution
As noted, we have already solved part (c). We need
counterexamples for parts (a) and (b).

For part (a), we need the given statement,
∀x∃y P(x, y), to be true and ∀x∀y P(x, y) to be false.
In order for the given statement to be true, we must find
a propositional function P(x, y) satisfying

for every x, there exists y such that P(x, y) is true.
(1)

In order for (a) to be false, we must have

at least one value of x and at least one value of y

such that P(x, y) is false. (2)

We can arrange for (1) and (2) to hold simultaneously if
we choose P(x, y) so that for every x, P(x, y) is true for
some y, but for at least one x, P(x, y) is also false for
some other value of y. Upon reflection, many math-
ematical statements have this property. For example,
x > y, x, y ∈ R, suffices. For every x, there exists y

such that x > y is true. Furthermore, for every x (and,
in particular, for at least one value of x), there exists y

such that x > y is false.
For part (b), we again need the given statement,

∀x∃y P(x, y), to be true and ∃x∀y P(x, y) to be false.
In order for the given statement to be true, we must find
a propositional function P(x, y) satisfying (1). In order
for (b) to be false, we must have

for every x, there exists at least one value of y such
that P(x, y) is false. (3)

We can arrange for (1) and (3) to hold simultaneously
if we choose P(x, y) so that for every x, P(x, y) is true
for some y and false for some other value of y. We
noted in the preceding paragraph that x > y, x, y ∈ R,
has this property.

Formal Solution
(a) We give an example to show that statement (a)

can be false while the given statement is true.
Let P(x, y) be the propositional function x > y

with domain of discourse R × R. Then

∀x∃y P(x, y)

is true since for any x, we may choose y = x−1
to make P(x, y) true. At the same time,

∀x∀y P(x, y)

is false. A counterexample is x = 0, y = 1.

(b) We give an example to show that statement (b)
can be false while the given statement is true.
Let P(x, y) be the propositional function x > y

with domain of discourse R×R.As we showed
in part (a),

∀x∃y P(x, y)

is true. Now we show that

∃x∀y P(x, y)

is false. Let x be an arbitrary element in R. We
may choose y = x+1 to make x > y false. Thus
for every x, there exists y such that P(x, y) is
false. Therefore statement (b) is false.

(c) We show that if the given statement is true,
statement (c) is necessarily true.

We are given that for every x, there exists
y such that P(x, y) is true. We must show that
there exist x and y such that P(x, y) is true.
Since the domain of discourse is nonempty, we
may choose a value for x. For this chosen x,
there exists y such that P(x, y) is true. We have
found at least one value for x and at least one
value for y that make P(x, y) true. Therefore

∃x∃y P(x, y)

is true.

Summary of Problem-Solving Techniques
■ When dealing with quantified statements, it is

sometimes useful to write out the statements in
words. For example, in this problem, it helped to
write out exactly what ∀x∃y P(x, y) means. Take
time to let the words sink in.

■ If you have trouble finding examples, look at
existing examples (e.g., examples in this book).
To solve problems (a) and (b), we could have
used the statement in Example 6.6. Sometimes,
an existing example can be modified to solve a
given problem.

Exercises
1. Show that the statement in Example 6.6 solves

problems (a) and (b) in this Problem-Solving
Corner.

2. Could examples in Section 6 other than Example 6.6
have been used to solve problems (a) and (b) in this
Problem-Solving Corner?

61

Sets and Logic

Notes

General references on discrete mathematics are [Graham, 1994; Liu, 1985; Tucker]. [Knuth,
1997, 1998a, 1998b] is the classic reference for much of this material.

[Halmos; Lipschutz; and Stoll] are recommended to the reader wanting to study set
theory in more detail.

[Barker; Copi; Edgar] are introductory logic textbooks. A more advanced treatment is
found in [Davis]. The first chapter of the geometry book by [Jacobs] is devoted to basic logic.
For a history of logic, see [Kline]. The role of logic in reasoning about computer programs
is discussed by [Gries].

Chapter Review

Section 1
1. Set: any collection of objects
2. Notation for sets: {x | x has property P}
3. |X|, the cardinality of X: the number of elements in the

set X

4. x ∈ X: x is an element of the set X

5. x /∈ X: x is not an element of the set X

6. Empty set: ∅ or { }
7. X = Y , where X and Y are sets: X and Y have the same

elements
8. X ⊆ Y , X is a subset of Y : every element in X is also in Y

9. X ⊂ Y , X is a proper subset of Y : X ⊆ Y and X �= Y

10. P(X), the power set of X: set of all subsets of X

11. |P(X)| = 2|X|

12. X ∪ Y , X union Y : set of elements in X or Y or both
13. Union of a family S of sets: ∪ S = {x | x ∈ X for some

X ∈ S}
14. X ∩ Y , X intersect Y : set of elements in X and Y

15. Intersection of a family S of sets: ∩S = {x | x ∈ X for
all X ∈ S}

16. Disjoint sets X and Y : X ∩ Y = ∅

17. Pairwise disjoint family of sets
18. X − Y, difference of X and Y , relative complement: set of

elements in X but not in Y

19. Universal set, universe
20. X, complement of X: U −X, where U is a universal set
21. Venn diagram
22. Properties of sets (see Theorem 1.21)
23. De Morgan’s laws for sets: (A ∪ B) = A ∩ B, (A ∩ B) =

A ∪ B

24. Partition of X: a collection S of nonempty subsets of X

such that every element in X belongs to exactly one mem-
ber of S

25. Ordered pair: (x, y)

26. Cartesian product of X and Y : X×Y = {(x, y) | x ∈ X, y ∈
Y}

27. Cartesian product of X1, X2, . . . , Xn:

X1 ×X2 × · · · ×Xn = {(a1, a2, . . . , an) | ai ∈ Xi}

Section 2
28. Logic
29. Proposition
30. Conjunction: p and q, p ∧ q

31. Disjunction: p or q, p ∨ q

32. Negation: not p,¬p

33. Truth table
34. Exclusive-or of propositions p, q: p or q, but not both

Section 3
35. Conditional proposition: if p, then q;p→ q

36. Hypothesis
37. Conclusion
38. Necessary condition
39. Sufficient condition
40. Converse of p→ q: q→ p

41. Biconditional proposition: p if and only if q, p↔ q

42. Logical equivalence: P ≡ Q

43. De Morgan’s laws for logic: ¬(p ∨ q) ≡ ¬p ∧ ¬q,

¬(p ∧ q) ≡ ¬p ∨ ¬q

44. Contrapositive of p→ q: ¬q→ ¬p

Section 4
45. Deductive reasoning
46. Hypothesis
47. Premises
48. Conclusion
49. Argument
50. Valid argument
51. Invalid argument
52. Rules of inference for propositions: modus ponens, modus

tollens, addition, simplification, conjunction, hypothetical
syllogism, disjunctive syllogism

Section 5
53. Propositional function
54. Domain of discourse

62

Sets and Logic

55. Universal quantifier
56. Universally quantified statement
57. Counterexample
58. Existential quantifier
59. Existentially quantified statement
60. Generalized De Morgan’s laws for logic:

¬(∀xP(x)) and ∃x¬P(x) have the same truth values.

¬(∃xP(x)) and ∀x¬P(x) have the same truth values.

61. To prove that the universally quantified statement

∀x P(x)

is true, show that for every x in the domain of discourse, the
proposition P(x) is true.

62. To prove that the existentially quantified statement

∃x P(x)

is true, find one value of x in the domain of discourse for
which P(x) is true.

63. To prove that the universally quantified statement

∀x P(x)

is false, find one value of x (a counterexample) in the domain
of discourse for which P(x) is false.

64. To prove that the existentially quantified statement

∃x P(x)

is false, show that for every x in the domain of discourse,
the proposition P(x) is false.

65. Rules of inference for quantified statements: universal
instantiation, universal generalization, existential instanti-
ation, existential generalization

Section 6
66. To prove that

∀x∀y P(x, y)

is true, show that P(x, y) is true for all values of x ∈ X and
y ∈ Y , where the domain of discourse is X× Y .

67. To prove that

∀x∃y P(x, y)

is true, show that for all x ∈ X, there is at least one y ∈ Y

such that P(x, y) is true, where the domain of discourse is
X× Y .

68. To prove that

∃x∀y P(x, y)

is true, show that for at least one x ∈ X, P(x, y) is true for
every y ∈ Y , where the domain of discourse is X× Y .

69. To prove that

∃x∃y P(x, y)

is true, find one value of x ∈ X and one value of y ∈ Y that
make P(x, y) true, where the domain of discourse is X×Y .

70. To prove that

∀x∀y P(x, y)

is false, find one value of x ∈ X and one value of y ∈ Y

that make P(x, y) false, where the domain of discourse is
X× Y .

71. To prove that

∀x∃y P(x, y)

is false, show that for at least one x ∈ X, P(x, y) is false for
every y ∈ Y , where the domain of discourse is X× Y .

72. To prove that

∃x∀y P(x, y)

is false, show that for all x ∈ X, there is at least one y ∈ Y

such that P(x, y) is false, where the domain of discourse is
X× Y .

73. To prove that

∃x∃y P(x, y)

is false, show that P(x, y) is false for all values of x ∈ X

and y ∈ Y , where the domain of discourse is X× Y .
74. To negate an expression with nested quantifiers, use the gen-

eralized De Morgan’s laws for logic.
75. The logic game

Chapter Self-Test

Section 1
1. If A = {1, 3, 4, 5, 6, 7}, B = {x | x is an even integer},

C = {2, 3, 4, 5, 6}, find (A ∩ B)− C.

2. If A ∪ B = B, what relation must hold between A and B?

3. Are the sets

{3, 2, 2}, {x | x is an integer and 1 < x ≤ 3}
equal? Explain.

4. If A = {a, b, c}, how many elements are in P(A)× A?

Section 2
5. If p, q, and r are true, find the truth value of the proposition

(p ∨ q) ∧ ¬((¬p ∧ r) ∨ q).

6. Write the truth table of the proposition¬(p ∧ q)∨(p∨¬r).

7. Formulate the proposition p ∧ (¬q ∨ r) in words using

p: I take hotel management.
q: I take recreation supervision.
r: I take popular culture.

63

Sets and Logic

8. Assume that a, b, and c are real numbers. Represent the
statement

a < b or (b < c and a ≥ c)

symbolically, letting

p : a < b, q : b < c, r : a < c.

Section 3
9. Restate the proposition “A necessary condition for Leah to

get an A in discrete mathematics is to study hard” in the
form of a conditional proposition.

10. Write the converse and contrapositive of the proposition of
Exercise 9.

11. If p is true and q and r are false, find the truth value of the
proposition

(p ∨ q)→ ¬r.

12. Represent the statement

If (a ≥ c or b < c), then b ≥ c

symbolically using the definitions of Exercise 8.

Section 4
13. Which rule of inference is used in the following argument?

If the Skyscrapers win, I’ll eat my hat. If I eat my hat, I’ll
be quite full. Therefore, if the Skyscrapers win, I’ll be quite
full.

14. Write the following argument symbolically and determine
whether it is valid. If the Skyscrapers win, I’ll eat my hat.
If I eat my hat, I’ll be quite full. Therefore, if I’m quite full,
the Skyscrapers won.

15. Determine whether the following argument is valid.

p→ q ∨ r

p ∨ ¬q

r ∨ q

∴ q

16. Give an argument using rules of inference to show that the
conclusion follows from the hypotheses.

Hypotheses: If the Council approves the funds, then New
Atlantic will get the Olympic Games. If New Atlantic gets

the Olympic Games, then New Atlantic will build a new
stadium. New Atlantic does not build a new stadium. Con-
clusion: The Council does not approve the funds, or the
Olympic Games are canceled.

Section 5
17. Is the statement

The team won the 2006 National Basketball
Association championship

a proposition? Explain.

18. Is the statement of Exercise 17 a propositional function?
Explain.

Let P(n) be the statement

n and n+ 2 are prime.

In Exercises 19 and 20, write the statement in words and
tell whether it is true or false.

19. ∀n P(n)

20. ∃n P(n)

Section 6
21. Let K(x, y) be the propositional function “x knows y.” The

domain of discourse is the Cartesian product of the set of
students taking discrete math with itself (i.e., both x and y

take on values in the set of students taking discrete math).
Represent the assertion “someone does not know anyone”
symbolically.

22. Write the negation of the assertion of Exercise 21 symboli-
cally and in words.

23. Determine whether the statement

∀x∃y(x = y3)

is true or false. The domain of discourse is R×R. Explain
your answer. Explain, in words, the meaning of the state-
ment.

24. Use the generalized De Morgan’s laws for logic to write the
negation of

∀x∃y∀z P(x, y, z).

Computer Exercises

In Exercises 1–6, assume that a set X of n elements is repre-
sented as an array A of size at least n + 1. The elements of X

are listed consecutively in A starting in the first position and
terminating with 0. Assume further that no set contains 0.

1. Write a program to represent the sets X∪ Y, X∩ Y, X− Y ,
and X � Y , given the arrays representing X and Y . (The
symmetric difference is denoted �.)

2. Write a program to determine whether X ⊆ Y , given arrays
representing X and Y .

3. Write a program to determine whether X = Y , given arrays
representing X and Y .

4. Assuming a universe represented as an array, write a
program to represent the set X, given the array represent-
ing X.

64

Sets and Logic

5. Given an element E and the array A that represents X, write
a program that determines whether E ∈ X.

6. Given the array representing X, write a program that lists
all subsets of X.

7. Write a program that reads a logical expression in p and q

and prints the truth table of the expression.

8. Write a program that reads a logical expression in p, q, and
r and prints the truth table of the expression.

9. Write a program that tests whether two logical expressions
in p and q are logically equivalent.

10. Write a program that tests whether two logical expressions
in p, q, and r are logically equivalent.

Hints/Solutions to Selected Exercises

Section 1 Review
1. A set is a collection of objects.

2. A set may be defined by listing the elements in it. For exam-
ple, {1, 2, 3, 4} is the set consisting of the integers 1, 2, 3, 4.
A set may also be defined by listing a property necessary for
membership. For example,

{x | x is a positive, real number}

defines the set consisting of the positive, real numbers.

3. Set Description Examples of Members

Z Integers −3, 2
Q Rational numbers −3/4, 2.13074
R Real numbers −2.13074,

√
2

Z+ Positive integers 2, 10
Q+ Positive rational numbers 3/4, 2.13074
R+ Positive real numbers 2.13074,

√
2

Z− Negative integers −12,−10
Q− Negative rational numbers −3/8,−2.13074
R− Negative real numbers −2.13074,−√2
Znonneg Nonnegative integers 0, 3
Qnonneg Nonnegative rational 0, 3.13074

numbers
Rnonneg Nonnegative real numbers 0,

√
3

4. The cardinality of X (i.e., the number of elements in X)

5. x ∈ X 6. x /∈ X 7. ∅

8. Sets X and Y are equal if they have the same elements. Set
equality is denoted X = Y .

9. Prove that for every x, if x is in X, then x is in Y , and if x is in
Y , then x is in X.

10. Prove one of the following: (a) There exists x such that x ∈ X

and x �∈ Y . (b) There exists x such that x �∈ X and x ∈ Y .

11. X is a subset of Y if every element of X is an element of Y. X

is a subset of Y is denoted X ⊆ Y .

12. To prove that X is a subset of Y , let x be an arbitrary element
of X and prove that x is in Y .

13. Find x such that x is in X, but x is not in Y .

14. X is a proper subset of Y if X ⊆ Y and X �= Y . X is a proper
subset of Y is denoted X ⊂ Y .

15. To prove that X is a proper subset of Y , prove that X is a subset
of Y and find x in Y such that x is not in X.

16. The power set of X is the collection of all subsets of X. It is
denoted P(X).

17. X union Y is the set of elements that belong to either X or Y or
both. It is denoted X ∪ Y .

18. The union of S is the set of elements that belong to at least one
set in S. It is denoted ∪S.

19. X intersect Y is the set of elements that belong to both X and
Y. It is denoted X ∩ Y .

20. The intersection of S is the set of elements that belong to every
set in S. It is denoted ∩S.

21. X ∩ Y = ∅

22. A collection of sets S is pairwise disjoint if, whenever X and
Y are distinct sets in S, X and Y are disjoint.

23. The difference of X and Y is the set of elements that are in X

but not in Y. It is denoted X− Y.

24. A universal set is a set that contains all of the sets under dis-
cussion.

25. The complement of X is U −X, where U is a given universal
set. The complement of X is denoted X.

26. A Venn diagram provides a pictorial view of sets. In a Venn
diagram, a rectangle depicts a universal set, and subsets of
the universal set are drawn as circles. The inside of a circle
represents the members of that set.

27.

X Y

Z

U

5

3 421

8

76

Region 1 represents elements in none of X, Y , or Z. Region 2
represents elements in X, but in neither Y nor Z. Region 3 rep-
resents elements in X and Y , but not in Z. Region 4 represents
elements in Y , but in neither X nor Z. Region 5 represents
elements in X, Y , and Z. Region 6 represents elements in X

and Z, but not in Y . Region 7 represents elements in Y and Z,

65

Sets and Logic

but not in X. Region 8 represents elements in Z, but in neither
X nor Y .

28. (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C)

29. A ∪ B = B ∪ A, A ∩ B = B ∩ A

30. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) =
(A ∪ B) ∩ (A ∪ C)

31. A ∪∅ = A, A ∩ U = A

32. A ∪ A = U, A ∩ A = ∅

33. A ∪ A = A, A ∩ A = A

34. A ∪ U = U, A ∩∅ = ∅

35. A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A

36. A = A 37. ∅ = U, U = ∅

38. (A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B

39. A collection S of nonempty subsets of X is a partition of X if
every element in X belongs to exactly one member of S.

40. The Cartesian product of X and Y is the set of all ordered pairs
(x, y) where x ∈ X and y ∈ Y . It is denoted X× Y.

41. The Cartesian product of X1, X2, . . . , Xn is the set of all
n-tuples (x1, x2, . . . , xn) where xi ∈ Xi for i = 1, . . . , n.
It is denoted X1 ×X2 × · · · ×Xn.

Section 1
1. {1, 2, 3, 4, 5, 7, 10} 4. {2, 3, 5}
7. ∅ 10. U

13. {6, 8}
16. {1, 2, 3, 4, 5, 7, 10}
17. 0 20. 5

21. If x ∈ A, then x is one of 3, 2, 1. Thus x ∈ B. If x ∈ B, then x

is one of 1, 2, 3. Thus x ∈ A. Therefore, A = B.

24. If x ∈ A, then x satisfies x2 − 4x + 4 = 1. Factoring x2−
4x + 4, we find that (x − 2)2 = 1. Thus (x − 2) = ±1. If
(x − 2) = 1, then x = 3. If (x − 2) = −1, then x = 1. Since
x = 3 or x = 1, x ∈ B. Therefore A ⊆ B.

If x ∈ B, then x = 1 or x = 3. If x = 1, then

x2 − 4x+ 4 = 12 − 4 · 1+ 4 = 1

and thus x ∈ A. If x = 3, then

x2 − 4x+ 4 = 32 − 4 · 3+ 4 = 1

and again x ∈ A. Therefore B ⊆ A. We conclude that A = B.

25. Since 1 ∈ A, but 1 �∈ B, A �= B.

28. Note that A=B∩C={2, 4}. Since 1 ∈ B, but 1 �∈ A, A �= B.

29. Equal 32. Not equal

33. Let x ∈ A. Then x = 1 or x = 2. In either case, x ∈ B.
Therefore A ⊆ B.

36. First note that B = Z+. Now let x ∈ A. Then x = 2n for some
n ∈ Z+. Since 2 ∈ Z+, 2n ∈ Z+ = B. Therefore A ⊆ B.

37. Since 3 ∈ A, but 3 �∈ B, A is not a subset of B.

40. Since 3 ∈ A, but 3 �∈ B, A is not a subset of B.

41.
A B

U

44. Same as Exercise 41

47.

A B

C

U

49. The shaded area represents the beverage, which has great taste
and is less filling.

50. 10 53. 64 55. 4

57. {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
60. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),

(c, b), (c, c)}
61. {(1, a, α), (1, a, β), (2, a, α), (2, a, β)}
64. {(a, 1, a, α), (a, 2, a, α), (a, 1, a, β), (a, 2, a, β)}
65. The entire xy-plane

68. Parallel horizontal lines spaced one unit apart. There is a lowest
line [passing through (0, 0)] but the lines continue indefinitely
above the lowest line.

71. Parallel planes stacked one above another one unit apart. The
planes continue indefinitely in both directions [above and
below the origin (0, 0, 0)].

73. {{1}}
76. {{a, b, c, d}}, {{a, b, c}, {d}},

{{a, b, d}, {c}}, {{a, c, d}, {b}}, {{b, c, d}, {a}},
{{a, b}, {c}, {d}}, {{a, c}, {b}, {d}},
{{a, d}, {b}, {c}},
{{b, c}, {a}, {d}}, {{b, d}, {a}, {c}}, {{c, d}, {a}, {b}},
{{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}},
{{a}, {b}, {c}, {d}}

77. True

80. True

83. ∅, {a}, {b}, {a, b}. All but {a, b} are proper subsets.

86. 2n − 1 87. A ⊆ B

90. B ⊆ A 91. {1, 4, 5}
94. The center of the circle

66

Sets and Logic

Section 2 Review
1. A proposition is a sentence that is either true or false, but not

both.

2. The truth table of a proposition P made up of the individual
propositions p1, . . . , pn lists all possible combinations of truth
values for p1, . . . , pn, T denoting true and F denoting false,
and for each such combination lists the truth value of P .

3. The conjunction of propositions p and q is the proposition p
and q. It is denoted p ∧ q.

4.
p q p ∧ q

T T T
T F F
F T F
F F F

5. The disjunction of propositions p and q is the proposition p or
q. It is denoted p ∨ q.

6.
p q p ∨ q

T T T
T F T
F T T
F F F

7. The negation of proposition p is the proposition not p. It is
denoted ¬p.

8.
p ¬p

T F
F T

Section 2
1. Is a proposition. Negation: 2+ 5 �= 19

4. Not a proposition; it is a question.

7. Not a proposition; it is a command.

10. Not a proposition; it is a description of a mathematical expres-
sion (i.e., p− q, where p and q are primes).

12. Ten heads were not obtained. (Alternative: At least one tail
was obtained.)

15. No heads were obtained. (Alternative: Ten tails were obtained.)

16. True

19. True

22.
p q p ∧ ¬q

T T F
T F T
F T F
F F F

25.
p q (p ∧ q) ∧ ¬q

T T F
T F F
F T F
F F F

28.
p q (p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q)

T T F
T F F
F T F
F F F

30. p ∧ q; false

33. Lee does not take computer science.

36. Lee takes computer science or Lee does not take mathematics.

39. You play football and you miss the midterm exam.

42. It is not the case that you play football or you miss the midterm
exam, or you pass the course.

44. Today is Monday or it is raining.

47. (Today is Monday and it is raining) and it is not the case that
(it is hot or today is Monday).

49. ¬p 52. ¬p ∧ ¬q

55. p ∧ ¬q 58. ¬p ∧ ¬r ∧ ¬q

60. p ∧ r 63. (p ∨ q) ∧ ¬r

67. Inclusive-or: To enter Utopia, you must show a driver’s license
or a passport or both. Exclusive-or: To enter Utopia, you must
show a driver’s license or a passport but not both. Exclusive-or
is the intended meaning.

70. Inclusive-or: The car comes with a cupholder that heats or
cools your drink or both. Exclusive-or: The car comes with
a cupholder that heats or cools your drink but not both.
Exclusive-or is the intended meaning.

73. Inclusive-or: The meeting will be canceled if fewer than 10
persons sign up or at least 3 inches of snow falls or both.
Exclusive-or: The meeting will be canceled if fewer than 10
persons sign up or at least 3 inches of snow falls but not both.
Inclusive-or is the intended meaning.

74. No, assuming the interpretation: It shall be unlawful for any
person to keep more than three [3] dogs and more than three
[3] cats upon his property within the city. A judge ruled that
the ordinance was “vague.” Presumably, the intended meaning
was: “It shall be unlawful for any person to keep more than
three [3] dogs or more than three [3] cats upon his property
within the city.”

75. "national park" "north dakota" OR "south dakota"

Section 3 Review
1. If p and q are propositions, the conditional proposition is the

proposition if p then q. It is denoted p→ q.

67

Sets and Logic

2.
p q p→ q

T T T
T F F
F T T
F F T

3. In the conditional proposition p→ q, p is the hypothesis.

4. In the conditional proposition p→ q, q is the conclusion.

5. In the conditional proposition p→ q, q is a necessary
condition.

6. In the conditional proposition p→ q, p is a sufficient
condition.

7. The converse of p→ q is q→ p.

8. If p and q are propositions, the biconditional proposition is the
proposition p if and only if q. It is denoted p↔ q.

9.
p q p↔ q

T T T
T F F
F T F
F F T

10. If the propositions P and Q are made up of the propositions
p1, . . . , pn, P and Q are logically equivalent provided that
given any truth values of p1, . . . , pn, either P and Q are both
true or P and Q are both false.

11. ¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q

12. The contrapositive of p→ q is ¬q→ ¬p.

Section 3
1. If Joey studies hard, then he will pass the discrete mathematics

exam.

4. If Katrina passes discrete mathematics, then she will take the
algorithms course.

7. If you inspect the aircraft, then you have the proper security
clearance.

10. If the program is readable, then it is well structured.

11. (For Exercise 1) If Joey passes the discrete mathematics exam,
then he studied hard.

13. True 16. False 19. False

21. True 24. True 27. True

30. True 31. True 34. False

37. True 40. p→ q 43. q↔ (p ∧ ¬r)

44. p→ q

47. q↔ (p ∧ r)

50. If today is Monday, then it is raining.

53. It is not the case that today is Monday or it is raining if and
only if it is hot.

56. Let p : 4 < 6 and q : 9 > 12.

Given statement: p→ q; false.

Converse: q→ p; if 9 > 12, then 4 < 6; true.

Contrapositive: ¬q→ ¬p; if 9 ≤ 12, then 4 ≥ 6; false.

59. Let p : |4| < 3 and q : −3 < 4 < 3.

Given statement: q→ p; true.

Converse: p→ q; if |4| < 3, then −3 < 4 < 3; true.

Contrapositive:

¬p→ ¬q, if |4| ≥ 3, then −3 ≥ 4 or 4 ≥ 3; true.

60. P �≡ Q 63. P �≡ Q

66. P �≡ Q 69. P �≡ Q

70. Pat will not use the treadmill and will not lift weights.

73. To make chili, you do not need red pepper or you do not need
onions.

74.
p q p imp1 q q imp1 p

T T T T
T F F F
F T F F
F F T T

Since p imp1 q is true precisely when q imp1 p is true,
p imp1 q ≡ q imp1 p.

77.
p q p→ q ¬p ∨ q

T T T T
T F F F
F T T T
F F T T

Since p→ q is true precisely when ¬p∨ q is true, p→ q ≡
¬p ∨ q.

Section 4 Review
1. Deductive reasoning refers to the process of drawing a con-

clusion from a sequence of propositions.

2. In the argument p1, p2, . . . , pn/∴ q, the hypotheses are
p1, p2, . . . , pn.

3. “Premise” in another name for hypothesis.

4. In the argument p1, p2, . . . , pn/∴ q, the conclusion is q.

5. The argument p1, p2, . . . , pn/∴ q is valid provided that if p1

and p2 and . . . and pn are all true, then q must also be true.

6. An invalid argument is an argument that is not valid.
7. p→ q

p
∴ q

8. p→ q

¬q
∴ ¬p

9. p
∴ p ∨ q

10. p ∧ q
∴ p

11. p

q
∴ p ∧ q

12. p→ q

q→ r
∴ p→ r

68

Sets and Logic

13. p ∨ q

¬p
∴ q

Section 4
1. Valid p→ q

p
∴ q

4. Invalid (p ∨ r)→ q
q
∴ ¬p→ r

6. Valid. If 4 megabytes is better than no memory at all, then
we will buy a new computer. If 4 megabytes is better than no
memory at all, then we will buy more memory. Therefore, if 4
megabytes is better than no memory at all, then we will buy a
new computer and we will buy more memory.

9. Invalid. If we will not buy a new computer, then 4 megabytes is
not better than no memory at all. We will buy a new computer.
Therefore, 4 megabytes is better than no memory at all.

11. Invalid 14. Invalid

17. An analysis of the argument must take into account the fact
that “nothing” is being used in two very different ways.

18. Addition

21. Let p denote the proposition “there is gas in the car,” let q

denote the proposition “I go to the store,” and let r denote the
proposition “I get a soda.” Then the hypotheses are as follows:

p→ q

q→ r

p

From p → q and q → r, we may use the hypothetical syl-
logism to conclude p → r. From p → r and p, we may use
modus ponens to conclude r. Since r represents the proposition
“I get a soda,” we conclude that the conclusion does follow
from the hypotheses.

24. We construct a truth table for all the propositions involved:

p q p→ q ¬q ¬p

T T T F F
T F F T F
F T T F T
F F T T T

We observe that whenever the hypotheses p→ q and ¬q are
true, the conclusion ¬p is also true; therefore, the argument is
valid.

27. We construct a truth table for all the propositions involved:

p q p ∧ q

T T T
T F F
F T F
F F F

We observe that whenever the hypotheses p and q are true, the
conclusion p∧ q is also true; therefore, the argument is valid.

Section 5 Review
1. If P(x) is a statement involving the variable x, we call P a

propositional function if for each x in the domain of discourse,
P(x) is a proposition.

2. A domain of discourse for a propositional function P is a set
D such that P(x) is defined for every x in D.

3. A universally quantified statement is a statement of the form
for all x in the domain of discourse, P(x).

4. A counterexample to the statement ∀x P(x) is a value of x for
which P(x) is false.

5. An existentially quantified statement is a statement of the form
for some x in the domain of discourse, P(x).

6. ¬(∀x P(x)) and ∃x¬P(x) have the same truth values.
¬(∃x P(x)) and ∀x¬P(x) have the same truth values.

7. To prove that the universally quantified statement ∀x P(x) is
true, show that for every x in the domain of discourse, the
proposition P(x) is true.

8. To prove that the existentially quantified statement ∃x P(x) is
true, find one value of x in the domain of discourse for which
the proposition P(x) is true.

9. To prove that the universally quantified statement ∀x P(x) is
false, find one value of x in the domain of discourse for which
the proposition P(x) is false.

10. To prove that the existentially quantified statement ∃x P(x) is
false, show that for every x in the domain of discourse, the
proposition P(x) is false.

11. ∀xP(x)
∴ P(d) if d ∈ D

12. P(d) for every d ∈ D
∴ ∀x P(x)

13. ∃xP(x)
∴ P(d) for some d ∈ D

14. P(d) for some d ∈ D
∴ ∃x P(x)

Section 5
1. Is a propositional function. The domain of discourse could be

taken to be all integers.

4. Is a propositional function. The domain of discourse is the set
of all movies.

7. 11 divides 77. True.

10. For every positive integer n, n divides 77. False.

12. True 15. False 18. False

21. P(1) ∧ P(2) ∧ P(3) ∧ P(4)

24. P(1) ∨ P(2) ∨ P(3) ∨ P(4)

27. P(2) ∧ P(3) ∧ P(4)

28. Every student is taking a math course.

31. Some student is not taking a math course.

34. (For Exercise 28) ∃x¬P(x). Some student is not taking a math
course.

35. Every professional athlete plays soccer. False.

69

Sets and Logic

38. Either someone does not play soccer or some soccer player is
a professional athlete. True.

41. Everyone is a professional athlete and plays soccer. False.

43. (For Exercise 35) ∃x(P(x) ∧ ¬Q(x)). Someone is a profes-
sional athlete and does not play soccer.

44. ∀x(P(x)→ Q(x))

47. ∃x(P(x) ∧Q(x))

48. (For Exercise 44) ∃x(P(x) ∧ ¬Q(x)). Some accountant does
not own a Porsche.

49. False. A counterexample is x = 0.

52. True. The value x = 2 makes (x > 1)→ (x2 > x) true.

55. (For Exercise 49) ∃x(x2 ≤ x). There exists x such that x2 ≤ x.

57. The literal meaning is: No man cheats on his wife. The
intended meaning is: Some man does not cheat on his wife. Let
P(x) denote the statement “x is a man,” and Q(x) denote the
statement “x cheats on his wife.” Symbolically, the clarified
statement is ∃x(P(x) ∧ ¬Q(x)).

60. The literal meaning is: No environmental problem is a tragedy.
The intended meaning is: Some environmental problem is not
a tragedy. Let P(x) denote the statement “x is an environmen-
tal problem,” and Q(x) denote the statement “x is a tragedy.”
Symbolically, the clarified statement is ∃x(P(x) ∧ ¬Q(x)).

63. The literal meaning is: Everything is not sweetness and light.
The intended meaning is: Not everything is sweetness and
light. Let P(x) denote the statement “x is sweetness and light.”
Symbolically, the clarified statement is ∃x¬P(x).

66. The literal meaning is: No circumstance is right for a formal
investigation. The intended meaning is: Some circumstance is
not right for a formal investigation. Let P(x) denote the state-
ment “x is a circumstance,” and Q(x) denote the statement “x
is right for a formal investigation.” Symbolically, the clarified
statement is ∃x(P(x) ∧ ¬Q(x)).

67. (a)
p q p→ q q→ p

T T T T
T F F T
F T T F
F F T T

One of p→ q or q→ p is true since in each row, one of
the last two entries is true.

(b) The statement, “All integers are positive or all positive
numbers are integers,” which is false, in symbols is

(∀x(I(x)→ P(x))) ∨ (∀x(P(x)→ I(x))).

This is not the same as the given statement

∀x((I(x)→ P(x)) ∨ (P(x)→ I(x))),

which is true. The ambiguity results from attempting to
distribute ∀ across the or.

70. Universal instantiation

71. Let P(x) denote the propositional function “x has a graphing
calculator,” and let Q(x) denote the propositional function “x
understands the trigonometric functions.” The hypotheses are
∀x P(x) and ∀x(P(x)→ Q(x)). By universal instantiation, we
have P(Ralphie) and P(Ralphie)→ Q(Ralphie). The modus
ponens rule of inference now gives Q(Ralphie), which repre-
sents the proposition “Ralphie understands the trigonometric
functions.” We conclude that the conclusion does follow from
the hypotheses.

74. By definition, the proposition ∀x P(x) is true when P(x) is true
for all x in the domain of discourse. We are given that P(d) is
true for any d in the domain of discourse D. Therefore, ∀x P(x)

is true.

Section 6 Review
1. For every x and for every y, P(x, y). Let the domain of dis-

course be X×Y . The statement is true if, for every x ∈ X and
for every y ∈ Y , P(x, y) is true. The statement is false if there
is at least one x ∈ X and at least one y ∈ Y such that P(x, y)

is false.

2. For every x, there exists y such that P(x, y). Let the domain of
discourse be X× Y . The statement is true if, for every x ∈ X,
there is at least one y ∈ Y for which P(x, y) is true. The state-
ment is false if there is at least one x ∈ X such that P(x, y) is
false for every y ∈ Y .

3. There exists x such that for every y, P(x, y). Let the domain of
discourse be X×Y . The statement is true if there is at least one
x ∈ X such that P(x, y) is true for every y ∈ Y . The statement
is false if, for every x ∈ X, there is at least one y ∈ Y such
that P(x, y) is false.

4. There exists x and there exists y such that P(x, y). Let the
domain of discourse be X × Y . The statement is true if there
is at least one x ∈ X and at least one y ∈ Y such that P(x, y)

is true. The statement is false if, for every x ∈ X and for every
y ∈ Y , P(x, y) is false.

5. Let P(x, y) be the propositional function “x ≤ y” with domain
of discourse Z× Z. Then ∀x∃yP(x, y) is true since, for every
integer x, there exists an integer y (e.g., y = x) such that x ≤ y

is true. On the other hand, ∃x∀yP(x, y) is false. For every inte-
ger x, there exists an integer y (e.g., y = x−1) such that x ≤ y

is false.

6. ∃x∃y¬P(x, y)

7. ∃x∀y¬P(x, y)

8. ∀x∃y¬P(x, y)

9. ∀x∀y¬P(x, y)

10. Given a quantified propositional function, you and your oppo-
nent, whom we call Farley, play a logic game. Your goal is
to try to make the propositional function true, and Farley’s
goal is to try to make it false. The game begins with the first
(left) quantifier. If the quantifier is ∀, Farley chooses a value
for that variable; if the quantifier is ∃, you choose a value for
that variable. The game continues with the second quantifier.
After values are chosen for all the variables, if the proposi-
tional function is true, you win; if it is false, Farley wins. If

70

Sets and Logic

you can always win regardless of how Farley chooses values
for the variables, the quantified propositional function is true,
but if Farley can choose values for the variables so that you
cannot win, the quantified propositional function is false.

Section 6
1. Everyone is taller than everyone.

4. Someone is taller than someone.

5. (For Exercise 1) In symbols: ∃x∃y¬T1(x, y). In words: Some-
one is not taller than someone.

6. (For Exercise 1) False; Garth is not taller than Garth.

9. (For Exercise 1) False; Pat is not taller than Pat.

10. Everyone is taller than or the same height as everyone.

13. Someone is taller than or the same height as someone.

14. (For Exercise 10) In symbols:∃x∃y¬T2(x, y). In words: Some-
one is shorter than someone.

15. (For Exercise 10) False; Erin is not taller than or the same
height as Garth.

18. (For Exercise 10) True

19. For any two people, if they are distinct, the first is taller than
the second.

22. There are two people and, if they are distinct, the first is taller
than the second.

23. (For Exercise 19) In symbols: ∃x∃y¬T3(x, y). In words: There
are two distinct people and the first is shorter than or the same
height as the second.

24. (For Exercise 19) False; Erin and Garth are distinct persons,
but Erin is not taller than Garth.

27. (For Exercise 19) False; Pat and Sandy are distinct persons,
but Pat is not taller than Sandy.

28. ∃x∀yL(x, y). True (think of a saint).

31. ∀x∃yL(x, y). True (according to Dean Martin’s song, “Every-
body Loves Somebody Sometime”).

32. (For Exercise 28) Everyone does not love someone.
∀x∃y¬L(x, y)

33. ∃y A(Brit, y)

36. ∀y∃x A(x, y)

37. False 40. True

41. (For Exercise 37) ∃x∃y¬P(x, y) or ∃x∃y(x < y)

42. False. A counterexample is x = 2, y = 0.

45. True. Take x = y = 0.

48. False. A counterexample is x = y = 2.

51. True. Take x = 1, y = √8.

54. True. Take x = 0. Then for all y, x2 + y2 ≥ 0.

57. True. For any x, if we set y = x − 1, the conditional propo-
sition, if x < y, then x2 < y2, is true because the hypothesis is
false.

60. (For Exercise 42) ∃x∃y(x2 ≥ y + 1)

63. (For Exercise 42) Since both quantifiers are ∀, Farley chooses
values for both x and y. Since Farley can choose values that
make x2 < y + 1 false (e.g., x = 2, y = 0), Farley can win
the game. Therefore, the proposition is false.

66. Since the first two quantifiers are ∀, Farley chooses values for
both x and y. The last quantifier is ∃, so you choose a value
for z. Farley can choose values (e.g., x = 1, y = 2) so that no
matter which value you choose for z, the expression

(x < y)→ ((z > x) ∧ (z < y))

is false. Since Farley can choose values for the variables so
that you cannot win, the quantified statement is false.

68. ∀x ∃y P(x, y) must be true. Since ∀x ∀y P(x, y) is true, regard-
less of which value of x is selected, P(x, y) is true for all y.
Thus for any x, P(x, y) is true for any particular y.

71. ∀x ∀y P(x, y) might be false. Let P(x, y) denote the expression
x ≤ y. If the domain of discourse is Z+ × Z+, ∃x ∀y P(x, y)

is true; however, ∀x ∀y P(x, y) is false.

74. ∀x ∀y P(x, y) might be false. Let P(x, y) denote the expression
x ≤ y. If the domain of discourse is Z+ × Z+, ∃x ∃y P(x, y)

is true; however, ∀x ∀y P(x, y) is false.

77. ∀x ∃y P(x, y) might be true. Let P(x, y) denote the expression
x ≤ y. If the domain of discourse is Z+ × Z+, ∀x ∃y P(x, y)

is true; however, ∀x ∀y P(x, y) is false.

80. ∀x ∀y P(x, y) must be false. Since ∀x ∃y P(x, y) is false, there
exists x, say x = x′, such that for all y, P(x, y) is false. Choose
y = y′ in the domain of discourse. Then P(x′, y′) is false.
Therefore ∀x ∀y P(x, y) is false.

83. ∀x ∀y P(x, y) must be false. Since ∃x ∀y P(x, y) is false, for
every x there exists y such that P(x, y) is false. Choose x = x′
in the domain of discourse. For this choice of x, there exists
y = y′ such that P(x′, y′) is false. Therefore ∀x ∀y P(x, y) is
false.

86. ∀x ∀y P(x, y) must be false. Since ∃x ∃y P(x, y) is false, for
every x and for every y, P(x, y) is false. Choose x = x′ and
y = y′ in the domain of discourse. For these choices of x and
y, P(x′, y′) is false. Therefore ∀x ∀y P(x, y) is false.

89. ∃x¬(∀y P(x, y)) is not logically equivalent to ¬(∀x ∃y
P(x, y)). Let P(x, y) denote the expression x < y. If the
domain of discourse is Z× Z, ∃x¬(∀y P(x, y)) is true; how-
ever, ¬ (∀x ∃y P(x, y)) is false.

92. ∃x ∃y¬P(x, y) is not logically equivalent to ¬(∀x ∃y
P(x, y)). Let P(x, y) denote the expression x < y. If the
domain of discourse is Z × Z, ∃x ∃y¬P(x, y) is true; how-
ever, ¬ (∀x ∃y P(x, y)) is false.

93. ∀ε > 0 ∃δ > 0∀x ((0 < |x− a| < δ)→ (|f(x)− L| < ε))

Chapter Self-Test
1. ∅

2. A ⊆ B

3. Yes

71

Sets and Logic

4. Since |A| = 3 and |P(A)| = 23 = 8, |P(A)×A| = 8 · 3 = 24.

5. False

6.
p q r ¬(p ∧ q) ∨ (p ∨ ¬r)

T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

7. I take hotel management and either I do not take recreation
supervision or I take popular culture.

8. p ∨ (q ∧ ¬r)

9. If Leah gets an A in discrete mathematics, then Leah studies
hard.

10. Converse: If Leah studies hard, then Leah gets an A in discrete
mathematics. Contrapositive: If Leah does not study hard, then
Leah does not get an A in discrete mathematics.

11. True

12. (¬r ∨ q)→ ¬q

13. Hypothetical syllogism

14. Let

p: The Skyscrapers win.
q: I’ll eat my hat.
r: I’ll be quite full.

Then the argument symbolically is

p→ q

q→ r

∴ r→ p

The argument is invalid. If p and q are false and r is true, the
hypotheses are true, but the conclusion is false.

15. The argument is invalid. If p and r are true and q is false, the
hypotheses are true, but the conclusion is false.

16. Let

p: The Council approves the funds.
q: New Atlantic gets the Olympic Games.
r: New Atlantic builds a new stadium.
s: The Olympic Games are canceled.

Then the argument symbolically is

p→ q

q→ r

¬r

∴ ¬p ∨ s

From p→ q and q→ r, we may use the hypothetical syllo-
gism to conclude p → r. From p → r and ¬r, we may use
the modus tollens to conclude ¬p. We may then use addition
to conclude ¬p ∨ s.

17. The statement is not a proposition. The truth value cannot be
determined without knowing what “the team” refers to.

18. The statement is a propositional function. When we substi-
tute a particular team for the variable “team,” the statement
becomes a proposition.

19. For all positive integers n, n and n+ 2 are prime. The propo-
sition is false. A counterexample is n = 7.

20. For some positive integer n, n and n+ 2 are prime. The propo-
sition is true. For example, if n = 5, n and n+ 2 are prime.

21. ∃x∀y¬K(x, y)

22. ∀x∃yK(x, y); everybody knows somebody.

23. The statement is true. For every x, there exists y, namely the
cube root of x, such that x = y3. In words: Every real number
has a cube root.

24. ¬(∀x∃y∀zP(x, y, z)) ≡ ∃x¬(∃y∀zP(x, y, z))

≡ ∃x∀y¬(∀zP(x, y, z))

≡ ∃x∀y∃z¬P(x, y, z)

72

Proofs

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

73

Proofs

1 Mathematical Systems,
Direct Proofs, and
Counterexamples

2 More Methods of Proof
Problem-Solving Corner:
Proving Some Properties
of Real Numbers

3 Resolution Proofs
4 Mathematical Induction

Problem-Solving Corner:
Mathematical Induction

5 Strong Form of Induction
and the Well-Ordering
Property
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

I’m going to need to see some hard proof. You got any?

FROM SUPERNATURAL

This chapter discusses proofs. Logical methods are used in mathematics to prove the-
orems and in computer science to prove that programs do what they are alleged to do.
Suppose, for example, that a student is assigned a program to compute shortest paths
between cities. The program must be able to accept as input an arbitrary number of
cities and the distances between cities directly connected by roads and produce as output
the shortest paths (routes) between each distinct pair of cities. After the student writes
the program, it is easy to test it for a small number of cities. Using paper and pencil, the
student could simply list all possible paths between pairs of cities and find the shortest
paths. This brute-force solution could then be compared with the output of the program.
However, for a large number of cities, the brute-force technique would take too long.
How can the student be sure that the program works properly for large input—almost
surely the kind of input on which the instructor will test the program? The student will
have to use logic to prove that the program is correct. The proof might be informal or
formal using the techniques presented in this chapter, but a proof will be required.

After introducing some context and terminology in Section 1, we devote the
remainder of this chapter to various proof techniques. Sections 1 and 2 introduce several
proof techniques. Resolution, the topic of Section 3, is a special proof technique that
can be automated. Sections 4 and 5 are concerned with mathematical induction, a proof
technique especially useful in discrete mathematics and computer science.

74

Proofs

1 ➜ Mathematical Systems, Direct Proofs,
and Counterexamples

A mathematical system consists of axioms, definitions, and undefined terms. Axioms
are assumed to be true. Definitions are used to create new concepts in terms of existing
ones. Some terms are not explicitly defined but rather are implicitly defined by the axioms.
Within a mathematical system we can derive theorems. A theorem is a proposition that
has been proved to be true. Special kinds of theorems are referred to as lemmas and
corollaries. A lemma is a theorem that is usually not too interesting in its own right but
is useful in proving another theorem. A corollary is a theorem that follows easily from
another theorem.

An argument that establishes the truth of a theorem is called a proof. Logic is a
tool for the analysis of proofs. In this section and the next, we introduce some general
methods of proof. In Sections 3–5, we discuss resolution and mathematical induction,
which are special proof techniques. We begin by giving some examples of mathematical
systems.

Example 1.1 Euclidean geometry furnishes an example of a mathematical system. Among the
axioms are

■ Given two distinct points, there is exactly one line that contains them.

■ Given a line and a point not on the line, there is exactly one line parallel to the line
through the point.

The terms point and line are undefined terms that are implicitly defined by the
axioms that describe their properties.

Among the definitions are

■ Two triangles are congruent if their vertices can be paired so that the corresponding
sides and corresponding angles are equal.

■ Two angles are supplementary if the sum of their measures is 180◦.

Example 1.2 The real numbers furnish another example of a mathematical system. Among the axioms
are

■ For all real numbers x and y, xy = yx.

■ There is a subset P of real numbers satisfying

(a) If x and y are in P, then x+ y and xy are in P.

(b) If x is a real number, then exactly one of the following statements is true:

x is in P, x = 0, −x is in P.

Multiplication is implicitly defined by the first axiom and others that describe the prop-
erties multiplication is assumed to have.

Among the definitions are

■ The elements in P (of the preceding axiom) are called positive real numbers.

■ The absolute value |x| of a real number x is defined to be x if x is positive or 0
and −x otherwise.

We give several examples of theorems, corollaries, and lemmas in Euclidean
geometry and in the system of real numbers.

75

Proofs

Example 1.3 Examples of theorems in Euclidean geometry are

■ If two sides of a triangle are equal, then the angles opposite them are equal.

■ If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a
parallelogram.

Example 1.4 An example of a corollary in Euclidean geometry is

■ If a triangle is equilateral, then it is equiangular.

This corollary follows immediately from the first theorem of Example 1.3.

Example 1.5 Examples of theorems about real numbers are

■ x · 0 = 0 for every real number x.

■ For all real numbers x, y, and z, if x ≤ y and y ≤ z, then x ≤ z.

Example 1.6 An example of a lemma about real numbers is

■ If n is a positive integer, then either n− 1 is a positive integer or n− 1 = 0.

Surely this result is not that interesting in its own right, but it can be used to prove
other results.

Direct Proofs
Theorems are often of the form

For all x1, x2, . . . , xn, if p(x1, x2, . . . , xn), then q(x1, x2, . . . , xn).

This universally quantified statement is true provided that the conditional proposition

if p(x1, x2, . . . , xn), then q(x1, x2, . . . , xn) (1.1)

is true for all x1, x2, . . . , xn in the domain of discourse. To prove (1.1), we assume that
x1, x2, . . . , xn are arbitrary members of the domain of discourse. If p(x1, x2, . . . , xn) is
false, (1.1) is vacuously true; thus, we need only consider the case that p(x1, x2, . . . , xn)

is true. A direct proof assumes that p(x1, x2, . . . , xn) is true and then, using p(x1,

x2, . . . , xn) as well as other axioms, definitions, previously derived theorems, and rules
of inference, shows directly that q(x1, x2, . . . , xn) is true.

Everyone “knows” what an even or odd integer is, but the following definition
makes these terms precise and provides a formal way to use the terms “even integer”
and “odd integer” in proofs.

Definition 1.7 An integer n is even if there exists an integer k such that n = 2k. An integer n is odd if
there exists an integer k such that n = 2k + 1.

Example 1.8 The integer n = 12 is even because there exists an integer k (namely k = 6) such that
n = 2k; that is, 12 = 2 · 6.

Example 1.9 The integer n = −21 is odd because there exists an integer k (namely k = −11) such
that n = 2k + 1; that is, −21 = 2 · − 11+ 1.

76

Proofs

Example 1.10 Give a direct proof of the following statement. For all integers m and n, if m is odd and
n is even, then m+ n is odd.

Discussion In a direct proof, we assume the hypotheses and derive the conclusion.
A good start is achieved by writing out the hypotheses and conclusion so that we are
clear where we start and where we are headed. In the case at hand, we have

m is odd and n is even. (Hypotheses)

· · ·
m+ n is odd. (Conclusion)

The gap (· · ·) represents the part of the proof to be completed that leads from the
hypotheses to the conclusion.

We can begin to fill in the gap by using the definitions of “odd” and “even” to
obtain

m is odd and n is even. (Hypotheses)

There exists an integer, say k1, such that m = 2k1 + 1. (Because m is odd)

There exists an integer, say k2, such that n = 2k2. (Because n is even)

· · ·
m+ n is odd. (Conclusion)

(Notice that we cannot assume that k1 = k2. For example if m = 15 and n = 4, then
k1 = 7 and k2 = 2. That k1 is not necessarily equal to k2 is the reason that we must
denote the two integers with different symbols.)

The missing part of our proof is the argument to show that m+ n is odd. How can
we reach this conclusion? We can use the definition of “odd” again if we can show that
m+ n is equal to

2× some integer+ 1. (1.2)

We already know that m = 2k1 + 1 and n = 2k2. How can we use these facts to reach
our goal (1.2)? Since the goal involves m + n, we can add the equations m = 2k1 + 1
and n = 2k2 to obtain a fact about m+ n, namely,

m+ n = (2k1 + 1)+ 2k2.

Now this expression is supposed to be of the form (1.2). We can use a little algebra to
show that it is of the desired form:

m+ n = (2k1 + 1)+ 2k2 = 2(k1 + k2)+ 1.

We have our proof.

Proof Let m and n be arbitrary integers, and suppose that m is odd and n is even. We
prove that m + n is odd. By definition, since m is odd, there exists an integer k1 such
that m = 2k1+ 1. Also, by definition, since n is even, there exists an integer k2 such that
n = 2k2. Now the sum is

m+ n = (2k1 + 1)+ (2k2) = 2(k1 + k2)+ 1.

Thus, there exists an integer k (namely k = k1+ k2) such that m+ n = 2k+1. Therefore,
m+ n is odd.

Example 1.11 Give a direct proof of the following statement. For all sets X, Y , and Z, X∩ (Y −Z) =
(X ∩ Y)− (X ∩ Z).

77

Proofs

Discussion The outline of the proof is

X, Y , and Z are sets. (Hypothesis)

· · ·
X ∩ (Y − Z) = (X ∩ Y)− (X ∩ Z) (Conclusion)

The conclusion asserts that the two sets X ∩ (Y − Z) and (X ∩ Y)− (X ∩ Z) are equal.
Recall that to prove from the definition of set equality that these sets are equal, we must
show that for all x,

if x ∈ X ∩ (Y − Z), then x ∈ (X ∩ Y)− (X ∩ Z)

and

if x ∈ (X ∩ Y)− (X ∩ Z), then x ∈ X ∩ (Y − Z).

Thus our proof outline becomes

X, Y , and Z are sets. (Hypothesis)

If x ∈ X ∩ (Y − Z), then x ∈ (X ∩ Y)− (X ∩ Z).

If x ∈ (X ∩ Y)− (X ∩ Z), then x ∈ X ∩ (Y − Z).

X ∩ (Y − Z) = (X ∩ Y)− (X ∩ Z) (Conclusion)

We should be able to use the definitions of intersection (∩) and set difference (−) to
complete the proof.

To prove

if x ∈ X ∩ (Y − Z), then x ∈ (X ∩ Y)− (X ∩ Z),

we begin by assuming that (the arbitrary element) x is in X ∩ (Y − Z). Because this
latter set is an intersection, we immediately deduce that x ∈ X and x ∈ Y −Z. The proof
proceeds in this way. As one constructs the proof, it is essential to keep the goal in mind:
x ∈ (X ∩ Y) − (X ∩ Z). To help guide the construction of the proof, it may be helpful
to translate the goal using the definition of set difference: x ∈ (X∩ Y)− (X∩Z) means
x ∈ X ∩ Y and x /∈ X ∩ Z.

Proof Let X, Y , and Z be arbitrary sets. We prove

X ∩ (Y − Z) = (X ∩ Y)− (X ∩ Z)

by proving

if x ∈ X ∩ (Y − Z), then x ∈ (X ∩ Y)− (X ∩ Z) (1.3)

and

if x ∈ (X ∩ Y)− (X ∩ Z), then x ∈ X ∩ (Y − Z). (1.4)

To prove equation (1.3), let x ∈ X ∩ (Y − Z). By the definition of intersection,
x ∈ X and x ∈ Y − Z. By the definition of set difference, since x ∈ Y − Z, x ∈ Y and
x /∈ Z. By the definition of intersection, since x ∈ X and x ∈ Y , x ∈ X∩Y . Again by the
definition of intersection, since x /∈ Z, x /∈ X ∩ Z. By the definition of set difference,
since x ∈ X∩Y , but x /∈ X∩Z, x ∈ (X∩Y)− (X∩Z). We have proved equation (1.3).

To prove equation (1.4), let x ∈ (X ∩ Y) − (X ∩ Z). By the definition of set
difference, x ∈ X∩Y and x /∈ X∩Z. By the definition of intersection, since x ∈ X∩Y ,
x ∈ X and x ∈ Y . Again, by the definition of intersection, since x /∈ X ∩ Z and x ∈ X,

78

Proofs

x /∈ Z. By the definition of set difference, since x ∈ Y and x /∈ Z, x ∈ Y − Z. Finally,
by the definition of intersection, since x ∈ X and x ∈ Y −Z, x ∈ X∩ (Y −Z). We have
proved equation (1.4).

Since we have proved both equations (1.3) and (1.4), it follows that

X ∩ (Y − Z) = (X ∩ Y)− (X ∩ Z).

Our next example shows that in constructing a proof, we may find that we need
some auxiliary results, at which point we pause, go off and prove these auxiliary results,
and then return to the main proof. We call the proofs of auxiliary results subproofs. (For
those familiar with programming, a subproof is similar to a subroutine.)

Example 1.12 If a and b are real numbers, we define min{a, b} to be the minimum of a and b or the
common value if they are equal. More precisely,

min{a, b} =
⎧
⎨

⎩

a if a < b

a if a = b

b if b < a.

We will give a direct proof of the following statement. For all real numbers d, d1, d2, x,

if d = min{d1, d2} and x ≤ d, then x ≤ d1 and x ≤ d2.

Discussion The outline of the proof is

d = min{d1, d2} and x ≤ d (Hypotheses)

· · ·
x ≤ d1 and x ≤ d2 (Conclusion)

To help understand what is being asserted, let us look at a specific example. As we
have remarked previously, when we are asked to prove a universally quantified statement,
a specific example does not prove the statement. It may, however, help us to understand
the statement.

Let us set d1 = 2 and d2 = 4. Then d = min{d1, d2} = 2. The statement to be
proved says that if x ≤ d (= 2), then x ≤ d1 (= 2) and x ≤ d2 (= 4). Why is this true in
general? The minimum d of two numbers, d1 and d2, is equal to one of the two numbers
(namely, the smallest) and less than or equal to the other one (namely, the largest)—in
symbols, d ≤ d1 and d ≤ d2. If x ≤ d, then from x ≤ d and d ≤ d1, we may deduce
x ≤ d1. Similarly, from x ≤ d and d ≤ d2, we may deduce x ≤ d2. Thus the outline of
our proof becomes

d = min{d1, d2} and x ≤ d (Hypotheses)

Subproof: Show that d ≤ d1 and d ≤ d2.

From x ≤ d and d ≤ d1, deduce x ≤ d1.

From x ≤ d and d ≤ d2, deduce x ≤ d2.

x ≤ d1 and x ≤ d2 (Conclusion—uses the conjunction inference rule)

At this point, the only part of the proof that is missing is the subproof to show
that d ≤ d1 and d ≤ d2. Let us look at the definition of “minimum.” If d1 ≤ d2, then
d = min{d1, d2} = d1 and d = d1 ≤ d2. If d2 < d1, then d = min{d1, d2} = d2 and
d = d2 < d1. In either case, d ≤ d1 and d ≤ d2.

Proof Let d, d1, d2, and x be arbitrary real numbers, and suppose that

d = min{d1, d2} and x ≤ d.

79

Proofs

We prove that

x ≤ d1 and x ≤ d2.

We first show that d ≤ d1 and d ≤ d2. From the definition of “minimum,” if d1 ≤
d2, then d = min{d1, d2} = d1 and d = d1 ≤ d2. If d2 < d1, then d = min{d1, d2} = d2

and d = d2 < d1. In either case, d ≤ d1 and d ≤ d2. From x ≤ d and d ≤ d1, it follows
that x ≤ d1 from a previous theorem (the second theorem of Example 1.5). From x ≤ d

and d ≤ d2, we may derive x ≤ d2 from the same previous theorem. Therefore, x ≤ d1

and x ≤ d2.

Example 1.13 There are frequently many different ways to prove a statement. We illustrate by giving
two proofs of the statement

X ∪ (Y −X) = X ∪ Y for all sets X and Y .

Discussion We first give a direct proof like the proof in Example 1.11. We show that
for all x, if x ∈ X ∪ (Y −X), then x ∈ X ∪ Y , and if x ∈ X ∪ Y , then x ∈ X ∪ (Y −X).

Our second proof uses laws of sets. The idea is to begin with X∪ (Y −X) and use
the laws of sets, which here we think of as rules to manipulate set equations, to obtain
X ∪ Y .

Proof [First proof] We show that for all x, if x ∈ X∪ (Y −X), then x ∈ X∪ Y , and if
x ∈ X ∪ Y , then x ∈ X ∪ (Y −X).

Let x ∈ X ∪ (Y − X). Then x ∈ X or x ∈ Y − X. If x ∈ X, then x ∈ X ∪ Y . If
x ∈ Y −X, then x ∈ Y , so again x ∈ X ∪ Y . In either case, x ∈ X ∪ Y .

Let x ∈ X ∪ Y . Then x ∈ X or x ∈ Y . If x ∈ X, then x ∈ X ∪ (Y − X). If
x /∈ X, then x ∈ Y . In this case, x ∈ Y −X. Therefore, x ∈ X∪ (Y −X). In either case,
x ∈ X ∪ (Y −X). The proof is complete.

Proof [Second proof] We use a theorem that gives laws of sets and the fact that
Y − X = Y ∩ X, which follows immediately from the definition of set difference.
Letting U denote the universal set, we obtain

X ∪ (Y −X) = X ∪ (Y ∩X) [Y −X = Y ∩X]
= (X ∪ Y) ∩ (X ∪X) [Distributive law]
= (X ∪ Y) ∩ U [Complement law]
= X ∪ Y [Identity law].

Disproving a Universally Quantified Statement
Recall that to disprove

∀xP(x)

we simply need to find one member x in the domain of discourse that makes P(x) false.
Such a value for x is called a counterexample.

Example 1.14 The statement

∀n ∈ Z+ (2n + 1 is prime)

is false. A counterexample is n = 3 since 23 + 1 = 9, which is not prime.

80

Proofs

Example 1.15 If the statement

(A ∩ B) ∪ C = A ∩ (B ∪ C), for all sets A, B, and C

is true, prove it; otherwise, give a counterexample.
Let us begin by trying to prove the statement. We will first try to show that if

x ∈ (A ∩ B) ∪ C, then x ∈ A ∩ (B ∪ C). If x ∈ (A ∩ B) ∪ C, then

x ∈ A ∩ B or x ∈ C. (1.5)

We have to show that x ∈ A ∩ (B ∪ C), that is,

x ∈ A and x ∈ B ∪ C. (1.6)

Equation (1.5) is true if x is in C, and equation (1.6) is false if x /∈ A. Thus the given
statement is false; there is no direct proof (or any other proof!). If we choose sets A and
C so that there is an element that is in C, but not in A, we will have a counterexample.

Let

A = {1, 2, 3}, B = {2, 3, 4}, C = {3, 4, 5}
so that there is an element that is in C, but not in A. Then

(A ∩ B) ∪ C = {2, 3, 4, 5} and A ∩ (B ∪ C) = {2, 3}
and

(A ∩ B) ∪ C �= A ∩ (B ∪ C).

Thus A, B, and C provide a counterexample that shows that the given statement is
false.

Problem-Solving Tips

To construct a direct proof of a universally quantified statement, first write down the
hypotheses (so you know what you are assuming), and then write down the conclusion
(so you know what you must prove). The conclusion is what you will work toward—
something like the answer in the back of the book to an exercise, except here it is essential
to know the goal before proceeding. You must now give an argument that begins with
the hypotheses and ends with the conclusion. To construct the argument, remind yourself
what you know about the terms (e.g., “even,” “odd”), symbols (e.g., X∩Y , min{d1, d2}),
and so on. Look at relevant definitions and related results. For example, if a particular
hypothesis refers to an even integer n, you know that n is of the form 2k for some integer
k. If you are to prove that two sets X and Y are equal from the definition of set equality,
you know you must show that for every x, if x ∈ X then x ∈ Y , and if x ∈ Y then x ∈ X.

To understand what is to be proved, look at some specific values in the domain of
discourse. When we are asked to prove a universally quantified statement, showing that
the statement is true for specific values does not prove the statement; it may, however,
help to understand the statement.

To disprove a universally quantified statement, find one element in the domain of
discourse, called a counterexample, that makes the propositional function false. Here,
your proof consists of presenting the counterexample together with justification that the
propositional function is indeed false for your counterexample.

When you write up your proof, begin by writing out the statement to be proved.
Indicate clearly where your proof begins (e.g., by beginning a new paragraph or by

81

Proofs

writing “Proof.”). Use complete sentences, which may include symbols. For example,
it is perfectly acceptable to write

Thus x ∈ X.

In words, this is the complete sentence: Thus x is in X. End a direct proof by clearly stating
the conclusion, and, perhaps, giving a reason to justify the conclusion. For example,
Example 1.10 ends with:

Thus, there exists an integer k (namely k = k1+ k2) such that m+ n = 2k + 1.
Therefore, m+ n is odd.

Here the conclusion (m+ n is odd) is clearly stated and justified by the statement m+ n =
2k + 1.

Alert the reader where you are headed. For example, if you are going to prove that
X = Y , write “We will prove that X = Y” before launching into this part of the proof.

Justify your steps. For example, if you conclude that x ∈ X or x ∈ Y because it
is known that x ∈ X ∪ Y , write “Since x ∈ X ∪ Y , x ∈ X or x ∈ Y ,” or perhaps even
“Since x ∈ X ∪ Y , by the definition of union x ∈ X or x ∈ Y” if, like Richard Nixon,
you want to be perfectly clear.

If you are asked to prove or disprove a universally quantified statement, you can
begin by trying to prove it. If you succeed, you are finished—the statement is true and
you proved it! If your proof breaks down, look carefully at the point where it fails.
The given statement may be false and your failed proof may give insight into how to
construct a counterexample (see Example 1.15.) On the other hand, if you have trouble
constructing a counterexample, check where your proposed examples fail. This insight
may show why the statement is true and guide construction of a proof.

Some Common Errors
In Example 1.10, we pointed out that it is an error to use the same notation for two
possibly distinct quantities. As an example, here is a faulty “proof” that for all m and
n, if m and n are even integers then mn is a square (i.e., mn = a2 for some integer a):
Since m and n are even, m = 2k and n = 2k. Now mn = (2k)(2k) = (2k)2. If we let
a = 2k, then m = a2. The problem is that we cannot use k for two potentially different
quantities. If m and n are even, all we can conclude is that m = 2k1 and n = 2k2 for
some integers k1 and k2. The integers k1 and k2 need not be equal. (In fact, it is false that
for all m and n, if m and n are even integers then mn is a square. A counterexample is
m = 2 and n = 4.)

Given a universally quantified propositional function, showing that the proposi-
tional function is true for specific values in the domain of discourse is not a proof that
the propositional function is true for all values in the domain of discourse. (Such specific
values may, however, suggest that the propositional function might be true for all values
in the domain of discourse.) Example 1.10 is to prove that for all integers m and n,

if m is odd and n is even, then m+ n is odd. (1.7)

Letting m = 11 and n = 4 and noting that m + n = 15 is odd does not constitute a
proof that (1.7) is true for all integers m and n, it merely proves that (1.7) is true for the
specific values m = 11 and n = 4.

In constructing a proof, you cannot assume what you are supposed to prove. As an
example, consider the erroneous “proof” that for all integers m and n, if m and m + n

are even, then n is even: Let m = 2k1 and n = 2k2. Then m+n = 2k1+ 2k2. Therefore,

n = (m+ n)−m = (2k1 + 2k2)− 2k2 = 2(k1 + k2 − k2).

82

Proofs

Thus n is even. The problem with the preceding “proof” is that we cannot write n = 2k2

since this is true if and only if n is even—which is what we are supposed to prove! This
error is called begging the question or circular reasoning. [It is true that if m and m+n

are even integers, then n is even (see Exercise 12).]

Section Review Exercises

†1. What is a mathematical system?

2. What is an axiom?

3. What is a definition?

4. What is an undefined term?

5. What is a theorem?

6. What is a proof?

7. What is a lemma?

8. What is a direct proof?

9. What is the formal definition of “even integer”?

10. What is the formal definition of “odd integer”?

11. What is a subproof?

12. How do you disprove a universally quantified statement?

Exercises

1. Give an example (different from those of Example 1.1) of an
axiom in Euclidean geometry.

2. Give an example (different from those of Example 1.2) of an
axiom in the system of real numbers.

3. Give an example (different from those of Example 1.1) of a
definition in Euclidean geometry.

4. Give an example (different from those of Example 1.2) of a
definition in the system of real numbers.

5. Give an example (different from those of Example 1.3) of a
theorem in Euclidean geometry.

6. Give an example (different from those of Example 1.5) of a
theorem in the system of real numbers.

7. Prove that for all integers m and n, if m and n are even, then
m+ n is even.

8. Prove that for all integers m and n, if m and n are odd, then
m+ n is even.

9. Prove that for all integers m and n, if m and n are even, then
mn is even.

10. Prove that for all integers m and n, if m and n are odd, then
mn is odd.

11. Prove that for all integers m and n, if m is odd and n is even,
then mn is even.

12. Prove that for all integers m and n, if m and m + n are even,
then n is even.

13. Prove that for all rational numbers x and y, x+ y is rational.

14. Prove that for all rational numbers x and y, xy is rational.

15. Prove that for every rational number x, if x �= 0, then 1/x is
rational.

16. If a and b are real numbers, we define max{a, b} to be the
maximum of a and b or the common value if they are equal.
Prove that for all real numbers d, d1, d2, x,

if d = max{d1, d2} and x ≥ d, then x ≥ d1 and x ≥ d2.

17. Justify each step of the following direct proof, which shows
that if x is a real number, then x · 0 = 0. Assume that the fol-
lowing are previous theorems: If a, b, and c are real numbers,
then b + 0 = b and a(b + c) = ab + ac. If a + b = a + c,
then b = c.

Proof x · 0 + 0 = x · 0 = x · (0 + 0) = x · 0 + x · 0;
therefore, x · 0 = 0.

18. If X and Y are nonempty sets and X× Y = Y ×X, what can
we conclude about X and Y? Prove your answer.

19. Prove that X ∩ Y ⊆ X for all sets X and Y .

20. Prove that X ⊆ X ∪ Y for all sets X and Y .

21. Prove that if X ⊆ Y , then X ∪ Z ⊆ Y ∪ Z for all sets X, Y ,
and Z.

22. Prove that if X ⊆ Y , then X ∩ Z ⊆ Y ∩ Z for all sets X, Y ,
and Z.

23. Prove that if X ⊆ Y , then Z − Y ⊆ Z − X for all sets X, Y ,
and Z.

24. Prove that if X ⊆ Y , then Y − (Y − X) = X for all sets X

and Y .

25. Prove that if X∩Y = X∩Z and X∪Y = X∪Z, then Y = Z

for all sets X, Y , and Z.

26. Prove that P(X) ∪ P(Y) ⊆ P(X ∪ Y) for all sets X and Y .

27. Prove that P(X ∩ Y) = P(X) ∩ P(Y) for all sets X and Y .

28. Prove that if P(X) ⊆ P(Y), then X ⊆ Y for all sets X and Y .

29. Disprove that P(X∪ Y) ⊆ P(X)∪P(Y) for all sets X and Y .

30. Give a direct proof along the lines of the second proof in
Example 1.13 of the statement
X ∩ (Y −Z) = (X ∩ Y)− (X ∩Z) for all sets X, Y , and Z.
(In Example 1.11, we gave a direct proof of this statement
using the definition of set equality.)

In each of Exercises 31–43, if the statement is true, prove it; other-
wise, give a counterexample. The sets X, Y , and Z are subsets of a

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

83

Proofs

universal set U. Assume that the universe for Cartesian products
is U × U.

31. For all sets X and Y , either X is a subset of Y or Y is a subset
of X.

32. X ∪ (Y − Z) = (X ∪ Y)− (X ∪ Z) for all sets X, Y , and Z.

33. Y −X = X ∪ Y for all sets X and Y .

34. Y − Z = (X ∪ Y)− (X ∪ Z) for all sets X, Y , and Z.

35. X− (Y ∪ Z) = (X− Y) ∪ Z for all sets X, Y , and Z.

36. X− Y = Y −X for all sets X and Y .

37. X ∩ Y ⊆ X for all sets X and Y .

38. (X ∩ Y) ∪ (Y −X) = Y for all sets X and Y .

39. X× (Y ∪ Z) = (X× Y) ∪ (X× Z) for all sets X, Y , and Z.

40. X× Y = X× Y for all sets X and Y .

41. X× (Y − Z) = (X× Y)− (X× Z) for all sets X, Y , and Z.

42. X− (Y × Z) = (X− Y)× (X− Z) for all sets X, Y , and Z.

43. X ∩ (Y × Z) = (X ∩ Y)× (X ∩ Z) for all sets X, Y , and Z.

44. Prove the associative laws for sets.

45. Prove the commutative laws for sets.

46. Prove the distributive laws for sets.

47. Prove the identity laws for sets.

48. Prove the complement laws for sets.

49. Prove the idempotent laws for sets.

50. Prove the bound laws for sets.

51. Prove the absorption laws for sets.

52. Prove the involution law for sets.

53. Prove the 0/1 laws for sets.

54. Prove De Morgan’s laws for sets.

In Exercises 55–64, � denotes the symmetric difference operator
defined as A � B = (A ∪ B) − (A ∩ B), where A and B are
sets.

55. Prove that A� B = (A− B) ∪ (B − A) for all sets A and B.

56. Prove that (A� B)� A = B for all sets A and B.
†�57. Prove or disprove: If A, B, and C are sets satisfying A�C =

B � C, then A = B.

59. Prove or disprove: A� (B ∪C) = (A� B) ∪ (A�C) for all
sets A, B, and C.

60. Prove or disprove: A� (B ∩C) = (A� B) ∩ (A�C) for all
sets A, B, and C.

61. Prove or disprove: A ∪ (B� C) = (A ∪ B)� (A ∪ C) for all
sets A, B, and C.

62. Prove or disprove: A ∩ (B� C) = (A ∩ B)� (A ∩ C) for all
sets A, B, and C.

63. Is � commutative? If so, prove it; otherwise, give a counter-
example.

�64. Is � associative? If so, prove it; otherwise, give a counter-
example.

2 ➜ More Methods of Proof

In this section, we discuss several more methods of proof: proof by contradiction, proof
by contrapositive, proof by cases, proofs of equivalence, and existence proofs.

Proof by Contradiction
A proof by contradiction establishes p → q by assuming that the hypothesis p is
true and that the conclusion q is false and then, using p and ¬q as well as other axioms,
definitions, previously derived theorems, and rules of inference, derives a contradiction.
A contradiction is a proposition of the form r∧¬r (r may be any proposition whatever).
A proof by contradiction is sometimes called an indirect proof since to establish p→ q

using proof by contradiction, we follow an indirect route: We derive r ∧ ¬r and then
conclude that q is true.

The only difference between the assumptions in a direct proof and a proof by
contradiction is the negated conclusion. In a direct proof the negated conclusion is not
assumed, whereas in a proof by contradiction the negated conclusion is assumed.

Proof by contradiction may be justified by noting that the propositions

p→ q and (p ∧ ¬q)→ (r ∧ ¬r)

are equivalent. The equivalence is immediate from a truth table:

†A starred exercise indicates a problem of above-average difficulty.

84

Proofs

p q r p→ q p ∧ ¬q r ∧ ¬r (p ∧ ¬q)→ (r ∧ ¬r)

T T T T F F T
T T F T F F T
T F T F T F F
T F F F T F F
F T T T F F T
F T F T F F T
F F T T F F T
F F F T F F T

Example 2.1 We will give a proof by contradiction of the following statement:

For every n ∈ Z, if n2 is even, then n is even.

Discussion First, let us consider giving a direct proof of this statement. We would
assume the hypothesis, that is, that n2 is even. Then there exists an integer k1 such that
n2 = 2k1. To prove that n is even, we must find an integer k2 such that n = 2k2. It is not
clear how to get from n2 = 2k1 to n = 2k2. (Taking the square root certainly does not
work!) When a proof technique seems unpromising, try a different one.

In a proof by contradiction, we assume the hypothesis (n2 is even) and the negation
of the conclusion (n is not even, i.e., n is odd). Since n is odd, there exists an integer k

such that n = 2k + 1. If we square both sides of this last equation, we obtain

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k)+ 1.

But this last equation tells us that n2 is odd. We have our contradiction: n2 is even
(hypothesis) and n2 is odd. Formally, if r is the statement “n2 is even,” we have deduced
r ∧ ¬r.

Proof We give a proof by contradiction. Thus we assume the hypothesis

n2 is even

and that the conclusion is false

n is odd.

Since n is odd, there exists an integer k such that n = 2k + 1. Now

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k)+ 1.

Thus n2 is odd, which contradicts the hypothesis n2 is even. The proof by contradiction
is complete. We have proved that for every n ∈ Z, if n2 is even, then n is even.

Example 2.2 We will give a proof by contradiction of the following statement:

For all real numbers x and y, if x+ y ≥ 2, then either x ≥ 1 or y ≥ 1.

Discussion As in the previous example, a direct proof seems unpromising—assuming
only that x + y ≥ 2 appears to be too little to get us started. We turn to a proof by
contradiction.

Proof We begin by letting x and y be arbitrary real numbers. We then suppose that
the conclusion is false, that is, that ¬(x ≥ 1 ∨ y ≥ 1) is true. By De Morgan’s laws of

85

Proofs

logic

¬(x ≥ 1 ∨ y ≥ 1) ≡ ¬(x ≥ 1) ∧ ¬(y ≥ 1) ≡ (x < 1) ∧ (y < 1).

In words, we are assuming that x < 1 and y < 1. Using a previous theorem, we may
add these inequalities to obtain

x+ y < 1+ 1 = 2.

At this point, we have derived a contradiction: x + y ≥ 2 and x + y < 2. Thus we
conclude that for all real numbers x and y, if x+ y ≥ 2, then either x ≥ 1 or y ≥ 1.

Example 2.3 We will prove that
√

2 is irrational using proof by contradiction.

Discussion Here a direct proof seems particularly bleak. It seems we have a blank slate
with which to begin. However, if we use proof by contradiction, we may assume that

√
2

is rational. In this case, we know that there exist integers p and q such that
√

2 = p/q.
Now we have an entry on our slate. We can manipulate this equation and hope to obtain
a contradiction.

Proof We use proof by contradiction and assume that
√

2 is rational. Then there exist
integers p and q such that

√
2 = p/q. We assume that the fraction p/q is in lowest

terms so that p and q are not both even. Squaring
√

2 = p/q gives 2 = p2/q2, and
multiplying by q2 gives 2q2 = p2. It follows that p2 is even. Example 2.1 tells us that p

is even. Therefore, there exists an integer k such that p = 2k. Substituting p = 2k into
2q2 = p2 gives 2q2 = (2k)2 = 4k2. Canceling 2 gives q2 = 2k2. Therefore q2 is even,
and Example 2.1 tells us the q is even. Thus p and q are both even, which contradicts
our assumption that p and q are not both even. Therefore,

√
2 is irrational.

Proof by Contrapositive
Suppose that we give a proof by contradiction of p→ q in which, as in Examples 2.1
and 2.2, we deduce ¬p. In effect, we have proved

¬q→ ¬p.

[Recall that p→ q and ¬q→ ¬p are equivalent.] This special case of proof by contra-
diction is called proof by contrapositive.

Example 2.4 Use proof by contrapositive to show that

for all x ∈ R, if x2 is irrational, then x is irrational.

Discussion For much the same reasons that a direct proof seemed unpromising in
Examples 2.1 and 2.2, a direct proof in which we assume only that x2 is irrational seems
to be too little to get us started. A proof by contradiction can be devised (see Exercise
1), but here a proof by contrapositive is requested.

Proof We begin by letting x be an arbitrary real number. We prove the contrapositive
of the given statement, which is

if x is not irrational, then x2 is not irrational

86

Proofs

or, equivalently,

if x is rational, then x2 is rational.

So suppose that x is rational. Then x = p/q for some integers p and q. Now x2 = p2/q2.
Since x2 is the quotient of integers, x2 is rational. The proof is complete.

Proof by Cases
Proof by cases is used when the original hypothesis naturally divides itself into various
cases. For example, the hypothesis “x is a real number” can be divided into cases: (a) x

is a nonnegative real number and (b) x is a negative real number. Suppose that the task
is to prove p → q and that p is equivalent to p1 ∨ p2 ∨ · · · ∨ pn (p1, . . . , pn are the
cases). Instead of proving

(p1 ∨ p2 ∨ · · · ∨ pn)→ q, (2.1)

we prove

(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn→ q). (2.2)

As we will show, proof by cases is justified because the two statements are equivalent.
First suppose that some pi is true. Specifically, we assume that pj is true. Then

p1 ∨ p2 ∨ · · · ∨ pn

is true. If q is true, then (2.1) is true. Now pi→ q is true for every i; so (2.2) is also true.
If q is false, then (2.1) is false. Since pj → q is false, (2.2) is also false.

Now suppose that no pi is true; that is, all pi are false. Then both (2.1) and (2.2)
are true. Therefore, (2.1) and (2.2) are equivalent.

Sometimes the number of cases to prove is finite and not too large so we can check
them all one by one. We call this type of proof exhaustive proof.

Example 2.5 Prove that

2m2 + 3n2 = 40

has no solution in positive integers, that is, that 2m2 + 3n2 = 40 is false for all positive
integers m and n.

Discussion We certainly cannot check 2m2+3n2 for all positive integers m and n, but
we can rule out most positive integers because, if 2m2 + 3n2 = 40, the sizes of m and
n are restricted. In particular, we must have 2m2 ≤ 40 and 3n2 ≤ 40. (If, for example,
2m2 > 40, when we add 3n2 to 2m2, the sum 2m2 + 3n2 will exceed 40.) If 2m2 ≤ 40,
then m2 ≤ 20 and m can be at most 4. Similarly, if 3n2 ≤ 40, then n2 ≤ 40/3 and n can
be at most 3. Thus it suffices to check the cases m = 1, 2, 3, 4 and n = 1, 2, 3.

Proof If 2m2 + 3n2 = 40, we must have 2m2 ≤ 40. Thus m2 ≤ 20 and m ≤ 4.
Similarly, we must have 3n2 ≤ 40. Thus n2 ≤ 40/3 and n ≤ 3. Therefore it suffices to
check the cases m = 1, 2, 3, 4 and n = 1, 2, 3.

The entries in the table give the value of 2m2 + 3n2 for the indicated values of m

and n.

87

Proofs

m

1 2 3 4

1 5 11 21 35
n 2 14 20 30 44

3 29 35 45 59

Since 2m2 + 3n2 �= 40 for m = 1, 2, 3, 4 and n = 1, 2, 3, and 2m2 + 3n2 > 40 for
m > 4 or n > 3, we conclude that 2m2 + 3n2 = 40 has no solution in positive integers.

Example 2.6 We prove that for every real number x, x ≤ |x|.
Discussion Notice that “x is a real number” is equivalent to (x ≥ 0)∨ (x < 0). An or
statement often lends itself to a proof by cases. Case 1 is x≥ 0 and case 2 is x < 0. We
divide the proof into cases because the definition of absolute value is itself divided into
cases x ≥ 0 and x < 0 (see Example 1.2).

Proof If x ≥ 0, by definition |x| = x. Thus |x| ≥ x. If x < 0, by definition |x| = −x.
Since |x| = −x > 0 and 0 > x, |x| ≥ x. In either case, |x| ≥ x; so the proof is
complete.

Proofs of Equivalence
Some theorems are of the form

p if and only if q.

Such theorems are proved by using the equivalence

p↔ q ≡ (p→ q) ∧ (q→ p);
that is, to prove “p if and only if q,” prove “if p then q” and “if q then p.”

Example 2.7 Prove that for every integer n, n is odd if and only if n− 1 is even.

Discussion We let n be an arbitrary integer. We must prove that

if n is odd then n− 1 is even

and

if n− 1 is even then n is odd.

Proof We first prove that

if n is odd then n− 1 is even.

If n is odd, then n = 2k + 1 for some integer k. Now

n− 1 = (2k + 1)− 1 = 2k.

Therefore, n− 1 is even.
Next we prove that

if n− 1 is even then n is odd.

88

Proofs

If n− 1 is even, then n− 1 = 2k for some integer k. Now

n = 2k + 1.

Therefore, n is odd. The proof is complete.

Some proofs of p ↔ q combine the proofs of p → q and q → p. For example,
the proof in Example 2.7 could be written as follows:

n is odd if and only if n = 2k+ 1 for some integer k if and only if n− 1 = 2k for
some integer k if and only if n− 1 is even.

For such a proof to be correct, it must be the case that each if-and-only-if statement is
true. If such a proof of p↔ q is read in one direction, we obtain the proof of p→ q and,
if it is read in the other direction, we obtain a proof of q → p. Reading the preceding
proof in the if-then direction,

if n is odd, then n = 2k + 1 for some integer k; if n = 2k + 1 for some integer k,
then n− 1 = 2k for some integer k; if n− 1 = 2k for some integer k, then n− 1
is even,

proves that if n is odd, then n− 1 is even. Reversing the order,

if n− 1 is even, then n− 1 = 2k for some integer k; if n− 1 = 2k for some
integer k, then n = 2k + 1 for some integer k; if n = 2k + 1 for some integer k,
then n is odd,

proves that if n− 1 is even, then n is odd.

Example 2.8 Prove that for all real numbers x and all positive real numbers d,

|x| < d if and only if −d < x < d.

Discussion We let x be an arbitrary real number and d be an arbitrary positive real
number. We must show

if |x| < d then −d < x < d

and

if −d < x < d then |x| < d.

Since |x| is defined by cases, we expect to use proof by cases.

Proof To show

if |x| < d then −d < x < d,

we use proof by cases. We assume that |x| < d. If x ≥ 0, then

−d < 0 ≤ x = |x| < d.

If x < 0, then

−d < 0 < −x = |x| < d;
that is,

−d < −x < d.

89

Proofs

Multiplying by −1, we obtain

d > x > −d.

In either case, we have proved that

−d < x < d.

To show

if −d < x < d then |x| < d,

we also use proof by cases. We assume that −d < x < d. If x ≥ 0, then

|x| = x < d.

If x < 0, then |x| = −x. Since −d < x, we may multiply by −1 to obtain d > −x.
Combining |x| = −x and d > −x gives

|x| = −x < d.

In either case, we have proved that

|x| < d.

The proof is complete.

In proving p↔ q, we are proving that p and q are logically equivalent, that is, p

and q are either both true or both false. Some theorems state that three or more statements
are logically equivalent and, thus, have the form

The following are equivalent:

(a) —

(b) —

(c) —
...

Such a theorem asserts that (a), (b), (c) and so on are either all true or all false.
To prove that p1, p2, . . . , pn are equivalent, the usual method is to prove

(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn) ∧ (pn→ p1). (2.3)

We show that proving (2.3) shows that p1, p2, . . . , pn are equivalent.
Suppose that we prove (2.3). We consider two cases: p1 is true, p1 is false. First,

suppose that p1 is true. Because p1 and p1 → p2 are true, p2 is true; because p2 and
p2 → p3 are true, p3 is true; and so on. In this case, p1, p2, . . . , pn have the same truth
value: each is true.

Now suppose that p1 is false. Because p1 is false and pn → p1 is true, pn is
false; because pn is false and pn−1 → pn is true, pn−1 is false; and so on. In this case,
p1, p2, . . . , pn have the same truth value; each is false. Therefore, proving (2.3) shows
that p1, p2, . . . , pn are equivalent.

90

Proofs

Example 2.9 Let A, B, and C be sets. Prove that the following are equivalent:

(a) A ⊆ B (b) A ∩ B = A (c) A ∪ B = B.

Discussion According to the discussion preceding this example, we must prove

[(a)→ (b)] ∧ [(b)→ (c)] ∧ [(c)→ (a)].

Proof We prove (a)→ (b), (b)→ (c), and (c)→ (a).
[(a)→ (b).] We assume that A ⊆ B, and prove that A ∩ B = A. Suppose that

x ∈ A ∩ B. We must show that x ∈ A. But if x ∈ A ∩ B, x ∈ A by the definition of
intersection.

Now suppose that x ∈ A. We must show that x ∈ A ∩ B. Since A ⊆ B, x ∈ B.
Therefore x ∈ A ∩ B. We have proved that A ∩ B = A.

[(b)→ (c).] We assume that A∩B = A, and prove that A∪B = B. Suppose that
x ∈ A ∪ B. We must show that x ∈ B. By assumption, either x ∈ A or x ∈ B. If x ∈ B,
we have the desired conclusion. If x ∈ A, since A ∩ B = A, again x ∈ B.

Now suppose that x ∈ B. We must show that x ∈ A ∪ B. But if x ∈ B, x ∈ A ∪ B

by the definition of union. We have proved that A ∪ B = B.
[(c)→ (a).] We assume that A ∪ B = B, and prove that A ⊆ B. Suppose that

x ∈ A. We must show that x ∈ B. Since x ∈ A, x ∈ A ∪ B by the definition of union.
Since A ∪ B = B, x ∈ B. We have proved that A ⊆ B. The proof is complete.

Existence Proofs
A proof of

∃x P(x) (2.4)

is called an existence proof. One way to prove (2.4) is to exhibit one member a in the
domain of discourse that makes P(a) true.

Example 2.10 Let a and b be real numbers with a < b. Prove that there exists a real number x satisfying
a < x < b.

Discussion We will prove the statement by exhibiting a real number x between a and
b. The point midway between a and b suffices.

Proof It suffices to find one real number x satisfying a < x < b. The real number

x = a+ b

2
,

halfway between a and b, surely satisfies a < x < b.

Example 2.11 Prove that there exists a prime p such that 2p − 1 is composite (i.e., not prime).

Discussion By trial and error, we find that 2p − 1 is prime for p = 2, 3, 5, 7 but not
p = 11 since

211 − 1 = 2048− 1 = 2047 = 23 · 89.

Thus p = 11 makes the given statement true.

Proof For the prime p = 11, 2p − 1 is composite:

211 − 1 = 2048− 1 = 2047 = 23 · 89.

91

Proofs

A prime number of the form 2p− 1, where p is prime, is called a Mersenne prime
[named for Marin Mersenne (1588–1648)]. The largest primes known are Mersenne
primes. In late 2006, the 44th known Mersenne prime was found, 232,582,657 − 1, a
number having 9,808,358 decimal digits. This number was found by the Great Internet
Mersenne Prime Search (GIMPS). GIMPS is a computer program distributed over many
personal computers maintained by volunteers. You can participate. Just check the web
link. You may find the next Mersenne prime!

An existence proof of (2.4) that exhibits an element a of the domain of discourse
that makes P(a) true is called a constructive proof. The proofs in Examples 2.10 and
2.11 are constructive proofs. A proof of (2.4) that does not exhibit an element a of
the domain of discourse that makes P(a) true, but rather proves (2.4) some other way
(e.g., using proof by contradiction), is called a nonconstructive proof.

Example 2.12 Let

A = s1 + s2 + · · · + sn

n

be the average of the real numbers s1, . . . , sn. Prove that there exists i such that si ≥ A.

Discussion It seems hopeless to choose an i and prove that si ≥ A; instead, we use
proof by contradiction.

Proof We use proof by contradiction and assume the negation of the conclusion

¬∃i(si ≥ A).

By the generalized De Morgan’s laws for logic, this latter statement is equivalent to

∀i¬(si ≥ A)

or

∀i(si < A).

Thus we assume

s1 < A

s2 < A

...

sn < A.

Adding these inequalities yields

s1 + s2 + · · · + sn < nA.

Dividing by n gives

s1 + s2 + · · · + sn

n
< A,

which contradicts the hypothesis

A = s1 + s2 + · · · + sn

n
.

Therefore, there exists i such that si ≥ A.

92

Proofs

The proof in Example 2.12 is nonconstructive; it does not exhibit an i for which
si ≥ A. It does however prove indirectly using proof by contradiction that there is
such an i. We could find such an i: We could check whether s1 ≥ A and if true, stop.
Otherwise, we could check whether s2 ≥ A and if true, stop. We could continue in
this manner until we find an i for which si ≥ A. Example 2.12 guarantees that there
is such an i.

Problem-Solving Tips

It is worth reviewing the Problem-Solving Tips of Section 1. Tips specific to the present
section follow.

If you are trying to construct a direct proof of a statement of the form p→ q and
you seem to be getting stuck, try a proof by contradiction. You then have more to work
with: Besides assuming p, you get to assume ¬q.

When writing up a proof by contradiction, alert the reader by stating, “We give a
proof by contradiction, thus we assume · · ·,” where · · · is the negation of the conclusion.
Another common introduction is: Assume by way of contradiction that · · ·.

Proof by cases is useful if the hypotheses naturally break down into parts. For
example, if the statement to prove involves the absolute value of x, you may want to
consider the cases x ≥ 0 and x < 0 because |x| is itself defined by the cases x ≥ 0 and
x < 0. If the number of cases to prove is finite and not too large, the cases can be directly
checked one by one.

In writing up a proof by cases, it is sometimes helpful to the reader to indicate the
cases, for example,

[Case I: x ≥ 0.] Proof of this case goes here.

[Case II: x < 0.] Proof of this case goes here.

To prove p if and only if q, you must prove two statements: (1) if p then q and (2)
if q then p. It helps the reader if you state clearly what you are proving. You can write
up the proof of (1) by beginning a new paragraph with a sentence that indicates that you
are about to prove “if p then q.” You would then follow with a proof of (2) by beginning
a new paragraph with a sentence that indicates that you are about to prove “if q then p.”
Another common technique is to write

[p→ q.] Proof of p→ q goes here.

[q→ p.] Proof of q→ p goes here.

To prove that several statements, say p1, . . . , pn, are equivalent, prove p1 → p2,
p2 → p3, . . . , pn−1 → pn, pn→ p1. The statements can be ordered in any way and the
proofs may be easier to construct for one ordering than another. For example, you could
swap p2 and p3 and prove p1 → p3, p3 → p2, p2 → p4, p4 → p5, . . . , pn−1 → pn,
pn→ p1. You should indicate clearly what you are about to prove. One common form is

[p1 → p2.] Proof of p1 → p2 goes here.

[p2 → p3.] Proof of p2 → p3 goes here.

And so forth.

If the statement is existentially quantified (i.e., there exists x . . .), the proof, called
an existence proof, consists of showing that there exists at least one x in the domain of
discourse that makes the statement true. One type of existence proof exhibits a value
of x that makes the statement true (and proves that the statement is indeed true for
the specific x). Another type of existence proof indirectly proves (e.g., using proof by
contradiction) that a value of x exists that makes the statement true without specifying
any particular value of x for which the statement is true.

93

Proofs

Section Review Exercises

1. What is proof by contradiction?

2. Give an example of a proof by contradiction.

3. What is an indirect proof?

4. What is proof by contrapositive?

5. Give an example of a proof by contrapositive.

6. What is proof by cases?

7. Give an example of a proof by cases.

8. What is a proof of equivalence?

9. Give an example of a proof of equivalence.

10. How can we show that three statements, say (a), (b), and (c),
are equivalent?

11. What is an existence proof?

12. What is a constructive existence proof?

13. Give an example of a constructive existence proof.

14. What is a nonconstructive existence proof?

15. Give an example of a nonconstructive existence proof.

Exercises

1. Use proof by contradiction to prove that for all x ∈ R, if x2 is
irrational, then x is irrational.

2. Is the converse of Exercise 1 true or false? Prove your answer.

3. Prove that for all x ∈ R, if x3 is irrational, then x is irrational.

4. Prove that for every n ∈ Z, if n2 is odd, then n is odd.

5. Prove that for all real numbers x, y, and z, if x + y + z ≥ 3,
then either x ≥ 1 or y ≥ 1 or z ≥ 1.

6. Prove that for all real numbers x and y, if xy ≤ 2, then either
x ≤ √2 or y ≤ √2.

7. Prove that 3
√

2 is irrational.

8. Prove that for all x, y ∈ R, if x is rational and y is irrational,
then x+ y is irrational.

9. Prove or disprove: For all x, y ∈ R, if x is rational and y is
irrational, then xy is irrational.

10. Prove that if a and b are real numbers with a < b, there exists
a rational number x satisfying a < x < b.

11. Prove that if a and b are real numbers with a < b, there exists
an irrational number x satisfying a < x < b.

12. Fill in the details of the following proof that there exist irra-
tional numbers a and b such that ab is rational.

Proof Let x= y=√2. If xy is rational, the proof is complete.
(Explain.) Otherwise, suppose that xy is irrational. (Why?)
Let a = xy and b = √2. Consider ab. (How does this com-
plete the proof?)

Is this proof constructive or nonconstructive?

13. Prove or disprove: There exist rational numbers a and b such
that ab is rational. What kind of proof did you give?

14. Prove or disprove: There exist rational numbers a and b such
that ab is irrational. What kind of proof did you give?

15. Let x and y be real numbers. Prove that if x ≤ y+ ε for every
positive real number ε, then x ≤ y.

16. Prove or disprove: (X−Y)∩(Y−X) = ∅ for all sets X and Y .

17. Prove or disprove: X×∅ = ∅ for every set X.

18. Show, by giving a proof by contradiction, that if 100 balls are
placed in nine boxes, some box contains 12 or more balls.

19. Show, by giving a proof by contradiction, that if 40 coins are
distributed among nine bags so that each bag contains at least
one coin, at least two bags contain the same number of coins.

�20. Let s1, . . . , sn be a sequence† satisfying

(a) s1 is a positive integer and sn is a negative integer,

(b) for all i, 1 ≤ i < n, si+1 = si + 1 or si+1 = si − 1.

Prove that there exists i, 1 < i < n, such that si = 0.
Calculus students will recognize this exercise as a dis-

crete version of the calculus theorem: If f is a continuous
function on [a, b] and f(a) > 0 and f(b) < 0, then f(c) = 0
for some c in (a, b). There are similar proofs of the two
statements.

21. Disprove the statement: For every positive integer n, n2 ≤ 2n.

In Exercises 22–26,

A = s1 + s2 + · · · + sn

n

is the average of the real numbers s1, . . . , sn.

22. Prove that there exists i such that si ≤ A.

23. Prove or disprove: There exists i such that si > A. What proof
technique did you use?

24. Suppose that there exists i such that si < A. Prove or disprove:
There exists j such that sj > A. What proof technique did you
use?

25. Suppose that there exist i and j such that si �= sj . Prove that
there exists k such that sk < A.

†Informally, a sequence is a list of elements in which order is taken into account, so that s1 is the first element,
s2 is the second element, and so on.

94

Proofs

26. Suppose that there exist i and j such that si �= sj . Prove that
there exists k such that sk > A.

27. Prove that 2m+5n2 = 20 has no solution in positive integers.

28. Prove that m3+2n2 = 36 has no solution in positive integers.

29. Prove that 2m2 + 4n2 − 1 = 2(m + n) has no solution in
positive integers.

30. Prove that the product of two consecutive integers is even.

31. Prove that for every n ∈ Z, n3 + n is even.

32. Use proof by cases to prove that |xy| = |x||y| for all real
numbers x and y.

33. Use proof by cases to prove that |x+ y| ≤ |x| + |y| for all real
numbers x and y.

34. Define the sign of the real number x, sgn(x), as

sgn(x) =
{

1 if x > 0
0 if x = 0
−1 if x < 0.

Use proof by cases to prove that |x| = sgn(x)x for every real
number x.

35. Use proof by cases to prove that sgn(xy) = sgn(x)sgn(y) for
all real numbers x and y (sgn is defined in Exercise 34).

36. Use Exercises 34 and 35 to give another proof that |xy| = |x||y|
for all real numbers x and y.

37. Use proof by cases to prove that max{x, y} + min{x, y} =
x+ y for all real numbers x and y.

38. Use proof by cases to prove that

max{x, y} = x+ y + |x− y|
2

for all real numbers x and y.

39. Use proof by cases to prove that

min{x, y} = x+ y − |x− y|
2

for all real numbers x and y.

40. Use Exercises 38 and 39 to prove that max{x, y}+min{x, y} =
x+ y for all real numbers x and y.

41. Prove that for all n ∈ Z, n is even if and only if n + 2 is
even.

42. Prove that for all n ∈ Z, n is odd if and only if n + 2 is
odd.

43. Prove that for all sets A and B, A ⊆ B if and only if B ⊆ A.

44. Prove that for all sets A, B, and C, A ⊆ C and B ⊆ C if and
only if A ∪ B ⊆ C.

45. Prove that for all sets A, B, and C, C ⊆ A and C ⊆ B if and
only if C ⊆ A ∩ B.

�46. The ordered pair (a, b) can be defined in terms of sets as

(a, b) = {{a}, {a, b}}.

Taking the preceding equation as the definition of ordered
pair, prove that (a, b) = (c, d) if and only if a = c and
b = d.

47. Prove that the following are equivalent for the integer n:

(a) n is odd. (b) There exists k ∈ Z such that n = 2k − 1.

(c) n2 + 1 is even.

48. Prove that the following are equivalent for sets A, B,
and C:

(a) A ∩ B = ∅ (b) B ⊆ A (c) A� B = A ∪ B,

where � is the symmetric difference operator.

49. Prove that the following are equivalent for sets A, B, and C:

(a) A ∪ B = U (b) A ∩ B = ∅ (c) A ⊆ B,

where U is a universal set.

Problem-Solving Corner Proving Some Properties of Real Numbers

Problem
First some definitions:

(a) Let X be a nonempty set of real numbers. An
upper bound for X is a real number a having
the property that x ≤ a for every x ∈ X.

(b) Let a be an upper bound for a set X of real
numbers. If every upper bound b for X satisfies
b ≥ a, we call a a least upper bound for X.

A fundamental property of the real numbers is that
every nonempty subset of real numbers bounded above
has a least upper bound.

Answer the following where R serves as a univer-
sal set:

1. Give an example of a set X and three distinct upper
bounds for X, one of which is a least upper bound
for X.

2. Prove that if a and b are least upper bounds for a set
X, then a = b. We say that the least upper bound
for a set X is unique. If a is the least upper bound
of a set X, we sometimes write a = lub X.

3. Let X be a set with least upper bound a. Prove
that if ε > 0, then there exists x ∈ X satisfying
a− ε < x ≤ a.

95

Proofs

4. Let X be a set with least upper bound a, and suppose
that t > 0. Prove that ta is the least upper bound of
the set {tx | x ∈ X}.

Attacking the Problem
To better understand the definitions, let’s construct
examples, write out the definitions in words, look at
negations of the definitions, and draw pictures.

We’ll start with definition (a) and construct a sim-
ple example—taking X to be a small finite set, say

X = {1, 2, 3, 4}.
Now an upper bound a for X satisfies x ≤ a for every
x in X—here, we must have

1 ≤ a, 2 ≤ a, 3 ≤ a, 4 ≤ a.

Examples of upper bounds for X are 4, 6.9, 3π, 9072.
In words, definition (a) says that a is an upper

bound for a set X if every element in X is less than
or equal to a. We see that upper bounds e, f , and g for
a set X (shown in color) look like

e f gX

What would it mean that a is not an upper bound
for a set X? We would have to negate definition (a):
¬∀x(x ≤ a) or, equivalently, ∃x¬(x ≤ a) or ∃x(x >

a). In words, a is not an upper bound for a set X if there
exists x in X such that x > a. Looking at the preceding
picture, we see that any number less than e is not an
upper bound for X.

Let’s turn to definition (b), which says, in words,
that a is a least upper bound for a set X if, among all
upper bounds for X, a is smallest. Looking ahead, prob-
lem 2 is to show that there is only one (distinct) upper
bound for a set X; thus, we usually say the least
upper bound rather than a least upper bound. The least
upper bound of our previous set

X = {1, 2, 3, 4}
is 4. We have already noted that 4 is an upper bound
for X. If a is any upper bound for X, since 4 ∈ X,
4 ≤ a. Therefore, 4 is the least upper bound for X. In
the preceding figure, e is a least upper bound for the
set X.

Finding a Solution
Now we consider the problems.

[Problem 1.] Our previous example, X = {1, 2,

3, 4}, will suffice. We have noted that 4 is the least

upper bound for X. Any values greater than 4 serve as
additional upper bounds.

[Problem 2.] One way to prove that two numbers
a and b are equal is to show that a ≤ b and b ≤ a.
We’ll try this first. Another possibility is proof by con-
tradiction and assume that a �= b.

[Problem 3.] Here we can use the fact that a− ε is
not an upper bound (since it’s less than the least upper
bound) and, as discussed previously, what it means for
a value to not be an upper bound.

[Problem 4.] Here we are given a value, ta, and
asked to prove that it is the least upper bound of the
given set, which here we denote as tX. Going directly
to the definitions, we must show that

(a) z ≤ ta for every z ∈ tX (i.e., ta is an upper
bound for tX),

(b) if b is an upper bound for tX, then b ≥ ta (i.e.,
ta is the least upper bound for tX).

For part (a), since z = tx (x ∈ X), we must show
that

tx ≤ ta for all x ∈ X.

We are given that a is a least upper bound for X. In
particular, a is an upper bound for X so

x ≤ a for all x ∈ X.

How do we deduce the first inequality from the sec-
ond? Multiply by t! We hope that the proof of part (b)
proceeds in a similar way.

Formal Solution
[Problem 1.] Let

X = {1, 2, 3, 4}.
Upper bounds for X are 4, 5, and 6 since x ≤ 4, x ≤ 5,
and x ≤ 6 for every x ∈ X.

The least upper bound for X is 4. We have already
noted that 4 is an upper bound for X. If a is any upper
bound for X, since 4 ∈ X, 4 ≤ a. Therefore, 4 is the
least upper bound for X.

[Problem 2.] Since a is a least upper bound for X

and b is an upper bound for X, a ≤ b. Since b is a
least upper bound for X and a is an upper bound for X,
b ≤ a. Therefore, a = b.

[Problem 3.] Let ε > 0. Since a is the least upper
bound for X and a−ε < a, a−ε is not an upper bound
for X. Therefore, by definition (a) there exists x ∈ X

such that a − ε < x. Since a is an upper bound for X,
x ≤ a. We have shown that there exists x ∈ X such
that a− ε < x ≤ a.

96

Proofs

[Problem 4.] Let tX denote the set

{tx | x ∈ X}.
We must prove that

(a) z ≤ ta for every z ∈ tX (i.e., ta is an upper
bound for tX),

(b) if b is an upper bound for tX, then b ≥ ta (i.e.,
ta is the least upper bound for tX).

We first prove part (a). Let z ∈ tX. Then z = tx

for some x ∈ X (by the definition of the set tX). Since
a is an upper bound for X, x ≤ a. Multiplying by t and
noting that t > 0, we have z = tx ≤ ta. Therefore,
z ≤ ta for every z ∈ tX and the proof of part (a) is
complete.

Next we prove part (b). Let b be an upper bound
for tX. Then tx ≤ b for every x ∈ X (since an arbi-
trary element in tX is of the form tx for some x ∈ X).
Dividing by t and noting that t > 0, we have x ≤ b/t

for every x ∈ X. Therefore b/t is an upper bound for
X. Since a is the least upper bound for X, b/t ≥ a.
Multiplying by t and noting again that t > 0, we have
b ≥ ta. Therefore ta is the least upper bound for tX.
The proof is complete.

Summary of Problem-Solving Techniques
■ Before beginning a proof, familiarize yourself

with relevant definitions, theorems, examples,
and so on.

■ Construct additional examples—especially
small examples (e.g., for sets look at some small
finite sets).

■ Write out some of the technical statements in
words.

■ Look at negations of statements.

■ Draw pictures.

■ If one proof technique seems not to be working,
try another. For example, if a direct proof seems
unpromising, try a proof by contradiction.

■ Review the Problem-Solving Tips sections in this
chapter.

Comments
The fact that every nonempty set of real numbers that
is bounded above has a least upper bound is called
the completeness property of the real numbers. The
real numbers are complete in the sense that there are

no “holes” in the number line. Informally, if there was
a hole in the line, the set of numbers to the left of the
hole, although bounded above, would not have a least
upper bound:

The set of rational numbers is not complete. The
subset of rational numbers less than

√
2 is bounded

above, but does not have a rational least upper bound.
(The least upper bound of the subset of rational num-
bers less than

√
2 is the irrational number

√
2.)

Exercises
1. What is the least upper bound of a nonempty finite

set of real numbers?

2. What is the least upper bound of the set

{1− 1/n | n is a positive integer}?
Prove your answer.

3. Let X and Y be nonempty sets of real numbers such
that X ⊆ Y and Y is bounded above. Prove that X

is bounded above and lub X ≤ lub Y .

4. Let X be a nonempty set. What is the least upper
bound of the set {tx | x ∈ X} if t = 0?

�5. Let X be a set with least upper bound a, and let Y

be a set with least upper bound b. Prove that the set

{x+ y | x ∈ X and y ∈ Y}
is bounded above and its least upper bound is a+b.

Let X be a nonempty set of real numbers. A lower
bound for X is a real number a having the property
that x ≥ a for every x ∈ X. Let a be a lower bound
for a set X of real numbers. If every lower bound
b for X satisfies b ≤ a, we call a a greatest lower
bound for X.

6. Prove that if a and b are greatest lower bounds for
a set X, then a = b.

7. Prove that every nonempty subset of real numbers
bounded below has a greatest lower bound. Hint: If
X is a nonempty set of real numbers bounded below,
let Y denote the set of lower bounds. Prove that Y

has a least upper bound, say a. Prove that a is the
greatest lower bound for X.

8. Let X be a set with greatest lower bound a. Prove
that if ε > 0, then there exists x ∈ X satisfying
a+ ε > x ≥ a.

9. Let X be a set with least upper bound a, and let
t < 0. Prove that ta is the greatest lower bound of
the set {tx | x ∈ X}.

97

Proofs

3 ➜ Resolution Proofs

In this section, we will write a ∧ b as ab.
Resolution is a proof technique proposed by J. A. Robinson in 1965 (see

[Robinson]) that depends on a single rule:

If p ∨ q and ¬p ∨ r are both true, then q ∨ r is true. (3.1)

Statement (3.1) can be verified by writing the truth table (see Exercise 1). Because
resolution depends on this single, simple rule, it is the basis of many computer programs
that reason and prove theorems.

In a proof by resolution, the hypotheses and the conclusion are written as clauses.
A clause consists of terms separated by or’s, where each term is a variable or the negation
of a variable.

Example 3.1 The expression

a ∨ b ∨ ¬c ∨ d

is a clause since the terms a, b,¬c, and d are separated by or’s and each term is a variable
or the negation of a variable.

Example 3.2 The expression

xy ∨ w ∨ ¬z

is not a clause even though the terms are separated by or’s, since the term xy consists of
two variables—not a single variable.

Example 3.3 The expression

p→ q

is not a clause since the terms are separated by→. Each term is, however, a variable.

A direct proof by resolution proceeds by repeatedly applying (3.1) to pairs of
statements to derive new statements until the conclusion is derived. When we apply
(3.1), p must be a single variable, but q and r can be expressions. Notice that when (3.1)
is applied to clauses, the result q ∨ r is a clause. (Since q and r each consist of terms
separated by or’s, where each term is a variable or the negation of a variable, q∨ r also
consists of terms separated by or’s, where each term is a variable or the negation of a
variable.)

Example 3.4 We prove the following using resolution:

1. a ∨ b

2. ¬a ∨ c

3. ¬c ∨ d

∴ b ∨ d

98

Proofs

Applying (3.1) to expressions 1 and 2, we derive

4. b ∨ c.

Applying (3.1) to expressions 3 and 4, we derive

5. b ∨ d,

the desired conclusion. Given the hypotheses 1, 2, and 3, we have proved the conclusion
b ∨ d.

Special cases of (3.1) are as follows:

If p ∨ q and ¬p are true, then q is true.

If p and ¬p ∨ r are true, then r is true.
(3.2)

Example 3.5 We prove the following using resolution:

1. a

2. ¬a ∨ c

3. ¬c ∨ d

∴ d

Applying (3.2) to expressions 1 and 2, we derive

4. c.

Applying (3.2) to expressions 3 and 4, we derive

5. d,

the desired conclusion. Given the hypotheses 1, 2, and 3, we have proved the con-
clusion d.

If a hypothesis is not a clause, it must be replaced by an equivalent expression that
is either a clause or the and of clauses. For example, suppose that one of the hypotheses
is ¬(a ∨ b). Since the negation applies to more than one term, we use the first of De
Morgan’s laws

¬(a ∨ b) ≡ ¬a¬b, ¬(ab) ≡ ¬a ∨ ¬b (3.3)

to obtain an equivalent expression with the negation applying to single variables:

¬(a ∨ b) ≡ ¬a¬b.

We then replace the original hypothesis¬(a∨b) by the two hypotheses¬a and¬b. This
replacement is justified by recalling that individual hypotheses h1 and h2 are equivalent
to h1h2. Repeated use of De Morgan’s laws will result in each negation applying to only
one variable.

An expression that consists of terms separated by or’s, where each term consists of
the and of several variables, may be replaced by an equivalent expression that consists
of the and of clauses by using the equivalence

a ∨ bc ≡ (a ∨ b)(a ∨ c). (3.4)

99

Proofs

In this case, we may replace the single hypothesis a ∨ bc by the two hypotheses a ∨ b

and a∨c. By using first De Morgan’s laws (3.3) and then (3.4), we can obtain equivalent
hypotheses, each of which is a clause.

Example 3.6 We prove the following using resolution:

1. a ∨ ¬bc

2. ¬(a ∨ d)

∴ ¬b

We use (3.4) to replace hypothesis 1 with the two hypotheses

a ∨ ¬b

a ∨ c.

We use the first of De Morgan’s laws (3.3) to replace hypothesis 2 with the two hypotheses

¬a

¬d.

The argument becomes

1. a ∨ ¬b

2. a ∨ c

3. ¬a

4. ¬d

∴ ¬b

Applying (3.1) to expressions 1 and 3, we immediately derive the conclusion

¬b.

In automated reasoning systems, proof by resolution is combined with proof by
contradiction. We write the negated conclusion as clauses and add the clauses to the
hypothesis. We then repeatedly apply (3.1) until we derive a contradiction.

Example 3.7 We reprove Example 3.4 by combining resolution with proof by contradiction.
We first negate the conclusion and use the first of De Morgan’s laws (3.3) to obtain

¬(b ∨ d) ≡ ¬b¬d.

We then add the clauses ¬b and ¬d to the hypotheses to obtain

1. a ∨ b

2. ¬a ∨ c

3. ¬c ∨ d

4. ¬b

5. ¬d

Applying (3.1) to expressions 1 and 2, we derive

6. b ∨ c.

Applying (3.1) to expressions 3 and 6, we derive

7. b ∨ d.

100

Proofs

Applying (3.1) to expressions 4 and 7, we derive

8. d.

Now 5 and 8 combine to give a contradiction, and the proof is complete.

It can be shown that resolution is correct and refutation complete. “Resolution is
correct” means that if resolution derives a contradiction from a set of clauses, the clauses
are inconsistent (i.e., the clauses are not all true). “Resolution is refutation complete”
means that resolution will be able to derive a contradiction from a set of inconsis-
tent clauses. Thus, if a conclusion follows from a set of hypotheses, resolution will be
able to derive a contradiction from the hypotheses and the negation of the conclusion.
Unfortunately, resolution does not tell us which clauses to combine in order to deduce
the contradiction. A key challenge in automating a reasoning system is to help guide
the search for clauses to combine. References on resolution and automated reasoning
are [Gallier; Genesereth; and Wos].

Problem-Solving Tips

To construct a resolution proof, first replace any of the hypotheses or conclusion that
is not a clause with one or more clauses. Then replace pairs of hypotheses of the form
p ∨ q and ¬p ∨ r with q ∨ r until deriving the conclusion. Remember that resolution
can be combined with proof by contradiction.

Section Review Exercises

1. What rule of logic does proof by resolution use?

2. What is a clause?

3. Explain how a proof by resolution proceeds.

Exercises

1. Write a truth table that proves (3.1).

Use resolution to derive each conclusion in Exercises 2–6. Hint:
In Exercises 5 and 6, replace→ and↔ with logically equivalent
expressions that use or and and.

2. ¬p ∨ q ∨ r

¬q

¬r

∴ ¬p

3. ¬p ∨ r

¬r ∨ q

p

∴ q

4. ¬p ∨ t

¬q ∨ s

¬r ∨ st

p ∨ q ∨ r ∨ u

∴ s ∨ t ∨ u

5. p→ q

p ∨ q

∴ q

6. p↔ r

r

∴ p

7. Use resolution and proof by contradiction to reprove Exer-
cises 2–6.

8. Use resolution and proof by contradiction to reprove Exam-
ple 3.6.

4 ➜ Mathematical Induction

Suppose that a sequence of blocks numbered 1, 2, . . . sits on an (infinitely) long table
(see Figure 4.1) and that some blocks are marked with an “X.” (All of the blocks visible
in Figure 4.1 are marked.) Suppose that

The first block is marked. (4.1)

For all n, if block n is marked, then block n+ 1 is also marked. (4.2)

We claim that (4.1) and (4.2) imply that every block is marked.

101

Proofs

1 x 2 x 3 x 4 x 5 x

Figure 4.1 Numbered blocks on a table.

We examine the blocks one by one. Statement (4.1) explicitly states that block 1
is marked. Consider block 2. Since block 1 is marked, by (4.2) (taking n = 1), block 2
is also marked. Consider block 3. Since block 2 is marked, by (4.2) (taking n = 2),
block 3 is also marked. Continuing in this way, we can show that every block is marked.
For example, suppose that we have verified that blocks 1–5 are marked, as shown in
Figure 4.1. To show that block 6, which is not shown in Figure 4.1, is marked, we note
that since block 5 is marked, by (4.2) (taking n = 5), block 6 is also marked.

The preceding example illustrates the Principle of Mathematical Induction. To
show how mathematical induction can be used in a more profound way, let Sn denote
the sum of the first n positive integers:

Sn = 1+ 2+ · · · + n. (4.3)

Suppose that someone claims that

Sn = n(n+ 1)

2
for all n ≥ 1. (4.4)

A sequence of statements is really being made, namely,

S1 = 1(2)

2
= 1

S2 = 2(3)

2
= 3

S3 = 3(4)

2
= 6

...
S1 = 1(2)

2
×

S2 = 2(3)

2
×

.

.

.

Sn−1 = (n− 1)n

2
×

Sn = n(n+ 1)

2
×

Sn+1 = (n+ 1)(n+ 2)

2
?

.

.

.

Figure 4.2 A sequence
of statements. True
statements are marked
with ×.

Suppose that each true equation has an “×” placed beside it (see Figure 4.2). Since
the first equation is true, it is marked. Now suppose we can show that for all n, if equation
n is marked, then equation n+ 1 is also marked. Then, as in the example involving the
blocks, all of the equations are marked; that is, all the equations are true and the formula
(4.4) is verified.

We must show that for all n, if equation n is true, then equation n+ 1 is also true.
Equation n is

Sn = n(n+ 1)

2
. (4.5)

Assuming that this equation is true, we must show that equation n+ 1

Sn+1 = (n+ 1)(n+ 2)

2

102

Proofs

is true. According to definition (4.3),

Sn+1 = 1+ 2+ · · · + n+ (n+ 1).

We note that Sn is contained within Sn+1, in the sense that

Sn+1 = 1+ 2+ · · · + n+ (n+ 1) = Sn + (n+ 1). (4.6)

Because of (4.5) and (4.6), we have

Sn+1 = Sn + (n+ 1) = n(n+ 1)

2
+ (n+ 1).

Since

n(n+ 1)

2
+ (n+ 1) = n(n+ 1)

2
+ 2(n+ 1)

2

= n(n+ 1)+ 2(n+ 1)

2

= (n+ 1)(n+ 2)

2
,

we have

Sn+1 = (n+ 1)(n+ 2)

2
.

Therefore, assuming that equation n is true, we have proved that equation n+ 1 is true.
We conclude that all of the equations are true.

Our proof using mathematical induction consisted of two steps. First, we verified
that the statement corresponding to n = 1 was true. Second, we assumed that statement
n was true and then proved that statement n+1 was also true. In proving statement n+1,
we were permitted to make use of statement n; indeed, the trick in constructing a proof
using mathematical induction is to relate statement n to statement n+ 1.

We next formally state the Principle of Mathematical Induction.

Principle of
Mathematical Induction

Suppose that we have a propositional function S(n) whose domain of discourse is the
set of positive integers. Suppose that

S(1) is true; (4.7)

for all n ≥ 1, if S(n) is true, then S(n+ 1) is true. (4.8)

Then S(n) is true for every positive integer n.

Condition (4.7) is sometimes called the Basis Step and condition (4.8) is sometimes
called the Inductive Step. Hereafter, “induction” will mean “mathematical induction.”

After defining n factorial, we illustrate the Principle of Mathematical Induction
with another example.

Definition 4.1 n factorial is defined as

n! =
{

1 if n = 0
n(n− 1)(n− 2) · · · 2 · 1 if n ≥ 1.

103

Proofs

That is, if n ≥ 1, n! is equal to the product of all the integers between 1 and n inclusive.
As a special case, 0! is defined to be 1.

Example 4.2 0! = 1! = 1, 3! = 3 · 2 · 1 = 6, 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

Example 4.3 Use induction to show that

n! ≥ 2n−1 for all n ≥ 1. (4.9)

Basis Step (n = 1)
[Condition (4.7)] We must show that (4.9) is true if n = 1. This is easily accomplished,
since 1! = 1 ≥ 1 = 21−1.

Inductive Step
[Condition (4.8)] We assume that the inequality is true for n ≥ 1; that is, we assume that

n! ≥ 2n−1 (4.10)

is true. We must then prove that the inequality is true for n + 1; that is, we must prove
that

(n+ 1)! ≥ 2n (4.11)

is true. We can relate (4.10) and (4.11) by observing that

(n+ 1)! = (n+ 1)(n!).

Now

(n+ 1)! = (n+ 1)(n!)

≥ (n+ 1)2n−1 by (4.10)

≥ 2 · 2n−1 since n+ 1 ≥ 2

= 2n.

Therefore, (4.11) is true. We have completed the Inductive Step.
Since the Basis Step and the Inductive Step have been verified, the Principle of

Mathematical Induction tells us that (4.9) is true for every positive integer n.

If we want to verify that the statements

S(n0), S(n0 + 1), . . . ,

where n0 �= 1, are true, we must change the Basis Step to

S(n0) is true.

In words, the Basis Step is to prove that the propositional function S(n) is true for the
smallest value n0 in the domain of discourse.

The Inductive Step then becomes

for all n ≥ n0, if S(n) is true, then S(n+ 1) is true.

104

Proofs

Example 4.4 Geometric Sum

Use induction to show that if r �= 1,

a+ ar1 + ar2 + · · · + arn = a(rn+1 − 1)

r − 1
(4.12)

for all n ≥ 0.
The sum on the left is called the geometric sum. In the geometric sum in which

a �= 0 and r �= 0, the ratio of adjacent terms [(ari+1)/(ari) = r] is constant.

Basis Step (n = 0)
Since the smallest value in the domain of discourse {n | n ≥ 0} is n = 0, the Basis Step
is to prove that (4.12) is true for n = 0. For n = 0, (4.12) becomes

a = a(r1 − 1)

r − 1
,

which is true.

Inductive Step
Assume that statement (4.12) is true for n. Now

a+ ar1 + ar2 + · · · + arn + arn+1 = a(rn+1 − 1)

r − 1
+ arn+1

= a(rn+1 − 1)

r − 1
+ arn+1(r − 1)

r − 1

= a(rn+2 − 1)

r − 1
.

Since the Basis Step and the Inductive Step have been verified, the Principle of Mathe-
matical Induction tells us that (4.12) is true for all n ≥ 0.

As an example of the use of the geometric sum, if we take a = 1 and r = 2 in
(4.12), we obtain the formula

1+ 2+ 22 + 23 + · · · + 2n = 2n+1 − 1

2− 1
= 2n+1 − 1.

The reader has surely noticed that in order to prove the previous formulas, one has
to be given the correct formulas in advance. A reasonable question is: How does one
come up with the formulas? There are many answers to this question. One technique
to derive a formula is to experiment with small values and try to discover a pattern.
(Another technique is discussed in Exercises 67–70.) For example, consider the sum
1+3+· · ·+(2n−1). The following table gives the values of this sum for n = 1, 2, 3, 4.

n 1+ 3+ · · · + (2n− 1)

1 1
2 4
3 9
4 16

105

Proofs

Since the second column consists of squares, we conjecture that

1+ 3+ · · · + (2n− 1) = n2 for every positive integer n.

The conjecture is correct and the formula can be proved by mathematical induction (see
Exercise 1).

At this point, the reader may want to read the Problem-Solving Corner that follows
this section. This Problem-Solving Corner gives an extended, detailed exposition of how
to do proofs by mathematical induction.

Our final examples show that induction is not limited to proving formulas for sums
and verifying inequalities.

Example 4.5 Use induction to show that 5n − 1 is divisible by 4 for all n ≥ 1.

Basis Step (n = 1)
If n = 1, 5n − 1 = 51 − 1 = 4, which is divisible by 4.

Inductive Step
We assume that 5n− 1 is divisible by 4. We must then show that 5n+1− 1 is divisible by
4. We use the fact that if p and q are each divisible by k, then p+ q is also divisible by
k. In our case, k = 4. We leave the proof of this fact to the exercises (see Exercise 71).

We relate the (n+ 1)st case to the nth case by writing

5n+1 − 1 = 5n − 1+ to be determined.

Now, by the inductive assumption, 5n − 1 is divisible by 4. If “to be determined” is
also divisible by 4, then the preceding sum, which is equal to 5n+1 − 1, will also be
divisible by 4, and the Inductive Step will be complete. We must find the value of “to be
determined.”

Now

5n+1 − 1 = 5 · 5n − 1 = 4 · 5n + 1 · 5n − 1.

Thus, “to be determined” is 4 · 5n, which is divisible by 4. Formally, we could write the
Inductive Step as follows.

By the inductive assumption, 5n − 1 is divisible by 4 and, since 4 · 5n is divisible
by 4, the sum

(5n − 1)+ 4 · 5n = 5n+1 − 1

is divisible by 4.
Since the Basis Step and the Inductive Step have been verified, the Principle of

Mathematical Induction tells us that 5n − 1 is divisible by 4 for all n ≥ 1.

We next give the proof that if a set X has n elements, the power set of X, P(X),
has 2n elements.

106

Proofs

Theorem 4.6 If |X| = n, then

|P (X)| = 2n (4.13)

for all n ≥ 0.

Proof The proof is by induction on n.

Basis Step (n = 0)
If n = 0, X is the empty set. The only subset of the empty set is the empty set itself;
thus,

|P (X)| = 1 = 20 = 2n.

Thus, (4.13) is true for n = 0.

Inductive Step
Assume that (4.13) holds for n. Let X be a set with n+1 elements. Choose x ∈ X. We
claim that exactly half of the subsets of X contain x, and exactly half of the subsets
of X do not contain x. To see this, notice that each subset S of X that contains x can
be paired uniquely with the subset obtained by removing x from S (see Figure 4.3).
Thus exactly half of the subsets of X contain x, and exactly half of the subsets of X

do not contain x.
If we let Y be the set obtained from X by removing x, Y has n elements. By the

inductive assumption, |P(Y)| = 2n. But the subsets of Y are precisely the subsets of
X that do not contain x. From the argument in the preceding paragraph, we conclude
that

|P(Y)| = |P(X)|
2

.

Therefore,

|P(X)| = 2|P(Y)| = 2 · 2n = 2n+1.

Thus (4.13) holds for n + 1 and the inductive step is complete. By the Principle of
Mathematical Induction, (4.13) holds for all n ≥ 0.

Subsets of X
that

contain a

Subsets of X
that do not
contain a

{a}
{a, b}
{a, c}
{a, b, c}

{b}
{c}
{b, c}

Figure 4.3 Subsets of
X = {a, b, c} divided into two
classes: those that contain a and
those that do not contain a. Each
subset in the right column is
obtained from the corresponding
subset in the left column by
deleting the element a from it.

Example 4.7 A Tiling Problem

A right tromino, hereafter called simply a tromino, is an object made up of three squares,
as shown in Figure 4.4. A tromino is a type of polyomino. Since polyominoes were
introduced by Solomon W. Golomb in 1954 (see [Golomb, 1954]), they have been a
favorite topic in recreational mathematics. A polyomino of order s consists of s squares
joined at the edges. A tromino is a polyomino of order 3. Three squares in a row form
the only other type of polyomino of order 3. (No one has yet found a simple formula for
the number of polyominoes of order s.) Numerous problems using polyominoes have
been devised (see [Martin]).

Figure 4.4 A tromino.

We give Golomb’s inductive proof (see [Golomb, 1954]) that if we remove one
square from an n× n board, where n is a power of 2, we can tile the remaining squares
with right trominoes (see Figure 4.5). By a tiling of a figure by trominoes, we mean an
exact covering of the figure by trominoes without having any of the trominoes overlap

107

Proofs

Figure 4.5 Tiling a 4× 4 deficient
board with trominoes.

2k�1

2k�1

2k� 2k 2k� 2k

2k� 2k 2k� 2k

T

Figure 4.6 Using mathematical
induction to tile a 2k+1 × 2k+1

deficient board with trominoes.

each other or extend outside the figure. We call a board with one square missing a deficient
board.

We now use induction on k to prove that we can tile a 2k × 2k deficient board with
trominoes for all k ≥ 1.

Basis Step (k = 1)
If k = 1, the 2× 2 deficient board is itself a tromino and can therefore be tiled with one
tromino.

Inductive Step
Assume that we can tile a 2k×2k deficient board. We show that we can tile a 2k+1×2k+1

deficient board.
Consider a 2k+1× 2k+1 deficient board. Divide the board into four 2k× 2k boards,

as shown in Figure 4.6. Rotate the board so that the missing square is in the upper-left
quadrant. By the inductive assumption, the upper-left 2k × 2k board can be tiled. Place
one tromino T in the center, as shown in Figure 4.6, so that each square of T is in each
of the other quadrants. If we consider the squares covered by T as missing, each of
these quadrants is a 2k × 2k deficient board. Again, by the inductive assumption, these
boards can be tiled. We now have a tiling of the 2k+1 × 2k+1 board. By the Principle
of Mathematical Induction, it follows that any 2k × 2k deficient board can be tiled with
trominoes, k = 1, 2,

If we can tile an n×n deficient board, where n is not necessarily a power of 2, then
the number of squares, n2 − 1, must be divisible by 3. [Chu] showed that the converse
is true, except when n is 5. More precisely, if n �= 5, any n × n deficient board can be
tiled with trominoes if and only if 3 divides n2− 1 (see Exercises 27 and 28, Section 5).
[Some 5× 5 deficient boards can be tiled and some cannot (see Exercises 32 and 33).]

Some real-world problems can be modeled as tiling problems. One example is
the VLSI layout problem—the problem of packing many components on a computer
chip (see [Wong]). (VLSI is short for Very Large Scale Integration.) The problem is
to tile a rectangle of minimum area with the desired components. The components are
sometimes modeled as rectangles and L-shaped figures similar to (right) trominoes. In
practice, other constraints are imposed such as the proximity of various components that
must be interconnected and restrictions on the ratios of width to height of the resulting
rectangle.

108

Proofs

A loop invariant is a statement about program variables that is true just before a
loop begins executing and is also true after each iteration of the loop. In particular, a loop
invariant is true after the loop finishes, at which point the invariant tells us something
about the state of the variables. Ideally, this statement tells us that the loop produces the
expected result, that is, that the loop is correct. For example, a loop invariant for a while
loop

while (condition)

// loop body

is true just before condition is evaluated the first time, and it is also true each time the
loop body is executed.

We can use mathematical induction to prove that an invariant has the desired
behavior. The Basis Step proves that the invariant is true before the condition that controls
looping is tested for the first time. The Inductive Step assumes that the invariant is true
and then proves that if the condition that controls looping is true (so that the loop body is
executed again), the invariant is true after the loop body executes. Since a loop iterates
a finite number of times, the form of mathematical induction used here proves that a
finite sequence of statements is true, rather than an infinite sequence of statements as
in our previous examples. Whether the sequence of statements is finite or infinite, the
steps needed for the proof by mathematical induction are the same. We illustrate a loop
invariant with an example.

Example 4.8 We use a loop invariant to prove that when the pseudocode

i = 1

fact = 1

while (i < n) {
i = i+ 1

fact = fact ∗ i
}

terminates, fact is equal to n!.
We prove that fact = i! is an invariant for the while loop. Just before the while

loop begins executing, i= 1 and fact = 1, so fact = 1!. We have proved the Basis Step.
Assume that fact = i!. If i < n is true (so that the loop body executes again),

i becomes i+ 1 and fact becomes

fact ∗ (i+ 1) = i! ∗ (i+ 1) = (i+ 1)!.

We have proved the Inductive Step. Therefore, fact = i! is an invariant for the while
loop.

The while loop terminates when i = n. Because fact = i! is an invariant, at this
point, fact = n!.

Problem-Solving Tips

To prove

a1 + a2 + · · · + an = F(n), for all n ≥ 1,

where F(n) is the formula for the sum, first verify the equation for n = 1

a1 = F(1)

(Basis Step). This is usually straightforward.

109

Proofs

Now assume that the statement is true for n; that is, assume

a1 + a2 + · · · + an = F(n).

Add an+1 to both sides to get

a1 + a2 + · · · + an + an+1 = F(n)+ an+1.

Finally, show that

F(n)+ an+1 = F(n+ 1).

To verify the preceding equation, use algebra to manipulate the left-hand side of the
equation [F(n) + an+1] until you get F(n + 1). Look at F(n + 1) so you know where
you’re headed. (It’s somewhat like looking up the answer in the back of the book!)
You’ve shown that

a1 + a2 + · · · + an+1 = F(n+ 1),

which is the Inductive Step. Now the proof is complete.
Proving an inequality is handled in a similar fashion. The difference is that instead

of obtaining equality [F(n)+ an+1 = F(n+ 1) in the preceding discussion], you obtain
an inequality.

In general, the key to devising a proof by induction is to find case n “within” case
n + 1. Review the tiling problem (Example 4.7), which provides a striking example of
case n “within” case n+ 1.

Section Review Exercises

1. State the Principle of Mathematical Induction.

2. Explain how a proof by mathematical induction proceeds.

3. Give a formula for the sum 1+ 2+ · · · + n.

4. What is the geometric sum? Give a formula for it.

Exercises

In Exercises 1–11, using induction, verify that each equation is true
for every positive integer n.

1. 1+ 3+ 5+ · · · + (2n− 1) = n2

2. 1 · 2+ 2 · 3+ 3 · 4+ · · · + n(n+ 1) = n(n+ 1)(n+ 2)

3

3. 1(1!)+ 2(2!)+ · · · + n(n!) = (n+ 1)!− 1

4. 12 + 22 + 32 + · · · + n2 = n(n+ 1)(2n+ 1)

6

5. 12 − 22 + 32 − · · · + (−1)n+1n2 = (−1)n+1n(n+ 1)

2

6. 13 + 23 + 33 + · · · + n3 =
[

n(n+ 1)

2

]2

7.
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · + 1

(2n− 1)(2n+ 1)

= n

2n+ 1

8.
1

2 · 4
+ 1 · 3

2 · 4 · 6
+ 1 · 3 · 5

2 · 4 · 6 · 8
+ · · · + 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n+ 2)

= 1

2
− 1 · 3 · 5 · · · (2n+ 1)

2 · 4 · 6 · · · (2n+ 2)

9.
1

22 − 1
+ 1

32 − 1
+ · · · + 1

(n+ 1)2 − 1

= 3

4
− 1

2(n+ 1)
− 1

2(n+ 2)

�10. cos x+ cos 2x+ · · ·+ cos nx = cos[(x/2)(n+ 1)] sin(nx/2)

sin(x/2)

provided that sin(x/2) �= 0.

�11. 1 sin x+ 2 sin 2x+ · · · + n sin nx

= sin [(n+ 1)x]

4 sin2 (x/2)
− (n+ 1) cos[(2n+ 1)x/2]

2 sin (x/2)

provided that sin(x/2) �= 0.

110

Proofs

In Exercises 12–17, using induction, verify the inequality.

12.
1

2n
≤ 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
, n = 1, 2, . . .

�13.
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
≤ 1√

n+ 1
, n = 1, 2, . . .

14. 2n+ 1 ≤ 2n, n = 3, 4, . . .

�15. 2n ≥ n2, n = 4, 5, . . .

�16. (a1a2 · · · a2n)1/2n ≤ a1 + a2 + · · · + a2n

2n
, n= 1, 2, . . . , and

the ai are positive numbers

17. (1+ x)n ≥ 1+ nx, for x ≥ −1 and n ≥ 1

18. Use the geometric sum to prove that

r0 + r1 + · · · + rn <
1

1− r

for all n ≥ 0 and 0 < r < 1.

�19. Prove that

1 · r1 + 2 · r2 + · · · + nrn <
r

(1− r)2

for all n ≥ 1 and 0 < r < 1. Hint: Using the result of the
previous exercise, compare the sum of the terms in

r r2 r3 r4 · · · rn

r2 r3 r4 · · · rn

r3 r4 · · · rn

r4 · · ·
...

...

rn−1 rn

rn

in the diagonal direction (↙) with the sum of the terms by
columns.

20. Prove that

1

21
+ 2

22
+ 3

23
+ · · · + n

2n
< 2

for all n ≥ 1.

In Exercises 21–24, use induction to prove the statement.

21. 7n − 1 is divisible by 6, for all n ≥ 1.

22. 11n − 6 is divisible by 5, for all n ≥ 1.

23. 6 · 7n − 2 · 3n is divisible by 4, for all n ≥ 1.

�24. 3n + 7n − 2 is divisible by 8, for all n ≥ 1.

25. Use induction to prove that if X1, . . . , Xn and X are sets, then

(a) X∩ (X1 ∪X2 ∪ · · · ∪Xn) = (X∩X1)∪ (X∩X2)∪ · · · ∪
(X ∩Xn).

(b) X1 ∩X2 ∩ · · · ∩Xn = X1 ∪X2 ∪ · · · ∪Xn.

26. Use induction to prove that if X1, . . . , Xn are sets, then

|X1 ×X2 × · · · ×Xn| = |X1| · |X2| · · · |Xn|.
27. Prove that the number of subsets S of {1, 2, . . . , n}, with |S|

even, is 2n−1, n ≥ 1.

28. By experimenting with small values of n, guess a formula for

the given sum,

1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n+ 1)
;

then use induction to verify your formula.

29. Use induction to show that n straight lines in the plane divide
the plane into (n2+n+2)/2 regions. Assume that no two lines
are parallel and that no three lines have a common point.

30. Show that the regions of the preceding exercise can be colored
red and green so that no two regions that share an edge are the
same color.

31. Given n 0’s and n 1’s distributed in any manner whatsoever
around a circle (see the following figure), show, using induc-
tion on n, that it is possible to start at some number and proceed
clockwise around the circle to the original starting position so
that, at any point during the cycle, we have seen at least as
many 0’s as 1’s. In the following figure, a possible starting
point is marked with an arrow.

0 0

1

1
1

0

0
1

32. Give a tiling of a 5 × 5 board with trominoes in which the
upper-left square is missing.

33. Show a 5 × 5 deficient board that is impossible to tile with
trominoes. Explain why your board cannot be tiled with tro-
minoes.

34. Show that any (2i)× (3j) board, where i and j are positive
integers, with no square missing, can be tiled with trominoes.

�35. Show that any 7× 7 deficient board can be tiled with tromi-
noes.

36. Show that any 11× 11 deficient board can be tiled with tromi-
noes. Hint: Subdivide the board into overlapping 7×7 and 5×5
boards and two 6×4 boards.Then, use Exercises 32, 34, and 35.

37. This exercise and the one that follows are due to Anthony
Quas. A 2n × 2n L-shape, n ≥ 0, is a figure of the form

2n � 2n

2n � 2n 2n � 2n

with no missing squares. Show that any 2n × 2n L-shape can
be tiled with trominoes.

38. Use the preceding exercise to give a different proof that any
2n × 2n deficient board can be tiled with trominoes.

A straight tromino is an object made up of three squares in a
row:

111

Proofs

39. Which 4 × 4 deficient boards can be tiled with straight tro-
minoes? Hint: Number the squares of the 4 × 4 board, left
to right, top to bottom: 1, 2, 3, 1, 2, 3, and so on. Note that
if there is a tiling, each straight tromino covers exactly one 2
and exactly one 3.

40. Which 5 × 5 deficient boards can be tiled with straight
trominoes?

41. Which 8 × 8 deficient boards can be tiled with straight
trominoes?

42. Use a loop invariant to prove that when the pseudocode

i = 1

pow = 1

while (i ≤ n) {
pow = pow ∗ a
i = i+ 1

}
terminates, pow is equal to an.

43. Prove that, after the following pseudocode terminates, a[h] =
val; for all p, i ≤ p < h, a[p] < val; and for all p, h < p ≤ j,
a[p] ≥ val. In particular, val is in the position in the array
a[i], . . . , a[j] where it would be if the array were sorted.

val = a[i]

h = i

for k = i+ 1 to j

if (a[k] < val) {
h = h+ 1

swap(a[h], a[k])

}
swap(a[i], a[h])

Hint: Use the loop invariant: For all p, i < p ≤ h, a[p] < val;
and, for all p, h < p < k, a[p] ≥ val. (A picture is helpful.)

This technique is called partitioning. This particular
version is due to Nico Lomuto. Partitioning can be used to
find the kth smallest element in an array and to construct a
sorting algorithm called quicksort.

A 3D-septomino is a three-dimensional 2 × 2 × 2 cube with one
1 × 1 × 1 corner cube removed. A deficient cube is a k × k × k

cube with one 1× 1× 1 cube removed.

44. Prove that a 2n × 2n × 2n deficient cube can be tiled by
3D-septominoes.

45. Prove that if a k × k × k deficient cube can be tiled by
3D-septominoes, then 7 divides one of k − 1, k − 2, k − 4.

46. Suppose that Sn = (n + 2)(n − 1) is (incorrectly) proposed
as a formula for

2+ 4+ · · · + 2n.

(a) Show that the Inductive Step is satisfied but that the Basis
Step fails.

�(b) If S′n is an arbitrary expression that satisfies the Inductive
Step, what form must S′n assume?

�47. What is wrong with the following argument, which allegedly
shows that any two positive integers are equal?

We use induction on n to “prove” that if a and b are
positive integers and n = max{a, b}, then a = b.

Basis Step (n= 1) If a and b are positive integers and
1 = max{a, b}, we must have a = b = 1.

Inductive Step Assume that if a′ and b′ are positive inte-
gers and n= max{a′, b′}, then a′ = b′. Suppose that a

and b are positive integers and that n + 1 = max{a, b}.
Now n = max{a − 1, b − 1}. By the inductive hypothesis,
a− 1 = b− 1. Therefore, a = b.

Since we have verified the Basis Step and the Inductive
Step, by the Principle of Mathematical Induction, any two
positive integers are equal!

48. What is wrong with the following “proof” that

1

2
+ 2

3
+ · · · + n

n+ 1
�= n2

n+ 1

for all n ≥ 2?
Suppose by way of contradiction that

1

2
+ 2

3
+ · · · + n

n+ 1
= n2

n+ 1
. (4.14)

Then also

1

2
+ 2

3
+ · · · + n

n+ 1
+ n+ 1

n+ 2
= (n+ 1)2

n+ 2
.

We could prove statement (4.14) by induction. In particular,
the Inductive Step would give
(

1

2
+ 2

3
+ · · · + n

n+ 1

)
+ n+ 1

n+ 2
= n2

n+ 1
+ n+ 1

n+ 2
.

Therefore,

n2

n+ 1
+ n+ 1

n+ 2
= (n+ 1)2

n+ 2
.

Multiplying each side of this last equation by (n+ 1)(n+ 2)

gives

n2(n+ 2)+ (n+ 1)2 = (n+ 1)3.

This last equation can be rewritten as

n3 + 2n2 + n2 + 2n+ 1 = n3 + 3n2 + 3n+ 1

or

n3 + 3n2 + 2n+ 1 = n3 + 3n2 + 3n+ 1,

which is a contradiction. Therefore,

1

2
+ 2

3
+ · · · + n

n+ 1
�= n2

n+ 1
,

as claimed.

49. Use mathematical induction to prove that

1

2
+ 2

3
+ · · · + n

n+ 1
<

n2

n+ 1

for all n ≥ 2. This inequality gives a correct proof of the
statement of the preceding exercise.

112

Proofs

In Exercises 50–54, suppose that n > 1 people are positioned in a
field (Euclidean plane) so that each has a unique nearest neighbor.
Suppose further that each person has a pie that is hurled at the
nearest neighbor. A survivor is a person that is not hit by a pie.

50. Give an example to show that if n is even, there might be no
survivor.

51. Give an example to show that there might be more than one
survivor.

�52. [Carmony] Use induction on n to show that if n is odd, there
is always at least one survivor.

53. Prove or disprove: If n is odd, one of two persons farthest
apart is a survivor.

54. Prove or disprove: If n is odd, a person who throws a pie the
greatest distance is a survivor.

Exercises 55–58 deal with plane convex sets. A plane convex set,
subsequently abbreviated to “convex set,” is a nonempty set X in
the plane having the property that if x and y are any two points in
X, the straight-line segment from x to y is also in X. The following
figures illustrate.

x y

x
y

convex set non convex set

55. Prove that if X and Y are convex sets and X∩ Y is nonempty,
X ∩ Y is a convex set.

�56. Suppose that X1, X2, X3, X4 are convex sets, each three of
which have a common point. Prove that all four sets have a
common point.

�57. Prove Helly’s Theorem: Suppose that X1, X2, . . . , Xn, n ≥ 4,
are convex sets, each three of which have a common point.
Prove that all n sets have a common point.

58. Suppose that n ≥ 3 points in the plane have the property that
each three of them are contained in a circle of radius 1. Prove
that there is a circle of radius 1 that contains all of the points.

59. If a and b are real numbers with a < b, an open interval (a, b)

is the set of all real numbers x such that a < x < b. Prove that
if I1, . . . , In is a set of n ≥ 2 open intervals such that each
pair has a nonempty intersection, then

I1 ∩ I2 ∩ · · · ∩ In

is nonempty.

Flavius Josephus was a Jewish soldier and historian who lived in
the first century (see [Graham, 1994; Schumer]). He was one of
the leaders of a Jewish revolt against Rome in the year 66. The
following year, he was among a group of trapped soldiers who
decided to commit suicide rather than be captured. One version
of the story is that, rather than being captured, they formed a
circle and proceeded around the circle killing every third person.

Josephus, being proficient in discrete math, figured out where he
and a buddy should stand so they could avoid being killed.

Exercises 60–66 concern a variant of the Josephus Problem in
which every second person is eliminated. We assume that n people
are arranged in a circle and numbered 1, 2, . . . , n clockwise. Then,
proceeding clockwise, 2 is eliminated, 4 is eliminated, and so on,
until there is one survivor, denoted J(n).

60. Compute J(4).

61. Compute J(6).

62. Compute J(10).

63. Use induction to show that J(2i) = 1 for all i ≥ 1.

64. Given a value of n ≥ 2, let 2i be the greatest power of 2 with
2i ≤ n. (Examples: If n = 10, i = 3. If n = 16, i = 4.) Let
j = n− 2i. (After subtracting 2i, the greatest power of 2 less
than or equal to n, from n, j is what is left over.) By using the
result of Exercise 63 or otherwise, prove that

J(n) = 2j + 1.

65. Use the result of the Exercise 64 to compute J(1000).

66. Use the result of the Exercise 64 to compute J(100,000).

If a1, a2, . . . is a sequence, we define the difference operator � to be

�an = an+1 − an.

The formula of Exercise 67 can sometimes be used to find a formula
for a sum as opposed to using induction to prove a formula for a
sum (see Exercises 68–70).

67. Suppose that �an = bn. Show that

b1 + b2 + · · · + bn = an+1 − a1.

This formula is analogous to the calculus formula∫ d

c
f(x) dx = g(d)− g(c), where Dg = f (D is the derivative

operator). In the calculus formula, sum is replaced by integral,
and � is replaced by derivative.

68. Let an = n2, and compute �an. Use Exercise 67 to find a
formula for

1+ 2+ 3+ · · · + n.

69. Use Exercise 67 to find a formula for

1(1!)+ 2(2!)+ · · · + n(n!).

(Compare with Exercise 3.)

70. Use Exercise 67 to find a formula for

1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n+ 1)
.

(Compare with Exercise 28.)

71. Prove that if p and q are divisible by k, then p+ q is divisible
by k.

113

Proofs

Problem-Solving Corner Mathematical Induction

Problem
Define

Hk = 1+ 1

2
+ 1

3
+ · · · + 1

k
(1)

for all k ≥ 1. The numbers H1, H2, . . . are called the
harmonic numbers. Prove that

H2n ≥ 1+ n

2
(2)

for all n ≥ 0.

Attacking the Problem
It’s often a good idea to begin attacking a problem by
looking at some concrete examples of the expressions
under consideration. Let’s look at Hk for some small
values of k. The smallest value of k for which Hk is
defined is k = 1. In this case, the last term 1/k in the
definition of Hk equals 1/1 = 1. Since the first and last
terms coincide,

H1 = 1.

For k = 2, the last term 1/k in the definition of Hk

equals 1/2, so

H2 = 1+ 1

2
.

Similarly, we find that

H3 = 1+ 1

2
+ 1

3
,

H4 = 1+ 1

2
+ 1

3
+ 1

4
.

We observe that H1 appears as the first term of
H2, H3, and H4, that H2 appears as the first two terms
ofH3 andH4, and thatH3 appears as the first three terms
of H4. In general, Hm appears as the first m terms of
Hk if m≤ k. This observation will help us later because
the Inductive Step in a proof by induction must relate
smaller instances of a problem to larger instances of
the problem.

In general, it’s a good strategy to delay combining
terms and simplifying until as late as possible, which is
why, for example, we left H4 as the sum of four terms
rather than writing H4= 25/12. Since we left H4 as
the sum of four terms, we were able to see that each of
H1, H2, and H3 appears in the expression for H4.

Finding a Solution
The Basis Step is to prove the given statement for the
smallest value of n, which here is n= 0. For n= 0,

inequality (2) that we must prove becomes

H20 ≥ 1+ 0

2
= 1.

We have already observed that H1 = 1. Thus inequal-
ity (2) is true when n = 0; in fact, the inequality is
an equality. (Recall that by definition, if x = y is true,
then x ≥ y is also true.)

Let’s move to the Inductive Step. It’s a good idea
to write down what is assumed (here the case n),

H2n ≥ 1+ n

2
, (3)

and what needs to be proved (here the case n+ 1),

H2n+1 ≥ 1+ n+ 1

2
. (4)

It’s also a good idea to write the formulas for any exp-
ressions that occur. Using equation (1), we may write

H2n = 1+ 1

2
+ · · · + 1

2n
(5)

and

H2n+1 = 1+ 1

2
+ · · · + 1

2n+1
.

It’s not so evident from the last equation that H2n

appears as the first 2n terms of H2n+1 . Let’s rewrite the
last equation as

H2n+1 = 1+ 1

2
+ · · · + 1

2n
+ 1

2n + 1
+ · · · + 1

2n+1

(6)

to make it clear that H2n appears as the first 2n terms
of H2n+1 .

For clarity, we have written the term that follows
1/2n. Notice that the denominators increase by one, so
the term that follows 1/2n is 1/(2n + 1). Also notice
that there is a big difference between 1/(2n + 1), the
term that follows 1/2n, and 1/2n+1, the last term in
equation (6).

Using equations (5) and (6), we may relate H2n to
H2n+1 explicitly by writing

H2n+1 = H2n + 1

2n + 1
+ · · · + 1

2n+1
. (7)

Combining (3) and (7), we obtain

H2n+1 ≥ 1+ n

2
+ 1

2n + 1
+ · · · + 1

2n+1
. (8)

This inequality shows that H2n+1 is greater than or
equal to

1+ n

2
+ 1

2n + 1
+ · · · + 1

2n+1
,

114

Proofs

but our goal (4) is to show that H2n+1 is greater than or
equal to 1+ (n+ 1)/2. We will achieve our goal if we
show that

1+ n

2
+ 1

2n + 1
+ · · · + 1

2n+1
≥ 1+ n+ 1

2
.

In general, to prove an inequality, we replace terms
in the larger expression with smaller terms so that the
resulting expression equals the smaller expression; or
we replace terms in the smaller expression with larger
terms so that the resulting expression equals the larger
expression. Here let’s replace each of the terms in the
sum

1

2n + 1
+ · · · + 1

2n+1

by the smallest term 1/2n+1 in the sum. We obtain

1

2n + 1
+ · · · + 1

2n+1
≥ 1

2n+1
+ · · · + 1

2n+1
.

Since there are 2n terms in the latter sum, each equal
to 1/2n+1, we may rewrite the preceding inequality as

1

2n + 1
+ · · · + 1

2n+1
≥ 1

2n+1
+ · · · + 1

2n+1

= 2n 1

2n+1
= 1

2
. (9)

Combining (8) and (9),

H2n+1 ≥ 1+ n

2
+ 1

2
= 1+ n+ 1

2
.

We have the desired result, and the Inductive Step is
complete.

Formal Solution
The formal solution could be written as follows.

Basis Step (n = 0)

H20 = 1 ≥ 1 = 1+ 0

2

Inductive Step
We assume (2). Now

H2n+1 = 1+ 1

2
+ · · · + 1

2n
+ 1

2n + 1
+ · · · + 1

2n+1

= H2n + 1

2n + 1
+ · · · + 1

2n+1

≥ 1+ n

2
+ 1

2n+1
+ · · · + 1

2n+1

= 1+ n

2
+ 2n 1

2n+1

= 1+ n

2
+ 1

2
= 1+ n+ 1

2
.

Summary of Problem-Solving Techniques
■ Look at concrete examples of the expressions

under consideration, typically for small values
of the variables.

■ Look for expressions for small values of n to
appear within expressions for larger values of n.
In particular, the Inductive Step depends on relat-
ing case n to case n+ 1.

■ Delay combining terms and simplifying until as
late as possible to help discover relationships
among the expressions.

■ Write out in full the specific cases to prove,
specifically, the smallest value of n for the Basis
Step, the case n that is assumed in the Inductive
Step, and the case n + 1 to prove in the Induc-
tive Step. Write out the formulas for the various
expressions that appear.

■ To prove an inequality, replace terms in the
larger expression with smaller terms so that the
resulting expression equals the smaller expres-
sion, or replace terms in the smaller expression
with larger terms so that the resulting expression
equals the larger expression.

Comments
The series

1+ 1

2
+ 1

3
+ · · · ,

which surfaces in calculus, is called the harmonic
series. Inequality (2) shows that the harmonic num-
bers increase without bound. In calculus terminology,
the harmonic series diverges.

Exercises
1. Prove that H2n ≤ 1+ n for all n ≥ 0.

2. Prove that

H1 +H2 + · · · +Hn = (n+ 1)Hn − n

for all n ≥ 1.

3. Prove that

Hn = Hn+1 − 1

n+ 1
for all n ≥ 1.

4. Prove that

1 · H1 + 2 · H2 + · · · + nHn

= n(n+ 1)

2
Hn+1 − n(n+ 1)

4
for all n ≥ 1.

115

Proofs

5 ➜ Strong Form of Induction and
the Well-Ordering Property

In the Inductive Step of mathematical induction presented in Section 4, we assume that
statement n is true, and then prove that statement n+1 is true. In other words, to prove that
a statement is true (statement n+ 1), we assume the truth of its immediate predecessor
(statement n). In some cases in the Inductive Step, to prove a statement is true, it is
helpful to assume the truth of all of the preceding statements (not just the immediate
predecessor). The Strong Form of Mathematical Induction allows us to assume the
truth of all of the preceding statements. Following the usual convention, the statement
to prove is denoted n rather than n + 1. We next formally state the Strong Form of
Mathematical Induction.

Strong Form of
Mathematical Induction

Suppose that we have a propositional function S(n) whose domain of discourse is the
set of integers greater than or equal to n0. Suppose that

S(n0) is true;

for all n > n0, if S(k) is true for all k, n0 ≤ k < n, then S(n) is true.

Then S(n) is true for every integer n ≥ n0.

In the Inductive Step of the Strong Form of Mathematical Induction, we let n

denote an arbitrary integer, n > n0. Then, assuming that S(k) is true for all k satisfying

n0 ≤ k < n, (5.1)

we prove that S(n) is true. In inequality (5.1), k indexes a statement S(k) that is an
arbitrary predecessor of the statement S(n) (thus k < n), which we are to prove true. In
inequality (5.1), n0 ≤ k ensures that k is in the domain of discourse

{n0, n0 + 1, n0 + 2, . . .}.

The two forms of mathematical induction are logically equivalent (see Exer-
cise 33).

We present several examples that illustrate the use of the Strong Form of Mathe-
matical Induction.

Example 5.1 Use mathematical induction to show that postage of four cents or more can be achieved
by using only 2-cent and 5-cent stamps.

Discussion Consider the Inductive Step, where we want to prove that n-cents postage
can be achieved using only 2-cent and 5-cent stamps. It would be particularly easy to
prove this statement if we could assume that we can make postage of n − 2 cents. We
could then simply add a 2-cent stamp to make n-cents postage. How simple! If we use
the Strong Form of Mathematical Induction, we can assume the truth of the statement
for all k < n. In particular, we can assume the truth of the statement for k = n− 2. Thus
the Strong Form of Mathematical Induction allows us to give a correct proof based on
our informal reasoning.

In this example, n0 in inequality (5.1) is equal to 4. When we take k = n − 2, to
ensure that n0 ≤ k, that is 4 ≤ n− 2, we must have 6 ≤ n. Now n = 4 is the Basis Step.
What about n = 5? We explicitly prove this case. By convention, we add the case n = 5
to the Basis Step; thus the cases n = 4 and n = 5 become the Basis Steps. In general,

116

Proofs

if the Inductive Step assumes that the case n− p is true (in this example, p = 2), there
will be p Basis Steps: n = n0, n = n0 + 1, . . . , n = n0 + p− 1.

Basis Steps (n = 4; n = 5)
We can make four-cents postage by using two 2-cent stamps. We can make five-cents
postage by using one 5-cent stamp. The Basis Steps are verified.

Inductive Step
We assume that n ≥ 6 and that postage of k cents or more can be achieved by using only
2-cent and 5-cent stamps for 4 ≤ k < n.

By the inductive assumption, we can make postage of n−2 cents. We add a 2-cent
stamp to make n-cents postage. The Inductive Step is complete.

Example 5.2 When an element of a sequence is defined in terms of some of its predecessors, the
Strong Form of Mathematical Induction is sometimes useful to prove a property of the
sequence. For example, suppose that the sequence c1, c2, . . . is defined by the equations†

c1 = 0, cn = c�n/2� + n for all n > 1.

As examples,

c2 = c�2/2� + 2 = c�1� + 2 = c1 + 2 = 0+ 2 = 2,

c3 = c�3/2� + 3 = c�1.5� + 3 = c1 + 3 = 0+ 3 = 3,

c4 = c�4/2� + 4 = c�2� + 4 = c2 + 4 = 2+ 4 = 6,

c5 = c�5/2� + 5 = c�2.5� + 5 = c2 + 5 = 2+ 5 = 7.

We use strong induction to prove that

cn < 2n for all n ≥ 1.

Discussion In this example, n0 in inequality (5.1) is equal to 1 and (5.1) becomes

1 ≤ k < n.

In particular, since cn is defined in terms of c�n/2�, in the Inductive Step we assume the
truth of the statement for k = �n/2�. Inequality (5.1) then becomes

1 ≤ �n/2� < n.

Because n/2 < n, it follows that �n/2� < n. If n ≥ 2, then 1 ≤ n/2 and so 1 ≤ �n/2�.
Therefore if n ≥ 2 and k = �n/2�, inequality (5.1) is satisfied. Thus the Basis Step is
n = 1.

Basis Step (n = 1)

c1 = 0 < 2 = 2 · 1.

The Basis Step is verified.

†The floor of x, �x�, is the greatest integer less than or equal to x. Informally, we are “rounding down.”
Examples: �2.3� = 2, �5� = 5, �−2.7� = −3.

117

Proofs

Inductive Step
We assume that

ck < 2k

for all k, 1 ≤ k < n, and prove that

cn < 2n,

n > 1. Since 1 < n, 2 ≤ n. Thus 1 ≤ n/2 < n. Therefore 1 ≤ �n/2� < n and taking
k = �n/2�, we see that k satisfies inequality (5.1). By the inductive assumption

c�n/2� = ck < 2k = 2�n/2�.
Now

cn = c�n/2� + n < 2�n/2� + n ≤ 2(n/2)+ n = 2n.

The Inductive Step is complete.

Example 5.3 Define the sequence c1, c2, . . . by the equations

c1 = 1, cn = c�n/2� + n2 for all n > 1.

Suppose that we want to prove a statement for all n ≥ 2 involving cn. The Inductive
Step will assume the truth of the statement involving c�n/2�. What are the Basis Steps?

In this example, n0 in inequality (5.1) is equal to 2 and (5.1) becomes

2 ≤ k < n.

In the Inductive Step, we assume the truth of the statement for k = �n/2�. Inequality
(5.1) then becomes

2 ≤ �n/2� < n.

Because n/2 < n, it follows that �n/2� < n.
If n = 3, then 2 > �n/2�. Thus we must add n = 3 to the Basis Step (n = 2). If

n ≥ 4, then 2 ≤ n/2 and so 2 ≤ �n/2�. Therefore if n ≥ 4 and k = �n/2�, inequality
(5.1) is satisfied. Thus the Basis Steps are n = 2 and n = 3.

Example 5.4 Suppose that we insert parentheses and then multiply the n numbers a1a2 · · · an. For
example, if n = 4, we might insert the parentheses as shown:

(a1a2)(a3a4). (5.2)

Here we would first multiply a1 by a2 to obtain a1a2 and a3 by a4 to obtain a3a4. We
would then multiply a1a2 by a3a4 to obtain (a1a2)(a3a4). Notice that the number of
multiplications is three. Prove that if we insert parentheses in any manner whatsoever
and then multiply the n numbers a1a2 · · · an, we perform n− 1 multiplications.

We use strong induction to prove the result.

Basis Step (n = 1)
We need 0 multiplications to compute a1. The Basis Step is verified.

Inductive Step
We assume that for all k, 1 ≤ k < n, it takes k−1 multiplications to compute the product
of k numbers if parentheses are inserted in any manner whatsoever. We must prove that
it takes n multiplications to compute the product a1a2 · · · an if parentheses are inserted
in any manner whatsoever.

118

Proofs

Suppose that parentheses are inserted in the product a1a2 · · · an. Consider the final
multiplication, which looks like

(a1 · · · at)(at+1 · · · an),

for some t, 1 ≤ t < n. [For example, in equation (5.2), t = 2.] There are t terms in the
first set of parentheses, 1 ≤ t < n, and n − t terms in the second set of parentheses,
1 ≤ n − t < n. By the inductive assumption, it takes t − 1 multiplications to compute
a1 · · · at and n − t − 1 multiplications to compute at+1 · · · an, regardless of how the
parentheses are inserted. It takes one additional multiplication to multiply a1 · · · at by
at+1 · · · an. Thus the total number of multiplications is

(t − 1)+ (n− t − 1)+ 1 = n− 1.

The Inductive Step is complete.

Well-Ordering Property
The Well-Ordering Property for nonnegative integers states that every nonempty
set of nonnegative integers has a least element. This property is equivalent to the two
forms of induction (see Exercises 31–33). We use the Well-Ordering Property to prove
something familiar from long division: When we divide an integer n by a positive integer
d, we obtain a quotient q and a remainder r satisfying 0 ≤ r < d so that n = dq+ r.

Example 5.5 When we divide n = 74 by d = 13

5
13)74

65
9

we obtain the quotient q = 5 and the remainder r = 9. Notice that r satisfies 0 ≤ r < d;
that is, 0 ≤ 9 < 13. We have

n = 74 = 13 · 5+ 9 = dq+ r.

Theorem 5.6 Quotient-Remainder Theorem
If d and n are integers, d > 0, there exist integers q (quotient) and r (remainder)
satisfying

n = dq+ r 0 ≤ r < d.

Furthermore, q and r are unique; that is, if

n = dq1 + r1 0 ≤ r1 < d

and

n = dq2 + r2 0 ≤ r2 < d,

then q1 = q2 and r1 = r2.

Discussion We can devise a proof of Theorem 5.6 by looking carefully at the tech-
nique used in long division. Why is 5 the quotient in Example 5.5? Because q= 5

119

Proofs

makes the remainder n−dq nonnegative and as small as possible. If, for example, q= 3,
the remainder would be n− dq= 74− 13 · 3= 35, which is too large. As another exam-
ple, if q= 6, the remainder would be n− dq= 74− 13 · 6= − 4, which is negative. The
existence of a smallest, nonnegative remainder n−dq is guaranteed by the Well-Ordering
Property.

Proof of Theorem 5.6 Let

X = {n− dk | n− dk ≥ 0, k ∈ Z}.
We show that X is nonempty using proof by cases. If n ≥ 0, then

n− d · 0 = n ≥ 0

so n is in X. Suppose that n < 0. Since d is a positive integer, 1− d ≤ 0. Thus

n− dn = n(1− d) ≥ 0.

In this case, n− dn is in X. Therefore X is nonempty.
Since X is a nonempty set of nonnegative integers, by the Well-Ordering Property,

X has a smallest element, which we denote r. We let q denote the specific value of k for
which r = n− dq. Then

n = dq+ r.

Since r is in X, r≥ 0. We use proof by contradiction to show that r < d. Suppose
that r ≥ d. Then

n− d(q+ 1) = n− dq− d = r − d ≥ 0.

Thus n− d(q+ 1) is in X. Also, n− d(q+ 1) = r− d < r. But r is the smallest integer
in X. This contradiction shows that r < d.

We have shown that if d and n are integers, d > 0, there exist integers q and r

satisfying

n = dq+ r 0 ≤ r < d.

We turn now to the uniqueness of q and r. Suppose that

n = dq1 + r1 0 ≤ r1 < d

and

n = dq2 + r2 0 ≤ r2 < d.

We must show that q1 = q2 and r1 = r2. Subtracting the previous equations, we obtain

0 = n− n = (dq1 + r1)− (dq2 + r2) = d(q1 − q2)− (r2 − r1),

which can be rewritten

d(q1 − q2) = r2 − r1.

The preceding equation shows that d divides r2− r1. However, because 0 ≤ r1 < d and
0 ≤ r2 < d,

−d < r2 − r1 < d.

120

Proofs

But the only integer strictly between −d and d divisible by d is 0. Therefore,

r1 = r2.

Thus,

d(q1 − q2) = 0;
hence,

q1 = q2.

The proof is complete.

Notice that in Theorem 5.6 the remainder r is zero if and only if d divides n.

Problem-Solving Tips

In the Inductive Step of the Strong Form of Mathematical Induction, your goal is to prove
case n. To do so, you can assume all preceding cases (not just the immediately preceding
case as in Section 4). You could always use the Strong Form of Mathematical Induction.
If it happens that you needed only the immediately preceding case in the Inductive Step,
you merely used the form of mathematical induction of Section 4. However, assuming
all previous cases potentially gives you more to work with in proving case n.

In the Inductive Step of the Strong Form of Mathematical Induction, when you
assume that the statement S(k) is true, you must be sure that k is in the domain of discourse
of the propositional function S(n). In the terminology of this section, you must be sure
that n0 ≤ k (see Examples 5.1 and 5.2).

In the Inductive Step of the Strong Form of Mathematical Induction, if you assume
that case n−p is true, there will be p Basis Steps: n = n0, n = n0+1, . . . , n = n0+p−1.

Section Review Exercises

1. State the Strong Form of Mathematical Induction.

2. State the Well-Ordering Property.

3. State the Quotient-Remainder Theorem.

Exercises

1. Show that postage of six cents or more can be achieved by
using only 2-cent and 7-cent stamps.

2. Show that postage of 24 cents or more can be achieved by
using only 5-cent and 7-cent stamps.

�3. Use the

If S(n) is true, then S(n+ 1) is true

form of the Inductive Step to prove the statement in Exam-
ple 5.1.

�4. Use the

If S(n) is true, then S(n+ 1) is true

form of the Inductive Step to prove the statement in Exercise 1.

�5. Use the

If S(n) is true, then S(n+ 1) is true

form of the Inductive Step to prove the statement in Exercise 2.

Exercises 6 and 7 refer to the sequence c1, c2, . . . defined by the
equations

c1 = 0, cn = c�n/2� + n2 for all n > 1.

6. Suppose that we want to prove a statement for all n ≥ 3
involving cn. The Inductive Step will assume the truth of the
statement involving c�n/2�. What are the Basis Steps?

7. Suppose that we want to prove a statement for all n ≥ 4
involving cn. The Inductive Step will assume the truth of the
statement involving c�n/2�. What are the Basis Steps?

121

Proofs

8. Define the sequence c1, c2, . . . by the equations

c1 = c2 = 0, cn = c�n/3� + n for all n > 2.

Suppose that we want to prove a statement for all n ≥ 2 invol-
ving cn. The Inductive Step will assume the truth of the state-
ment involving c�n/3�. What are the Basis Steps?

Exercises 9 and 10 refer to the sequence c1, c2, . . . defined by the
equations

c1 = 0, cn = c�n/2� + n2 for all n > 1.

9. Compute c2, c3, c4, and c5.

10. Prove that cn < 4n2 for all n ≥ 1.

Exercises 11–13 refer to the sequence c1, c2, . . . defined by the
equations

c1 = 0, cn = 4c�n/2� + n for all n > 1.

11. Compute c2, c3, c4, and c5.

12. Prove that cn ≤ 4(n− 1)2 for all n ≥ 1.

13. Prove that (n + 1)2/8 < cn for all n ≥ 2. Hint: �n/2� ≥
(n− 1)/2 for all n.

14. Define the sequence c0, c1, . . . by the equations

c0 = 0, cn = c�n/2� + 3 for all n > 0.

What is wrong with the following “proof” that cn ≤ 2n for all
n ≥ 3? (You should verify that it is false that cn ≤ 2n for all
n ≥ 3.)

We use the Strong Form of Mathematical Induction.

Basis Step (n = 3)
We have

c3 = c1 + 3 = (c0 + 3)+ 3 = 6 ≤ 2 · 3.

The Basis Step is verified.

Inductive Step
Assume that ck ≤ 2k for all k < n. Then

cn = c�n/2�+3 ≤ 2�n/2�+3 ≤ 2(n/2)+3 = n+3 < n+n = 2n.

(Since 3 < n, n+3 < n+n.) The Inductive Step is complete.

15. Suppose that we have two piles of cards each containing
n cards. Two players play a game as follows. Each player, in
turn, chooses one pile and then removes any number of cards,
but at least one, from the chosen pile. The player who removes
the last card wins the game. Show that the second player can
always win the game.

In Exercises 16–21, find the quotient q and remainder r as in
Theorem 5.6 when n is divided by d.

16. n = 47, d = 9 17. n = −47, d = 9

18. n = 7, d = 9 19. n = −7, d = 9

20. n = 0, d = 9 21. n = 47, d = 47

The Egyptians of antiquity expressed a fraction as a sum of fractions
whose numerators were 1. For example, 5/6 might be expressed as

5

6
= 1

2
+ 1

3
.

We say that a fraction p/q, where p and q are positive integers, is
in Egyptian form if

p

q
= 1

n1
+ 1

n2
+ · · · + 1

nk

, (5.3)

where n1, n2, . . . , nk are positive integers satisfying n1 < n2 <

· · · < nk .

22. Show that the representation (5.3) need not be unique by rep-
resenting 5/6 in two different ways.

�23. Show that the representation (5.3) is never unique.

24. By completing the following steps, give a proof by induction
on p to show that every fraction p/q with 0 < p/q < 1 may be
expressed in Egyptian form.

(a) Verify the Basis Step (p = 1).

(b) Suppose that 0 < p/q < 1 and that all fractions i/q′, with
1≤ i < p and q′ arbitrary, can be expressed in Egyptian
form. Choose the smallest positive integer n with 1/n ≤
p/q. Show that

n > 1 and
p

q
<

1

n− 1
.

(c) Show that if p/q = 1/n, the proof is complete.

(d) Assume that 1/n < p/q. Let

p1 = np− q and q1 = nq.

Show that

p1

q1
= p

q
− 1

n
, 0 <

p1

q1
< 1, and p1 < p.

Conclude that

p1

q1
= 1

n1
+ 1

n2
+ · · · + 1

nk

with n1, n2, . . . , nk distinct.

(e) Show that p1/q1 < 1/n.

(f) Show that

p

q
= 1

n
+ 1

n1
+ · · · + 1

nk

and n, n1, . . . , nk are distinct.

25. Use the method of the preceding exercise to find Egyptian
forms of 3/8, 5/7, and 13/19.

�26. Show that any fraction p/q, where p and q are positive inte-
gers, can be written in Egyptian form. (We are not assuming
that p/q < 1.)

�27. Show that any n×n deficient board can be tiled with trominoes
if n is odd, n > 5, and 3 divides n2 − 1. Hint: Use the ideas
suggested in the hint for Exercise 36, Section 4.

�28. Show that any n×n deficient board can be tiled with trominoes
if n is even, n > 8, and 3 divides n2−1. Hint: Use the fact that

122

Proofs

a 4 × 4 deficient board can be tiled with trominoes, Exercise
27, and Exercise 34, Section 4.

29. Give an alternative proof of the existence of q and r in The-
orem 5.6 for the case n ≥ 0 by first showing that the set X

consisting of all integers k where dk > n is a nonempty set of
nonnegative integers, then showing that X has a least element,
and finally analyzing the least element of X.

30. Give an alternative proof of the existence of q and r in The-
orem 5.6 using the form of mathematical induction where the
Inductive Step is “if S(n) is true, then S(n+ 1) is true.” Hint:
First assume that n > 0. Treat the case n = 0 separately.
Reduce the case n < 0 to the case n > 0.

�31. Assume the form of mathematical induction where the Induc-
tive Step is “if S(n) is true, then S(n + 1) is true.” Prove the
Well-Ordering Property.

�32. Assume the Well-Ordering Property. Prove the Strong Form
of Mathematical Induction.

�33. Show that the Strong Form of Mathematical Induction and the
form of mathematical induction where the Inductive Step is
“if S(n) is true, then S(n + 1) is true” are equivalent. That
is, assume the Strong Form of Mathematical Induction and
prove the alternative form; then assume the alternative form
and prove the Strong Form of Mathematical Induction.

Notes

[D’Angelo; Solow] address the problem of how to construct proofs. Tiling with polyominoes
is the subject of the book by [Martin].

The “Fallacies, Flaws, and Flimflam” section of The College Mathematics Journal,
published by the Mathematical Association of America, contains examples of mathematical
mistakes, fallacious proofs, and faulty reasoning.

Chapter Review

Section 1
1. Mathematical system
2. Axiom
3. Definition
4. Undefined term
5. Theorem
6. Proof
7. Lemma
8. Direct proof
9. Even integer

10. Odd integer
11. Subproof
12. Disproving a universally quantified statement
13. Begging the question
14. Circular reasoning

Section 2
15. Proof by contradiction
16. Indirect proof
17. Proof by contrapositive
18. Proof by cases
19. Exhaustive proof
20. Proving an if-and-only-if statement
21. Proving several statements are equivalent
22. Existence proof
23. Constructive existence proof
24. Nonconstructive existence proof

Section 3
25. Resolution proof; uses: if p ∨ q and ¬p ∨ r are both true,

then q ∨ r is true.

26. Clause: consists of terms separated by or’s, where each term
is a variable or a negation of a variable.

Section 4
27. Principle of Mathematical Induction
28. Basis Step: prove true for the first instance.
29. Inductive Step: assume true for instance n; then prove true

for instance n+ 1.
30. n factorial: n! = n(n− 1) · · · 1, 0! = 1
31. Formula for the sum of the first n positive integers:

1+ 2+ · · · + n = n(n+ 1)

2
32. Formula for the geometric sum:

ar0 + ar1 + · · · + arn = a(rn+1 − 1)

r − 1
, r �= 1

Section 5
33. Strong Form of Mathematical Induction
34. Basis Step for the Strong Form of Mathematical Induction:

prove true for the first instance.
35. Inductive Step for the Strong Form of Mathematical Induc-

tion: assume true for all instances less than n; then prove
true for instance n.

36. Well-Ordering Property: every nonempty set of nonnegative
integers has a least element.

37. Quotient-RemainderTheorem: Ifd andn are integers,d > 0,
there exist integers q (quotient) and r (remainder) satisfying
n = dq+ r, 0 ≤ r < d. Furthermore, q and r are unique.

123

Proofs

Chapter Self-Test

Section 1
1. Distinguish between the terms axiom and definition.

2. Prove that for all integers m and n, if m and m− n are odd,
then n is even.

3. Prove that for all rational numbers x and y, y �= 0, x/y is
rational.

4. Prove that for all sets X, Y , and Z, if X ⊆ Y and Y ⊂ Z,
then X ⊂ Z.

Section 2
5. What is the difference between a direct proof and a proof

by contradiction?

6. Show, by giving a proof by contradiction, that if four teams
play seven games, some pair of teams plays at least two
times.

7. Use proof by cases to prove that

min{min{a, b}, c} = min{a, min{b, c}}
for all real numbers a, b, and c.

8. Prove that the following are equivalent for sets A and B:

(a) A ⊆ B (b) A ∩ B = ∅ (c) A ∪ B = B

Section 3
9. Find an expression, which is the and of clauses, equivalent

to (p ∨ q)→ r.

10. Find an expression, which is the and of clauses, equivalent
to (p ∨ ¬q)→ ¬rs.

11. Use resolution to prove

¬p ∨ q

¬q ∨ ¬r

p ∨ ¬r

∴ ¬r

12. Reprove Exercise 11 using resolution and proof by
contradiction.

Section 4

Use mathematical induction to prove that the statements in
Exercises 13–16 are true for every positive integer n.

13. 2+ 4+ · · · + 2n = n(n+ 1)

14. 22 + 42 + · · · + (2n)2 = 2n(n+ 1)(2n+ 1)

3

15.
1

2!
+ 2

3!
+ · · · + n

(n+ 1)!
= 1− 1

(n+ 1)!

16. 2n+1 < 1+ (n+ 1)2n

Section 5
17. Find the quotient q and remainder r as in Theorem 5.6 when

n = 101 is divided by d = 11.

Exercises 18 and 19 refer to the sequence c1, c2, . . . defined by
the equations

c1 = 0, cn = 2c�n/2� + n for all n > 1.

18. Compute c2, c3, c4, and c5.

19. Prove that cn ≤ n lg n for all n ≥ 1.

20. Use the Well-Ordering Property to show that any nonempty
set X of nonnegative integers that has an upper bound con-
tains a largest element. Hint: Consider the set of integer
upper bounds for X.

Computer Exercises

1. Implement proof by resolution as a program. 2. Write a program that gives an Egyptian form of a fraction.

Hints/Solutions to Selected Exercises

Section 1 Review
1. A mathematical system consists of axioms, definitions, and

undefined terms.

2. An axiom is a proposition that is assumed to be true.

3. A definition creates a new concept in terms of existing ones.

4. An undefined term is a term that is not explicitly defined but
rather is implicitly defined by the axioms.

5. A theorem is a proposition that has been proved to be true.

6. A proof is an argument that establishes the truth of a theorem.

7. A lemma is a theorem that is usually not too interesting in its
own right but is useful in proving another theorem.

8. A direct proof assumes that the hypotheses are true and then,
using the hypotheses as well as other axioms, definitions, and
previously derived theorems, shows directly that the conclu-
sion is true.

124

Proofs

9. An integer n is even if there exists an integer k such that n = 2k.

10. An integer n is odd if there exists an integer k such that
n = 2k + 1.

11. Within a proof, a proof of an auxiliary result is called a
subproof.

12. To disprove the universally quantified statement ∀xP(x), we
need to find one member x in the domain of discourse that
makes P(x) false.

Section 1
1. If three points are not collinear, then there is exactly one plane

that contains them.

4. If x is a nonnegative real number and n is a positive integer,
x1/n is the nonnegative number y satisfying yn = x.

7. Let m and n be even integers. Then there exist k1 and k2 such
that m = 2k1 and n = 2k2. Now

m+ n = 2k1 + 2k2 = 2(k1 + k2).

Therefore m+ n is even.

10. Let m and n be odd integers. Then there exist k1 and k2 such
that m = 2k1 + 1 and n = 2k2 + 1. Now

mn = (2k1 + 1)(2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1

= 2(2k1k2 + k1 + k2)+ 1.

Therefore mn is odd.

13. Let x and y be rational numbers. Then there exist integers
m1, n1, m2, n2 such that x = m1/n1 and y = m2/n2. Now

x+ y = m1

n1
+ m2

n2
= m1n2 +m2n1

n1n2
.

Since m1n2 +m2n1 and n1n2 are integers, x+ y is a rational
number.

16. From the definition of max, it follows that d ≥ d1 and d ≥ d2.
From x ≥ d and d ≥ d1, we may derive x ≥ d1 from a previ-
ous theorem (the second theorem of Example 1.5). From x ≥ d

and d ≥ d2, we may derive x ≥ d2 from the same previous
theorem. Therefore, x ≥ d1 and x ≥ d2.

19. Let x ∈ X ∩ Y . From the definition of “intersection,” we con-
clude that x ∈ X. Therefore X ∩ Y ⊆ X.

22. Let x ∈ X ∩Z. From the definition of “intersection,” we con-
clude that x ∈ X and x ∈ Z. Since X ⊆ Y and x ∈ X, x ∈ Y .
Since x ∈ Y and x ∈ Z, from the definition of “intersection,”
we conclude that x ∈ Y ∩ Z. Therefore X ∩ Z ⊆ Y ∩ Z.

25. Let x ∈ Y . From the definition of “union,” we conclude that
x ∈ X∪Y . Since X∪Y = X∪Z, x ∈ X∪Z. From the defini-
tion of “union,” we conclude that x ∈ X or x ∈ Z. If x ∈ Z, we
conclude that Y ⊆ Z. If x ∈ X, from the definition of “inter-
section,” we conclude that x ∈ X ∩ Y . Since X ∩ Y = X ∩Z,
x ∈ X ∩ Z. Therefore x ∈ Z, and again Y ⊆ Z.

The argument that Z ⊆ Y is the same as that for Y ⊆ Z

with the roles of Y and Z reversed. Thus Y = Z.

28. Since X ∈ P(X), X ∈ P(Y). Therefore X ⊆ Y .

31. False. If X = {1, 2} and Y = {2, 3}, then X is not a subset of
Y since 1 ∈ X, but 1 /∈ Y . Also, Y is not a subset of X since
3 ∈ Y , but 3 /∈ X.

34. False. Let X = {1, a}, Y = {1, 2, 3}, and Z = {3}. Then
Y − Z = {1, 2} and (X ∪ Y)− (X ∪ Z) = {2}.

37. False. Let X = Y = {1} and U = {1, 2}. Then X ∩ Y = {2},
which is not a subset of X.

40. False. Let X = Y = {1} and U = {1, 2}. Then X× Y =
{(1, 2), (2, 1), (2, 2)} and X× Y = {(2, 2)}.

43. False. Let X = {1, 2}, Y = {1}, and Z = {2}. Then
X ∩ (Y × Z) = ∅ and (X ∩ Y)× (X ∩ Z) = {(1, 2)}.

44. We prove only (A∪B)∪C = A∪(B∪C). Let x ∈ (A∪B)∪C.
Then x ∈ A∪B or x ∈ C. If x ∈ A∪B, then x ∈ A or x ∈ B.
Thus x ∈ A or x ∈ B or x ∈ C. If x ∈ A, then x ∈ A∪ (B∪C).
If x ∈ B or x ∈ C, then x ∈ B ∪ C. Again, x ∈ A ∪ (B ∪ C).

Now suppose that x ∈ A ∪ (B ∪ C). Then x ∈ A or
x ∈ B ∪ C. If x ∈ B ∪ C, then x ∈ B or x ∈ C. Thus x ∈ A

or x ∈ B or x ∈ C. If x ∈ A or x ∈ B, then x ∈ A ∪ B. Thus
x ∈ (A ∪B) ∪C. If x ∈ C, again x ∈ (A ∪B) ∪C. Therefore
(A ∪ B) ∪ C = A ∪ (B ∪ C).

47. We prove only A ∪∅ = A. Let x ∈ A ∪∅. Then x ∈ A or
x ∈ ∅. But x /∈ ∅, so x ∈ A.

Now suppose that x ∈ A. Then x ∈ A ∪∅. Therefore
A ∪∅ = A.

50. We prove only A ∪ U = U. By definition, any set is a subset
of the universal set, so A ∪ U ⊆ U.

If x ∈ U, then x ∈ A ∪U. Thus U ⊆ A ∪U. Therefore
A ∪ U = U.

53. We prove only ∅ = U. By definition, any set is a subset of the
universal set, so ∅ ⊆ U.

Now suppose that x ∈ U. Then x /∈ ∅ (by the definition
of “empty set”). Thus x ∈ ∅ and U ⊆ ∅. Therefore ∅ = U.

55. Let x ∈ A�B. Then x ∈ A∪B and x /∈ A∩B. Since x ∈ A∪B,
x ∈ Aorx ∈ B. Sincex /∈ A∩B,x /∈ Aorx /∈ B. Ifx ∈ A, then
x /∈ B. Thus x ∈ A−B; hence x ∈ (A−B)∪(B−A). If x ∈ B,
then x /∈ A. Thus x ∈ B−A and again x ∈ (A−B)∪ (B−A).
Therefore A� B ⊆ (A− B) ∪ (B − A).

Now suppose thatx ∈ (A−B)∪(B−A). Thenx ∈ A−B

or x ∈ B − A. If x ∈ A − B, then x ∈ A and x /∈ B. Thus
x ∈ A∪B and x /∈ A∩B. Therefore x ∈ (A∪B)− (A∩B) =
A� B. If x ∈ B−A, then x ∈ B and x /∈ A. Then x ∈ A ∪ B

and x /∈ A ∩ B. Again x ∈ (A ∪ B) − (A ∩ B) = A � B.
Therefore (A−B)∪ (B−A) ⊆ A�B. We have proved that
(A− B) ∪ (B − A) = A� B.

58. False. Let A = {1, 2, 3}, B = {2, 3, 4}, and C = {1, 2, 4}.
Then A � (B ∪ C) = {4} and (A � B) ∪ (A � C) =
{1, 4} ∪ {3, 4} = {1, 3, 4}.

61. True. Using Example 1.11, we find that

A ∩ (B � C) = A ∩ [(B ∪ C)− (B ∩ C)]

= [A ∩ (B ∪ C)]− [A ∩ (B ∩ C)].

125

Proofs

Using the distributive law and observing that (A ∩ B) ∩
(A ∩ C) = A ∩ (B ∩ C), we find that

(A∩B)� (A∩C) = [(A∩B)∪ (A∩C)]− [(A∩B)∩ (A∩C)]

= [A ∩ (B ∪ C)]− [A ∩ (B ∩ C)].

Therefore

A ∩ (B � C) = (A ∩ B)� (A ∩ C).

Section 2 Review
1. A proof by contradiction assumes that the hypotheses are true

and that the conclusion is false and then, using the hypotheses
and the negated conclusion as well as other axioms, defini-
tions, and previously derived theorems, derives a contradic-
tion.

2. Example 2.1

3. “Indirect proof” is another name for proof by contradiction.

4. To prove p→ q, proof by contrapositive proves the equivalent
statement ¬q→ ¬p.

5. Example 2.4

6. Instead of proving

(p1 ∨ p2 ∨ · · · ∨ pn)→ q,

in proof by cases, we prove

(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn → q).

7. Example 2.5

8. Proof of equivalence shows that two or more statements are
all true or all false.

9. Example 2.9

10. If the statements are p, q, and r, we can show that they are
equivalent by proving that p→ q, q→ r, and r → p are all
true.

11. A proof of ∃x P(x) is called an existence proof.

12. An existence proof of ∃x P(x) that exhibits an element a of the
domain of discourse that makes P(a) true is called a construc-
tive proof.

13. Example 2.10

14. A proof of ∃x P(x) that does not exhibit an element a of the
domain of discourse that makes P(a) true, but rather proves
∃x P(x) some other way (e.g., using proof by contradiction),
is called a nonconstructive proof.

15. Example 2.12

Section 2
1. Suppose, by way of contradiction, that x is rational. Then there

exist integers p and q such that x = p/q. Now x2 = p2/q2 is
rational, which is a contradiction.

4. Suppose, by way of contradiction, that n is even. Then there
exists k such that n = 2k. Now n2 = 2(2k2); thus n2 is even,
which is a contradiction.

7. Suppose, by way of contradiction, that 3
√

2 is rational. Then
there exist integers p and q such that 3

√
2 = p/q. We assume

that the fraction p/q is in lowest terms so that p and q are not
both even. Cubing 3

√
2 = p/q gives 2 = p3/q3, and multi-

plying by q3 gives 2q3 = p3. It follows that p3 is even. An
argument like that in Example 2.1 shows that p is even. There-
fore, there exists an integer k such that p = 2k. Substituting
p = 2k into 2q3 = p3 gives 2q3 = (2k)3 = 8k3. Canceling
2 gives q3 = 4k3. Therefore q3 is even and, thus, q is even.
Thus p and q are both even, which contradicts our assumption
that p and q are not both even. Therefore, 3

√
2 is irrational.

10. Since the integers increase without bound, there exists n ∈ Z
such that 1/(b − a) < n. Therefore 1/n < b − a. Choose
m ∈ Z as large as possible satisfying m/n ≤ a. Then, by the
choice of m, a < (m+ 1)/n. Also

m+ 1

n
= m

n
+ 1

n
< a+ (b− a) = b.

Therefore x = (m + 1)/n is a rational number satisfying
a < x < b.

13. True. Let a = b = 2. Then a and b are rational numbers and
ab = 4 is also rational. This is a constructive existence proof.

16. True. We give a proof by contradiction. Suppose that (X−Y)∩
(Y−X) is nonempty. Then there exists x ∈ (X−Y)∩(Y−X).
Thus x ∈ X − Y and x ∈ Y − X. Since x ∈ X − Y , x ∈ X

and x /∈ Y . Since x ∈ Y − X, x ∈ Y and x /∈ X. We now
have x ∈ X and x /∈ X, which is a contradiction. Therefore
(X− Y) ∩ (Y −X) = ∅.

19. Suppose, by way of contradiction, that no two bags contain
the same number of coins. Suppose that we arrange the bags
in increasing order of the number of coins that they contain.
Then the first bag contains at least one coin; the second bag
contains at least two coins; and so on. Thus the total number
of coins is at least

1+ 2+ 3+ · · · + 9 = 45.

This contradicts the hypothesis that there are 40 coins. Thus
if 40 coins are distributed among nine bags so that each bag
contains at least one coin, at least two bags contain the same
number of coins.

22. We use proof by contradiction and assume the negation of the
conclusion

¬∃i(si ≤ A).

By the generalized De Morgan’s laws for logic, this latter state-
ment is equivalent to

∀i(si > A).

Thus we assume

s1 > A

s2 > A

...

sn > A.

126

Proofs

Adding these inequalities yields

s1 + s2 + · · · + sn > nA.

Dividing by n gives

s1 + s2 + · · · + sn

n
> A,

which contradicts the hypothesis. Therefore, there exists i such
that si ≤ A.

25. Since si �= sj , either si �= A or sj �= A. By changing the nota-
tion, if necessary, we may assume that si �= A. Either si < A

or si > A. If si < A, the proof is complete; so assume that
si > A. We show that there exists k such that sk < A. Suppose,
by way of contradiction, that sm ≥ A for all m, that is,

s1 ≥ A

s2 ≥ A

...

sn ≥ A.

Adding these inequalities yields

s1 + s2 + · · · + si + · · · + sn > nA

since si > A. Dividing by n gives

s1 + s2 + · · · + sn

n
> A,

which is a contradiction. Therefore there exists k such that
sk < A.

27. Notice that if n ≥ 2 and m ≥ 1,

2m+ 5n2 ≥ 2m+ 5 · 22 > 20,

so the only possible solution is if n = 1. However, if n = 1,

2m+ 5n2 = 2m+ 5,

which is odd being the sum of an even integer and an odd inte-
ger. Thus this sum cannot equal 20. Therefore, 2m+5n2 = 20
has no solution in positive integers.

30. We claim that if n and n + 1 are consecutive integers, one is
odd and one is even. Suppose that n is odd. Then there exists k

such that n = 2k+ 1. Now n+ 1 = 2k+ 2 = 2(k+ 1), which
is even. If n is even, there exists k such that n = 2k. Now
n+1 = 2k+1, which is odd. Since one of n and n+1 is even
and the other is odd, their product is even (see Exercise 11,
Section 1).

32. We consider four cases: x ≥ 0, y ≥ 0; x < 0, y ≥ 0;
x ≥ 0, y < 0; and x < 0, y < 0.

First assume that x ≥ 0 and y ≥ 0. Then xy ≥ 0 and
|xy| = xy= |x||y|. Next assume that x < 0 and y ≥ 0. Then
xy ≤ 0 and |xy| = −xy = (−x)(y) = |x||y|. Next assume that
x ≥ 0 and y < 0. Then xy ≤ 0 and |xy| = −xy = (x)(−y) =
|x||y|. Finally assume that x < 0 and y < 0. Then xy > 0 and
|xy| = xy = (−x)(−y) = |x||y|.

34. We consider three cases: x > 0, x = 0, and x < 0.

If x > 0, |x| = x and sgn(x) = 1. Therefore,

|x| = x = 1 · x = sgn(x)x.

If x = 0, |x| = 0 and sgn(x) = 0. Therefore,

|x| = 0 = 0 · 0 = sgn(x)x.

If x < 0, |x| = −x and sgn(x) = −1. Therefore,

|x| = −x = −1 · x = sgn(x)x.

In every case, we have |x| = sgn(x)x.

37. We consider two cases: x ≥ y and x < y.
If x ≥ y,

max{x, y} = x and min{x, y} = y.

Therefore,

max{x, y} +min{x, y} = x+ y.

If x < y,

max{x, y} = y and min{x, y} = x.

Therefore,

max{x, y} +min{x, y} = y + x = x+ y.

In either case,

max{x, y} +min{x, y} = x+ y.

41. We first prove that if n is even, then n + 2 is even. Assume
that n is even. Then there exists k such that n = 2k. Now
n+ 2 = 2k + 2 = 2(k + 1) is even.

We next prove that if n + 2 is even, then n is even.
Assume that n + 2 is even. Then there exists k such that
n+ 2 = 2k. Now n = 2k − 2 = 2(k − 1) is even.

43. We first prove that if A ⊆ B, then B ⊆ A. Assume that A ⊆ B.
Let x ∈ B. Then x /∈ B. If x ∈ A, then x ∈ B, which is not the
case. Therefore x /∈ A. Therefore x ∈ A. Thus B ⊆ A.

We next prove that if B ⊆ A, then A ⊆ B. Assume that
B ⊆ A. From the first part of the proof, we can deduce A ⊆ B.
Since A = A and B = B, A ⊆ B.

46. We first show that if (a, b) = (c, d), then a = c and b = d.
Assume that (a, b) = (c, d). Then

{{a}, {a, b}} = {{c}, {c, d}}. (∗)
First suppose that a �= b. Then the set on the left-hand side
of equation (*) contains two distinct sets: {a} and {a, b}. Thus
the set on the right-hand side of equation (*) also contains
two distinct sets: {c} and {c, d}. Therefore c �= d. (If c = d,
{c, d} = {c, c} = {c}.) Since a �= b and c �= d, we must have

{a} = {c} and {a, b} = {c, d}.
It follows that a = c and b = d.

Now suppose that a = b. Then

{{a}, {a, b}} = {{a}, {a, a}} = {{a}, {a}} = {{a}}.
Thus the set on the left-hand side of equation (*) contains one
set. Therefore the set on the right-hand side of equation (*) also
contains one set. We must have c = d; otherwise the set on

127

Proofs

the right-hand side of equation (*) would contain two distinct
sets. Thus

{{c}, {c, d}} = {{c}}.
Equation (*) now becomes

{{a}} = {{c}}.
It follows that a = c and, hence, b = d. We have shown that
if (a, b) = (c, d), then a = c and b = d.

If a = c and b = d, then

(a, b) = {{a}, {a, b}} = {{c}, {c, d}} = (c, d).

The proof is complete.

47. [(a) → (b)] Assume that n is odd. Then there exists k′ such
that n = 2k′ + 1. Since n = 2(k′ + 1)− 1, taking k = k′ + 1,
we have n = 2k − 1.

[(b) → (c)] Assume that there exists k such that
n = 2k − 1. Then

n2+1 = (2k−1)2+1 = (4k2−4k+1)+1 = 2(2k2−2k+1).

Therefore n2 + 1 is even.
[(c) → (a)] We prove the contrapositive: If n is even,

then n2 + 1 is odd.
Suppose that n is even. Then there exists k such that

n = 2k. Now

n2 + 1 = (2k)2 + 1 = 4k2 + 1 = 2(2k2)+ 1.

Therefore n2 + 1 is odd.

Section 3 Review
1. p ∨ q, ¬p ∨ r/∴ q ∨ r

2. A clause consists of terms separated by or’s, where each term
is a variable or the negation of a variable.

3. A proof by resolution proceeds by repeatedly applying the rule
in Exercise 1 to pairs of statements to derive new statements
until the conclusion is derived.

Section 3
1.

p q r p ∨ q ¬p ∨ r q ∨ r

T T T T T T
T T F T F T
T F T T T T
T F F T F F
F T T T T T
F T F T T T
F F T F T T
F F F F T F

2. 1. ¬p ∨ q ∨ r

2. ¬q

3. ¬r

4. ¬p ∨ r From 1 and 2

5. ¬p From 3 and 4

5. First we note that p→ q is logically equivalent to¬p∨q. We
now argue as follows:

1. ¬p ∨ q

2. p ∨ q

3. q From 1 and 2

7. (For Exercise 2)

1. ¬p ∨ q ∨ r Hypothesis

2. ¬q Hypothesis

3. ¬r Hypothesis

4. p Negation of conclusion

5. ¬p ∨ r From 1 and 2

6. ¬p From 3 and 5

Now 4 and 6 combine to give a contradiction.

Section 4 Review
1. Suppose that we have propositional function S(n) whose

domain of discourse is the set of positive integers. Suppose
that S(1) is true and, for all n ≥ 1, if S(n) is true, then S(n+1)

is true. Then S(n) is true for every positive integer n.

2. We first verify that S(1) is true (Basis Step). We then assume
that S(n) is true and prove that S(n+1) is true (Inductive Step).

3.
n(n+ 1)

2
4. The geometric sum is the sum

a+ ar1 + ar2 + · · · + arn.

It is equal to

a(rn+1 − 1)

r − 1
.

Section 4
1. Basis Step 1 = 12

Inductive Step Assume true for n.

1+ · · · + (2n− 1)+ (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2

4. Basis Step 12 = (1 · 2 · 3)/6

Inductive Step Assume true for n.

12 + · · · + n2 + (n+ 1)2 = n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

= (n+ 1)(n+ 2)(2n+ 3)

6
7. Basis Step 1/(1 · 3) = 1/3

Inductive Step Assume true for n.

1

1 · 3
+ · · · + 1

(2n− 1)(2n+ 1)
+ 1

(2n+ 1)(2n+ 3)

= n

2n+ 1
+ 1

(2n+ 1)(2n+ 3)
= n+ 1

2n+ 3

128

Proofs

10. Basis Step cos x = cos[(x/2) · 2] sin(x/2)

sin(x/2)

Inductive Step Assume true for n. Then

cos x+ · · · + cos nx+ cos(n+ 1)x

= cos[(x/2)(n+ 1)] sin(nx/2)

sin(x/2)
+ cos(n+ 1)x. (∗)

We must show that the right-hand side of (∗) is equal to

cos[(x/2)(n+ 2)] sin[(n+ 1)x/2]

sin(x/2)
.

This is the same as showing that [after multiplying by the term
sin(x/2)]

cos
[
x

2
(n+ 1)

]
sin

nx

2
+ cos(n+ 1)x sin

x

2

= cos
[
x

2
(n+ 2)

]
sin

[
(n+ 1)x

2

]
.

If we let α = (x/2)(n+ 1) and β = x/2, we must show that

cos α sin(α− β)+ cos 2α sin β = cos(α+ β) sin α.

This last equation can be verified by reducing each side to
terms involving α and β.

12. Basis Step 1/2 ≤ 1/2

Inductive Step Assume true for n.

1 · 3 · 5 · · · (2n− 1)(2n+ 1)

2 · 4 · 6 · · · (2n)(2n+ 2)
≥ 1

2n
· 2n+ 1

2n+ 2

= 2n+ 1

2n
· 1

2n+ 2
≥ 1

2n+ 2

15. Basis Step (n = 4) 24 = 16 ≥ 16 = 42

Inductive Step Assume true for n.

(n+ 1)2 = n2 + 2n+ 1 ≤ 2n + 2n+ 1

≤ 2n + 2n by Exercise 14

= 2n+1

18. r0 + r1 + · · · rn = 1− rn+1

1− r
<

1

1− r

21. Basis Step 71 − 1 = 6 is divisible by 6.

Inductive Step Suppose that 6 divides 7n − 1. Now

7n+1 − 1 = 7 · 7n − 1 = 7n − 1+ 6 · 7n.

Since 6 divides both 7n − 1 and 6 · 7n, it divides their sum,
which is 7n+1 − 1.

24. Basis Step 31 + 71 − 2 = 8 is divisible by 8.

Inductive Step Suppose that 8 divides 3n + 7n − 2. Now

3n+1 + 7n+1 − 2 = 3(3n + 7n − 2)+ 4(7n + 1).

By the inductive assumption, 8 divides 3n + 7n − 2. We can
use mathematical induction to show that 2 divides 7n + 1 for
all n ≥ 1 (the argument is similar to that given in the hint for
Exercise 21). It then follows that 8 divides 4(7n + 1). Since

8 divides both 3(3n + 7n − 2) and 4(7n + 1), it divides their
sum, which is 3n+1 + 7n+1 − 2.

27. We prove the assertion using induction on n. The Basis Step
is n = 1. In this case, there is one subset of {1} with an even
number of elements, namely, ∅. Since 2n−1 = 20 = 1, the
assertion is true when n = 1.

Assume that the number of subsets of {1, . . . , n} con-
taining an even number of elements is 2n−1. We must prove
that the number of subsets of {1, . . . , n+1} containing an even
number of elements is 2n.

Let E1, . . . , E2n−1 denote the subsets of {1, 2, . . . , n}
containing an even number of elements. Since there are 2n

subsets of {1, 2, . . . , n} altogether and 2n−1 contain an even
number of elements, there are 2n − 2n−1 = 2n−1 subsets of
{1, . . . , n} that contain an odd number of elements. Denote
these as O1, . . . , O2n−1 . Now E1, . . . , E2n−1 are the subsets of
{1, . . . , n+ 1} containing an even number of elements that do
not contain n+ 1, and

O1 ∪ {n+ 1}, . . . , O2n−1 ∪ {n+ 1}

are the subsets of {1, . . . , n+1} containing an even number of
elements that contain n+ 1. Thus there are 2n−1 + 2n−1 = 2n

subsets of {1, . . . , n+ 1} that contain an even number of ele-
ments. The Inductive Step is complete.

29. At the Inductive Step when the (n+1)st line is added, because
of the assumptions, the line will intersect each of the other n

lines. Now, imagine traveling along the (n + 1)st line. Each
time we pass through one of the original regions, it is divided
into two regions.

32.

35. We denote the square in row i, column j by (i, j). Then, by
symmetry, we need only consider 7 × 7 boards with squares
(i, j) removed where i ≤ j ≤ 4. The solution when square
(1, 1) is removed is shown in the following figure.

2� 3

5� 5
3� 2

Not all trominoes of the tiling are shown. By Exercise 34, the
3 × 2 subboards have tilings. By Exercise 32, the 5 × 5 sub-
board with a corner square removed has a tiling. Essentially
the same figure gives tilings if square (1, 2) or (2, 2) is deleted.

Asimilar argument gives tilings for the remaining cases.

38. Basis Step (n = 1) The board is a tromino.

Inductive Step Assume that any 2n×2n deficient board can

129

Proofs

be tiled with trominoes. We must prove that any 2n+1 × 2n+1

deficient board can be tiled with trominoes.
Given a 2n+1 × 2n+1 deficient board, we divide the

board into four 2n × 2n subboards as shown in Figure 4.6. By
the inductive assumption, we can tile the subboard contain-
ing the missing square. The three remaining subboards form a
2n× 2n L-shape, which may be tiled using Exercise 37. Thus,
the 2n+1 × 2n+1 deficient board is tiled. The inductive step is
complete.

39. Number the squares as shown:

1 2 3 1

2 3 1 2

3 1 2 3

1 2 3 1

Notice that each tromino covers exactly one 1, one 2, and one
3. Therefore, if there is a tiling, five 2’s are covered. Since
five trominoes are required, the missing square cannot be a 2.
Similarly the missing square cannot be a 3.

The same argument applied to

1 3 2 1

2 1 3 2

3 2 1 3

1 3 2 1

shows that the only possibility for the missing square is a cor-
ner. Such a board can be tiled:

42. We prove that pow = ai−1 is a loop invariant for the while
loop. Just before the while loop begins executing, i = 1 and
pow = 1, so pow = a1−1. We have proved the Basis Step.

Assume that pow = ai−1. If i ≤ n (so that the loop body
executes again), pow becomes

pow ∗ a = ai−1 ∗ a = ai,

and i becomes i+1. We have proved the Inductive Step. There-

fore pow = ai−1 is an invariant for the while loop.
The while loop terminates when i = n + 1. Because

pow = ai−1 is an invariant, at this point pow = an.

46. (a) S1 = 0 �= 2;

2+ · · · + 2n+ 2(n+ 1) = Sn + 2n+ 2

= (n+ 2)(n− 1)+ 2n+ 2

= (n+ 3)n = Sn+1.

(b) We must have S′n = S′n−1 + 2n; thus

S′n = S′n−1 + 2n

= [S′n−2 + 2(n− 1)]+ 2n

= S′n−2 + 2n+ 2(n− 1)

= S′n−3 + 2n+ 2(n− 1)+ 2(n− 2)

...

= S′1 + 2[n+ (n− 1)+ · · · + 2]

= C′ + 2

[
n(n+ 1)

2
− 1

]

= n2 + n+ C.

50. If n = 2, each person throws a pie at the other and there are
no survivors.

53. The statement is false. In

1 2 3 4 5

1 and 5 are farthest apart, but neither is a survivor.

55. Let x and y be points in X ∩ Y . Then x is in X and y is in
X. Since X is convex, the line segment from x to y is in X.
Similarly, the line segment from x to y is in Y . Therefore, the
line segment from x to y is in X ∩ Y . Thus, X ∩ Y is convex.

58. Let x1, . . . , xn denote the n points, and let Xi be the circle of
radius 1 centered at xi. Apply Helly’s Theorem to X1, . . . , Xn.

60. 1

63. Basis Step (i = 1) Since 2 is eliminated, 1 survives. Thus
J(2) = 1.

Inductive Step Assume true for i. Now suppose that 2i+1

persons are arranged in a circle. We begin by eliminating
2, 4, 6, . . . , 2i+1. We then have 2i persons arranged in a circle,
and, beginning with 1, we eliminate the second person, then
the fourth person, and so on. By the inductive assumption, 1
survives. Therefore,

J(2i+1) = J(2i) = 1.

66. The greatest power of 2 less than or equal to 100,000 is 216.
Thus, in the notation of Exercise 64, n = 100,000, i = 16, and

j = n− 2i = 100,000− 216 = 100,000− 65,536 = 34,464.

By Exercise 64,

J(100,000) = J(n) = 2j + 1 = 2 · 34,464+ 1 = 68,929.

130

Proofs

67.

b1 + b2 + · · · + bn = (a2 − a1)+ (a3 − a2)

+ · · · + (an+1 − an)

= −a1 + an+1 = an+1 − a1

since a2, . . . , an cancel.

70. Let

an = 1

n
.

Then

�an = an+1 − an = 1

n+ 1
− 1

n
= −1

n(n+ 1)
.

Let bn = �an. By Exercise 67,

−1

1 · 2
+ · · · + −1

n(n+ 1)
= �a1 + · · · +�an

= b1 + · · · + bn

= an+1 − a1

= 1

n+ 1
− 1 = −n

n+ 1
.

Multiplying by −1 yields the desired formula.

Section 5 Review
1. Suppose that we have a propositional function S(n) whose

domain of discourse is the set of integers greater than or equal
to n0. Suppose that S(n0) is true; and for all n > n0, if S(k) is
true for all k, n0 ≤ k < n, then S(n) is true. Then S(n) is true
for every integer n ≥ n0.

2. Every nonempty set of nonnegative integers has a least ele-
ment.

3. If d and n are integers, d > 0, there exist unique integers q

(quotient) and r (remainder) satisfying n = dq+r, 0 ≤ r < d.

Section 5
1. Basis Steps (n = 6; 7) We can make six cents postage by

using three 2-cent stamps. We can make seven cents postage
by using one 7-cent stamp.

Inductive Step We assume that n ≥ 8 and postage of k

cents or more can be achieved by using only 2-cent and 7-cent
stamps for 6 ≤ k < n. By the inductive assumption, we can
make postage of n − 2 cents. We may add a 2-cent stamp to
make n cents postage.

3. Basis Step (n = 4) We can make four cents postage by using
two 2-cent stamps.

Inductive Step We assume that we can make n cents
postage, and we prove that we can make n+ 1 cents postage.

If among the stamps that make n cents postage there is
at least one 5-cent stamp, we replace one 5-cent stamp by three
2-cent stamps to make n+ 1 cents postage. If there are no 5-
cent stamps among the stamps that make n cents postage, there
are at least two 2-cent stamps (because n ≥ 4). We replace two
2-cent stamps by one 5-cent stamp to make n+1 cents postage.

6. In the Inductive Step, we must have k = �n/2� ≥ 3. Since this
inequality fails for n = 4, 5, the Basis Steps are n = 3, 4, 5.

9. c2 = 4, c3 = 9, c4 = 20, c5 = 29

11. c2 = 2, c3 = 3, c4 = 12, c5 = 13

14. Notice that

c0 = 0

c1 = c0 + 3 = 3

c2 = c1 + 3 = 6

c3 = c1 + 3 = 6

c4 = c2 + 3 = 9.

Thus the assertion cn ≤ 2n fails for n = 4.
In the Inductive Step, we must have k = �n/2� ≥ 3.

Since this inequality fails for n = 4, 5, the Basis Steps are
n = 3, 4, 5. In the fallacious proof, only the case n = 3 was
proved in the Basis Steps. In fact, since the statement is false
for n = 4, the Basis Steps n = 3, 4, 5 cannot be proved.

16. q = 5, r = 2

19. q = −1, r = 2

22.
5

6
= 1

2
+ 1

3
= 1

2
+ 1

4
+ 1

12
26. We may assume that p/q > 1. Choose the largest integer n

satisfying

1

1
+ 1

2
+ · · · + 1

n
≤ p

q
.

(The previous Problem-Solving Corner shows that the sum

1

1
+ 1

2
+ · · · + 1

n

is unbounded; so such an n exists.) If we obtain an equality,
p/q is in Egyptian form, so suppose that

1

1
+ 1

2
+ · · · + 1

n
<

p

q
. (∗)

Set

D = p

q
−
(

1

1
+ · · · + 1

n

)
.

Clearly, D > 0. Since n is the largest integer satisfying (∗),

1

1
+ 1

2
+ · · · + 1

n
+ 1

n+ 1
≥ p

q
.

Thus

D = p

q
−
(

1

1
+ · · · + 1

n

)

≤
(

1

1
+ · · · + 1

n
+ 1

n+ 1

)
−
(

1

1
+ · · · + 1

n

)

= 1

n+ 1
.

131

Proofs

In particular, D < 1. By Exercise 24, D may be written in
Egyptian form:

D = 1

n1
+ · · · + 1

nk

,

where the ni are distinct. Since

1

ni

≤ D ≤ 1

1+ n
, for i = 1, . . . , k,

n < n+ 1 ≤ ni for i = 1, . . . , k. It follows that

1, 2, . . . , n, n1, . . . , nk

are distinct. Thus

p

q
= D+ 1

1
+ · · · + 1

n
= 1

n1
+ · · · + 1

nk

+ 1

1
+ · · · + 1

n

is represented in Egyptian form.

27. In this solution, the induction is over the set X of odd inte-
gers n > 5, where 3 divides n2 − 1. Such an induction can
be justified by considering the first statement to be about the
smallest integer in X, the second statement to be about the
second smallest integer in X, and so on.

Basis Steps (n = 7; 11) Exercise 35, Section 4, gives a
solution if n = 7.

If n = 11, enclose the missing square in a corner 7× 7
subboard (see the following figure). Tile this subboard using
the result of Exercise 35, Section 4. Tile the two 6×4 subboards
using the result of Exercise 34, Section 4. Tile the 5× 5 sub-
board with a corner square missing using the result of Exercise
32, Section 4. Thus the 11× 11 board can be tiled.

7 � 7
6 � 4

6 � 4
5 � 5

11

11

Inductive Step Suppose that n > 11 and assume that if
k < n, k is odd, k > 5, and 3 divides k2 − 1, then a k × k

deficient board can be tiled with trominoes.
Consider an n× n deficient board. Enclose the missing

square in a corner (n− 6)× (n− 6) subboard. By the induc-
tive assumption, this board can be tiled with trominoes. Tile
the two 6× (n− 7) subboards using the result of Exercise 34,
Section 4. Tile the deficient 7 × 7 subboard using the result
of Exercise 35, Section 4. The n × n board is tiled, and the
inductive step is complete.

n

(n – 6)�(n – 6)
6 � (n – 7)

6 � (n – 7)
7 � 7

n

31. Let X be a nonempty set of nonnegative integers. We must
prove that X has a least element. Using mathematical induc-
tion, we prove that for all n ≥ 0, if X contains an element less
than or equal to n, then X has a least element. Notice that this
proves that X has a least element. (Since X is nonempty, X

contains an integer n. Now X contains an element less than or
equal to n; so it follow that X has a least element.)

Basis Step (n = 0) If X contains an element less than or
equal to 0, then X contains 0 since X consists of nonnegative
integers. In this case, 0 is the least element in X.

Inductive Step Now we assume that if X contains an ele-
ment less than or equal to n, then X has a least element. We
must prove that if X contains an element less than or equal to
n+ 1, then X has a least element.

Suppose that X contains an element less than or equal
to n + 1. We consider two cases: X contains an element less
than or equal to n, and X does not contain an element less than
or equal to n. If X contains an element less than or equal to
n, by the inductive assumption, X has a least element. If X

does not contain an element less than or equal to n, since X

contains an element less than or equal to n+1, X must contain
n + 1, which is the least element in X. The inductive step is
complete.

Chapter Self-Test
1. Axioms are statements that are assumed to be true. Definitions

are used to create new concepts in terms of existing ones.

2. Suppose that m and m − n are odd. Then there exist integers
k1 and k2 such that m = 2k1 + 1 and m− n = 2k2 + 1. Now

n = m− (m− n) = (2k1 + 1)− (2k2 + 1) = 2(k1 − k2).

Therefore n is even.

3. Since x and y are rational numbers, there exist integers
m1, n1, m2, n2 such that x = m1/n1 and y = m2/n2. Since
y �= 0, m2 �= 0. Now

x

y
= m1/n1

m2/n2
= m1n2

n1m2
.

Since x/y is the quotient of integers, it is rational.

132

Proofs

4. We first prove that X ⊆ Z. Let x ∈ X. Since X ⊆ Y , x ∈ Y .
Since Y ⊂ Z, x ∈ Z. Therefore X ⊆ Z.

We now show that X is a proper subset of Z. Since
Y ⊂ Z, there exists z ∈ Z such that z /∈ Y . Now z /∈ X,
because if it were, we would have z ∈ Y . Therefore X ⊂ Z.

5. In a direct proof, the negated conclusion is not assumed,
whereas in a proof by contradiction, the negated conclusion
is assumed.

6. Suppose that if four teams play seven games, no pair of teams
plays at least two times; or, equivalently, if four teams play
seven games, each pair of teams plays at most one time. If the
teams are A, B, C, and D and each pair of teams plays at most
one time, the most games that can be played are:

A and B; A and C; A and D; B and C; B and D;
C and D.

Thus at most six games can be played. This is a contradiction.
Therefore, if four teams play seven games, some pair of teams
plays at least two times.

7. We consider two cases: a ≤ b and a > b. In each of these two
cases, we consider the two cases: b ≤ c and b > c.

First suppose that a ≤ b. If b ≤ c, then

min{min{a, b}, c} = min{a, c} = a = min{a, b}
= min{a, min{b, c}}.

If b > c, then

min{min{a, b}, c} = min{a, c} = min{a, min{b, c}}.
In either case,

min{min{a, b}, c} = min{a, min{b, c}}.
Now suppose that a > b. If b ≤ c, then

min{min{a, b}, c} = min{b, c} = b = min{a, b}
= min{a, min{b, c}}.

If b > c, then

min{min{a, b}, c} = min{b, c} = c = min{a, c}
= min{a, min{b, c}}.

In either case,

min{min{a, b}, c} = min{a, min{b, c}}.
Therefore, for all a, b, c,

min{min{a, b}, c} = min{a, min{b, c}}.
8. [(a)→ (b)] We prove the contrapositive: If A ∩ B �= ∅, then

A is not a subset of B. Since A ∩ B �= ∅, there exists x with
x ∈ A and x ∈ B. Thus there exists x with x ∈ A and x /∈ B.
Therefore A is not a subset of B.

[(b) → (c)] If x ∈ B, then x ∈ A ∪ B. Therefore
B ⊆ A ∪ B.

Let x ∈ A ∪ B. We must show that x ∈ B. Now x ∈ A

or x ∈ B. If x ∈ B, this part of the proof is complete; so sup-
pose that x ∈ A. Since A ∩ B = ∅, x /∈ B. Thus x ∈ B and
A ∪ B ⊆ B. Therefore A ∪ B = B.

[(c)→ (a)] Let x ∈ A. Then x ∈ A∪B. Since A∪B =
B, x ∈ B. Therefore A ⊆ B.

9. (p ∨ q)→ r ≡ ¬(p ∨ q) ∨ r

≡ ¬p¬q ∨ r

≡ (¬p ∨ r)(¬q ∨ r)

10. (p ∨ ¬q)→ ¬rs ≡ ¬(p ∨ ¬q) ∨ ¬rs

≡ ¬pq ∨ ¬rs

≡ (¬p ∨ ¬r)(¬p ∨ s)(q ∨ ¬r)(q ∨ s)

11. 1. ¬p ∨ q

2. ¬q ∨ ¬r

3. p ∨ ¬r

4. ¬p ∨ ¬r From 1 and 2

5. ¬r From 3 and 4

12. 1. ¬p ∨ q

2. ¬q ∨ ¬r

3. p ∨ ¬r

4. r Negation of conclusion

5. ¬p ∨ ¬r From 1 and 2

6. ¬r From 3 and 5
Now 4 and 6 give a contradiction.

In Exercises 13–16, only the Inductive Step is given.

13. 2 + 4 + · · · + 2n + 2(n + 1) = n(n + 1) + 2(n+ 1) =
(n + 1)(n + 2)

14.
22 + 42 + · · · + (2n)2 + [2(n+ 1)]2 = 2n(n+ 1)(2n+ 1)

3

+ [2(n+ 1)]2 = 2(n+ 1)(n+ 2)[2(n+ 1)+ 1]

3

15. 1

2!
+ 2

3!
+ · · · + n

(n+ 1)!
+ n+ 1

(n+ 2)!

= 1− 1

(n+ 1)!
+ n+ 1

(n+ 2)!
= 1− 1

(n+ 2)!

16. 2n+2 = 2 · 2n+1 < 2[1+ (n+ 1)2n] = 2+ (n+ 1)2n+1

= 1+ [1+ (n+ 1)2n+1]

< 1+ [2n+1 + (n+ 1)2n+1]

= 1+ (n+ 2)2n+1

17. q = 9, r = 2

18. c2 = 2, c3 = 3, c4 = 8, c5 = 9.

19. Basis Step (n = 1) c1 = 0 ≤ 0 = 1 lg 1

Inductive Step

cn = 2c�n/2� + n

≤ 2�n/2� lg�n/2� + n

≤ 2(n/2) lg(n/2)+ n

= n(lg n− 1)+ n = n lg n

133

Proofs

20. Let X be a nonempty set of nonnegative integers that has an
upper bound. We must show that X contains a largest element.

Let Y be the set of integer upper bounds for X. By
assumption, Y is nonempty. Since X consists of nonnegative
integers, Y also consists of nonnegative integers. By the Well-
Ordering Property, Y has a least element, say n. Since Y con-

sists of upper bounds for X, k ≤ n for every k in X. Suppose,
by way of contradiction, that n is not in X. Then k ≤ n− 1 for
every k in X. Thus, n− 1 is an upper bound for X, which is a
contradiction. Therefore, n is in X. Since k ≤ n for every k in
X, n is the largest element in X.

134

Functions,
Sequences,
and Relations

1 Functions
Problem-Solving Corner:
Functions

2 Sequences and Strings
3 Relations
4 Equivalence Relations

Problem-Solving Corner:
Equivalence Relations

5 Matrices of Relations
6 Relational Databases

Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

A grey Hulk? Finally a color I can relate to!

FROM THE INCREDIBLE HULK

All of mathematics, as well as subjects that rely on mathematics, such as computer
science and engineering, make use of functions, sequences, and relations.

A function assigns to each member of a set X exactly one member of a set Y .
Functions are used extensively in discrete mathematics; for example, functions are used
to analyze the time needed to execute algorithms.

A sequence is a special kind of function. A list of the letters as they appear in a
word is an example of a sequence. Unlike a set, a sequence takes order into account.
(Order is obviously important since, for example, form and from are different words.)

Relations generalize the notion of functions. A relation is a set of ordered pairs.
The presence of the ordered pair (a, b) in a relation is interpreted as indicating a relation-
ship from a to b. The relational database model that helps users access information in a
database (a collection of records manipulated by a computer) is based on the concept of
relation.

1 ➜ Functions

If we travel for a certain amount of time at a constant rate, we know that

distance = rate× time.

So, if we travel 55 miles per hour for t hours,

D = 55t, (1.1)

where t is the time and D is the distance traveled.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

135

Functions, Sequences, and Relations

Equation (1.1) defines a function. A function assigns to each member of a set X

exactly one member of a set Y . (The sets X and Y may or may not be the same.) The
function defined by (1.1) assigns to each nonnegative real number t the value 55t. For
example, the number t = 1 is assigned the value 55; the number t = 3.45 is assigned the
value 189.75; and so on. We can represent these assignments as ordered pairs: (1, 55),
(3.45, 189.75). Formally, we define a function to be a particular kind of set of ordered
pairs.

Definition 1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product X×Y

having the property that for each x ∈ X, there is exactly one y ∈ Y with (x, y) ∈ f . We
sometimes denote a function f from X to Y as f : X→ Y .

The set X is called the domain of f and the set Y is called the codomain of f . The
set

{y | (x, y) ∈ f }

(which is a subset of the codomain Y) is called the range of f .

Example 1.2 The domain and codomain of the function defined by (1.1) are both equal to the set
of all nonnegative real numbers. (We assume that time is restricted to nonnegative real
numbers.) The range is also equal to the set of all nonnegative real numbers.

1
2
3

a

b

c
f

X Y

Figure 1.1 The arrow diagram
of the function of Example 1.3.
There is exactly one arrow from
each element in X.

Example 1.3 The set

f = {(1, a), (2, b), (3, a)}

is a function from X = {1, 2, 3} to Y = {a, b, c}. Each element of X is assigned a unique
value in Y : 1 is assigned the unique value a; 2 is assigned the unique value b; and 3 is
assigned the unique value a. We can depict the situation as shown in Figure 1.1, where an
arrow from j to x means that we assign the letter x to the integer j. We call a picture such
as Figure 1.1 an arrow diagram. For an arrow diagram to be a function, Definition 1.1
requires that there is exactly one arrow from each element in the domain. Notice that
Figure 1.1 has this property.

Definition 1.1 allows us to reuse elements in Y . For the function f , the element a

in Y is used twice. Further, Definition 1.1 does not require us to use all the elements in Y .
No element in X is assigned to the element c in Y . The domain of f is X, the codomain
of f is Y , and the range of f is {a, b}.

Example 1.4 The set

{(1, a), (2, a), (3, b)} (1.2)

is not a function from X = {1, 2, 3, 4} to Y = {a, b, c} because the element 4 in X is not
assigned to an element in Y . It is also apparent from the arrow diagram (see Figure 1.2)
that this set is not a function because there is no arrow from 4. The set (1.2) is a function
from X′ = {1, 2, 3} to Y = {a, b, c}.

1
2
3
4

a

b

c

X Y

Figure 1.2 The arrow diagram
of the set in Example 1.4, which
is not a function because there is
no arrow from 4.

136

Functions, Sequences, and Relations

Example 1.5 The set

{(1, a), (2, b), (3, c), (1, b)}
is not a function from X = {1, 2, 3} to Y = {a, b, c} because 1 is not assigned a unique
element in Y (1 is assigned the values a and b). It is also apparent from the arrow diagram
(see Figure 1.3) that this set is not a function because there are two arrows from 1.

1
2
3

a

b

c

X Y

Figure 1.3 The arrow diagram of
the set in Example 1.5, which is not
a function because there are two
arrows from 1.

Given a function f from X to Y , according to Definition 1.1, for each element x

in the domain X, there is exactly one y in the codomain Y with (x, y) ∈ f . This unique
value y is denoted f(x). In other words, f(x) = y is another way to write (x, y) ∈ f .

Example 1.6 For the function f of Example 1.3, we may write

f(1) = a, f(2) = b, f(3) = a.

The next example shows how we sometimes use the f(x) notation to define a
function.

Example 1.7 Let f be the function defined by the rule

f(x) = x2.

For example,

f(2) = 4, f(−3.5) = 12.25, f(0) = 0.

Although we frequently find functions defined in this way, the definition is incomplete
since the domain and codomain are not specified. If we are told that the domain is the
set of all real numbers and the codomain is the set of all nonnegative real numbers, in
ordered-pair notation, we would have

f = {(x, x2) | x is a real number}.
The range of f is the set of all nonnegative real numbers.

Example 1.8 Most calculators have a 1/x key. If you enter a number and hit the 1/x key, the reciprocal
of the number entered (or an approximation to it) is displayed. This function can be
defined by the rule

R(x) = 1

x
.

The domain is the set of all numbers that can be entered into the calculator and whose
reciprocals can be computed and displayed by the calculator. The range is the set of all
the reciprocals that can be computed and displayed. We could define the codomain also
to be the set of all the reciprocals that can be computed and displayed. Notice that by
the nature of the calculator, the domain and range are finite sets.

Another way to visualize a function is to draw its graph. The graph of a function
f whose domain and codomain are subsets of the real numbers is obtained by plotting
points in the plane that correspond to the elements in f . The domain is contained in the
horizontal axis and the codomain is contained in the vertical axis.

137

Functions, Sequences, and Relations

Example 1.9 The graph of the function f(x) = x2 is shown in Figure 1.4.

f(x)

1

4

21�1�2
x

Figure 1.4 The graph of
f(x) = x2.

(0, 0) (3, 0)

(1, 1)

(2, 2)

(1, 3)

x

y

Figure 1.5 A set that is not a
function. The vertical line x = 1
intersects two points in the set.

We note that a set S of points in the plane defines a function precisely when each
vertical line intersects at most one point of S. If some vertical line contains two or more
points of some set, the domain point does not assign a unique codomain point and the
set does not define a function (see Figure 1.5).

Functions involving the modulus operator play an important role in mathematics
and computer science.

Definition 1.10 If x is an integer and y is a positive integer, we define x mod y to be the remainder when
x is divided by y.

Example 1.11 We have

6 mod 2 = 0, 5 mod 1 = 0, 8 mod 12 = 8, 199673 mod 2 = 1.

Example 1.12 What day of the week will it be 365 days from Wednesday?
Seven days after Wednesday, it is Wednesday again; 14 days after Wednesday, it is

Wednesday again; and in general, if n is a positive integer, 7n days after Wednesday, it is
Wednesday again. Thus we need to subtract as many 7’s as possible from 365 and see how
many days are left, which is the same as computing 365 mod 7. Since 365 mod 7 = 1,
365 days from Wednesday, it will be one day later, namely Thursday. This explains why,
except for leap year, when an extra day is added to February, the identical month and
date in consecutive years move forward one day of the week.

Example 1.13 International Standard Book Numbers

As of January 2007, an International Standard Book Number (ISBN) is a code of
13 characters separated by dashes, such as 978-1-59448-950-1. (Before January 2007,
an ISBN was a code of 10 characters.) An ISBN consists of five parts: currently the
first part is 978, a group code, a publisher code, a code that uniquely identifies the book
among those published by the particular publisher, and a check character. The check
character is used to validate an ISBN.

For the ISBN 978-1-59448-950-1, the group code is 1, which identifies the book as
one from an English-speaking country. The publisher code 59448 identifies the book as

138

Functions, Sequences, and Relations

one published by Riverhead Books, Penguin Group. The code 950 uniquely identifies the
book among those published by Riverhead Books, Penguin Group (Hosseini: A Thousand
Splendid Suns, in this case). Let s equal the sum of the first digit plus three times the
second digit plus the third digit plus three times the fourth digit, . . . , plus three times
the twelfth digit. For example, the sum s for the ISBN 978-1-59448-950-1 is

s = 9+ 3 · 7+ 8+ 3 · 1+ 5+ 3 · 9+ 4+ 3 · 4+ 8+ 3 · 9+ 5+ 3 · 0 = 129.

If s mod 10 = 0, the check character is 0; otherwise, the check character is 10− (s mod
10). Since 129 mod 10 = 9, the check character for the ISBN 978-1-59448-950-1 is
10− 9 = 1.

Example 1.14 Hash Functions

Suppose that we have cells in a computer memory indexed from 0 to 10 (see Figure 1.6).
We wish to store and retrieve arbitrary nonnegative integers in these cells. One approach
is to use a hash function. A hash function takes a data item to be stored or retrieved and
computes the first choice for a location for the item. For example, for our problem, to
store or retrieve the number n, we might take as the first choice for a location, n mod 11.
Our hash function becomes

h(n) = n mod 11.

Figure 1.6 shows the result of storing 15, 558, 32, 132, 102, and 5, in this order, in
initially empty cells.

132

0 1 2

102

3

15

4

5

5

257

6 7

558

8 9

32

10

Figure 1.6 Cells in a computer memory.

Now suppose that we want to store 257. Since h(257) = 4, 257 should be stored at
location 4; however, this position is already occupied. In this case we say that a collision
has occurred. More precisely, a collision occurs for a hash function H if H(x) = H(y),
but x �= y. To handle collisions, a collision resolution policy is required. One simple
collision resolution policy is to find the next highest (with 0 assumed to follow 10)
unoccupied cell. If we use this collision resolution policy, we would store 257 at location
6 (see Figure 1.6).

If we want to locate a stored value n, we compute m = h(n) and begin looking at
location m. If n is not at this position, we look in the next-highest position (again, 0 is
assumed to follow 10); if n is not in this position, we proceed to the next-highest position,
and so on. If we reach an empty cell or return to our original position, we conclude that
n is not present; otherwise, we obtain the position of n.

If collisions occur infrequently, and if when one does occur it is resolved quickly,
then hashing provides a very fast method of storing and retrieving data. As an example,
personnel data are frequently stored and retrieved by hashing on employee identification
numbers.

Example 1.15 Pseudorandom Numbers

Computers are often used to simulate random behavior. A game program might simu-
late rolling dice, and a client service program might simulate the arrival of customers at a
bank. Such programs generate numbers that appear random and are called pseudorandom
numbers. For example, the dice-rolling program would need pairs of pseudorandom

139

Functions, Sequences, and Relations

numbers, each between 1 and 6, to simulate the outcome of rolling dice. Pseudorandom
numbers are not truly random; if one knows the program that generates the numbers,
one could predict what numbers would occur.

The method usually used to generate pseudorandom numbers is called the linear
congruential method. This method requires four integers: the modulus m, the multiplier
a, the increment c, and a seed s satisfying

2 ≤ a < m, 0 ≤ c < m, 0 ≤ s < m.

We then set x0 = s. The sequence of pseudorandom numbers generated, x1, x2, . . . , is
given by the formula

xn = (axn−1 + c) mod m.

The formula computes the next pseudorandom number using its immediate predecessor.
For example, if

m = 11, a = 7, c = 5, s = 3,

then

x1 = (ax0 + c) mod m = (7 · 3+ 5) mod 11 = 4

and

x2 = (ax1 + c) mod m = (7 · 4+ 5) mod 11 = 0.

Similar computations show that the sequence continues:

x3 = 5, x4 = 7, x5 = 10, x6 = 9, x7 = 2, x8 = 8, x9 = 6, x10 = 3.

Since x10 = 3, which is the value of the seed, the sequence now repeats: 3, 4, 0, 5,
7,

Much effort has been invested in finding good values for a linear congruential
method. Critical simulations such as those involving aircraft and nuclear research require
“good” random numbers. In practice, large values are used for m and a. Commonly used
values are m = 231− 1 = 2,147,483,647, a = 75 = 16,807, and c = 0, which generate
a sequence of 231 − 1 integers before repeating a value.

In the 1990s, Daniel Corriveau of Quebec won three straight games of a com-
puter keno game in Montreal, each time choosing 19 of 20 numbers correctly. The odds
against this feat are 6 billion to 1. Suspicious officials at first refused to pay him.Although
Corriveau attributed his success to chaos theory, what in fact happened was that whenever
power was cut, the random number generator started with the same seed, thus generat-
ing the same sequence of numbers. The embarrassed casino finally paid Corriveau the
$600,000 due him.

We next define the floor and ceiling of a real number.

Definition 1.16 The floor of x, denoted �x�, is the greatest integer less than or equal to x. The ceiling of
x, denoted 	x
, is the least integer greater than or equal to x.

Example 1.17 �8.3� = 8, 	9.1
 = 10, �−8.7� = −9, 	−11.3
 = −11, 	6
 = 6, 	−8
 = −8

The floor of x “rounds x down” while the ceiling of x “rounds x up.” We will use
the floor and ceiling functions throughout the book.

140

Functions, Sequences, and Relations

Example 1.18 Figure 1.7 shows the graphs of the floor and ceiling functions. A bracket, [or], indicates
that the point is to be included in the graph; a parenthesis, (or), indicates that the point
is to be excluded from the graph.

…

…
[)

[)

[)

[)

[)

�2 �1 1 2 3

2

1

�1

�2

…

…

�2 �1 1 2 3

2

1

�1

�2

]

]

]

]

(

(

(

(

Figure 1.7 The graphs of the floor (left graph) and ceiling (right graph)
functions.

Example 1.19 In 2007, the U.S. first-class postage rate for retail flat mail up to 13 ounces was 80 cents
for the first ounce or fraction thereof and 17 cents for each additional ounce or fraction
thereof.† The postage P(w) as a function of weight w is given by the equation

P(w) = 80+ 17	w− 1
, 13 ≥ w > 0.

The expression 	w−1
 counts the number of additional ounces beyond 1, with a fraction
counting as one additional ounce. As examples,

P(3.7) = 80+ 17	3.7− 1
 = 80+ 17	2.7
 = 80+ 17 · 3 = 131,

P(2) = 80+ 17	2− 1
 = 80+ 17	1
 = 80+ 17 · 1 = 97.

The graph of the function P is shown in Figure 1.8.

w

P(w)

…

284

114

97

80

1 2 3 13

(]

(]

(]

(]

Figure 1.8 The graph of the
postage function P(w) = 80+
17	w− 1
.

The Quotient-Remainder Theorem states that if d and n are integers, d > 0, there
exist integers q (quotient) and r (remainder) satisfying

n = dq+ r 0 ≤ r < d.

Dividing by d, we obtain
n

d
= q+ r

d
.

Since 0 ≤ r/d < 1,
⌊n

d

⌋
=
⌊
q+ r

d

⌋
= q.

Thus, we may compute the quotient q as �n/d�. Having computed the quotient q, we
may compute the remainder as

r = n− dq.

We previously introduced the notation n mod d for the remainder.

†The first-class postage rate for retail letters was different: 41 cents for the first ounce or fraction thereof and
17 cents for each additional ounce or fraction thereof up to 3.5 ounces.

141

Functions, Sequences, and Relations

Example 1.20 We have 36844/2427 = 15.18088 . . . ; thus the quotient is

q = �36844/2427� = 15.

Therefore, the remainder 36844 mod 2427 is

r = 36844− 2427 · 15 = 439.

We have

n = dq+ r or 36844 = 2427 · 15+ 439.

Definition 1.21 A function f from X to Y is said to be one-to-one (or injective) if for each y ∈ Y , there
is at most one x ∈ X with f(x) = y.

Because the amount of potential data is usually so much larger than the available
memory, hash functions are usually not one-to-one (see Example 1.14). In other words,
most hash functions produce collisions.

Example 1.22 The function

f = {(1, b), (3, a), (2, c)}
from X = {1, 2, 3} to Y = {a, b, c, d} is one-to-one.

Example 1.23 The function

f = {(1, a), (2, b), (3, a)}
is not one-to-one since f(1) = a = f(3).

Example 1.24 If X is the set of persons who have social security numbers and we assign each per-
son x ∈ X his or her social security number SS(x), we obtain a one-to-one function
since distinct persons are always assigned distinct social security numbers. It is because
this correspondence is one-to-one that the government uses social security numbers as
identifiers.

Example 1.25 If a function from X to Y is one-to-one, each element in Y in its arrow diagram will
have at most one arrow pointing to it (see Figure 1.9). If a function is not one-to-one,
some element in Y in its arrow diagram will have two or more arrows pointing to it (see
Figure 1.10).

1
2
3

a

b

c

d
f

X Y

Figure 1.9 The function of Example
1.22. This function is one-to-one
because each element in Y has at
most one arrow pointing to it. This
function is not onto Y because there
is no arrow pointing to d.

1
2
3

a

b

c
f

X Y

Figure 1.10 A function that is not
one-to-one. This function is not
one-to-one because a has two arrows
pointing to it. This function is not
onto Y because there is no arrow
pointing to c.

142

Functions, Sequences, and Relations

The condition given in Definition 1.21 for a function f from X to Y to be one-to-one
is equivalent to: For all x1, x2 ∈ X, if f(x1) = f(x2), then x1 = x2. In symbols,

∀x1∀x2((f(x1) = f(x2))→ (x1 = x2)).

This form of the definition can often be used to prove that a function is one-to-one.

Example 1.26 Prove that the function

f(n) = 2n+ 1

from the set of positive integers to the set of positive integers is one-to-one.
We must show that for all positive integers n1 and n2, if f(n1) = f(n2), then

n1 = n2. So, suppose that f(n1) = f(n2). Using the definition of f , this latter equation
translates as

2n1 + 1 = 2n2 + 1.

Subtracting 1 from both sides of the equation and then dividing both sides of the equation
by 2 yields

n1 = n2.

Therefore, f is one-to-one.

A function f is not one-to-one if

∀x1∀x2((f(x1) = f(x2))→ (x1 = x2))

is false or, equivalently, its negation is true. Using the generalized De Morgan’s laws for
logic and the fact that ¬(p→ q) ≡ p ∧ ¬q, we find that the negation is

¬(∀x1∀x2((f(x1) = f(x2))→ (x1 = x2))) ≡ ∃x1¬(∀x2((f(x1) = f(x2))

→ (x1 = x2)))

≡ ∃x1∃x2¬((f(x1) = f(x2))

→ (x1 = x2))

≡ ∃x1∃x2((f(x1) = f(x2)) ∧ ¬(x1 = x2))

≡ ∃x1∃x2((f(x1) = f(x2)) ∧ (x1 �= x2)).

In words, a function is not one-to-one if there exist x1 and x2 such that f(x1) = f(x2)

and x1 �= x2.

Example 1.27 Prove that the function

f(n) = 2n − n2

from the set of positive integers to the set of integers is not one-to-one.
We must find positive integers n1 and n2, n1 �= n2, such that

f(n1) = f(n2).

By trial-and-error, we find that

f(2) = f(4).

Therefore, f is not one-to-one.

143

Functions, Sequences, and Relations

If the range of a function f is equal to its codomain Y , the function is said to be
onto Y .

Definition 1.28 If f is a function from X to Y and the range of f is Y , f is said to be onto Y (or an onto
function or a surjective function).

Example 1.29 The function

f = {(1, a), (2, c), (3, b)}
from X = {1, 2, 3} to Y = {a, b, c} is one-to-one and onto Y .

Example 1.30 The function

f = {(1, b), (3, a), (2, c)}
from X = {1, 2, 3} to Y = {a, b, c, d} is not onto Y .

Example 1.31 If a function from X to Y is onto, each element in Y in its arrow diagram will have at
least one arrow pointing to it (see Figure 1.11). If a function from X to Y is not onto,
some element in Y in its arrow diagram will fail to have an arrow pointing to it (see
Figures 1.9 and 1.10).

1
2
3

a

b

c
f

X Y

Figure 1.11 The function of
Example 1.29. This function is
one-to-one because each element
in Y has at most one arrow. This
function is onto because each
element in Y has at least one
arrow pointing to it.

The condition given in Definition 1.28 for a function f from X to Y to be onto Y

is equivalent to: For all y ∈ Y , there exists x ∈ X such that f(x) = y. In symbols,

∀y ∈ Y ∃x ∈ X(f(x) = y).

This form of the definition can often be used to prove that a function is onto.

Example 1.32 Prove that the function

f(x) = 1

x2

from the set X of nonzero real numbers to the set Y of positive real numbers is onto Y .
We must show that for every y ∈ Y , there exists x ∈ X such that f(x) = y.

Substituting the formula for f(x), this last equation becomes

1

x2
= y.

Solving for x, we find

x = ± 1√
y
.

Notice that 1/
√

y is defined because y is a positive real number. If we take x to be the
positive square root

x = 1√
y
,

144

Functions, Sequences, and Relations

then x ∈ X. (We could just as well have taken x = −1/
√

y.) Thus, for every y ∈ Y ,
there exists x, namely x = 1/

√
y such that

f(x) = f(1/
√

y) = 1

(1/
√

y)2
= y.

Therefore, f is onto Y .

A function f from X to Y is not onto Y if

∀y ∈ Y ∃x ∈ X(f(x) = y)

is false or, equivalently, its negation is true. Using the generalized De Morgan’s laws for
logic, we find that the negation is

¬(∀y ∈ Y ∃x ∈ X(f(x) = y)) ≡ ∃y ∈ Y ¬(∃x ∈ X(f(x) = y))

≡ ∃y ∈ Y ∀x ∈ X¬(f(x) = y)

≡ ∃y ∈ Y ∀x ∈ X(f(x) �= y).

In words, a function f from X to Y is not onto Y if there exists y ∈ Y such that for all
x ∈ X, f(x) �= y.

Example 1.33 Prove that the function

f(n) = 2n− 1

from the set X of positive integers to the set Y of positive integers is not onto Y .
We must find an element m ∈ Y such that for all n ∈ X, f(n) �= m. Since f(n) is

an odd integer for all n, we may choose for y any positive, even integer, for example,
y = 2. Then y ∈ Y and

f(n) �= y

for all n ∈ X. Thus f is not onto Y .

Definition 1.34 A function that is both one-to-one and onto is called a bijection.

Example 1.35 The function f of Example 1.29 is a bijection.

Example 1.36 If f is a bijection from a finite set X to a finite set Y , then |X| = |Y |, that is, the sets
have the same cardinality and are the same size. For example,

f = {(1, a), (2, b), (3, c), (4, d)}

is a bijection from X = {1, 2, 3, 4} to Y = {a, b, c, d)}. Both sets have four elements.
In effect, f counts the elements in Y : f(1) = a is the first element in Y ; f(2) = b is the
second element in Y ; and so on.

Suppose that f is a one-to-one, onto function from X to Y . It can be shown (see
Exercise 97) that

{(y, x) | (x, y) ∈ f }

145

Functions, Sequences, and Relations

is a one-to-one, onto function from Y to X. This new function, denoted f−1, is called f

inverse.

Example 1.37 For the function

f = {(1, a), (2, c), (3, b)},
we have

f−1 = {(a, 1), (c, 2), (b, 3)}.

Example 1.38 Given the arrow diagram for a one-to-one, onto function f from X to Y , we can obtain the
arrow diagram for f−1 simply by reversing the direction of each arrow (see Figure 1.12,
which is the arrow diagram for f−1, where f is the function of Figure 1.11).

1
2
3

a

b

c
f �1

Y X

Figure 1.12 The inverse of the
function in Figure 1.11. The inverse
is obtained by reversing all of the
arrows in Figure 1.11.

Example 1.39 The function

f(x) = 2x

is a one-to-one function from the set R of all real numbers onto the set R+ of all positive
real numbers. We will derive a formula for f−1(y).

Suppose that (y, x) is in f−1; that is,

f−1(y) = x. (1.3)

Then (x, y) ∈ f . Thus,

y = 2x.

By the definition of logarithm,

log2 y = x. (1.4)

Combining (1.3) and (1.4), we have

f−1(y) = x = log2 y.

That is, for each y ∈ R+, f−1(y) is the logarithm to the base 2 of y. We can summarize
the situation by saying that the inverse of the exponential function is the logarithm
function.

Let g be a function from X to Y and let f be a function from Y to Z. Given x ∈ X,
we may apply g to determine a unique element y = g(x) ∈ Y . We may then apply f to
determine a unique element z = f(y) = f(g(x)) ∈ Z. This compound action is called
composition.

146

Functions, Sequences, and Relations

Definition 1.40 Let g be a function from X to Y and let f be a function from Y to Z. The composition
of f with g, denoted f ◦ g, is the function

(f ◦ g)(x) = f(g(x))

from X to Z.

Example 1.41 Given

g = {(1, a), (2, a), (3, c)},

a function from X = {1, 2, 3} to Y = {a, b, c}, and

f = {(a, y), (b, x), (c, z)},

a function from Y to Z = {x, y, z}, the composition function from X to Z is the function

f ◦ g = {(1, y), (2, y), (3, z)}.

Example 1.42 Given the arrow diagram for a function g from X to Y and the arrow diagram for a
function f from Y to Z, we can obtain the arrow diagram for the composition f ◦ g

simply by “following the arrows” (see Figure 1.13).

1
2
3

g gf f
X Y

x

y

z

Z

a

b

c
X Z

1
2
3

x

y

z

Figure 1.13 The composition of the functions of
Example 1.41. The composition is obtained by
drawing an arrow from x in X to z in Z provided that
there are arrows from x to some y in Y and from y to z.

Example 1.43 If f(x) = log3 x and g(x) = x4,

f(g(x)) = log3(x
4), g(f(x)) = (log3 x)4.

Example 1.44 Composition sometimes allows us to decompose complicated functions into simpler
functions. For example, the function

f(x) =
√

sin 2x

can be decomposed into the functions

g(x) = √x, h(x) = sin x, w(x) = 2x.

We can then write

f(x) = g(h(w(x))).

147

Functions, Sequences, and Relations

This decomposition technique is important in differential calculus since there are rules
for differentiating simple functions such as g, h, and w and also rules about how to
differentiate the composition of functions. Combining these rules, we can differentiate
more complicated functions.

A binary operator on a set X associates with each ordered pair of elements in X

one element in X.

Definition 1.45 A function from X×X to X is called a binary operator on X.

Example 1.46 Let X = {1, 2, . . .}. If we define

f(x, y) = x+ y,

where x, y ∈ X, then f is a binary operator on X.

Example 1.47 If X is a set of propositions, ∧, ∨,→, and↔ are binary operators on X.

A unary operator on a set X associates with each single element of X one element
in X.

Definition 1.48 A function from X to X is called a unary operator on X.

Example 1.49 Let U be a universal set. If we define

f(X) = X,

where X ∈ P(U), then f is a unary operator on P(U).

Example 1.50 If X is a set of propositions, ¬ is a unary operator on X.

Problem-Solving Tips

The key to solving problems involving functions is clearly understanding the definition
of function. A function f from X to Y can be thought of in many ways. Formally, f is a
subset of X× Y having the property that for every x ∈ X, there is a unique y ∈ Y such
that (x, y) ∈ X×Y . Informally, f can be thought of as a mapping of elements from X to
Y . The arrow diagram emphasizes this view of a function. For an arrow diagram to be a
function, there must be exactly one arrow from each element in X to some element in Y .

A function is a very general concept. Any subset of X × Y having the property
that for every x ∈ X, there is a unique y ∈ Y such that (x, y) ∈ X × Y is a function. A
function may be defined by listing its members; for example,

{(a, 1), (b, 3), (c, 2), (d, 1)}
is a function from {a, b, c, d} to {1, 2, 3}. Here, there is apparently no formula for mem-
bership; the definition just tells us which pairs make up the function.

On the other hand, a function may be defined by a formula. For example,

{(n, n+ 2) | n is a positive integer}

148

Functions, Sequences, and Relations

defines a function from the set of positive integers to the set of positive integers. The
“formula” for the mapping is “add 2.”

The f(x) notation may be used to indicate which element in the codomain is
associated with an element x in the domain or to define a function. For example, for the
function

f = {(a, 1), (b, 3), (c, 2), (d, 1)},
we could write f(a) = 1, f(b) = 3, and so on. Assuming that the domain of definition
is the positive integers, the equation

g(n) = n+ 2

defines the function

{(n, n+ 2) | n is a positive integer}
from the set of positive integers to the set of positive integers.

To prove that a function f from X to Y is one-to-one, show that for all x1, x2 ∈ X,
if f(x1) = f(x2), then x1 = x2.

To prove that a function f from X to Y is not one-to-one, find x1, x2 ∈ X, x1 �= x2,
such that f(x1) = f(x2).

To prove that a function f from X to Y is onto, show that for all y ∈ Y , there exists
x ∈ X such that f(x) = y.

To prove that a function f from X to Y is not onto, find y ∈ Y such that f(x) �= y

for all x ∈ X.

Section Review Exercises

†1. What is a function from X to Y?

2. Explain how to use an arrow diagram to depict a function.

3. What is the graph of a function?

4. Given a set of points in the plane, how can we tell whether it
is a function?

5. What is the value of x mod y?

6. What is a hash function?

7. What is a collision for a hash function?

8. What is a collision resolution policy?

9. What are pseudorandom numbers?

10. Explain how a linear congruential random number generator
works, and give an example of a linear congruential random
number generator.

11. What is the floor of x? How is the floor denoted?

12. What is the ceiling of x? How is the ceiling denoted?

13. Define one-to-one function. Give an example of a one-to-one
function. Explain how to use an arrow diagram to determine
whether a function is one-to-one.

14. Define onto function. Give an example of an onto function.
Explain how to use an arrow diagram to determine whether a
function is onto.

15. What is a bijection? Give an example of a bijection. Explain
how to use an arrow diagram to determine whether a function
is a bijection.

16. Define inverse function. Give an example of a function and its
inverse. Given the arrow diagram of a function, how can we
find the arrow diagram of the inverse function?

17. Define composition of functions. How is the composition of
f and g denoted? Give an example of functions f and g and
their composition. Given the arrow diagrams of two functions,
how can we find the arrow diagram of the composition of the
functions?

18. What is a binary operator? Give an example of a binary
operator.

19. What is a unary operator? Give an example of a unary
operator.

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

149

Functions, Sequences, and Relations

Exercises

Determine whether each set in Exercises 1–5 is a function from
X = {1, 2, 3, 4} to Y = {a, b, c, d}. If it is a function, find its
domain and range, draw its arrow diagram, and determine if it is
one-to-one, onto, or both. If it is both one-to-one and onto, give the
description of the inverse function as a set of ordered pairs, draw
its arrow diagram, and give the domain and range of the inverse
function.

1. {(1, a), (2, a), (3, c), (4, b)}
2. {(1, c), (2, a), (3, b), (4, c), (2, d)}
3. {(1, c), (2, d), (3, a), (4, b)}
4. {(1, d), (2, d), (4, a)}
5. {(1, b), (2, b), (3, b), (4, b)}

Draw the graphs of the functions in Exercises 6–9. The domain
of each function is the set of real numbers. The codomain of each
function is also the set of real numbers.

6. f(x) = 	x
 − �x� 7. f(x) = x− �x�
8. f(x) = 	x2
 9. f(x) = �x2 − x�

Determine whether each function in Exercises 10–15 is one-to-one,
onto, or both. Prove your answers. The domain of each function is
the set of all integers. The codomain of each function is also the set
of all integers.

10. f(n) = n+ 1 11. f(n) = n2 − 1

12. f(n) = 	n/2
 13. f(n) = |n|
14. f(n) = 2n 15. f(n) = n3

Determine whether each function in Exercises 16–21 is one-to-one,
onto, or both. Prove your answers. The domain of each function is
Z× Z. The codomain of each function is Z.

16. f(m, n) = m− n 17. f(m, n) = m

18. f(m, n) = mn 19. f(m, n) = m2 + n2

20. f(m, n) = n2 + 1 21. f(m, n) = m+ n+ 2

22. Prove that the function f from Z+ × Z+ to Z+ defined by
f(m, n) = 2m3n is one-to-one but not onto.

Determine whether each function in Exercises 23–28 is one-to-one,
onto, or both. Prove your answers. The domain of each function is
the set of all real numbers. The codomain of each function is also
the set of all real numbers.

23. f(x) = 6x− 9 24. f(x) = 3x2 − 3x+ 1

25. f(x) = sin x 26. f(x) = 2x3 − 4
27. f(x) = 3x − 2 28. f(x) = x

1+ x2

29. Give an example of a function different from those presented
in the text that is one-to-one but not onto, and prove that your
function has the required properties.

30. Give an example of a function different from those presented
in the text that is onto but not one-to-one, and prove that your
function has the required properties.

31. Give an example of a function different from those presented
in the text that is neither one-to-one nor onto, and prove that
your function has the required properties.

Each function in Exercises 32–37 is one-to-one on the specified
domain X. By letting Y = range of f , we obtain a bijection from
X to Y . Find each inverse function.

32. f(x) = 4x+ 2, X = set of real numbers

33. f(x) = 3x, X = set of real numbers

34. f(x) = 3 log2 x, X = set of positive real numbers

35. f(x) = 3+ 1

x
, X = set of nonzero real numbers

36. f(x) = 4x3 − 5, X = set of real numbers

37. f(x) = 6+ 27x−1, X = set of real numbers

38. Given

g = {(1, b), (2, c), (3, a)},
a function from X = {1, 2, 3} to Y = {a, b, c, d}, and

f = {(a, x), (b, x), (c, z), (d, w)},
a function from Y to Z = {w, x, y, z}, write f ◦ g as a set of
ordered pairs and draw the arrow diagram of f ◦ g.

39. Let f and g be functions from the positive integers to the pos-
itive integers defined by the equations

f(n) = 2n+ 1, g(n) = 3n− 1.

Find the compositions f ◦ f , g ◦ g, f ◦ g, and g ◦ f .

40. Let f and g be functions from the positive integers to the pos-
itive integers defined by the equations

f(n) = n2, g(n) = 2n.

Find the compositions f ◦ f , g ◦ g, f ◦ g, and g ◦ f .

41. Let f and g be functions from the nonnegative real numbers
to the nonnegative real numbers defined by the equations

f(x) = �2x�, g(x) = x2.

Find the compositions f ◦ f , g ◦ g, f ◦ g, and g ◦ f .

In Exercises 42–47, decompose the function into simpler functions
as in Example 1.44.

42. f(x) = log2(x
2 + 2) 43. f(x) = 1

2x2

44. f(x) = sin 2x 45. f(x) = 2 sin x

46. f(x) = (3+ sin x)4 47. f(x) = 1

(cos 6x)3

48. Given

f = {(x, x2) | x ∈ X},
a function from X = {−5,−4, . . . , 4, 5} to the set of integers,
write f as a set of ordered pairs and draw the arrow diagram
of f . Is f one-to-one or onto?

49. How many functions are there from {1, 2} to {a, b}? Which are
one-to-one? Which are onto?

150

Functions, Sequences, and Relations

50. Given

f = {(a, b), (b, a), (c, b)},
a function from X = {a, b, c} to X:

(a) Write f ◦ f and f ◦ f ◦ f as sets of ordered pairs.

(b) Define

fn = f ◦ f ◦ · · · ◦ f

to be the n-fold composition of f with itself. Write f 9 and
f 623 as sets of ordered pairs.

51. Let f be the function from X = {0, 1, 2, 3, 4} to X defined by

f(x) = 4x mod 5.

Write f as a set of ordered pairs and draw the arrow diagram
of f . Is f one-to-one? Is f onto?

52. Let f be the function from X={0, 1, 2, 3, 4, 5} to X defined
by

f(x) = 4x mod 6.

Write f as a set of ordered pairs and draw the arrow diagram
of f . Is f one-to-one? Is f onto?

53. Verify the ISBN check character for this book.

54. Universal product codes (UPC) are the familiar bar codes that
identify products so that they can be automatically priced at the
checkout counter. A UPC is a 12-digit code in which the first
digit characterizes the type of product (0 identifies an ordinary
grocery item, 2 is an item sold by weight, 3 is a medical item,
4 is a special item, 5 is a coupon, and 6 and 7 are items not sold
in retail stores). The next five digits identify the manufacturer,
the next five digits identify the product, and the last digit is a
check digit. (All UPC codes have a check digit. It is always
present on the bar code, but it may not appear in the printed
version.) For example, the UPC for a package of 10 Ortega
taco shells is 0-54400-00800-5. The first zero identifies this as
an ordinary grocery item, the next five digits 54400 identify the
manufacturer Nabisco Foods, and the next five digits 00800
identify the product as a package of 10 Ortega taco shells.

The check digit is computed as follows. First compute
s, where s is 3 times the sum of every other number starting
with the first plus the sum of every other number, except the
check digit, starting with the second. The check digit is the
number c, between 0 and 9 satisfying (c+ s) mod 10 = 0. For
the code on the package of taco shells, we would have

s = 3(0+ 4+ 0+ 0+ 8+ 0)+ 5+ 4+ 0+ 0+ 0 = 45.

Since (5+ 45) mod 10 = 0, the check digit is 5.
Find the check digit for the UPC whose first 11 digits

are 3-41280-21414.

For each hash function in Exercises 55–58, show how the data
would be inserted in the order given in initially empty cells. Use
the collision resolution policy of Example 1.14.

55. h(x) = x mod 11; cells indexed 0 to 10; data: 53, 13, 281,
743, 377, 20, 10, 796

56. h(x) = x mod 17; cells indexed 0 to 16; data: 714, 631, 26,
373, 775, 906, 509, 2032, 42, 4, 136, 1028

57. h(x) = x2 mod 11; cells and data as in Exercise 55

58. h(x) = (x2 + x) mod 17; cells and data as in Exercise 56

59. Suppose that we store and retrieve data as described in Exam-
ple 1.14. Will any problem arise if we delete data? Explain.

60. Suppose that we store data as described in Example 1.14 and
that we never store more than 10 items. Will any problem arise
when retrieving data if we stop searching when we encounter
an empty cell? Explain.

61. Suppose that we store data as described in Example 1.14 and
retrieve data as described in Exercise 60. Will any problem
arise if we delete data? Explain.

Let g be a function from X to Y and let f be a function from Y to
Z. For each statement in Exercises 62–69, if the statement is true,
prove it; otherwise, give a counterexample.

62. If g is one-to-one, then f ◦ g is one-to-one.

63. If f is onto, then f ◦ g is onto.

64. If g is onto, then f ◦ g is onto.

65. If f and g are onto, then f ◦ g is onto.

66. If f and g are one-to-one and onto, then f ◦ g is one-to-one
and onto.

67. If f ◦ g is one-to-one, then f is one-to-one.

68. If f ◦ g is one-to-one, then g is one-to-one.

69. If f ◦ g is onto, then f is onto.

If f is a function from X to Y and A ⊆ X and B ⊆ Y , we define

f(A) = {f(x) | x ∈ A}, f−1(B) = {x ∈ X | f(x) ∈ B}.

We call f−1(B) the inverse image of B under f .

70. Let

g = {(1, a), (2, c), (3, c)}
be a function from X = {1, 2, 3} to Y = {a, b, c, d}. Let
S = {1}, T = {1, 3}, U = {a}, and V = {a, c}. Find g(S),
g(T), g−1(U), and g−1(V).

†�71. Let f be a function from X to Y . Prove that f is one-to-one if
and only if

f(A ∩ B) = f(A) ∩ f(B)

for all subsets A and B of X. [When S is a set, we define
f(S) = {f(x) | x ∈ S}.]

�72. Let f be a function from X to Y . Prove that f is one-to-one if
and only if whenever g is a one-to-one function from any set
A to X, f ◦ g is one-to-one.

�73. Let f be a function from X to Y . Prove that f is onto Y if and
only if whenever g is a function from Y onto any set Z, g ◦ f

is onto Z.

74. Let f be a function from X onto Y . Let

S = {f−1({y}) | y ∈ Y}.
Show that S is a partition of X.

†A starred exercise indicates a problem of above-average difficulty.

151

Functions, Sequences, and Relations

Let RR denote the set of functions from R to R. We define the
evaluation function Ea, where a ∈ R, from RR to R as

Ea(f) = f(a).

75. Is E1 one-to-one? Prove your answer.

76. Is E1 onto? Prove your answer.

Exercises 77–81 use the following definitions. Let X = {a, b, c}.
Define a function S from P(X) to the set of bit strings of length 3
as follows. Let Y ⊆ X. If a ∈ Y , set s1 = 1; if a �∈ Y , set s1 = 0.
If b ∈ Y , set s2 = 1; if b �∈ Y , set s2 = 0. If c ∈ Y , set s3 = 1; if
c �∈ Y , set s3 = 0. Define S(Y) = s1s2s3.

77. What is the value of S({a, c})?
78. What is the value of S(∅)?

79. What is the value of S(X)?

80. Prove that S is one-to-one.

81. Prove that S is onto.

Exercises 82–88 use the following definitions. Let U be a universal
set and let X ⊆ U. Define

CX(x) =
{

1 if x ∈ X

0 if x /∈ X.

We call CX the characteristic function of X (in U). (A look ahead
at the next Problem-Solving Corner may help in understanding the
following exercises.)

82. Prove that CX∩Y (x) = CX(x)CY (x) for all x ∈ U.

83. Prove that CX∪Y (x) = CX(x)+ CY(x)− CX(x)CY (x) for all
x ∈ U.

84. Prove that C
X
(x) = 1− CX(x) for all x ∈ U.

85. Prove that CX−Y (x) = CX(x)[1− CY(x)] for all x ∈ U.

86. Prove that if X ⊆ Y , then CX(x) ≤ CY(x) for all x ∈ U.

87. Find a formula for CX�Y . (X � Y is the symmetric differ-
ence of X and Y . The definition is given before Exercise 91,
Section 1.1.)

88. Prove that the function f from P(U) to the set of characteristic
functions in U defined by

f(X) = CX

is one-to-one and onto.

89. Let X and Y be sets. Prove that there is a one-to-one function
from X to Y if and only if there is a function from Y onto X.

A binary operator f on a set X is commutative if f(x, y) = f(y, x)

for all x, y ∈ X. In Exercises 90–94, state whether the given func-
tion f is a binary operator on the set X. If f is not a binary
operator, state why. State whether or not each binary operator is
commutative.

90. f(x, y) = x+ y, X = {1, 2, . . .}
91. f(x, y) = x− y, X = {1, 2, . . .}
92. f(x, y) = x ∪ y, X = P({1, 2, 3, 4})
93. f(x, y) = x/y, X = {0, 1, 2, . . .}
94. f(x, y) = x2 + y2 − xy, X = {1, 2, . . .}

In Exercises 95 and 96, give an example of a unary operator [dif-
ferent from f(x) = x, for all x] on the given set.

95. {. . . ,−2,−1, 0, 1, 2, . . .}
96. The set of all finite subsets of {1, 2, 3, . . .}
97. Prove that if f is a one-to-one, onto function from X to Y , then

{(y, x) | (x, y) ∈ f }
is a one-to-one, onto function from Y to X.

In Exercises 98–100, if the statement is true for all real numbers,
prove it; otherwise, give a counterexample.

98. 	x+ 3
 = 	x
 + 3

99. 	x+ y
 = 	x
 + 	y

100. �x+ y� = �x� + 	y

101. Prove that if n is an odd integer,

⌊
n2

4

⌋
=
(

n− 1

2

)(
n+ 1

2

)
.

102. Prove that if n is an odd integer,⌈
n2

4

⌉
= n2 + 3

4
.

103. Find a value for x for which 	2x
 = 2	x
 − 1.

104. Prove that 2	x
 − 1 ≤ 	2x
 ≤ 2	x
 for all real numbers x.

105. Prove that for all real numbers x and integers n, 	x
 = n if
and only if there exists ε, 0 ≤ ε < 1, such that x+ ε = n.

106. State and prove a result analogous to Exercise 105 for �x�.
The months with Friday the 13th in year x are found in row

y =
(

x+
⌊

x− 1

4

⌋
−
⌊

x− 1

100

⌋
+
⌊

x− 1

400

⌋)
mod 7

in the appropriate column:

y Non-Leap Year Leap Year

0 January, January,
October April, July

1 April, September,
July December

2 September, June
December

3 June March,
November

4 February, February,
March, August
November

5 August May
6 May October

107. Find the months with Friday the 13th in 1945.

108. Find the months with Friday the 13th in the current year.

109. Find the months with Friday the 13th in 2040.

152

Functions, Sequences, and Relations

Problem-Solving Corner Functions

Problem
Let U be a universal set and let X ⊆ U. Define

CX(x) =
{

1 if x ∈ X

0 if x /∈ X.

[We call CX the characteristic function of X (in U)].
Assume that X and Y are arbitrary subsets of the uni-
versal set U. Prove that CX∪Y (x) = CX(x)+CY(x) for
all x ∈ U if and only if X ∩ Y = ∅.

Attacking the Problem
First, let’s be clear what we must do. Since the state-
ment is of the form p if and only if q, we have two
tasks: (1) Prove if p then q. (2) Prove if q then p. It’s a
good idea to write out exactly what must be proved:

If CX∪Y (x) = CX(x)+ CY(x) for all x ∈ U,

then X ∩ Y = ∅.

If X ∩ Y = ∅, then CX∪Y (x) = CX(x)+ CY(x)

for all x ∈ U.

Consider the first statement in which we assume
that CX∪Y (x) = CX(x)+CY(x) for all x ∈ U and prove
that X ∩ Y = ∅. How do we prove that a set, X ∩ Y

in this case, is the empty set? We have to show that
X∩ Y has no elements. How do we do that? There are
several possibilities, but one thing that comes to mind
is another question: What if X ∩ Y had an element?
This suggests that we might prove the first statement
by contradiction or by proving its contrapositive. If we
let

p: CX∪Y (x) = CX(x)+ CY(x) for all x ∈ U

q: X ∩ Y = ∅,

the contrapositive is ¬q → ¬p. Now the negation of
q is

¬q : X ∩ Y �= ∅,

and, using De Morgan’s law (roughly, negating ∀
results in ∃), the negation of p is

¬p : CX∪Y (x) �=CX(x)+CY(x) for at least one x∈U.

Thus, the contrapositive is

If X ∩ Y �= ∅, then CX∪Y (x) �= CX(x)+ CY(x)

for at least one x ∈ U.

For the second statement, we assume that X∩Y =
∅ and prove that CX∪Y (x) = CX(x) + CY(x) for all
x ∈ U. Presumably, we can just use the definition of CX

to compute both sides of the equation for all x ∈ U and
verify that the two sides are equal. The definition of CX

suggests that we use proof by cases: x ∈ X ∪ Y (when
CX∪Y (x) = 1) and x /∈ X ∪ Y (when CX∪Y (x) = 0).

Finding a Solution
We first consider proving the contrapositive

If X ∩ Y �= ∅, then CX∪Y (x) �= CX(x)+ CY(x)

for at least one x ∈ U.

Since we assume that X ∩ Y �= ∅, there exists an ele-
ment x ∈ X ∩ Y . Now let’s compare the values of
the expressions CX∪Y (x) and CX(x) + CY(x). Since
x ∈ X ∪ Y ,

CX∪Y (x) = 1.

Since x ∈ X ∩ Y , x ∈ X and x ∈ Y . Therefore

CX(x)+ CY(x) = 1+ 1 = 2.

We have proved that

CX∪Y (x) �= CX(x)+ CY(x) for at least one x ∈ U.

Now consider proving the second statement

If X ∩ Y = ∅, then CX∪Y (x) = CX(x)+ CY(x)

for all x ∈ U.

This time we assume that X ∩ Y = ∅. Let’s compute
each side of the equation

CX∪Y (x) = CX(x)+ CY(x)

for each x ∈ U. As suggested earlier, we consider the
cases: x ∈ X ∪ Y and x /∈ X ∪ Y . If x ∈ X ∪ Y , then

CX∪Y (x) = 1.

Since X ∩ Y = ∅, either x ∈ X or x ∈ Y but not both.
Therefore,

CX(x)+ CY(x) = 1+ 0 = 1 = CX∪Y (x)

or

CX(x)+ CY(x) = 0+ 1 = 1 = CX∪Y (x).

The equation

CX∪Y (x) = CX(x)+ CY(x)

is true if x ∈ X ∪ Y .
If x /∈ X ∪ Y , then

CX∪Y (x) = 0.

But if x /∈ X ∪ Y , then x /∈ X and x /∈ Y . Therefore,

CX(x)+ CY(x) = 0+ 0 = 0 = CX∪Y (x).

153

Functions, Sequences, and Relations

The equation

CX∪Y (x) = CX(x)+ CY(x)

is true if x /∈ X ∪ Y . Thus

CX∪Y (x) = CX(x)+ CY(x)

is true for all x ∈ U.

Formal Solution
The formal proof could be written as follows.
Case→: If CX∪Y (x) = CX(x)+ CY(x) for all x ∈ U,
then X ∩ Y = ∅.

We prove the equivalent contrapositive

If X ∩ Y �= ∅, then CX∪Y (x) �= CX(x)+ CY(x)

for at least one x ∈ U.

Since X ∩ Y �= ∅, there exists x ∈ X ∩ Y . Since
x ∈ X ∪ Y ,

CX∪Y (x) = 1.

Since x ∈ X ∩ Y , x ∈ X and x ∈ Y . Therefore

CX(x)+ CY(x) = 1+ 1 = 2.

Thus,

CX∪Y (x) �= CX(x)+ CY(x).

Case←: IfX∩Y = ∅, thenCX∪Y (x) = CX(x)+CY(x)

for all x ∈ U.
Suppose that x ∈ X ∪ Y . Then

CX∪Y (x) = 1.

Since X ∩ Y = ∅, either x ∈ X or x ∈ Y but not both.

Therefore,

CX(x)+ CY(x) = 1.

Thus,

CX∪Y (x) = CX(x)+ CY(x).

If x /∈ X ∪ Y , then

CX∪Y (x) = 0.

If x /∈ X ∪ Y , then x /∈ X and x /∈ Y . Therefore,

CX(x)+ CY(x) = 0.

Again,

CX∪Y (x) = CX(x)+ CY(x).

Thus,

CX∪Y (x) = CX(x)+ CY(x)

for all x ∈ U.

Summary of Problem-Solving Techniques
■ Write out exactly what must be proved.

■ Instead of proving p → q directly, consider
proving its contrapositive ¬q → ¬p or a proof
by contradiction.

■ For statements involving negation, De Morgan’s
laws can be very helpful.

■ Look for definitions and theorems relevant to the
expressions mentioned in the statements to be
proved.

■ A definition that involves cases suggests a proof
by cases.

2 ➜ Sequences and Strings

Blue Taxi Inc. charges $1 for the first mile and 50 cents for each additional mile. The
following table shows the cost of traveling from 1 to 10 miles. In general, the cost Cn of
traveling n miles is 1.00 (the cost of traveling the first mile) plus 0.50 times the number
(n− 1) of additional miles. That is,

Cn = 1+ 0.5(n− 1).

As examples,

C1 = 1+ 0.5(1− 1) = 1+ 0.5 · 0 = 1,

C5 = 1+ 0.5(5− 1) = 1+ 0.5 · 4 = 1+ 2 = 3.

154

Functions, Sequences, and Relations

Mileage Cost

1 $1.00
2 1.50
3 2.00
4 2.50
5 3.00
6 3.50
7 4.00
8 4.50
9 5.00

10 5.50

The list of fares

C1 = 1.00, C2 = 1.50, C3 = 2.00, C4 = 2.50, C5 = 3.00,

C6 = 3.50, C7 = 4.00, C8 = 4.50, C9 = 5.00, C10 = 5.50

furnishes an example of a sequence, which is a special type of function in which the
domain consists of a set of consecutive integers. For the sequence of fares, the domain
is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The nth term is typically denoted Cn, although to
be consistent with the more general function notation, it could be (and sometimes is)
written C(n). We call n the index of the sequence.

A sequence named, say, s is denoted s or {sn}. Here s or {sn} denotes the entire
sequence

s1, s2, s3,

We use the notation sn to denote the single element of the sequence s at index n.

Example 2.1 Consider the sequence s

2, 4, 6, . . . , 2n,

The first element of the sequence is 2, the second element of the sequence is 4, and so
on. The nth element of the sequence is 2n. If the first index is 1, we have

s1 = 2, s2 = 4, s3 = 6, . . . , sn = 2n,

Example 2.2 Consider the sequence t

a, a, b, a, b.

The first element of the sequence is a, the second element of the sequence is a, and so
on. If the first index is 1, we have

t1 = a, t2 = a, t3 = b, t4 = a, t5 = b.

If the domain of the sequence is infinite (as in Example 2.1), we say that the
sequence is infinite. If the domain of the sequence is finite (as in Example 2.2), we say
that the sequence is finite. When we want to explicitly state the initial index k of an
infinite sequence s, we can write {sn}∞n=k. For example, an infinite sequence v whose
initial index is 0 can be denoted {vn}∞n=0. A finite sequence x indexed from i to j can
be denoted {xn}jn=i. For example, a sequence t whose domain is {−1, 0, 1, 2, 3} can be
denoted {tn}3n=−1.

155

Functions, Sequences, and Relations

Example 2.3 The sequence {un} defined by the rule

un = n2 − 1, n ≥ 0,

can be denoted {un}∞n=0. The name of the index can be chosen in any convenient way.
For example, the sequence u can also be denoted {um}∞m=0. The formula for the term
having index m is

um = m2 − 1, m ≥ 0.

This sequence is an infinite sequence.

Example 2.4 Define a sequence b by the rule bn is the nth letter in the word digital. If the index of the
first term is 1, then b1 = d, b2 = b4 = i, and b7 = l. This sequence is a finite sequence.
It can be denoted {bk}7k=1.

Example 2.5 If x is the sequence defined by

xn = 1

2n
, −1 ≤ n ≤ 4,

the elements of x are

2, 1, 1/2, 1/4, 1/8, 1/16.

Example 2.6 Define a sequence s as

sn = 2n + 4 · 3n, n ≥ 0. (2.1)

(a) Find s0.

(b) Find s1.

(c) Find a formula for si.

(d) Find a formula for sn−1.

(e) Find a formula for sn−2.

(f) Prove that {sn} satisfies

sn = 5sn−1 − 6sn−2 for all n ≥ 2. (2.2)

(a) Replacing n by 0 in definition 2.1, we obtain

s0 = 20 + 4 · 30 = 5.

(b) Replacing n by 1 in definition 2.1, we obtain

s1 = 21 + 4 · 31 = 14.

(c) Replacing n by i in definition 2.1, we obtain

si = 2i + 4 · 3i.

(d) Replacing n by n− 1 in definition 2.1, we obtain

sn−1 = 2n−1 + 4 · 3n−1.

156

Functions, Sequences, and Relations

(e) Replacing n by n− 2 in definition 2.1, we obtain

sn−2 = 2n−2 + 4 · 3n−2.

(f) To prove equation (2.2), we will replace sn−1 and sn−2 in the right side of equation
(2.2) by the formulas of parts (d) and (e). We will then use algebra to show that
the result is equal to sn. We obtain

5sn−1 − 6sn−2 = 5(2n−1 + 4 · 3n−1)− 6(2n−2 + 4 · 3n−2)

= (5 · 2− 6)2n−2 + (5 · 4 · 3− 6 · 4)3n−2

= 4 · 2n−2 + 36 · 3n−2

= 222n−2 + (4 · 32)3n−2

= 2n + 4 · 3n = sn.

The techniques shown in the example is useful in checking solutions of recurrence
relations.

Two important types of sequences are increasing sequences and decreasing sequences,
and their relatives: nonincreasing sequences and nondecreasing sequences. A sequence
s is increasing if sn < sn+1 for all n for which n and n + 1 are in the domain of the
sequence. A sequence s is decreasing if sn > sn+1 for all n for which n and n + 1 are
in the domain of the sequence. A sequence s is nondecreasing if sn ≤ sn+1 for all n

for which n and n+ 1 are in the domain of the sequence. (A nondecreasing sequence is
like an increasing sequence except that “<” is replaced by “≤.”) A sequence s is nonin-
creasing if sn ≥ sn+1 for all n for which n and n+ 1 are in the domain of the sequence.
(A nonincreasing sequence is like a decreasing sequence except that “>” is replaced by
“≥.”)

Example 2.7 The sequence

2, 5, 13, 104, 300

is increasing and nondecreasing.

Example 2.8 The sequence

ai = 1

i
, i ≥ 1,

is decreasing and nonincreasing.

Example 2.9 The sequence

100, 90, 90, 74, 74, 74, 30

is nonincreasing, but it is not decreasing.

Example 2.10 The sequence

100

is increasing, decreasing, nonincreasing, and nondecreasing since there is no value of i

for which both i and i+ 1 are indexes.

157

Functions, Sequences, and Relations

One way to form a new sequence from a given sequence is to retain only certain
terms of the original sequence, maintaining the order of terms in the given sequence.
The resulting sequence is called a subsequence of the original sequence.

Definition 2.11 Let {sn} be a sequence defined for n = m, m+1, . . . , and let n1, n2, . . . be an increasing
sequence whose values are in the set {m, m + 1, . . .}. We call the sequence {snk

} a
subsequence of {sn}.

Example 2.12 The sequence

b, c (2.3)

is a subsequence of the sequence

t1 = a, t2 = a, t3 = b, t4 = c, t5 = q. (2.4)

Subsequence (2.3) is obtained from sequence (2.4) by choosing the third and fourth
terms. The expression nk of Definition 2.11 tells us which terms of (2.4) to choose to
obtain subsequence (2.3); thus, n1 = 3, n2 = 4. The subsequence (2.3) is

t3, t4 or tn1 , tn2 .

Notice that the sequence

c, b

is not a subsequence of sequence (2.4) since the order of terms in the sequence (2.4) is
not maintained.

Example 2.13 The sequence

2, 4, 8, 16, . . . , 2k, . . . (2.5)

is a subsequence of the sequence

2, 4, 6, 8, 10, 12, 14, 16, . . . , 2n, (2.6)

Subsequence (2.5) is obtained from sequence (2.6) by choosing the first, second, fourth,
eighth, and so on, terms; thus the value of nk of Definition 2.11 is nk = 2k−1. If we define
sequence (2.6) by sn = 2n, the subsequence (2.5) is defined by

snk
= s2k−1 = 2 · 2k−1 = 2k.

Two important operations on numerical sequences are adding and multiplying
terms.

Definition 2.14 If {ai}ni=m is a sequence, we define

n∑

i=m

ai = am + am+1 + · · · + an,

n∏

i=m

ai = am · am+1 · · · an.

The formalism
n∑

i=m

ai (2.7)

158

Functions, Sequences, and Relations

is called the sum (or sigma) notation and

n∏

i=m

ai (2.8)

is called the product notation.
In (2.7) or (2.8), i is called the index, m is called the lower limit, and n is called

the upper limit.

Example 2.15 Let a be the sequence defined by an = 2n, n ≥ 1. Then

3∑

i=1

ai = a1 + a2 + a3 = 2+ 4+ 6 = 12,

3∏

i=1

ai = a1 · a2 · a3 = 2 · 4 · 6 = 48.

Example 2.16 The geometric sum

a+ ar + ar2 + · · · + arn

can be rewritten compactly using the sum notation as

n∑

i=0

ari.

It is sometimes useful to change not only the name of the index, but to change
its limits as well. (The process is analogous to changing the variable in an integral in
calculus.)

Example 2.17 Changing the Index and Limits in a Sum

Rewrite the sum
n∑

i=0

irn−i,

replacing the index i by j, where i = j − 1.
Since i = j − 1, the term irn−i becomes

(j − 1)rn−(j−1) = (j − 1)rn−j+1.

Since j = i + 1, when i = 0, j = 1. Thus the lower limit for j is 1. Similarly, when
i = n, j = n+ 1, and the upper limit for j is n+ 1. Therefore,

n∑

i=0

irn−i =
n+1∑

j=1

(j − 1)rn−j+1.

Example 2.18 Let a be the sequence defined by the rule ai = 2(−1)i, i ≥ 0. Find a formula for the
sequence s defined by

sn =
n∑

i=0

ai.

159

Functions, Sequences, and Relations

We find that

sn = 2(−1)0 + 2(−1)1 + 2(−1)2 + · · · + 2(−1)n

= 2− 2+ 2− · · · ± 2 =
{

2 if n is even

0 if n is odd.

Sometimes the sum and product notations are modified to denote sums and products
indexed over arbitrary sets of integers. Formally, if S is a finite set of integers and a is a
sequence,

∑

i∈S
ai

denotes the sum of the elements {ai | i ∈ S}. Similarly,
∏

i∈S
ai

denotes the product of the elements {ai | i ∈ S}.

Example 2.19 If S denotes the set of prime numbers less than 20,

∑

i∈S

1

i
= 1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ 1

17
+ 1

19
= 1.455.

A string is a finite sequence of characters. In programming languages, strings can
be used to denote text. For example, in Java

"Let's read Rolling Stone."

denotes the string consisting of the sequence of characters

Let’s read Rolling Stone.

(The double quotes " mark the start and end of the string.)
Within a computer, bit strings (strings of 0’s and 1’s) represent data and instructions

to execute. As you may learn, the bit string 101111 represents the number 47.

Definition 2.20 A string over X, where X is a finite set, is a finite sequence of elements from X.

Example 2.21 Let X = {a, b, c}. If we let

β1 = b, β2 = a, β3 = a, β4 = c,

we obtain a string over X. This string is written baac.

Since a string is a sequence, order is taken into account. For example, the string
baac is different from the string acab.

Repetitions in a string can be specified by superscripts. For example, the string
bbaaac may be written b2a3c.

The string with no elements is called the null string and is denoted λ. We let X∗

denote the set of all strings over X, including the null string, and we let X+ denote the
set of all nonnull strings over X.

160

Functions, Sequences, and Relations

Example 2.22 Let X = {a, b}. Some elements in X∗ are

λ, a, b, abab, b20a5ba.

The length of a string α is the number of elements in α. The length of α is de-
noted |α|.

Example 2.23 If α = aabab and β = a3b4a32, then

|α| = 5 and |β| = 39.

If α and β are two strings, the string consisting of α followed by β, written αβ, is
called the concatenation of α and β.

Example 2.24 If γ = aab and θ = cabd, then

γθ = aabcabd, θγ = cabdaab, γλ = γ = aab, λγ = γ = aab.

Example 2.25 Let X = {a, b, c}. If we define

f(α, β) = αβ,

where α and β are strings over X, then f is a binary operator on X∗.

A substring of a string α is obtained by selecting some or all consecutive elements
of α. The formal definition follows.

Definition 2.26 A string β is a substring of the string α if there are strings γ and δ with α = γβδ.

Example 2.27 The string β = add is a substring of the string α = aaaddad since, if we take γ = aa

and δ = ad, we have α = γβδ. Note that if β is a substring of α, γ is the part of α that
precedes β (in α), and δ is the part of α that follows β (in α).

Example 2.28 Let X = {a, b}. If α ∈ X∗, let αR denote α written in reverse. For example if α = abb,
αR = bba. Define a function from X∗ to X∗ as f(α) = αR. Prove that f is a bijection.

We must show that f is one-to-one and onto X∗. We first show that f is one-to-one.
We must show that if f(α) = f(β), then α = β. So suppose that f(α) = f(β). Using the
definition of f , we have αR = βR. Reversing each side, we find that α = β. Therefore
f is one-to-one.

Next we show that f is onto X∗. We must show that if β ∈ X∗, there exists α ∈ X∗

such that f(α) = β. So suppose that β ∈ X∗. If we let α = βR, we have

f(α) = αR = (βR)R = β

since if we twice reverse a string, we obtain the original string. Therefore f is onto X∗.
We have proved that f is a bijection.

Example 2.29 Let X = {a, b}. Define a function from X∗×X∗ to X∗ as f(α, β) = αβ. Is f one-to-one?
Is f onto X∗?

161

Functions, Sequences, and Relations

We try to prove that f is one-to-one. If we succeed, this part of the example is
complete. If we fail, we may learn how to construct a counterexample. So suppose that
f(α1, β1) = f(α2, β2). We have to prove that α1 = β1 and α2 = β2. Using the definition
of f , we have

α1β1 = α2β2.

Can we conclude that α1 = β1 and α2 = β2? No! It is possible to concatenate different
strings and produce the same string. For example, baa = α1β1 if we set α1 = b and
β1 = aa. Also, baa = α2β2 if we set α2 = ba and β2 = a. Therefore f is not one-to-one.
We could write up this part of the solution as follows.

If we set α1 = b, β1 = aa, α2 = ba, and β2 = a, then

f(α1, β1) = baa = f(α2, β2).

Since α1 �= α2, f is not one-to-one.
The function f is onto X∗ if given any string γ ∈ X∗, there exist (α, β) ∈ X∗ ×X∗

such that f(α, β) = γ . In words, f is onto X∗ if every string in X∗ is the concatenation
of two strings, each in X∗. Since concatenating a string α with the null string λ does not
change α, every string in X∗ is the concatenation of two strings, each in X∗. This part of
the solution could be written up as follows.

Let α ∈ X∗. Then

f(α, λ) = αλ = α.

Therefore f is onto X∗.

Problem-Solving Tips

A sequence is a special type of function; the domain is a set of consecutive integers. If
a1, a2, . . . is a sequence, the numbers 1, 2, . . . are called indexes. Index 1 identifies the
first element of the sequence a1; index 2 identifies the second element of the sequence
a2; and so on.

In this chapter, “increasing sequence” means strictly increasing; that is, the sequence
a is increasing if an < an+1 for all n. We require that an is strictly less than an+1 for
every n. Allowing equality yields what we call a “nondecreasing sequence.” That is, the
sequence a is nondecreasing if an ≤ an+1 for all n. Similar remarks apply to decreasing
sequences and nonincreasing sequences.

Section Review Exercises

1. Define sequence.

2. What is an index in a sequence?

3. Define increasing sequence.

4. Define decreasing sequence.

5. Define nonincreasing sequence.

6. Define nondecreasing sequence.

7. Define subsequence.

8. What is
∑n

i=m
ai?

9. What is
∏n

i=m
ai?

10. Define string.

11. Define null string.

12. If X is a finite set, what is X∗?

13. If X is a finite set, what is X+?

14. Define length of a string. How is the length of the string α

denoted?

15. Define concatenation of strings. How is the concatenation of
strings α and β denoted?

16. Define substring.

162

Functions, Sequences, and Relations

Exercises

Answer 1–3 for the sequence s defined by

c, d, d, c, d, c.

1. Find s1. 2. Find s4.

3. Write s as a string.

Answer 4–16 for the sequence t defined by

tn = 2n− 1, n ≥ 1.

4. Find t3. 5. Find t7.

6. Find t100. 7. Find t2077.

8. Find
3∑

i=1

ti. 9. Find
7∑

i=3

ti.

10. Find
3∏

i=1

ti. 11. Find
6∏

i=3

ti.

12. Find a formula that represents this sequence as a sequence
whose lower index is 0.

13. Is t increasing? 14. Is t decreasing?

15. Is t nonincreasing? 16. Is t nondecreasing?

Answer 17–24 for the sequence v defined by

vn = n!+ 2, n ≥ 1.

17. Find v3. 18. Find v4.

19. Find
4∑

i=1

vi. 20. Find
3∑

i=3

vi.

21. Is v increasing? 22. Is v decreasing?

23. Is v nonincreasing? 24. Is v nondecreasing?

Answer 25–30 for the sequence

q1 = 8, q2 = 12, q3 = 12, q4 = 28, q5 = 33.

25. Find
4∑

i=2

qi. 26. Find
4∑

k=2

qk .

27. Is q increasing? 28. Is q decreasing?

29. Is q nonincreasing? 30. Is q nondecreasing?

Answer 31–34 for the sequence

τ0 = 5, τ2 = 5.

31. Is τ increasing? 32. Is τ decreasing?

33. Is τ nonincreasing? 34. Is τ nondecreasing?

Answer 35–38 for the sequence

ϒ2 = 5.

35. Is ϒ increasing? 36. Is ϒ decreasing?

37. Is ϒ nonincreasing? 38. Is ϒ nondecreasing?

Answer 39–50 for the sequence a defined by

an = n2 − 3n+ 3, n ≥ 1.

39. Find
4∑

i=1

ai. 40. Find
5∑

j=3

aj .

41. Find
4∑

i=4

ai. 42. Find
6∑

k=1

ak .

43. Find
2∏

i=1

ai. 44. Find
3∏

i=1

ai.

45. Find
3∏

n=2

an. 46. Find
4∏

x=3

ax.

47. Is a increasing? 48. Is a decreasing?

49. Is a nonincreasing? 50. Is a nondecreasing?

Answer 51–58 for the sequence b defined by bn = n(−1)n, n ≥ 1.

51. Find
4∑

i=1

bi. 52. Find
10∑

i=1

bi.

53. Find a formula for the sequence c defined by

cn =
n∑

i=1

bi.

54. Find a formula for the sequence d defined by

dn =
n∏

i=1

bi.

55. Is b increasing? 56. Is b decreasing?

57. Is b nonincreasing? 58. Is b nondecreasing?

Answer 59–66 for the sequence � defined by �n = 3 for all n.

59. Find
3∑

i=1

�i. 60. Find
10∑

i=1

�i.

61. Find a formula for the sequence c defined by

cn =
n∑

i=1

�i.

62. Find a formula for the sequence d defined by

dn =
n∏

i=1

�i.

63. Is � increasing? 64. Is � decreasing?

65. Is � nonincreasing? 66. Is � nondecreasing?

Answer 67–73 for the sequence x defined by

x1 = 2, xn = 3+ xn−1, n ≥ 2.

67. Find
3∑

i=1

xi. 68. Find
10∑

i=1

xi.

163

Functions, Sequences, and Relations

69. Find a formula for the sequence c defined by

cn =
n∑

i=1

xi.

70. Is x increasing? 71. Is x decreasing?

72. Is x nonincreasing? 73. Is x nondecreasing?

Answer 74–81 for the sequence w defined by

wn = 1

n
− 1

n+ 1
, n ≥ 1.

74. Find
3∑

i=1

wi. 75. Find
10∑

i=1

wi.

76. Find a formula for the sequence c defined by

cn =
n∑

i=1

wi.

77. Find a formula for the sequence d defined by

dn =
n∏

i=1

wi.

78. Is w increasing? 79. Is w decreasing?

80. Is w nonincreasing? 81. Is w nondecreasing?

82. Let u be the sequence defined by

u1 = 3, un = 3+ un−1, n ≥ 2.

Find a formula for the sequence d defined by

dn =
n∏

i=1

ui.

Exercises 83–86 refer to the sequence {sn} defined by the rule

sn = 2n− 1, n ≥ 1.

83. List the first seven terms of s.

Answer 84–86 for the subsequence of s obtained by taking the first,
third, fifth, . . . terms.

84. List the first seven terms of the subsequence.

85. Find a formula for the expression nk of Definition 2.11.

86. Find a formula for the kth term of the subsequence.

Exercises 87–90 refer to the sequence {tn} defined by the rule

tn = 2n, n ≥ 1.

87. List the first seven terms of t.

Answer 88–90 for the subsequence of t obtained by taking the first,
second, fourth, seventh, eleventh, . . . terms.

88. List the first seven terms of the subsequence.

89. Find a formula for the expression nk of Definition 2.11.

90. Find a formula for the kth term of the subsequence.

Answer 91–94 using the sequences y and z defined by

yn = 2n − 1, zn = n(n− 1).

91. Find

(
3∑

i=1

yi

)(
3∑

i=1

zi

)
. 92. Find

(
5∑

i=1

yi

)(
4∑

i=1

zi

)
.

93. Find
3∑

i=1

yizi. 94. Find

(
4∑

i=3

yi

)(
4∏

i=2

zi

)
.

Answer 95–102 for the sequence r defined by

rn = 3 · 2n − 4 · 5n, n ≥ 0.

95. Find r0. 96. Find r1.

97. Find r2. 98. Find r3.

99. Find a formula for rp. 100. Find a formula for rn−1.

101. Find a formula for rn−2.

102. Prove that {rn} satisfies

rn = 7rn−1 − 10rn−2, n ≥ 2.

Answer 103–110 for the sequence z defined by

zn = (2+ n)3n, n ≥ 0.

103. Find z0. 104. Find z1.

105. Find z2. 106. Find z3.

107. Find a formula for zi. 108. Find a formula for zn−1.

109. Find a formula for zn−2.

110. Prove that {zn} satisfies

zn = 6zn−1 − 9zn−2, n ≥ 2.

111. Find bn, n = 1, . . . , 6, where

bn = n+ (n− 1)(n− 2)(n− 3)(n− 4)(n− 5).

112. Rewrite the sum
n∑

i=1

i2rn−i,

replacing the index i by k, where i = k + 1.

113. Rewrite the sum
n∑

k=1

Ck−1Cn−k,

replacing the index k by i, where k = i+ 1.

114. Let a and b be sequences, and let

sk =
k∑

i=1

ai.

Prove that
n∑

k=1

akbk =
n∑

k=1

sk(bk − bk+1)+ snbn+1.

This equation, known as the summation-by-parts formula,
is the discrete analog of the integration-by-parts formula in
calculus.

164

Functions, Sequences, and Relations

115. Sometimes we generalize the notion of sequence as defined
in this section by allowing more general indexing. Suppose
that {aij} is a sequence indexed over pairs of positive integers.
Prove that

n∑

i=1

(
n∑

j=i

aij

)
=

n∑

j=1

(
j∑

i=1

aij

)
.

116. Compute the given quantity using the strings

α = baab, β = caaba, γ = bbab.

(a) αβ (b) βα (c) αα

(d) ββ (e) |αβ| (f) |βα|
(g) |αα| (h) |ββ| (i) αλ

(j) λβ (k) αβγ (l) ββγα

117. List all strings over X = {0, 1} of length 2.

118. List all strings over X = {0, 1} of length 2 or less.

119. List all strings over X = {0, 1} of length 3.

120. List all strings over X = {0, 1} of length 3 or less.

121. Find all substrings of the string babc.

122. Find all substrings of the string aabaabb.

123. Use induction to prove that
∑ 1

n1 · n2 · · · nk

= n,

for all n ≥ 1, where the sum is taken over all nonempty
subsets {n1, n2, . . . , nk} of {1, 2, . . . , n}.

124. Suppose that the sequence {an} satisfies a1 = 0, a2 = 1, and

an = (n− 1)(an−1 + an−2) for all n ≥ 3.

Use induction to prove that

an

n!
=

n∑

k=0

(−1)k

k!
for all n ≥ 1.

In Exercises 125–127, x1, x2, . . . , xn, n ≥ 2, are real numbers
satisfying x1 < x2 < · · · < xn, and x is an arbitrary real number.

125. Prove that if x1 ≤ x ≤ xn, then
n∑

i=1

|x− xi| =
n−1∑

i=2

|x− xi| + (xn − x1),

for all n ≥ 3.

126. Prove that if x < x1 or x > xn, then
n∑

i=1

|x− xi| >
n−1∑

i=2

|x− xi| + (xn − x1),

for all n ≥ 3.

127. A median of x1, . . . , xn is the middle value of x1, . . . , xn

when n is odd, and any value between the two middle values
of x1, . . . , xn when n is even. For example, if x1 < x2 <

· · · < x5, the median is x3. If x1 < x2 < x3 < x4, a median
is any value between x2 and x3, including x2 and x3.

Use Exercises 125 and 126 and mathematical induc-
tion to prove that the sum

n∑

i=1

|x− xi|, (2.9)

n ≥ 1, is minimized when x is equal to a median of
x1, . . . , xn.

If we repeat an experiment n times and observe the
values x1, . . . , xn, the sum (2.9) can be interpreted as a mea-
sure of the error in assuming that the correct value is x. This
exercise shows that this error is minimized by choosing x to
be a median of the values x1, . . . , xn. The requested inductive
argument is attributed to J. Lancaster.

128. Prove that
n∑

i=1

n∑

j=1

(i− j)2 = n2(n2 − 1)

6
.

129. Let X = {a, b}. Define a function from X∗ to X∗ as f(α) =
αab. Is f one-to-one? Is f onto X∗? Prove your answers.

130. Let X = {a, b}. Define a function from X∗ to X∗ as f(α) =
αα. Is f one-to-one? Is f onto X∗? Prove your answers.

131. Let X = {a, b}. A palindrome over X is a string α for
which α = αR (i.e., a string that reads the same forward and
backward). An example of a palindrome over X is bbaabb.
Define a function from X∗ to the set of palindromes over
X as f(α) = ααR. Is f one-to-one? Is f onto? Prove your
answers.

Let L be the set of all strings, including the null string, that can be
constructed by repeated application of the following rules:

■ If α ∈ L, then aαb ∈ L and bαa ∈ L.

■ If α ∈ L and β ∈ L, then αβ ∈ L.

For example, ab is in L, for if we take α = λ, then α ∈ L and the
first rule states that ab = aαb ∈ L. Similarly, ba ∈ L. As another
example, aabb is in L, for if we take α = ab, then α ∈ L; by the
first rule, aabb = aαb ∈ L. As a final example, aabbba is in L, for
if we take α = aabb and β = ba, then α ∈ L and β ∈ L; by the
second rule, aabbba = αβ ∈ L.

132. Show that aaabbb is in L.

133. Show that baabab is in L.

134. Show that aab is not in L.

135. Prove that if α ∈ L, α has equal numbers of a’s and b’s.

�136. Prove that if α has equal numbers of a’s and b’s, then α ∈ L.

137. Let {an}∞n=1 be a nondecreasing sequence, which is bounded
above, and let L be the least upper bound of the set
{an | n = 1, 2, . . .}. Prove that for every real number ε > 0,
there exists a positive integer N such that L − ε < an ≤ L

for every n ≥ N. In calculus terminology, a nondecreasing
sequence, which is bounded above, converges to the limit L,
where L is the least upper bound of the set of elements of the
sequence.

165

Functions, Sequences, and Relations

3 ➜ Relations

A relation from one set to another can be thought of as a table that lists which elements
of the first set relate to which elements of the second set (see Table 3.1). Table 3.1 shows
which students are taking which courses. For example, Bill is taking Computer Science
and Art, and Mary is taking Mathematics. In the terminology of relations, we would say
that Bill is related to Computer Science and Art, and that Mary is related to Mathematics.

Of course, Table 3.1 is really just a set of ordered pairs. Abstractly, we define a
relation to be a set of ordered pairs. In this setting, we consider the first element of the
ordered pair to be related to the second element of the ordered pair.

TABLE 3.1 ■ Relation of Students
to Courses

Student Course

Bill CompSci
Mary Math
Bill Art
Beth History
Beth CompSci
Dave Math

Definition 3.1 A (binary) relation R from a set X to a set Y is a subset of the Cartesian product X× Y .
If (x, y) ∈ R, we write x R y and say that x is related to y. If X = Y , we call R a (binary)
relation on X.

A function (see Section 1) is a special type of relation. A function f from X to Y

is a relation from X to Y having the properties:

(a) The domain of f is equal to X.

(b) For each x ∈ X, there is exactly one y ∈ Y such that (x, y) ∈ f .

Example 3.2 If we let

X = {Bill, Mary, Beth, Dave}
and

Y = {CompSci, Math, Art, History},
our relation R of Table 3.1 can be written

R = {(Bill, CompSci), (Mary, Math), (Bill, Art), (Beth, History),

(Beth, CompSci), (Dave, Math)}.

Since (Beth, History) ∈ R, we may write Beth R History.

Example 3.2 shows that a relation can be given by simply specifying which ordered
pairs belong to the relation. Our next example shows that sometimes it is possible to
define a relation by giving a rule for membership in the relation.

166

Functions, Sequences, and Relations

Example 3.3 Let

X = {2, 3, 4} and Y = {3, 4, 5, 6, 7}.
If we define a relation R from X to Y by

(x, y) ∈ R if x divides y,

we obtain

R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}.
If we rewrite R as a table, we obtain

X Y

2 4
2 6
3 3
3 6
4 4

Example 3.4 Let R be the relation on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X. Then

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}.

An informative way to picture a relation on a set is to draw its digraph. To draw the
digraph of a relation on a set X, we first draw dots or vertices to represent the elements
of X. In Figure 3.1, we have drawn four vertices to represent the elements of the set X

of Example 3.4. Next, if the element (x, y) is in the relation, we draw an arrow (called
a directed edge) from x to y. In Figure 3.1, we have drawn directed edges to represent
the members of the relation R of Example 3.4. Notice that an element of the form (x, x)

in a relation corresponds to a directed edge from x to x. Such an edge is called a loop.
There is a loop at every vertex in Figure 3.1.

21

43

Figure 3.1 The digraph of the
relation of Example 3.4.

Example 3.5 The relation R on X = {a, b, c, d} given by the digraph of Figure 3.2 is

R = {(a, a), (b, c), (c, b), (d, d)}.

d

a

c

b

Figure 3.2 The digraph of the
relation of Example 3.5.

167

Functions, Sequences, and Relations

We next define several properties that relations may have.

Definition 3.6 A relation R on a set X is reflexive if (x, x) ∈ R for every x ∈ X.

Example 3.7 The relation R on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X, is reflexive
because for each element x ∈ X, (x, x) ∈ R; specifically, (1, 1), (2, 2), (3, 3), and (4, 4)

are each in R. The digraph of a reflexive relation has a loop at every vertex. Notice that
the digraph of this relation (see Figure 3.1) has a loop at every vertex.

By the generalized De Morgan’s laws for logic, a relation R on X is not reflexive
if there exists x ∈ X such that (x, x) �∈ R.

Example 3.8 The relation

R = {(a, a), (b, c), (c, b), (d, d)}
on X = {a, b, c, d} is not reflexive. For example, b ∈ X, but (b, b) /∈ R. That this relation
is not reflexive can also be seen by looking at its digraph (see Figure 3.2); vertex b does
not have a loop.

Definition 3.9 A relation R on a set X is symmetric if for all x, y ∈ X, if (x, y) ∈ R, then (y, x) ∈ R.

Example 3.10 The relation

R = {(a, a), (b, c), (c, b), (d, d)}
on X = {a, b, c, d} is symmetric because for all x, y, if (x, y) ∈ R, then (y, x) ∈ R. For
example, (b, c) is in R and (c, b) is also in R. The digraph of a symmetric relation has the
property that whenever there is a directed edge from v to w, there is also a directed edge
from w to v. Notice that the digraph of this relation (see Figure 3.2) has the property that
for every directed edge from v to w, there is also a directed edge from w to v.

In symbols, a relation R is symmetric if

∀x∀y[(x, y) ∈ R]→ [(y, x) ∈ R].

Thus R is not symmetric if

¬[∀x∀y[(x, y) ∈ R]→ [(y, x) ∈ R]]. (3.1)

Using the generalized De Morgan’s laws for logic and the fact that¬(p→ q) ≡ p∧¬q,
we find that (3.1) is equivalent to

∃x∃y[[(x, y) ∈ R] ∧ ¬[(y, x) ∈ R]]

or, equivalently,

∃x∃y[[(x, y) ∈ R] ∧ [(y, x) �∈ R]].

In words, a relation R is not symmetric if there exist x and y such that (x, y) is in R and
(y, x) is not in R.

168

Functions, Sequences, and Relations

Example 3.11 The relation R on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X, is
not symmetric. For example, (2, 3) ∈ R, but (3, 2) /∈ R. The digraph of this relation
(see Figure 3.1) has a directed edge from 2 to 3, but there is no directed edge from
3 to 2.

Definition 3.12 A relation R on a set X is antisymmetric if for all x, y ∈ X, if (x, y) ∈ R and (y, x) ∈ R,
then x = y.

Example 3.13 The relation R on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X, is
antisymmetric because for all x, y, if (x, y) ∈ R (i.e., x ≤ y) and (y, x) ∈ R (i.e., y ≤ x),
then x = y.

Example 3.14 It is sometimes more convenient to replace

if (x, y) ∈ R and (y, x) ∈ R, then x = y

in the definition of “antisymmetric” (Definition 3.12) with its logically equivalent con-
trapositive

if x �= y, then (x, y) �∈ R or (y, x) �∈ R

to obtain a logically equivalent characterization of “antisymmetric”: A relation R on a
set X is antisymmetric if for all x, y ∈ X, if x �= y, then (x, y) �∈ R or (y, x) �∈ R.

Using this equivalent definition of “antisymmetric,” we again see that the relation
R on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X, is antisymmetric because
for all x, y, if x �= y, (x, y) �∈ R (i.e., x > y) or (y, x) �∈ R (i.e., y > x).

The equivalent characterization of “antisymmetric” translates for digraphs as fol-
lows. The digraph of an antisymmetric relation has the property that between any two
distinct vertices there is at most one directed edge. Notice that the digraph of the relation
R in the previous paragraph (see Figure 3.1) has at most one directed edge between each
pair of vertices.

Example 3.15 If a relation has no members of the form (x, y), x �= y, we see that the equivalent
characterization of “antisymmetric”

for all x, y ∈ X, if x �= y, then (x, y) �∈ R or (y, x) �∈ R

(see Example 3.14) is trivially true (since the hypothesis x �= y is always false). Thus if
a relation R has no members of the form (x, y), x �= y, R is antisymmetric. For example,

R = {(a, a), (b, b), (c, c)}

on X = {a, b, c} is antisymmetric. The digraph of R shown in Figure 3.3 has at most one
directed edge between each pair of distinct vertices. Notice that R is also reflexive and
symmetric. This example shows that “antisymmetric” is not the same as “not symmetric”
because this relation is in fact both symmetric and antisymmetric.

a b c

Figure 3.3 The digraph of the
relation of Example 3.15.

In symbols, a relation R is antisymmetric if

∀x∀y[(x, y) ∈ R ∧ (y, x) ∈ R]→ [x = y].

169

Functions, Sequences, and Relations

Thus R is not antisymmetric if

¬[∀x∀y[(x, y) ∈ R ∧ (y, x) ∈ R]→ [x = y]]. (3.2)

Using the generalized De Morgan’s laws for logic and the fact that¬(p→ q) ≡ p∧¬q,
we find that (3.2) is equivalent to

∃x∃y[(x, y) ∈ R ∧ (y, x) ∈ R] ∧ ¬[x = y]]

which, in turn, is equivalent to

∃x∃y[(x, y) ∈ R ∧ (y, x) ∈ R ∧ (x �= y)].

In words, a relation R is not antisymmetric if there exist x and y, x �= y, such that (x, y)

and (y, x) are both in R.

Example 3.16 The relation

R = {(a, a), (b, c), (c, b), (d, d)}

on X = {a, b, c, d} is not antisymmetric because both (b, c) and (c, b) are in R. Notice
that in the digraph of this relation (see Figure 3.2) there are two directed edges between
b and c.

Definition 3.17 A relation R on a set X is transitive if for all x, y, z ∈ X, if (x, y) and (y, z) ∈ R, then
(x, z) ∈ R.

Example 3.18 The relation R on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X, is transitive
because for all x, y, z, if (x, y) and (y, z) ∈ R, then (x, z) ∈ R. To formally verify that
this relation satisfies Definition 3.17, we can list all pairs of pairs of the form (x, y) and
(y, z) in R and then verify that in every case, (x, z) ∈ R:

Pairs of Form Pairs of Form

(x, y) (y, z) (x, z) (x, y) (y, z) (x, z)

(1, 1) (1, 1) (1, 1) (2, 2) (2, 2) (2, 2)
(1, 1) (1, 2) (1, 2) (2, 2) (2, 3) (2, 3)
(1, 1) (1, 3) (1, 3) (2, 2) (2, 4) (2, 4)
(1, 1) (1, 4) (1, 4) (2, 3) (3, 3) (2, 3)
(1, 2) (2, 2) (1, 2) (2, 3) (3, 4) (2, 4)
(1, 2) (2, 3) (1, 3) (2, 4) (4, 4) (2, 4)
(1, 2) (2, 4) (1, 4) (3, 3) (3, 3) (3, 3)
(1, 3) (3, 3) (1, 3) (3, 3) (3, 4) (3, 4)
(1, 3) (3, 4) (1, 4) (3, 4) (4, 4) (3, 4)
(1, 4) (4, 4) (1, 4) (4, 4) (4, 4) (4, 4)

Actually, some of the entries in the preceding table were unnecessary. If x = y or
y = z, we need not explicitly verify that the condition

if (x, y) and (y, z) ∈ R, then (x, z) ∈ R

is satisfied since it will automatically be true. Suppose, for example, that x = y and (x, y)

and (y, z) are in R. Since x = y, (x, z) = (y, z) is in R and the condition is satisfied.

170

Functions, Sequences, and Relations

Eliminating the cases x = y and y = z leaves only the following to be explicitly checked
to verify that the relation is transitive:

Pairs of Form

(x, y) (y, z) (x, z)

(1, 2) (2, 3) (1, 3)
(1, 2) (2, 4) (1, 4)
(1, 3) (3, 4) (1, 4)
(2, 3) (3, 4) (2, 4)

The digraph of a transitive relation has the property that whenever there are directed
edges from x to y and from y to z, there is also a directed edge from x to z. Notice that
the digraph of this relation (see Figure 3.1) has this property.

In symbols, a relation R is transitive if

∀x∀y∀z[(x, y) ∈ R ∧ (y, z) ∈ R]→ [(x, z) ∈ R].

Thus R is not transitive if

¬[∀x∀y∀z[(x, y) ∈ R ∧ (y, z) ∈ R]→ [(x, z) ∈ R]]. (3.3)

Using the generalized De Morgan’s laws for logic and the fact that¬(p→ q) ≡ p∧¬q,
we find that (3.3) is equivalent to

∃x∃y∃z[(x, y) ∈ R ∧ (y, z) ∈ R] ∧ ¬[(x, z) ∈ R]

or, equivalently,

∃x∃y∃z[(x, y) ∈ R ∧ (y, z) ∈ R ∧ (x, z) �∈ R].

In words, a relation R is not transitive if there exist x, y, and z such that (x, y) and (y, z)

are in R, but (x, z) is not in R.

Example 3.19 The relation

R = {(a, a), (b, c), (c, b), (d, d)}

on X = {a, b, c, d} is not transitive. For example, (b, c) and (c, b) are in R, but (b, b)

is not in R. Notice that in the digraph of this relation (see Figure 3.2) there are directed
edges from b to c and from c to b, but there is no directed edge from b to b.

Relations can be used to order elements of a set. For example, the relation R defined
on the set of integers by

(x, y) ∈ R if x ≤ y

orders the integers. Notice that the relation R is reflexive, antisymmetric, and transitive.
Such relations are called partial orders.

Definition 3.20 A relation R on a set X is a partial order if R is reflexive, antisymmetric, and
transitive.

171

Functions, Sequences, and Relations

Example 3.21 Since the relation R defined on the positive integers by

(x, y) ∈ R if x divides y

is reflexive, antisymmetric, and transitive, R is a partial order.

If R is a partial order on a set X, the notation x � y is sometimes used to indicate
that (x, y) ∈ R. This notation suggests that we are interpreting the relation as an ordering
of the elements in X.

Suppose that R is a partial order on a set X. If x, y ∈ X and either x � y or y � x,
we say that x and y are comparable. If x, y ∈ X and x �� y and y �� x, we say that x

and y are incomparable. If every pair of elements in X is comparable, we call R a total
order. The less than or equal to relation on the positive integers is a total order since, if
x and y are integers, either x ≤ y or y ≤ x. The reason for the term “partial order” is
that in general some elements in X may be incomparable. The “divides” relation on the
positive integers (see Example 3.21) has both comparable and incomparable elements.
For example, 2 and 3 are incomparable (since 2 does not divide 3 and 3 does not divide 2),
but 3 and 6 are comparable (since 3 divides 6).

One application of partial orders is to task scheduling.

Example 3.22 Task Scheduling

Consider the set T of tasks that must be completed in order to take an indoor flash picture
with a particular camera.

1. Remove lens cap.

2. Focus camera.

3. Turn off safety lock.

4. Turn on flash unit.

5. Push photo button.

Some of these tasks must be done before others. For example, task 1 must be done before
task 2. On the other hand, other tasks can be done in either order. For example, tasks 2
and 3 can be done in either order.

The relation R defined on T by

i R j if i = j or task i must be done before task j

orders the tasks. We obtain

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 5), (2, 5), (3, 5), (4, 5)}.
Since R is reflexive, antisymmetric, and transitive, it is a partial order. A solution to the
problem of scheduling the tasks so that we can take a picture is a total ordering of the
tasks consistent with the partial order. More precisely, we require a total ordering of
the tasks

t1, t2, t3, t4, t5

such that if ti R tj , then i = j or ti precedes tj in the list. Among the solutions are

1, 2, 3, 4, 5

and

3, 4, 1, 2, 5.

172

Functions, Sequences, and Relations

Given a relation R from X to Y , we may define a relation from Y to X by reversing
the order of each ordered pair in R. The inverse relation generalizes the inverse function.
The formal definition follows.

Definition 3.23 Let R be a relation from X to Y . The inverse of R, denoted R−1, is the relation from Y

to X defined by

R−1 = {(y, x) | (x, y) ∈ R}.

Example 3.24 If we define a relation R from X = {2, 3, 4} to Y = {3, 4, 5, 6, 7} by

(x, y) ∈ R if x divides y,

we obtain

R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}.
The inverse of this relation is

R−1 = {(4, 2), (6, 2), (3, 3), (6, 3), (4, 4)}.
In words, we might describe this relation as “is divisible by.”

If we have a relation R1 from X to Y and a relation R2 from Y to Z, we can
form the composition of the relations by applying first relation R1 and then relation R2.
Composition of relations generalizes composition of functions. The formal definition
follows.

Definition 3.25 Let R1 be a relation from X to Y and R2 be a relation from Y to Z. The composition of
R1 and R2, denoted R2 ◦ R1, is the relation from X to Z defined by

R2 ◦ R1 = {(x, z) | (x, y) ∈ R1 and (y, z) ∈ R2 for some y ∈ Y}.

Example 3.26 The composition of the relations

R1 = {(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)}
and

R2 = {(2, u), (4, s), (4, t), (6, t), (8, u)}
is

R2 ◦ R1 = {(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)}.
For example, (1, u) ∈ R2 ◦ R1 because (1, 2) ∈ R1 and (2, u) ∈ R2.

Example 3.27 Suppose that R and S are transitive relations on a set X. Determine whether each of
R ∪ S, R ∩ S, or R ◦ S must be transitive.

We try to prove each of the three statements. If we fail, we will try to determine
where our proof fails and use this information to construct a counterexample.

To prove that R∪ S is transitive, we must show that if (x, y), (y, z) ∈ R∪ S, then
(x, z) ∈ R∪ S. Suppose that (x, y), (y, z) ∈ R∪ S. If (x, y) and (y, z) happen to both be
in R, we could use the fact that R is transitive to conclude that (x, z) ∈ R and, therefore,
(x, z) ∈ R ∪ S. A similar argument shows that if (x, y) and (y, z) happen to both be in

173

Functions, Sequences, and Relations

S, then (x, z) ∈ R ∪ S. But what if (x, y) ∈ R and (y, z) ∈ S? Now the fact that R and
S are transitive seems to be of no help. We try to construct a counterexample in which
R and S are transitive but there exist (x, y) ∈ R and (y, z) ∈ S such that (x, z) �∈ R∪ S.

We put (1, 2) in R and (2, 3) in S and ensure that (1, 3) is not in R ∪ S. In fact,
if R = {(1, 2)}, R is transitive. Similarly, if S = {(2, 3)}, S is transitive. We have our
counterexample. We could write up our solution as follows.

We show that R ∪ S need not be transitive. Let R = {(1, 2)} and S = {(2, 3)}.
Then R and S are transitive, but R ∪ S is not transitive; (1, 2), (2, 3) ∈ R ∪ S, but
(1, 3) �∈ R ∪ S.

Next we turn our attention to R∩S. To prove that R∩S is transitive, we must show
that if (x, y), (y, z) ∈ R ∩ S, then (x, z) ∈ R ∩ S. Suppose that (x, y), (y, z) ∈ R ∩ S.
Then (x, y), (y, z) ∈ R. Since R is transitive, (x, z) ∈ R. Similarly, (x, y), (y, z) ∈ S,
and since S is transitive, (x, z) ∈ S. Therefore (x, z) ∈ R∩S. We have proved that R∩S

is transitive.
Finally, consider R ◦ S. To prove that R ◦ S is transitive, we must show that if

(x, y), (y, z) ∈ R ◦S, then (x, z) ∈ R ◦S. Suppose that (x, y), (y, z) ∈ R ◦S. Then there
exists a such that (x, a) ∈ S and (a, y) ∈ R, and there exists b such that (y, b) ∈ S and
(b, z) ∈ R. We now know that (a, y), (b, z) ∈ R, but the fact that R is transitive does
not allow us to infer anything from (a, y), (b, z) ∈ R. A similar statement applies to S.
We try to construct a counterexample in which R and S are transitive but R ◦ S is not
transitive.

We will arrange for (1, 2), (2, 3) ∈ R ◦ S, but (1, 3) /∈ R ◦ S. In order for (1, 2) ∈
R ◦ S, we must have (1, a) ∈ S and (a, 2) ∈ R, for some a. We put (1, 5) in S and
(5, 2) in R. (We chose a to be a number different from 1, 2, or 3 to avoid a clash with
those numbers. Any number different from 1, 2, 3 would do.) So far, so good! In order
for (2, 3) ∈ R ◦ S, we must have (2, b) ∈ S and (b, 3) ∈ R, for some b. We put (2, 6)

in S and (6, 3) in R. (Again, we chose b = 6 to avoid a clash with the other numbers
already chosen.) Now R = {(5, 2), (6, 3)} and S = {(1, 5), (2, 6)}. Notice that R and S

are transitive. We have our counterexample. We could write up our solution as follows.
We show that R ◦ S need not be transitive. Let R = {(5, 2), (6, 3)} and S =

{(1, 5), (2, 6)}. Then R and S are transitive. Now R◦S = {(1, 2), (2, 3)} is not transitive;
(1, 2), (2, 3) ∈ R ◦ S, but (1, 3) �∈ R ◦ S.

Problem-Solving Tips

To prove that a relation is reflexive, show that (x, x) ∈ R for every x ∈ X. In words, a
relation is reflexive if every element in X is related to itself. Given an arrow diagram,
the relation is reflexive if there is a loop at every vertex.

To prove that a relation R on a set X is not reflexive, find x ∈ X such that (x, x) �∈ R.
Given an arrow diagram, the relation is not reflexive if some vertex has no loop.

To prove that a relation R on a set X is symmetric, show that for all x, y∈X, if
(x, y)∈R, then (y, x)∈R. In words, a relation is symmetric if whenever x is related
to y, then y is related to x. Given an arrow diagram, the relation is symmetric if
whenever there is a directed edge from x to y, there is also a directed edge from
y to x.

To prove that a relation R on a set X is not symmetric, find x, y ∈ X such that
(x, y)∈R and (y, x) �∈ R. Given an arrow diagram, the relation is not symmetric if there
are two distinct vertices x and y with a directed edge from x to y but no directed edge
from y to x.

To prove that a relation R on a set X is antisymmetric, show that for all x, y∈X, if
(x, y)∈R and (y, x)∈R, then x = y. In words, a relation is antisymmetric if whenever
x is related to y and y is related to x, then x = y. An equivalent characterization of

174

Functions, Sequences, and Relations

“antisymmetric” can also be used: Show that for all x, y∈X, if x �= y, then (x, y) �∈R

or (y, x) �∈R. Given an arrow diagram, the relation is antisymmetric if between any two
distinct vertices there is at most one directed edge. Note that “not symmetric” is not
necessarily the same as “antisymmetric.”

To prove that a relation R on a set X is not antisymmetric, find x, y∈X, x �= y, such
that (x, y)∈R and (y, x)∈R. Given an arrow diagram, the relation is not antisymmetric
if there are two distinct vertices x and y and two directed edges, one from x to y and the
other from y to x.

To prove that a relation R on a set X is transitive, show that for all x, y, z∈X, if
(x, y) and (y, z) are in R, then (x, z) is in R. [It suffices to check ordered pairs (x, y) and
(y, z) with x �= y and y �= z.] In words, a relation is transitive if whenever x is related
to y and y is related to z, then x is related to z. Given an arrow diagram, the relation is
transitive if whenever there are directed edges from x to y and from y to z, there is also
a directed edge from x to z.

To prove that a relation R on a set X is not transitive, find x, y, z∈X such that
(x, y) and (y, z) are in R, but (x, z) is not in R. Given an arrow diagram, the relation is
not transitive if there are three distinct vertices x, y, z and directed edges from x to y and
from y to z, but no directed edge from x to z.

A partial order is a relation that is reflexive, antisymmetric, and transitive.
The inverse R−1 of the relation R consists of the elements (y, x), where (x, y)∈R.

In words, x is related to y in R if and only if y is related to x in R−1.
If R1 is a relation from X to Y and R2 is a relation from Y to Z, the composition

of R1 and R2, denoted R2 ◦ R1, is the relation from X to Z defined by

R2 ◦ R1 = {(x, z) | (x, y) ∈ R1 and (y, z) ∈ R2 for some y ∈ Y}.
To compute the composition, find all pairs of the form (x, y) ∈ R1 and (y, z) ∈ R2; then
put (x, z) in R2 ◦ R1.

Section Review Exercises

1. What is a binary relation from X to Y?

2. What is the digraph of a binary relation?

3. Define reflexive relation. Give an example of a reflexive
relation. Give an example of a relation that is not reflexive.

4. Define symmetric relation. Give an example of a symmetric
relation. Give an example of a relation that is not symmetric.

5. Define antisymmetric relation. Give an example of an antisym-
metric relation. Give an example of a relation that is not anti-
symmetric.

6. Define transitive relation. Give an example of a transitive
relation. Give an example of a relation that is not transitive.

7. Define partial order and give an example of a partial order.

8. Define inverse relation and give an example of an inverse
relation.

9. Define composition of relations and give an example of the
composition of relations.

Exercises

In Exercises 1–4, write the relation as a set of ordered pairs.

1.
8840 Hammer
9921 Pliers

452 Paint
2207 Carpet

2.
a 3
b 1
b 4
c 1

175

Functions, Sequences, and Relations

3.
Sally Math
Ruth Physics
Sam Econ

4.
a a

b b

In Exercises 5–8, write the relation as a table.

5. R = {(a, 6), (b, 2), (a, 1), (c, 1)}
6. R = {(Roger, Music), (Pat, History), (Ben, Math),

(Pat, PolySci)}
7. The relation R on {1, 2, 3, 4} defined by (x, y) ∈ R if x2 ≥ y

8. The relation R from the set X of planets to the set Y of integers
defined by (x, y) ∈ R if x is in position y from the sun (nearest
the sun being in position 1, second nearest the sun being in
position 2, and so on)

In Exercises 9–12, draw the digraph of the relation.

9. The relation of Exercise 4 on {a, b, c}
10. The relation R={(1, 2), (2, 1), (3, 3), (1, 1), (2, 2)} on

X = {1, 2, 3}
11. The relation R = {(1, 2), (2, 3), (3, 4), (4, 1)} on {1, 2, 3, 4}
12. The relation of Exercise 7

In Exercises 13–16, write the relation as a set of ordered pairs.

13.

c

a b

d

14.

1 2

3

54

15.
1 2

16.

a b dc

17. Find the inverse (as a set of ordered pairs) of each relation in
Exercises 1–16.

Exercises 18 and 19 refer to the relation R on the set {1, 2, 3, 4, 5}
defined by the rule (x, y) ∈ R if 3 divides x− y.

18. List the elements of R. 19. List the elements of R−1.

20. Repeat Exercises 18 and 19 for the relation R on the set
{1, 2, 3, 4, 5} defined by the rule (x, y) ∈ R if x+ y ≤ 6.

21. Repeat Exercises 18 and 19 for the relation R on the set
{1, 2, 3, 4, 5} defined by the rule (x, y) ∈ R if x = y − 1.

22. Is the relation of Exercise 20 reflexive, symmetric, antisym-
metric, transitive, and/or a partial order?

23. Is the relation of Exercise 21 reflexive, symmetric, antisym-
metric, transitive, and/or a partial order?

In Exercises 24–31, determine whether each relation defined on
the set of positive integers is reflexive, symmetric, antisymmetric,
transitive, and/or a partial order.

24. (x, y) ∈ R if x = y2. 25. (x, y) ∈ R if x > y.

26. (x, y) ∈ R if x ≥ y. 27. (x, y) ∈ R if x = y.

28. (x, y) ∈ R if 3 divides x− y.

29. (x, y) ∈ R if 3 divides x+ 2y.

30. (x, y) ∈ R if x− y = 2. 31. (x, y) ∈ R if |x− y| = 2.

32. Let X be a nonempty set. Define a relation on P(X), the power
set of X, as (A, B)∈R if A⊆B. Is this relation reflexive, sym-
metric, antisymmetric, transitive, and/or a partial order?

33. Prove that a relation R on a set X is antisymmetric if and only
if for all x, y ∈ X, if (x, y) ∈ R and x �= y, then (y, x) �∈ R.

34. Let X be the set of all four-bit strings (e.g., 0011, 0101, 1000).
Define a relation R on X as s1 R s2 if some substring of s1 of
length 2 is equal to some substring of s2 of length 2. Exam-
ples: 0111 R 1010 (because both 0111 and 1010 contain 01).
1110 �R 0001 (because 1110 and 0001 do not share a common
substring of length 2). Is this relation reflexive, symmetric,
antisymmetric, transitive, and/or a partial order?

35. Suppose that Ri is a partial order on Xi, i = 1, 2. Show that
R is a partial order on X1 ×X2 if we define

(x1, x2) R (x′1, x
′
2) if x1 R1 x′1 and x2 R2 x′2.

36. Let R1 and R2 be the relations on {1, 2, 3, 4} given by

R1 = {(1, 1), (1, 2), (3, 4), (4, 2)}
R2 = {(1, 1), (2, 1), (3, 1), (4, 4), (2, 2)}.

List the elements of R1 ◦ R2 and R2 ◦ R1.

Give examples of relations on {1, 2, 3, 4} having the properties
specified in Exercises 37–41.

37. Reflexive, symmetric, and not transitive

38. Reflexive, not symmetric, and not transitive

39. Reflexive, antisymmetric, and not transitive

176

Functions, Sequences, and Relations

40. Not reflexive, symmetric, not antisymmetric, and transitive

41. Not reflexive, not symmetric, and transitive

Let R and S be relations on X. Determine whether each statement
in Exercises 42–54 is true or false. If the statement is true, prove
it; otherwise, give a counterexample.

42. If R is transitive, then R−1 is transitive.

43. If R and S are reflexive, then R ∪ S is reflexive.

44. If R and S are reflexive, then R ∩ S is reflexive.

45. If R and S are reflexive, then R ◦ S is reflexive.

46. If R is reflexive, then R−1 is reflexive.

47. If R and S are symmetric, then R ∪ S is symmetric.

48. If R and S are symmetric, then R ∩ S is symmetric.

49. If R and S are symmetric, then R ◦ S is symmetric.

50. If R is symmetric, then R−1 is symmetric.

51. If R and S are antisymmetric, then R ∪ S is antisymmetric.

52. If R and S are antisymmetric, then R ∩ S is antisymmetric.

53. If R and S are antisymmetric, then R ◦ S is antisymmetric.

54. If R is antisymmetric, then R−1 is antisymmetric.

55. How many relations are there on an n-element set?

In Exercises 56–58, determine whether each relation R defined on
the collection of all nonempty subsets of real numbers is reflexive,
symmetric, antisymmetric, transitive, and/or a partial order.

56. (A, B) ∈ R if for every ε > 0, there exists a ∈ A and b ∈ B

with |a− b| < ε.

57. (A, B) ∈ R if for every a ∈ A and ε > 0, there exists b ∈ B

with |a− b| < ε.

58. (A, B) ∈ R if for every a ∈ A, b ∈ B, and ε > 0, there exists
a′ ∈ A and b′ ∈ B with |a− b′| < ε and |a′ − b| < ε.

59. What is wrong with the following argument, which supposedly
shows that any relation R on X that is symmetric and transitive
is reflexive?

Let x ∈ X. Using symmetry, we have (x, y) and (y, x)

both in R. Since (x, y), (y, x) ∈ R, by transitivity we have
(x, x) ∈ R. Therefore, R is reflexive.

4 ➜ Equivalence Relations

Suppose that we have a set X of 10 balls, each of which is either red, blue, or green (see
Figure 4.1). If we divide the balls into sets R, B, and G according to color, the family
{R, B, G} is a partition of X. (We define a partition of a set X to be a collection S of
nonempty subsets of X such that every element in X belongs to exactly one member
of S.)

A partition can be used to define a relation. If S is a partition of X, we may define
x R y to mean that for some set S ∈ S, both x and y belong to S. For the example of
Figure 4.1, the relation obtained could be described as “is the same color as.” The next
theorem shows that such a relation is always reflexive, symmetric, and transitive.

b r b g r

b r r g g

Figure 4.1 A set of colored balls.

Theorem 4.1 Let S be a partition of a set X. Define x R y to mean that for some set S in S, both x

and y belong to S. Then R is reflexive, symmetric, and transitive.

Proof Let x ∈ X. By the definition of partition, x belongs to some member S of S.
Thus x R x and R is reflexive.

Suppose that x R y. Then both x and y belong to some set S ∈ S. Since both y

and x belong to S, y R x and R is symmetric.
Finally, suppose that x R y and y R z. Then both x and y belong to some set

S ∈ S and both y and z belong to some set T ∈ S. Since y belongs to exactly one
member of S, we must have S = T . Therefore, both x and z belong to S and x R z.
We have shown that R is transitive.

177

Functions, Sequences, and Relations

Example 4.2 Consider the partition

S = {{1, 3, 5}, {2, 6}, {4}}

of X = {1, 2, 3, 4, 5, 6}. The relation R on X given by Theorem 4.1 contains the ordered
pairs (1, 1), (1, 3), and (1, 5) because {1, 3, 5} is in S. The complete relation is

R = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5), (2, 2), (2, 6),

(6, 2), (6, 6), (4, 4)}.

Let S and R be as in Theorem 4.1. If S ∈S, we can regard the members of S

as equivalent in the sense of the relation R, which motivates calling relations that are
reflexive, symmetric, and transitive equivalence relations. In the example of Figure 4.1,
the relation is “is the same color as”; hence equivalent means “is the same color as.”
Each set in the partition consists of all the balls of a particular color.

Definition 4.3 A relation that is reflexive, symmetric, and transitive on a set X is called an equivalence
relation on X.

Example 4.4 The relation R of Example 4.2 is an equivalence relation on {1, 2, 3, 4, 5, 6} because of
Theorem 4.1. We can also verify directly that R is reflexive, symmetric, and transitive.

3

5

1
2

6

4

Figure 4.2 The digraph of the relation of Example 4.2.

The digraph of the relation R of Example 4.2 is shown in Figure 4.2. Again, we
see that R is reflexive (there is a loop at every vertex), symmetric (for every directed
edge from v to w, there is also a directed edge from w to v), and transitive (if there is a
directed edge from x to y and a directed edge from y to z, there is a directed edge from
x to z).

Example 4.5 Consider the relation

R = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),

(5, 1), (5, 3), (5, 5)}

on {1, 2, 3, 4, 5}. The relation is reflexive because (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) ∈ R.
The relation is symmetric because whenever (x, y) is in R, (y, x) is also in R. Finally, the
relation is transitive because whenever (x, y) and (y, z) are in R, (x, z) is also in R. Since
R is reflexive, symmetric, and transitive, R is an equivalence relation on {1, 2, 3, 4, 5}.

178

Functions, Sequences, and Relations

Example 4.6 The relation R on X = {1, 2, 3, 4} defined by (x, y) ∈ R if x ≤ y, x, y ∈ X, is not
an equivalence relation because R is not symmetric. [For example, (2, 3) ∈ R, but
(3, 2) /∈ R.] The relation R is reflexive and transitive.

Example 4.7 The relation

R = {(a, a), (b, c), (c, b), (d, d)}

on X = {a, b, c, d} is not an equivalence relation because R is neither reflexive nor
transitive. [It is not reflexive because, for example, (b, b) /∈ R. It is not transitive because,
for example, (b, c) and (c, b) are in R, but (b, b) is not in R.]

Given an equivalence relation on a set X, we can partition X by grouping related
members of X. Elements related to one another may be thought of as equivalent. The
next theorem gives the details.

Theorem 4.8 Let R be an equivalence relation on a set X. For each a ∈ X, let

[a] = {x ∈ X | x R a}.
(In words, [a] is the set of all elements in X that are related to a.) Then

S = {[a] | a ∈ X}
is a partition of X.

Proof We must show that every element in X belongs to exactly one member of S.
Let a ∈ X. Since a R a, a ∈ [a]. Thus every element in X belongs to at least

one member of S. It remains to show that every element in X belongs to exactly one
member of S; that is,

if x ∈ X and x ∈ [a] ∩ [b], then [a] = [b]. (4.1)

We first show that for all c, d ∈ X, if c R d, then [c] = [d]. Suppose that c R d.
Let x ∈ [c]. Then x R c. Since c R d and R is transitive, x R d. Therefore, x ∈ [d] and
[c] ⊆ [d]. The argument that [d] ⊆ [c] is the same as that just given, but with the
roles of c and d interchanged. Thus [c] = [d].

We now prove (4.1). Assume that x ∈ X and x ∈ [a] ∩ [b]. Then x R a and
x R b. Our preceding result shows that [x] = [a] and [x] = [b]. Thus [a] = [b].

Definition 4.9 Let R be an equivalence relation on a set X. The sets [a] defined in Theorem 4.8 are
called the equivalence classes of X given by the relation R.

Example 4.10 In Example 4.4, we showed that the relation

R = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5), (2, 2), (2, 6),

(6, 2), (6, 6), (4, 4)}

on X = {1, 2, 3, 4, 5, 6} is an equivalence relation. The equivalence class [1] containing
1 consists of all x such that (x, 1) ∈ R. Therefore,

[1] = {1, 3, 5}.

179

Functions, Sequences, and Relations

The remaining equivalence classes are found similarly:

[3] = [5] = {1, 3, 5}, [2] = [6] = {2, 6}, [4] = {4}.

Example 4.11 The equivalence classes appear quite clearly in the digraph of an equivalence relation.
The three equivalence classes of the relation R of Example 4.10 appear in the digraph
of R (shown in Figure 4.2) as the three subgraphs whose vertices are {1, 3, 5}, {2, 6},
and {4}. A subgraph G that represents an equivalence class is a largest subgraph of the
original digraph having the property that for any vertices v and w in G, there is a directed
edge from v to w. For example, if v, w ∈ {1, 3, 5}, there is a directed edge from v to w.
Moreover, no additional vertices can be added to 1, 3, 5, and so the resulting vertex set
has a directed edge between each pair of vertices.

Example 4.12 There are two equivalence classes for the equivalence relation

R = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),

(5, 1), (5, 3), (5, 5)}

on {1, 2, 3, 4, 5} of Example 4.5, namely,

[1] = [3] = [5] = {1, 3, 5}, [2] = [4] = {2, 4}.

Example 4.13 We can readily verify that the relation

R = {(a, a), (b, b), (c, c)}

on X = {a, b, c} is reflexive, symmetric, and transitive. Thus R is an equivalence
relation. The equivalence classes are

[a] = {a}, [b] = {b}, [c] = {c}.

Example 4.14 Let X = {1, 2, . . . , 10}. Define x R y to mean that 3 divides x− y. We can readily verify
that the relation R is reflexive, symmetric, and transitive. Thus R is an equivalence
relation on X.

Let us determine the members of the equivalence classes. The equivalence
class [1] consists of all x with x R 1. Thus

[1] = {x ∈ X | 3 divides x− 1} = {1, 4, 7, 10}.

Similarly,

[2] = {2, 5, 8}, [3] = {3, 6, 9}.

These three sets partition X. Note that

[1] = [4] = [7] = [10], [2] = [5] = [8], [3] = [6] = [9].

For this relation, equivalence is “has the same remainder when divided by 3.”

Example 4.15 We show that if a relation R on a set X is symmetric and transitive but not reflexive,
the collection of sets [a], a ∈ X, defined in Theorem 4.8 does not partition X (see also
Exercises 44–48).

180

Functions, Sequences, and Relations

Let R be a relation on a set X that is symmetric and transitive but not reflexive.
We define “pseudo equivalence classes” as in Theorem 4.8:

[a] = {x ∈ X | x R a}.
Since R is not reflexive, there exists b ∈ X such that (b, b) �∈ R. We show that b is
not in any pseudo equivalence class. Suppose, by way of contradiction, that b ∈ [a] for
some a ∈ X. Then (b, a) ∈ R. Since R is symmetric, (a, b) ∈ R. Since R is transitive,
(b, b) ∈ R. But we assumed that (b, b) �∈ R. This contradiction shows that b is not in
any pseudo equivalence class. Thus the collection of pseudo equivalence classes does
not partition X.

We close this section by proving a special result. The proof is illustrated in
Figure 4.3.

X1
(r elements)

X2
(r elements)

Xk
(r elements)

�X� � rk

X

Figure 4.3 The proof of Theorem 4.16.

Theorem 4.16 Let R be an equivalence relation on a finite set X. If each equivalence class has r

elements, there are |X|/r equivalence classes.

Proof Let X1, X2, . . . , Xk denote the distinct equivalence classes. Since these sets
partition X,

|X| = |X1| + |X2| + · · · + |Xk| = r + r + · · · + r = kr

and the conclusion follows.

Problem-Solving Tips

An equivalence relation is a relation that is reflexive, symmetric and transitive. To prove
that a relation is an equivalence relation, you need to verify that these three properties
hold (see Problem-Solving Tips for Section 3).

An equivalence relation on a set X partitions X into subsets. (“Partitions” means
that every x in X belongs to exactly one of the subsets of the partition.) The subsets
making up the partition can be determined in the following way. Choose x1 ∈ X. Find
the set, denoted [x1], of all elements related to x1. Choose another element x2 ∈ X that is
not related to x1. Find the set [x2] of all elements related to x2. Continue in this way until
all the elements of X have been assigned to a set. The sets [xi] are called the equivalence
classes. The partition is

[x1], [x2],

The elements of [xi] are equivalent in the sense that they are all related. For example, the
relation R, defined by x R y if x and y are the same color, partitions the set into subsets
where each subset contains elements that are all the same color. Within a subset, the
elements are equivalent in the sense that they are all the same color.

181

Functions, Sequences, and Relations

In the digraph of an equivalence relation, an equivalence class is a largest subgraph
of the original digraph having the property that for any vertices v and w in G, there is a
directed edge from v to w.

A partition of a set gives rise to an equivalence relation. If X1, . . . , Xn is a partition
of a set X and we define x R y if for some i, x and y both belong to Xi, then R is an
equivalence relation on X. The equivalence classes turn out to be X1, . . . , Xn. Thus,
“equivalence relation” and “partition of a set” are different views of the same situation.
An equivalence relation on X gives rise to a partition of X (namely, the equivalence
classes), and a partition of X gives rise to an equivalence relation (namely, x is related
to y if x and y are in the same set in the partition). This latter fact can be used to solve
certain problems. If you are asked to find an equivalence relation, you can either find
the equivalence relation directly or construct a partition and then use the associated
equivalence relation. Similarly, if you are asked to find a partition, you can either find
the partition directly or construct an equivalence relation and then take the equivalence
classes as your partition.

Section Review Exercises

1. Define equivalence relation. Give an example of an equivalence
relation. Give an example of a relation that is not an equivalence
relation.

2. Define equivalence class. How do we denote an equivalence

class? Give an example of an equivalence class for your equiv-
alence relation of Exercise 1.

3. Explain the relationship between a partition of a set and an
equivalence relation.

Exercises

In Exercises 1–8, determine whether the given relation is an
equivalence relation on {1, 2, 3, 4, 5}. If the relation is an equiv-
alence relation, list the equivalence classes. (In Exercises 5–8,
x, y ∈ {1, 2, 3, 4, 5}.)

1. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1)}
2. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1), (3, 4), (4, 3)}
3. {(1, 1), (2, 2), (3, 3), (4, 4)}
4. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 5), (5, 1), (3, 5), (5, 3),

(1, 3), (3, 1)}
5. {(x, y) | 1 ≤ x ≤ 5 and 1 ≤ y ≤ 5}
6. {(x, y) | 4 divides x− y}
7. {(x, y) | 3 divides x+ y} 8. {(x, y) | x divides 2− y}

In Exercises 9–14, determine whether the given relation is an equiv-
alence relation on the set of all people.

9. {(x, y) | x and y are the same height}
10. {(x, y) | x and y have, at some time, lived in the same country}
11. {(x, y) | x and y have the same first name}
12. {(x, y) | x is taller than y}
13. {(x, y) | x and y have the same parents}
14. {(x, y) | x and y have the same color hair}
In Exercises 15–20, list the members of the equivalence relation on
{1, 2, 3, 4} defined (as in Theorem 4.1) by the given partition. Also,
find the equivalence classes [1], [2], [3], and [4].

15. {{1, 2}, {3, 4}} 16. {{1}, {2}, {3, 4}}
17. {{1}, {2}, {3}, {4}} 18. {{1, 2, 3}, {4}}
19. {{1, 2, 3, 4}} 20. {{1}, {2, 4}, {3}}
In Exercises 21–23, let X={1, 2, 3, 4, 5}, Y ={3, 4}, and C=
{1, 3}. Define the relation R on P(X), the set of all subsets of
X, as

A R B if A ∪ Y = B ∪ Y.

21. Show that R is an equivalence relation.

22. List the elements of [C], the equivalence class containing C.

23. How many distinct equivalence classes are there?

24. Let

X = {San Francisco, Pittsburgh, Chicago, San Diego,

Philadelphia, Los Angeles}.

Define a relation R on X as x R y if x and y are in the same
state.

(a) Show that R is an equivalence relation.

(b) List the equivalence classes of X.

25. If an equivalence relation has only one equivalence class, what
must the relation look like?

26. If R is an equivalence relation on a finite set X and |X| = |R|,
what must the relation look like?

182

Functions, Sequences, and Relations

27. By listing ordered pairs, give an example of an equivalence
relation on {1, 2, 3, 4, 5, 6} having exactly four equivalence
classes.

28. How many equivalence relations are there on the set {1, 2, 3}?
29. Let R be a reflexive relation on X satisfying: for all x, y, z ∈ X,

if x R y and y R z, then z R x. Prove that R is an equivalence
relation.

30. Define a relation R on RR, the set of functions from R to R, by
f R g if f(0) = g(0). Prove that R is an equivalence relation
on RR. Let f(x) = x for all x ∈ R. Describe [f].

31. Let X = {1, 2, . . . , 10}. Define a relation R on X × X by
(a, b) R (c, d) if a+ d = b+ c.

(a) Show that R is an equivalence relation on X×X.

(b) List one member of each equivalence class of X×X.

32. Let X = {1, 2, . . . , 10}. Define a relation R on X × X by
(a, b) R (c, d) if ad = bc.

(a) Show that R is an equivalence relation on X×X.

(b) List one member of each equivalence class of X×X.

(c) Describe the relation R in familiar terms.

33. Let R be a reflexive and transitive relation on X. Show that
R ∩ R−1 is an equivalence relation on X.

34. Let R1 and R2 be equivalence relations on X.

(a) Show that R1 ∩ R2 is an equivalence relation on X.

(b) Describe the equivalence classes of R1 ∩ R2 in terms of
the equivalence classes of R1 and the equivalence classes
of R2.

35. Suppose that S is a collection of subsets of a set X and X =
∪S. (It is not assumed that the family S is pairwise disjoint.)
Define x R y to mean that for some set S ∈ S, both x and y are
in S. Is R necessarily reflexive, symmetric, or transitive?

36. Let S be a unit square including the interior, as shown in the
following figure.

(0, 1)

(0, 0)

(1, 1)

(1, 0)

S

x

y

Define a relation R on S by (x, y) R (x′, y′) if (x= x′
and y= y′), or (y= y′ and x= 0 and x′ = 1), or (y= y′ and
x= 1 and x′ = 0).

(a) Show that R is an equivalence relation on S.

(b) If points in the same equivalence class are glued together,
how would you describe the figure formed?

37. Let S be a unit square including the interior (as in Exer-
cise 36). Define a relation R′ on S by (x, y) R p(x′, y′) if

(x = x′ and y = y′), or (y = y′ and x = 0 and x′ = 1),
or (y = y′ and x = 1 and x′ = 0), or (x = x′ and y = 0
and y′ = 1), or (x = x′ and y = 1 and y′ = 0). Let

R = R′ ∪ {((0, 0), (1, 1)), ((0, 1), (1, 0)),

((1, 0), (0, 1)), ((1, 1), (0, 0))}.
(a) Show that R is an equivalence relation on S.

(b) If points in the same equivalence class are glued together,
how would you describe the figure formed?

38. Let f be a function from X to Y . Define a relation R on X by

x R y if f(x) = f(y).

Show that R is an equivalence relation on X.

39. Let f be a characteristic function in X. (“Characteristic func-
tion” is defined before Exercise 82, Section 1.) Define a relation
R on X by x R y if f(x) = f(y). According to the preceding
exercise, R is an equivalence relation. What are the equiva-
lence classes?

40. Let f be a function from X onto Y . Let

S = {f−1({y}) | y ∈ Y}.
[The definition of f−1(B), where B is a set, precedes Exer-
cise 70, Section 1.] Show that S is a partition of X. Describe
an equivalence relation that gives rise to this partition.

41. Let R be an equivalence relation on a set A. Define a function
f from A to the set of equivalence classes of A by the rule

f(x) = [x].

When do we have f(x) = f(y)?

42. Let R be an equivalence relation on a set A. Suppose that g

is a function from A into a set X having the property that if
x R y, then g(x) = g(y). Show that

h([x]) = g(x)

defines a function from the set of equivalence classes of A into
X. [What needs to be shown is that h uniquely assigns a value
to [x]; that is, if [x] = [y], then g(x) = g(y).]

43. Suppose that a relation R on a set X is symmetric and transi-
tive but not reflexive. Suppose, in particular, that (b, b) �∈ R.
Prove that the pseudo equivalence class [b] (see Example 4.15)
is empty.

44. Prove that if a relation R on a set X is not symmetric but
transitive, the collection of pseudo equivalence classes (see
Example 4.15) does not partition X.

45. Prove that if a relation R on a set X is reflexive but not symmet-
ric, the collection of pseudo equivalence classes (see Example
4.15) does not partition X.

46. Prove that if a relation R on a set X is reflexive but not transi-
tive, the collection of pseudo equivalence classes (see Example
4.15) does not partition X.

47. Give an example of a set X and a relation R on X that is not
reflexive, not symmetric, and not transitive, but for which the
collection of pseudo equivalence classes (see Example 4.15)
partitions X.

183

Functions, Sequences, and Relations

48. Give an example of a set X and a relation R on X that is
not reflexive, symmetric, and not transitive, but for which the
collection of pseudo equivalence classes (see Example 4.15)
partitions X.

49. Let X denote the set of sequences with finite domain. Define a
relation R on X as s R t if |domain s| = |domain t| and, if the
domain of s is {m, m + 1, . . . , m + k} and the domain of t is
{n, n+ 1, . . . , n+ k}, sm+i = tn+i for i = 0, . . . , k.

(a) Show that R is an equivalence relation.

(b) Explain in words what it means for two sequences in X to
be equivalent under the relation R.

(c) Since a sequence is a function, a sequence is a set of
ordered pairs. Two sequences are equal if the two sets of
ordered pairs are equal. Contrast the difference between
two equivalent sequences in X and two equal sequences
in X.

Let R be a relation on a set X. Define

ρ(R) = R ∪ {(x, x) | x ∈ X}
σ(R) = R ∪ R−1

Rn = R ◦ R ◦ R ◦ · · · ◦ R (nR’s)

τ(R) = ∪ {Rn | n = 1, 2, . . .}.
The relation τ(R) is called the transitive closure of R.

50. For the relations R1 and R2 of Exercise 36, Section 3, find
ρ(Ri), σ(Ri), τ(Ri), and τ(σ(ρ(Ri))) for i = 1, 2.

51. Show that ρ(R) is reflexive.

52. Show that σ(R) is symmetric.

53. Show that τ(R) is transitive.

�54. Show that τ(σ(ρ(R))) is an equivalence relation containing R.

�55. Show that τ(σ(ρ(R))) is the smallest equivalence relation on X

containing R; that is, show that if R′ is an equivalence relation
on X and R′ ⊇ R, then R′ ⊇ τ(σ(ρ(R))).

�56. Show that R is transitive if and only if τ(R) = R.

In Exercises 57–63, if the statement is true for all relations R1

and R2 on an arbitrary set X, prove it; otherwise, give a
counterexample.

57. ρ(R1 ∪ R2) = ρ(R1) ∪ ρ(R2)

58. σ(R1 ∩ R2) = σ(R1) ∩ σ(R2)

59. τ(R1 ∪ R2) = τ(R1) ∪ τ(R2)

60. τ(R1 ∩ R2) = τ(R1) ∩ τ(R2)

61. σ(τ(R1)) = τ(σ(R1))

62. σ(ρ(R1)) = ρ(σ(R1))

63. ρ(τ(R1)) = τ(ρ(R1))

If X and Y are sets, we define X to be equivalent to Y if there is a
one-to-one, onto function from X to Y .

64. Show that set equivalence is an equivalence relation.

65. Show that the sets {1, 2, . . .} and {2, 4, . . .} are equivalent.

�66. Show that for any set X, X is not equivalent to P(X), the power
set of X.

Problem-Solving Corner Equivalence Relations

Problem
Answer the following questions for the relation R

defined on the set of eight-bit strings by s1 R s2, pro-
vided that the first four bits of s1 and s2 coincide.

(a) Show that R is an equivalence relation.

(b) List one member of each equivalence class.

(c) How many equivalence classes are there?

Attacking the Problem
Let’s begin by looking at some specific eight-bit strings
that are related according to the relation R. Let’s take
an arbitrary string 01111010 and find strings related to
it. A string s is related to 01111010 if the first four bits
of 01111010 and s coincide. This means that s must
begin 0111 and the last four bits can be anything. An
example is s = 01111000.

Let’s list all of the strings related to 01111010. In
doing so, we must be careful to follow 0111 with every
possible four-bit string:

01110000, 01110001, 01110010, 01110011,

01110100, 01110101, 01110110, 01110111,

01111000, 01111001, 01111010, 01111011,

01111100, 01111101, 01111110, 01111111.

Assuming for the moment that R is an equivalence
relation, the equivalence class containing 01111010,
denoted [01111010], consists of all strings related to
01111010. Therefore, what we have just computed are
the members of [01111010].

Notice that if we take any string in [01111010],
say 01111100, and compute its equivalence class
[01111100], we will obtain exactly the same set
of strings—namely, the set of eight-bit strings that
begin 0111.

184

Functions, Sequences, and Relations

To obtain a different example, we would have to start
with a string whose first four bits are different from
0111, say 1011. As an example, the strings related to
10110100 are

10110000, 10110001, 10110010, 10110011,

10110100, 10110101, 10110110, 10110111,

10111000, 10111001, 10111010, 10111011,

10111100, 10111101, 10111110, 10111111.

What we have just computed are the members of
[10110100]. We see that [01111010] and [10110100]
have no members in common. It is always the case
that two equivalence classes are identical or have no
members in common (see Theorem 4.8).

Before reading on, compute the members of some
other equivalence class.

Finding a Solution
To show that R is an equivalence relation, we must
show that R is reflexive, symmetric, and transitive (see
Definition 4.3). For each property, we will go directly
to the definition and check that the conditions specified
in the definition hold.

For R to be reflexive, we must have s R s for every
eight-bit string s. For s R s to be true, the first four bits
of s and s must coincide. This is certainly the case!

For R to be symmetric, for all eight-bit strings s1

and s2, if s1 R s2, then s2 R s1. Using the definition of
R, we may translate this condition to: If the first four
bits of s1 and s2 coincide, then the first four bits of s2

and s1 coincide. This is also certainly the case!
For R to be transitive, for all eight-bit strings s1, s2,

and s3, if s1 R s2 and s2 R s3, then s1 R s3. Again using
the definition of R, we may translate this condition to:
If the first four bits of s1 and s2 coincide and the first
four bits of s2 and s3 coincide, then the first four bits
of s1 and s3 coincide. This too is certainly the case! We
have proved that R is an equivalence relation.

In our earlier discussion, we found that each dis-
tinct four-bit string determines an equivalence class.
For example, the string 0111 determines the equiva-
lence class consisting of all eight-bit strings that begin
0111. Therefore, the number of equivalence classes is
equal to the number of four-bit strings. We can simply
list them all

0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111

and then count them. There are 16 equivalence classes.

Consider the problem of listing one member of
each equivalence class. The 16 four-bit strings listed
previously determine the 16 equivalence classes. The
first string 0000 determines the equivalence class con-
sisting of all eight-bit strings that begin 0000; the
second string 0001 determines the equivalence class
consisting of all eight-bit strings that begin 0001; and
so on. Thus to list one member of each equivalence
class, we simply need to append some four-bit string
to each of the strings in the previous list:

00000000, 00010000, 00100000, 00110000,

01000000, 01010000, 01100000, 01110000,

10000000, 10010000, 10100000, 10110000,

11000000, 11010000, 11100000, 11110000.

Formal Solution
(a) We have already presented a formal proof that

R is an equivalence relation.

(b)

00000000, 00010000, 00100000, 00110000,

01000000, 01010000, 01100000, 01110000,

10000000, 10010000, 10100000, 10110000,

11000000, 11010000, 11100000, 11110000

lists one member of each equivalence class.

(c) There are 16 equivalence classes.

Summary of Problem-Solving Techniques
■ List elements that are related.

■ Compute some equivalence classes; that is, list
all elements related to a particular element.

■ It may help to solve the parts of a problem in a dif-
ferent order than that given in the problem state-
ment. In our example, it was helpful in looking
at some concrete cases to assume that the rela-
tion was an equivalence relation before actually
proving that it was an equivalence relation.

■ To show that a particular relation R is an
equivalence relation, go directly to the defini-
tions. Show that R is reflexive, symmetric, and
transitive by directly verifying that R satisfies
the definitions of reflexive, symmetric, and
transitive.

■ If the problem is to count the number of items sat-
isfying some property (e.g., in our problem we
were asked to count the number of equivalence
classes) and the number is sufficiently small, just
list all the items and count them directly.

185

Functions, Sequences, and Relations

Comments
In programming languages, usually only some speci-
fied number of characters of the names of variables and
special terms (technically these are called identifiers)
are significant. For example, in the C programming
language, only the first 31 characters of identifiers are
significant. This means that if two identifiers begin with

the same 31 characters, the system is allowed to con-
sider them identical.

If we define a relation R on the set of C identifiers
by s1 R s2, provided that the first 31 characters of s1

and s2 coincide, then R is an equivalence relation. An
equivalence class consists of identifiers that the system
is allowed to consider identical.

5 ➜ Matrices of Relations

A matrix is a convenient way to represent a relation R from X to Y . Such a representation
can be used by a computer to analyze a relation. We label the rows with the elements of
X (in some arbitrary order), and we label the columns with the elements of Y (again, in
some arbitrary order). We then ,set the entry in row x and column y to 1 if x R y and to 0
otherwise. This matrix is called the matrix of the relation R (relative to the orderings
of X and Y).

Example 5.1 The matrix of the relation

R = {(1, b), (1, d), (2, c), (3, c), (3, b), (4, a)}
from X = {1, 2, 3, 4} to Y = {a, b, c, d} relative to the orderings 1, 2, 3, 4 and a, b, c, d is

1
2
3
4

a b c d⎛

⎜⎜⎝

0 1 0 1
0 0 1 0
0 1 1 0
1 0 0 0

⎞

⎟⎟⎠ .

Example 5.2 The matrix of the relation R of Example 5.1 relative to the orderings 2, 3, 4, 1 and
d, b, a, c is

2
3
4
1

d b a c⎛

⎜⎜⎝

0 0 0 1
0 1 0 1
0 0 1 0
1 1 0 0

⎞

⎟⎟⎠ .

Obviously, the matrix of a relation from X to Y is dependent on the orderings of X

and Y .

Example 5.3 The matrix of the relation R from {2, 3, 4} to {5, 6, 7, 8}, relative to the orderings 2, 3,
4 and 5, 6, 7, 8, defined by

x R y if x divides y

is

2
3
4

5 6 7 8⎛

⎝
0 1 0 1
0 1 0 0
0 0 0 1

⎞

⎠ .

186

Functions, Sequences, and Relations

When we write the matrix of a relation R on a set X (i.e., from X to X), we use
the same ordering for the rows as we do for the columns.

Example 5.4 The matrix of the relation

R = {(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)}

on {a, b, c, d}, relative to the ordering a, b, c, d, is

a

b

c

d

a b c d⎛

⎜⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎞

⎟⎟⎠ .

Notice that the matrix of a relation on a set X is always a square matrix.
We can quickly determine whether a relation R on a set X is reflexive by examining

the matrix A of R (relative to some ordering). The relation R is reflexive if and only if
A has 1’s on the main diagonal. (The main diagonal of a square matrix consists of the
entries on a line from the upper left to the lower right.) The relation R is reflexive if and
only if (x, x) ∈ R for all x ∈ X. But this last condition holds precisely when the main
diagonal consists of 1’s. Notice that the relation R of Example 5.4 is reflexive and that
the main diagonal of the matrix of R consists of 1’s.

We can also quickly determine whether a relation R on a set X is symmetric by
examining the matrix A of R (relative to some ordering). The relation R is symmetric
if and only if for all i and j, the ijth entry of A is equal to the jith entry of A. (Less
formally, R is symmetric if and only if A is symmetric about the main diagonal.) The
reason is that R is symmetric if and only if whenever (x, y) is in R, (y, x) is also in R. But
this last condition holds precisely when A is symmetric about the main diagonal. Notice
that the relation R of Example 5.4 is symmetric and that the matrix of R is symmetric
about the main diagonal.

We can also quickly determine whether a relation R is antisymmetric by examining
the matrix of R (relative to some ordering) (see Exercise 11).

We conclude by showing how matrix multiplication relates to composition of
relations and how we can use the matrix of a relation to test for transitivity.

Example 5.5 Let R1 be the relation from X = {1, 2, 3} to Y = {a, b} defined by

R1 = {(1, a), (2, b), (3, a), (3, b)},

and let R2 be the relation from Y to Z = {x, y, z} defined by

R2 = {(a, x), (a, y), (b, y), (b, z)}.

The matrix of R1 relative to the orderings 1, 2, 3 and a, b is

A1 =
1
2
3

a b⎛

⎝
1 0
0 1
1 1

⎞

⎠ ,

187

Functions, Sequences, and Relations

and the matrix of R2 relative to the orderings a, b and x, y, z is

A2 = a

b

x y z(
1 1 0
0 1 1

)
.

The product of these matrices is

A1A2 =
⎛

⎝
1 1 0
0 1 1
1 2 1

⎞

⎠ .

Let us interpret this product.
The ikth entry in A1A2 is computed as

i

a b(
s t

)
k(
u

v

)
= su+ tv.

If this value is nonzero, then either su or tv is nonzero. Suppose that su �= 0. (The
argument is similar if tv �= 0.) Then s �= 0 and u �= 0. This means that (i, a) ∈ R1 and
(a, k) ∈ R2. This implies that (i, k) ∈ R2 ◦ R1. We have shown that if the ikth entry in
A1A2 is nonzero, then (i, k) ∈ R2 ◦ R1. The converse is also true, as we now show.

Assume that (i, k) ∈ R2 ◦ R1. Then, either

1. (i, a) ∈ R1 and (a, k) ∈ R2

or

2. (i, b) ∈ R1 and (b, k) ∈ R2.

If 1 holds, then s = 1 and u = 1, so su = 1 and su+ tv is nonzero. Similarly, if 2 holds,
tv = 1 and again we have su+ tv nonzero. We have shown that if (i, k) ∈ R2 ◦R1, then
the ikth entry in A1A2 is nonzero.

We have shown that (i, k) ∈ R2◦R1 if and only if the ikth entry in A1A2 is nonzero;
thus A1A2 is “almost” the matrix of the relation R2 ◦ R1. To obtain the matrix of the
relation R2 ◦R1, we need only change all nonzero entries in A1A2 to 1. Thus the matrix
of the relation R2 ◦ R1, relative to the previously chosen orderings 1, 2, 3 and x, y, z, is

x y z

1
2
3

⎛

⎝
1 1 0
0 1 1
1 1 1

⎞

⎠ .

The argument given in Example 5.5 holds for any relations. We summarize this
result as Theorem 5.6.

Theorem 5.6 Let R1 be a relation from X to Y and let R2 be a relation from Y to Z. Choose
orderings of X, Y , and Z. Let A1 be the matrix of R1 and let A2 be the matrix of R2

with respect to the orderings selected. The matrix of the relation R2 ◦R1 with respect
to the orderings selected is obtained by replacing each nonzero term in the matrix
product A1A2 by 1.

Proof The proof is sketched before the statement of the theorem.

188

Functions, Sequences, and Relations

Theorem 5.6 provides a quick test for determining whether a relation is transitive.
If A is the matrix of R (relative to some ordering), we compute A2. We then compare A

and A2. The relation R is transitive if and only if whenever entry i, j in A2 is nonzero,
entry i, j in A is also nonzero. The reason is that entry i, j in A2 is nonzero if and only
if there are elements (i, k) and (k, j) in R (see the proof of Theorem 5.6). Now R is
transitive if and only if whenever (i, k) and (k, j) are in R, then (i, j) is in R. But (i, j)

is in R if and only if entry i, j in A is nonzero. Therefore, R is transitive if and only if
whenever entry i, j in A2 is nonzero, entry i, j in A is also nonzero.

Example 5.7 The matrix of the relation

R = {(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)}
on {a, b, c, d}, relative to the ordering a, b, c, d, is

A =

⎛

⎜⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎞

⎟⎟⎠ .

Its square is

A2 =

⎛

⎜⎜⎝

1 0 0 0
0 2 2 0
0 2 2 0
0 0 0 1

⎞

⎟⎟⎠ .

We see that whenever entry i, j in A2 is nonzero, entry i, j in A is also nonzero. There-
fore, R is transitive.

Example 5.8 The matrix of the relation

R = {(a, a), (b, b), (c, c), (d, d), (a, c), (c, b)}
on {a, b, c, d}, relative to the ordering a, b, c, d, is

A =

⎛

⎜⎜⎝

1 0 1 0
0 1 0 0
0 1 1 0
0 0 0 1

⎞

⎟⎟⎠ .

Its square is

A2 =

⎛

⎜⎜⎝

1 1 2 0
0 1 0 0
0 2 1 0
0 0 0 1

⎞

⎟⎟⎠ .

The entry in row 1, column 2 of A2 is nonzero, but the corresponding entry in A is zero.
Therefore, R is not transitive.

Problem-Solving Tips

The matrix of a relation R is another way to represent or specify a relation from X to Y .
The entry in row x and column y is 1 if x R y, or 0 if x �Ry.

A relation is reflexive if and only if the main diagonal of its matrix representation
consists of all 1’s.

A relation is symmetric if and only if its matrix is symmetric (i.e., entry i, j always
equals entry j, i).

189

Functions, Sequences, and Relations

Let R1 be a relation from X to Y and let R2 be a relation from Y to Z. Let A1 be
the matrix of R1 and let A2 be the matrix of R2. The matrix of the relation R2 ◦ R1 is
obtained by replacing each nonzero term in the matrix product A1A2 by 1.

To test whether a relation is transitive, let A be its matrix. Compute A2. The rela-
tion is transitive if and only if whenever entry i, j in A2 is nonzero, entry i, j in A is also
nonzero.

Section Review Exercises

1. What is the matrix of a relation?

2. Given the matrix of a relation, how can we determine whether
the relation is reflexive?

3. Given the matrix of a relation, how can we determine whether
the relation is symmetric?

4. Given the matrix of a relation, how can we determine whether
the relation is transitive?

5. Given the matrix A1 of the relation R1 and the matrix A2 of
the relation R2, explain how to obtain the matrix of the relation
R2 ◦ R1.

Exercises

In Exercises 1–3, find the matrix of the relation R from X to Y

relative to the orderings given.

1. R={(1, δ), (2, α), (2, �), (3, β), (3, �)}; ordering of X: 1,

2, 3; ordering of Y : α, β, �, δ

2. R as in Exercise 1; ordering of X: 3, 2, 1; ordering of Y : �,
β, α, δ

3. R={(x, a), (x, c), (y, a), (y, b), (z, d)}; ordering of X: x,

y, z; ordering of Y : a, b, c, d

In Exercises 4– 6, find the matrix of the relation R on X relative to
the ordering given.

4. R={(1, 2), (2, 3), (3, 4), (4, 5)}; ordering of X: 1, 2, 3, 4, 5

5. R as in Exercise 4; ordering of X: 5, 3, 1, 2, 4

6. R = {(x, y) | x < y}; ordering of X: 1, 2, 3, 4

7. Find matrices that represent the relations of Exercises 13 –16,
Section 3.

In Exercises 8–10, write the relation R, given by the matrix, as a
set of ordered pairs.

8. w x y z

a

b

c

d

⎛

⎜⎝

1 0 1 0
0 0 0 0
0 0 1 0
1 1 1 1

⎞

⎟⎠

9. 1 2 3 4
1
2

(
1 0 1 0
0 1 1 1

)

10.
w x y z

w

x

y

z

⎛

⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1

⎞

⎟⎠

11. How can we quickly determine whether a relation R is anti-
symmetric by examining the matrix of R (relative to some
ordering)?

12. Tell whether the relation of Exercise 10 is reflexive, symmetric,
transitive, antisymmetric, a partial order, and/or an equivalence
relation.

13. Given the matrix of a relation R from X to Y , how can we find
the matrix of the inverse relation R−1?

14. Find the matrix of the inverse of each of the relations of Exer-
cises 8 and 9.

15. Use the matrix of the relation to test for transitivity (see Exam-
ples 5.7 and 5.8) for the relations of Exercises 4, 6, and 10.

In Exercises 16 –18, find

(a) The matrix A1 of the relation R1 (relative to the given
orderings).

(b) The matrix A2 of the relation R2 (relative to the given
orderings).

(c) The matrix product A1A2.

(d) Use the result of part (c) to find the matrix of the relation
R2 ◦ R1.

(e) Use the result of part (d) to find the relation R2 ◦R1 (as a
set of ordered pairs).

16. R1 = {(1, x), (1, y), (2, x), (3, x)}; R2 = {(x, b), (y, b),

(y, a), (y, c)}; orderings: 1, 2, 3; x, y; a, b, c

17. R1 = {(x, y) | x divides y}; R1 is from X to Y ; R2 = {(y, z) |
y > z}; R2 is from Y to Z; ordering of X and Y : 2, 3, 4, 5;
ordering of Z: 1, 2, 3, 4

18. R1={(x, y) | x + y ≤ 6}; R1 is from X to Y ; R2={(y, z) |
y= z + 1}; R2 is from Y to Z; ordering of X, Y , and
Z: 1, 2, 3, 4, 5

190

Functions, Sequences, and Relations

19. Given the matrix of an equivalence relation R on X, how can
we easily find the equivalence class containing the element
x ∈ X?

�20. Let R1 be a relation from X to Y and let R2 be a relation from
Y to Z. Choose orderings of X, Y , and Z. All matrices of rela-
tions are with respect to these orderings. Let A1 be the matrix
of R1 and let A2 be the matrix of R2. Show that the ikth entry
in the matrix product A1A2 is equal to the number of elements
in the set

{m | (i, m) ∈ R1 and (m, k) ∈ R2}.

21. Suppose that R1 and R2 are relations on a set X, A1 is the
matrix of R1 relative to some ordering of X, and A2 is the
matrix of R2 relative to the same ordering of X. Let A be a
matrix whose ijth entry is 1 if the ijth entry of either A1 or A2

is 1. Prove that A is the matrix of R1 ∪ R2.

22. Suppose that R1 and R2 are relations on a set X, A1 is the
matrix of R1 relative to some ordering of X, and A2 is the
matrix of R2 relative to the same ordering of X. Let A be a
matrix whose ijth entry is 1 if the ijth entries of both A1 and
A2 are 1. Prove that A is the matrix of R1 ∩ R2.

23. Suppose that the matrix of the relation R1 on {1, 2, 3} is
(

1 0 0
0 1 1
1 0 1

)

relative to the ordering 1, 2, 3, and that the matrix of the rela-
tion R2 on {1, 2, 3} is

(
0 1 0
0 1 0
1 0 1

)

relative to the ordering 1, 2, 3. Use Exercise 21 to find the
matrix of the relation R1 ∪ R2 relative to the ordering 1, 2, 3.

24. Use Exercise 22 to find the matrix of the relation R1 ∩ R2

relative to the ordering 1, 2, 3 for the relations of Exercise 23.

25. How can we quickly determine whether a relation R is a func-
tion by examining the matrix of R (relative to some ordering)?

26. Let A be the matrix of a function f from X to Y (relative to
some orderings of X and Y). What conditions must A satisfy
for f to be onto Y?

27. Let A be the matrix of a function f from X to Y (relative to
some orderings of X and Y). What conditions must A satisfy
for f to be one-to-one?

6 ➜ Relational Databases

The “bi” in a binary relation R refers to the fact that R has two columns when we write
R as a table. It is often useful to allow a table to have an arbitrary number of columns.
If a table has n columns, the corresponding relation is called an n-ary relation.

Example 6.1 Table 6.1 represents a 4-ary relation. This table expresses the relationship among iden-
tification numbers, names, positions, and ages.

TABLE 6.1 ■ PLAYER

ID Number Name Position Age

22012 Johnsonbaugh c 22
93831 Glover of 24
58199 Battey p 18
84341 Cage c 30
01180 Homer 1b 37
26710 Score p 22
61049 Johnsonbaugh of 30
39826 Singleton 2b 31

We can also express an n-ary relation as a collection of n-tuples.

191

Functions, Sequences, and Relations

Example 6.2 Table 6.1 can be expressed as the set

{(22012, Johnsonbaugh, c, 22), (93831, Glover, of, 24),

(58199, Battey, p, 18), (84341, Cage, c, 30),

(01180, Homer, 1b, 37), (26710, Score, p, 22),

(61049, Johnsonbaugh, of, 30), (39826, Singleton, 2b, 31)}

of 4-tuples.

A database is a collection of records that are manipulated by a computer. For
example, an airline database might contain records of passengers’ reservations, flight
schedules, equipment, and so on. Computer systems are capable of storing large amounts
of information in databases. The data are available to various applications. Database
management systems are programs that help users access the information in databases.
The relational database model, invented by E. F. Codd, is based on the concept of an
n-ary relation. We will briefly introduce some of the fundamental ideas in the theory of
relational databases. For more details on relational databases, the reader is referred to
[Codd; Date; and Kroenke]. We begin with some of the terminology.

The columns of an n-ary relation are called attributes. The domain of an attribute
is a set to which all the elements in that attribute belong. For example, in Table 6.1,
the attribute Age might be taken to be the set of all positive integers less than 100. The
attribute Name might be taken to be all strings over the alphabet having length 30 or less.

A single attribute or a combination of attributes for a relation is a key if the values
of the attributes uniquely define an n-tuple. For example, in Table 6.1, we can take the
attribute ID Number as a key. (It is assumed that each person has a unique identification
number.) The attribute Name is not a key because different persons can have the same
name. For the same reason, we cannot take the attribute Position or Age as a key. Name
and Position, in combination, could be used as a key for Table 6.1, since in our example
a player is uniquely defined by a name and a position.

A database management system responds to queries. A query is a request for
information from the database. For example, “Find all persons who play outfield” is a
meaningful query for the relation given by Table 6.1. We will discuss several operations
on relations that are used to answer queries in the relational database model.

Example 6.3 Select

The selection operator chooses certain n-tuples from a relation. The choices are made
by giving conditions on the attributes. For example, for the relation PLAYER given in
Table 6.1,

PLAYER [Position = c]

will select the tuples

(22012, Johnsonbaugh, c, 22), (84341, Cage, c, 30).

Example 6.4 Project

Whereas the selection operator chooses rows of a relation, the projection operator
chooses columns. In addition, duplicates are eliminated. For example, for the relation
PLAYER given by Table 6.1,

PLAYER [Name, Position]

192

Functions, Sequences, and Relations

will select the tuples

(Johnsonbaugh, c), (Glover, of), (Battey, p), (Cage, c),

(Homer, 1b), (Score, p), (Johnsonbaugh, of), (Singleton, 2b).

Example 6.5 Join

The selection and projection operators manipulate a single relation; join manipulates
two relations. The join operation on relations R1 and R2 begins by examining all pairs
of tuples, one from R1 and one from R2. If the join condition is satisfied, the tuples are
combined to form a new tuple. The join condition specifies a relationship between an
attribute in R1 and an attribute in R2. For example, let us perform a join operation on
Tables 6.1 and 6.2. As the condition we take

ID Number = PID.

We take a row from Table 6.1 and a row from Table 6.2 and if ID Number = PID, we
combine the rows. For example, the ID Number 01180 in the fifth row (01180, Homer,
1b, 37) of Table 6.1 matches the PID in the fourth row (01180, Mutts) of Table 6.2. These
tuples are combined by first writing the tuple from Table 6.1, following it by the tuple
from Table 6.2, and eliminating the equal entries in the specified attributes to give

(01180, Homer, 1b, 37, Mutts).

This operation is expressed as

PLAYER [ID Number = PID] ASSIGNMENT.

The relation obtained by executing this join is shown in Table 6.3.

TABLE 6.2 ■ ASSIGNMENT

PID Team

39826 Blue Sox
26710 Mutts
58199 Jackalopes
01180 Mutts

TABLE 6.3 ■ PLAYER [ID Number = PID] ASSIGNMENT

ID Number Name Position Age Team

58199 Battey p 18 Jackalopes
01180 Homer 1b 37 Mutts
26710 Score p 22 Mutts
39826 Singleton 2b 31 Blue Sox

Most queries to a relational database require several operations to provide the
answer.

Example 6.6 Describe operations that provide the answer to the query “Find the names of all persons
who play for some team.”

If we first join the relations given by Tables 6.1 and 6.2 subject to the condition ID
Number= PID, we will obtain Table 6.3, which lists all persons who play for some team
as well as other information. To obtain the names, we need only project on the attribute
Name. We obtain the relation

Name

Battey
Homer
Score
Singleton

193

Functions, Sequences, and Relations

Formally, these operations would be specified as

TEMP := PLAYER [ID Number = PID] ASSIGNMENT

TEMP [Name]

Example 6.7 Describe operations that provide the answer to the query “Find the names of all persons
who play for the Mutts.”

If we first use the selection operator to pick the rows of Table 6.2 that reference
Mutts’ players, we obtain the relation

TEMP1

PID Team

26710 Mutts
01180 Mutts

If we now join Table 6.1 and the relation TEMP1 subject to ID Number= PID, we obtain
the relation

TEMP2

ID Number Name Position Age Team

01180 Homer 1b 37 Mutts
26710 Score p 22 Mutts

If we project the relation TEMP2 on the attribute Name, we obtain the relation

Name

Homer
Score

We would formally specify these operations as follows:

TEMP1 :=ASSIGNMENT [Team =Mutts]

TEMP2 :=PLAYER [ID Number = PID] TEMP1

TEMP2 [Name]

Notice that the operations

TEMP1 := PLAYER [ID Number = PID] ASSIGNMENT

TEMP2 := TEMP1 [Team =Mutts]

TEMP2 [Name]

would also answer the query of Example 6.7.

Problem-Solving Tips

A relational database represents data as tables (n-ary relations). Information from the
database is obtained by manipulating the tables. In this section, we discussed the

194

Functions, Sequences, and Relations

operations select (choose rows specified by a given condition), project (choose columns
specified by a given condition), and join (combine rows from two tables as specified by
a given condition).

Section Review Exercises

1. What is an n-ary relation?

2. What is a database management system?

3. What is a relational database?

4. What is a key?

5. What is a query?

6. Explain how the selection operator works and give an
example.

7. Explain how the project operator works and give an example.

8. Explain how the join operator works and give an example.

Exercises

1. Express the relation given by Table 6.4 as a set of n-tuples.

TABLE 6.4 ■ EMPLOYEE

ID Name Manager

1089 Suzuki Zamora
5620 Kaminski Jones
9354 Jones Yu
9551 Ryan Washington
3600 Beaulieu Yu
0285 Schmidt Jones
6684 Manacotti Jones

2. Express the relation given by Table 6.5 as a set of n-tuples.

TABLE 6.5 ■ DEPARTMENT

Dept Manager

23 Jones
04 Yu
96 Zamora
66 Washington

3. Express the relation given by Table 6.6 as a set of n-tuples.

TABLE 6.6 ■ SUPPLIER

Dept Part No Amount

04 335B2 220
23 2A 14
04 8C200 302
66 42C 3
04 900 7720
96 20A8 200
96 1199C 296
23 772 39

4. Express the relation given by Table 6.7 as a set of n-tuples.

TABLE 6.7 ■ BUYER

Name Part No

United Supplies 2A
ABC Unlimited 8C200
United Supplies 1199C
JCN Electronics 2A
United Supplies 335B2
ABC Unlimited 772
Danny’s 900
United Supplies 772
Underhanded Sales 20A8
Danny’s 20A8
DePaul University 42C
ABC Unlimited 20A8

In Exercises 5–20, write a sequence of operations to answer the
query. Also, provide an answer to the query. Use Tables 6.4–6.7.

5. Find the names of all employees. (Do not include any
managers.)

6. Find the names of all managers.

7. Find all part numbers.

8. Find the names of all buyers.

9. Find the names of all employees who are managed by Jones.

10. Find all part numbers supplied by department 96.

11. Find all buyers of part 20A8.

12. Find all employees in department 04.

13. Find the part numbers of parts of which there are at least 100
items on hand.

14. Find all department numbers of departments that supply parts
to Danny’s.

15. Find the part numbers and amounts of parts bought by United
Supplies.

195

Functions, Sequences, and Relations

16. Find all managers of departments that produce parts for ABC
Unlimited.

17. Find the names of all employees who work in departments that
supply parts for JCN Electronics.

18. Find all buyers who buy parts in the department managed by
Jones.

19. Find all buyers who buy parts that are produced by the depart-
ment for which Suzuki works.

20. Find all part numbers and amounts for Zamora’s department.

21. Make up at least three n-ary relations with artificial data that
might be used in a medical database. Illustrate how your
database would be used by posing and answering two queries.
Also, write a sequence of operations that could be used to
answer the queries.

22. Describe a union operation on a relational database. Illustrate
how your operator works by answering the following query,

using the relations of Tables 6.4–6.7: Find the names of all
employees who work in either department 23 or department
96. Also, write a sequence of operations that could be used to
answer the query.

23. Describe an intersection operation on a relational database.
Illustrate how your operator works by answering the follow-
ing query, using the relations of Tables 6.4–6.7: Find the names
of all buyers who buy both parts 2A and 1199C. Also, write
a sequence of operations that could be used to answer the
query.

24. Describe a difference operation on a relational database. Illus-
trate how your operator works by answering the following
query, using the relations of Tables 6.4–6.7: Find the names of
all employees who do not work in department 04. Also, write
a sequence of operations that could be used to answer the
query.

Notes

Most general references on discrete mathematics address the topics of this chapter. [Halmos;
Lipschutz; and Stoll] are recommended to the reader wanting to study functions in more
detail. [Codd; Date; Kroenke; and Ullman] are recommended references on databases in
general and the relational model in particular.

Chapter Review

Section 1
1. Function from X to Y , f : X → Y : a subset f of X × Y

such that for each x ∈ X, there is exactly one y ∈ Y with
(x, y) ∈ f

2. x mod y: remainder when x is divided by y

3. Hash function
4. Collision for a hash function H : H(x) = H(y)

5. Collision resolution policy
6. Floor of x, �x�: greatest integer less than or equal to x

7. Ceiling of x, 	x
: least integer greater than or equal to x

8. One-to-one function f : if f(x) = f(x′), then x = x′

9. Onto function f from X to Y : range of f = Y

10. Bijection: one-to-one and onto function
11. Inverse f−1 of a one-to-one, onto function f : {(y, x) |

(x, y) ∈ f }
12. Composition of functions: f ◦ g = {(x, z) | (x, y) ∈ g and

(y, z) ∈ f }
13. Binary operator on X: function from X×X to X

14. Unary operator on X: function from X to X

Section 2
15. Sequence: function whose domain is a set of consecutive

integers
16. Index: in the sequence {sn}, n is the index
17. Increasing sequence: sn < sn+1 for all n

18. Decreasing sequence: sn > sn+1 for all n

19. Nonincreasing sequence: sn ≥ sn+1 for all n

20. Nondecreasing sequence: sn ≤ sn+1 for all n

21. Subsequence snk
of the sequence {sn}

22. Sum or sigma notation:
n∑

i=m

ai = am + am+1 + · · · + an

23. Product notation:
n∏

i=m

ai = am · am+1 · · · an

24. Geometric sum:
n∑

i=0

ari

25. String: finite sequence
26. Null string, λ: string with no elements
27. X∗: set of all strings over X, including the null string
28. X+: set of all nonnull strings over X

29. Length of string α, |α|: number of elements in α

30. Concatenation of strings α and β, αβ: α followed by β

31. Substring of α: a string β for which there are strings γ and
δ with α = γβδ

Section 3
32. Binary relation from X to Y : set of ordered pairs (x, y),

x ∈ X, y ∈ Y

33. Digraph of a binary relation

196

Functions, Sequences, and Relations

34. Reflexive relation R on X: (x, x) ∈ R for all x ∈ X

35. Symmetric relation R on X: for all x, y ∈ X, if (x, y) ∈ R,
then (y, x) ∈ R

36. Antisymmetric relation R on X: for all x, y ∈ X, if
(x, y) ∈ R and (y, x) ∈ R, then x = y

37. Transitive relation R on X: for all x, y, z ∈ X, if (x, y) and
(y, z) are in R, then (x, z) ∈ R

38. Partial order: relation that is reflexive, antisymmetric, and
transitive

39. Inverse relation R−1: {(y, x) | (x, y) ∈ R}
40. Composition of relations R2 ◦ R1: {(x, z) | (x, y) ∈ R1 and

(y, z) ∈ R2}

Section 4
41. Equivalence relation: relation that is reflexive, symmetric,

and transitive
42. Equivalence class containing a given by equivalence rela-

tion R: [a] = {x | x R a}
43. Equivalence classes partition the set (Theorem 4.8)

Section 5
44. Matrix of a relation
45. R is a reflexive relation if and only if the main diagonal of

the matrix of R consists of 1’s.
46. R is a symmetric relation if and only if the matrix of R is

symmetric about the main diagonal.
47. If A1 is the matrix of the relation R1 and A2 is the matrix of

the relation R2, the matrix of the relation R2 ◦R1 is obtained
by replacing each nonzero term in the matrix product A1A2

by 1.
48. If A is the matrix of a relation R, R is transitive if and only

if whenever entry i, j in A2 is nonzero, entry i, j in A is also
nonzero.

Section 6
49. n-ary relation: Set of n-tuples
50. Database management system
51. Relational database

52. Key 53. Query 54. Select

55. Project 56. Join

Chapter Self-Test

Section 1
1. Let X be the set of strings over {a, b} of length 4 and let Y

be the set of strings over {a, b} of length 3. Define a function
f from X to Y by the rule

f(α) = string consisting of the first three characters of α.

Is f one-to-one? Is f onto?

2. Find real numbers x and y satisfying �x��y� = �xy� − 1.

3. Give examples of functions f and g such that f ◦ g is onto,
but g is not onto.

4. For the hash function

h(x) = x mod 13,

show how the data

784, 281, 1141, 18, 1, 329, 620, 43, 31, 684

would be inserted in the order given in initially empty cells
indexed 0 to 12.

Section 2
5. For the sequence a defined by an = 2n+ 2, find

(a) a6

(b)
3∑

i=1

ai

(c)
3∏

i=1

ai

(d) a formula for the subsequence of a obtained by selecting
every other term of a starting with the first.

6. Rewrite the sum

n∑

i=1

(n− i)ri

replacing the index i by k, where i = k + 2.

7. Let

bn =
n∑

i=1

(i+ 1)2 − i2.

(a) Find b5 and b10.

(b) Find a formula for bn.

(c) Is b increasing?

(d) Is b decreasing?

8. Let α = ccddc and β = c3d2. Find

(a) αβ (b) βα (c) |α| (d) |ααβα|

Section 3

In Exercises 9 and 10, determine whether the relation defined on
the set of positive integers is reflexive, symmetric, antisymmetric,
transitive, and/or a partial order.

9. (x, y) ∈ R if 2 divides x+ y

10. (x, y) ∈ R if 3 divides x+ y

11. Give an example of a relation on {1, 2, 3, 4} that is reflexive,
not antisymmetric, and not transitive.

197

Functions, Sequences, and Relations

12. Suppose that R is a relation on X that is symmetric and tran-
sitive but not reflexive. Suppose also that |X| ≥ 2. Define
the relation R on X by

R = X×X− R.

Which of the following must be true? For each false state-
ment, provide a counterexample.

(a) R is reflexive.

(b) R is symmetric.

(c) R is not antisymmetric.

(d) R is transitive.

Section 4
13. Is the relation

{(1, 1), (1, 2), (2, 2), (4, 4), (2, 1), (3, 3)}
an equivalence relation on {1, 2, 3, 4}? Explain.

14. Given that the relation

{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 4), (4, 3)}
is an equivalence relation on {1, 2, 3, 4}, find [3], the equiv-
alence class containing 3. How many (distinct) equivalence
classes are there?

15. Find the equivalence relation (as a set of ordered pairs) on
{a, b, c, d, e} whose equivalence classes are

{a}, {b, d, e}, {c}.
16. Let R be the relation defined on the set of eight-bit strings

by s1 R s2 provided that s1 and s2 have the same number of
zeros.

(a) Show that R is an equivalence relation.

(b) How many equivalence classes are there?

(c) List one member of each equivalence class.

Section 5

Exercises 17–20 refer to the relations

R1 = {(1, x), (2, x), (2, y), (3, y)},
R2 = {(x, a), (x, b), (y, a), (y, c)}.

17. Find the matrix A1 of the relation R1 relative to the orderings

1, 2, 3; x, y.

18. Find the matrix A2 of the relation R2 relative to the orderings

x, y; a, b, c.

19. Find the matrix product A1A2.

20. Use the result of Exercise 19 to find the matrix of the relation
R2 ◦ R1.

Section 6

In Exercises 21–24, write a sequence of operations to answer
the query. Also, provide an answer to the query. Use Tables 6.1
and 6.2.

21. Find all teams.

22. Find all players’ names and ages.

23. Find the names of all teams that have a pitcher.

24. Find the names of all teams that have players aged 30 years
or older.

Computer Exercises

1. Implement a hashing system for storing integers in an array.

2. Write a program that determines whether an International
Standard Book Number (ISBN) is valid.

3. Write a program that generates pseudorandom integers.

In Exercises 4–9, assume that a sequence from {1, . . . , n}
to the real numbers is represented as an array A, indexed
from 1 to n.

4. Write a program that tests whether A is one-to-one.

5. Write a program that tests whether A is onto a given set.

6. Write a program that tests whether A is increasing.

7. Write a program that tests whether A is decreasing.

8. Write a program that tests whether A is nonincreasing.

9. Write a program that tests whether A is nondecreasing.

10. Write a program to determine whether one sequence is a
subsequence of another sequence.

11. Write a program to determine whether one string is a sub-
string of another string.

12. Write a program to determine whether a relation is reflexive.

13. Write a program to determine whether a relation is
antisymmetric.

14. Write a program to determine whether a relation is
transitive.

15. Write a program that finds the inverse of a relation.

16. Write a program that finds the composition R◦S of relations
R and S.

17. Write a program that checks whether a relation R is an equiv-
alence relation. If R is an equivalence relation, the program
outputs the equivalence classes of R.

18. Write a program to determine whether a relation is a function
from a set X to a set Y .

19. [Project] Prepare a report on a commercial relational
database such as Oracle or Access.

198

Functions, Sequences, and Relations

Hints/Solutions to Selected Exercises

Section 1 Review
1. Let X and Y be sets. A function f from X to Y is a subset of

the Cartesian product X× Y having the property that for each
x ∈ X, there is exactly one y ∈ Y with (x, y) ∈ f .

2. In an arrow diagram of the function f , there is an arrow from
i to j if (i, j) ∈ f .

3. The graph of a function f , whose domain and codomain are
subsets of the real numbers, consists of the points in the plane
that correspond to the elements in f .

4. A set S of points in the plane defines a function when each
vertical line intersects at most one point of S.

5. The remainder when x is divided by y

6. A hash function takes a data item to be stored or retrieved and
computes the first choice for a location for the item.

7. A collision occurs for a hash function H if H(x)=H(y) but
x �= y.

8. When a collision occurs, a collision resolution policy deter-
mines an alternative location for one of the data items.

9. Pseudorandom numbers are numbers that appear random even
though they are generated by a program.

10. Alinear congruential random number generator uses a formula
of the form

xn = (axn−1 + c) mod m.

Given the pseudorandom number xn−1, the next pseudoran-
dom number xn is given by the formula. A “seed” is used as
the first pseudorandom number in the sequence. As an exam-
ple, the formula

xn = (7xn−1 + 5) mod 11

with seed 3 gives a sequence that begins 3, 4, 0, 5,

11. The floor of x is the greatest integer less than or equal to x. It
is denoted �x�.

12. The ceiling of x is the least integer greater than or equal to x.
It is denoted 	x
.

13. A function f from X to Y is said to be one-to-one if for each
y ∈ Y , there is at most one x ∈ X with f(x) = y. The function
{(a, 1), (b, 3), (c, 0)} is one-to-one. If a function from X to Y

is one-to-one, each element in Y in its arrow diagram will have
at most one arrow pointing to it.

14. A function f from X to Y is said to be onto Y if the range of f

is Y . The function {(a, 1), (b, 3), (c, 0)} is onto {0, 1, 3}. If a
function from X to Y is onto Y , each element in Y in its arrow
diagram will have at least one arrow pointing to it.

15. A bijection is a function that is one-to-one and onto. The func-
tion of Exercises 13 and 14 is one-to-one and onto {0, 1, 3}.

16. If f is a one-to-one, onto function from X to Y , the inverse
function is

f−1 = {(y, x) | (x, y) ∈ f }.

If f is the function of Exercises 13 and 14, we have

f−1 = {(1, a), (3, b), (0, c)}.

Given the arrow diagram for a one-to-one, onto function f

from X to Y , we can obtain the arrow diagram for f−1 by
reversing the direction of each arrow.

17. Suppose that g is a function from X to Y and f is a func-
tion from Y to Z. The composition function from X to Z is
defined as

f ◦ g = {(x, z) | (x, y) ∈ g and (y, z) ∈ f for some y ∈ Y}.

If g = {(1, 2), (2, 2)} and f = {(2, a)}, f ◦ g = {(1, a),

(2, a)}. Given the arrow diagrams for functions g from X to Y

and f from Y to Z, we can obtain the arrow diagram of f ◦ g

by drawing an arrow from x ∈ X to z ∈ Z provided that there
are arrows from x to some y ∈ Y and from y to z.

18. A binary operator on X is a function from X × X to X. The
addition operator+ is a binary operator on the set of integers.

19. A unary operator on X is a function from X to X. The minus
operator − is a unary operator on the set of integers.

Section 1
1. It is a function from X to Y ; domain= X, range= {a, b, c}; it

is neither one-to-one nor onto. Its arrow diagram is

X Y

a

b

c

d

1
2
3
4

4. It is not a function (from X to Y).

6.

1
… …

�1 1 2

))))))

9.

……

[)

)

[)

[)

[)

)

[)

[)

�2 �1 1 2

2

1

�1

199

Functions, Sequences, and Relations

10. The function f is both one-to-one and onto. To prove that f is
one-to-one, suppose that f(n) = f(m). Then n+ 1 = m+ 1.
Thus n = m. Therefore f is one-to-one.

To prove that f is onto, let m be an integer. Then
f(m− 1) = (m− 1)+ 1 = m. Therefore f is onto.

13. The function f is neither one-to-one nor onto. Since f(−1) =
|− 1| = 1 = f(1), f is not one-to-one. Since f(n) ≥ 0 for all
n ∈ Z, f(n) �= −1 for all n ∈ Z. Therefore f is not onto.

16. The function f is not one-to-one, but it is onto. Since f(2, 1) =
2 − 1 = 1 = 3 − 2 = f(3, 2), f is not one-to-one. Suppose
that k ∈ Z. Then f(k, 0) = k − 0 = k. Therefore f is onto.

19. The function f is neither one-to-one nor onto. Since f(2, 1) =
22 + 12 = 12 + 22 = f(1, 2), f is not one-to-one. Since
f(m, n) ≥ 0 for all m, n ∈ Z, f(m, n) �= −1 for all m, n ∈ Z.
Therefore f is not onto.

22. Suppose that f(a, b) = f(c, d). Then 2a3b = 2c3d . We claim
that a = c. If not, either a > c or a < c. We assume that
a > c. (The argument is the same if a < c.) We may then can-
cel 2c from both sides of 2a3b = 2c3d to obtain 2a−c3b = 3d .
Since a − c > 0, 2a−c3b is even. Since 3d is odd, we have a
contradiction. Therefore a = c.

We may now cancel 2a from both sides of 2a3b = 2c3d

to obtain 3b = 3d . An argument like that in the preceding
paragraph shows that b = d. Since a = c and b = d, f is
one-to-one.

Since f(m, n) �= 5 for all m, n ∈ Z+, f is not onto.
(Note that f(m, n) ≥ 6 for all m, n ∈ Z+.)

23. f is both one-to-one and onto.

26. f is both one-to-one and onto.

29. Define a function f from {1, 2, 3, 4} to {a, b, c, d, e} as

f = {(1, a), (2, c), (3, b), (4, d)}.

Then f is one-to-one, but not onto.

32. f−1(y) = (y − 2)/4

35. f−1(y) = 1/(y − 3)

38. f ◦ g = {(1, x), (2, z), (3, x)}

1
2
3

w

x

y

z
f g

X Z

41. (f ◦ f)(x) = 2�2x�, (g ◦ g)(x) = x4, (f ◦ g)(x) = �2x2�,
(g ◦ f)(x) = �2x�2

42. Let g(x) = log2 x and h(x) = x2+ 2. Then f(x) = (g ◦h)(x).

45. Let g(x) = 2x and h(x) = sin x. Then f(x) = (g ◦ h)(x).

48. f = {(−5, 25), (−4, 16), (−3, 9), (−2, 4), (−1, 1), (0, 0),

(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)}. f is neither one-to-one
nor onto. We omit the arrow diagram of f .

51. f = {(0, 0), (1, 4), (2, 3), (3, 2), (4, 1)}; f is one-to-one and
onto. The arrow diagram of f is

0
1
2
3
4

0
1
2
3
4

f
X X

54. 6

In the solutions to Exercises 55 and 58, a : b means “store item a

in cell b.”

55. 53 : 9, 13 : 2, 281 : 6, 743 : 7, 377 : 3, 20 : 10, 10 : 0,

796 : 4

58. 714 : 0, 631 : 6, 26 : 5, 373 : 1, 775 : 8, 906 : 13,

509 : 2, 2032 : 7, 42 : 4, 4 : 3, 136 : 9, 1028 : 10

61. During a search, if we stop the search at an empty cell, we may
not find the item even if it is present. The cell may be empty
because an item was deleted. One solution is to mark deleted
cells and consider them nonempty during a search.

62. False. Take g = {(1, a), (2, b)} and f = {(a, z), (b, z)}.
65. True. Let z ∈ Z. Since f is onto, there exists y ∈ Y such

that f(y) = z. Since g is onto, there exists x ∈ X such that
g(x) = y. Now f(g(x)) = f(y) = z. Therefore f ◦ g is onto.

68. True. Suppose that g(x1)= g(x2). Then f(g(x1))= f(g(x2)).
Since f ◦g is one-to-one, x1 = x2. Therefore, g is one-to-one.

70. g(S) = {a}, g(T) = {a, c}, g−1(U) = {1}, g−1(V) = {1, 2, 3}
75. No. Let f(x) = x and g(x) = x2. Then

E1(f) = f(1) = 1 = g(1) = E1(g).

77. 101

80. Suppose that S(Y1) = s1s2s3 = S(Y2). Now a ∈ Y1 if and
only if s1 = 1 if and only if a ∈ Y2. Also b ∈ Y1 if and only
if s2 = 1 if and only if b ∈ Y2. Also c ∈ Y1 if and only if
s3 = 1 if and only if c ∈ Y2. It follows that Y1 = Y2 and S is
one-to-one.

82. If x ∈ X ∩ Y, CX∩Y (x) = 1 = 1 · 1 = CX(x)CY (x). If x /∈
X∩ Y , then CX∩Y (x) = 0. Since either x /∈ X or x /∈ Y , either
CX(x) = 0 or CY(x) = 0. Thus CX(x)CY (x) = 0 = CX∩Y (x).

85. If x ∈ X− Y , then

CX−Y (x) = 1 = 1 · [1− 0] = CX(x)[1− CY(x)].

If x /∈ X− Y , then either x /∈ X or x ∈ Y . In case x /∈ X,

CX−Y (x) = 0 = 0 · [1− CY(x)] = CX(x)[1− CY(x)].

In case x ∈ Y ,

CX−Y (x) = 0 = CX(x)[1− 1] = CX(x)[1− CY(x)].

Thus the equation holds for all x ∈ U.

200

Functions, Sequences, and Relations

88. f is onto by definition. Suppose that f(X) = f(Y). Then
CX(x) = CY(x), for all x ∈ U. Suppose that x ∈ X. Then
CX(x) = 1. Thus CY(x) = 1. Therefore, x ∈ Y . This argu-
ment shows that X ⊆ Y . Similarly, Y ⊆ X. Therefore X = Y

and f is one-to-one.

90. f is a commutative, binary operator.

93. f is not a binary operator since f(x, 0) is not defined.

95. g(x) = −x

98. The statement is true. The least integer greater than or equal
to x is the unique integer k satisfying

k − 1 < x ≤ k.

Now

k + 2 < x+ 3 ≤ k + 3.

Thus, k + 3 is the least integer greater than or equal to x+ 3.
Therefore, k + 3 = 	x+ 3
. Since k = 	x
, we have

	x+ 3
 = k + 3 = 	x
 + 3.

101. If n is an odd integer, n = 2k + 1 for some integer k. Now

n2

4
= (2k + 1)2

4
= 4k2 + 4k + 1

4
= k2 + k + 1

4
.

Since k2 + k is an integer,
⌊

n2

4

⌋
= k2 + k.

The result now follows because
(

n− 1

2

)(
n+ 1

2

)
=
[

(2k + 1)− 1

2

][
(2k + 1)+ 1

2

]

= 2k(2k + 2)

4

= 4k2 + 4k

4
= k2 + k.

104. Let k = 	x
. Then k − 1 < x ≤ k and 2x ≤ 2k. Thus
	2x
 ≤ 2k = 2	x
. Now 	x
 = k < x + 1. Therefore
2	x
 < 2x+ 2 ≤ 	2x
 + 2, so 2	x
 − 2 < 	2x
. Therefore
2	x
 − 1 ≤ 	2x
.

107. April, July

Section 2 Review
1. A sequence is a function in which the domain consists of a set

of consecutive integers.

2. If sn denotes element n of the sequence, we call n the index of
the sequence.

3. A sequence s is increasing if sn < sn+1 for all n.

4. A sequence s is decreasing if sn > sn+1 for all n.

5. A sequence s is nonincreasing if sn ≥ sn+1 for all n.

6. A sequence s is nondecreasing if sn ≤ sn+1 for all n.

7. Let {sn} be a sequence defined for n = m, m+ 1, . . . , and let
n1, n2, . . . be an increasing sequence whose values are in the

set {m, m+ 1, . . .}. We call the sequence {snk
} a subsequence

of {sn}.
8. am + am+1 + · · · + an 9. amam+1 · · · an

10. A string over X is a finite sequence of elements from X.

11. The null string is the string with no elements.

12. X∗ is the set of all strings over X.

13. X+ is the set of all nonnull strings over X.

14. The length of a string α is the number of elements in α. It is
denoted |α|.

15. The concatenation of strings α and β is the string consisting of
α followed by β. It is denoted αβ.

16. A string β is a substring of the string α if there are strings γ

and δ with α = γβδ.

Section 2
1. c 2. c

3. cddcdc 25. 52

26. 52 27. No

28. No 29. No

30. Yes 39. 12

40. 23 41. 7

42. 46 43. 1

44. 3 45. 3

46. 21 47. No

48. No 49. No

50. Yes 67. 15

68. 155 69. 2n+ 3(n− 1)n/2

70. Yes 71. No

72. No 73. Yes

83. 1, 3, 5, 7, 9, 11, 13 84. 1, 5, 9, 13, 17, 21, 25

85. nk = 2k − 1 86. snk
= 4k − 3

91. 88 92. 1140

93. 48 94. 3168

111. b1 = 1, b2 = 2, b3 = 3, b4 = 4, b5 = 5, b6 = 126

114. Let s0 = 0. Then

n∑

k=1

akbk =
n∑

k=1

(sk − sk−1)bk

=
n∑

k=1

skbk −
n∑

k=1

sk−1bk

=
n∑

k=1

skbk −
n∑

k=1

skbk+1 + snbn+1

=
n∑

k=1

sk(bk − bk+1)+ snbn+1.

117. 00, 01, 10, 11

201

Functions, Sequences, and Relations

120. 000, 010, 001, 011, 100, 110, 101, 111, 00, 01, 11, 10, 0,

1, λ

123. Basis Step (n = 1) In this case, {1} is the only nonempty
subset of {1}, so the sum is

1

1
= 1 = n.

Inductive Step Assume that the statement is true for n. We
divide the subsets of

{1, . . . , n, n+ 1}
into two classes:

C1 = class of nonempty subsets that do not contain n+ 1

C2 = class of subsets that contain n+ 1.

By the inductive assumption,
∑

C1

1

n1 · · · nk

= n.

Since a set in C2 consists of n+1 together with a subset (empty
or nonempty) of {1, . . . , n},
∑

C2

1

(n+ 1)n1 · · · nk

= 1

n+ 1
+ 1

n+ 1

∑

C1

1

n1 · · · nk

.

[The term 1/(n + 1) results from the subset {n + 1}.] By the
inductive assumption,

1

n+ 1
+ 1

n+ 1

∑

C1

1

n1 · · · nk

= 1

n+ 1
+ 1

n+ 1
· n = 1.

Therefore,
∑

C2

1

(n+ 1)n1 · · · nk

= 1.

Finally,
∑

C1∪C2

1

n1 · · · nk

=
∑

C1

1

n1 · · · nk

+
∑

C2

1

(n+ 1)n1 · · · nk

= n+1.

125. Since x1 ≤ x ≤ xn, |x−x1| = x−x1 and |x−xn| = xn−x.
Thus

n∑

i=1

|x− xi| = |x− x1| +
n−1∑

i=2

|x− xi| + |x− xn|

= (x− x1)+
n−1∑

i=2

|x− xi| + (xn − x)

=
n−1∑

i=2

|x− xi| + (xn − x1).

128. We have
n∑

i=1

n∑

j=1

(i− j)2 =
n∑

i=1

n∑

j=1

(i2 − 2ij + j2)

=
n∑

i=1

n∑

j=1

i2 − 2
n∑

i=1

n∑

j=1

ij +
n∑

i=1

n∑

j=1

j2

=
n∑

j=1

n∑

i=1

i2 − 2
n∑

i=1

i

n∑

j=1

j +
n∑

i=1

n∑

j=1

j2

=
n∑

j=1

n(n+ 1)(2n+ 1)

6
− 2

[
n(n+ 1)

2

]2

+
n∑

i=1

n(n+ 1)(2n+ 1)

6

= n

[
n(n+ 1)(2n+ 1)

6

]
− n2(n+ 1)2

2

+ n

[
n(n+ 1)(2n+ 1)

6

]

= 2n

[
n(n+ 1)(2n+ 1)

6

]
− n2(n+ 1)2

2

= n2(n+ 1)[2(2n+ 1)− 3(n+ 1)]

6

= n2(n+ 1)[n− 1]

6
= n2(n2 − 1)

6
.

129. The function f is one-to-one. Suppose that f(α) = f(β).
Then αab = βab. Thus α = β.

The function f is not onto. Since |f(α)| ≥ 2 for all
α ∈ X∗, f(α) �= λ for all α ∈ X∗.

132. Let α= λ. Then α∈L and the first rule states that ab= aαb ∈
L. Now β= ab ∈ L and the first rule states that aabb= aβb ∈
L. Now γ = aabb ∈ L and the first rule states that
aaabbb= aγb ∈ L.

135. We use strong induction on the length n of α to show that if
α ∈ L, α has an equal number of a’s and b’s.

The Basis Step is n = 0. In this case, α is the null string,
which has an equal number of a’s and b’s.

We turn now to the Inductive Step. We assume any string
in L of length k < n has an equal number of a’s and b’s. We
must show that any string in L of length n has an equal number
of a’s and b’s. Let α ∈ L and suppose that |α| = n > 0. Now
α is in L because of either rule 1 or rule 2.

Suppose that α is in L because of rule 1. In this case,
α = aβb or α = bβa, where β ∈ L. Since |β| < n, by the
inductive hypothesis β has an equal number of a’s and b’s.
Since α = aβb or α = bβa, α also has an equal number of a’s
and b’s.

Suppose that α is in L because of rule 2. In this case,
α = βγ , where β ∈ L and γ ∈ L. Since |β| < n and |γ| < n,
by the inductive hypothesis β and γ each have equal numbers
of a’s and b’s. Since α = βγ , α also has an equal number of
a’s and b’s. The proof by induction is complete.

Section 3 Review
1. A binary relation from a set X to a set Y is a subset of the

Cartesian product X× Y .

2. In a digraph of a relation on X, vertices represent the elements
of X and directed edges from x to y represent the elements
(x, y) in the relation.

202

Functions, Sequences, and Relations

3. A relation R on a set X is reflexive if (x, x) ∈ R for every
x ∈ X. The relation {(1, 1), (2, 2)} is a reflexive relation on
{1, 2}. The relation {(1, 1)} is not a reflexive relation on {1, 2}.

4. A relation R on a set X is symmetric if for all x, y ∈ X, if
(x, y) ∈ R, then (y, x) ∈ R. The relation {(1, 2), (2, 1)} is
a symmetric relation on {1, 2}. The relation {(1, 2)} is not a
symmetric relation on {1, 2}.

5. A relation R on a set X is antisymmetric if for all x, y ∈ X, if
(x, y) ∈ R and (y, x) ∈ R, then x = y. The relation {(1, 2)} is
an antisymmetric relation on {1, 2}.The relation {(1, 2), (2, 1)}
is not an antisymmetric relation on {1, 2}.

6. A relation R on a set X is transitive if for all x, y, z ∈ X, if
(x, y) and (y, z) ∈ R, then (x, z) ∈ R. The relation {(1, 2),

(2, 3), (1, 3)} is a transitive relation on {1, 2, 3}. The relation
{(1, 2), (2, 1)} is not a transitive relation on {1, 2}.

7. A relation R on a set X is a partial order if R is reflexive,
antisymmetric, and transitive. The relation

{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}

is a partial order on {1, 2, 3}.
8. If R is a relation from X to Y , the inverse of R is the relation

from Y to X:

R−1 = {(y, x) | (x, y) ∈ R}.

The inverse of the relation {(1, 2), (1, 3)} is {(2, 1), (3, 1)}.
9. Let R1 be a relation from X to Y and R2 be a relation from

Y to Z. The composition of R1 and R2 is the relation from X

to Z

R2◦R1 = {(x, z) | (x, y) ∈ R1 and (y, z) ∈ R2 for some y∈Y}.

The composition of the relations

R1 = {(1, 2), (1, 3), (2, 2)}

and

R2 = {(2, 1), (2, 3), (1, 4)}

is

R2 ◦ R1 = {(1, 1), (1, 3), (2, 1), (2, 3)}.

Section 3
1. {(8840, Hammer), (9921, Pliers), (452, Paint), (2207, Carpet)}
4. {(a, a), (b, b)}
5.

a 6
b 2
a 1
c 1

8.
Mercury 1
Venus 2
Earth 3
Mars 4
Jupiter 5
Saturn 6
Uranus 7
Neptune 8

9.

a b c

12.
21

43

13. {(a, b), (a, c), (b, a), (b, d), (c, c), (c, d)}
16. {(b, c), (c, b), (d, d)}
17. (Exercise 1) {(Hammer, 8840), (Pliers, 9921), (Paint, 452),

(Carpet, 2207)}
18. {(1, 1), (1, 4), (2, 2), (2, 5), (3, 3), (4, 1), (4, 4), (5, 2), (5, 5)}
20. R = R−1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),

(2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}
23. Antisymmetric

24. Antisymmetric

27. Reflexive, symmetric, antisymmetric, transitive, partial order

30. Antisymmetric

32. Reflexive, antisymmetric, transitive, partial order

35. Reflexive: Suppose that (x1, x2) is in X1 × X2. Since Ri is
reflexive, x1R1x1 and x2R2x2. Thus (x1, x2)R(x1, x2).

Antisymmetric: Suppose that (x1, x2)R(x′1, x
′
2) and

(x′1, x
′
2)R(x1, x2). Then x1R1x

′
1 and x′1R1x1. Since R1 is anti-

symmetric, x1 = x′1. Similarly, x2 = x′2. Therefore (x1, x2) =
(x′1, x

′
2) and R is antisymmetric.
Transitivity is proved similarly.

37. {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (2, 1), (3, 2)}
40. {(1, 1), (1, 2), (2, 1), (2, 2)}
42. True. Let (x, y), (y, z) ∈ R−1. Then (z, y), (y, x) ∈ R. Since

R is transitive, (z, x) ∈ R. Thus (x, z) ∈ R−1. Therefore, R−1

is transitive.

45. True. We must show that (x, x) ∈ R ◦ S for all x ∈ X. Let
x ∈ X. Since R and S are reflexive, (x, x) ∈ R and (x, x) ∈ S.
Therefore, (x, x) ∈ R ◦ S and R ◦ S is reflexive.

203

Functions, Sequences, and Relations

48. True. Let (x, y) ∈ R∩S. Then (x, y) ∈ R and (x, y) ∈ S. Since
R and S are symmetric, (y, x) ∈ R and (y, x) ∈ S. Therefore,
(y, x) ∈ R ∩ S and R ∩ S is symmetric.

51. False. Let R = {(1, 2)}, S = {(2, 1)}.
54. True. Suppose that (x, y), (y, x) ∈ R−1. Then (y, x), (x, y) ∈

R. Since R is antisymmetric, y = x. Therefore R−1 is anti-
symmetric.

56. R is reflexive and symmetric. R is not antisymmetric, not tran-
sitive, and not a partial order.

Section 4 Review
1. An equivalence relation is a relation that is reflexive, symmet-

ric, and transitive. The relation

{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
is an equivalence relation on {1, 2, 3}. The relation

{(1, 1), (3, 3), (1, 2), (2, 1)}
is not an equivalence relation on {1, 2, 3}.

2. Let R be an equivalence relation on X. The equivalence classes
of X given by R are sets of the form

{x ∈ X | xRa},
where a ∈ X.

3. If R is an equivalence relation on X, the equivalence classes
partition X. Conversely, if S is a partition of X and we define
xRy to mean that for some S ∈ S, both x and y belong to S,
then R is an equivalence relation.

Section 4
1. Equivalence relation: [1] = [3] = {1, 3}, [2] = {2}, [4] =
{4}, [5] = {5}

4. Equivalence relation: [1] = [3] = [5] = {1, 3, 5}, [2] =
{2}, [4] = {4}

7. Not an equivalence relation (neither transitive nor reflexive)

9. The relation is an equivalence relation.

12. The relation is not an equivalence relation. It is neither reflex-
ive nor symmetric.

15.

{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)},
[1] = [2] = {1, 2}, [3] = [4] = {3, 4}

18.

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2),

(3, 3), (4, 4)},
[1] = [2] = [3] = {1, 2, 3}, [4] = {4}

22. {1}, {1, 3}, {1, 4}, {1, 3, 4}
24. [Part(b)]
{San Francisco, San Diego, Los Angeles}, {Pittsburgh,
Philadelphia}, {Chicago}

26. R = {(x, x) | x ∈ X}
29. Suppose that x R y. Since R is reflexive, y R y. Taking z = y in

the given condition, we have y R x. Therefore R is symmetric.

Now suppose that x R y and y R z. The given condition
tells us that z R x. Since R is symmetric, x R z. Therefore R is
transitive. Since R is reflexive, symmetric, and transitive, R is
an equivalence relation.

31. [Part (b)]
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),

(1, 8), (1, 9), (1, 10), (2, 1), (3, 1), (4, 1), (5, 1),

(6, 1), (7, 1), (8, 1), (9, 1), (10, 1)

34. (a) We show symmetry only. Let (x, y) ∈ R1 ∩ R2. Then
(x, y) ∈ R1 and (x, y) ∈ R2. Since R1 and R2 are sym-
metric, (y, x) ∈ R1 and (y, x) ∈ R2. Thus (y, x) ∈ R1∩R2

and, therefore, R1 ∩ R2 is symmetric.

(b) A is an equivalence class of R1 ∩ R2 if and only if there
are equivalence classes A1 of R1 and A2 of R2 such that
A = A1 ∩ A2.

37. [Part (b)] Torus

40. If x ∈ X, then x ∈ f−1(f({x})). Thus ∪{S | S ∈ S} = X.
Suppose that

a ∈ f−1({y}) ∩ f−1({z})
for some y, z ∈ Y . Then f(a) = y and f(a) = z. Thus y = z.
Therefore, S is a partition of X. The equivalence relation that
generates this partition is given in Exercise 38.

43. Suppose, by way of contradiction, that a ∈ [b]. Then (a, b) ∈
R. Since R is symmetric, (b, a) ∈ R. Since R is transitive,
(b, b) ∈ R, which is a contradiction. Therefore [b] = ∅.

46. Since R is not transitive, there exist (a, b), (b, c) ∈ R, but
(a, c) /∈ R. Then a ∈ [b], b ∈ [c], and a /∈ [c]. Since R is
reflexive, b ∈ [b]. Therefore [b] ∩ [c] �= ∅, but [b] �= [c].
Thus the collection of pseudo equivalence classes does not
partition X.

50.

ρ(R1)={(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (3, 4), (4, 2)}
σ(R1)={(1, 1), (2, 1), (1, 2), (3, 4), (4, 3), (4, 2), (2, 4)}
τ(R1) = {(1, 1), (1, 2), (3, 4), (4, 2), (3, 2)}
τ(σ(ρ(R1))) = {(x, y) | x, y ∈ {1, 2, 3, 4}}

53. Let (x, y), (x, z) ∈ τ(R). Then (x, y) ∈ Rm and (y, z) ∈ Rn.
Thus (x, z) ∈ Rm+n. Therefore, (x, z) ∈ τ(R) and τ(R) is
transitive.

56. Suppose that R is transitive. If (x, y) ∈ τ(R) = ∪{Rn}, then
there exist x = x0, . . . , xn = y ∈ X such that (xi−1, xi) ∈ R

for i = 1, . . . , n. Since R is transitive, it follows that (x, y) ∈
R. Thus R ⊇ τ(R). Since we always have R ⊆ τ(R), it follows
that R = τ(R).

Suppose that τ(R) = R. By Exercise 53, τ(R) is transi-
tive. Therefore, R is transitive.

57. True. Let D = {(x, x) | x ∈ X}. Then, by definition, ρ(R) =
R ∪D, where R is any relation on X. Now

ρ(R1 ∪ R2) = (R1 ∪ R2) ∪D = (R1 ∪D) ∪ (R2 ∪D)

= ρ(R1) ∪ ρ(R2).

60. False. Let R1 = {(1, 2), (2, 3)}, R2 = {(1, 3), (3, 4)}.
63. True. Using the notation and hint for Exercise 57,

ρ(τ(R1)) = τ(R1) ∪D

204

Functions, Sequences, and Relations

and

τ(ρ(R1)) = τ(R1 ∪D).

So we must show that τ(R1) ∪D = τ(R1 ∪D).
We first note that if A ⊆ B, then τ(A) ⊆ τ(B).

Now R1 ⊆ R1 ∪ D. Therefore, τ(R1) ⊆ τ(R1 ∪ D). Also,
D ⊆ R1 ∪D. Therefore, D = τ(D) ⊆ τ(R1 ∪D). It follows
that τ(R1) ∪D ⊆ τ(R1 ∪D).

Since R1 ⊆ τ(R1), R1∪D ⊆ τ(R1)∪D. By the note in
the preceding paragraph, we have τ(R1 ∪D) ⊆ τ(τ(R1)∪D).
Since τ(R1) ∪ D is transitive, τ(τ(R1) ∪ D) = τ(R1) ∪ D

(Exercise 56). Therefore, τ(R1 ∪D) ⊆ τ(R1) ∪D.

64. A set is equivalent to itself by the identity function.
If X is equivalent to Y , there is a one-to-one, onto func-

tion f from X to Y . Now f−1 is a one-to-one, onto function
from Y to X.

If X is equivalent to Y , there is a one-to-one, onto func-
tion f from X to Y . If Y is equivalent to Z, there is a one-to-one,
onto function g from Y to Z. Now g ◦ f is a one-to-one, onto
function from X to Z.

Section 5 Review
1. To obtain the matrix of a relation from X to Y , we label the

rows with the elements of X and the columns with the elements
of Y . We then set the entry in row x and column y to 1 if xRy

and to 0 otherwise.

2. A relation is reflexive if and only if its matrix has 1’s on the
main diagonal.

3. A relation is symmetric if and only if its matrix A satisfies the
following: For all i and j, the ijth entry of A is equal to the
jith entry of A.

4. See the paragraph following the proof of Theorem 5.6.

5. The matrix of the relation R2 ◦ R1 is obtained by replacing
each nonzero term in A1A2 by 1.

Section 5
1. (

α β � δ

1 0 0 0 1
2 1 0 1 0
3 0 1 1 0

)

4. ⎛

⎜⎜⎜⎝

1 2 3 4 5

1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1
5 0 0 0 0 0

⎞

⎟⎟⎟⎠

8. R = {(a, w), (a, y), (c, y), (d, w), (d, x), (d, y), (d, z)}
11. The test is, whenever the ijth entry is 1, i �= j, then the jith

entry is not 1.

14. (For Exercise 8)

⎛

⎜⎝

a b c d

w 1 0 0 1
x 0 0 0 1
y 1 0 1 1
z 0 0 0 1

⎞

⎟⎠

16. (a) A1 =
(

1 1
1 0
1 0

)

(b) A2 =
(

0 1 0
1 1 1

)

(c) A1A2 =
(

1 2 1
0 1 0
0 1 0

)

(d) We change each nonzero entry in part (c) to 1 to obtain

A1A2 =
(

1 1 1
0 1 0
0 1 0

)
.

(e) {(1, b), (1, a), (1, c), (2, b), (3, b)}
19. Each column that contains 1 in row x corresponds to an element

of the equivalence class containing x.

21. Suppose that the ijth entry of A is 1. Then the ijth entry of
either A1 or A2 is 1. Thus either (i, j) ∈ R1 or (i, j) ∈ R2.
Therefore, (i, j) ∈ R1∪R2. Now suppose that (i, j) ∈ R1∪R2.
Then the ijth entry of either A1 or A2 is 1. Therefore, the ijth
entry of A is 1. It follows that A is the matrix of R1 ∪ R2.

25. Each row must contain exactly one 1 for the relation to be a
function.

Section 6 Review
1. An n-ary relation is a set of n-tuples.

2. A database management system is a program that helps users
access information in a database.

3. A relational database represents data as tables and provides
ways to manipulate the tables.

4. A single attribute or combination of attributes for a relation is
a key if the values of the attributes uniquely define an n-tuple.

5. A query is a request for information from a database.

6. The selection operator chooses certain n-tuples from a relation.
The choices are made by giving conditions on the attributes
(see Example 6.3).

7. The project operator chooses specified columns from a rela-
tion. In addition, duplicates are eliminated (see Example 6.4).

8. The join operation on relations R1 and R2 begins by examining
all pairs of tuples, one from R1 and one from R2. If
the join condition is satisfied, the tuples are combined to
form a new tuple. The join condition specifies a relation-
ship between an attribute in R1 and an attribute in R2 (see
Example 6.5).

205

Functions, Sequences, and Relations

Section 6
1. {(1089, Suzuki, Zamora), (5620, Kaminski, Jones), (9354,

Jones, Yu), (9551, Ryan, Washington), (3600, Beaulieu, Yu),
(0285, Schmidt, Jones), (6684, Manacotti, Jones)}

5. employee [Name]

Suzuki, Kaminski, Jones, Ryan, Beaulieu,

Schmidt, Manacotti

8. buyer [Name]

United Supplies, ABC Unlimited, JCN Electronics,

Danny’s, Underhanded Sales, DePaul University

11. temp := buyer [Part No = 20A8]

temp [Name]

Underhanded Sales, Danny’s, ABC Unlimited

14. temp1 := buyer [Name = Danny’s]

temp2 := temp1 [Part No = Part No] supplier

temp2 [Dept]

04, 96

17. temp1 := buyer [Name = JCN Electronics]

temp2 := temp1 [Part No = Part No] supplier

temp3 := temp2 [Dept = Dept] department

temp4 := temp3 [Manager = Manager] employee

temp4 [Name]

Kaminski, Schmidt, Manacotti

22. Let R1 and R2 be two n-ary relations. Suppose that the set
of elements in the ith column of R1 and the set of elements
in the ith column of R2 come from a common domain for
i = 1, . . . , n. The union of R1 and R2 is the n-ary relation
R1 ∪ R2.

temp1 := department [Dept = 23]

temp2 := department [Dept = 96]

temp3 := temp1 union temp2

temp4 := temp3 [Manager = Manager] employee

temp4 [Name]

Kaminski, Schmidt, Manacotti, Suzuki

Chapter Self-Test
1. f is not one-to-one. f is onto.

2. x = y = 2.3

3. Define f from X = {1, 2} to {3} by f(1) = f(2) = 3. Define
g from {1} to X by g(1) = 1.

4. (a : b means “store item a in cell b.”) 1 : 1, 784 : 4, 18 : 5,

329 : 6, 43 : 7, 281 : 8, 620 : 9, 1141 : 10, 31 : 11, 684 : 12

5. (a) 14

(b) 18

(c) 192

(d) ank
= 4k

6.
n−2∑

k=−1

(n− k − 2)rk+2

7. (a) b5 = 35, b10 = 120

(b) (n+ 1)2 − 1

(c) Yes

(d) No

8. (a) ccddccccdd

(b) cccddccddc

(c) 5 (d) 20

9. Reflexive, symmetric, transitive

10. Symmetric

11. R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3)}
12. All counterexample relations are on {1, 2, 3}.

(a) False. R = {(1, 1)}.
(b) True (c) True

(d) False. R = {(1, 1)}.
13. Yes. It is reflexive, symmetric, and transitive.

14. [3] = {3, 4}. There are two equivalence classes.

15. {(a, a), (b, b), (b, d), (b, e), (d, b), (d, d), (d, e), (e, b),

(e, d), (e, e), (c, c)}
16. (a) R is reflexive because any eight-bit string has the same

number of zeros as itself.
R is symmetric because, if s1 and s2 have the same

number of zeros, then s2 and s1 have the same number of
zeros.

To see that R is transitive, suppose that s1 and s2

have the same number of zeros and that s2 and s3 have
the same number of zeros. Then s1 and s3 have the same
number of zeros. Therefore, R is an equivalence relation.

(b) There are nine equivalence classes.

(c) 11111111, 01111111, 00111111, 00011111, 00001111,
00000111, 00000011, 00000001, 00000000

17.

(
1 0
1 1
0 1

)
18.

(
1 1 0
1 0 1

)

19.

(
1 1 0
2 1 1
1 0 1

)
20.

(
1 1 0
1 1 1
1 0 1

)

21. assignment [Team]

Blue Sox, Mutts, Jackalopes

22. player [Name, Age]

Johnsonbaugh, 22; Glover, 24; Battey, 18; Cage, 30; Homer,
37; Score, 22; Johnsonbaugh, 30; Singleton, 31

23. temp1 := player [Position = p]

temp2 := temp1 [ID Number = PID] assignment

temp2 [Team]

Mutts, Jackalopes

24. temp1 := player [Age ≥ 30]

temp2 := temp1 [ID Number = PID] assignment

temp2 [Team]

Blue Sox, Mutts

206

Algorithms

1 Introduction
2 Examples of Algorithms
3 Analysis of Algorithms

Problem-Solving
Corner: Design and
Analysis of an
Algorithm

4 Recursive Algorithms
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

It’s so simple.

Step 1: We find the worst play in the world—a sure fire
flop.

Step 2: I raise a million bucks—there are a lot of little old
ladies in the world.

Step 3: You go back to work on the books. Phony lists of
backers—one for the government, one for us. You can do
it, Bloom, you’re a wizard.

Step 4: We open on Broadway and before you can say

Step 5: We close on Broadway.

Step 6: We take our million bucks and we fly to Rio de
Janeiro.

FROM THE PRODUCERS

An algorithm is a step-by-step method of solving some problem. Such an approach to
problem-solving is not new; indeed, the word “algorithm” derives from the name of
the ninth-century Persian mathematician al-Khowārizmı̄. Today, “algorithm” typically
refers to a solution that can be executed by a computer. We will be concerned primarily
with algorithms that can be executed by a “traditional” computer, that is, a computer, such
as a personal computer, with a single processor that executes instructions step-by-step.

After introducing algorithms and providing several examples, we turn to the anal-
ysis of algorithms, which refers to the time and space required to execute algorithms.
We conclude by discussing recursive algorithms—algorithms that refer to themselves.

1 ➜ Introduction

Algorithms typically have the following characteristics:

■ Input The algorithm receives input.

■ Output The algorithm produces output.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

207

Algorithms

■ Precision The steps are precisely stated.

■ Determinism The intermediate results of each step of execution are unique and
are determined only by the inputs and the results of the preceding steps.

■ Finiteness The algorithm terminates; that is, it stops after finitely many instruc-
tions have been executed.

■ Correctness The output produced by the algorithm is correct; that is, the algo-
rithm correctly solves the problem.

■ Generality The algorithm applies to a set of inputs.

As an example, consider the following algorithm that finds the maximum of three num-
bers a, b, and c:

1. large = a.

2. If b > large, then large = b.

3. If c > large, then large = c.

(= is the assignment operator.)
The idea of the algorithm is to inspect the numbers one by one and copy the largest

value seen into a variable large. At the conclusion of the algorithm, large will then be
equal to the largest of the three numbers.

We show how the preceding algorithm executes for some specific values of a, b,

and c. Such a simulation is called a trace. First suppose that

a = 1, b = 5, c = 3.

At line 1, we set large to a (1). At line 2, b > large (5 > 1) is true, so we set large to
b (5). At line 3, c > large (3 > 5) is false, so we do nothing. At this point large is 5, the
largest of a, b, and c.

Suppose that

a = 6, b = 1, c = 9.

At line 1, we set large to a (6). At line 2, b > large (1 > 6) is false, so we do nothing. At
line 3, c > large (9 > 6) is true, so we set large to 9. At this point large is 9, the largest
of a, b, and c.

We verify that our example algorithm has the properties set forth at the beginning
of this section.

The algorithm receives the three values a, b, and c as input and produces the value
large as output.

The steps of the algorithm are stated sufficiently precisely so that the algorithm
could be written in a programming language and executed by a computer.

Given values for the input, each intermediate step of an algorithm produces a
unique result. For example, given the values

a = 1, b = 5, c = 3,

at line 2, large will be set to 5 regardless of who executes the algorithm.
The algorithm terminates after finitely many steps (three steps) correctly answering

the given question (find the largest of the three values input).
The algorithm is general; it can find the largest value of any three numbers.

208

Algorithms

Our description of what an algorithm is will suffice for our needs. However, it
should be noted that it is possible to give a precise, mathematical definition of
“algorithm.”

Although ordinary language is sometimes adequate to specify an algorithm, most
mathematicians and computer scientists prefer pseudocode because of its precision,
structure, and universality. Pseudocode is so named because it resembles the actual
code of computer languages such as C++ and Java. There are many versions of pseu-
docode. Unlike actual computer languages, which must be concerned about semicolons,
uppercase and lowercase letters, special words, and so on, any version of pseudocode is
acceptable as long as its instructions are unambiguous.

As our first example of an algorithm written in pseudocode, we rewrite the first
algorithm in this section, which finds the maximum of three numbers.

Algorithm 1.1 Finding the Maximum of Three Numbers

This algorithm finds the largest of the numbers a, b, and c.

Input: a, b, c

Output: large (the largest of a, b, and c)

1. max3(a, b, c) {
2. large = a

3. if (b > large) // if b is larger than large, update large
4. large = b

5. if (c > large) // if c is larger than large, update large
6. large = c

7. return large
8. }

Our algorithms consist of a title, a brief description of the algorithm, the input
to and output from the algorithm, and the functions containing the instructions of the
algorithm. Algorithm 1.1 consists of a single function. To make it convenient to refer to
individual lines within a function, we sometimes number some of the lines. The function
in Algorithm 1.1 has eight numbered lines.

When the function in Algorithm 1.1 executes, at line 2 we set large to a. At line 3,
b and large are compared. If b is greater than large, we execute line 4

large = b

but if b is not greater than large, we skip to line 5. At line 5, c and large are compared.
If c is greater than large, we execute line 6

large = c

but if c is not greater than large, we skip to line 7. Thus when we arrive at line 7, large
will correctly hold the largest of a, b, and c.

At line 7 we return the value of large, which is equal to the largest of the numbers
a, b, and c, to the invoker of the function and terminate the function. Algorithm 1.1 has
correctly found the largest of three numbers.

The method of Algorithm 1.1 can be used to find the largest value in a sequence.

209

Algorithms

Algorithm 1.2 Finding the Maximum Value in a Sequence

This algorithm finds the largest of the numbers s1, . . . , sn.

Input: s, n

Output: large (the largest value in the sequence s)

max(s, n) {
large = s1

for i = 2 to n

if (si > large)
large = si

return large
}

We verify that Algorithm 1.2 is correct by proving that

large is the largest value in the subsequence s1, . . . , si

is a loop invariant using induction on i.
For the Basis Step (i = 1), we note that just before the for loop begins executing,

large is set to s1; so large is surely the largest value in the subsequence s1.
Assume that large is the largest value in the subsequence s1, . . . , si. If i < n is true

(so that the for loop body executes again), i becomes i+1. Suppose first that si+1 > large.
It then follows that si+1 is the largest value in the subsequence s1, . . . , si, si+1. In this
case, the algorithm assigns large the value si+1. Now large is equal to the largest value
in the subsequence s1, . . . , si, si+1. Suppose next that si+1 ≤ large. It then follows that
large is the largest value in the subsequence s1, . . . , si, si+1. In this case, the algorithm
does not change the value of large; thus, large is the largest value in the subsequence
s1, . . . , si, si+1. We have proved the Inductive Step. Therefore,

large is the largest value in the subsequence s1, . . . , si

is a loop invariant.
The for loop terminates when i = n. Because

large is the largest value in the subsequence s1, . . . , si

is a loop invariant, at this point large is the largest value in the sequence s1, . . . , sn.
Therefore, Algorithm 1.2 is correct.

Problem-Solving Tips

To construct an algorithm, it is often helpful to assume that you are in the middle of the
algorithm and part of the problem has been solved. For example, in finding the largest
element in a sequence s1, . . . , sn (Algorithm 1.2), it was helpful to assume that we had
already found the largest element large in the subsequence s1, . . . , si. Then, all we had
to do was look at the next element si+1 and, if si+1 was larger than large, we simply
updated large. If si+1 was not larger than large, we did not modify large. Iterating this
procedure yields the algorithm. These observations also led to the loop invariant

large is the largest value in the subsequence s1, . . . , si,

which allowed us to prove that Algorithm 1.2 is correct.

210

Algorithms

Section Review Exercises

†1. What is an algorithm?

2. Describe the following properties an algorithm typically has:
input, output, precision, determinism, finiteness, correctness,
and generality.

3. What is a trace of an algorithm?

4. What are the advantages of pseudocode over ordinary text in
writing an algorithm?

5. How do algorithms relate to pseudocode functions?

Exercises

1. Consult the telephone book for the instructions for mak-
ing a long-distance call. Which properties of an algorithm—
input, output, precision, determinism, finiteness, correctness,
generality—are present? Which properties are lacking?

2. Goldbach’s conjecture states that every even number greater
than 2 is the sum of two prime numbers. Here is a proposed
algorithm that checks whether Goldbach’s conjecture is true:

1. Let n = 4.

2. If n is not the sum of two primes, output “no” and stop.

3. Else increase n by 2 and continue with step 2.

4. Output “yes” and stop.

Which properties of an algorithm—input, output, precision,
determinism, finiteness, correctness, generality—does this
proposed algorithm have? Do any of them depend on the truth
of Goldbach’s conjecture (which mathematicians have not yet
settled)?

3. Write an algorithm that finds the smallest element among a, b,

and c.

4. Write an algorithm that finds the second-smallest element
among a, b, and c. Assume that the values of a, b, and c are
distinct.

5. Write an algorithm that returns the smallest value in the
sequence s1, . . . , sn.

6. Write an algorithm that returns the largest and second-largest
values in the sequence s1, . . . , sn. Assume that n > 1 and the
values in the sequence are distinct.

7. Write an algorithm that returns the smallest and second-
smallest values in the sequence s1, . . . , sn. Assume that n > 1
and the values in the sequence are distinct.

8. Write an algorithm that outputs the smallest and largest values
in the sequence s1, . . . , sn.

9. Write an algorithm that returns the index of the first occurrence
of the largest element in the sequence s1, . . . , sn. Example: If
the sequence is

6.2 8.9 4.2 8.9,

the algorithm returns the value 2.

10. Write an algorithm that returns the index of the last occurrence
of the largest element in the sequence s1, . . . , sn. Example: If
the sequence is

6.2 8.9 4.2 8.9,
the algorithm returns the value 4.

11. Write an algorithm that returns the sum of the sequence of
numbers s1, . . . , sn.

12. Write an algorithm that returns the index of the first item that
is less than its predecessor in the sequence s1, . . . , sn. If s

is in nondecreasing order, the algorithm returns the value 0.
Example: If the sequence is

AMY BRUNO ELIE DAN ZEKE,

the algorithm returns the value 4.

13. Write an algorithm that returns the index of the first item that
is greater than its predecessor in the sequence s1, . . . , sn. If
s is in nonincreasing order, the algorithm returns the value 0.
Example: If the sequence is

AMY BRUNO ELIE DAN ZEKE,

the algorithm returns the value 2.

14. Write an algorithm that reverses the sequence s1, . . . , sn.
Example: If the sequence is

AMY BRUNO ELIE,
the reversed sequence is

ELIE BRUNO AMY.

15. Write the standard method of adding two positive decimal
integers, taught in elementary schools, as an algorithm.

16. Write an algorithm that receives as input the n × n matrix A

and outputs the transpose AT .

17. Write an algorithm that receives as input the matrix of a relation
R and tests whether R is reflexive.

18. Write an algorithm that receives as input the matrix of a relation
R and tests whether R is symmetric.

19. Write an algorithm that receives as input the matrix of a relation
R and tests whether R is transitive.

20. Write an algorithm that receives as input the matrix of a relation
R and tests whether R is antisymmetric.

21. Write an algorithm that receives as input the matrix of a relation
R and tests whether R is a function.

22. Write an algorithm that receives as input the matrix of a relation
R and produces as output the matrix of the inverse relationR−1.

23. Write an algorithm that receives as input the matrices of
relations R1 and R2 and produces as output the matrix of the
composition R2 ◦ R1.

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.
211

Algorithms

24. Write an algorithm whose input is a sequence s1, . . . , sn and
a value x. (Assume that all the values are real numbers.) The
algorithm returns true if si+ sj = x, for some i �= j, and false
otherwise. Example: If the input sequence is

2, 12, 6, 14

and x = 26, the algorithm returns true because 12+ 14 = 26.
If the input sequence is

2, 12, 6, 14

and x = 4, the algorithm returns false because no distinct pair
in the sequence sums to 4.

2 ➜ Examples of Algorithms

Algorithms have been devised to solve many problems. In this section, we give examples
of several useful algorithms.

Searching
A large amount of computer time is devoted to searching. When a teller looks for a record
in a bank, a computer program searches for the record. Looking for a solution to a puzzle
or for an optimal move in a game can be stated as a searching problem. Using a search
engine on the web is another example of a searching problem. Looking for specified text
in a document when running a word processor is yet another example of a searching
problem. We discuss an algorithm to solve the text-searching problem.

Suppose that we are given text t (e.g., a word processor document) and we want
to find the first occurrence of pattern p in t (e.g., we want to find the first occurrence
of the string p = “Nova Scotia” in t) or determine that p does not occur in t. We index
the characters in t starting at 1. One approach to searching for p is to check whether p

occurs at index 1 in t. If so, we stop, having found the first occurrence of p in t. If not, we
check whether p occurs at index 2 in t. If so, we stop, having found the first occurrence
of p in t. If not, we next check whether p occurs at index 3 in t, and so on.

We state the text-searching algorithm as Algorithm 2.1.

Algorithm 2.1 Text Search

This algorithm searches for an occurrence of the pattern p in text t. It returns the small-
est index i such that p occurs in t starting at index i. If p does not occur in t, it returns 0.

Input: p (indexed from 1 to m), m, t (indexed from 1 to n), n

Output: i

text search(p, m, t, n) {
for i = 1 to n−m+ 1 {

j = 1

// i is the index in t of the first character of the substring
// to compare with p, and j is the index in p

// the while loop compares ti · · · ti+m−1 and p1 · · ·pm

while (ti+j−1 == pj) {
j = j + 1
if (j > m)

return i

}
}
return 0
}

212

Algorithms

The variable i marks the index in t of the first character of the substring to compare
with p. The algorithm first tries i = 1, then i = 2, and so on. Index n − m + 1 is the
last possible value for i since, at this point, the string tn−m+1tn−m+2 · · · tm has length
exactly m.

After the value of i is set, the while loop compares ti · · · ti+m−1 and p1 · · ·pm. If
the characters match,

ti+j−1 == pj

j is incremented

j = j + 1

and the next characters are compared. If j is m+ 1, all m characters have matched and
we have found p at index i in t. In this case, the algorithm returns i:

if (j > m)

return i

If the for loop runs to completion, a match was never found; so the algorithm returns 0.

Example 2.2 Figure 2.1 shows a trace of Algorithm 2.1 where we are searching for the pattern “001”
in the text “010001”.

001
010001

j = 1
↓

↑
i = 1

001
010001

j = 2
↓ (×)

↑
i = 1

001
010001

j = 1
↓ (×)

↑
i = 2

(1) (2) (3)

001
010001

j = 1
↓

↑
i = 3

001
010001

j = 2
↓

↑
i = 3

001
010001

j = 3
↓ (×)

↑
i = 3

(4) (5) (6)

001
010001

j = 1
↓

↑
i = 4

001
010001

j = 2
↓

↑
i = 4

001
010001

j = 3
↓

↑
i = 4

(7) (8) (9)

Figure 2.1 Searching for “001” in “010001” using Algorithm 2.1.
The cross (×) in steps (2), (3), and (6) marks a mismatch.

213

Algorithms

Sorting
To sort a sequence is to put it in some specified order. If we have a sequence of names,
we might want the sequence sorted in nondecreasing order according to dictionary order.
For example, if the sequence is

Jones, Johnson, Appel, Zamora, Chu,

after sorting the sequence in nondecreasing order, we would obtain

Appel, Chu, Johnson, Jones, Zamora.

A major advantage of using a sorted sequence rather than an unsorted sequence is that
it is much easier to find a particular item. Imagine trying to find the phone number
of a particular individual in the New York City telephone book if the names were not
sorted!

Many sorting algorithms have been devised (see, e.g., [Knuth, 1998b]). Which
algorithm is preferred in a particular situation depends on factors such as the size of the
data and how the data are represented. We discuss insertion sort, which is one of the
fastest algorithms for sorting small sequences (less than 50 or so items).

We assume that the input to insertion sort is

s1, . . . , sn

and that the goal is to sort the data in nondecreasing order. At the ith iteration of insertion
sort, the first part of the sequence

s1, . . . , si

will have been rearranged so that it is sorted. (We will explain shortly how s1, . . . , si

gets sorted.) Insertion sort then inserts si+1 in

s1, . . . , si

so that

s1, . . . , si, si+1

is sorted.
For example, suppose that i = 4 and s1, . . . , s4 is

8 13 20 27

If s5 is 16, after it is inserted, s1, . . . , s5 becomes

8 13 16 20 27

Notice that 20 and 27, being greater than 16, move one index to the right to make room
for 16. Thus the “insert” part of the algorithm is: Beginning at the right of the sorted
subsequence, move an element one index to the right if it is greater than the element to
insert. Repeat until reaching the first index or encountering an element that is less than
or equal to the element to insert.

214

Algorithms

For example, to insert 16 in

8 13 20 27

we first compare 16 and 27. Since 27 is greater than 16, 27 moves one index to the right:

8 13 20 27

We next compare 16 with 20. Since 20 is greater than 16, 20 moves one index to the
right:

8 13 20 27

We next compare 16 with 13. Since 13 is less than or equal to 16, we insert (i.e., copy)
16 to the third index:

8 13 16 20 27

This subsequence is now sorted.
Having explained the key idea of insertion sort, we now complete the explanation

of the algorithm. Insertion sort begins by inserting s2 into the subsequence s1. Note that s1

by itself is sorted! Now s1, s2 is sorted. Next, insertion sort inserts s3 into the now-sorted
subsequence s1, s2. Now s1, s2, s3 is sorted. This procedure continues until insertion sort
inserts sn into the sorted subsequence s1, . . . , sn−1. Now the entire sequence s1, . . . , sn

is sorted. We obtain the following algorithm.

Algorithm 2.3 Insertion Sort

This algorithm sorts the sequence s1, . . . , sn in nondecreasing order.

Input: s, n

Output: s (sorted)

insertion sort(s, n) {
for i = 2 to n {

val = si // save si so it can be inserted into the correct place
j = i− 1
// if val < sj , move sj right to make room for si

while (j ≥ 1 ∧ val < sj) {
sj+1 = sj

j = j − 1
}
sj+1 = val // insert val

}
}

We leave proving that Algorithm 2.3 is correct as an exercise (see Exercise 12).

215

Algorithms

Time and Space for Algorithms
It is important to know or be able to estimate the time (e.g., the number of steps) and space
(e.g., the number of variables, length of the sequences involved) required by algorithms.
Knowing the time and space required by algorithms allows us to compare algorithms that
solve the same problem. For example, if one algorithm takes n steps to solve a problem
and another algorithm takes n2 steps to solve the same problem, we would surely prefer
the first algorithm, assuming that the space requirements are acceptable. In Section 3,
we will give the technical definitions that allow us to make rigorous statements about
the time and space required by algorithms.

The for loop in Algorithm 2.3 always executes n − 1 times, but the number of
times that the while loop executes for a particular value of i depends on the input. Thus,
even for a fixed size n, the time required by Algorithm 2.3 depends on the input. For
example, if the input sequence is already sorted in nondecreasing order,

val < sj

will always be false and the body of the while loop will never be executed. We call this
time the best-case time.

On the other hand, if the sequence is sorted in decreasing order,

val < sj

will always be true and the while loop will execute the maximum number of times. (The
while loop will execute i− 1 times during the ith iteration of the for loop.) We call this
time the worst-case time.

Randomized Algorithms
It is occasionally necessary to relax the requirements of an algorithm stated in Section 1.
Many algorithms currently in use are not general, deterministic, or even finite. An
operating system (e.g., Vista), for example, is better thought of as a program that never
terminates rather than as a finite program with input and output. Algorithms written
for more than one processor, whether for a multiprocessor machine or for a distributed
environment (such as the Internet), are rarely deterministic. Also, many practical prob-
lems are too difficult to be solved efficiently, and compromises either in generality or
correctness are necessary. As an illustration, we present an example that shows the
usefulness of allowing an algorithm to make random decisions, thereby violating the
requirement of determinism.

A randomized algorithm does not require that the intermediate results of each
step of execution be uniquely defined and depend only on the inputs and results of the
preceding steps. By definition, when a randomized algorithm executes, at some points
it makes random choices. In practice, a pseudorandom number generator is used.

We shall assume the existence of a function

rand(i, j),

which returns a random integer between the integers i and j, inclusive.As an example, we
describe a randomized algorithm that shuffles a sequence of numbers. More precisely, it
inputs a sequence a1, . . . , an and moves the numbers to random positions. Major bridge
tournaments use computer programs to shuffle the cards.

The algorithm first swaps (i.e., interchanges the values of) a1 and arand(1,n). At this
point, the value of a1 might be equal to any one of the original values in the sequence.
Next, the algorithm swaps a2 and arand(2,n). Now the value of a2 might be equal to any
of the remaining values in the sequence. The algorithm continues in this manner until it
swaps an−1 and arand(n−1,n). Now the entire sequence is shuffled.

216

Algorithms

Algorithm 2.4 Shuffle

This algorithm shuffles the values in the sequence

a1, . . . , an.

Input: a, n

Output: a (shuffled)

shuffle(a, n) {
for i = 1 to n− 1

swap(ai, arand(i,n))

}

Example 2.5 Suppose that the sequence a

17 9 5 23 21

is input to shuffle. We first swap ai and aj , where i = 1 and j = rand(1, 5). If j = 3,
after the swap we have

5 9 17 23 21

↑
i

↑
j

Next, i = 2. If j = rand(2, 5) = 5, after the swap we have

5 21 17 23 9

↑
i

↑
j

Next, i = 3. If j = rand(3, 5) = 3, the sequence does not change.
Finally, i = 4. If j = rand(4, 5) = 5, after the swap we have

5 21 17 9 23

↑
i
↑
j

Notice that the output (i.e., the rearranged sequence) depends on the random
choices made by the random number generator.

Randomized algorithms can be used to search for non-random goals. For example,
a person searching for the exit in a maze could randomly make a choice at each inter-
section. Of course, such an algorithm might not terminate (because of bad choices at the
intersections).

Problem-Solving Tips

Again, we emphasize that to construct an algorithm, it is often helpful to assume that
you are in the middle of the algorithm and that part of the problem has been solved. In
insertion sort (Algorithm 2.3), it was helpful to assume that the subsequence s1, . . . , si

217

Algorithms

was sorted. Then, all we had to do was insert the next element si+1 in the proper place.
Iterating this procedure yields the algorithm. These observations lead to a loop invariant
that can be used to prove that Algorithm 2.3 is correct (see Exercise 12).

Section Review Exercises

1. Give examples of searching problems.

2. What is text searching?

3. Describe, in words, an algorithm that solves the text-searching
problem.

4. What does it mean to sort a sequence?

5. Give an example that illustrates why we might want to sort a
sequence.

6. Describe insertion sort in words.

7. What do we mean by the time and space required by an
algorithm?

8. Why is it useful to know or be able to estimate the time and
space required by an algorithm?

9. Why is it sometimes necessary to relax the requirements of an
algorithm as stated in Section 1?

10. What is a randomized algorithm?

11. Which requirements of an algorithm as stated in Section 1 does
a randomized algorithm violate?

12. Describe the shuffle algorithm in words.

13. Give an application of the shuffle algorithm.

Exercises

1. Trace Algorithm 2.1 for the input t = “balalaika” and
p = “bala”.

2. Trace Algorithm 2.1 for the input t = “balalaika” and
p = “lai”.

3. Trace Algorithm 2.1 for the input t = “000000000” and
p = “001”.

4. Trace Algorithm 2.3 for the input

34 20 144 55.

5. Trace Algorithm 2.3 for the input

34 20 19 5.

6. Trace Algorithm 2.3 for the input

34 55 144 259.

7. Trace Algorithm 2.3 for the input

34 34 34 34.

8. Trace Algorithm 2.4 for the input

34 57 72 101 135.

Assume that the values of rand are

rand(1, 5) = 5, rand(2, 5) = 4,

rand(3, 5) = 3, rand(4, 5) = 5.

9. Trace Algorithm 2.4 for the input

34 57 72 101 135.

Assume that the values of rand are

rand(1, 5) = 2, rand(2, 5) = 5,

rand(3, 5) = 3, rand(4, 5) = 4.

10. Trace Algorithm 2.4 for the input

34 57 72 101 135.

Assume that the values of rand are

rand(1, 5) = 5, rand(2, 5) = 5,

rand(3, 5) = 4, rand(4, 5) = 4.

11. Prove that Algorithm 2.1 is correct.

12. Prove that Algorithm 2.3 is correct.

13. Write an algorithm that returns the index of the first occur-
rence of the value key in the sequence s1, . . . , sn. If key is not
in the sequence, the algorithm returns the value 0. Example:
If the sequence is

12 11 12 23

and key is 12, the algorithm returns the value 1.

14. Write an algorithm that returns the index of the last occurrence
of the value key in the sequence s1, . . . , sn. If key is not in
the sequence, the algorithm returns the value 0. Example: If
the sequence is

12 11 12 23

and key is 12, the algorithm returns the value 3.

15. Write an algorithm whose input is a sequence s1, . . . , sn sorted
in nondecreasing order and a value x. (Assume that all the
values are real numbers.) The algorithm inserts x into the
sequence so that the resulting sequence is sorted in nonde-
creasing order. Example: If the input sequence is

2 6 12 14

218

Algorithms

and x = 5, the resulting sequence is

2 5 6 12 14.

16. Modify Algorithm 2.1 so that it finds all occurrences of
p in t.

17. Describe best-case input for Algorithm 2.1.

18. Describe worst-case input for Algorithm 2.1.

19. Modify Algorithm 2.3 so that it sorts the sequence s1, . . . , sn
in nonincreasing order.

20. The selection sort algorithm sorts the sequence s1, . . . , sn in
nondecreasing order by first finding the smallest item, say si,
and placing it first by swapping s1 and si. It then finds the
smallest item in s2, . . . , sn, again say si, and places it second
by swapping s2 and si. It continues until the sequence is sorted.
Write selection sort in pseudocode.

21. Trace selection sort (see Exercise 20) for the input of Exer-
cises 4–7.

22. Show that the time for selection sort (see Exercise 20) is the
same for all inputs of size n.

3 ➜ Analysis of Algorithms

A computer program, even though derived from a correct algorithm, might be useless for
certain types of input because the time needed to run the program or the space needed
to hold the data, program variables, and so on, is too great. Analysis of an algorithm
refers to the process of deriving estimates for the time and space needed to execute the
algorithm. In this section we deal with the problem of estimating the time required to
execute algorithms.

Suppose that we are given a set X of n elements, some labeled “red” and some
labeled “black,” and we want to find the number of subsets of X that contain at least one
red item. Suppose we construct an algorithm that examines all subsets of X and counts
those that contain at least one red item and then implement this algorithm as a computer
program. Since a set that has n elements has 2n subsets, the program would require at
least 2n units of time to execute. It does not matter what the units of time are—2n grows
so fast as n increases (see Table 3.1) that, except for small values of n, it would be
impractical to run the program.

TABLE 3.1 ■ Time to execute an algorithm if one step takes 1 microsecond to execute. lg n denotes log2 n
(the logarithm of n to base 2).

Number of Steps Time to Execute if n =
to Termination

for Input of Size n 3 6 9 12

1 10−6 sec 10−6 sec 10−6 sec 10−6 sec
lg lg n 10−6 sec 10−6 sec 2× 10−6 sec 2× 10−6 sec
lg n 2× 10−6 sec 3× 10−6 sec 3× 10−6 sec 4× 10−6 sec
n 3× 10−6 sec 6× 10−6 sec 9× 10−6 sec 10−5 sec

n lg n 5× 10−6 sec 2× 10−5 sec 3× 10−5 sec 4× 10−5 sec
n2 9× 10−6 sec 4× 10−5 sec 8× 10−5 sec 10−4 sec
n3 3× 10−5 sec 2× 10−4 sec 7× 10−4 sec 2× 10−3 sec
2n 8× 10−6 sec 6× 10−5 sec 5× 10−4 sec 4× 10−3 sec

50 100 1000 10 5 10 6

1 10−6 sec 10−6 sec 10−6 sec 10−6 sec 10−6 sec
lg lg n 2× 10−6 sec 3× 10−6 sec 3× 10−6 sec 4× 10−6 sec 4× 10−6 sec
lg n 6× 10−6 sec 7× 10−6 sec 10−5 sec 2× 10−5 sec 2× 10−5 sec
n 5× 10−5 sec 10−4 sec 10−3 sec 0.1 sec 1 sec

n lg n 3× 10−4 sec 7× 10−4 sec 10−2 sec 2 sec 20 sec
n2 3× 10−3 sec 0.01 sec 1 sec 3 hr 12 days
n3 0.13 sec 1 sec 16.7 min 32 yr 31,710 yr
2n 36 yr 4× 1016 yr 3× 10287 yr 3× 1030089 yr 3× 10301016 yr

219

Algorithms

Determining the performance parameters of a computer program is a difficult task
and depends on a number of factors such as the computer that is being used, the way
the data are represented, and how the program is translated into machine instructions.
Although precise estimates of the execution time of a program must take such factors
into account, useful information can be obtained by analyzing the time of the underlying
algorithm.

The time needed to execute an algorithm is a function of the input. Usually, it is
difficult to obtain an explicit formula for this function, and we settle for less. Instead of
dealing directly with the input, we use parameters that characterize the size of the input.
For example, if the input is a set containing n elements, we would say that the size of the
input is n. We can ask for the minimum time needed to execute the algorithm among all
inputs of size n. This time is called the best-case time for inputs of size n. We can also
ask for the maximum time needed to execute the algorithm among all inputs of size n.
This time is called the worst-case time for inputs of size n. Another important case is
average-case time—the average time needed to execute the algorithm over some finite
set of inputs all of size n.

Since we are primarily concerned with estimating the time of an algorithm rather
than computing its exact time, as long as we count some fundamental, dominating steps
of the algorithm, we will obtain a useful measure of the time. For example, if the principal
activity of an algorithm is making comparisons, as might happen in a sorting routine, we
might count the number of comparisons. As another example, if an algorithm consists
of a single loop whose body executes in at most C steps, for some constant C, we might
count the number of iterations of the loop.

Example 3.1 A reasonable definition of the size of input for Algorithm 1.2 that finds the largest value
in a finite sequence is the number of elements in the input sequence. A reasonable
definition of the execution time is the number of iterations of the while loop. With these
definitions, the worst-case, best-case, and average-case times for Algorithm 1.2 for input
of size n are each n− 1 since the loop is always executed n− 1 times.

Usually we are less interested in the exact best-case or worst-case time required
for an algorithm to execute than we are in how the best-case or worst-case time grows
as the size of the input increases. For example, suppose that the worst-case time of an
algorithm is

t(n) = 60n2 + 5n+ 1

for input of sizen. For largen, the term 60n2 is approximately equal to t(n) (seeTable 3.2).
In this sense, t(n) grows like 60n2.

If t(n) measures the worst-case time for input of size n in seconds, then

T(n) = n2 + 5

60
n+ 1

60

measures the worst-case time for input of size n in minutes. Now this change of units
does not affect how the worst-case time grows as the size of the input increases but only

TABLE 3.2 ■ Comparing growth of t(n) with 60n2.

n t(n) = 60n2 + 5n+ 1 60n2

10 6051 6000
100 600,501 600,000

1000 60,005,001 60,000,000
10,000 6,000,050,001 6,000,000,000

220

Algorithms

the units in which we measure the worst-case time for input of size n. Thus when we
describe how the best-case or worst-case time grows as the size of the input increases,
we not only seek the dominant term [e.g., 60n2 in the formula for t(n)], but we also may
ignore constant coefficients. Under these assumptions, t(n) grows like n2 as n increases.
We say that t(n) is of order n2 and write

t(n) = �(n2),

which is read “t(n) is theta of n2.” The basic idea is to replace an expression, such as
t(n) = 60n2+ 5n+ 1, with a simpler expression, such as n2, that grows at the same rate
as t(n). The formal definitions follow.

Definition 3.2 Let f and g be functions with domain {1, 2, 3, . . .}.
We write

f(n) = O(g(n))

and say that f(n) is of order at most g(n) or f(n) is big oh of g(n) if there exists a positive
constant C1 such that

|f(n)| ≤ C1|g(n)|
for all but finitely many positive integers n.

We write

f(n) = �(g(n))

and say that f(n) is of order at least g(n) or f(n) is omega of g(n) if there exists a
positive constant C2 such that

|f(n)| ≥ C2 |g(n)|
for all but finitely many positive integers n.

We write

f(n) = �(g(n))

and say that f(n) is of order g(n) or f(n) is theta of g(n) if f(n) =O(g(n)) and
f(n) = �(g(n)).

Definition 3.2 can be loosely paraphrased as follows: f(n) = O(g(n)) if, except
for a constant factor and a finite number of exceptions, f is bounded above by g. We also
say that g is an asymptotic upper bound for f . Similarly, f(n) = �(g(n)) if, except
for a constant factor and a finite number of exceptions, f is bounded below by g. We
also say that g is an asymptotic lower bound for f . Also, f(n) = �(g(n)) if, except
for constant factors and a finite number of exceptions, f is bounded above and below
by g. We also say that g is an asymptotic tight bound for f .

According to Definition 3.2, if f(n) = O(g(n)), all that we can conclude is that,
except for a constant factor and a finite number of exceptions, f is bounded above
by g, so g grows at least as fast as f. For example, if f(n) = n and g(n) = 2n, then
f(n) = O(g(n)), but g grows considerably faster than f . The statement f(n) = O(g(n))

says nothing about a lower bound for f . On the other hand, if f(n) = �(g(n)), we can
draw the conclusion that, except for constant factors and a finite number of exceptions,
f is bounded above and below by g, so f and g grow at the same rate. Notice that
n = O(2n), but n �= �(2n).

221

Algorithms

Example 3.3 Since

60n2 + 5n+ 1 ≤ 60n2 + 5n2 + n2 = 66n2 for all n ≥ 1,

we may take C1 = 66 in Definition 3.2 to obtain

60n2 + 5n+ 1 = O(n2).

Since

60n2 + 5n+ 1 ≥ 60n2 for all n ≥ 1,

we may take C2 = 60 in Definition 3.2 to obtain

60n2 + 5n+ 1 = �(n2).

Since 60n2 + 5n+ 1 = O(n2) and 60n2 + 5n+ 1 = �(n2),

60n2 + 5n+ 1 = �(n2).

The method of Example 3.3 can be used to show that a polynomial in n of degree
k with nonnegative coefficients is �(nk). [In fact, any polynomial in n of degree k is
�(nk), even if some of its coefficients are negative. To prove this more general result,
the method of Example 3.3 has to be modified.]

Theorem 3.4 Let

p(n) = akn
k + ak−1n

k−1 + · · · + a1n+ a0

be a polynomial in n of degree k, where each ai is nonnegative. Then

p(n) = �(nk).

Proof We first show that p(n) = O(nk). Let

C1 = ak + ak−1 + · · · + a1 + a0.

Then, for all n,

p(n) = akn
k + ak−1n

k−1 + · · · + a1n+ a0

≤ akn
k + ak−1n

k + · · · + a1n
k + a0n

k

= (ak + ak−1 + · · · + a1 + a0)n
k = C1n

k.

Therefore, p(n) = O(nk).
Next, we show that p(n) = �(nk). For all n,

p(n) = akn
k + ak−1n

k−1 + · · · + a1n+ a0 ≥ akn
k = C2n

k,

where C2 = ak. Therefore, p(n) = �(nk).
Since p(n) = O(nk) and p(n) = �(nk), p(n) = �(nk).

Example 3.5 In this book, we let lg n denote log2 n (the logarithm of n to the base 2). Since lg n < n

for all n ≥ 1 (see Figure 3.1),

2n+ 3 lg n < 2n+ 3n = 5n for all n ≥ 1.

222

Algorithms

y

n

1

2

4

8

16

32

64

128

256

1 2 3 4 5 6 7 8 9 10 11 12 13

y � 2n

y � n2

y � n

y � lg n

y � 1

y � n lg n

Figure 3.1 Growth of some common functions.

Thus,

2n+ 3 lg n = O(n).

Also,

2n+ 3 lg n ≥ 2n for all n ≥ 1.

Thus,

2n+ 3 lg n = �(n).

Therefore,

2n+ 3 lg n = �(n).

Example 3.6 If a > 1 and b > 1 (to ensure that logb a > 0), by the change-of-base formula for
logarithms,

logb n = logb a loga n for all n ≥ 1.

Therefore,

logb n ≤ C loga n for all n ≥ 1,

where C = logb a. Thus, logb n = O(loga n).
Also,

logb n ≥ C loga n for all n ≥ 1;
so logb n = �(loga n). Since logb n = O(loga n) and logb n = �(loga n), we conclude
that logb n = �(loga n).

Because logb n = �(loga n), when using asymptotic notation we need not worry
about which number is used as the base for the logarithm function (as long as the base is

223

Algorithms

greater than 1). For this reason, we sometimes simply write log without specifying the
base.

Example 3.7 If we replace each integer 1, 2, . . . , n by n in the sum 1+ 2+ · · · + n, the sum does not
decrease and we have

1+ 2+ · · · + n ≤ n+ n+ · · · + n = n · n = n2 for all n ≥ 1. (3.1)

It follows that

1+ 2+ · · · + n = O(n2).

To obtain a lower bound, we might imitate the preceding argument and replace
each integer 1, 2, . . . , n by 1 in the sum 1+ 2+ · · · + n to obtain

1+ 2+ · · · + n ≥ 1+ 1+ · · · + 1 = n for all n ≥ 1.

In this case we conclude that

1+ 2+ · · · + n = �(n),

and while the preceding expression is true, we cannot deduce a �-estimate for
1+ 2+ · · · + n, since the upper bound n2 and lower bound n are not equal. We must be
craftier in deriving a lower bound.

One way to get a sharper lower bound is to argue as in the previous paragraph, but
first throw away the first half of the terms, to obtain

1+ 2+ · · · + n ≥ 	n/2
 + · · · + (n− 1)+ n

≥ 	n/2
 + · · · + 	n/2
 + 	n/2

= 	(n+ 1)/2
	n/2
 ≥ (n/2)(n/2) = n2

4
(3.2)

for all n ≥ 1. We can now conclude that

1+ 2+ · · · + n = �(n2).

Therefore,

1+ 2+ · · · + n = �(n2).

Example 3.8 If k is a positive integer and, as in Example 3.7, we replace each integer 1, 2, . . . , n by
n, we have

1k + 2k + · · · + nk ≤ nk + nk + · · · + nk = n · nk = nk+1

for all n ≥ 1; hence

1k + 2k + · · · + nk = O(nk+1).

We can also obtain a lower bound as in Example 3.7:

1k + 2k + · · · + nk ≥ 	n/2
k + · · · + (n− 1)k + nk

≥ 	n/2
k + · · · + 	n/2
k + 	n/2
k
= 	(n+ 1)/2
	n/2
k ≥ (n/2)(n/2)k = nk+1/2k+1

224

Algorithms

for all n ≥ 1. We conclude that

1k + 2k + · · · + nk = �(nk+1),

and hence

1k + 2k + · · · + nk = �(nk+1).

Notice the difference between the polynomial

akn
k + ak−1n

k−1 + · · · + a1n+ a0

in Theorem 3.4 and the expression

1k + 2k + · · · + nk

in Example 3.8. A polynomial has a fixed number of terms, whereas the number of
terms in the expression in Example 3.8 is dependent on the value of n. Furthermore, the
polynomial in Theorem 3.4 is �(nk), but the expression in Example 3.8 is �(nk+1).

Our next example gives a theta notation for lg n!.

Example 3.9 Using an argument similar to that in Example 3.7, we show that

lg n! = �(n lg n).

By properties of logarithms, we have

lg n! = lg n+ lg(n− 1)+ · · · + lg 2+ lg 1

for all n ≥ 1. Since lg is an increasing function,

lg n+ lg(n− 1)+ · · · + lg 2+ lg 1 ≤ lg n+ lg n+ · · · + lg n+ lg n = n lg n

for all n ≥ 1. We conclude that

lg n! = O(n lg n).

For all n ≥ 4, we have

lg n+ lg(n− 1)+ · · · + lg 2+ lg 1 ≥ lg n+ lg(n− 1)+ · · · + lg	n/2

≥ lg	n/2
 + · · · + lg	n/2

= 	(n+ 1)/2
 lg	n/2

≥ (n/2) lg(n/2)

= (n/2)[lg n− lg 2]

= (n/2)[(lg n)/2+ ((lg n)/2− 1)]

≥ (n/2)(lg n)/2

= n lg n/4

[since (lg n)/2 ≥ 1 for all n ≥ 4]. Therefore,

lg n! = �(n lg n).

It follows that

lg n! = �(n lg n).

225

Algorithms

Example 3.10 Show that if f(n) = �(g(n)) and g(n) = �(h(n)), then f(n) = �(h(n)).
Because f(n) = �(g(n)), there are constants C1 and C2 such that

C1|g(n)| ≤ |f(n)| ≤ C2|g(n)|

for all but finitely many positive integers n. Because g(n) = �(h(n)), there are constants
C3 and C4 such that

C3|h(n)| ≤ |g(n)| ≤ C4|h(n)|

for all but finitely many positive integers n. Therefore,

C1C3|h(n)| ≤ C1|g(n)| ≤ |f(n)| ≤ C2|g(n)| ≤ C2C4|h(n)|

for all but finitely many positive integers n. It follows that f(n) = �(h(n)).

We next define what it means for the best-case, worst-case, or average-case time
of an algorithm to be of order at most g(n).

Definition 3.11 If an algorithm requires t(n) units of time to terminate in the best case for an input of
size n and

t(n) = O(g(n)),

we say that the best-case time required by the algorithm is of order at most g(n) or that
the best-case time required by the algorithm is O(g(n)).

If an algorithm requires t(n) units of time to terminate in the worst case for an
input of size n and

t(n) = O(g(n)),

we say that the worst-case time required by the algorithm is of order at most g(n) or that
the worst-case time required by the algorithm is O(g(n)).

If an algorithm requires t(n) units of time to terminate in the average case for an
input of size n and

t(n) = O(g(n)),

we say that the average-case time required by the algorithm is of order at most g(n) or
that the average-case time required by the algorithm is O(g(n)).

By replacing O by � and “at most” by “at least” in Definition 3.11, we obtain
the definition of what it means for the best-case, worst-case, or average-case time of
an algorithm to be of order at least g(n). If the best-case time required by an algorithm
is O(g(n)) and �(g(n)), we say that the best-case time required by the algorithm is
�(g(n)). An analogous definition applies to the worst-case and average-case times of
an algorithm.

Example 3.12 Suppose that an algorithm is known to take

60n2 + 5n+ 1

226

Algorithms

units of time to terminate in the worst case for inputs of size n. We showed in Example 3.3
that

60n2 + 5n+ 1 = �(n2).

Thus the worst-case time required by this algorithm is �(n2).

Example 3.13 Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed.

1. for i = 1 to n

2. for j = 1 to i

3. x = x+ 1

First, i is set to 1 and, as j runs from 1 to 1, line 3 is executed one time. Next, i is
set to 2 and, as j runs from 1 to 2, line 3 is executed two times, and so on. Thus the total
number of times line 3 is executed is (see Example 3.7)

1+ 2+ · · · + n = �(n2).

Thus a theta notation for the number of times the statement x = x + 1 is executed
is �(n2).

Example 3.14 Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed:

1. i = n

2. while (i ≥ 1) {
3. x = x+ 1
4. i = �i/2�
5. }

First, we examine some specific cases. Because of the floor function, the compu-
tations are simplified if n is a power of 2. Consider, for example, the case n = 8. At line
1, i is set to 8. At line 2, the condition i ≥ 1 is true. At line 3, we execute the statement
x = x+ 1 the first time. At line 4, i is reset to 4 and we return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 3, we execute the statement
x = x+ 1 the second time. At line 4, i is reset to 2 and we return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 3, we execute the statement
x = x+ 1 the third time. At line 4, i is reset to 1 and we return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 3, we execute the statement
x = x+ 1 the fourth time. At line 4, i is reset to 0 and we return to line 2.

This time at line 2, the condition i ≥ 1 is false. The statement x = x + 1 was
executed four times.

Now suppose that n is 16. At line 1, i is set to 16. At line 2, the condition i ≥ 1 is
true. At line 3, we execute the statement x = x+ 1 the first time. At line 4, i is reset to 8
and we return to line 2. Now execution proceeds as before; the statement x = x + 1 is
executed four more times, for a total of five times.

Similarly, if n is 32, the statement x = x+ 1 is executed a total of six times.
A pattern is emerging. Each time the initial value of n is doubled, the statement

x = x+1 is executed one more time. More precisely, if n = 2k, the statement x = x+1
is executed k + 1 times. Since k is the exponent for 2, k = lg n. Thus if n = 2k, the
statement x = x+ 1 is executed 1+ lg n times.

227

Algorithms

If n is an arbitrary positive integer (not necessarily a power of 2), it lies between
two powers of 2; that is, for some k ≥ 1,

2k−1 ≤ n < 2k.

We use induction on k to show that in this case the statement x = x + 1 is executed k

times.
If k = 1, we have

1 = 21−1 ≤ n < 21 = 2.

Therefore, n is 1. In this case, the statement x = x+ 1 is executed once. Thus the Basis
Step is proved.

Now suppose that if n satisfies

2k−1 ≤ n < 2k,

the statement x = x+ 1 is executed k times. We must show that if n satisfies

2k ≤ n < 2k+1,

the statement x = x+ 1 is executed k + 1 times.
Suppose that n satisfies

2k ≤ n < 2k+1.

At line 1, i is set to n. At line 2, the condition i ≥ 1 is true. At line 3, we execute the
statement x = x + 1 the first time. At line 4, i is reset to �n/2� and we return to line 2.
Notice that

2k−1 ≤ n/2 < 2k.

Because 2k−1 is an integer, we must also have

2k−1 ≤ �n/2� < 2k.

By the inductive assumption, the statement x = x + 1 is executed k more times, for a
total of k + 1 times. The Inductive Step is complete. Therefore, if n satisfies

2k−1 ≤ n < 2k,

the statement x = x+ 1 is executed k times.
Suppose that n satisfies

2k−1 ≤ n < 2k.

Taking logarithms to the base 2, we have

k − 1 ≤ lg n < k.

Therefore, k, the number of times the statement x = x+ 1 is executed, satisfies

lg n < k ≤ 1+ lg n.

Because k is an integer, we must have

k ≤ 1+ �lg n�.
Furthermore,

�lg n� < k.

228

Algorithms

It follows from the last two inequalities that

k = 1+ �lg n�.
Since

1+ �lg n� = �(lg n),

a theta notation for the number of times the statement x = x+ 1 is executed is �(lg n).

Many algorithms are based on the idea of repeated halving. Example 3.14 shows
that for size n, repeated halving takes time �(lg n). Of course, the algorithm may do
work in addition to the halving that will increase the overall time.

Example 3.15 Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed.

1. j = n

2. while (j ≥ 1) {
3. for i = 1 to j

4. x = x+ 1
5. j = �j/2�
6. }

Let t(n) denote the number of times we execute the statement x = x+ 1. The first
time we arrive at the body of the while loop, the statement x = x+1 is executed n times.
Therefore t(n) ≥ n for all n ≥ 1 and t(n) = �(n).

Next we derive a big oh notation for t(n). After j is set to n, we arrive at the while
loop for the first time. The statement x = x + 1 is executed n times. At line 5, j is
replaced by �n/2�; hence j ≤ n/2. If j ≥ 1, we will execute x = x + 1 at most n/2
additional times in the next iteration of the while loop, and so on. If we let k denote the
number of times we execute the body of the while loop, the number of times we execute
x = x+ 1 is at most

n+ n

2
+ n

4
+ · · · + n

2k−1
.

This geometric sum is equal to

n
(
1− 1

2k

)

1− 1
2

.

Now

t(n) ≤ n
(
1− 1

2k

)

1− 1
2

= 2n

(
1− 1

2k

)
≤ 2n for all n ≥ 1,

so t(n) = O(n). Thus a theta notation for the number of times we execute x = x + 1
is �(n).

Example 3.16 Determine, in theta notation, the best-case, worst-case, and average-case times required
to execute Algorithm 3.17, which follows. Assume that the input size is n and that the
run time of the algorithm is the number of comparisons made at line 3. Also, assume
that the n+ 1 possibilities of key being at any particular position in the sequence or not
being in the sequence are equally likely.

229

Algorithms

The best-case time can be analyzed as follows. If s1 = key, line 3 is executed once.
Thus the best-case time of Algorithm 3.17 is

�(1).

The worst-case time of Algorithm 3.17 is analyzed as follows. If key is not in the
sequence, line 3 will be executed n times, so the worst-case time of Algorithm 3.17 is

�(n).

Finally, consider the average-case time of Algorithm 3.17. If key is found at the
ith position, line 3 is executed i times; if key is not in the sequence, line 3 is executed n

times. Thus the average number of times line 3 is executed is

(1+ 2+ · · · + n)+ n

n+ 1
.

Now

(1+ 2+ · · · + n)+ n

n+ 1
≤ n2 + n

n+ 1
by (3.1)

= n(n+ 1)

n+ 1
= n.

Therefore, the average-case time of Algorithm 3.17 is

O(n).

Also,

(1+ 2+ · · · + n)+ n

n+ 1
≥ n2/4+ n

n+ 1
by (3.2)

≥ n2/4+ n/4

n+ 1
= n

4
.

Therefore the average-case time of Algorithm 3.17 is

�(n).

Thus the average-case time of Algorithm 3.17 is

�(n).

For this algorithm, the worst-case and average-case times are both �(n).

Algorithm 3.17 Searching an Unordered Sequence

Given the sequence s1, . . . , sn and a value key, this algorithm returns the index of key.
If key is not found, the algorithm returns 0.

Input: s1, s2, . . . , sn, n, and key (the value to search for)

Output: The index of key, or if key is not found, 0

1. linear search(s, n, key) {
2. for i = 1 to n

3. if (key == si)

4. return i // successful search
5. return 0 // unsuccessful search
6. }

230

Algorithms

Example 3.18 Matrix Multiplication and Transitive Relations

If A is a matrix, we let Aij denote the entry in row i, column j. The product of n × n

matrices A and B (i.e., A and B have n rows and n columns) is defined as the n × n

matrix C, where

Cij =
n∑

k=1

AikBkj, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Algorithm 3.19, which computes the matrix product, is a direct translation of the pre-
ceding definition. Because of the nested loops, it runs in time �(n3).

Recall that we can test whether a relation R on an n-element set is transitive by
squaring its adjacency matrix, say A, and then comparing A2 with A. The relation R

is transitive if and only if, whenever the entry in row i, column j in A2 is nonzero,
the corresponding entry in A is also nonzero. Since there are n2 entries in A and A2,
the worst-case time to compare the entries is �(n2). Using Algorithm 3.19 to compute
A2 requires time �(n3). Therefore, the overall time to test whether a relation on an
n-element set is transitive, using Algorithm 3.19 to compute A2, is �(n3).

For many years it was believed that the minimum time to multiply two n × n

matrices was �(n3), thus it was quite a surprise when a more efficient algorithm was dis-
covered. Strassen’s algorithm to multiply two n×n matrices runs in time �(nlg 7). Since
lg 7 is approximately 2.807, Strassen’s algorithm runs in time approximately �(n2.807),
which is asymptotically faster than Algorithm 3.19. An algorithm by Coppersmith and
Winograd (see [Coppersmith]) runs in time �(n2.376) and, so, is even asymptotically
faster than Strassen’s algorithm. Since the product of two n × n matrices contains n2

terms, any algorithm that multiplies two n× n matrices requires time at least �(n2). At
the present time, no sharper lower bound is known.

Algorithm 3.19 Matrix Multiplication

This algorithm computes the product C of the n× n matrices A and B directly from
the definition of matrix multiplication.

Input: A, B, n

Output: C, the product of A and B

matrix product(A, B, n) {
for i = 1 to n

for j = 1 to n {
Cij = 0
for k = 1 to n

Cij = Cij + Aik ∗ Bkj

}
return C

}

The constants that are suppressed in the theta notation may be important. Even
if for any input of size n, algorithm A requires exactly C1n time units and algorithm
B requires exactly C2n

2 time units, for certain sizes of inputs algorithm B may be
superior. For example, suppose that for any input of size n, algorithm A requires 300n

units of time and algorithm B requires 5n2 units of time. For an input size of n = 5,

algorithm A requires 1500 units of time and algorithm B requires 125 units of time,
and thus algorithm B is faster. Of course, for sufficiently large inputs, algorithm A is
considerably faster than algorithm B.

231

Algorithms

A real-world example of the importance of constants in the theta notation is pro-
vided by matrix multiplication. Algorithm 3.19, which runs in time �(n3), is typically
used to multiply matrices even though the Strassen and Coppersmith-Winograd algo-
rithms (see Example 3.18), which run in times�(n2.807) and�(n2.376), are asymptotically
faster. The constants in the Strassen and Coppersmith-Winograd algorithms are so large
that they are faster than Algorithm 3.19 only for very large matrices.

Certain growth functions occur so often that they are given special names, as shown
in Table 3.3. The functions in Table 3.3, with the exception of �(nk), are arranged so
that if �(f(n)) is above �(g(n)), then f(n) ≤ g(n) for all but finitely many positive
integers n. Thus, if algorithms A and B have run times that are �(f(n)) and �(g(n)),

respectively, and �(f(n)) is above �(g(n)) in Table 3.3, then algorithm A is more
time-efficient than algorithm B for sufficiently large inputs.

TABLE 3.3 ■ Common
growth functions.

Theta Form Name

�(1) Constant
�(lg lg n) Log log
�(lg n) Log
�(n) Linear
�(n lg n) n log n

�(n2) Quadratic
�(n3) Cubic
�(nk), k ≥ 1 Polynomial
�(cn), c > 1 Exponential
�(n!) Factorial It is important to develop some feeling for the relative sizes of the functions in

Table 3.3. In Figure 3.1 we have graphed some of these functions. Another way to
develop some appreciation for the relative sizes of the functions f(n) in Table 3.3 is to
determine how long it would take an algorithm to terminate whose run time is exactly
f(n). For this purpose, let us assume that we have a computer that can execute one step in
1 microsecond (10−6 sec). Table 3.1 shows the execution times, under this assumption,
for various input sizes. Notice that it is practical to implement an algorithm that requires
2n steps for an input of size n only for very small input sizes. Algorithms requiring n2 or
n3 steps also become impractical to implement, but for relatively larger input sizes. Also,
notice the dramatic improvement that results when we move from n2 steps to n lg n steps.

A problem that has a worst-case polynomial-time algorithm is considered to have a
“good” algorithm; the interpretation is that such a problem has an efficient solution. Such
problems are called feasible or tractable. Of course, if the worst-case time to solve the
problem is proportional to a high-degree polynomial, the problem can still take a long time
to solve. Fortunately, in many important cases, the polynomial bound has small degree.

A problem that does not have a worst-case polynomial-time algorithm is said to
be intractable. Any algorithm, if there is one, that solves an intractable problem is
guaranteed to take a long time to execute in the worst case, even for modest sizes of the
input.

Certain problems are so hard that they have no algorithms at all. A problem for
which there is no algorithm is said to be unsolvable. A large number of problems are
known to be unsolvable, some of considerable practical importance. One of the earliest
problems to be proved unsolvable is the halting problem: Given an arbitrary program
and a set of inputs, will the program eventually halt?

A large number of solvable problems have an as yet undetermined status; they are
thought to be intractable, but none of them has been proved to be intractable. (Most of
these problems belong to the class of NP-complete problems; see [Johnsonbaugh] for
details.) An example of an NP-complete problem is:

Given a collection C of finite sets and a positive integer k ≤ |C|, does C contain
at least k mutually disjoint sets?

Other NP-complete problems include the traveling-salesperson problem and the
Hamiltonian-cycle problem.

Problem-Solving Tips

To derive a big oh notation for an expression f(n) directly, you must find a constant C1

and a simple expression g(n) (e.g., n, n lg n, n2) such that |f(n)| ≤ C1|g(n)| for all but
finitely many n. Remember you’re trying to derive an inequality, not an equality, so you
can replace terms in f(n) with other terms if the result is larger (see, e.g., Example 3.3).

232

Algorithms

To derive an omega notation for an expression f(n) directly, you must find a
constant C2 and a simple expression g(n) such that |f(n)| ≥ C2|g(n)| for all but finitely
many n. Again, you’re trying to derive an inequality so you can replace terms in f(n)

with other terms if the result is smaller (again, see Example 3.3).
To derive a theta notation, you must derive both big oh and omega notations.
Another way to derive big oh, omega, and theta estimates is to use known results:

Expression Name Estimate Reference

akn
k + ak−1n

k−1 + · · · Polynomial �(nk) Theorem 3.4
+ a1n+ a0

1+ 2+ · · · + n Arithmetic Sum (Case k = 1 �(n2) Example 3.7
for Next Entry)

1k + 2k + · · · + nk Sum of Powers �(nk+1) Example 3.8
lg n! log n Factorial �(n lg n) Example 3.9

To derive an asymptotic estimate for the time of an algorithm, count the number
of steps t(n) required by the algorithm, and then derive an estimate for t(n) as described
previously. Algorithms typically contain loops, in which case, deriving t(n) requires
counting the number of iterations of the loops.

Section Review Exercises

1. To what does “analysis of algorithms” refer?

2. What is the worst-case time of an algorithm?

3. What is the best-case time of an algorithm?

4. What is the average-case time of an algorithm?

5. Define f(n) = O(g(n)). What is this notation called?

6. Give an intuitive interpretation of how f and g are related if
f(n) = O(g(n)).

7. Define f(n) = �(g(n)). What is this notation called?

8. Give an intuitive interpretation of how f and g are related if
f(n) = �(g(n)).

9. Define f(n) = �(g(n)). What is this notation called?

10. Give an intuitive interpretation of how f and g are related if
f(n) = �(g(n)).

Exercises

Select a theta notation from Table 3.3 for each expression in
Exercises 1–12.

1. 6n+ 1 2. 2n2 + 1

3. 6n3 + 12n2 + 1 4. 3n2 + 2n lg n

5. 2 lg n+ 4n+ 3n lg n 6. 6n6 + n+ 4

7. 2+ 4+ 6+ · · · + 2n 8. (6n+ 1)2

9. (6n+ 4)(1+ lg n) 10.
(n+ 1)(n+ 3)

n+ 2

11.
(n2 + lg n)(n+ 1)

n+ n2

12. 2+ 4+ 8+ 16+ · · · + 2n

In Exercises 13–15, select a theta notation for f(n)+ g(n).

13. f(n) = �(1), g(n) = �(n2)

14. f(n) = 6n3 + 2n2 + 4, g(n) = �(n lg n)

15. f(n) = �(n3/2), g(n) = �(n5/2)

In Exercises 16–25, select a theta notation from among

�(1), �(lg n), �(n), �(n lg n),

�(n2), �(n3), �(2n), or �(n!)

for the number of times the statement x = x+ 1 is executed.

16. for i = 1 to 2n

x = x+ 1

17. i = 1
while (i ≤ 2n) {

x = x+ 1
i = i+ 2

}

18. for i = 1 to n

for j = 1 to n

x = x+ 1

233

Algorithms

19. for i = 1 to 2n

for j = 1 to n

x = x+ 1

20. for i = 1 to n

for j = 1 to �i/2�
x = x+ 1

21. for i = 1 to n

for j = 1 to n

for k = 1 to n

x = x+ 1

22. for i = 1 to n

for j = 1 to n

for k = 1 to i

x = x+ 1

23. for i = 1 to n

for j = 1 to i

for k = 1 to j

x = x+ 1

24. j = n

while (j ≥ 1) {
for i = 1 to j

x = x+ 1
j = �j/3�

}

25. i = n

while (i ≥ 1) {
for j = 1 to n

x = x+ 1
i = �i/2�

}
26. Find a theta notation for the number of times the statement

x = x+ 1 is executed.

i = 2
while (i < n) {

i = i2

x = x+ 1
}

27. Let t(n) be the total number of times that i is incremented and j

is decremented in the following pseudocode, where a1, a2, . . .

is a sequence of real numbers.

i = 1
j = n

while (i < j) {
while (i < j ∧ ai < 0)

i = i+ 1
while (i < j ∧ aj ≥ 0)

j = j − 1
if (i < j)

swap(ai, aj)

}

Find a theta notation for t(n).

28. Find a theta notation for the worst-case time required by the
following algorithm:

iskey(s, n, key) {
for i = 1 to n− 1

for j = i+ 1 to n

if (si + sj == key)
return 1

else
return 0

}

29. In addition to finding a theta notation in Exercises 1–28, prove
that it is correct.

30. Find the exact number of comparisons (lines 10, 15, 17, 24,
and 26) required by the following algorithm when n is even
and when n is odd. Find a theta notation for this algorithm.

Input: s1, s2, . . . , sn, n

Output: large (the largest item in s1, s2, . . . , sn), small
(the smallest item in s1, s2, . . . , sn)

1. large small(s, n, large, small) {
2. if (n == 1) {
3. large = s1

4. small = s1

5. return
6. }
7. m = 2�n/2�
8. i = 1
9. while (i ≤ m− 1) {

10. if (si > si+1)

11. swap(si, si+1)

12. i = i+ 2
13. }
14. if (n > m) {
15. if (sm−1 > sn)

16. swap(sm−1, sn)

17. if (sn > sm)

18. swap(sm, sn)

19. }
20. small = s1

21. large = s2

22. i = 3
23. while (i ≤ m− 1) {
24. if (si < small)
25. small = si
26. if (si+1 > large)
27. large = si+1

28. i = i+ 2
29. }
30. }

31. This exercise shows another way to guess a formula for
1+ 2+ · · · + n.

Example 3.7 suggests that

1+ 2+ · · · + n = An2 + Bn+ C for all n,

for some constants A, B, and C.Assuming that this is true, plug
in n = 1, 2, 3 to obtain three equations in the three unknowns
A, B, and C. Now solve for A, B, and C. The resulting formula
can now be proved using mathematical induction.

32. Suppose that a > 1 and that f(n) = �(loga n). Show that
f(n) = �(lg n).

33. Show that n! = O(nn).

34. Show that 2n = O(n!).

35. By using an argument like the one shown in Examples 3.7–3.9
or otherwise, prove that

∑n

i=1 i lg i = �(n2 lg n).

234

Algorithms

†�36. Show that nn+1 = O(2n2
).

37. Show that lg(nk + c) = �(lg n) for every fixed k > 0 and
c > 0.

38. Show that if n is a power of 2, say n = 2k , then
k∑

i=0

lg(n/2i) = �(lg2 n).

39. Suppose that f(n) = O(g(n)), and f(n) ≥ 0 and g(n) > 0 for
all n ≥ 1. Show that for some constant C, f(n) ≤ Cg(n) for
all n ≥ 1.

40. State and prove a result for � similar to that for Exercise 39.

41. State and prove a result for � similar to that for Exercises 39
and 40.

Determine whether each statement in Exercises 42–52 is true or
false. If the statement is true, prove it. If the statement is false, give
a counterexample. Assume that the functions f, g, and h take on
only positive values.

42. nn = O(2n)

43. 2+ sin n = O(2+ cos n)

44. If f(n) = �(h(n)) and g(n) = �(h(n)), then f(n)+ g(n) =
�(h(n)).

45. If f(n) = �(g(n)), then cf(n) = �(g(n)) for any c �= 0.

46. If f(n) = �(g(n)), then 2f(n) = �(2g(n)).

47. If f(n) = �(g(n)), then lg f(n) = �(lg g(n)). Assume that
f(n) ≥ 1 and g(n) ≥ 1 for all n = 1, 2,

48. If f(n) = O(g(n)), then g(n) = O(f(n)).

49. If f(n) = O(g(n)), then g(n) = �(f(n)).

50. If f(n) = �(g(n)), then g(n) = �(f(n)).

51. f(n)+ g(n) = �(h(n)), where h(n) = max{f(n), g(n)}
52. f(n)+ g(n) = �(h(n)), where h(n) = min{f(n), g(n)}
53. Write out exactly what f(n) �= O(g(n)) means.

54. What is wrong with the following argument that purports to
show that we cannot simultaneously have f(n) �= O(g(n)) and
g(n) �= O(f(n))?

If f(n) �= O(g(n)), then for every C > 0, |f(n)| >

C|g(n)|. In particular, |f(n)| > 2|g(n)|. If g(n) �= O(f(n)),
then for every C > 0, |g(n)| > C|f(n)|. In particular,
|g(n)| > 2|f(n)|. But now

|f(n)| > 2|g(n)| > 4|f(n)|.
Cancelling |f(n)| gives 1 > 4, which is a contradiction.
Therefore, we cannot simultaneously have f(n) �= O(g(n))

and g(n) �= O(f(n)).

�55. Find functions f and g satisfying

f(n) �= O(g(n)) and g(n) �= O(f(n)).

�56. Give an example of increasing positive functions f and g

defined on the positive integers for which

f(n) �= O(g(n)) and g(n) �= O(f(n)).

�57. Prove that nk = O(cn) for all k = 1, 2, . . . and c > 1.

58. Find functions f, g, h, and t satisfying

f(n) = �(g(n)), h(n) = �(t(n)),

f(n)− h(n) �= �(g(n)− t(n)).

59. Suppose that the worst-case time of an algorithm is �(n). What
is the error in the following reasoning? Since 2n = �(n), the
worst-case time to run the algorithm with input of size 2n will
be approximately the same as the worst-case time to run the
algorithm with input of size n.

60. Does

f(n) = O(g(n))

define an equivalence relation on the set of real-valued func-
tions on {1, 2, . . .}?

61. Does

f(n) = �(g(n))

define an equivalence relation on the set of real-valued func-
tions on {1, 2, . . .}?

62. [Requires the integral]

(a) Show, by consulting the figure, that

1

2
+ 1

3
+ · · · + 1

n
< loge n.

(b) Show, by consulting the figure, that

loge n < 1+ 1

2
+ · · · + 1

n− 1
.

(c) Use parts (a) and (b) to show that

1+ 1

2
+ · · · + 1

n
= �(lg n).

1 2 3 n–1 n... x

y

1
xy �

63. [Requires the integral] Use an argument like the one shown in
Exercise 62 to show that

nm+1

m+ 1
< 1m + 2m + · · · + nm <

(n+ 1)m+1

m+ 1
,

where m is a positive integer.

64. By using the formula

bn+1 − an+1

b− a
=

n∑

i=0

aibn−i 0 ≤ a < b

or otherwise, prove that

bn+1 − an+1

b− a
< (n+ 1)bn 0 ≤ a < b.

†A starred exercise indicates a problem of above-average difficulty.

235

Algorithms

65. Take a = 1 + 1/(n + 1) and b = 1 + 1/n in the inequal-
ity of Exercise 64 to prove that the sequence {(1 + 1/n)n} is
increasing.

66. Take a = 1 and b = 1+ 1/(2n) in the inequality of Exercise
64 to prove that (

1+ 1

2n

)n

< 2

for all n ≥ 1. Use the preceding exercise to conclude that(
1+ 1

n

)n

< 4

for all n ≥ 1.
The method used to prove the results of this exercise and

its predecessor is apparently due to Fort in 1862 (see [Chrystal,
vol. II, page 77]).

67. By using the preceding two exercises or otherwise, prove that

1

n
≤ lg(n+ 1)− lg n <

2

n

for all n ≥ 1.

68. Use the preceding exercise to prove that
n∑

i=1

1

i
= �(lg n).

(Compare with Exercise 62.)

69. Prove that the sequence {n1/n}∞n=3 is decreasing.

70. Prove that if 0 ≤ a < b, then

bn+1 − an+1

b− a
> (n+ 1)an.

71. Find appropriate values for a and b in the inequality in the
preceding exercise to prove that the sequence {(1−1/n)n}∞n=1
is increasing and bounded above by 4/9.

72. By using the result of the preceding exercise, or otherwise,
prove that the sequence {(1+ 1/n)n+1}∞n=1 is decreasing.

73. By using the result of the preceding exercise, or otherwise,
prove that

lg(n+ 1)− lg n ≤ 2

n+ 1

for all n ≥ 1.

74. What is wrong with the following “proof” that any algorithm
has a run time that is O(n)?

We must show that the time required for an input of size
n is at most a constant times n.

Basis Step
Suppose that n = 1. If the algorithm takes C units of time for
an input of size 1, the algorithm takes at most C · 1 units of
time. Thus the assertion is true for n = 1.

Inductive Step
Assume that the time required for an input of size n is at most
C′n and that the time for processing an additional item is C′′.
Let C be the maximum of C′ and C′′. Then the total time

required for an input of size n+ 1 is at most

C′n+ C′′ ≤ Cn+ C = C(n+ 1).

The Inductive Step has been verified.
By induction, for input of size n, the time required is at

most a constant time n. Therefore, the run time is O(n).

In Exercises 75–80, determine whether the statement is true or
false. If the statement is true, prove it. If the statement is false, give
a counterexample. Assume that f and g are real-valued functions
defined on the set of positive integers and that g(n) �= 0 for n ≥ 1.
These exercises require calculus.

75. If

lim
n→∞

f(n)

g(n)
= 0,

then f(n) = O(g(n)).

76. If

lim
n→∞

f(n)

g(n)
= 0,

then f(n) = �(g(n)).

77. If

lim
n→∞

f(n)

g(n)
= c �= 0,

then f(n) = O(g(n)).

78. If

lim
n→∞

f(n)

g(n)
= c �= 0,

then f(n) = �(g(n)).

79. If f(n) = O(g(n)), then

lim
n→∞

f(n)

g(n)

exists and is equal to some real number.

80. If f(n) = �(g(n)), then

lim
n→∞

f(n)

g(n)

exists and is equal to some real number.

�81. Use induction to prove that

lg n! ≥ n

2
lg

n

2
.

82. [Requires calculus] Let ln x denote the natural logarithm
(loge x) of x. Use the integral to obtain the estimate

n ln n− n ≤
n∑

k=1

ln k = ln n!, n ≥ 1.

83. Use the result of Exercise 82 and the change-of-base formula
for logarithms to obtain the formula

n lg n− n lg e ≤ lg n!, n ≥ 1.

84. Deduce

lg n! ≥ n

2
lg

n

2

from the inequality of Exercise 83.

236

Algorithms

Problem-Solving Corner Design and Analysis of an Algorithm

Problem
Develop and analyze an algorithm that returns the
maximum sum of consecutive values in the numerical
sequence

s1, . . . , sn.

In mathematical notation, the problem is to find the
maximum sum of the form sj + sj+1+ · · · + si. Exam-
ple: If the sequence is

27 6 −50 21 −3 14 16 −8 42 33 −21 9,

the algorithm returns 115—the sum of

21 −3 14 16 −8 42 33.

If all the numbers in a sequence are negative, the maxi-
mum sum of consecutive values is defined to be 0. (The
idea is that the maximum of 0 is achieved by taking an
“empty” sum.)

Attacking the Problem
In developing an algorithm, a good way to start is
to ask the question, “How would I solve this prob-
lem by hand?” At least initially, take a straightforward
approach. Here we might just list the sums of all con-
secutive values and pick the largest. For the example
sequence, the sums are as follows:

j

i 1 2 3 4 5 6 7 8 9 10 11 12

1 27
2 33 6
3 −17 −44 −50
4 4 −23 −29 21
5 1 −26 −32 18 −3
6 15 −12 −18 32 11 14
7 31 4 −2 48 27 30 16
8 23 −4 −10 40 19 22 8 −8
9 65 38 32 82 61 64 50 34 42

10 98 71 65 115 94 97 83 67 75 33
11 77 50 44 94 73 76 62 46 54 12 −21
12 86 59 53 103 82 85 71 55 63 21 −12 9

The entry in column j, row i, is the sum

sj + · · · + si.

For example, the entry in column 4, row 7, is 48—the
sum

s4 + s5 + s6 + s7 = 21+−3+ 14+ 16 = 48.

By inspection, we find that 115 is the largest sum.

Finding a Solution
We begin by writing pseudocode for the straightfor-
ward algorithm that computes all consecutive sums and
finds the largest:

Input: s1, . . . , sn

Output: max

max sum1(s, n) {
// sumji is the sum sj + · · · + si.

for i = 1 to n {
for j = 1 to i− 1

sumji = sumj,i−1 + si

sumii = si

}

// step through sumji and find the maximum
max = 0
for i = 1 to n

for j = 1 to i

if (sumji > max)
max = sumji

return max
}

The first nested for loops compute the sums

sumji = sj + · · · + si.

The computation relies on the fact that

sumji = sj + · · ·+ si= sj + · · ·+ si−1+ si

= sumj,i−1+ si.

237

Algorithms

The second nested for loops step through sumji and find
the largest value.

Since each of the nested for loops takes time
�(n2), max sum1’s time is �(n2).

We can improve the actual time, but not the asymp-
totic time, of the algorithm by computing the maximum
within the same nested for loops in which we compute
sumji:

Input: s1, . . . , sn

Output: max

max sum2(s, n) {
// sumji is the sum sj + · · · + si.

max = 0
for i = 1 to n {

for j = 1 to i− 1 {
sumji = sumj,i−1 + si

if (sumji > max)
max = sumji

}
sumii = si

if (sumii > max)
max = sumii

}
return max

}
Since the nested for loops take time �(n2),

max sum2 ’s time is �(n2). To reduce the asymptotic
time, we need to take a hard look at the pseudocode to
see where it can be improved.

Two key observations lead to improved time. First,
since we are looking only for the maximum sum, there
is no need to record all of the sums; we will store only
the maximum sum that ends at index i. Second, the line

sumji = sumj,i−1 + si

shows how a consecutive sum that ends at index i− 1
is related to a consecutive sum that ends at index i.
The maximum can be computed by using a similar for-
mula. If sum is the maximum consecutive sum that
ends at index i − 1, the maximum consecutive sum
that ends at index i is obtained by adding si to sum pro-
vided that sum+ si is positive. (If some sum of con-
secutive terms that ends at index i exceeds sum+ si,
we could remove si and obtain a sum of consecutive
terms ending at index i− 1 that exceeds sum, which is
impossible.) If sum+ si ≤ 0, the maximum consecu-
tive sum that ends at index i is obtained by taking no
terms and has value 0. Thus we may compute the maxi-
mum consecutive sum that ends at index i by executing

if (sum+ si > 0)

sum = sum+ si

else
sum = 0

Formal Solution
Input: s1, . . . , sn

Output: max

max sum3(s, n) {
// max is the maximum sum seen so far.
// After the ith iteration of the for
// loop, sum is the largest consecutive
// sum that ends at index i.
max = 0
sum = 0
for i = 1 to n {

if (sum+ si > 0)

sum = sum+ si

else
sum = 0

if (sum > max)
max = sum

}
return max

}

Since this algorithm has a single for loop that runs
from 1 to n, max sum3’s time is �(n). The asymptotic
time of this algorithm cannot be further improved. To
find the maximum sum of consecutive values, we must
at least look at each element in the sequence, which
takes time �(n).

Summary of Problem-Solving Techniques
■ In developing an algorithm, a good way to start

is to ask the question, “How would I solve this
problem by hand?”

■ In developing an algorithm, initially take a
straightforward approach.

■ After developing an algorithm, take a close
look at the pseudocode to see where it can be
improved. Look at the parts that perform key
computations to gain insight into how to enhance
the algorithm’s efficiency.

■ As in mathematical induction, extend a solution
of a smaller problem to a larger problem. (In this
problem, we extended a sum that ends at index
i− 1 to a sum that ends at index i.)

238

Algorithms

■ Don’t repeat computations. (In this problem, we
extended a sum that ends at index i− 1 to a sum
that ends at index i by adding an additional term
rather than by computing the sum that ends at
index i from scratch. This latter method would
have meant recomputing the sum that ends at
index i− 1.)

Comments
According to [Bentley], the problem discussed in this
section is the one-dimensional version of the origi-
nal two-dimensional problem that dealt with pattern
matching in digital images. The original problem was

to find the maximum sum in a rectangular submatrix
of an n× n matrix of real numbers.

Exercises
1. Modify max sum3 so that it computes not only the

maximum sum of consecutive values but also the
indexes of the first and last terms of a maximum-
sum subsequence. If there is no maximum-sum sub-
sequence (which would happen, for example, if all
of the values of the sequence were negative), the
algorithm should set the first and last indexes to
zero.

4 ➜ Recursive Algorithms

A recursive function (pseudocode) is a function that invokes itself. A recursive algo-
rithm is an algorithm that contains a recursive function. Recursion is a powerful, elegant,
and natural way to solve a large class of problems. A problem in this class can be solved
using a divide-and-conquer technique in which the problem is decomposed into prob-
lems of the same type as the original problem. Each subproblem, in turn, is decomposed
further until the process yields subproblems that can be solved in a straightforward way.
Finally, solutions to the subproblems are combined to obtain a solution to the original
problem.

Example 4.1 Recall that if n ≥ 1, n! = n(n− 1) · · · 2 · 1, and 0! = 1. Notice that if n ≥ 2, n factorial
can be written “in terms of itself” since, if we “peel off” n, the remaining product is
simply (n− 1)!; that is,

n! = n(n− 1)(n− 2) · · · 2 · 1 = n · (n− 1)!.

For example,

5! = 5 · 4 · 3 · 2 · 1 = 5 · 4!.

The equation

n! = n · (n− 1)!,

which happens to be true even when n= 1, shows how to decompose the original prob-
lem (compute n!) into increasingly simpler subproblems [compute (n − 1)!, compute
(n − 2)!, . . .] until the process reaches the straightforward problem of computing 0!.
The solutions to these subproblems can then be combined, by multiplying, to solve the
original problem.

For example, the problem of computing 5! is reduced to computing 4!; the problem
of computing 4! is reduced to computing 3!; and so on. Table 4.1 summarizes this process.

TABLE 4.1 ■ Decomposing the
factorial problem.

Problem Simplified Problem

5! 5 · 4!
4! 4 · 3!
3! 3 · 2!
2! 2 · 1!
1! 1 · 0!
0! None

TABLE 4.2 ■ Combining
subproblems of the factorial
problem.

Problem Solution

0! 1
1! 1 · 0! = 1
2! 2 · 1! = 2
3! 3 · 2! = 3 · 2 = 6
4! 4 · 3! = 4 · 6 = 24
5! 5 · 4! = 5 · 24 = 120

Once the problem of computing 5! has been reduced to solving subproblems, the
solution to the simplest subproblem can be used to solve the next simplest subprob-
lem, and so on, until the original problem has been solved. Table 4.2 shows how the
subproblems are combined to compute 5!.

239

Algorithms

Next, we write a recursive algorithm that computes factorials. The algorithm is a
direct translation of the equation

n! = n · (n− 1)!.

Algorithm 4.2 Computing n Factorial

This recursive algorithm computes n!.

Input: n, an integer greater than or equal to 0

Output: n!

1. factorial(n) {
2. if (n == 0)

3. return 1
4. return n ∗ factorial(n− 1)

5. }

We show how Algorithm 4.2 computes n! for several values of n. If n = 0, at line
3 the function correctly returns the value 1.

If n = 1, we proceed to line 4 since n �= 0. We use this function to compute 0!. We
have just observed that the function computes 1 as the value of 0!. At line 4, the function
correctly computes the value of 1!:

n · (n− 1)! = 1 · 0! = 1 · 1 = 1.

If n = 2, we proceed to line 4 since n �= 0. We use this function to compute 1!. We
have just observed that the function computes 1 as the value of 1!. At line 4, the function
correctly computes the value of 2!:

n · (n− 1)! = 2 · 1! = 2 · 1 = 2.

If n = 3 we proceed to line 4 since n �= 0. We use this function to compute 2!. We
have just observed that the function computes 2 as the value of 2!. At line 4, the function
correctly computes the value of 3!:

n · (n− 1)! = 3 · 2! = 3 · 2 = 6.

The preceding arguments may be generalized using mathematical induction to
prove that Algorithm 4.2 correctly returns the value of n! for any nonnegative
integer n.

Theorem 4.3 Algorithm 4.2 returns the value of n!, n ≥ 0.

Proof

Basis Step (n = 0)
We have already observed that if n = 0, Algorithm 4.2 correctly returns the value
of 0! (1).

240

Algorithms

Inductive Step
Assume that Algorithm 4.2 correctly returns the value of (n − 1)!, n > 0. Now
suppose that n is input to Algorithm 4.2. Since n �= 0, when we execute the function
in Algorithm 4.2 we proceed to line 4. By the inductive assumption, the function
correctly computes the value of (n − 1)!. At line 4, the function correctly computes
the value (n− 1)! · n = n!.

Therefore, Algorithm 4.2 correctly returns the value of n! for every integer
n ≥ 0.

If executed by a computer, Algorithm 4.2 would typically not be as efficient as a
nonrecursive version because of the overhead of the recursive calls.

There must be some situations in which a recursive function does not invoke itself;
otherwise, it would invoke itself forever. In Algorithm 4.2, if n = 0, the function does
not invoke itself. We call the values for which a recursive function does not invoke itself
the base cases. To summarize, every recursive function must have base cases.

We have shown how mathematical induction may be used to prove that a recur-
sive algorithm computes the value it claims to compute. The link between mathematical
induction and recursive algorithms runs deep. Often a proof by mathematical induction
can be considered to be an algorithm to compute a value or to carry out a particular
construction. The Basis Step of a proof by mathematical induction corresponds to the
base cases of a recursive function, and the Inductive Step of a proof by mathematical
induction corresponds to the part of a recursive function where the function calls itself.

Consider the proof using mathematical induction that, given an n × n deficient
board (a board with one square removed), where n is a power of 2, we can tile the board
with right trominoes (three squares that form an “L”). We now translate the inductive
proof into a recursive algorithm to construct a tiling by right trominoes of an n × n

deficient board where n is a power of 2.

Algorithm 4.4 Tiling a Deficient Board with Trominoes

This algorithm constructs a tiling by right trominoes of an n×n deficient board where
n is a power of 2.

Input: n, a power of 2 (the board size); and the location L of the missing
square

Output: A tiling of an n× n deficient board

1. tile(n, L) {
2. if (n == 2) {

// the board is a right tromino T

3. tile with T

4. return
5. }
6. divide the board into four (n/2)× (n/2) boards
7. rotate the board so that the missing square is in the upper-left quadrant
8. place one right tromino in the center //

// consider each of the squares covered by the center tromino as
// missing, and denote the missing squares as m1, m2, m3, m4

9. tile(n/2, m1)

10. tile(n/2, m2)

11. tile(n/2, m3)

12. tile(n/2, m4)

13. }

241

Algorithms

Using the method of the proof of Theorem 4.3, we can prove that Algorithm 4.4
is correct (see Exercise 4).

We present one final example of a recursive algorithm.

Example 4.5 A robot can take steps of 1 meter or 2 meters. We write an algorithm to calculate the
number of ways the robot can walk n meters. As examples:

Distance Sequence of Steps Number of Ways to Walk

1 1 1
2 1, 1 or 2 2
3 1, 1, 1 or 1, 2 or 2, 1 3
4 1, 1, 1, 1 or 1, 1, 2 5

or 1, 2, 1 or 2, 1, 1 or 2, 2

Let walk(n) denote the number of ways the robot can walk n meters. We have
observed that

walk(1) = 1, walk(2) = 2.

Now suppose that n > 2. The robot can begin by taking a step of 1 meter or a step of
2 meters. If the robot begins by taking a 1-meter step, a distance of n−1 meters remains;
but, by definition, the remainder of the walk can be completed in walk(n − 1) ways.
Similarly, if the robot begins by taking a 2-meter step, a distance of n−2 meters remains
and, in this case, the remainder of the walk can be completed in walk(n−2) ways. Since
the walk must begin with either a 1-meter or a 2-meter step, all of the ways to walk n

meters are accounted for. We obtain the formula

walk(n) = walk(n− 1)+ walk(n− 2).

For example,

walk(4) = walk(3)+ walk(2) = 3+ 2 = 5.

We can write a recursive algorithm to compute walk(n) by translating the equation

walk(n) = walk(n− 1)+ walk(n− 2)

directly into an algorithm. The base cases are n = 1 and n = 2.

Algorithm 4.6 Robot Walking

This algorithm computes the function defined by

walk(n) =
⎧
⎨

⎩

1, n = 1
2, n = 2
walk(n− 1)+ walk(n− 2) n > 2.

Input: n

Output: walk(n)

walk(n) {
if (n == 1 ∨ n == 2)

return n

return walk(n− 1)+ walk(n− 2)

}

242

Algorithms

Using the method of the proof of Theorem 4.3, we can prove that Algorithm 4.6
is correct (see Exercise 7).

The sequence

walk(1), walk(2), walk(3), . . . ,

whose values begin

1, 2, 3, 5, 8, 13, . . . ,

is related to the Fibonacci sequence. The Fibonacci sequence {fn} is defined by the
equations

f1 = 1

f2 = 1

fn = fn−1 + fn−2 for all n ≥ 3.

The Fibonacci sequence begins

1, 1, 2, 3, 5, 8, 13,

Since

walk(1) = f2, walk(2) = f3,

and

walk(n) = walk(n− 1)+ walk(n− 2), fn = fn−1 + fn−2 for all n ≥ 3,

it follows that

walk(n) = fn+1 for all n ≥ 1.

(The argument can be formalized using mathematical induction; see Exercise 8.)
The Fibonacci sequence is named in honor of Leonardo Fibonacci (ca. 1170–

1250), an Italian merchant and mathematician. The sequence originally arose in a puz-
zle about rabbits (see Exercises 18 and 19). After returning from the Orient in 1202,
Fibonacci wrote his most famous work, Liber Abaci (available in an English translation
by [Sigler]), which, in addition to containing what we now call the Fibonacci sequence,
advocated the use of Hindu-Arabic numerals. This book was one of the main influences
in bringing the decimal number system to Western Europe. Fibonacci signed much of his
work “Leonardo Bigollo.” Bigollo translates as “traveler” or “blockhead.” There is some
evidence that Fibonacci enjoyed having his contemporaries consider him a blockhead
for advocating the new number system.

The Fibonacci sequence pops up in unexpected places. Figure 4.1 shows a pine
cone with 13 clockwise spirals and 8 counterclockwise spirals. Many plants distribute
their seeds as evenly as possible, thus maximizing the space available for each seed. The
pattern in which the number of spirals is a Fibonacci number provides the most even
distribution (see [Naylor, Mitchison]).

Example 4.7 Use mathematical induction to show that

n∑

k=1

fk = fn+2 − 1 for all n ≥ 1.

243

Algorithms

Figure 4.1 A pine cone. There are
13 clockwise spirals (marked with
white thread) and 8 counterclockwise
spirals (marked with dark thread).
[Photo by the author; pine cone
courtesy of André Berthiaume and
Sigrid (Anne) Settle.]

For the basis step (n = 1), we must show that

1∑

k=1

fk = f3 − 1.

Since
∑1

k=1 fk = f1 = 1 and f3 − 1 = 2− 1 = 1, the equation is verified.
For the inductive step, we assume case n

n∑

k=1

fk = fn+2 − 1

and prove case n+ 1

n+1∑

k=1

fk = fn+3 − 1.

Now

n+1∑

k=1

fk =
n∑

k=1

fk + fn+1

= (fn+2 − 1)+ fn+1 by the inductive assumption

= fn+1 + fn+2 − 1

= fn+3 − 1.

The last equality is true because of the definition of the Fibonacci numbers:

fn = fn−1 + fn−2 for all n ≥ 3.

Since the basis step and the inductive step have been verified, the given equation is true
for all n ≥ 1.

244

Algorithms

Problem-Solving Tips

A recursive function is a function that invokes itself. The key to writing a recursive
function is to find a smaller instance of the problem within the larger problem. For
example, we can compute n! recursively because n! = n · (n − 1)! for all n ≥ 1. The
situation is analogous to the inductive step in mathematical induction when we must find
a smaller case (e.g., case n) within the larger case (e.g., case n+ 1).

As another example, tiling an n × n deficient board with trominoes when n is a
power of 2 can be done recursively because we can find four (n/2)× (n/2) subboards
within the original n×n board. Note the similarity of the tiling algorithm to the inductive
step of the proof that every n× n deficient board can be tiled with trominoes when n is
a power of 2.

To prove a statement about the Fibonacci numbers, use the equation

fn = fn−1 + fn−2 for all n ≥ 3.

The proof will often use mathematical induction and the previous equation (see
Example 4.7).

Section Review Exercises

1. What is a recursive algorithm?

2. What is a recursive function?

3. Give an example of a recursive function.

4. Explain how the divide-and-conquer technique works.

5. What is a base case in a recursive function?

6. Why must every recursive function have a base case?

7. How is the Fibonacci sequence defined?

8. Give the first four values of the Fibonacci sequence.

Exercises

1. Trace Algorithm 4.2 for n = 4.

2. Trace Algorithm 4.4 when n = 4 and the missing square is the
upper-left corner square.

3. Trace Algorithm 4.4 when n = 8 and the missing square is
four from the left and six from the top.

4. Prove that Algorithm 4.4 is correct.

5. Trace Algorithm 4.6 for n = 4.

6. Trace Algorithm 4.6 for n = 5.

7. Prove that Algorithm 4.6 is correct.

8. Prove that

walk(n) = fn+1 for all n ≥ 1.

9. (a) Use the formulas

s1 = 1, sn = sn−1 + n for all n ≥ 2,

to write a recursive algorithm that computes

sn = 1+ 2+ 3+ · · · + n.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

10. (a) Use the formulas

s1 = 2, sn = sn−1 + 2n for all n ≥ 2,

to write a recursive algorithm that computes

sn = 2+ 4+ 6+ · · · + 2n.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

11. (a) A robot can take steps of 1 meter, 2 meters, or 3 meters.
Write a recursive algorithm to calculate the number of
ways the robot can walk n meters.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

12. Write a recursive algorithm to find the minimum of a finite
sequence of numbers. Give a proof using mathematical induc-
tion that your algorithm is correct.

13. Write a recursive algorithm to find the maximum of a finite
sequence of numbers. Give a proof using mathematical induc-
tion that your algorithm is correct.

14. Write a recursive algorithm that reverses a finite sequence.
Give a proof using mathematical induction that your algorithm
is correct.

15. Write a nonrecursive algorithm to compute n!.

245

Algorithms

�16. A robot can take steps of 1 meter or 2 meters. Write an algo-
rithm to list all of the ways the robot can walk n meters.

�17. A robot can take steps of 1 meter, 2 meters, or 3 meters. Write
an algorithm to list all of the ways the robot can walk n meters.

Exercises 18–34 concern the Fibonacci sequence {fn}.
18. Suppose that at the beginning of the year, there is one pair of

rabbits and that every month each pair produces a new pair
that becomes productive after one month. Suppose further that
no deaths occur. Let an denote the number of pairs of rabbits
at the end of the nth month. Show that a1 = 1, a2 = 2, and
an − an−1 = an−2. Prove that an = fn+1 for all n ≥ 1.

19. Fibonacci’s original question was: Under the conditions of
Exercise 18, how many pairs of rabbits are there after one
year? Answer Fibonacci’s question.

20. Show that the number of ways to tile a 2× n board with 1× 2
rectangular pieces is fn+1, the (n+ 1)st Fibonacci number.

21. Use mathematical induction to show that

f 2
n = fn−1fn+1 + (−1)n+1 for all n ≥ 2.

22. Show that

f 2
n+2 − f 2

n+1 = fnfn+3 for all n ≥ 1.

23. Show that

f 2
n = fn−2fn+2 + (−1)n for all n ≥ 3.

24. Use mathematical induction to show that
n∑

k=1

f 2
k = fnfn+1 for all n ≥ 1.

�25. Use mathematical induction to show that

f2n = f 2
n+1−f 2

n−1 and f2n+1 = f 2
n+f 2

n+1 for all n ≥ 2.

26. Use mathematical induction to show that for all n ≥ 1, fn is
even if and only if n is divisible by 3.

27. Use mathematical induction to show that for all n ≥ 6,

fn >

(
3

2

)n−1

.

28. Use mathematical induction to show that for all n ≥ 1,

fn ≤ 2n−1.

29. Use mathematical induction to show that for all n ≥ 1,

n∑

k=1

f2k−1 = f2n,

n∑

k=1

f2k = f2n+1 − 1.

�30. Use mathematical induction to show that every integer n ≥ 1
can be expressed as the sum of distinct Fibonacci numbers, no
two of which are consecutive.

�31. Show that the representation in Exercise 30 is unique if we do
not allow f1 as a summand.

32. Show that for all n ≥ 2,

fn =
fn−1 +

√
5f 2

n−1 + 4(−1)n+1

2
.

Notice that this formula gives fn in terms of one predecessor
rather than two predecessors as in the original definition.

33. Prove that

1+
n∑

k=1

(−1)k+1

fkfk+1
= fn+2

fn+1
, for all n ≥ 1.

34. Define a sequence {gn} as g1 = c1 and g2 = c2 for constants
c1 and c2, and

gn = gn−1 + gn−2

for n ≥ 3. Prove that

gn = g1fn−2 + g2fn−1

for all n ≥ 3.

35. [Requires calculus] Assume the formula for differentiating
products:

d(fg)

dx
= f

dg

dx
+ g

df

dx
.

Use mathematical induction to prove that

dxn

dx
= nxn−1 for n = 1, 2,

36. [Requires calculus] Explain how the formula gives a recursive
algorithm for integrating logn |x|:

∫
logn |x| dx = x logn |x| − n

∫
logn−1 |x| dx.

Give other examples of recursive integration formulas.

Notes

The first half of [Knuth, 1977] introduces the concept of an algorithm and various mathemat-
ical topics, including mathematical induction. The second half is devoted to data structures.

Most general references on computer science contain some discussion of algorithms.
Books specifically on algorithms are [Aho; Baase; Brassard; Cormen; Johnsonbaugh; Knuth,
1997, 1998a, 1998b; Manber; Miller; Nievergelt; and Reingold]. [McNaughton] contains a
very thorough discussion on an introductory level of what an algorithm is. Knuth’s expository
article about algorithms ([Knuth, 1977]) and his article about the role of algorithms in the
mathematical sciences ([Knuth, 1985]) are also recommended. [Gardner, 1992] contains a
chapter about the Fibonacci sequence.

246

Algorithms

Chapter Review

Section 1
1. Algorithm
2. Properties of an algorithm: Input, output, precision, deter-

minism, finiteness, correctness, generality
3. Trace
4. Pseudocode

Section 2
5. Searching
6. Text search
7. Text-search algorithm
8. Sorting
9. Insertion sort

10. Time and space for algorithms
11. Best-case time
12. Worst-case time
13. Randomized algorithm
14. Shuffle algorithm

Section 3
15. Analysis of algorithms
16. Worst-case time of an algorithm
17. Best-case time of an algorithm
18. Average-case time of an algorithm
19. Big oh notation: f(n) = O(g(n))

20. Omega notation: f(n) = �(g(n))

21. Theta notation: f(n) = �(g(n))

Section 4
22. Recursive algorithm
23. Recursive function
24. Divide-and-conquer technique
25. Base cases: Situations where a recursive function does not

invoke itself
26. Fibonacci sequence {fn} : f1 = 1, f2 = 1, fn = fn−1 +

fn−2, n ≥ 3

Chapter Self-Test

Section 1
1. Trace Algorithm 1.1 for the values a = 12, b = 3, c = 0.

2. Write an algorithm that receives as input the distinct num-
bers a, b, and c and assigns the values a, b, and c to the
variables x, y, and z so that

x < y < z.

3. Write an algorithm that returns true if the values of a, b, and
c are distinct, and false otherwise.

4. Which of the algorithm properties—input, output, precision,
determinism, finiteness, correctness, generality—if any, are
lacking in the following? Explain.

Input: S (a set of integers), m (an integer)

Output: All finite subsets of S that sum to m

1. List all finite subsets of S and their sums.
2. Step through the subsets listed in 1 and output each

whose sum is m.

Section 2
5. Trace Algorithm 2.1 for the input t = “111011” and

p = “110”.

6. Trace Algorithm 2.3 for the input

44 64 77 15 3.

7. Trace Algorithm 2.4 for the input

5 51 2 44 96.

Assume that the values of rand are

rand(1, 5) = 1, rand(2, 5) = 3, rand(3, 5) = 5,

rand(4, 5) = 5.

8. Write an algorithm that receives as input the sequence

s1, . . . , sn

sorted in nondecreasing order and prints all values that
appear more than once. Example: If the sequence is

1 1 1 5 8 8 9 12,

the output is

1 8.

Section 3

Select a theta notation from among �(1), �(n), �(n2), �(n3),
�(n4), �(2n), or �(n!) for each of the expressions in Exercises
9 and 10.

9. 4n3 + 2n− 5

10. 13 + 23 + · · · + n3

11. Select a theta notation from among �(1), �(n), �(n2),
�(n3), �(2n), or �(n!) for the number of times the line
x = x+ 1 is executed.

for i = 1 to n

for j = 1 to n

x = x+ 1

247

Algorithms

12. Write an algorithm that tests whether two n × n matri-
ces are equal and find a theta notation for its worst-case
time.

Section 4
13. Trace Algorithm 4.4 (the tromino tiling algorithm) when

n = 8 and the missing square is four from the left and two
from the top.

Exercises 14–16 refer to the tribonacci sequence {tn} defined by
the equations

t1 = t2 = t3 = 1, tn = tn−1 + tn−2 + tn−3 for all n ≥ 4.

14. Find t4 and t5.

15. Write a recursive algorithm to compute tn, n ≥ 1.

16. Give a proof using mathematical induction that your algo-
rithm for Exercise 15 is correct.

Computer Exercises

1. Implement Algorithm 1.2, finding the largest element in a
sequence, as a program.

2. Implement Algorithm 2.1, text search, as a program.

3. Implement Algorithm 2.3, insertion sort, as a program.

4. Implement Algorithm 2.4, shuffle, as a program.

5. Run shuffle (Algorithm 2.4) many times for the same input
sequence. How might the output be analyzed to determine
if it is truly “random”?

6. Implement selection sort (see Exercise 20, Section 2) as a
program.

7. Compare the running times of insertion sort (Algorithm 2.3)
and selection sort (see Exercise 20, Section 2) for several
inputs of different sizes. Include data sorted in nondecreas-
ing order, data sorted in nonincreasing order, data containing
many duplicates, and data in random order.

8. Write recursive and nonrecursive programs to compute n!.
Compare the times required by the programs.

9. Write a program whose input is a 2n × 2n board with one
missing square and whose output is a tiling of the board by
trominoes.

10. Write a program that uses a graphics display to show a tiling
with trominoes of a 2n× 2n board with one square missing.

11. Write a program that tiles with trominoes an n × n board
with one square missing, provided that n �= 5 and 3 does
not divide n.

12. Write recursive and nonrecursive programs to compute the
Fibonacci sequence. Compare the times required by the pro-
grams.

13. A robot can take steps of 1 meter or 2 meters. Write a pro-
gram to list all of the ways the robot can walk n meters.

14. A robot can take steps of 1, 2, or 3 meters. Write a program
to list all of the ways the robot can walk n meters.

Hints/Solutions to Selected Exercises

Section 1 Review
1. An algorithm is a step-by-step method of solving a problem.

2. Input—the algorithm receives input. Output—the algorithm
produces output. Precision—the steps are precisely stated.
Determinism—the intermediate results of each step of execu-
tion are unique and are determined only by the inputs and the
results of the preceding steps. Finiteness—the algorithm termi-
nates; that is, it stops after finitely many instructions have been
executed. Correctness—the output produced by the algorithm
is correct; that is, the algorithm correctly solves the problem.
Generality—the algorithm applies to a set of inputs.

3. A trace of an algorithm is a simulation of execution of the
algorithm.

4. The advantages of pseudocode over ordinary text are that pseu-
docode has more precision, structure, and universality. It is
often readily converted to computer code.

5. An algorithm is made up of one or more pseudocode
functions.

Section 1
2. The algorithm does not receive input (but, logically, it needs

none). If some even number greater than 2 is not the sum of
two prime numbers, the algorithm will stop and output “no”.
If every even number greater than 2 is the sum of two prime
numbers, lines 2 and 3 become an infinite loop—in this case,
the algorithm will not terminate and, therefore, will not pro-
duce output. The algorithm lacks precision; in order to execute
line 2, we need to know how to check whether n is the sum of
two primes. The algorithm does have the determinism prop-
erty. The algorithm may lack the finiteness property. We have
already noted that if every even number greater than 2 is the
sum of two prime numbers (which is currently unsettled), the
algorithm will not terminate. The algorithm is not general; that
is, it does not apply to a set of inputs. Rather, it applies to one
set of inputs—namely, the empty set.

248

Algorithms

5. Input: s, n

Output: small, the smallest value in the sequence s

min(s, n) {
small = s1

for i = 2 to n

if (si < small) // smaller value found
small = si

return small
}

8. Input: s, n

Output: small (smallest), large (largest)

small large(s, n, small, large) {
small = large = s1

for i = 2 to n {
if (si < small)

small = si
if (si > large)

large = si
}

}

11. Input: s, n

Output: sum

seq sum(s, n) {
sum = 0
for i = 1 to n

sum = sum+ si
return sum

}

14. Input: s, n

Output: s (in reverse)

reverse(s, n) {
i = 1
j = n

while (i < j) {
swap(si, sj)

i = i+ 1
j = j − 1

}
}

17. Input: A (an n× n matrix of a relation R), n

Output: true, if R is reflexive; false, if R is not reflexive

is reflexive(A, n) {
for i = 1 to n

if (Aii == 0)

return false
return true

}

20. Input: A (an n× n matrix of a relation R), n

Output: true, if R is antisymmetric; false, if R is not
antisymmetric

is reflexive(A, n) {
for i = 1 to n− 1

for j = i+ 1 to n

if (Aij == 1 ∧ Aji == 1)

return false
return true

}

23. Input: A (an m × k matrix of a relation R1), B (a k × n

matrix of a relation R2), m, k, n

Output: C (the m× n matrix of the relation R2 ◦ R1)

comp relation(A, B, m, k, n, C) {
// first compute the matrix product AB

for i = 1 to m

for j = 1 to n {
Cij = 0
for t = 1 to k

Cij = Cij + AitBtj

}
// replace each nonzero entry in C by 1
for i = 1 to m

for j = 1 to n

if (Cij > 0)

Cij = 1
}

Section 2 Review
1. Finding web pages containing key words is a searching prob-

lem. The programs that perform the search are called search
engines. Finding medical records in a hospital is another
searching problem. Such a search may be carried out by people
or by a computer.

2. We are given text t and we want to find the first occurrence of
pattern p in t or determine that p does not occur in t.

3. We use the notation in the solution to Exercise 2. Determine
whether p is in t starting at index 1 in t. If so, stop. Otherwise,
determine whether p is in t starting at index 2 in t. If so, stop.
Continue in this way until finding p in t or determining that
p cannot be in t. In the latter case, the search can be termi-
nated when the index in t is so large that there are not enough
characters remaining in t to accommodate p.

4. Sorting a sequence s means to rearrange the data so that s is in
order (nonincreasing order or nondecreasing order).

5. The entries in a book’s index are sorted in increasing order,
thus making it easy to quickly locate an entry in the index.

6. To sort s1, . . . , sn using insertion sort, first insert s2 in s1 so
that s1, s2 is sorted. Next, insert s3 in s1, s2 so that s1, s2, s3 is
sorted. Continue until inserting sn in s1, . . . , sn−1 so that the
entire sequence s1, . . . , sn is sorted.

249

Algorithms

7. The time required by an algorithm is the number of steps
to termination. The space required by an algorithm is the
amount of storage required by the input, local variables, and
so on.

8. Knowing or being able to estimate the time and space required
by an algorithm gives an indication of how the algorithm will
perform for input of various sizes when run on a computer.
Knowing or being able to estimate the time and space required
by two or more algorithms that solve the same problem makes
it possible to compare the algorithms.

9. Many practical problems are too difficult to be solved effi-
ciently, and compromises either in generality or correctness
are necessary.

10. When a randomized algorithm executes, at some points it
makes random choices.

11. The requirement that the intermediate results of each step of
execution be uniquely defined and depend only on the inputs
and results of the preceding steps is violated.

12. To shuffle s1, . . . , sn, first swap s1 and a randomly chosen
element in s1, . . . , sn. Next, swap s2 and a randomly chosen
element in s2, . . . , sn. Continue until swapping sn−1 and a ran-
domly chosen element in sn−1, sn.

13. We might generate random arrangements of sequences to use
as input to test or time a sorting program.

Section 2
1. First i and j are set to 1. The while loop then compares

t1 · · · t4 = “bala” with p = “bala”. Since the comparison
succeeds, the algorithm returns i = 1 to indicate that p was
found in t starting at index 1 in t.

4. First 20 is inserted in

34

Since 20 < 34, 34 must move one position to the right

34

Now 20 is inserted

3420

Since 144 > 34, it is immediately inserted to 34’s right

34 14420

Since 55 < 144, 144 must move one position to the right

34 14420

Since 55 > 34, 55 is now inserted

34 55 14420

The sequence is now sorted.

7. Since each element is greater than or equal to the element to
its left, the element is always inserted in its original position.

8. We first swap ai and aj , where i = 1 and j = rand(1, 5) = 5.
After the swap we have

57 72 101 34135

i j

We next swap ai and aj , where i = 2 and j = rand(2, 5) = 4.
After the swap we have

101 72 57 34135

i j

We next swap ai and aj , where i = 3 and j = rand(3, 5) = 3.
The sequence is unchanged.

We next swap ai and aj , where i = 4 and j =
rand(4, 5) = 5. After the swap we have

101 72 34 57135

ji

11. The while loop tests whether p occurs at index i in t. If p

does occur at index i in t, ti+j−1 will be equal to pj for all
j = 1, . . . , m. Thus j becomes m+1 and the algorithm returns
i. If p does not occur at index i in t, ti+j−1 will not be equal to
pj for some j. In this case the while loop terminates (without
executing return i).

Now suppose that p occurs in t and its first occurrence is
at index i in t.As noted in the previous paragraph, the algorithm
correctly returns i, the smallest index in t where p occurs.

If p does not occur in t, then the while loop terminates
for every i and i increments in the for loop. Therefore, the for
loop runs to completion, and the algorithm correctly returns 0
to indicate that p was not found in t.

14. Input: s (the sequence s1, . . . , sn), n, and key

Output: i (the index of the last occurrence of key in s, or 0
if key is not in s

reverse linear search(s, n, key) {
i = n

while (i ≥ 1) {
if (si == key)

return i

250

Algorithms

i = i− 1
}
return 0

}

17. We measure the time of the algorithm by counting the number
of comparisons (ti+j−1 == pj) in the while loop.

No comparisons will be made if n−m+ 1 ≤ 0. In the
remainder of this solution, we assume that n−m+ 1 > 0.

If p is in t, m comparisons must be performed to ver-
ify that p is, in fact, in t. We can guarantee that exactly m

comparisons are performed if p is at index 1 in t.
If p is not in t, at least one comparison must be per-

formed for each i. We can guarantee that exactly one compar-
ison is performed for each i if the first character in p does not
occur in t. In this case, n−m+ 1 comparisons are made.

If m < n − m + 1, the best case is that p is at index 1
in t. If n−m+1 < m, the best case is that the first character in
p does not occur in t. If m = n−m+ 1, either situation is the
best case.

20. Input: s (the sequence s1, . . . , sn) and n

Output: s (sorted in nondecreasing order)

selection sort(s, n) {
for i = 1 to n− 1 {

// find smallest in si, . . . , sn
small index = i

for j = i+ 1 to n

if (sj < ssmall index)

small index = j

swap(si, ssmall index)

}
}

Section 3 Review
1. Analysis of algorithms refers to the process of deriving esti-

mates for the time and space needed to execute algorithms.

2. The worst-case time for input of size n of an algorithm is the
maximum time needed to execute the algorithm among all
inputs of size n.

3. The best-case time for input of size n of an algorithm is the min-
imum time needed to execute the algorithm among all inputs
of size n.

4. The average-case time for input of size n of an algorithm is
the average time needed to execute the algorithm over some
finite set of inputs all of size n.

5. f(n) = O(g(n)) if there exists a positive constant C1 such that
|f(n)| ≤ C1|g(n)| for all but finitely many positive integers n.
This notation is called the big oh notation.

6. Except for constants and a finite number of exceptions, f is
bounded above by g.

7. f(n) = �(g(n)) if there exists a positive constant C2 such that
|f(n)| ≥ C2|g(n)| for all but finitely many positive integers n.
This notation is called the omega notation.

8. Except for constants and a finite number of exceptions, f is
bounded below by g.

9. f(n)=�(g(n)) if f(n)=O(g(n)) and f(n)=�(g(n)). This
notation is called the theta notation.

10. Except for constants and a finite number of exceptions, f is
bounded above and below by g.

Section 3
1. �(n) 4. �(n2)

7. �(n2) 10. �(n)

13. �(n2) 16. �(n)

19. �(n2) 22. �(n3)

25. �(n lg n) 28. �(1)

31. When n = 1, we obtain

1 = A+ B + C.

When n = 2, we obtain

3 = 4A+ 2B + C.

When n = 3, we obtain

6 = 9A+ 3B + C.

Solving this system for A, B, C, we obtain

A = B = 1

2
, C = 0.

We obtain the formula

1+ 2+ · · · + n = n2

2
+ n

2
+ 0 = n(n+ 1)

2
,

which can be proved using mathematical induction.

33. n! = n(n− 1) · · · 2 · 1 ≤ n · n · · · n = nn

36. Since n = 2lg n, nn+1 = (2lg n)n+1 = 2(n+1) lg n. Thus, it suf-
fices to show that (n+ 1) lg n ≤ n2 for all n ≥ 1. A proof by
induction shows that n ≤ 2n−1 for all n ≥ 1. Thus, lg n ≤ n−1
for all n ≥ 1. Therefore,

(n+ 1) lg n ≤ (n+ 1)(n− 1) = n2 − 1 < n2 for all n ≥ 1.

39. Since f(n) = O(g(n)), there exist constants C′ > 0 and N

such that

f(n) ≤ C′g(n) for all n ≥ N.

Let

C = max{C′, f(1)/g(1), f(2)/g(2), . . . , f(N)/g(N)}.
For n ≤ N,

f(n)/g(n) ≤ max{f(1)/g(1), f(2)/g(2), . . . , f(N)/g(N)}
≤ C.

For n ≥ N,

f(n) ≤ C′g(n) ≤ Cg(n).

Therefore, f(n) ≤ Cg(n) for all n.

251

Algorithms

42. False. If the statement were true, we would have nn ≤ C2n for
some constant C and for all sufficiently large n. The preceding
inequality may be rewritten as

(
n

2

)n

≤ C

for some constant C and for all sufficiently large n. Since
(n/2)n becomes arbitrarily large as n becomes large, we can-
not have nn ≤ C2n for some constant C and for all sufficiently
large n.

44. True

46. False. A counterexample is f(n) = n and g(n) = 2n.

49. True

52. False. A counterexample is f(n) = 1 and g(n) = 1/n.

53. f(n) �= O(g(n)) means that for every positive constant C,
|f(n)| > C|g(n)| for infinitely many positive integers n.

56. We first find nondecreasing positive functions f0 and g0

such that for infinitely many n, f0(n)= n2 and g0(n)= n.
This implies that f0(n) �=O(g0(n)). Our functions also satisfy
f0(n)= n and g0(n)= n2 for infinitely many n [obviously dif-
ferent n than those for which f0(n)= n2 and g0(n)= n]. This
implies that g0(n) �=O(f0(n)). If we then set f(n)= f0(n)+ n

and g(n)= g0(n)+ n, we obtain increasing positive functions
for which f(n) �= O(g(n)) and g(n) �= O(f(n)).

We begin by setting f0(2) = 2 and g0(2) = 22. Then

f0(n) = n, g0(n) = n2, if n = 2.

Because g0 is nondecreasing, the least n for which we may
have g0(n) = n is n = 22. So we define f0(22) = 24 and
g0(22) = 22. Then

f0(n) = n2, g0(n) = n, if n = 22.

The preceding discussion motivates defining

f0(2
2k

) =
{

22k

if k is even
22k+1

if k is odd

g0(2
2k

) =
{

22k+1
if k is even

22k

if k is odd.

Suppose that n = 22k

. If k is odd, f0(n) = n2 and g0(n) = n;
if k is even, f0(n) = n and g0(n) = n2. Now f0 and g0 are
defined only for n = 22k

, but they are nondecreasing on this
domain. To extend their domains to the set of positive integers,
we may simply define f0(1) = g0(1) = 1 and make them con-
stant on sets of the form {i | 22k ≤ i < 22k+1 }.

60. No

62. (a) The sum of the areas of the rectangles below the curve is
equal to

1

2
+ 1

3
+ · · · + 1

n
.

This area is less than the area under the curve, which is
equal to

∫ n

1

1

x
dx = loge n.

The given inequality now follows immediately.

(b) The sum of the areas of the rectangles whose bases are on
the x-axis and whose tops are above the curve is equal to

1+ 1

2
+ · · · + 1

n− 1
.

Since this area is greater than the area under the curve, the
given inequality follows immediately.

(c) Part (a) shows that

1+ 1

2
+ · · · + 1

n
= O(loge n).

Since loge n = �(lg n) (see Example 3.6),

1+ 1

2
+ · · · + 1

n
= O(lg n).

Similarly, we can conclude from part (b) that

1+ 1

2
+ · · · + 1

n
= �(lg n).

Therefore,

1+ 1

2
+ · · · + 1

n
= �(lg n).

64. Replacing a by b in the sum yields

bn+1 − an+1

b− a
=

n∑

i=0

aibn−i <

n∑

i=0

bibn−i

=
n∑

i=0

bn = (n+ 1)bn.

67. By Exercise 65, the sequence {(1 + 1/n)n}∞n=1 is increasing.
Therefore

2 =
(

1+ 1

1

)1

≤
(

1+ 1

n

)n

for every positive integer n. Exercise 66 shows that
(

1+ 1

n

)n

< 4

for every positive integer n. Taking logs to the base 2, we
obtain

1 = lg 2 ≤ lg

(
1+ 1

n

)n

< lg 4 = 2.

Since

lg

(
1+ 1

n

)n

= n lg

(
1+ 1

n

)
= n lg

(
n+ 1

n

)

= n[lg(n+ 1)− lg n],

we have

1 ≤ n[lg(n+ 1)− lg n] < 2.

Dividing by n gives the desired inequality.

252

Algorithms

70. Replacing b by a in the sum yields

bn+1 − an+1

b− a
=

n∑

i=0

aibn−i >

n∑

i=0

aian−i

=
n∑

i=0

an = (n+ 1)an.

73. By Exercise 72, the sequence {(1+1/n)n+1}∞n=1 is decreasing.
Since (1+ 1/n)n+1 = 4, when n = 1,

4 ≥
(

1+ 1

n

)n+1

=
(

n+ 1

n

)n+1

.

Taking logs to the base 2, we obtain

2 = lg 4 ≥ lg

(
n+ 1

n

)n+1

= (n+ 1) lg

(
n+ 1

n

)

= (n+ 1)[lg(n+ 1)− lg n].

Dividing by n+ 1 gives the desired inequality.

75. True. Since limn→∞ f(n)/g(n) = 0, taking ε = 1, there exists
N such that ∣∣∣∣

f(n)

g(n)

∣∣∣∣ < 1, for all n ≥ N.

Therefore, for all n≥N, |f(n)|< |g(n)| and f(n)=O(g(n)).

78. True. Let d = |c|. Since limn→∞ |f(n)|/|g(n)| = d > 0,
taking ε = d/2, there exists N such that

∣∣∣∣
|f(n)|
|g(n)| − d

∣∣∣∣ < d/2, for all n ≥ N.

This last inequality may be written

−d

2
<
|f(n)|
|g(n)| − d <

d

2
, for all n ≥ N,

or
d

2
<
|f(n)|
|g(n)| <

3d

2
, for all n ≥ N,

or
d

2
|g(n)| < |f(n)| < 3d

2
|g(n)|, for all n ≥ N.

Therefore, f(n) = �(g(n)).

83. Multiply both sides of the inequality in Exercise 82 by lg e and
use the change-of-base formula for logarithms.

Section 4 Review
1. An algorithm that contains a recursive function

2. A function that invokes itself

3.

factorial(n) {
if (n == 0)

return 1
return n ∗ factorial(n− 1)

}

4. The original problem is divided into two or more subproblems.
Solutions are then found for the subproblems (usually by fur-
ther subdivision). These solutions are then combined in order
to obtain a solution to the original problem.

5. In a base case, a solution is obtained directly, that is, without
a recursive call.

6. If a recursive function had no base case, it would continue to
call itself and never terminate.

7. f1 = 1, f2 = 1, fn = fn−1 + fn−2 for n ≥ 3

8. f1 = 1, f2 = 1, f3 = 2, f4 = 3

Section 4
1. (a) At line 2, since 4 �= 0, we proceed to line 4. The algorithm

is invoked with input 3.

(b) At line 2, since 3 �= 0, we proceed to line 4. The algorithm
is invoked with input 2.

(c) At line 2, since 2 �= 0, we proceed to line 4. The algorithm
is invoked with input 1.

(d) At line 2, since 1 �= 0, we proceed to line 4. The algorithm
is invoked with input 0.

(e) At lines 2 and 3, since 0 = 0, we return 1.
Execution resumes in part (d) at line 4 after computing

0! (= 1). We return 0! · 1 = 1.
Execution resumes in part (c) at line 4 after computing

1! (= 1). We return 1! · 2 = 2.
Execution resumes in part (b) at line 4 after computing

2! (= 2). We return 2! · 3 = 6.
Execution resumes in part (a) at line 4 after computing

3! (= 6). We return 3! · 4 = 24.

4. We use induction on i, where n = 2i. The Basis Step is i = 1.
In this case, the board is a tromino T . The algorithm correctly
tiles the board with T and returns. Thus the algorithm is correct
for i = 1.

Now assume that if n = 2i, the algorithm is cor-
rect. Let n= 2i+1. The algorithm divides the board into four
(n/2) × (n/2) subboards. It then places one right tromino in
the center. It considers each of the squares covered by the cen-
ter tromino as missing. It then tiles the four subboards, and, by
the inductive assumption, these subboards are correctly tiled.
Therefore, the n × n board is correctly tiled. The Inductive
Step is complete. The algorithm is correct.

7. The proof is by strong induction on n. The Basis Steps (n =
1, 2) are readily verified.

Assume that the algorithm is correct for all k < n. We
must show that the algorithm is correct for n > 2. Since n > 2,
the algorithm executes the return statement

return walk(n− 1)+ walk(n− 2)

By the inductive assumption, the values of walk(n − 1) and
walk(n− 2) are correctly computed by the algorithm. Since

walk(n) = walk(n− 1)+ walk(n− 2),

the algorithm returns the correct value of walk(n).

253

Algorithms

10. (a) Input: n

Output: 2+ 4+ · · · + 2n

1. sum(s, n) {
2. if (n == 1)

3. return 2
4. return sum(n− 1)+ 2n

5. }
(b) Basis Step (n=1) If n is equal to 1, we correctly return 2.

Inductive Step Assume that the algorithm correctly
computes the sum when the input is n − 1. Now sup-
pose that the input to this algorithm is n > 1. At line 2,
since n �= 1, we proceed to line 4, where we invoke this
algorithm with input n− 1. By the inductive assumption,
the value returned, sum(n− 1), is equal to

2+ · · · + 2(n− 1).

At line 4, we then return

sum(n− 1)+ 2n = 2+ · · · + 2(n− 1)+ 2n,

which is the correct value.

13. Input: The sequence s1, . . . , sn and the length n of the
sequence

Output: The maximum value in the sequence

find max(s, n) {
if (n == 1)

return s1

x = find max(s, n− 1)

if (x > sn)
return x

else
return sn

}

We prove that the algorithm is correct using induction
on n. The base case is n = 1. If n = 1, the only item in the
sequence is s1 and the algorithm correctly returns it.

Assume that the algorithm computes the maximum for
input of size n − 1, and suppose that the algorithm receives
input of size n. By assumption, the recursive call

x = find max(s, n− 1)

correctly computes x as the maximum value in the sequence
s1, . . . , sn−1. If x is greater than sn, the maximum value in the
sequence s1, . . . , sn is x—the value returned by the algorithm.
If x is not greater than sn, the maximum value in the sequence
s1, . . . , sn is sn—again, the value returned by the algorithm.
In either case, the algorithm correctly computes the maximum
value in the sequence. The Inductive Step is complete, and we
have proved that the algorithm is correct.

16. To list all of the ways that a robot can walk n meters, set s to
the null string and invoke this algorithm.

Input: n, s (a string)

Output: All the ways the robot can walk n meters. Each
method of walking n meters includes the extra string
s in the list.

list walk1(n, s)

if (n == 1) {
println(s+ “take one step of length 1”)
return

}
if (n == 2) {

println(s+ “take two steps of length 1”)
println(s+ “take one step of length 2”)
return

}
s′ = s+ “take one step of length 2” // concatenation
list walk1(n− 2, s′)
s′ = s+ “take one step of length 1” // concatenation
list walk1(n− 1, s′)

}

18. After one month, there is still just one pair because a pair
does not become productive until after one month. There-
fore, a1= 1. After two months, the pair alive in the beginning
becomes productive and adds one additional pair. Therefore,
a2= 2. The increase in pairs of rabbits an − an−1 from month
n − 1 to month n is due to each pair alive in month n − 2
producing an additional pair. That is, an− an−1= an−2. Since
{an} satisfies the same recurrence relation as {fn}, a1= f2, and
a2= f3, an= fn+1, n ≥ 1.

21. Basis Step (n = 2)

f 2
2 = 1 = 1 · 2− 1 = f1f3 + (−1)3

Inductive Step

fnfn+2 + (−1)n+2 = fn(fn+1 + fn)+ (−1)n+2

= fnfn+1 + f 2
n + (−1)n+2

= fnfn+1+ fn−1fn+1+ (−1)n+1+ (−1)n+2

= fn+1(fn + fn−1) = f 2
n+1

24. Basis Step (n=1) f 2
1 = 12 = 1 = 1 · 1 = f1f2

Inductive Step
n+1∑

k=1

f 2
k =

n∑

k=1

f 2
k + f 2

n+1 = fnfn+1+f 2
n+1

= fn+1(fn + fn+1) = fn+1fn+2

27. We use strong induction.
Basis Steps (n = 6; 7) f6 = 8 > 7.59 = (3/2)5.
f7 = 13 > 11.39 = (3/2)6.

Inductive Step

fn = fn−1 + fn−2 >

(
3

2

)n−2

+
(

3

2

)n−3

=
(

3

2

)n−1
[(

3

2

)−1

+
(

3

2

)−2
]
=
(

3

2

)n−1 [
16

9

]
>

(
3

2

)n−1

254

Algorithms

30. We use strong induction on n.

Basis Step (n = 1) 1 = f1

Inductive Step Suppose that n > 2 and that every positive
integer less than n can be expressed as the sum of distinct
Fibonacci numbers, no two of which are consecutive. Let fk1

be the largest Fibonacci number satisfying n ≥ fk1 . If n = fk1 ,
then n is trivially the sum of distinct Fibonacci numbers, no
two of which are consecutive. Suppose that n > fk1 . By the
inductive assumption, n− fk1 can be expressed as the sum of
distinct Fibonacci numbers fk2 > fk3 > · · · > fkm

, no two of
which are consecutive:

n− fk1 =
m∑

i=2

fki
.

Now n is expressed as the sum of Fibonacci numbers:

n =
m∑

i=1

fki
. (∗)

We next show that fk1 > fk2 , so that, in particular, n is the sum
of distinct Fibonacci numbers.

Notice that fk2 < n. Since fk1 is the largest Fibonacci
number satisfying n ≥ fk1 , fk2 ≤ fk1 . If fk2 = fk1 ,

n ≥ fk1 + fk2 > fk1 + fk1−1 = fk1+1.

This last inequality contradicts the choice of fk1 as the largest
Fibonacci number satisfying n ≥ fk1 . Therefore fk1 > fk2 .

The only Fibonacci numbers in the sum (∗) that might
be consecutive are fk1 and fk2 . If they are consecutive, we may
also write (∗) as

n =
m∑

i=1

fki

= fk1 + fk2 +
m∑

i=3

fki

= fk1 + fk1−1 +
m∑

i=3

fki

= fk1+1 +
m∑

i=3

fki
.

Now fk1+1 ≤ n and fk1+1 > fk1 . This contradicts the choice
of fk1 as the largest Fibonacci number satisfying n ≥ fk1 . The
inductive step is complete.

33. Using the formula fkfk+2 − f 2
k+1 = (−1)k+1 from Exercise

21, we obtain

1+
n∑

k=1

(−1)k+1

fkfk+1
= 1+

n∑

k=1

fkfk+2 − f 2
k+1

fkfk+1

= 1+
n∑

k=1

(
fk+2

fk+1
− fk+1

fk

)

= 1+
(

f3

f2
− f2

f1

)
+
(

f4

f3
− f3

f2

)

+ · · · +
(

fn+2

fn+1
− fn+1

fn

)

= 1+ fn+2

fn+1
− f2

f1
= fn+2

fn+1
.

35. Basis Step (n = 1)

dx

dx
= 1 = 1x1−1

Inductive Step

dxn+1

dx
= d(x · xn)

dx
= x

dxn

dx
+ xn dx

dx

= xnxn−1 + xn · 1 = (n+ 1)xn

Chapter Self-Test
1. At line 2, we set large to 12.At line 3, since b > large (3 > 12)

is false, we move to line 5. At line 5, since c > large (0 > 12)
is false, we move to line 7, where we return large (12), the
maximum of the given values.

2. sort(a, b, c, x, y, z) {
x = a

y = b

z = c

if (y < x)

swap(x, y)

if (z < x)

swap(x, z)

if (z < y)

swap(y, z)

}

3. test distinct(a, b, c) {
if (a == b ∨ a == c ∨ b == c)

return false
return true

}

4. If the set S is an infinite set, the algorithm will not terminate,
so it lacks the finiteness and output properties. Line 1 is not
precisely stated since how to list the subsets of S and their
sums is not specified; thus the algorithm lacks the precision
property. The order of the subsets listed in line 1 depends on
the method used to generate them, so the algorithm lacks the
determinism property. Since line 2 depends on the order of the
subsets generated in line 1, the determinism property is lacking
here as well.

5. The while loop first tests whether “110” occurs in t at index 1.
Since “110” does not occur in t at index 1, the algorithm next
tests whether “110” occurs in t at index 2. Since “110” does
occur in t at index 2, the algorithm returns the value 2.

255

Algorithms

6. First 64 is inserted in

44

Since 64 > 44, it is immediately inserted to 44’s right

44 64

Next 77 is inserted. Since 77 > 64, it is immediately inserted
to 64’s right

44 64 77

Next 15 is inserted. Since 15 < 77, 77 must move one position
to the right

44 64 77

Since 15 < 64, 64 must move one position to the right

44 64 77

Since 15 < 44, 44 must move one position to the right

44 64 77

Now 15 is inserted

4415 64 77

Finally 3 is inserted. Since 3 < 77, 77 must move one position
to the right

4415 64 77

Since 3 < 64, 64 must move one position to the right

4415 64 77

Since 3 < 44, 44 must move one position to the right

4415 64 77

Since 3 < 15, 15 must move one position to the right

4415 64 77

Now 3 is inserted

44153 64 77

The sequence is sorted.

7. We first swap ai and aj , where i = 1 and j = rand(1, 5) = 1.
The sequence is unchanged.

We next swap ai and aj , where i = 2 and
j = rand(2, 5) = 3. After the swap we have

5125 44 96

ji

We next swap ai and aj , where i = 3 and j = rand(3, 5) = 5.
After the swap we have

9625 44 51

i j

We next swap ai and aj , where i = 4 and j = rand(4, 5) = 5.
After the swap we have

9625 51 44

i j

8. repeaters(s, n) {
i = 1
while (i < n) {

if (si == si+1)

println(si)

// skip to next element not equal to si
j = i

while (i < n ∧ si == sj)

i = i+ 1
}

}

9. �(n3) 10. �(n4) 11. �(n2)

12. Input: A and B (n× n matrices) and n

Output: true (if A = B); false (if A �= B)

equal matrices(A, B, n) {
for i = 1 to n

for j = 1 to n

if (Aij¬ = Bij)

return false
return true

}

The worst-case time is �(n2).

256

Algorithms

13. Since n �= 2, we proceed immediately to line 6, where we
divide the board into four 4×4 boards. At line 7, we rotate the
board so that the missing square is in the upper-left quadrant.
At line 8, we place one tromino in the center. We then proceed
to lines 9–12, where we call the algorithm to tile the subboards.
We obtain the tiling:

14. t4 = 3, t5 = 5

15. Input: n, an integer greater than or equal to 1

Output: tn

tribonacci(n) {
1. if (n == 1 ∨ n == 2 ∨ n == 3)

2. return 1
3. return tribonacci(n− 1)+ tribonacci(n− 2)

+ tribonacci(n− 3)

}

16. Basis Steps (n = 1, 2, 3) If n = 1, 2, 3, at lines 1 and 2 we
return the correct value, 1. Therefore, the algorithm is correct
in these cases.
Inductive Step Assume that n > 3 and that the algorithm
correctly computes tk , if k < n. Since n > 3, we proceed to
line 3. We then call this algorithm to compute tn−1, tn−2, and
tn−3. By the inductive assumption, the values computed are
correct. The algorithm then computes tn−1 + tn−2 + tn−3. But
the formula shows that this value is equal to tn. Therefore, the
algorithm returns the correct value for tn.

257

258

Introduction to
Number Theory

1 Divisors
2 Representations of

Integers and Integer
Algorithms

3 The Euclidean Algorithm
Problem-Solving Corner:
Making Postage

4 The RSA Public-Key
Cryptosystem
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

It’s a digital camera. I have it at 42 exposures, but I wanna
get it to 47 because. . .it’s a prime number.

FROM ALIAS

Number theory is the branch of mathematics concerned with the integers. Traditionally,
number theory was a pure branch of mathematics—known for its abstract nature rather
than its applications. The great English mathematician, G. H. Hardy (1877–1947), used
number theory as an example of a beautiful, but impractical, branch of mathematics.
However, in the late 1900s, number theory became extremely useful in cryptosystems—
systems used for secure communications.

In the preceding chapters, we used some basic number theory definitions such as
“divides” and “prime number.” In Section 1, we review these basic definitions and extend
the discussion to unique factorization, greatest common divisors, and least common
multiples.

In Section 2, we discuss representations of integers and some algorithms for integer
arithmetic.

The Euclidean algorithm for computing the greatest common divisor is the subject
of Section 3. This is surely one of the oldest algorithms. Euclid lived about 295 b.c., and
the algorithm probably predates him.

As an application of the number theory presented in Sections 1–3, we discuss the
RSA system for secure communications in Section 4.

1 ➜ Divisors

In this section, we give the basic definitions and terminology. We begin by recalling the
definition of “divides,” and we introduce some related terminology.

Definition 1.1 Let n and d be integers, d �= 0. We say that d divides n if there exists an integer q

satisfying n = dq. We call q the quotient and d a divisor or factor of n. If d divides n,
we write d | n. If d does not divide n, we write d |/ n.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

259

Introduction to Number Theory

Example 1.2 Since 21 = 3 · 7, 3 divides 21 and we write 3 | 21. The quotient is 7. We call 3 a divisor
or factor of 21.

We note that if n and d are positive integers and d | n, then d ≤ n. (If d | n,
there exists an integer q such that n = dq. Since n and d are positive integers, 1 ≤ q.
Therefore, d ≤ dq = n.)

Whether an integer d > 0 divides an integer n or not, we obtain a unique quotient
q and remainder r as given by the Quotient-Remainder Theorem: There exist unique
integers q (quotient) and r (remainder) satisfying n = dq+ r, 0 ≤ r < d. The remainder
r equals zero if and only if d divides n.

Some additional properties of divisors are given in the following theorem and will
be useful in our subsequent work in this chapter.

Theorem 1.3 Let m, n, and d be integers.

(a) If d | m and d | n, then

d | (m+ n).

(b) If d | m and d | n, then

d | (m− n).

(c) If d | m, then d | mn.

Proof (a) Suppose that d | m and d | n. By Definition 1.1,

m = dq1 (1.1)

for some integer q1 and

n = dq2 (1.2)

for some integer q2. If we add equations (1.1) and (1.2), we obtain

m+ n = dq1 + dq2 = d(q1 + q2).

Therefore, d divides m+ n (with quotient q1 + q2). We have proved part (a).
The proofs of parts (b) and (c) are left as exercises (see Exercises 27 and 28).

Definition 1.4 An integer greater than 1 whose only positive divisors are itself and 1 is called prime.
An integer greater than 1 that is not prime is called composite.

Example 1.5 The integer 23 is prime because its only divisors are itself and 1. The integer 34 is
composite because it is divisible by 17, which is neither 1 nor 34.

If an integer n > 1 is composite, then it has a positive divisor d other than 1 and
itself. Since d is positive and d �= 1, d > 1. Since d is a divisor of n, d ≤ n. Since
d �= n, d < n. Therefore, to determine if a positive integer n is composite, it suffices to
test whether any of the integers

2, 3, . . . , n− 1

divides n. If some integer in this list divides n, then n is composite. If no integer in
this list divides n, then n is prime. (Actually, we can shorten this list considerably; see
Theorem 1.7.)

260

Introduction to Number Theory

Example 1.6 By inspection, we find that none of

2, 3, 4, 5, . . . , 41, 42

divides 43; thus, 43 is prime.
Checking the list

2, 3, 4, 5, . . . , 449, 450

for potential divisors of 451, we find that 11 divides 451 (451 = 11 · 41); thus, 451 is
composite.

In Example 1.6, to determine whether a positive integer n > 1 was prime, we
checked the potential divisors

2, 3, . . . , n− 1.

Actually, it suffices to check only

2, 3, . . . , �√n�.

Theorem 1.7 A positive integer n greater than 1 is composite if and only if n has a divisor d

satisfying 2 ≤ d ≤ √n.

Proof We must prove

If n is composite, then n has a divisor d satisfying 2 ≤ d ≤ √n,

and

If n has a divisor d satisfying 2 ≤ d ≤ √n, then n is composite.

We first prove

If n is composite, then n has a divisor d satisfying 2 ≤ d ≤ √n.

Suppose that n is composite. The discussion following Example 1.5 shows that
n has a divisor d ′ satisfying

2 ≤ d ′ < n.

We now argue by cases. If d ′ ≤ √n, then n has a divisor d (namely d = d ′) satisfying
2 ≤ d ≤ √n.

The other case is d ′ >
√

n. Since d ′ divides n, by Definition 1.1 there exists an
integer q satisfying n = d ′q. Thus q is also a divisor of n. We claim that q ≤ √n.
To show that q ≤ √n, we use proof by contradiction. Thus, suppose that q >

√
n.

Multiplying d ′ >
√

n and q >
√

n gives

n = d ′q >
√

n
√

n = n,

which is a contradiction. Thus, q ≤ √n. Therefore, n has a divisor d (namely d = q)
satisfying 2 ≤ d ≤ √n.

It remains to prove

If n has a divisor d satisfying 2 ≤ d ≤ √n, then n is composite.

If n has a divisor d satisfying 2 ≤ d ≤ √n, by Definition 1.4 n is composite. The
proof is complete.

We may use Theorem 1.7 to construct the following algorithm that tests whether
a positive integer n > 1 is prime.

261

Introduction to Number Theory

Algorithm 1.8 Testing Whether an Integer Is Prime

This algorithm determines whether the integer n > 1 is prime. If n is prime, the
algorithm returns 0. If n is composite, the algorithm returns a divisor d satisfying
2 ≤ d ≤ √n. To test whether d divides n, the algorithm checks whether the remainder
when n is divided by d, n mod d, is zero.

Input: n

Output: d

is prime(n) {
for d = 2 to �√n�

if (n mod d == 0)

return d

return 0
}

Example 1.9 To determine whether 43 is prime, Algorithm 1.8 checks whether any of

2, 3, 4, 5, 6 = �
√

43�
divides 43. Since none of these numbers divides 43, the condition

n mod d == 0

is always false. Therefore, the algorithm returns 0 to indicate that 43 is prime.
To determine whether 451 is prime, Algorithm 1.8 checks whether any of

2, 3, . . . , 21 = �
√

451�
divides 451. For d = 2, 3, . . . , 10, d does not divide 451 and the condition

n mod d == 0

is false. However, when d = 11, d does divide 451 and the condition

n mod d == 0

is true. Therefore, the algorithm returns 11 to indicate that 451 is composite and 11
divides 451.

In the worst case (when n is prime and the for loop runs to completion), Algorithm
1.8 takes time �(

√
n).AlthoughAlgorithm 1.8 runs in time polynomial in n (since

√
n ≤

n), it does not run in time polynomial in the size of the input (namely, n). [We can represent
n in considerably less space than �(n); see Example 2.1.] We say that Algorithm 1.8
is not a polynomial-time algorithm. It is not known whether there is a polynomial-time
algorithm that can find a factor of a given integer; but most computer scientists think
that there is no such algorithm. On the other hand, in 2002 Manindra Agarwal and two
of his students, Nitin Saxena and Neeraj Kayal, discovered a polynomial-time algorithm
that can determine whether or not a given integer is prime (see [Agarwal]). The question
of whether there is a polynomial-time algorithm that can factor an integer is of more
than academic interest since the security of certain encryption systems relies on the
nonexistence of such an algorithm (see Section 4).

Notice that if a composite integer n is input toAlgorithm 1.8, the divisor returned is
prime; that is, Algorithm 1.8 returns a prime factor of a composite integer. To prove this,
we use proof by contradiction. If Algorithm 1.8 returns a composite divisor of n, say a,

262

Introduction to Number Theory

then a has a divisor a′ less than a. Since a′ also divides n and a′ < a, when Algorithm 1.8
sets d = a′, it will return a′, not a. This contradiction shows that if a composite integer
n is input to Algorithm 1.8, the divisor returned is prime.

Example 1.10 If the input to Algorithm 1.8 is n = 1274, the algorithm returns the prime 2 because
2 divides 1274, specifically

1274 = 2 · 637.

If we now input n = 637 to Algorithm 1.8, the algorithm returns the prime 7
because 7 divides 637, specifically

637 = 7 · 91.

If we now input n = 91 toAlgorithm 1.8, the algorithm returns the prime 7 because
7 divides 91, specifically

91 = 7 · 13.

If we now input n = 13 to Algorithm 1.8, the algorithm returns 0 because 13 is
prime.

Combining the previous equations gives 1274 as a product of primes

1274 = 2 · 637 = 2 · 7 · 91 = 2 · 7 · 7 · 13.

We have illustrated how to write any integer greater than 1 as a product of primes.
It is also a fact (although we will not prove it in this book) that, except for the order of
the prime factors, the prime factors are unique. This result is known as the Fundamental
Theorem of Arithmetic or the unique factorization theorem.

Theorem 1.11 Fundamental Theorem of Arithmetic
Any integer greater than 1 can be written as a product of primes. Moreover, if the
primes are written in nondecreasing order, the factorization is unique. In symbols, if

n = p1p2 · · ·pi,

where the pk are primes and p1 ≤ p2 ≤ · · · ≤ pi, and

n = p′1p
′
2 · · ·p′j,

where the p′k are primes and p′1 ≤ p′2 ≤ · · · ≤ p′j , then i = j and

pk = p′k for all k = 1, . . . , i.

We next prove that the number of primes is infinite.

263

Introduction to Number Theory

Theorem 1.12 The number of primes is infinite.

Proof If suffices to show that if p is a prime, there is a prime larger than p. To this
end, we let

p1, p2, . . . , pn

denote all of the distinct primes less than or equal to p. Consider the integer

m = p1p2 · · ·pn + 1.

Notice that when m is divided by pi, the remainder is 1:

m = piq+ 1, q = p1p2 · · ·pi−1pi+1 · · ·pn.

Therefore, for all i = 1 to n, pi does not divide m. Let p′ be a prime factor of m (m
may or may not itself be prime; see Exercise 33). Then p′ is not equal to any of pi,
i = 1 to n. Since p1, p2, . . . , pn is a list of all of the primes less than or equal to p,
we must have p′ > p. The proof is complete.

Example 1.13 We show how the proof of Theorem 1.12 produces a prime larger than 11. We list the
primes less than or equal to 11:

2, 3, 5, 7, 11.

We let

m = 2 · 3 · 5 · 7 · 11+ 1 = 2311.

Using Algorithm 1.8, we find that 2311 is prime. We have found a prime, namely 2311,
larger than each of 2, 3, 5, 7, 11. (If 2311 had turned out not to be prime, Algorithm 1.8
would have found a factor of 2311, which would necessarily be larger than each of
2, 3, 5, 7, 11.)

The greatest common divisor of two integers m and n (not both zero) is the largest
positive integer that divides both m and n. For example, the greatest common divisor of
4 and 6 is 2, and the greatest common divisor of 3 and 8 is 1. We use the notion of greatest
common divisor when we check to see if a fraction m/n, where m and n are integers,
is in lowest terms. If the greatest common divisor of m and n is 1, m/n is in lowest
terms; otherwise, we can reduce m/n. For example, 4/6 is not in lowest terms because
the greatest common divisor of 4 and 6 is 2, not 1. (We can divide both 4 and 6 by 2.)
The fraction 3/8 is in lowest terms because the greatest common divisor of 3 and 8 is 1.

Definition 1.14 Let m and n be integers with not both m and n zero. A common divisor of m and n is an
integer that divides both m and n. The greatest common divisor, written

gcd(m, n),

is the largest common divisor of m and n.

Example 1.15 The positive divisors of 30 are

1, 2, 3, 5, 6, 10, 15, 30,

and the positive divisors of 105 are

1, 3, 5, 7, 15, 21, 35, 105;

264

Introduction to Number Theory

thus the positive common divisors of 30 and 105 are

1, 3, 5, 15.

It follows that the greatest common divisor of 30 and 105, gcd(30, 105), is 15.

We can also find the greatest common divisor of two integers m and n by looking
carefully at their prime factorizations. We illustrate with an example and then explain
the technique in detail.

Example 1.16 We find the greatest common divisor of 30 and 105 by looking at their prime factorizations

30 = 2 · 3 · 5 105 = 3 · 5 · 7.

Notice that 3 is a common divisor of 30 and 105 since it occurs in the prime factorization
of both numbers. For the same reason, 5 is also a common divisor of 30 and 105. Also,
3 · 5 = 15 is also a common divisor of 30 and 105. Since no larger product of primes is
common to both 30 and 105, we conclude that 15 is the greatest common divisor of 30
and 105.

We state the method of Example 1.16 as Theorem 1.17.

Theorem 1.17 Let m and n be integers, m > 1, n > 1, with prime factorizations

m = p
a1
1 p

a2
2 · · ·pak

k

and

n = p
b1
1 p

b2
2 · · ·pbk

k .

(If the prime pi is not a factor of m, we let ai = 0. Similarly, if the prime pi is not a
factor of n, we let bi = 0.) Then

gcd(m, n) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · ·pmin(ak,bk)

k .

Proof Let g = gcd(m, n). We note that if a prime p appears in the prime factoriza-
tion of g, p must be equal to one of p1, . . . , pk; otherwise, g would not divide m or
n (or both). Therefore

g = p
c1
1 · · ·pck

k

for some c1, . . . , ck. Now

p
min(a1,b1)
1 p

min(a2,b2)
2 · · ·pmin(ak,bk)

k

divides both m and n and if any exponent, min(ai, bi), is increased, the resulting
integer will fail to divide m or n (or both). Therefore

p
min(a1,b1)
1 p

min(a2,b2)
2 · · ·pmin(ak,bk)

k

is the greatest common divisor of m and n.

Example 1.18 Using the notation of Theorem 1.17, we have

82320 = 24 · 31 · 51 · 73 · 110

265

Introduction to Number Theory

and

950796 = 22 · 32 · 50 · 74 · 111.

By Theorem 1.17,

gcd(82320, 950796) = 2min(4,2) · 3min(1,2) · 5min(1,0) · 7min(3,4) · 11min(0,1)

= 22 · 31 · 50 · 73 · 110

= 4116.

Neither the “list all divisors” method of Example 1.15 nor use of prime factor-
ization as in Example 1.18 is an efficient method of finding the greatest common divi-
sor. The problem is that both methods require finding the prime factors of the numbers
involved and no efficient algorithm is known to compute these prime factors. However, in
Section 3, we will present the Euclidean algorithm, which does provide an efficient way
to compute the greatest common divisor.

A companion to the greatest common divisor is the least common multiple.

Definition 1.19 Let m and n be positive integers. A common multiple of m and n is an integer that is
divisible by both m and n. The least common multiple, written

lcm(m, n),

is the smallest positive common multiple of m and n.

Example 1.20 The least common multiple of 30 and 105, lcm(30, 105), is 210 because 210 is divisible
by both 30 and 105 and, by inspection, no positive integer smaller than 210 is divisible
by both 30 and 105.

Example 1.21 We can find the least common multiple of 30 and 105 by looking at their prime
factorizations

30 = 2 · 3 · 5 105 = 3 · 5 · 7.

The prime factorization of lcm(30, 105) must contain 2, 3, and 5 as factors [so that 30
divides lcm(30, 105)]. It must also contain 3, 5, and 7 [so that 105 divides lcm(30, 105)].
The smallest number with this property is

2 · 3 · 5 · 7 = 210.

Therefore, lcm(30, 105) = 210.

We state the method of Example 1.21 as Theorem 1.22.

Theorem 1.22 Let m and n be integers, m > 1, n > 1, with prime factorizations

m = p
a1
1 p

a2
2 · · ·pak

k

and

n = p
b1
1 p

b2
2 · · ·pbk

k .

(If the prime pi is not a factor of m, we let ai = 0. Similarly, if the prime pi is not a
factor of n, we let bi = 0.) Then

lcm(m, n) = p
max(a1,b1)
1 p

max(a2,b2)
2 · · ·pmax(ak,bk)

k .

266

Introduction to Number Theory

Proof Let l = lcm(m, n). We note that if a prime p appears in the prime factorization
of l, p must be equal to one of p1, . . . , pk; otherwise, we could eliminate p and obtain
a smaller integer that is divisible by both m and n. Therefore

l = p
c1
1 · · ·pck

k

for some c1, . . . , ck. Now

p
max(a1,b1)
1 p

max(a2,b2)
2 · · ·pmax(ak,bk)

k

is divisible by bothm andn and if any exponent, max(ai, bi), is decreased, the resulting
integer will fail to be divisible by m or n (or both). Therefore

p
max(a1,b1)
1 p

max(a2,b2)
2 · · ·pmax(ak,bk)

k

is the least common multiple of m and n.

Example 1.23 Using the notation of Theorem 1.22, we have

82320 = 24 · 31 · 51 · 73 · 110

and

950796 = 22 · 32 · 50 · 74 · 111.

By Theorem 1.22,

gcd(82320, 950796) = 2max(4,2) · 3max(1,2) · 5max(1,0) · 7max(3,4) · 11max(0,1)

= 24 · 32 · 51 · 74 · 111

= 19015920.

Example 1.24 In Example 1.15, we found that

gcd(30, 105) = 15,

and in Example 1.21, we found that

lcm(30, 105) = 210.

Notice that the product of the gcd and lcm is equal to the product of the pair of numbers;
that is,

gcd(30, 105) · lcm(30, 105) = 15 · 210 = 3150 = 30 · 105.

This formula holds for any pair of numbers as we will show in Theorem 1.25.

Theorem 1.25 For any positive integers m and n,

gcd(m, n) · lcm(m, n) = mn.

Proof If m = 1, then gcd(m, n) = 1 and lcm(m, n) = n, so

gcd(m, n) · lcm(m, n) = 1 · n = mn.

Similarly, if n = 1, then gcd(m, n) = 1 and lcm(m, n) = m, so

gcd(m, n) · lcm(m, n) = 1 · m = mn.

Thus, we may assume that m > 1 and n > 1.

267

Introduction to Number Theory

The proof combines the formulas for the gcd (Theorem 1.17) and lcm
(Theorem 1.22) (which require that m > 1 and n > 1) with the fact that

min(x, y)+max(x, y) = x+ y for all x and y.

This latter formula is true because one of {min(x, y), max(x, y)} equals x and
the other equals y. We now put this all together to produce a proof.

Write the prime factorizations of m and n as

m = p
a1
1 p

a2
2 · · ·pak

k

and

n = p
b1
1 p

b2
2 · · ·pbk

k .

(If the prime pi is not a factor of m, we let ai = 0. Similarly, if the prime pi is not a
factor of n, we let bi = 0.) By Theorem 1.17,

gcd(m, n) = p
min(a1,b1)
1 · · ·pmin(ak,bk)

k ,

and by Theorem 1.22,

lcm(m, n) = p
max(a1,b1)
1 · · ·pmax(ak,bk)

k .

Therefore,

gcd(m, n) · lcm(m, n) = [pmin(a1,b1)
1 · · ·pmin(ak,bk)

k] ·
[pmax(a1,b1)

1 · · ·pmax(ak,bk)
k]

= p
min(a1,b1)+max(a1,b1)
1 · · ·pmin(ak,bk)+max(ak,bk)

k

= p
a1+b1
1 · · ·pak+bk

k

= [pa1
1 · · ·pak

k][pb1
1 · · ·pbk

k] = mn.

If we have an algorithm to compute the greatest common divisor, we can compute
the least common multiple by using Theorem 1.25:

lcm(m, n) = mn

gcd(m, n)
.

In particular, if we have an efficient algorithm to compute the greatest common divisor,
we can efficiently compute the least common multiple as well.

Problem-Solving Tips

The straightforward way to determine whether an integer n > 1 is prime is to test whether
any of 2, 3, . . . , �√n� divides n. While this technique becomes too time-consuming as
n grows larger, it suffices for relatively small values of n. This technique can be iterated
to find the prime factorization of n, again for relatively small values of n.

Two ways of finding the greatest common divisor of a and b were presented. The
first way was to list all of the positive divisors of a and all of the positive divisors of
b and then, among all of the common divisors, choose the largest. This technique is
time-consuming and was shown mainly to illustrate exactly what is meant by common
divisors and the greatest common divisor.

The second technique was to compare the prime factorizations of a and b. If pi

appears in a and pj appears in b, include pmin(i,j) in the prime factorization of the greatest
common divisor. This technique works well if the numbers a and b are relatively small
so that the prime factorizations of each can be found, or if the prime factorizations of
each are given. In Section 3, we present the Euclidean algorithm that efficiently finds
the greatest common divisor even for large values of a and b.

268

Introduction to Number Theory

If you compute the gcd(a, b), you can immediately compute the least common
multiple using the formula

lcm(a, b) = ab

gcd(a, b)
.

The least common multiple can also be computed by comparing the prime factor-
izations of a and b. If pi appears in a and pj appears in b, include pmax(i,j) in the prime
factorization of the least common multiple.

Section Review Exercises

†1. Define d divides n.

2. Define d is a divisor of n.

3. Define quotient.

4. Define n is prime.

5. Define n is composite.

6. Explain why, when testing whether an integer n > 1 is prime
by looking for divisors, we need only check whether any of 2
to �√n� divides n.

7. Explain why Algorithm 1.8 is not considered to be a
polynomial-time algorithm.

8. What is the Fundamental Theorem of Arithmetic?

9. Prove that the number of primes is infinite.

10. What is a common divisor?

11. What is the greatest common divisor?

12. Explain how to compute the greatest common divisor of m and
n, not both zero, given their prime factorizations.

13. What is a common multiple?

14. What is the least common multiple?

15. Explain how to compute the least common multiple of positive
integers m and n, given their prime factorizations.

16. How are the greatest common divisor and least common
multiple related?

Exercises

In Exercises 1–8, trace Algorithm 1.8 for the given input.

1. n = 9 2. n = 47

3. n = 209 4. n = 637

5. n = 1007 6. n = 4141

7. n = 3738 8. n = 1050703

9. Which of the integers in Exercises 1–8 are prime?

10. Find the prime factorization of each integer in Exercises 1–8.

11. Find the prime factorization of 11!.

Find the greatest common divisor of each pair of integers in
Exercises 12–24.

12. 0, 17 13. 5, 25 14. 60, 90

15. 110, 273 16. 220, 1400 17. 315, 825

18. 20, 40 19. 331, 993 20. 2091, 4807

21. 13, 132 22. 15, 159

23. 32 · 73 · 11, 23 · 5 · 7

24. 32 · 73 · 11, 32 · 73 · 11

25. Find the least common multiple of each pair of integers in
Exercises 13–24.

26. For each pair of integers in Exercises 13–24, verify that
gcd(m, n) · lcm(m, n) = mn.

27. Let m, n, and d be integers. Show that if d | m and d | n, then
d | (m− n).

28. Let m, n, and d be integers. Show that if d | m, then d | mn.

29. Let m, n, d1, and d2 be integers. Show that if d1 | m and d2 | n,
then d1d2 | mn.

30. Let n, c, and d be integers. Show that if dc | nc, then d | n.

31. Let a, b, and c be integers. Show that if a | b and b | c, then
a | c.

32. Suggest ways to make Algorithm 1.8 more efficient.

33. Give an example of consecutive primes p1 = 2, p2, . . . , pn

where

p1p2 · · ·pn + 1

is not prime.

Exercises 34 and 35 use the following definition: A subset
{a1, . . . , an} of Z+ is a ∗-set of size n if (ai − aj) | ai for all i

and j, where i �= j, 1 ≤ i ≤ n, and 1 ≤ j ≤ n. These exercises are
due to Martin Gilchrist.

34. Prove that for all n ≥ 2, there exists a ∗-set of size n. Hint:
Use induction on n. For the Basis Step, consider the set {1, 2}.
For the Inductive Step, let b0 =

∏n

k=1 ak and bi = b0+ ai for
1 ≤ i ≤ n.

35. Using the hint in Exercise 35, construct ∗-sets of sizes 3 and 4.

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

269

Introduction to Number Theory

2 ➜ Representations of Integers and Integer
Algorithms

A bit is a binary digit, that is, a 0 or a 1. In a digital computer, data and instructions are
encoded as bits. (The term digital refers to the use of the digits 0 and 1.) Technology
determines how the bits are physically represented within a computer system. Today’s
hardware relies on the state of an electronic circuit to represent a bit. The circuit must be
capable of being in two states—one representing 1, the other 0. In this section we discuss
the binary number system, which represents integers using bits, and the hexadecimal
number system, which represents integers using 16 symbols. The octal number system,
which represents integers using eight symbols, is discussed before Exercise 42.

In the decimal number system, to represent integers we use the 10 symbols 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9. In representing an integer, the symbol’s position is significant;
reading from the right, the first symbol represents the number of 1’s, the next symbol
the number of 10’s, the next symbol the number of 100’s, and so on. For example,

3854 = 3 · 103 + 8 · 102 + 5 · 101 + 4 · 100

(see Figure 2.1). In general, the symbol in position n (with the rightmost symbol being
in position 0) represents the number of 10n’s. Since 100 = 1, the symbol in position 0
represents the number of 100’s or 1’s; since 101 = 10, the symbol in position 1 represents
the number of 101’s or 10’s; since 102 = 100, the symbol in position 2 represents the
number of 102’s or 100’s; and so on. We call the value on which the system is based (10
in the case of the decimal system) the base of the number system.

100’s place (102)

3 8 5 4

1000’s place (103)

Symbol 3

Symbol 2

10’s place (101)

1’s place (100)

Symbol 0

Symbol 1

Figure 2.1 The decimal number system.

In the binary (base 2) number system, to represent integers we need only two
symbols, 0 and 1. In representing an integer, reading from the right, the first sym-
bol represents the number of 1’s, the next symbol the number of 2’s, the next symbol
the number of 4’s, the next symbol the number of 8’s, and so on. For example, in
base 2,

101101 = 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

(see Figure 2.2). In general, the symbol in position n (with the rightmost symbol being
in position 0) represents the number of 2n’s. Since 20= 1, the symbol in position 0
represents the number of 20’s, or 1’s; since 21 = 2, the symbol in position 1 represents
the number of 21’s or 2’s; since 22 = 4, the symbol in position 2 represents the number
of 22’s or 4’s; and so on.

270

Introduction to Number Theory

16’s place (24)

0 1 1 0

32’s place (25)

Symbol 5

Symbol 4

2’s place (21)

1’s place (20)

Symbol 0

Symbol 2

11

8’s place (23)

Symbol 3

4’s place (22)

Symbol 1

Figure 2.2 The binary number system.

Example 2.1 Computer Representation of Integers

Computer systems represent integers in binary. We compute the number of bits necessary
to represent a positive integer n. Notice that if the binary representation of the positive
integer n is

n = 1 · 2k + bk−12k−1 + · · · + b020,

then

2k ≤ n

and

n = 1 · 2k + bk−12k−1 + · · · + b020

≤ 1 · 2k + 1 · 2k−1 + · · · + 1 · 20 = 2k+1 − 1 < 2k+1.

(The last equality follows from the formula for the geometric sum.) Since 2k ≤ n, taking
logs, we obtain

k ≤ lg n.

Since n < 2k+1, again taking logs, we obtain

lg n < k + 1.

Combining these inequalities, we have

k + 1 ≤ 1+ lg n < k + 2. (2.1)

Therefore, k + 1 = �1+ lg n�, which is the number of bits required to represent n.
The worst-case time of Algorithm 1.8, which determines whether the integer n

is prime, is �(
√

n). By equation (2.1), the size s (= k + 1) of the input n satisfies
s ≤ 1+ lg n ≤ 2 lg n for all n ≥ 2. Therefore,

lg n ≥ s/2 for all n ≥ 2,

which is equivalent to

(1/2) lg n ≥ s/4 for all n ≥ 2,

271

Introduction to Number Theory

which is in turn equivalent to

lg n1/2 ≥ s/4 for all n ≥ 2.

Raising to the power 2 gives

√
n ≥ cs,

for all n ≥ 2, where c = 21/4. Therefore, when n is input toAlgorithm 1.8, the worst-case
time is at least C

√
n for some constant C, which is at least Ccs. Thus, in the worst case,

Algorithm 1.8 runs in exponential time in the input size s. We say that Algorithm 1.8 is
not a polynomial-time algorithm.

Without knowing which number system is being used, a representation is ambigu-
ous; for example, 101101 represents one number in decimal and quite a different number
in binary. Often the context will make clear which number system is in effect; but when
we want to be absolutely clear, we subscript the number to specify the base—the sub-
script 10 denotes the decimal system and the subscript 2 denotes the binary system. For
example, the binary number 101101 can be written 1011012.

Example 2.2 Binary to Decimal

The binary number 1011012 represents the number consisting of one 1, no 2’s, one 4,
one 8, no 16’s, and one 32 (see Figure 2.2). This representation may be expressed

1011012 = 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20.

Computing the right-hand side in decimal, we find that

1011012 = 1 · 32+ 0 · 16+ 1 · 8+ 1 · 4+ 0 · 2+ 1 · 1
= 32+ 8+ 4+ 1 = 4510.

We turn the method of Example 2.2 into an algorithm. We generalize by allowing
an arbitrary base b.

Algorithm 2.3 Converting an Integer from Base b to Decimal

This algorithm returns the decimal value of the base b integer cncn−1 · · · c1c0.

Input: c, n, b

Output: dec val

base b to dec (c, n, b) {
dec val = 0
power = 1
for i = 0 to n {

dec val = dec val +ci ∗ power
power = power ∗ b

}
return dec val

}

Algorithm 2.3 runs in time �(n).

272

Introduction to Number Theory

Example 2.4 We show how Algorithm 2.3 converts the binary number 1101 to decimal. Here n = 3,
b = 2, and

c3 = 1, c2 = 1, c1 = 0, c0 = 1.

First, dec val is set to 0, and power is set to 1. We then enter the for loop.
Since i = 0 and power = 1,

ci ∗ power = 1 ∗ 1 = 1.

Thus dec val becomes 1. Executing

power = power ∗ b

sets power to 2. We return to the top of the for loop.
Since i = 1 and power = 2,

ci ∗ power = 0 ∗ 2 = 0.

Thus dec val remains 1. Executing

power = power ∗ b

sets power to 4. We return to the top of the for loop.
Since i = 2 and power = 4,

ci ∗ power = 1 ∗ 4 = 4.

Thus dec val becomes 5. Executing

power = power ∗ b

sets power to 8. We return to the top of the for loop.
Since i = 3 and power = 8,

ci ∗ power = 1 ∗ 8 = 8.

Thus dec val becomes 13. Executing

power = power ∗ b

sets power to 16. The for loop terminates and the algorithm returns 13, the decimal value
of the binary number 1101.

Other important bases for number systems in computer science are base 8 or
octal and base 16 or hexadecimal (sometimes shortened to hex). We will discuss the
hexadecimal system and leave the octal system to the exercises (see Exercises 42–47).

In the hexadecimal number system, to represent integers we use the symbols 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The symbols A–F are interpreted as decimal
10–15. (In general, in the base N number system, N distinct symbols, representing
0, 1, 2, . . . , N − 1 are required.) In representing an integer, reading from the right, the
first symbol represents the number of 1’s, the next symbol the number of 16’s, the next
symbol the number of 162’s, and so on. For example, in base 16,

B4F = 11 · 162 + 4 · 161 + 15 · 160

(see Figure 2.3). In general, the symbol in position n (with the rightmost symbol being
in position 0) represents the number of 16n’s.

273

Introduction to Number Theory

16’s place (161)

F

256’s place (162)

Symbol 2

Symbol 1

1’s place (160)

Symbol 0

4B

Figure 2.3 The hexadecimal number system.

Example 2.5 Hexadecimal to Decimal

Convert the hexadecimal number B4F to decimal.
We obtain

B4F16 = 11 · 162 + 4 · 161 + 15 · 160

= 11 · 256+ 4 · 16+ 15 = 2816+ 64+ 15 = 289510.

Algorithm 2.3 shows how to convert an integer in base b to decimal. Consider the
reverse problem—converting a decimal number to base b. Suppose, for example, that
we want to convert the decimal number 91 to binary. If we divide 91 by 2, we obtain

45
2)91

8
11
10
1

This computation shows that

91 = 2 · 45+ 1. (2.2)

We are beginning to express 91 in powers of 2. If we next divide 45 by 2, we find

45 = 2 · 22+ 1. (2.3)

Substituting this expression for 45 into (2.2), we obtain

91 = 2 · 45+ 1

= 2 · (2 · 22+ 1)+ 1

= 22 · 22+ 2+ 1. (2.4)

If we next divide 22 by 2, we find

22 = 2 · 11.

Substituting this expression for 22 into (2.4), we obtain

91 = 22 · 22+ 2+ 1

= 22 · (2 · 11)+ 2+ 1

= 23 · 11+ 2+ 1. (2.5)

274

Introduction to Number Theory

If we next divide 11 by 2, we find

11 = 2 · 5+ 1.

Substituting this expression for 11 into (2.5), we obtain

91 = 24 · 5+ 23 + 2+ 1. (2.6)

If we next divide 5 by 2, we find

5 = 2 · 2+ 1.

Substituting this expression for 5 into (2.6), we obtain

91 = 25 · 2+ 24 + 23 + 2+ 1

= 26 + 24 + 23 + 2+ 1

= 10110112.

The preceding computation shows that the remainders, as N is successively divided
by 2, give the bits in the binary representation of N. The first division by 2 in (2.2) gives
the 1’s bit; the second division by 2 in (2.3) gives the 2’s bit; and so on. We illustrate
with another example.

Example 2.6 Decimal to Binary

Write the decimal number 130 in binary.
The computation shows the successive divisions by 2 with the remainders recorded

at the right.

2)130 remainder = 0 1’s bit

2)65 remainder = 1 2’s bit

2)32 remainder = 0 4’s bit

2)16 remainder = 0 8’s bit

2)8 remainder = 0 16’s bit

2)4 remainder = 0 32’s bit

2)2 remainder = 0 64’s bit

2)1 remainder = 1 128’s bit

0

We may stop when the quotient is 0. Remembering that the first remainder gives the
number of 1’s, the second remainder gives the number of 2’s, and so on, we obtain

13010 = 100000102.

We turn the method of Example 2.6 into an algorithm. We generalize by allowing
an arbitrary base b.

275

Introduction to Number Theory

Algorithm 2.7 Converting a Decimal Integer into Base b

This algorithm converts the positive integer m into the base b integer cncn−1 · · · c1c0.
The variable n is used as an index in the sequence c. The value of m mod b is the
remainder when m is divided by b. The value of �m/b� is the quotient when m is
divided by b.

Input: m, b

Output: c, n

dec to base b(m, b, c, n) {
n = −1
while (m > 0) {

n = n+ 1
cn = m mod b

m = �m/b�
}

}

Just as a binary integer m has �1+ lg m� bits, a base b integer m has �1+ logb m�
digits (see Exercise 55). Thus Algorithm 2.7 runs in time �(logb m).

Example 2.8 We show how Algorithm 2.7 converts the decimal number m = 11 to binary.
The algorithm first sets n to−1. The first time we arrive at the while loop, m = 11

and the condition m > 0 is true; so we execute the body of the while loop. The variable
n is incremented and becomes 0. Since m mod b = 11 mod 2 = 1, c0 is set to 1. Since
�m/b� = �11/2� = 5, m is set to 5. We return to the top of the while loop.

Since m = 5, the condition m > 0 is true; so we execute the body of the while
loop. The variable n is incremented and becomes 1. Since m mod b = 5 mod 2 = 1, c1

is set to 1. Since �m/b� = �5/2� = 2, m is set to 2. We return to the top of the while loop.
Since m = 2, the condition m > 0 is true; so we execute the body of the while

loop. The variable n is incremented and becomes 2. Since m mod b = 2 mod 2 = 0, c2

is set to 0. Since �m/b� = �2/2� = 1, m is set to 1. We return to the top of the while loop.
Since m = 1, the condition m > 0 is true; so we execute the body of the while

loop. The variable n is incremented and becomes 3. Since m mod b = 1 mod 2 = 1, c3

is set to 1. Since �m/b� = �1/2� = 0, m is set to 0. We return to the top of the while loop.
Since m = 0, the algorithm terminates. The value 11 has been converted to the

binary number

c3c2c1c0 = 1011.

Example 2.9 Decimal to Hexadecimal

Convert the decimal number 20385 to hexadecimal.
The computation shows the successive divisions by 16 with the remainders recorded

at the right.

16)20385 remainder = 1 1’s place

16)1274 remainder = 10 16’s place

16)79 remainder = 15 162’s place

16)4 remainder = 4 163’s place

0

276

Introduction to Number Theory

We stop when the quotient is 0. The first remainder gives the number of 1’s, the second
remainder gives the number of 16’s, and so on; thus we obtain

2038510 = 4FA116.

Next we turn our attention to addition of numbers in arbitrary bases. The same
method that we use to add decimal numbers can be used to add binary numbers; however,
we must replace the decimal addition table with the binary addition table

+ 0 1

0 0 1
1 1 10

(In decimal, 1+ 1 = 2, and 210 = 102; thus, in binary, 1+ 1 = 10.)

Example 2.10 Binary Addition

Add the binary numbers 10011011 and 1011011.
We write the problem as

10011011
+ 1011011

As in decimal addition, we begin from the right, adding 1 and 1. This sum is 102; thus
we write 0 and carry 1. At this point the computation is

1
10011011

+ 1011011
0

Next, we add 1 and 1 and 1, which is 112. We write 1 and carry 1. At this point, the
computation is

1
10011011

+ 1011011
10

Continuing in this way, we obtain

10011011
+ 1011011

11110110

Example 2.11 The addition problem of Example 2.10, in decimal, is

155
+ 91

246

We turn the method of Example 2.10 into an algorithm. If the numbers to add are
bnbn−1 · · · b1b0 and b′nb

′
n−1 · · · b′1b′0, at the iteration i > 0 the algorithm adds bi, b′i, and

the carry bit from the previous iteration. When adding three bits, say B1, B2, and B3,

277

Introduction to Number Theory

we obtain a two-bit binary number, say cb. For example, if we compute 1+ 0+ 1, the
result is 102; in our notation, c = 1 and b = 0. By checking the various cases, we can
verify that we can compute the binary sum B1 +B2 +B3 by first computing the sum in
decimal and then recovering c and b from the formulas

b = (B1 + B2 + B3) mod 2, c = �(B1 + B2 + B3)/2�.

Algorithm 2.12 Adding Binary Numbers

This algorithm adds the binary numbers bnbn−1 · · · b1b0 and b′nb
′
n−1 · · · b′1b′0 and stores

the sum in sn+1snsn−1 · · · s1s0.

Input: b, b′, n
Output: s

binary addition(b, b′, n, s) {
carry = 0
for i = 0 to n {

si = (bi + b′i + carry) mod 2
carry = �(bi + b′i + carry)/2�

}
sn+1 = carry

}

Algorithm 2.12 runs in time �(n).
Our next example shows that we can add hexadecimal numbers in the same way

that we add decimal or binary numbers.

Example 2.13 Hexadecimal Addition

Add the hexadecimal numbers 84F and 42EA.
The problem may be written

84F
+ 42EA

We begin in the rightmost column by adding F and A. Since F is 1510 and A is 1010,
F+ A = 1510 + 1010 = 2510 = 1916. We write 9 and carry 1:

1
84F

+ 42EA
9

Next, we add 1, 4, and E, obtaining 1316. We write 3 and carry 1:

1
84F

+ 42EA
39

Continuing in this way, we obtain

84F
+ 42EA

4B39

278

Introduction to Number Theory

Example 2.14 The addition problem of Example 2.13, in decimal, is

2127
+ 17130

19257

We can multiply binary numbers by modifying the standard algorithm for multi-
plying decimal numbers (see Exercises 64 and 65).

We conclude by discussing a special algorithm, which we will need in Section 4,
to compute powers mod z. We first discuss an algorithm to compute a power an (without
dealing with mod z). The straightforward way to compute this power is to repeatedly
multiply by a

a · a · · · a︸ ︷︷ ︸
n a’s

,

which uses n− 1 multiplications. We can do better using repeated squaring.
As a concrete example, consider computing a29. We first compute a2 = a · a,

which uses 1 multiplication. We next compute a4 = a2 · a2, which uses 1 additional
multiplication. We next compute a8 = a4 · a4, which uses 1 additional multiplication.
We next compute a16 = a8 · a8, which uses 1 additional multiplication. So far, we have
used only 4 multiplications. Noting that the expansion of 29 in powers of 2, that is the
binary expansion, is

29 = 1+ 4+ 8+ 16,

we see that we can compute a29 as

a29 = a1 · a4 · a8 · a16,

which uses 3 additional multiplications for a total of 7 multiplications. The straightfor-
ward technique uses 28 multiplications.

In Example 2.6, we saw that the remainders when n is successively divided by 2
give the binary expansion of n. If the remainder is 1, the corresponding power of 2 is
included; otherwise, it is not included. We can formalize the repeated squaring technique
if, in addition to repeated squaring, we simultaneously determine the binary expansion
of the exponent.

Example 2.15 Figure 2.4 shows how a29 is calculated using repeated squaring. Initially x is set to a, and
n is set to the value of the exponent, 29 in this case. We then compute n mod 2. Since
this value is 1, we know that 1 = 20 is included in the binary expansion of 29. Therefore
a1 is included in the product. We track the partial product in Result; so Result is set to

Current Value Quotient When n

x of n n mod 2 Result Divided by 2

a 29 1 a 14
a2 14 0 Unchanged 7
a4 7 1 a · a4 = a5 3
a8 3 1 a5 · a8 = a13 1
a16 1 1 a13 · a16 = a29 0

Figure 2.4 Computing a29 using repeated squaring.

279

Introduction to Number Theory

a. We then compute the quotient when 29 is divided by 2. The quotient 14 becomes the
new value of n. We then repeat this process.

We square x to obtain a2. We then compute n mod 2. Since this value is 0, we know
that 2 = 21 is not included in the binary expansion of 29. Therefore a2 is not included in
the product, and Result is unchanged. We then compute the quotient when 14 is divided
by 2. The quotient 7 becomes the new value of n. We then repeat this process.

We square x to obtain a4. We then compute n mod 2. Since this value is 1, we know
that 4 = 22 is included in the binary expansion of 29. Therefore a4 is included in the
product. Result becomes a5. We then compute the quotient when 7 is divided by 2. The
quotient 3 becomes the new value of n. The process continues until n becomes 0.

We state the method of repeated squaring as Algorithm 2.16.

Algorithm 2.16 Exponentiation By Repeated Squaring

This algorithm computes an using repeated squaring. The algorithm is explained in
Example 2.15.

Input: a, n

Output: an

exp via repeated squaring(a, n) {
result = 1
x = a

while (n > 0) {
if (n mod 2 == 1)

result = result ∗ x

x = x ∗ x

n = �n/2�
}
return result

}

The number of times that the while loop executes is determined by n. The variable
n is repeatedly halved

n = �n/2�
and when n becomes 0, the loop terminates. Recall that it takes time �(lg n) to reduce
n to 0 by repeated halving. In the body of the while loop, at most two multiplications
are performed. Thus, the number of multiplications is at most �(lg n), an improvement
over the straightforward algorithm that uses �(n) multiplications. The bottleneck in
Algorithm 2.16 is the size of the numbers involved. The value returned an requires
lg an = n lg a bits in its representation. Thus, simply to copy the final value into Result
takes time at least �(n lg a), which is exponential in the size of n (see Example 2.1).

In Section 4, we will need to compute an mod z for large values of a and n. In this
case, an will be huge; so it is impractical to compute an and then compute the remainder
when an is divided by z. We can do much better. The key idea is to compute the remainder
after each multiplication thereby keeping the numbers relatively small. The justification
for this technique is given in our next theorem.

280

Introduction to Number Theory

Theorem 2.17 If a, b, and z are positive integers,

ab mod z = [(a mod z)(b mod z)] mod z.

Proof Let w= ab mod z, x= a mod z, and y= b mod z. Since w is the remainder
when ab is divided by z, by the quotient-remainder theorem, there exists q1 such that

ab = q1z+ w.

Thus

w = ab− q1z.

Similarly, there exists q2 and q3 such that

a = q2z+ x, b = q3z+ y.

Now

w = ab− q1z

= (q2z+ x)(q3z+ y)− q1z

= (q2q3z+ q2y + q3x− q1)z+ xy

= qz+ xy,

where q = q2q3z+ q2y + q3x− q1. Therefore,

xy = −qz+ w;
that is, w is the remainder when xy is divided by z. Thus, w= xy mod z, which
translates to

ab mod z = [(a mod z)(b mod z)] mod z.

Example 2.18 We show how to compute 57229 mod 713 using Algorithm 2.16 and Theorem 2.17. The
number 57229 has 80 digits, so Theorem 2.17 indeed simplifies the computation.

To compute a29, we successively computed

a, a5 = a · a4, a13 = a5 · a8, a29 = a13 · a16

(see Example 2.15). To compute a29 mod z, we successively compute

a mod z, a5 mod z, a13 mod z, a29 mod z.

Each multiplication is performed using Theorem 2.17. We compute a2 using the
formula

a2 mod z = [(a mod z)(a mod z)] mod z.

We compute a4 using the formula

a4 mod z = a2a2 mod z = [(a2 mod z)(a2 mod z)] mod z,

and so on.
We compute a5 using the formula

a5 mod z = aa4 mod z = [(a mod z)(a4 mod z)] mod z.

We compute a13 using the formula

a13 mod z = a5a8 mod z = [(a5 mod z)(a8 mod z)] mod z,

and so on.

281

Introduction to Number Theory

The following shows the computation of 57229 mod 713:

5722 mod 713 = (572 mod 713)(572 mod 713) mod 713 = 5722 mod 713 = 630

5724 mod 713 = (5722 mod 713)(5722 mod 713) mod 713 = 6302 mod 713 = 472

5728 mod 713 = (5724 mod 713)(5724 mod 713) mod 713 = 4722 mod 713 = 328

57216 mod 713 = (5728 mod 713)(5728 mod 713) mod 713 = 3282 mod 713 = 634

5725 mod 713 = (572 mod 713)(5724 mod 713) mod 713 = 572 · 472 mod 713 = 470

57213 mod 713 = (5725 mod 713)(5728 mod 713) mod 713 = 470 · 328 mod 713 = 152

57229 mod 713 = (57213 mod 713)(57216 mod 713) mod 713 = 152 · 634 mod 713 = 113.

The technique demonstrated in Example 2.18 is formalized as Algorithm 2.19.

Algorithm 2.19 Exponentiation Mod z By Repeated Squaring

This algorithm computes an mod z using repeated squaring. The algorithm is
explained in Example 2.18.

Input: a, n, z

Output: an mod n

exp mod z via repeated squaring(a, n, z) {
result = 1
x = a mod z

while (n > 0) {
if (n mod 2 == 1)

result = (result ∗ x) mod z

x = (x ∗ x) mod z

n = �n/2�
}
return result

}

The key difference betweenAlgorithms 2.16 and 2.19 is the size of the numbers that
are multiplied. In Algorithm 2.19, the numbers multiplied are remainders after division
by z and so have magnitude less than z. If we modify the usual method of multiplying
base 10 integers for base 2, it can be shown (see Exercise 65) that the time required to
multiply a and b is O(lg a lg b). Since the while loop in Algorithm 2.19 executes �(lg n)

times, the total time for Algorithm 2.19 is O(lg n lg2 z).

Problem-Solving Tips

To convert the base b number

cnb
n + cn−1b

n−1 + · · · + c1b
1 + c0b

0

to decimal, carry out the indicated multiplications and additions in decimal.
To convert the decimal number n to base b, divide by b, divide the resulting quotient

by b, divide the resulting quotient by b, and so on, until obtaining a zero quotient.

282

Introduction to Number Theory

The remainders give the base b representation of n. The first remainder gives the 1’s
coefficient, the next remainder gives the b’s coefficient, and so on.

When multiplying modulo z, compute the remainders as soon as possible to min-
imize the sizes of the numbers involved.

Section Review Exercises

1. What is the value of the decimal number dndn−1 . . . d1d0?
(Each di is one of 0–9.)

2. What is the value of the binary number bnbn−1 . . . b1b0? (Each
bi is 0 or 1.)

3. What is the value of the hexadecimal number hnhn−1 . . . h1h0?
(Each hi is one of 0–9 or A–F.)

4. How many bits are required to represent the positive integer n?

5. Explain how to convert from binary to decimal.

6. Explain how to convert from decimal to binary.

7. Explain how to convert from hexadecimal to decimal.

8. Explain how to convert from decimal to hexadecimal.

9. Explain how to add binary numbers.

10. Explain how to add hexadecimal numbers.

11. Explain how to compute an using repeated squaring.

12. Explain how to compute an mod z using repeated squaring.

Exercises

How many bits are needed to represent each integer in Exercises
1–7?

1. 60 2. 63 3. 64

4. 127 5. 128 6. 21000

7. 31000

In Exercises 8–13, express each binary number in decimal.

8. 1001 9. 11011

10. 11011011 11. 100000

12. 11111111 13. 110111011011

In Exercises 14–19, express each decimal number in binary.

14. 34 15. 61 16. 223

17. 400 18. 1024 19. 12,340

In Exercises 20–25, add the binary numbers.

20. 1001+ 1111

21. 11011+ 1101

22. 110110+ 101101

23. 101101+ 11011

24. 110110101+ 1101101

25. 1101+ 101100+ 11011011

In Exercises 26–31, express each hexadecimal number in decimal.

26. 3A 27. 1E9 28. 3E7C

29. A03 30. 209D 31. 4B07A

32. Express each binary number in Exercises 8–13 in hexadecimal.

33. Express each decimal number in Exercises 14–19 in
hexadecimal.

34. Express each hexadecimal number in Exercises 26, 27, and 29
in binary.

In Exercises 35–39, add the hexadecimal numbers.

35. 4A+ B4 36. 195 + 76E

37. 49F7 + C66 38. 349CC + 922D

39. 82054 +AEFA3

40. Does 2010 represent a number in binary? in decimal? in
hexadecimal?

41. Does 1101010 represent a number in binary? in decimal? in
hexadecimal?

In the octal (base 8) number system, to represent integers we use
the symbols 0, 1, 2, 3, 4, 5, 6, and 7. In representing an integer,
reading from the right, the first symbol represents the number of
1’s, the next symbol the number of 8’s, the next symbol the num-
ber of 82’s, and so on. In general, the symbol in position n (with
the rightmost symbol being in position 0) represents the number of
8n’s. In Exercises 42–47, express each octal number in decimal.

42. 63 43. 7643 44. 7711

45. 10732 46. 1007 47. 537261

48. Express each binary number in Exercises 8–13 in octal.

49. Express each decimal number in Exercises 14–19 in octal.

50. Express each hexadecimal number in Exercises 26–31 in octal.

51. Express each octal number in Exercises 42–47 in hexadecimal.

52. Does 1101010 represent a number in octal?

53. Does 30470 represent a number in binary? in octal? in deci-
mal? in hexadecimal?

54. Does 9450 represent a number in binary? in octal? in decimal?
in hexadecimal?

283

Introduction to Number Theory

55. Prove that a base b integer m has �1+ logb m� digits.

In Exercises 56–58, trace Algorithm 2.16 for the given value
of n.

56. n = 16 57. n = 15 58. n = 80

In Exercises 59–61, trace Algorithm 2.19 for the given values of
a, n, and z.

59. a = 5, n = 10, z = 21

60. a = 143, n = 10, z = 230

61. a = 143, n = 100, z = 230

62. Let Tn denote the highest power of 2 that divides n. Show that
Tmn = Tm + Tn for all m, n ≥ 1.

63. Let Sn denote the number of 1’s in the binary representation
of n. Use induction to prove that Tn! = n − Sn for all n ≥ 1.
(Tn is defined in the previous exercise.)

64. Modify the usual method of multiplying base 10 integers for
base 2 to produce an algorithm to multiply binary numbers
bmbm−1 · · · b1b0 and b′nb′n−1 · · · b′1b′0.

65. Show that the time required by the algorithm of Exercise 64
to multiply a and b is O(lg a lg b).

3 ➜ The Euclidean Algorithm

In Section 1, we discussed some methods of computing the greatest common divisor
of two integers that turned out to be inefficient. The Euclidean algorithm is an old,
famous, and efficient algorithm for finding the greatest common divisor of two integers.

The Euclidean algorithm is based on the fact that if r = a mod b, then

gcd(a, b) = gcd(b, r). (3.1)

Before proving (3.1), we illustrate how the Euclidean algorithm uses it to find the greatest
common divisor.

Example 3.1 Since 105 mod 30 = 15, by (3.1)

gcd(105, 30) = gcd(30, 15).

Since 30 mod 15 = 0, by (3.1)

gcd(30, 15) = gcd(15, 0).

By inspection, gcd(15, 0) = 15. Therefore,

gcd(105, 30) = gcd(30, 15) = gcd(15, 0) = 15.

We next prove equation (3.1).

Theorem 3.2 If a is a nonnegative integer, b is a positive integer, and r = a mod b, then

gcd(a, b) = gcd(b, r).

Proof By the quotient-remainder theorem, there exist q and r satisfying

a = bq+ r, 0 ≤ r < b.

We show that the set of common divisors of a and b is equal to the set of common
divisors of b and r, thus proving the theorem.

284

Introduction to Number Theory

Let c be a common divisor of a and b. By Theorem 1.3(c), c | bq. Since
c | a and c | bq, by Theorem 1.3(b), c | a − bq (= r). Thus c is a common divi-
sor of b and r. Conversely, if c is a common divisor of b and r, then c | bq and
c | bq + r (= a) and c is a common divisor of a and b. Thus the set of common
divisors of a and b is equal to the set of common divisors of b and r. Therefore,

gcd(a, b) = gcd(b, r).

We next formally state the Euclidean algorithm as Algorithm 3.3.

Algorithm 3.3 Euclidean Algorithm

This algorithm finds the greatest common divisor of the nonnegative integers a and
b, where not both a and b are zero.

Input: a and b (nonnegative integers, not both zero)

Output: Greatest common divisor of a and b

1. gcd(a, b) {
2. // make a largest
3. if (a < b)

4. swap(a, b)

5. while (b¬= 0) {
6. r = a mod b

7. a = b

8. b = r

9. }
10. return a

11. }

We note that the while loop in the Euclidean algorithm (lines 5–9) always termi-
nates since at the bottom of the loop (lines 7 and 8), the values of a and b are updated
to smaller values. Since nonnegative integers cannot decrease indefinitely, eventually b

becomes zero and the loop terminates.
Let G = gcd(a, b), where a and b are the values input to Algorithm 3.3. We can

prove that Algorithm 3.3 is correct by verifying that G = gcd(a, b) is a loop invariant,
where now a and b denote the variables in the pseudocode.

By definition, the loop invariant is true the first time we arrive at line 5. Suppose that
G = gcd(a, b) is true prior to another iteration of the loop and that b �= 0. Theorem 3.2
then tells us that after line 6 executes,

gcd(a, b) = gcd(b, r).

At lines 7 and 8, a becomes b and b becomes r. Therefore, G = gcd(a, b) is true for the
new values of a and b. It follows that G = gcd(a, b) is a loop invariant. The while loop
terminates when b becomes 0. At this point, the loop invariant becomes G = gcd(a, 0).
The algorithm then returns a [= gcd(a, 0)]. Thus the value that the algorithm returns is
G, which by definition is the greatest common divisor of the input values. Therefore,
Algorithm 3.3 is correct.

Algorithm 3.3 correctly finds the greatest common divisor if lines 3 and 4 are
omitted (see Exercise 13). We include these lines because it simplifies the analysis of
Algorithm 3.3 in the next subsection.

285

Introduction to Number Theory

Example 3.4 We show how Algorithm 3.3 finds gcd(504, 396).
Let a = 504 and b = 396. Since a > b, we move to line 5. Since b �= 0, we proceed

to line 6, where we set r to

a mod b = 504 mod 396 = 108.

We then move to lines 7 and 8, where we set a to 396 and b to 108. We then return to
line 5.

Since b �= 0, we proceed to line 6, where we set r to

a mod b = 396 mod 108 = 72.

We then move to lines 7 and 8, where we set a to 108 and b to 72. We then return to
line 5.

Since b �= 0, we proceed to line 6, where we set r to

a mod b = 108 mod 72 = 36.

We then move to lines 7 and 8, where we set a to 72 and b to 36. We then return to line 5.
Since b �= 0, we proceed to line 6, where we set r to

a mod b = 72 mod 36 = 0.

We then move to lines 7 and 8, where we set a to 36 and b to 0. We then return to line 5.
This time b = 0, so we skip to line 10, where we return a (36), the greatest common

divisor of 396 and 504.

Analysis of the Euclidean Algorithm
We analyze the worst-case performance of Algorithm 3.3. We define the time required
to be the number of modulus operations executed at line 6. Table 3.1 lists the number of
modulus operations required for some small input values.

The worst case for the Euclidean algorithm occurs when the number of modulus
operations is as large as possible. By referring to Table 3.1, we can determine the input

TABLE 3.1 ■ Number of modulus operations required by the Euclidean
algorithm for various values of the input.

b
a 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 — 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 2 1 2 1 2 1 2 1 2 1 2
3 0 1 2 1 2 3 1 2 3 1 2 3 1 2
4 0 1 1 2 1 2 2 3 1 2 2 3 1 2
5 0 1 2 3 2 1 2 3 4 3 1 2 3 4
6 0 1 1 1 2 2 1 2 2 2 3 3 1 2
7 0 1 2 2 3 3 2 1 2 3 3 4 4 3
8 0 1 1 3 1 4 2 2 1 2 2 4 2 5
9 0 1 2 1 2 3 2 3 2 1 2 3 2 3

10 0 1 1 2 2 1 3 3 2 2 1 2 2 3
11 0 1 2 3 3 2 3 4 4 3 2 1 2 3
12 0 1 1 1 1 3 1 4 2 2 2 2 1 2
13 0 1 2 2 2 4 2 3 5 3 3 3 2 1

286

Introduction to Number Theory

pair a, b, a > b, with a as small as possible, that requires n modulus operations for
n = 0, . . . , 5. The results are given in Table 3.2.

Recall that the Fibonacci sequence {fn} is defined by the equations

f1 = 1, f2 = 1, fn = fn−1 + fn−2, n ≥ 3.

The Fibonacci sequence begins

1, 1, 2, 3, 5, 8,

A surprising pattern develops in Table 3.2: The a column is the Fibonacci sequence
starting with f2 and, except for the first value, the b column is also the Fibonacci sequence

TABLE 3.2 ■ Smallest input
pair that requires n modulus
operations in the Euclidean
algorithm.

n
a b (= number of

modulus operations)

1 0 0
2 1 1
3 2 2
5 3 3
8 5 4
13 8 5 starting with f2! We are led to conjecture that if the pair a, b, a > b, when input to the

Euclidean algorithm requires n ≥ 1 modulus operations, then a ≥ fn+2 and b ≥ fn+1.
As further evidence of our conjecture, if we compute the smallest input pair that requires
six modulus operations, we obtain a = 21 and b = 13. Our next theorem confirms that
our conjecture is correct. The proof of this theorem is illustrated in Figure 3.1.

34 � 91 mod 57

57, 34 requires 4 modulus operations

57 � f6 and 34 � f5

91 � 57 . 1 � 34 � 57 � 34 � f6 � f5 � f7

(1 modulus operation)

(to make a total of 5)

(by inductive assumption)

Figure 3.1 The proof of Theorem 3.5. The pair 91, 57, which requires
n+ 1 = 5 modulus operations, is input to the Euclidean algorithm.

Theorem 3.5 Suppose that the pair a, b, a > b, requires n ≥ 1 modulus operations when input
to the Euclidean algorithm. Then a ≥ fn+2 and b ≥ fn+1, where {fn} denotes the
Fibonacci sequence.

Proof The proof is by induction on n.

Basis Step (n = 1) We have already observed that the theorem is true if n = 1.

Inductive Step Assume that the theorem is true for n ≥ 1. We must show that the
theorem is true for n+ 1.

Suppose that the pair a, b, a > b, requires n + 1 modulus operations when
input to the Euclidean algorithm. At line 6, we compute r = a mod b. Thus

a = bq+ r, 0 ≤ r < b. (3.2)

The algorithm then repeats using the values b and r, b > r. These values require n

additional modulus operations. By the inductive assumption,

b ≥ fn+2 and r ≥ fn+1. (3.3)

Combining (3.2) and (3.3), we obtain

a = bq+ r ≥ b+ r ≥ fn+2 + fn+1 = fn+3. (3.4)

287

Introduction to Number Theory

[The first inequality in (3.4) holds because q > 0; q cannot equal 0, because a > b.]
Inequalities (3.3) and (3.4) give

a ≥ fn+3 and b ≥ fn+2.

The inductive step is finished and the proof is complete.

We may use Theorem 3.5 to analyze the worst-case performance of the Euclidean
algorithm.

Theorem 3.6 If integers in the range 0 to m, m ≥ 8, not both zero, are input to the Euclidean
algorithm, then at most

log3/2
2m

3

modulus operations are required.

Proof Letnbe the maximum number of modulus operations required by the Euclidean
algorithm for integers in the range 0 to m, m ≥ 8. Let a, b be an input pair in the
range 0 to m that requires n modulus operations. Table 3.1 shows that n ≥ 4 and that
a �= b. We may assume that a > b. (Interchanging the values of a and b does not alter
the number of modulus operations required.) By Theorem 3.5, a ≥ fn+2. Thus

fn+2 ≤ m.

Since n+ 2 ≥ 6,

(
3

2

)n+1

< fn+2.

Combining these last inequalities, we obtain
(

3

2

)n+1

< m.

Taking the logarithm to the base 3/2, we obtain

n+ 1 < log3/2 m.

Therefore,

n < (log3/2 m)− 1 = log3/2 m− log3/2
3

2
= log3/2

2m

3
.

Because the logarithm function grows so slowly, Theorem 3.6 tells us that the
Euclidean algorithm is quite efficient, even for large values of the input. For example,
since

log3/2
2(1,000,000)

3
= 33.07 . . . ,

the Euclidean algorithm requires at most 33 modulus operations to compute the greatest
common divisor of any pair of integers, not both zero, in the range 0 to 1,000,000.

288

Introduction to Number Theory

A Special Result
The following special result will be used to compute inverses modulo an integer (see the
following subsection). Such inverses are used in the RSA cryptosystem (see Section 4).
However, this special result is also useful in other ways (see Exercises 25 and 27 and
the following Problem-Solving Corner).

Theorem 3.7 If a and b are nonnegative integers, not both zero, there exist integers s and t such
that

gcd(a, b) = sa+ tb.

The method of the Euclidean algorithm can be used to prove Theorem 3.7 and to
compute s and t. Before proving the theorem, we first illustrate the proof with a specific
example.

Example 3.8 Consider how the Euclidean algorithm computes gcd(273, 110). We begin with a = 273
and b = 110. The Euclidean algorithm first computes

r = 273 mod 110 = 53. (3.5)

It then sets a = 110 and b = 53.
The Euclidean algorithm next computes

r = 110 mod 53 = 4. (3.6)

It then sets a = 53 and b = 4.
The Euclidean algorithm next computes

r = 53 mod 4 = 1. (3.7)

It then sets a = 4 and b = 1.
The Euclidean algorithm next computes

r = 4 mod 1 = 0.

Since r = 0, the algorithm terminates, having found the greatest common divisor of 273
and 110 to be 1.

To find s and t, we work back, beginning with the last equation [equation (3.7)] in
which r �= 0. Equation (3.7) may be rewritten as

1 = 53− 4 · 13 (3.8)

since the quotient when 53 is divided by 4 is 13.
Equation (3.6) may be rewritten as

4 = 110− 53 · 2.

We then substitute this formula for 4 into equation (3.8) to obtain

1 = 53− 4 · 13 = 53− (110− 53 · 2)13 = 27 · 53− 13 · 110. (3.9)

Equation (3.5) may be rewritten as

53 = 273− 110 · 2.

289

Introduction to Number Theory

We then substitute this formula for 53 into equation (3.9) to obtain

1 = 27 · 53− 13 · 110 = 27(273− 110 · 2)− 13 · 110 = 27 · 273− 67 · 110.

Thus, if we take s = 27 and t = −67, we obtain

gcd(273, 110) = 1 = s · 273+ t · 110.

Proof of Theorem 3.7 Given a > b ≥ 0, let r0 = a, r1 = b, and ri equal the value of r

after the (i− 1)st time the while loop is executed in Algorithm 3.3 (e.g., r2 = a mod b).
Suppose that rn is the first r-value that is zero so that gcd(a, b) = rn−1.

In general,

ri = ri+1qi+2 + ri+2. (3.10)

Taking i = n− 3 in (3.10), we obtain

rn−3 = rn−2qn−1 + rn−1,

which may be rewritten as

rn−1 = −qn−1rn−2 + 1 · rn−3.

We may take tn−3 = −qn−1 and sn−3 = 1 to obtain

rn−1 = tn−3rn−2 + sn−3rn−3. (3.11)

Taking i = n− 4 in (3.10), we obtain

rn−4 = rn−3qn−2 + rn−2

or

rn−2 = −qn−2rn−3 + rn−4. (3.12)

Substituting (3.12) into (3.11), we obtain

rn−1 = tn−3[−qn−2rn−3 + rn−4]+ sn−3rn−3

= [−tn−3qn−2 + sn−3]rn−3 + tn−3rn−4.

Setting tn−4 = −tn−3qn−2 + sn−3 and sn−4 = tn−3, we obtain

rn−1 = tn−4rn−3 + sn−4rn−4.

Continuing in this way, we ultimately obtain

gcd(r0, r1) = rn−1 = t0r1 + s0r0 = t0b+ s0a.

Taking s = s0 and t = t0, we have

gcd(r0, r1) = sa+ tb.

We next give an algorithm to compute s and t satisfying gcd(a, b) = sa + tb,
where a and b are nonnegative integers not both zero. To compute s and t, the proof of
Theorem 3.7, which is illustrated in Example 3.8, first finds gcd(a, b) and then works
backward from the last remainder obtained during the computation of gcd(a, b) to the
first remainder obtained. Since recursion elegantly handles such a backward computation,
we will write a recursive algorithm to compute s and t. We begin by writing a recursive
version of the Euclidean algorithm (Algorithm 3.9). We can then modify this recursive
algorithm to obtain a recursive algorithm to compute s and t.

290

Introduction to Number Theory

Algorithm 3.9 Recursive Euclidean Algorithm

This algorithm recursively finds the greatest common divisor of the nonnegative
integers a and b, where not both a and b are zero.

Input: a and b (nonnegative integers, not both zero)

Output: Greatest common divisor of a and b

gcdr(a, b) {
// make a largest
if (a < b)

swap(a, b)

if (b == 0)

return a

r = a mod b

return gcdr(b, r)

}

Algorithm 3.9 first makes a largest. If b is zero, it correctly returns a. Otherwise,
Algorithm 3.9 computes r = a mod b and returns the greatest common divisor of b

and r, which is correct since Theorem 3.2 tells us that gcd(b, r) = gcd(a, b).
To compute s and t, we modify Algorithm 3.9. We call the modification STgcdr.

The idea is that whenever we compute the greatest common divisor, we also compute
the values of s and t. These values are stored in added parameters named s and t.

Consider first the case when b is zero. Then gcd(a, b) = a. Here we must set
s = 1. Since b is zero, t could be assigned any value; we choose t = 0. The first part of
the modification of Algorithm 3.9 looks like:

STgcdr(a, b, s, t) {
// make a largest
if (a < b)

swap(a, b)

if (b == 0) {
s = 1
t = 0
// now a = sa+ tb

return a

}
Next, Algorithm 3.9 computes r = a mod b and gcdr(b, r). Our modified algo-

rithm will compute r = a mod b and STgcdr(b, r, s′, t′). Thus s′ and t′ satisfy

g = s′b+ t′r,

where g = gcd(b, r). We must compute s and t in terms of the available values. If we let
q be the quotient of a divided by b, we have

a = bq+ r.

Therefore, using the fact that r = a− bq, we have

g = s′b+ t′r
= s′b+ t′(a− bq)

= t′a+ (s′ − t′q)b.

291

Introduction to Number Theory

Thus if we set s = t′ and t = s′ − t′q, we have

g = sa+ tb.

The formal algorithm follows.

Algorithm 3.10 Computing s and t of Theorem 3.7

This algorithm computes s and t satisfying gcd(a, b) = sa + tb, where a and b are
nonnegative integers not both zero, and returns gcd(a, b).

Input: a and b (nonnegative integers, not both zero)

Output: s and t of Theorem 3.7 (stored in parameters s and t) and the
greatest common divisor of a and b (which is returned)

STgcdr(a, b, s, t) {
// make a largest
if (a < b)

swap(a, b)

if (b == 0) {
s = 1
t = 0
// now a = sa+ tb

return a

}
q = �a/b�
r = a mod b

// a = bq+ r

g = STgcdr(b, r, s′, t′)
// g = s′b+ t′r
// ∴ g = t′a+ (s′ − t′q)b

s = t′

t = s′ − t′ ∗ q

return g

}

Computing an Inverse Modulo an Integer
Suppose that we have two integers n > 0 and φ > 1 such that gcd(n, φ) = 1. We show
how to efficiently compute an integer s, 0 < s < φ such that ns mod φ = 1. We call
s the inverse of n mod φ. Efficiently computing this inverse is required by the RSA
cryptosystem in Section 4.

Since gcd(n, φ) = 1, we use the Euclidean algorithm, as explained previously, to
find numbers s′ and t′ such that s′n+ t′φ = 1. Then ns′ = −t′φ + 1, and, since φ > 1,
1 is the remainder. Thus

ns′ mod φ = 1. (3.13)

Note that s′ is almost the desired value; the problem is that s′ may not satisfy 0 < s′ < φ.
However, we can convert s′ to the proper value by setting

s = s′ mod φ.

Now 0 ≤ s < φ. In fact s �= 0 since, if s = 0, then φ | s′, which contradicts (3.13). Since
s = s′ mod φ, there exists q such that

s′ = qφ + s.

292

Introduction to Number Theory

Combining the previous equations, we have

ns = ns′ − φnq = −t′φ + 1− φnq = φ(−t′ − nq)+ 1.

Therefore

ns mod φ = 1. (3.14)

Example 3.11 Let n = 110 and φ = 273. In Example 3.8, we showed that gcd(n, φ) = 1 and that

s′n+ t′φ = 1,

where s′ = −67 and t′ = 27. Thus,

110(−67) mod 273 = ns′ mod φ = 1.

Here s = s′ mod φ = −67 mod 273 = 206. Therefore, the inverse of 110 modulo 273
is 206.

We conclude by showing that the number s in equation (3.14) is unique. Suppose
that

ns mod φ = 1 = ns′ mod φ, 0 < s < φ, 0 < s′ < φ.

We must show that s′ = s. Now

s′ = (s′ mod φ)(ns mod φ) = s′ns mod φ = (s′n mod φ)(s mod φ) = s.

Therefore, the number s in equation (3.14) is unique.

Problem-Solving Tips

The Euclidean algorithm for computing the greatest common divisor of nonnegative
integers a and b, not both zero, is based on the equation

gcd(a, b) = gcd(b, r),

where r= a mod b. We replace the original problem, compute gcd(a, b), with the prob-
lem, compute gcd(b, r). We then replace a by b and b by r, and repeat. Eventually r = 0,
so the solution is gcd(b, 0) = b.

The Euclidean algorithm is quite efficient. If integers in the range 0 to m, m ≥ 8,

not both zero, are input to the Euclidean algorithm, then at most

log3/2
2m

3
modulus operations are required.

If a and b are nonnegative integers, not both zero, there exist integers s and t such
that

gcd(a, b) = sa+ tb.

To compute s and t, use the Euclidean algorithm. In a problem that involves the greatest
common divisor, the preceding equation may be helpful. (Try Exercises 25 and 27.)

Suppose that we have two integers n > 0 and φ > 1 such that gcd(n, φ) = 1. To
efficiently compute an integer s, 0 < s < φ such that ns mod φ = 1, first compute s′

and t′ satisfying

gcd(n, φ) = s′n+ t′φ

(see the subsection Computing an Inverse Modulo an Integer). Then set s = s′ mod φ.

293

Introduction to Number Theory

Section Review Exercises

1. State the Euclidean algorithm.

2. What key theorem is the basis for the Euclidean algorithm?

3. If the pair a, b, a > b, requires n ≥ 1 modulus operations when
input to the Euclidean algorithm, how are a and b related to the
Fibonacci sequence?

4. Integers in the range 0 to m, m ≥ 8, not both zero, are input to
the Euclidean algorithm. Give an upper bound for the number
of modulus operations required.

5. Theorem 3.7 states that there exist integers s and t such that
gcd(a, b) = sa+ tb. Explain how the Euclidean algorithm can
be used to compute s and t.

6. Explain what it means for s to be the inverse of n modulo φ.

7. Suppose that gcd(n, φ)= 1. Explain how to compute the
inverse of n modulo φ.

Exercises

Use the Euclidean algorithm to find the greatest common divisor
of each pair of integers in Exercises 1–10.

1. 60, 90 2. 110, 273 3. 220, 1400

4. 315, 825 5. 20, 40 6. 331, 993

7. 2091, 4807 8. 2475, 32670 9. 67942, 4209

10. 490256, 337

11. For each number pair a, b in Exercises 1–10, find integers s

and t such that sa+ tb = gcd(a, b).

12. Find two integers a and b, each less than 100, that maximize
the number of iterations of the while loop of Algorithm 3.3.

13. Show that Algorithm 3.3 correctly finds gcd(a, b) even if
lines 3 and 4 are deleted.

14. Write a recursive version of the Euclidean algorithm that exe-
cutes the check for a < b and the call to the swap function one
time. Hint: Use two functions.

15. If a and b are positive integers, show that gcd(a, b) =
gcd(a, a+ b).

16. Show that if a > b ≥ 0, then

gcd(a, b) = gcd(a− b, b).

17. Using Exercise 16, write an algorithm to compute the greatest
common divisor of two nonnegative integers a and b, not both
zero, that uses subtraction but not the modulus operation.

18. How many subtractions are required by the algorithm of
Exercise 17 in the worst case for numbers in the range 0
to m?

19. Extend Tables 3.1 and 3.2 to the range 0 to 21.

20. Exactly how many modulus operations are required by the
Euclidean algorithm in the worst case for numbers in the
range 0 to 1,000,000?

21. Prove that when the pair fn+2, fn+1 is input to the Euclidean
algorithm, n ≥ 1, exactly n modulus operations are required.

22. Show that for any integer k > 1, the number of modulus opera-
tions required by the Euclidean algorithm to compute gcd(a, b)

is the same as the number of modulus operations required to
compute gcd(ka, kb).

23. Show that gcd (fn, fn+1) = 1, n ≥ 1.

24. Suppose that d > 0 is a common divisor of nonnegative inte-
gers a and b, not both zero. Prove that d | gcd(a, b).

†�25. Show that if p is a prime number, a and b are positive integers,
and p | ab, then p | a or p | b.

26. Give an example of positive integers p, a, and b where p | ab,
p |/ a, and p |/ b.

27. Let m and n be positive integers. Let f be the function from

X = {0, 1, . . . , m− 1}
to X defined by

f(x) = nx mod m.

Prove that f is one-to-one and onto if and only if
gcd(m, n) = 1.

Exercises 28–32 show another way to prove that if a and b are non-
negative integers, not both zero, there exist integers s and t such that

gcd(a, b) = sa+ tb.

However, unlike the Euclidean algorithm, this proof does not lead
to a technique to compute s and t.

28. Let

X = {sa+ tb | sa+ tb > 0 and s and t are integers}.
Show that X is nonempty.

29. Show that X has a least element. Let g denote the least element.

30. Show that if c is a common divisor of a and b, then c divides g.

31. Show that g is a common divisor of a and b. Hint: Assume
that g does not divide a. Then a = qg+ r, 0 < r < g. Obtain
a contradiction by showing that r ∈ X.

32. Show that g is the greatest common divisor of a and b.

In Exercises 33–39, show that gcd(n, φ) = 1, and find the inverse
s of n modulo φ satisfying 0 < s < φ.

33. n = 2, φ = 3 34. n = 1, φ = 47

35. n = 7, φ = 20 36. n = 11, φ = 47

†A starred exercise indicates a problem of above-average difficulty.

294

Introduction to Number Theory

37. n = 50, φ = 231

38. n = 100, φ = 231

39. n = 100, φ = 243

40. Show that 6 has no inverse modulo 15. Does this contradict
the result preceding Example 3.11? Explain.

41. Show that n > 0 has an inverse modulo φ > 1 if and only if
gcd(n, φ) = 1.

Problem-Solving Corner Making Postage

Problem
Let p and q be positive integers satisfying
gcd(p, q)= 1. Show that there exists n such that for
all k ≥ n, postage of k cents can be achieved by using
only p-cent and q-cent stamps.

Attacking the Problem
Does this type of problem sound familiar? Mathemat-
ical induction can show that postage of four cents or
more can be achieved by using only 2-cent and 5-cent
stamps. This result illustrates the problem for p = 2
and q = 5. In this case, if we take n = 4, for all k ≥ 4,
postage of k cents can be achieved by using only 2-cent
and 5-cent stamps.

The induction proof of the p = 2, q = 5 problem
can be summarized as follows. We first proved the base
cases (k = 4, 5). In the inductive step, we assumed that
we could make postage of k − 2 cents. We then added
a 2-cent stamp to achieve k cents postage. We will imi-
tate this inductive proof to prove that, if gcd(p, q) = 1
for arbitrary p and q, there exists n such that for all
k ≥ n, postage of k cents can be achieved by using
only p-cent and q-cent stamps.

Finding a Solution
Let’s first take care of a trivial case. If either p or q is 1,
we can make k cents postage for all k ≥ 1 by using k

1-cent stamps. Thus, we assume that p > 1 and q > 1.
Let’s first develop some notation. For a particular

amount of postage, we’ll let np denote the number of
p-cent stamps used and nq denote the number of q-cent
stamps used. Then the amount of postage is

npp+ nqq.

Does this expression remind you of anything? Theo-
rem 3.7 states that there exist integers s and t such that

1 = gcd(p, q) = sp+ tq. (1)

This last equation suggests that we can make postage
of 1 cent by using s p-cent stamps and t q-cent stamps.
The problem is that one of s or t must be negative in
order for the sum sp + tq to be 1 (since p and q are

greater than 1). In fact, since p and q are both greater
than 1, one of s or t is positive and the other is negative.
We assume that s > 0 and t < 0.

Let’s see how the inductive step should work and
then see what basis steps we need. Imitating the specific
case discussed previously, we would like to assume that
we can make k−p cents postage and then add a p-cent
stamp to make k cents postage. Nothing to it! In order
for this inductive step to work, our basis steps must
be n, n + 1, . . . , n + p − 1 for some n that we get to
choose.

Suppose that we can make n-cents postage:

n = npp+ nqq.

Because of equation (1), we can then make (n+ 1)-
cents postage

n+ 1= (npp+ nqq)+(sp+ tq)=(np+ s)p+(nq+ t)q

using np + s p-cent stamps and nq + t q-cent stamps.
Of course, this last statement is meaningful only if
np + s ≥ 0 and nq + t ≥ 0. However, np + s ≥ 0
holds because np ≥ 0 and s > 0. We can arrange for
nq + t ≥ 0 to hold by choosing nq ≥ −t.

Similarly, we can make (n+ 2)-cents postage

n+ 2 = (npp+ nqq)+ 2(sp+ tq)

= (np+ 2s)p+ (nq+ 2t)q

using np+2s p-cent stamps and nq+2t q-cent stamps.
As before, np+2s ≥ 0 holds because np ≥ 0 and s > 0.
We can arrange for nq + 2t ≥ 0 to hold by choosing
nq ≥ −2t. Notice that for this choice of nq, nq ≥ −t

also holds (so that we can still make n+1 cents postage,
too).

In general, we can make (n+ i)-cents postage

n+ i = (npp+ nqq)+ i(sp+ tq)

= (np+ is)p+ (nq+ it)q

using np+ is p-cent stamps and nq+ it q-cent stamps.
As before, np+is ≥ 0 holds because np ≥ 0 and s > 0.
We can arrange for nq + it ≥ 0 to hold by choosing
nq ≥ −it. Notice that for this choice of nq, nq ≥ −jt

also holds for j = 0, . . . , i − 1 (so that we can still
make n+ j cents postage, too).

295

Introduction to Number Theory

It follows that we can make postage for n,

n+ 1, . . . , n+p− 1 provided that we choose nq =
−(p− 1)t. Any value for np ≥ 0 will do, so we take
np = 0. This makes n = nqq = −(p− 1)tq.

Formal Solution
If either p or q equals 1, we may take n = 1; so assume
that p > 1 and q > 1. By Theorem 3.7, there exist inte-
gers s and t such that sp + tq = 1. Since p > 1 and
q > 1, s �= 0 and t �= 0. Furthermore, either s or t is
negative. We may suppose that t < 0. Then s > 0. Let
n = −t(p − 1)q. We next show that we can make
postage for n, n+ 1, . . . , n+ p− 1 using only p-cent
and q-cent stamps.

Now

n+ j = −t(p− 1)q+ j(sp+ tq)

= (js)p+ (−t(p− 1)+ jt)q.

If 0 ≤ j ≤ p− 1, then

−t(p− 1)+ jt ≥ −t(p− 1)+ t(p− 1) = 0.

Therefore we can make postage for n+ j, 0 ≤ j ≤
p− 1, by using js p-cent stamps and −t(p− 1)+ jt

q-cent stamps.
Finally, we use induction to show that we can make

postage of n cents or more using only p-cent and q-cent
stamps. The basis steps are n, n + 1, . . . , n + p − 1.
Suppose that k ≥ n+ p and that we can make postage
for m satisfying n ≤ m < k. In particular, we can make

postage for k−p. Add a p-cent stamp to make postage
for k. The inductive step is complete.

Summary of Problem-Solving Techniques
■ Look for a similar problem.

■ Try to use some of the ideas in a similar problem.

■ Sometimes notation, setting, or context will
suggest something useful. In our problem, the
postage-amount equation npp+nqq was similar
in form to the greatest common divisor formula
gcd(p, q) = sp+ tq. Combining these equations
was crucial to proving the base cases.

■ Don’t be afraid to make assumptions. If an
assumption turns out to be unwarranted, it can
sometimes be modified so that the modified
assumption is correct. In our problem, we
assumed that if we could make n-cents postage
using np p-cent stamps and nq q-cent stamps, we
could then make (n+ 1)-cents postage by using
np + s p-cent stamps and nq + t q-cent stamps.
We were able to force this latter statement to be
true by choosing nq ≥ −t.

Exercises
1. Show that if gcd(p, q) > 1, it is false that there

exists n such that for all k ≥ n, postage of k cents
can be achieved by using only p-cent and q-cent
stamps.

4 ➜ The RSA Public-Key Cryptosystem

Cryptology is the study of systems, called cryptosystems, for secure communications.
In a cryptosystem, the sender transforms the message before transmitting it, hoping that
only authorized recipients can reconstruct the original message (i.e., the message before
it was transformed). The sender is said to encrypt the message, and the recipient is said to
decrypt the message. If the cryptosystem is secure, unauthorized persons will be unable
to discover the decryption technique, so even if they read the encrypted message, they
will be unable to decrypt it. Cryptosystems are important for large organizations (e.g.,
government and military), all Internet-based businesses, and individuals. For example,
if a credit card number is sent over the Internet, it is important for the number to be read
only by the intended recipient. In this section, we look at some algorithms that support
secure communication.

In one of the oldest and simplest systems, the sender and receiver each have a key
that defines a substitute character for each potential character to be sent. Moreover, the
sender and receiver do not disclose the key. Such keys are said to be private.

296

Introduction to Number Theory

Example 4.1 If a key is defined as

character: ABCDEFGHIJKLMNOPQRSTUVWXYZ

replaced by: EIJFUAXVHWP GSRKOBTQYDMLZNC

the message SEND MONEY would be encrypted as QARUESKRAN. The encrypted message
SKRANEKRELIN would be decrypted as MONEY ON WAY.

Simple systems such as that in Example 4.1 are easily broken since certain letters
(e.g., E in English) and letter combinations (e.g., ER in English) appear more frequently
than others. Also, a problem with private keys in general is that the keys have to be
securely sent to the sender and recipient before messages can be sent. We devote the
remainder of this section to the RSA public-key cryptosystem, named after its inventors,
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, that is believed to be secure. In
the RSA system, each participant makes public an encryption key and hides a decryption
key. To send a message, all one needs to do is look up the recipient’s encryption key in
a publicly distributed table. The recipient then decrypts the message using the hidden
decryption key.

In the RSA system, messages are represented as numbers. For example, each
character might be represented as a number. If a blank space is represented as 1, A as 2,
B as 3, and so on, the message SEND MONEY would be represented as 20, 6, 15, 5, 1, 14,
16, 15, 6, 26. If desired, the integers could be combined into the single integer

20061505011416150626

(note that leading zeros have been added to all single-digit numbers).
We next describe how the RSA system works, present a concrete example, and

then discuss why it works. Each prospective recipient chooses two primes p and q and
computes z = pq. Since the security of the RSA system rests primarily on the inability
of anyone knowing the value of z to discover the numbers p and q, p and q are typically
chosen so that each has 100 or more digits. Next, the prospective recipient computes
φ = (p− 1)(q − 1) and chooses an integer n such that gcd(n, φ) = 1. In practice, n is
often chosen to be a prime. The pair z, n is then made public. Finally, the prospective
recipient computes the unique number s, 0 < s < φ, satisfying ns mod φ = 1. (An
efficient way to compute s is given in Section 3.) The number s is kept secret and used
to decrypt messages.

To send the integer a, 0 ≤ a ≤ z − 1, to the holder of public key z, n, the
sender computes c = an mod z and sends c. (Algorithm 2.19 provides an efficient way
to compute an mod z.) To decrypt the message, the recipient computes cs mod z, which
can be shown to be equal to a.

Example 4.2 Suppose that we choose p= 23, q= 31, and n= 29. Then z=pq= 713 and φ=
(p− 1)(q − 1)= 660. Now s= 569 since ns mod φ= 29 · 569 mod 660= 16501 mod
660= 1. The pair z, n= 713, 29 is made publicly available.

To transmit a = 572 to the holder of public key 713, 29, the sender computes c =
an mod z = 57229 mod 713 = 113 and sends 113. The receiver computes cs mod z =
113569 mod 713 = 572 in order to decrypt the message.

The main result that makes encryption and decryption work is that

au mod z = a for all 0 ≤ a < z and u mod φ = 1

(for a proof, see [Cormen:Theorem 31.36, page 885]). Using this result andTheorem 2.17,
we may show that decryption produces the correct result. Since ns mod φ= 1,

297

Introduction to Number Theory

cs mod z = (an mod z)s mod z = (an)s mod z = ans mod z = a.

The security of the RSA encryption system relies mainly on the fact that currently
there is no efficient algorithm known for factoring integers; that is, currently no algorithm
is known for factoring d-digit integers in polynomial time, O(dk). Thus if the primes p

and q are chosen large enough, it is impractical to compute the factorization z = pq.
If the factorization could be found by a person who intercepts a message, the message
could be decrypted just as the authorized recipient does. At this time, no practical method
is known for factoring integers with 200 or more digits, so if p and q are chosen so that
each has 100 or more digits, pq would then have about 200 or more digits, which seems
to make RSA secure.

The first description of the RSA encryption system was in Martin Gardner’s
February 1977 Scientific American column (see [Gardner, 1977]). Included in this col-
umn were an encoded message using the key z, n, where z was the product of 64- and
65-digit primes, and n = 9007, and an offer of $100 to the first person to crack the code.
At the time the article was written, it was estimated that it would take 40 quadrillion
years to factor z. In fact, in April 1994, Arjen Lenstra, Paul Leyland, Michael Graff, and
Derek Atkins, with the assistance of 600 volunteers from 25 countries using over 1600
computers, factored z (see [Taubes]). The work was coordinated on the Internet.

Another possible way a message could be intercepted and decrypted would be
to take the nth root of c mod z, where c is the encrypted value. Since c = an mod z,
the nth root of c mod z would give a, the decrypted value. Again, currently there is no
polynomial-time algorithm known for computing nth roots mod z. It is also conceivable
that a message could be decrypted by some means other than factoring integers or taking
nth roots mod z. For example, in the mid-1990s Paul Kocher proposed a way to break
RSA based on the time it takes to decrypt messages (see [English]). The idea is that
distinct secret keys require distinct amounts of time to decrypt messages and, by using
this timing information, an unauthorized person might be able to unveil the secret key
and thus decrypt the message. To thwart such attacks, implementors of RSA have taken
steps to alter the observed time to decrypt messages.

Section Review Exercises

1. To what does “cryptology” refer?

2. What is a cryptosystem?

3. What does it mean to “encrypt a message”?

4. What does it mean to “decrypt a message”?

5. In the RSA public-key cryptosystem, how does one encrypt a

and send it to the holder of public key z, n?

6. In the RSA public-key cryptosystem, how does one decrypt c?

7. On what does the security of the RSA encryption system rest?

Exercises

1. Encrypt the message COOL BEAVIS using the key of
Example 4.1.

2. Decrypt the message UTWR ENKDTEKMIGYWRA using the key
of Example 4.1.

3. Encrypt the message I AM NOT A CROOK using the key of
Example 4.1.

4. Decrypt the message JDQHLHIF AU using the key of
Example 4.1.

5. Encrypt 333 using the public key 713, 29 of Example 4.2.

6. Decrypt 411 using s = 569 as in Example 4.2.

In Exercises 7–11, assume that we choose primes p = 17, q = 23,

and n = 31.

7. Compute z. 8. Compute φ. 9. Compute s.

10. Encrypt 101 using the public key z, n.

11. Decrypt 250.

298

Introduction to Number Theory

In Exercises 12–16, assume that we choose primes p = 59,

q = 101, and n = 41.

12. Compute z. 13. Compute φ. 14. Compute s.

15. Encrypt 584 using the public key z, n.

16. Decrypt 250.

Notes

An accessible introduction to elementary number theory is [Niven, 1980].An extended discus-
sion of the greatest common divisor, including historical background, and other elementary
number theory topics are in [Knuth, 1998a].

Full details of the RSA cryptosystem may be found in [Cormen]. [Pfleeger] is devoted
to computer security.

Chapter Review

Section 1
1. d divides n: d | n
2. d does not divide n: d |/ n

3. d is a divisor or factor of n

4. Prime
5. Composite
6. Fundamental theorem of arithmetic: any integer greater than

1 can be written as the product of primes
7. Common divisor
8. Greatest common divisor
9. Common multiple

10. Least common multiple

Section 2
11. Bit
12. Decimal number system
13. Binary number system
14. Computer representation of integers: when represented in

binary, the positive integer n requires �1+ lg n� bits
15. Hexadecimal number system
16. Base of a number system
17. Convert binary to decimal
18. Convert decimal to binary
19. Convert hexadecimal to decimal
20. Convert decimal to hexadecimal
21. Add binary numbers
22. Add hexadecimal numbers
23. Compute an using repeated squaring
24. ab mod z = [(a mod z)(b mod z)] mod z

25. Compute an mod z using repeated squaring

Section 3
26. Euclidean algorithm
27. If the pair a, b, a > b, requires n ≥ 1 modulus operations

when input to the Euclidean algorithm, then a ≥ fn+2 and
b ≥ fn+1, where {fn} denotes the Fibonacci sequence.

28. If integers in the range 0 to m, m ≥ 8, not both zero, are
input to the Euclidean algorithm, then at most

log3/2
2m

3

modulus operations are required.
29. If a and b are nonnegative integers, not both zero, there exist

integers s and t such that gcd(a, b) = sa+ tb.
30. Compute s and t such that gcd(a, b) = sa + tb using the

Euclidean algorithm
31. Compute an inverse modulo an integer

Section 4
32. Cryptology
33. Cryptosystem
34. Encrypt a message
35. Decrypt a message
36. RSA public key cryptosystem: To encrypt a and send it to

the holder of public key z, n, compute c = an mod z and
send c. To decrypt the message, compute cs mod z, which
can be shown to be equal to a.

37. The security of the RSA encryption system relies mainly on
the fact that currently there is no efficient algorithm known
for factoring integers.

Chapter Self-Test

Section 1
1. Trace Algorithm 1.8 for the input n = 539.

2. Find the prime factorization of 539.

3. Find gcd(2 · 52 · 72 · 134, 74 · 132 · 17).

4. Find lcm(2 · 52 · 72 · 134, 74 · 132 · 17).

299

Introduction to Number Theory

Section 2
5. Write the binary number 10010110 in decimal.

6. Write the decimal number 430 in binary and hexadecimal.

7. Trace Algorithm 2.16 for the value n = 30.

8. Trace Algorithm 2.19 for the values a = 50, n = 30,

z = 11.

Section 3
9. Use the Euclidean algorithm to find the greatest common

divisor of the integers 396 and 480.

10. Given that log3/2 100 = 11.357747, provide an upper
bound for the number of modulus operations required by
the Euclidean algorithm for integers in the range 0 to
100,000,000.

11. Use the Euclidean algorithm to find integers s and t satisfy-
ing s · 396+ t · 480 = gcd(396, 480).

12. Show that gcd(196, 425)= 1 and find the inverse s of 196
modulo 425 satisfying 0 < s < 425.

Section 4

In Exercises 13–16, assume that we choose primes p = 13,

q = 17, and n = 19.

13. Compute z and φ.

14. Compute s.

15. Encrypt 144 using public key z, n.

16. Decrypt 28.

Computer Exercises

1. Implement Algorithm 1.8, testing whether a positive integer
is prime, as a program.

2. Write a program that converts among decimal, hexadecimal,
and octal.

3. Write a program that adds binary numbers.

4. Write a program that adds hexadecimal numbers.

5. Write a program that adds octal numbers.

6. Implement Algorithm 2.16, exponentiation by repeated
squaring, as a program.

7. Implement Algorithm 2.19, exponentiation mod z, as a
program.

8. Write recursive and nonrecursive programs to compute the
greatest common divisor. Compare the times required by
the programs.

9. Implement Algorithm 3.10, computing s and t satisfying
gcd(a, b) = sa+ tb, as a program.

10. Write a program that, given integers n > 0 and φ > 1,
gcd(n, φ) = 1, computes the inverse of n mod φ.

11. Implement the RSA public-key cryptosystem.

Hints/Solutions to Selected Exercises

Section 1 Review
1. We say that d divides n if there exists an integer q satisfying

n = dq.

2. If d divides n, we say that d is a divisor of n.

3. If d divides n, n = dq, we call q the quotient.

4. An integer greater than 1 whose only positive divisors are itself
and 1 is called prime.

5. An integer greater than 1 that is not prime is called composite.

6. If n is composite, it must have a divisor d satisfying 2 ≤ d ≤
�√n� (see Theorem 1.7).

7. Algorithm 1.8 does not run in time polynomial in the size of
the input.

8. Any integer greater than 1 can be written as a product of primes.
Moreover, if the primes are written in nondecreasing order, the
factorization is unique.

9. See the proof of Theorem 1.12.

10. A common divisor of m and n, not both zero, is an integer that
divides both m and n.

11. The greatest common divisor of m and n, not both zero, is the
largest common divisor of m and n.

12. See Theorem 1.17.

13. A common multiple of m and n is an integer that is divisible
by both m and n.

14. The least common multiple of m and n is the smallest positive
common multiple of m and n.

15. See Theorem 1.22. 16. gcd(m, n) · lcm(m, n)=mn

Section 1
1. First d is set to 2. Since n mod d = 9 mod 2 = 1 is not equal

to 0, d is incremented and becomes 3.
Now n mod d = 9 mod 3 equals 0, so the algorithm

returns d = 3 to indicate that n = 9 is composite and 3 is a
divisor of 9.

4. When d is set to 2, . . . , 6, n mod d is not equal to zero. How-
ever, when d becomes 7, n mod d = 637 mod 7 equals 0,
so the algorithm returns d = 7 to indicate that n = 637 is
composite and 7 is a divisor of 637.

300

Introduction to Number Theory

7. First d is set to 2. Since n mod d = 3738 mod 2 equals 0, the
algorithm returns d = 2 to indicate that n = 3738 is composite
and 2 is a divisor of 3738.

9. 47 12. 17

15. 1 18. 20

21. 13 24. 32 · 73 · 11

25. (For Exercise 13) 25

28. Since d divides m, there exists q such that m = dq. Multiply-
ing by n gives mn = d(qn). Therefore, d divides mn (with
quotient qn).

31. Since a divides b, there exists q1 such that b = aq1. Since b

divides c, there exists q2 such that c = bq2. Now

c = bq2 = (aq1)q2 = a(q1q2).

Therefore, a divides c (with quotient q1q2).

Section 2 Review

1.
n∑

i=0

di10i 2.
n∑

i=0

bi2
i

3.
n∑

i=0

hi16i 4. �1+ lg n�

5. Perform the computation
∑n

i=0 bi2i in decimal.

6. Divide the number to be converted to binary by 2. The remain-
der gives the 1’s bit. Divide the quotient by 2. The remainder
gives the 2’s bit. Continue.

7. Perform the computation
∑n

i=0 hi16i in decimal.

8. Divide the number to be converted to hexadecimal by 16. The
remainder gives the number of 1’s. Divide the quotient by 16.
The remainder gives the number of 16’s. Continue.

9. Use the ordinary algorithm for adding decimal numbers to add
binary numbers—except replace the decimal addition table by
the binary addition table.

10. Use the ordinary algorithm for adding decimal numbers to add
hexadecimal numbers—except replace the decimal addition
table by the hexadecimal addition table.

11. Let

n =
m∑

i=0

bi2
i

be the binary expansion of n. Using repeated squaring, com-
pute a1, a2, a4, a8, . . . , abm . Then

an = a�m
i=0bi2i =

m∏

i=0

abi2i

.

12. Proceed as described in the solution to Exercise 11, only use
the formula

ab mod z = [(a mod z)(b mod z)] mod z.

Section 2
1. 6 4. 7 7. 1585

8. 9 11. 32 14. 100010

17. 110010000 20. 11000 23. 1001000

26. 58 29. 2563

32. (For Exercise 8) 9

35. FE 38. 3DBF9

40. 2010 cannot represent a number in binary because 2 is an ille-
gal symbol in binary. 2010 could represent a number in either
decimal or hexadecimal.

42. 51 45. 4570

48. (For Exercise 8) 11 51. (For Exercise 42) 33

54. 9450 cannot represent a number in binary because 9, 4, and 5
are illegal symbols in binary. 9450 cannot represent a number
in octal because 9 is an illegal symbol in octal. 9450 represents
a number in either decimal or hexadecimal.

56. The algorithm begins by setting result to 1 and x to a. Since
n = 16 > 0, the body of the while loop executes. Since
n mod 2 is not equal to 1, result is not modified. x becomes a2,
and n becomes 8.

Since n = 8 > 0, the body of the while loop exe-
cutes. Since n mod 2 is not equal to 1, result is not modified.
x becomes a4, and n becomes 4.

Since n = 4 > 0, the body of the while loop exe-
cutes. Since n mod 2 is not equal to 1, result is not modified.
x becomes a8, and n becomes 2.

Since n = 2 > 0, the body of the while loop exe-
cutes. Since n mod 2 is not equal to 1, result is not modified.
x becomes a16, and n becomes 1.

Since n = 1 > 0, the body of the while loop exe-
cutes. Since n mod 2 is equal to 1, result becomes result ∗ x =
1 ∗ a16 = a16. x becomes a32, and n becomes 0.

Since n = 0 is not greater than 0, the while loop termi-
nates. The algorithm returns result, which is equal to a16.

59. The algorithm begins by setting result to 1 and x to a mod z =
5 mod 21 = 5. Since n = 10 > 0, the body of the while
loop executes. Since n mod 2 is not equal to 1, result is not
modified. x is set to x ∗ x mod z = 25 mod 21 = 4, and n is
set to 5.

Since n = 5 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
4 mod 21 = 4. x is set to x∗x mod z = 16 mod 21 = 16, and
n is set to 2.

Since n = 2 > 0, the body of the while loop executes.
Since n mod 2 is not equal to 1, result is not modified. x is set
to x ∗ x mod z = 256 mod 21 = 4, and n is set to 1.

Since n = 1 > 0, the body of the while loop executes.
Since n mod 1 is equal to 1, result is set to (result∗x) mod z =
16 mod 21 = 16. x is set to x ∗ x mod z = 16 mod 21 = 16,
and n is set to 0.

Since n = 0 is not greater than 0, the while loop
terminates. The algorithm returns result, which is equal to
an mod z = 510 mod 21 = 16.

301

Introduction to Number Theory

62. If mk is the highest power of 2 that divides m, then m = 2mk p,
where p is odd. Similarly, if nk is the highest power of 2
that divides n, then n = 2nk q, where q is odd. Now mn =
2mk+nk pq. Since pq is odd, mk + nk is the highest power of 2
that divides mn, and the result follows.

Section 3 Review
1. See Algorithm 3.3.

2. If a is a nonnegative integer, b is a positive integer, and
r = a mod b, then gcd(a, b) = gcd(b, r).

3. a ≥ fn+2 and b ≥ fn+1

4. log3/2 2m/3

5. Write the nonzero remainders as found by the Euclidean algo-
rithm in the form

r = n− dq

in the order in which the Euclidean algorithm computes them.
Substitute the formula for the next-to-last remainder into the
last equation. Call the resulting equation E1. Substitute the
second-to-last formula for the remainder into E1. Call the
resulting equation E2. Substitute the third-to-last formula for
the remainder into E2. Continue until the first formula for the
remainder is substituted into the last Ek equation.

6. s is the inverse of n mod z if ns mod z = 1.

7. Find numberss′ and t′ such that s′n + t′φ = 1. Set s =
s′ mod φ.

Section 3
1. 90 mod 60 = 30; 60 mod 30 = 0; so gcd(60, 90) = 30.

4. 825 mod 315 = 195; 315 mod 195 = 120; 195 mod
120 = 75; 120 mod 75= 45; 75 mod 45= 30; 45 mod
30= 15; 30 mod 15= 0; so gcd(825, 315)= 15.

7. 4807 mod 2091= 625; 2091 mod 625= 216; 625 mod
216= 193; 216 mod 193= 23; 193 mod 23= 9; 23 mod
9= 5; 9 mod 5= 4; 5 mod 4= 1; 4 mod 1= 0; so gcd(2091,

4807)= 1.

10. 490256 mod 337= 258; 337 mod 258= 79; 258 mod 79=
21; 79 mod 21= 16; 21 mod 16= 5; 16 mod 5= 1; 5 mod
1= 0; so gcd(490256, 337)= 1.

11. (For Exercise 10) The nonzero remainders in the order they
are computed by the Euclidean algorithm are

490256 mod 337 = 258

337 mod 258 = 79

258 mod 79 = 21

79 mod 21 = 16

21 mod 16 = 5

16 mod 5 = 1.

Writing these equations in the form r = n− dq, where r is the
remainder and q is the quotient, yields

258 = 490256− 337 · 1454

79 = 337− 258 · 1

21 = 258− 79 · 3

16 = 79− 21 · 3

5 = 21− 16 · 1

1 = 16− 5 · 3.

Substituting the next-to-last formula for 5 into the last equation
yields

1 = 16− (21− 16 · 1) · 3 = 16 · 4− 21 · 3.

Substituting the second-to-last formula for 16 into the previous
equation yields

1 = (79− 21 · 3)4− 21 · 3 = 79 · 4− 21 · 15.

Substituting the third formula for 21 into the previous equation
yields

1 = 79 · 4− (258− 79 · 3)15 = 79 · 49− 258 · 15.

Substituting the second formula for 79 into the previous equa-
tion yields

1 = (337− 258)49− 258 · 15 = 337 · 49− 258 · 64.

Finally, substituting the first formula for 258 into the previous
equation yields

1 = 337 · 49− (490256− 337 · 1454)64

= 337 · 93105− 490256 · 64.

Thus, if we set s = −64 and t = 93105,

s · 490256+ t · 337 = gcd(490256, 337) = 1.

14. gcd recurs(a, b) {
make a largest
if (a < b)

swap(a, b)

return gcd recurs1(a, b)

}

gcd recurs1(a, b) {
if (b == 0)

return a

r = a mod b

return gcd recurs1(b, r)

}
17. gcd subtract(a, b) {

while (true) {
// make a largest
if (a < b)

swap(a, b)

if (b == 0)

return a

a = a− b

}
}

20. By Theorem 3.5, a pair a, b, a > b, would require n modu-
lus operations when input to the Euclidean Algorithm only if
a ≥ fn+2 and b ≥ fn+1. Now f29 = 514229, f30 = 832040,
and f31 = 1346269. Thus, no pair can require more than
28 modulus operations in the worst case because 29 modu-
lus operations would require one member of the pair to exceed

302

Introduction to Number Theory

1000000. The pair 514229, 832040 itself requires 28 modulus
operations.

23. We prove the statement by induction on n.
Basis Step (n = 1) gcd(f1, f2) = gcd(1, 1) = 1

Inductive Step Assume that gcd(fn, fn+1) = 1. Now

gcd(fn+1, fn+2) = gcd(fn+1, fn+1+fn) = gcd(fn+1, fn) = 1.

We use Exercise 16 with a = fn+1 + fn and b = fn+1 to
justify the second equality.

27. If m = 1, the result is immediate, so we assume that m > 1.
Suppose that f is one-to-one and onto. Since m > 1,

there exists x such that f(x)= nx mod m= 1. Thus there exists
q such that

nx = mq+ 1.

Let g be the greatest common divisor of m and n. Then g

divides both m and n and also nx−mq = 1. Therefore, g = 1.
Now suppose that gcd(m, n)= 1. By Theorem 3.7, there

exist s and t such that

1 = sm+ tn.

Let k ∈ X. Then

k = msk + ntk.

Therefore,

(ntk) mod m = (k −msk) mod m = k mod m = k.

We may argue as in the Computing an Inverse Modulo an
Integer subsection that if we set x = tk mod m, then f(x) =
(ntk) mod m. Therefore, f is onto. Since f is a function from
X to X, f is also one-to-one.

28. If a �= 0, a = 1 · a+ 0 · b > 0. In this case, a ∈ X. Similarly,
if b �= 0, b ∈ X.

31. Suppose that g does not divide a. Then a = qg+r, 0 < r < g.
Since g ∈ X, there exist s and t such that g = sa+ tb. Now

r = a− qg = a− q(sa+ tb) = (1− qs)a+ (−qt)b.

Therefore r ∈X. Since g is the least element in X and 0 < r <

g, we have a contradiction. Therefore, g divides a. Similarly,
g divides b.

33. gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1, s = 2

36. gcd(47, 11)= gcd(11, 3)= gcd(3, 2)= gcd(2, 1)= gcd(1, 0)

= 1, s= 30

39. gcd(243, 100)= gcd(100, 43)= gcd(43, 14)= gcd(14, 1)=
gcd(1, 0)= 1, s= 226

40. We argue by contradiction. Suppose that 6 has an inverse mod-
ulo 15; that is, suppose that there exists s such that 6s mod
15 = 1. Then there exists q such that

15− 6sq = 1.

Since 3 divides 15 and 3 divides 6sq, 3 divides 1. We have
obtained the desired contradiction. Thus, 6 does not have an
inverse modulo 15.

That 6 does not have an inverse modulo 15 does not
contradict the result preceding Example 3.9. In order to guar-
antee that n has an inverse modulo φ, the result preceding
Example 3.9 requires that gcd(n, φ) = 1. In this exercise,
gcd(6, 15) = 3.

Section 4 Review
1. Cryptology is the study of systems for secure communications.

2. A cryptosystem is a system for secure communications.

3. To encrypt a message is to transform the message so that only
an authorized recipient can reconstruct it.

4. To decrypt a message is to transform an encrypted message so
that it can be read.

5. Compute c = an mod z and send c.

6. Compute cs mod z. z is chosen as the product of primes p and
q. s satisfies ns mod (p− 1)(q− 1) = 1.

7. The security of the RSA encryption system relies mainly on
the fact that at present there is no efficient algorithm known
for factoring integers.

Section 4
1. FKKGEJAIMWQ

4. BUSHWHACKED

7. z = pq = 17 · 23 = 391

10. c = an mod z = 10131 mod 391 = 186

12. z = pq = 59 · 101 = 5959

15. c = an mod z = 58441 mod 5959 = 3237

Chapter Self-Test
1. For d = 2, . . . , 6, 539 mod d is not equal to zero, so d incre-

ments. When d = 7, 539 mod d equals zero, so the algorithm
returns d = 7 to indicate that 539 is composite and 7 is a
divisor of 539.

2. 539 = 72 · 11 3. 72 · 132

4. 2 · 52 · 74 · 134 · 17 5. 150

6. 110101110, 1AE

7. The algorithm begins by setting result to 1 and x to a. Since
n = 30 > 0, the body of the while loop executes. Since
n mod 2 is not equal to 1, result is not modified. x becomes
a2, and n becomes 15.

Since n= 15 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
1 ∗ a2 = a2. x becomes a4, and n becomes 7.

Since n= 7 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
a2 ∗ a4 = a6. x becomes a8, and n becomes 3.

Since n= 3 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
a6 ∗ a8 = a14. x becomes a16, and n becomes 1.

Since n= 1 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result becomes result ∗ x =
a14 ∗ a16 = a30. x becomes a32, and n becomes 0.

303

Introduction to Number Theory

Since n = 0 is not greater than 0, the while loop termi-
nates. The algorithm returns result, which is equal to a30.

8. The algorithm begins by setting result to 1 and x to a mod z =
50 mod 11 = 6. Since n = 30 > 0, the body of the while
loop executes. Since n mod 2 is not equal to 1, result is not
modified. x is set to x ∗ x mod z = 36 mod 11 = 3, and n is
set to 15.

Since n = 15 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
3 mod 11 = 3. x is set to x ∗ x mod z = 9 mod 11 = 9, and n

is set to 7.
Since n = 7 > 0, the body of the while loop executes.

Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
27 mod 11 = 5. x is set to x∗x mod z = 81 mod 11 = 4, and
n is set to 3.

Since n = 3 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
20 mod 11 = 9. x is set to x∗x mod z = 16 mod 11 = 5, and
n is set to 1.

Since n = 1 > 0, the body of the while loop executes.
Since n mod 2 is equal to 1, result is set to (result∗x) mod z =
45 mod 11 = 1. x is set to x∗x mod z = 25 mod 11 = 3, and
n is set to 0.

Since n = 0 is not greater than 0, the while loop
terminates. The algorithm returns result, which is equal to
an mod z = 5030 mod 11 = 1.

9. gcd(480, 396)= gcd(396, 84)= gcd(84, 60)= gcd(60, 24)=
gcd(24, 12)= gcd(12, 0)= 12

10. Since

log3/2
2(100,000,000)

3
= log3/2 1004 + log3/2

2

3

= (4 log3/2 100)− 1

= 4(11.357747)− 1 = 44.430988,

an upper bound for the number of modulus operations required
by the Euclidean algorithm for integers in the range 0 to
100,000,000 is 44.

11. The nonzero remainders in the order they are computed by the
Euclidean algorithm are

480 mod 396 = 84

396 mod 84 = 60

84 mod 60 = 24

60 mod 24 = 12.

Writing these equations in the form r = n− dq, where r is the
remainder and q is the quotient, yields

84 = 480− 396 · 1

60 = 396− 84 · 4

24 = 84− 60 · 1

12 = 60− 24 · 2.

Substituting the next-to-last formula for 24 into the last equa-
tion yields

12 = 60− 24 · 2 = 60− (84− 60) · 2 = 3 · 60− 2 · 84.

Substituting the second formula for 60 into the previous equa-
tion yields

12 = 3 · (396− 84 · 4)− 2 · 84 = 3 · 396− 14 · 84.

Finally, substituting the first formula for 84 into the previous
equation yields

12 = 3 · 396− 14 · (480− 396) = 17 · 396− 14 · 480.

Thus, if we set s = 17 and t = −14,

s · 396+ t · 480 = gcd(396, 480) = 12.

12. The nonzero remainders in the order they are computed by the
Euclidean algorithm are

425 mod 196 = 33

196 mod 33 = 31

33 mod 31 = 2

31 mod 2 = 1.

Writing these equations in the form r = n− dq, where r is the
remainder and q is the quotient, yields

33 = 425− 196 · 2

31 = 196− 33 · 5

2 = 33− 31 · 1

1 = 31− 2 · 15.

Substituting the next-to-last formula for 2 into the last equation
yields

1 = 31− (33− 31) · 15 = 16 · 31− 15 · 33.

Substituting the second formula for 31 into the previous equa-
tion yields

1 = 16 · (196− 33 · 5)− 15 · 33 = 16 · 196− 95 · 33.

Finally, substituting the first formula for 33 into the previous
equation yields

1 = 16 · 196− 95 · (425− 196 · 2) = 206 · 196− 95 · 425.

Thus, if we set s′ = 206 and t′ = −95,

s′ · 196+ t′ · 425 = gcd(196, 425) = 1.

Thus s = s′ mod 425 = 206 mod 425 = 206.

13. z = pq = 13 · 17 = 221, φ = (p−1)(q−1) = 12 · 16 = 192

14. s = 91

15. c = an mod z = 14419 mod 221 = 53

16. a = cs mod z = 2891 mod 221 = 63

304

Counting
Methods and
the Pigeonhole
Principle

1 Basic Principles
Problem-Solving Corner:
Counting

2 Permutations and
Combinations
Problem-Solving Corner:
Combinations

3 Generalized Permutations
and Combinations

4 Algorithms for Generating
Permutations
and Combinations

†5 Introduction to Discrete
Probability

†6 Discrete Probability
Theory

7 Binomial Coefficients
and Combinatorial
Identities

8 The Pigeonhole Principle
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

There’s only so many hands in a deck o’ cards.

FROM SHANE

In many discrete problems, we are confronted with the problem of counting. For example,
in order to estimate the run time of an algorithm, we need to count the number of times
certain steps or loops are executed. Counting also plays a crucial role in probability
theory. Because of the importance of counting, a variety of useful aids, some quite
sophisticated, have been developed. In this chapter we develop several tools for counting.
These techniques can be used to derive the binomial theorem. The chapter concludes with
a discussion of the Pigeonhole Principle, which often allows us to prove the existence
of an object with certain properties.

1 ➜ Basic Principles

The menu for Kay’s Quick Lunch is shown in Figure 1.1. As you can see, it features two
appetizers, three main courses, and four beverages. How many different dinners consist
of one main course and one beverage?

† These sections can be omitted without loss of continuity.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

305

Counting Methods and the Pigeonhole Principle

APPETIZERS

MAIN COURSES

Nachos 2.15

Salad 1.90

Hamburger 3.25

Cheeseburger 3.65

Fish Filet 3.15

BEVERAGES

Tea .70

Milk .85

Cola .75

Root Beer .75

Figure 1.1 Kay’s Quick Lunch menu.

If we list all possible dinners consisting of one main course and one beverage,

HT, HM, HC, HR, CT, CM, CC, CR, FT, FM, FC, FR,

we see that there are 12 different dinners. (The dinner consisting of a main course whose
first letter is X and a beverage whose first letter is Y is denoted XY . For example, CR
refers to the dinner consisting of a cheeseburger and root beer.) Notice that there are
three main courses and four beverages and 12 = 3 · 4.

There are 24 possible dinners consisting of one appetizer, one main course, and
one beverage:

NHT, NHM, NHC, NHR, NCT, NCM, NCC, NCR,

NFT, NFM, NFC, NFR, SHT, SHM, SHC, SHR,

SCT, SCM, SCC, SCR, SFT, SFM, SFC, SFR.

(The dinner consisting of an appetizer whose first letter is X, a main course whose first
letter is Y , and a beverage whose first letter is Z is denoted XYZ.) Notice that there are
two appetizers, three main courses, and four beverages and 24 = 2 · 3 · 4.

In each of these examples, we found that the total number of dinners was equal to the
product of numbers of each of the courses. These examples illustrate the Multiplication
Principle.

Multiplication
Principle

If an activity can be constructed in t successive steps and step 1 can be done in n1

ways, step 2 can then be done in n2 ways, . . . , and step t can then be done in nt ways,
then the number of different possible activities is n1 · n2 · · · nt .

In the problem of counting the number of dinners consisting of one main course
and one beverage, the first step is “select the main course” and the second step is “select
the beverage.” Thus n1 = 3 and n2 = 4 and, by the Multiplication Principle, the total

306

Counting Methods and the Pigeonhole Principle

Hamburger

Tea

HT

Milk

HM

Cola

HC

Root

HR

Cheeseburger

Tea

CT

Milk

CM

Cola

CC

Root

CR

Beer

Fish Filet

Tea

FT

Milk

FM

Cola

FC

Root

FR

BeerBeer

Figure 1.2 An illustration of the Multiplication Principle.

number of dinners is 3 · 4 = 12. Figure 1.2 shows why we multiply 3 times 4—we have
three groups of four objects.

We may summarize the Multiplication Principle by saying that we multiply
together the numbers of ways of doing each step when an activity is constructed in
successive steps.

Example 1.1 How many dinners are available from Kay’s Quick Lunch consisting of one main course
and an optional beverage?

We may construct a dinner consisting of one main course and an optional bev-
erage by a two-step process. The first step is “select the main course” and the second
step is “select an optional beverage.” There are n1= 3 ways to select the main course
(hamburger, cheeseburger, fish filet) and n2 = 5 ways to select the optional beverage
(tea, milk, cola, root beer, none). By the Multiplication Principle, there are 3 · 5 = 15
dinners. As confirmation, we list the 15 dinners (N = no beverage):

HT, HM, HC, HR, HN, CT, CM, CC, CR, CN, FT, FM, FC, FR, FN.

Example 1.2 Melissa Virus

In the late 1990s, a computer virus named Melissa wreaked havoc by overwhelming
system resources. The virus was spread by an e-mail message containing an attached
word processor document with a malicious macro. When the word processor docu-
ment was opened, the macro forwarded the e-mail message and the attached word
processor document to the first 50 addresses obtained from the user’s address book.
When these forwarded copies were received and opened, the macro again forwarded the
e-mail message and the attached word processor document, and so on. The virus caused
problems by creating messages faster than they could be sent. The to-be-sent messages
were temporarily stored on a disk. If the disk got full, the system could deadlock or
even crash.

After the virus sent the e-mail to the first 50 addresses, each of those recipi-
ents then sent e-mail to 50 addresses. By the Multiplication Principle, there were then
50 · 50 = 2500 additional recipients. Each of these recipients, in turn, sent e-mail to
50 addresses. Again, by the Multiplication Principle, there were then 50 · 50 · 50 =
125,000 additional recipients.After one more iteration, there were then 50 · 50 · 50 · 50 =
6,250,000 additional recipients. Thus after just four iterations,

6,250,000+ 125,000+ 2500+ 50+ 1 = 6,377,551

copies of the message had been sent.

Example 1.3 (a) How many strings of length 4 can be formed using the lettersABCDE if repetitions
are not allowed?

307

Counting Methods and the Pigeonhole Principle

(b) How many strings of part (a) begin with the letter B?

(c) How many strings of part (a) do not begin with the letter B?

(a) We use the Multiplication Principle. A string of length 4 can be constructed in
four successive steps: Choose the first letter; choose the second letter; choose the
third letter; and choose the fourth letter. The first letter can be selected in five
ways. Once the first letter has been selected, the second letter can be selected
in four ways. Once the second letter has been selected, the third letter can be
selected in three ways. Once the third letter has been selected, the fourth letter
can be selected in two ways. By the Multiplication Principle, there are

5 · 4 · 3 · 2 = 120

strings.

(b) The strings that begin with the letter B can be constructed in four successive
steps: Choose the first letter; choose the second letter; choose the third letter;
and choose the fourth letter. The first letter (B) can be chosen in one way, the
second letter in four ways, the third letter in three ways, and the fourth letter in
two ways. Thus, by the Multiplication Principle, there are

1 · 4 · 3 · 2 = 24

strings that start with the letter B.

(c) Part (a) shows that there are 120 strings of length 4 that can be formed using
the letters ABCDE, and part (b) shows that 24 of these start with the letter B. It
follows that there are

120− 24 = 96

strings that do not begin with the letter B.

Example 1.4 In a digital picture, we wish to encode the amount of light at each point as an eight-bit
string. How many values are possible at one point?

An eight-bit encoding can be constructed in eight successive steps: Select the first
bit; select the second bit; . . . ; select the eighth bit. Since there are two ways to select
each bit, by the Multiplication Principle the total number of eight-bit encodings is

2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 28 = 256.

We next give a proof using the Multiplication Principle that a set with n elements
has 2n subsets. We previously gave a proof of this result using mathematical induction.

Example 1.5 Use the Multiplication Principle to show that a set {x1, . . . , xn} containing n elements
has 2n subsets.

A subset can be constructed in n successive steps: Pick or do not pick x1; pick or
do not pick x2; . . . ; pick or do not pick xn. Each step can be done in two ways. Thus the
number of possible subsets is

2 · 2 · · · 2︸ ︷︷ ︸
n factors

= 2n.

Example 1.6 Let X be an n-element set. How many ordered pairs (A, B) satisfy A ⊆ B ⊆ X?
Given an ordered pair (A, B) satisfying A ⊆ B ⊆ X, we see that each element

in X is in exactly one of A, B − A, or X − B. Conversely, if we assign each element

308

Counting Methods and the Pigeonhole Principle

of X to one of the three sets A (and, by assumption, also to B and X), B − A (and, by
assumption, also to X), or X − B, we obtain a unique ordered pair (A, B) satisfying
A ⊆ B ⊆ X. Thus the number of ordered pairs (A, B) satisfying A ⊆ B ⊆ X is equal to
the number of ways to assign the elements of X to the three sets A, B − A, and X− B.
We can make such assignments by the following n-step process: Assign the first element
of X to one of A, B − A, X − B; assign the second element of X to one of A, B − A,
X−B; . . . ; assign the nth element of X to one of A, B−A, X−B. Since each step can
be done in three ways, the number of ordered pairs (A, B) satisfying A ⊆ B ⊆ X is

3 · 3 · · · 3︸ ︷︷ ︸
n factors

= 3n.

Example 1.7 How many reflexive relations are there on an n-element set?
We count the number of n × n matrices that represent reflexive relations on an

n-element set X. Since (x, x) is in the relation for all x ∈ X, the main diagonal of the
matrix must consist of 1’s. There is no restriction on the remaining entries; each can
be 0 or 1. An n× n matrix has n2 entries and the diagonal contains n entries. Thus there
are n2 − n off-diagonal entries. Since each can be assigned values in two ways, by the
Multiplication Principle there are

2 · 2 · · · 2︸ ︷︷ ︸
n2 − n factors

= 2n2−n

matrices that represent reflexive relations on an n-element set. Therefore there are 2n2−n

reflexive relations on an n-element set.

Example 1.8 Internet Addresses

The Internet is a network of interconnected computers. Each computer interface on the
Internet is identified by an Internet address. In the current addressing scheme, known as
IPv4 (Internet Protocol, Version 4), the addresses are divided into five classes—Class A
through Class E. Only Classes A, B, and C are used to identify computers on the Internet.
Class A addresses are used for large networks; Class B addresses are used for medium-
size networks; and Class C addresses are used for small networks. In this example,
we count the number of Class A addresses. Exercises 74–76 deal with Class B and C
addresses.

A Class A address is a bit string of length 32. The first bit is 0 (to identify it as a
Class A address). The next 7 bits, called the netid, identify the network. The remaining
24 bits, called the hostid, identify the computer interface. The netid must not consist
of all 1’s. The hostid must not consist of all 0’s or all 1’s. Arguing as in Example 1.4,
we find that there are 27 7-bit strings. Since 1111111 is not allowed as a netid, there are
27− 1 netids. Again, arguing as in Example 1.4, we find that there are 224 24-bit strings.
Since the two strings consisting of all 0’s or all 1’s are not allowed as a hostid, there are
224 − 2 hostids. By the Multiplication Principle, there are

(27 − 1)(224 − 2) = 127 · 16,777,214 = 2,130,706,178

Class A Internet addresses. Because of the tremendous increase in the size of the Internet,
IPv6 (Internet Protocol, Version 6) uses 128-bit addresses rather than 32-bit addresses.

Next, we illustrate the Addition Principle by an example and then present the
principle.

309

Counting Methods and the Pigeonhole Principle

Example 1.9 How many eight-bit strings begin either 101 or 111?
An eight-bit string that begins 101 can be constructed in five successive steps:

Select the fourth bit; select the fifth bit; . . . ; select the eighth bit. Since each of the five
bits can be selected in two ways, by the Multiplication Principle, there are

2 · 2 · 2 · 2 · 2 = 25 = 32

eight-bit strings that begin 101. The same argument can be used to show that there are
32 eight-bit strings that begin 111. Since there are 32 eight-bit strings that begin 101 and
32 eight-bit strings that begin 111, there are 32 + 32 = 64 eight-bit strings that begin
either 101 or 111.

In Example 1.9 we added the numbers of eight-bit strings (32 and 32) of each type
to determine the final result. The Addition Principle tells us when to add to compute
the total number of possibilities.

Addition Principle Suppose thatX1, . . . , Xt are sets and that the ith setXi hasni elements. If {X1, . . . , Xt}
is a pairwise disjoint family (i.e., if i �= j, Xi ∩ Xj = ∅), the number of possible
elements that can be selected from X1 or X2 or . . . or Xt is

n1 + n2 + · · · + nt.

(Equivalently, the union X1 ∪X2 ∪ · · · ∪Xt contains n1 + n2 + · · · + nt elements.)

In Example 1.9 we could let X1 denote the set of eight-bit strings that begin 101
and X2 denote the set of eight-bit strings that begin 111. Since X1 is disjoint from X2,
according to the Addition Principle, the number of eight-bit strings of either type, which
is the number of elements in X1 ∪X2, is 32+ 32 = 64.

We may summarize the Addition Principle by saying that we add the numbers
of elements in each subset when the elements being counted can be decomposed into
pairwise disjoint subsets.

If we are counting objects that are constructed in successive steps, we use the
Multiplication Principle. If we have disjoint sets of objects and we want to know the
total number of objects, we use the Addition Principle. It is important to recognize when
to apply each principle. This skill comes from practice and careful thinking about each
problem.

We close this section with examples that illustrate both counting principles.

Example 1.10 In how many ways can we select two books from different subjects among five dis-
tinct computer science books, three distinct mathematics books, and two distinct art
books?

Using the Multiplication Principle, we find that we can select two books, one from
computer science and one from mathematics, in 5 · 3 = 15 ways. Similarly, we can select
two books, one from computer science and one from art, in 5 · 2 = 10 ways, and we can
select two books, one from mathematics and one from art, in 3 · 2 = 6 ways. Since these
sets of selections are pairwise disjoint, we may use the Addition Principle to conclude
that there are

15+ 10+ 6 = 31

ways of selecting two books from different subjects among the computer science, mathe-
matics, and art books.

310

Counting Methods and the Pigeonhole Principle

Example 1.11 A six-person committee composed of Alice, Ben, Connie, Dolph, Egbert, and Francisco
is to select a chairperson, secretary, and treasurer.

(a) In how many ways can this be done?

(b) In how many ways can this be done if either Alice or Ben must be chairperson?

(c) In how many ways can this be done if Egbert must hold one of the offices?

(d) In how many ways can this be done if both Dolph and Francisco must hold office?

(a) We use the Multiplication Principle. The officers can be selected in three succes-
sive steps: Select the chairperson; select the secretary; select the treasurer. The
chairperson can be selected in six ways. Once the chairperson has been selected,
the secretary can be selected in five ways. After selection of the chairperson and
secretary, the treasurer can be selected in four ways. Therefore, the total number
of possibilities is

6 · 5 · 4 = 120.

(b) Arguing as in part (a), if Alice is chairperson, we have 5 · 4 = 20 ways to select
the remaining officers. Similarly, if Ben is chairperson, there are 20 ways to
select the remaining officers. Since these cases are disjoint, by the Addition
Principle, there are

20+ 20 = 40

possibilities.

(c) [First solution] Arguing as in part (a), if Egbert is chairperson, we have 20 ways
to select the remaining officers. Similarly, if Egbert is secretary, there are 20
possibilities, and if Egbert is treasurer, there are 20 possibilities. Since these
three cases are pairwise disjoint, by the Addition Principle, there are

20+ 20+ 20 = 60

possibilities.
[Second solution] Let us consider the activity of assigning Egbert and two

others to offices to be made up of three successive steps: Assign Egbert an office;
fill the highest remaining office; fill the last office. There are three ways to assign
Egbert an office. Once Egbert has been assigned, there are five ways to fill the
highest remaining office. Once Egbert has been assigned and the highest remain-
ing office filled, there are four ways to fill the last office. By the Multiplication
Principle, there are

3 · 5 · 4 = 60

possibilities.

(d) Let us consider the activity of assigning Dolph, Francisco, and one other person to
offices to be made up of three successive steps: Assign Dolph; assign Francisco;
fill the remaining office. There are three ways to assign Dolph. Once Dolph
has been assigned, there are two ways to assign Francisco. Once Dolph and
Francisco have been assigned, there are four ways to fill the remaining office. By
the Multiplication Principle, there are

3 · 2 · 4 = 24

possibilities.

311

Counting Methods and the Pigeonhole Principle

Inclusion-Exclusion Principle
Suppose that we want to count the number of eight-bit strings that start 10 or end 011 or
both. Let X denote the set of eight-bit strings that start 10 and Y denote the set of eight-bit
strings that end 011. The goal then is to compute |X ∪ Y |. We cannot use the Addition
Principle and add |X| and |Y | to compute |X∪Y | because the Addition Principle requires
X and Y to be disjoint. Here X and Y are not disjoint; for example, 10111011 ∈ X ∩ Y .
The Inclusion-Exclusion Principle generalizes the Addition Principle by giving a for-
mula to compute the number of elements in a union without requiring the sets to be
pairwise disjoint.

U

X Y

X � Y Y � X

X � Y

Figure 1.3 |X| counts the
number of elements in X− Y and
X ∩ Y , and |Y | counts the number
of elements in Y −X and X ∩ Y .
Since |X| + |Y | double-counts the
elements in X ∩ Y , |X| + |Y | =
|X ∪ Y | + |X ∩ Y |.

Continuing the discussion in the previous paragraph, suppose that we compute
|X| + |Y |. We have counted the elements in X− Y (eight-bit strings that start 10 but do
not end 011) once and the elements in Y − X (eight-bit strings that end 011 but do not
start 10) once, but we have counted the elements in X ∩ Y (eight-bit strings that start
10 and end 011) twice (see Figure 1.3). Thus if we subtract |X ∩ Y | from |X| + |Y |,
to compensate for the double-counting, we will obtain the number of strings in X ∪ Y ;
that is,

|X ∪ Y | = |X| + |Y | − |X ∩ Y |.

Arguing as in Example 1.7, we find that |X| = 26, |Y | = 25, and |X∩Y | = 23. Therefore,
the number of eight-bit strings that start 10 or end 011 or both is equal to

|X ∪ Y | = |X| + |Y | − |X ∩ Y | = 26 + 25 − 23.

We state the Inclusion-Exclusion Principle for two sets as Theorem 1.12.

Theorem 1.12 Inclusion-Exclusion Principle for Two Sets
If X and Y are finite sets, then

|X ∪ Y | = |X| + |Y | − |X ∩ Y |.

Proof Since X = (X − Y) ∪ (X ∩ Y) and X − Y and X ∩ Y are disjoint, by the
Addition Principle

|X| = |X− Y | + |X ∩ Y |. (1.1)

Similarly,

|Y | = |Y −X| + |X ∩ Y |. (1.2)

Since X ∪ Y = (X − Y) ∪ (X ∩ Y) ∪ (Y − X) and X − Y , X ∩ Y , and Y − X are
pairwise disjoint, by the Addition Principle

|X ∪ Y | = |X− Y | + |X ∩ Y | + |Y −X|. (1.3)

Combining equations (1.1)–(1.3), we obtain

|X| + |Y | = |X− Y | + |X ∩ Y | + |Y −X| + |X ∩ Y | = |X ∪ Y | + |X ∩ Y |.

Subtracting |X∩Y | from both sides of the preceding equation gives the desired result.

312

Counting Methods and the Pigeonhole Principle

Example 1.13 A committee composed of Alice, Ben, Connie, Dolph, Egbert, and Francisco is to select
a chairperson, secretary, and treasurer. How many selections are there in which either
Alice or Dolph or both are officers?

Let X denote the set of selections in which Alice is an officer and let Y denote the
set of selections in which Dolph is an officer. We must compute |X ∪ Y |. Since X and
Y are not disjoint (both Alice and Dolph could be officers), we cannot use the Addition
Principle. Instead we use the Inclusion-Exclusion Principle.

We first count the number of selections in which Alice is an officer. Alice can be
assigned an office in three ways, the highest remaining office can be filled in five ways,
and the last office can be filled in four ways. Thus the number of selections in which
Alice is an officer is 3 · 5 · 4 = 60, that is, |X| = 60. Similarly, the number of selections
in which Dolph is an officer is 60, that is, |Y | = 60.

Now X ∩ Y is the set of selections in which both Alice and Dolph are officers.
Alice can be assigned an office in three ways, Dolph can be assigned an office in two
ways, and the last office can be filled in four ways. Thus the number of selections in
which both Alice and Dolph are officers is 3 · 2 · 4 = 24, that is, |X ∩ Y | = 24.

The Inclusion-Exclusion Principle tells us that

|X ∪ Y | = |X| + |Y | − |X ∩ Y | = 60+ 60− 24 = 96.

Thus there are 96 selections in which either Alice or Dolph or both are officers.

The name “inclusion-exclusion” in Theorem 1.12 results from including |X ∩ Y |
twice when computing |X∪Y | as |X| + |Y | and then excluding it by subtracting |X∩Y |
from |X| + |Y |.

We leave the Inclusion-Exclusion Principle for three or more sets to the exercises
(see Exercises 92–97).

Problem-Solving Tips

The key to solving problems in this section is determining when to use the Multiplication
Principle and when to use the Addition Principle. Use the Multiplication Principle when
using a step-by-step process to construct an activity. For example, to construct a dinner
from Kay’s Quick Lunch menu (Figure 1.1) consisting of one appetizer, one main course,
and one beverage, we use a three-step process:

1. Choose one appetizer.

2. Choose one main course.

3. Choose one beverage.

The number of different possible activities is the product of the number of ways each
step can be done. Here we can select one appetizer in 2 ways, one main course in 3 ways,
and one beverage in 4 ways. Thus, the number of dinners is 2 · 3 · 4 = 24.

Use the Addition Principle when you want to count the number of elements in a
set and you can divide the set into nonoverlapping subsets. Suppose, for example, that
we want to count the total number of items available at Kay’s Quick Lunch. Since there
are 2 appetizers, 3 main course items, and 4 beverages, and no item belongs to two
categories, the total number of items available is

2+ 3+ 4 = 9.

Notice the difference between the two examples. To construct a dinner consisting
of one appetizer, one main course, and one beverage at Kay’s Quick Lunch, we use a
step-by-step process. The size of the set of dinners is not counted by dividing the set

313

Counting Methods and the Pigeonhole Principle

of dinners into nonoverlapping subsets. To count the number of dinners, we use the
Multiplication Principle. To count the number of items available at Kay’s Quick Lunch,
we just sum the number of items each category since dividing the items by category
naturally splits them into nonoverlapping subsets. We are not counting the individual
items available by constructing them using a step-by-step process. To count the total
number of items available, we use the Addition Principle.

The Inclusion-Exclusion Principle (Theorem 1.12) is a variant of the Addition
Principle that can be used when the sets involved are not pairwise disjoint.

Section Review Exercises

†1. State the Multiplication Principle and give an example of
its use.

2. State the Addition Principle and give an example of its use.

3. State the Inclusion-Exclusion Principle for two sets and give an
example of its use.

Exercises

Use the Multiplication Principle to solve Exercises 1–9.

1. How many dinners at Kay’s Quick Lunch (Figure 1.1) consist
of one appetizer and one beverage?

2. How many dinners at Kay’s Quick Lunch (Figure 1.1) consist
of one appetizer, one main course, and an optional beverage?

3. How many dinners at Kay’s Quick Lunch (Figure 1.1) con-
sist of an optional appetizer, one main course, and an optional
beverage?

4. A man has eight shirts, four pairs of pants, and five pairs of
shoes. How many different outfits are possible?

5. The options available on a particular model of a car are five
interior colors, six exterior colors, two types of seats, three
types of engines, and three types of radios. How many differ-
ent possibilities are available to the consumer?

6. The Braille system of representing characters was developed
early in the nineteenth century by Louis Braille. The charac-
ters, used by the blind, consist of raised dots. The positions
for the dots are selected from two vertical columns of three
dots each. At least one raised dot must be present. How many
distinct Braille characters are possible?

7. Two dice are rolled, one blue and one red. How many outcomes
are possible?

8. How many different car license plates can be constructed if
the licenses contain three letters followed by two digits if
repetitions are allowed? if repetitions are not allowed?

9. A restaurant chain advertised a special in which a customer
could choose one of five appetizers, one of 14 main dishes,
and one of three desserts. The ad said that there were 210
possible dinners. Was the ad correct? Explain.

Use the Addition Principle to solve Exercises 10–18.

10. Three departmental committees have 6, 12, and 9 members
with no overlapping membership. In how many ways can

these committees send one member to meet with the
president?

11. In how many ways can a diner choose one item from
among the appetizers and main courses at Kay’s Quick Lunch
(Figure 6.1)?

12. In how many ways can a diner choose one item from among the
appetizers and beverages at Kay’s Quick Lunch (Figure 6.1)?

13. How many times are the print statements executed?

for i = 1 to m

println(i)

for j = 1 to n

println(j)

14. How many times is the print statement executed?

for i = 1 to m

for j = 1 to n

println(i, j)

15. Given that there are 32 eight-bit strings that begin 101 and 16
eight-bit strings that begin 1101, how many eight-bit strings
begin either 101 or 1101?

16. Two dice are rolled, one blue and one red. How many outcomes
give the sum of 2 or the sum of 12?

17. A committee composed of Morgan, Tyler, Max, and Leslie is
to select a president and secretary. How many selections are
there in which Tyler is president or not an officer?

18. A committee composed of Morgan, Tyler, Max, and Leslie is
to select a president and secretary. How many selections are
there in which Max is president or secretary?

19. Comment on the following item from The New York Times:

Big pickups also appeal because of the seemingly
infinite ways they can be personalized; you need the
math skills of Will Hunting to total the configurations.

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

314

Counting Methods and the Pigeonhole Principle

For starters, there are 32 combinations of cabs
(standard, Club Cab, Quad Cab), cargo beds (6.5 or
8 feet) and engines (3.9-liter V6, 5.2-liter V8, 5.9-liter
V8, 5.9-liter turbo-diesel inline 6, 8-liter V10).

In Exercises 20–27, two dice are rolled, one blue and one red.

20. How many outcomes give the sum of 4?
21. How many outcomes are doubles? (Adouble occurs when both

dice show the same number.)
22. How many outcomes give the sum of 7 or the sum of 11?
23. How many outcomes have the blue die showing 2?
24. How many outcomes have exactly one die showing 2?
25. How many outcomes have at least one die showing 2?
26. How many outcomes have neither die showing 2?
27. How many outcomes give an even sum?

In Exercises 28–30, suppose there are 10 roads from Oz to Mid
Earth and five roads from Mid Earth to Fantasy Island.

28. How many routes are there from Oz to Fantasy Island passing
through Mid Earth?

29. How many round-trips are there of the form Oz–Mid Earth–
Fantasy Island–Mid Earth–Oz?

30. How many round-trips are there of the form Oz–Mid Earth–
Fantasy Island–Mid Earth–Oz in which on the return trip we
do not reverse the original route from Oz to Fantasy Island?

31. How many eight-bit strings begin 1100?
32. How many eight-bit strings begin and end with 1?
33. How many eight-bit strings have either the second or the fourth

bit 1 (or both)?
34. How many eight-bit strings have exactly one 1?
35. How many eight-bit strings have exactly two 1’s?
36. How many eight-bit strings have at least one 1?
37. How many eight-bit strings read the same from either end? (An

example of such an eight-bit string is 01111110. Such strings
are called palindromes.)

In Exercises 38–43, a six-person committee composed of Alice, Ben,
Connie, Dolph, Egbert, and Francisco is to select a chairperson,
secretary, and treasurer.

38. How many selections exclude Connie?
39. How many selections are there in which neither Ben nor

Francisco is an officer?
40. How many selections are there in which both Ben and

Francisco are officers?
41. How many selections are there in which Dolph is an officer

and Francisco is not an officer?
42. How many selections are there in which either Dolph is chair-

person or he is not an officer?
43. How many selections are there in which Ben is either chair-

person or treasurer?

In Exercises 44–51, the letters ABCDE are to be used to form strings
of length 3.

44. How many strings can be formed if we allow repetitions?
45. How many strings can be formed if we do not allow

repetitions?
46. How many strings begin with A, allowing repetitions?
47. How many strings begin with A if repetitions are not allowed?
48. How many strings do not contain the letter A, allowing

repetitions?
49. How many strings do not contain the letter A if repetitions are

not allowed?
50. How many strings contain the letter A, allowing repetitions?
51. How many strings contain the letter A if repetitions are not

allowed?

Exercises 52–62 refer to the integers from 5 to 200, inclusive.

52. How many numbers are there?
53. How many are even?
54. How many are odd?
55. How many are divisible by 5?
56. How many are greater than 72?
57. How many consist of distinct digits?
58. How many contain the digit 7?
59. How many do not contain the digit 0?
60. How many are greater than 101 and do not contain the

digit 6?
61. How many have the digits in strictly increasing order?

(Examples are 13, 147, 8.)
62. How many are of the form xyz, where 0 �= x < y and y > z?
63. (a) In how many ways can the months of the birthdays of five

people be distinct?

(b) How many possibilities are there for the months of the
birthdays of five people?

(c) In how many ways can at least two people among five
have their birthdays in the same month?

Exercises 64–68 refer to a set of five distinct computer science
books, three distinct mathematics books, and two distinct art
books.

64. In how many ways can these books be arranged on a shelf ?
65. In how many ways can these books be arranged on a shelf if all

five computer science books are on the left and both art books
are on the right?

66. In how many ways can these books be arranged on a shelf if
all five computer science books are on the left?

67. In how many ways can these books be arranged on a shelf if
all books of the same discipline are grouped together?

†�68. In how many ways can these books be arranged on a shelf if
the two art books are not together?

†A starred exercise indicates a problem of above-average difficulty.

315

Counting Methods and the Pigeonhole Principle

69. In some versions of FORTRAN, an identifier consists of
a string of one to six alphanumeric characters beginning
with a letter. (An alphanumeric character is one of A to
Z or 0 to 9.) How many valid FORTRAN identifiers are
there?

70. If X is an n-element set and Y is an m-element set, how many
functions are there from X to Y?

�71. There are 10 copies of one book and one copy each of 10 other
books. In how many ways can we select 10 books?

72. How many terms are there in the expansion of

(x+ y)(a+ b+ c)(e+ f + g)(h+ i)?

�73. How many subsets of a (2n+ 1)-element set have n elements
or less?

74. A Class B Internet address, used for medium-sized networks,
is a bit string of length 32. The first bits are 10 (to identify
it as a Class B address). The netid is given by the next 14
bits, which identifies the network. The hostid is given by the
remaining 16 bits, which identifies the computer interface. The
hostid must not consist of all 0’s or all 1’s. How many Class B
addresses are available?

75. A Class C Internet address, used for small networks, is a bit
string of length 32. The first bits are 110 (to identify it as a
Class C address). The netid is given by the next 21 bits, which
identifies the network. The hostid is given by the remaining
8 bits, which identifies the computer interface. The hostid must
not consist of all 0’s or all 1’s. How many Class C addresses
are available?

76. Given that the IPv4 Internet address of a computer interface is
either Class A, Class B, or Class C, how many IPv4 Internet
addresses are available?

77. How many symmetric relations are there on an n-element
set?

78. How many antisymmetric relations are there on an n-element
set?

79. How many reflexive and symmetric relations are there on an
n-element set?

80. How many reflexive and antisymmetric relations are there on
an n-element set?

81. How many symmetric and antisymmetric relations are there
on an n-element set?

82. How many reflexive, symmetric, and antisymmetric relations
are there on an n-element set?

83. How many truth tables are there for an n-variable function?
84. How many binary operators are there on {1, 2, . . . , n}?
85. How many commutative binary operators are there on
{1, 2, . . . , n}?

Use the Inclusion-Exclusion Principle (Theorem 1.12) to solve
Exercises 86–91.

86. How many eight-bit strings either begin 100 or have the fourth
bit 1 or both?

87. How many eight-bit strings either start with a 1 or end with a
1 or both?

In Exercises 88 and 89, a six-person committee composed of Alice,
Ben, Connie, Dolph, Egbert, and Francisco is to select a chairper-
son, secretary, and treasurer.

88. How many selections are there in which either Ben is chair-
person or Alice is secretary or both?

89. How many selections are there in which either Connie is chair-
person or Alice is an officer or both?

90. Two dice are rolled, one blue and one red. How many outcomes
have either the blue die 3 or an even sum or both?

91. How many integers from 1 to 10,000, inclusive, are multiples
of 5 or 7 or both?

92. Prove the Inclusion-Exclusion Principle for three finite sets:

|X∪Y∪Z| = |X|+|Y |+|Z|−|X∩Y |−|X∩Z|−|Y∩Z|+|X∩Y∩Z|.

Hint: Write the Inclusion-Exclusion Principle for two finite
sets as

|A ∪ B| = |A| + |B| − |A ∩ B|

and let A = X and B = Y ∪ Z.
93. In a group of 191 students, 10 are taking French, business,

and music; 36 are taking French and business; 20 are taking
French and music; 18 are taking business and music; 65 are
taking French; 76 are taking business; and 63 are taking music.
Use the Inclusion-Exclusion Principle for three finite sets (see
Exercise 92) to determine how many students are not taking
any of the three courses.

94. Use the Inclusion-Exclusion Principle for three finite sets (see
Exercise 92) to compute the number of integers between 1 and
10,000, inclusive, that are multiples of 3 or 5 or 11 or any
combination thereof.

�95. Use Mathematical Induction to prove the general Inclusion-
Exclusion Principle for finite sets X1, X2, . . . , Xn:

|X1 ∪X2 ∪ · · · ∪Xn| =
∑

1≤i≤n

|Xi| −
∑

1≤i<j≤n

|Xi ∩Xj|

+
∑

1≤i<j<k≤n

|Xi ∩Xj ∩Xk| − · · ·

+ (−1)n+1|X1 ∩X2 ∩ · · · ∩Xn|.

Hint: In the Inductive Step, refer to the hint in Exercise 92.
96. Using the previous exercise, write the Inclusion-Exclusion

Principle for four finite sets.
97. How many integers between 1 and 10,000, inclusive, are mul-

tiples of 3 or 5 or 11 or 13 or any combination thereof?

316

Counting Methods and the Pigeonhole Principle

Problem-Solving Corner Counting

Problem
Find the number of ordered triples of sets X1, X2, X3

satisfying
X1 ∪X2 ∪X3 = {1, 2, 3, 4, 5, 6, 7, 8}

and X1 ∩X2 ∩X3 = ∅.

By ordered triple, we mean that the order of the sets X1,
X2, X3 is taken into account. For example, the triples

{1, 2, 3}, {1, 4, 8}, {2, 5, 6, 7}
and

{1, 4, 8}, {1, 2, 3}, {2, 5, 6, 7}
are considered distinct.

Attacking the Problem
It would be nice to begin by enumerating triples, but
there are so many it would be hard to gain much insight
from staring at a few triples. Let’s simplify the problem
by making it smaller. Let’s replace

{1, 2, 3, 4, 5, 6, 7, 8}
by {1}. What could be simpler than {1}? (Well, maybe
∅, but that’s too simple!) We can now enumerate all
ordered triples of sets X1, X2, X3 satisfying X1 ∪X2 ∪
X3 = {1} and X1 ∩ X2 ∩ X3 = ∅. We must put 1 in
at least one of the sets X1, X2, X3 (so that the union
will be {1}), but we must not put 1 in all three of the
sets X1, X2, X3 (otherwise, the intersection would not
be empty). Thus 1 will be in exactly one or two of the

1 is in 2 is in 1 is in 2 is in 1 is in 2 is in

X1 X1 X1 X2 X1 X3

X2 X1 X2 X2 X2 X3

X3 X1 X3 X2 X3 X3

X1, X2 X1 X1, X2 X2 X1, X2 X3

X1, X3 X1 X1, X3 X2 X1, X3 X3

X2, X3 X1 X2, X3 X2 X2, X3 X3

X1 X1, X2 X1 X1, X3 X1 X2, X3

X2 X1, X2 X2 X1, X3 X2 X2, X3

X3 X1, X2 X3 X1, X3 X3 X2, X3

X1, X2 X1, X2 X1, X2 X1, X3 X1, X2 X2, X3

X1, X3 X1, X2 X1, X3 X1, X3 X1, X3 X2, X3

X2, X3 X1, X2 X2, X3 X1, X3 X2, X3 X2, X3

sets X1, X2, X3. The complete list of ordered triples is
as follows:

X1 = {1}, X2 = ∅, X3 = ∅;
X1 = ∅, X2 = {1}, X3 = ∅;
X1 = ∅, X2 = ∅, X3 = {1};
X1 = {1}, X2 = {1}, X3 = ∅;
X1 = {1}, X2 = ∅, X3 = {1};
X1 = ∅, X2 = {1}, X3 = {1}.

Thus there are six ordered triples of sets X1, X2, X3

satisfying

X1 ∪X2 ∪X3 = {1} and X1 ∩X2 ∩X3 = ∅.

Let’s step up one level and enumerate all ordered
triples of sets X1, X2, X3 satisfying X1 ∪ X2 ∪ X3 =
{1, 2} and X1∩X2∩X3 = ∅. As before, we must put 1
in at least one of the sets X1, X2, X3 (so that 1 will be in
the union), but we must not put 1 in all three of the sets
X1, X2, X3 (otherwise, the intersection would not be
empty). This time we must also put 2 in at least one of
the sets X1, X2, X3 (so that 2 will also be in the union),
but we must not put 2 in all three of the sets X1, X2, X3

(otherwise, the intersection would not be empty). Thus
each of 1 and 2 will be in exactly one or two of the sets
X1, X2, X3. We enumerate the sets in a systematic way
so that we can recognize any patterns that appear. The
complete list of ordered triples is shown in the table at
the bottom of this page. For example, the top left entry,

317

Counting Methods and the Pigeonhole Principle

X1 X1, specifies that 1 is in X1 and 2 is in X1; therefore,
this entry gives the ordered triple

X1 = {1, 2}, X2 = ∅, X3 = ∅.

As shown, there are 36 ordered triples of sets X1, X2,
X3 satisfying

X1 ∪X2 ∪X3 = {1, 2}
and X1 ∩X2 ∩X3 = ∅.

We see that there are six ways to assign 1 to the sets X1,
X2, X3, which accounts for six lines per block. Simi-
larly, there are six ways to assign 2 to the sets X1, X2,
X3, which accounts for six blocks.

Before reading on, can you guess how many
ordered triples of sets X1, X2, X3 satisfy

X1 ∪X2 ∪X3 = {1, 2, 3}
and X1 ∩X2 ∩X3 = ∅?

The pattern has emerged. If X = {1, 2, . . . , n},
there are six ways to assign each of 1, 2, . . . , n to the
sets X1, X2, X3. By the Multiplication Principle, the
number of ordered triples is 6n.

Finding Another Solution
We have just found a solution to the problem by start-
ing with a simpler problem and then discovering and
justifying the pattern that emerged.

Another approach is to look for a similar problem
and imitate its solution. This problem is similar to the
one at hand in that it also is a counting problem that
deals with sets:

Let X be an n-element set. How many ordered
pairs (A, B) satisfy A ⊆ B ⊆ X?

The solution counts the number of ways to assign
elements of X to exactly one of the sets A, B − A, or
X− B.

We can solve our problem by taking a similar
approach. Each element of X is in exactly one of

X1 ∩X2 ∩X3, X1 ∩X2 ∩X3, X1 ∩X2 ∩X3,

X1 ∩X2 ∩X3, X1 ∩X2 ∩X3, X1 ∩X2 ∩X3.

Since each member of X can be assigned to one of
these sets in six ways, by the Multiplication Principle,
the number of ordered triples is 68.

Notice that while this approach to solving the prob-
lem is different than that of the preceding section, the
final argument is essentially the same.

Formal Solution
Each element in X is in exactly one of

Y1 = X1 ∩X2 ∩X3, Y2 = X1 ∩X2 ∩X3,

Y3 = X1 ∩X2 ∩X3, Y4 = X1 ∩X2 ∩X3,

Y5 = X1 ∩X2 ∩X3, Y6 = X1 ∩X2 ∩X3.

We can construct an ordered triple by the following
eight-step process: Choose j, 1 ≤ j ≤ 6, and put 1 in
Yj; choose j, 1 ≤ j ≤ 6, and put 2 in Yj; . . . ; choose j,
1 ≤ j ≤ 6, and put 8 in Yj . For example, to construct
the triple

{1, 2, 3}, {1, 4, 8}, {2, 5, 6, 7},
we first choose j = 3 and put 1 in Y3 = X1 ∩X2 ∩X3.
Next, we choose j = 2 and put 2 in Y2 = X1∩X2∩X3.
The remaining choices for j are j = 6, 5, 4, 4, 4, 5.

Each choice for j can be made in six ways. By
the Multiplication Principle, the number of ordered
triples is

6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 = 68 = 1,679,616.

Summary of Problem-Solving Techniques
■ Replace the original problem with a simpler

problem. One way to do this is to reduce the size
of the original problem.

■ Directly enumerate the items to be counted.

■ Enumerate items systematically so that patterns
emerge.

■ Look for patterns.

■ Look for a similar problem and imitate its
solution.

2 ➜ Permutations and Combinations

Four candidates, Zeke, Yung, Xeno, and Wilma, are running for the same office. So that
the positions of the names on the ballot will not influence the voters, it is necessary to
print ballots with the names listed in every possible order. How many distinct ballots
will there be?

318

Counting Methods and the Pigeonhole Principle

We can use the Multiplication Principle. A ballot can be constructed in four
successive steps: Select the first name to be listed; select the second name to be listed;
select the third name to be listed; select the fourth name to be listed. The first name
can be selected in four ways. Once the first name has been selected, the second name can
be selected in three ways. Once the second name has been selected, the third name can
be selected in two ways. Once the third name has been selected, the fourth name can be
selected in one way. By the Multiplication Principle, the number of ballots is

4 · 3 · 2 · 1 = 24.

An ordering of objects, such as the names on the ballot, is called a permutation.

Definition 2.1 A permutation of n distinct elements x1, . . . , xn is an ordering of the n elements
x1, . . . , xn.

Example 2.2 There are six permutations of three elements. If the elements are denoted A, B, C, the
six permutations are

ABC, ACB, BAC, BCA, CAB, CBA.

We found that there are 24 ways to order four candidates on a ballot; thus there
are 24 permutations of four objects. The method that we used to count the number of
distinct ballots containing four names may be used to derive a formula for the number
of permutations of n elements.

The proof of the following theorem for n = 4 is illustrated in Figure 2.1.

Select 1st
element

Select 2nd
element

Select 3rd
element

Select 4th
element

B A D C

Figure 2.1 The proof of Theorem 2.3 for n = 4. A permutation of ABCD is
constructed by successively selecting the first element, then the second element,
then the third element, and, finally, the fourth element.

Theorem 2.3 There are n! permutations of n elements.

Proof We use the Multiplication Principle. A permutation of n elements can be con-
structed in n successive steps: Select the first element; select the second element; . . . ;
select the last element. The first element can be selected in n ways. Once the first
element has been selected, the second element can be selected in n − 1 ways. Once
the second element has been selected, the third element can be selected in n−2 ways,
and so on. By the Multiplication Principle, there are

n(n− 1)(n− 2) · · · 2 · 1 = n!

permutations of n elements.

319

Counting Methods and the Pigeonhole Principle

Example 2.4 There are

10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 3,628,800

permutations of 10 elements.

Example 2.5 How many permutations of the letters ABCDEF contain the substring DEF?

DEF A B C

Figure 2.2 Four tokens to
permute.

To guarantee the presence of the pattern DEF in the substring, these three let-
ters must be kept together in this order. The remaining letters, A, B, and C, can be
placed arbitrarily. We can think of constructing permutations of the letters ABCDEF that
contain the pattern DEF by permuting four tokens—one labeled DEF and the others
labeled A, B, and C (see Figure 2.2). By Theorem 2.3, there are 4! permutations of
four objects. Thus the number of permutations of the letters ABCDEF that contain the
substring DEF is

4! = 24.

Example 2.6 How many permutations of the letters ABCDEF contain the letters DEF together in any
order?

We can solve the problem by a two-step procedure: Select an ordering of the
letters DEF; construct a permutation of ABCDEF containing the given ordering of the
letters DEF. By Theorem 2.3, the first step can be done in 3!= 6 ways and, according to
Example 2.5, the second step can be done in 24 ways. By the Multiplication Principle,
the number of permutations of the letters ABCDEF containing the letters DEF together
in any order is

6 · 24 = 144.

Example 2.7 In how many ways can six persons be seated around a circular table? If a seating is
obtained from another seating by having everyone move n seats clockwise, the seatings
are considered identical.

Let us denote the persons as A, B, C, D, E, and F . Since seatings obtained
by rotations are considered identical, we might as well seat A arbitrarily. To seat the
remaining five persons, we can order them and then seat them in this order clockwise
from A. For example, the permutation CDBFE would define the seating in the adjacent
figure. Since there are 5! = 120 permutations of five elements, there are 120 ways that
six persons can be seated around a circular table.

F E

B A

D C
The same argument can be used to show that there are (n−1)! ways that n persons

can be seated around a circular table.

Sometimes we want to consider an ordering of r elements selected from n available
elements. Such an ordering is called an r-permutation.

Definition 2.8 An r-permutation of n (distinct) elements x1, . . . , xn is an ordering of an r-element subset
of {x1, . . . , xn}. The number of r-permutations of a set of n distinct elements is denoted
P(n, r).

320

Counting Methods and the Pigeonhole Principle

Example 2.9 Examples of 2-permutations of a, b, c are

ab, ba, ca.

If r = n in Definition 2.8, we obtain an ordering of all n elements. Thus an
n-permutation of n elements is what we previously called simply a permutation. Theo-
rem 2.3 tells us that P(n, n) = n!. The number P(n, r) of r-permutations of an n-element
set when r < n may be derived as in the proof of Theorem 2.3. The proof of the theorem
for n = 6 and r = 3 is illustrated in Figure 2.3.

Select 1st
element

Select 2nd
element

Select 3rd
element

C A E

Figure 2.3 The proof of Theorem 2.10 for n = 6 and
r = 3. An r-permutation of ABCDEF is constructed by
successively selecting the first element, then the second
element, and, finally, the third element.

Theorem 2.10 The number of r-permutations of a set of n distinct objects is

P(n, r) = n(n− 1)(n− 2) · · · (n− r + 1), r ≤ n.

Proof We are to count the number of ways to order r elements selected from an
n-element set. The first element can be selected in n ways. Once the first element
has been selected, the second element can be selected in n − 1 ways. We continue
selecting elements until, having selected the (r − 1)st element, we select the rth
element. This last element can be chosen in n− r+ 1 ways. By the Multiplication
Principle, the number of r-permutations of a set of n distinct objects is

n(n− 1)(n− 2) · · · (n− r + 1).

Example 2.11 According to Theorem 2.10, the number of 2-permutations of X = {a, b, c} is

P(3, 2) = 3 · 2 = 6.

These six 2-permutations are

ab, ac, ba, bc, ca, cb.

Example 2.12 In how many ways can we select a chairperson, vice-chairperson, secretary, and treasurer
from a group of 10 persons?

We need to count the number of orderings of four persons selected from a group
of 10, since an ordering picks (uniquely) a chairperson (first pick), a vice-chairperson
(second pick), a secretary (third pick), and a treasurer (fourth pick). By Theorem 2.10,
the solution is

P(10, 4) = 10 · 9 · 8 · 7 = 5040.

We could also have solved Example 2.12 by appealing directly to the Multiplication
Principle.

321

Counting Methods and the Pigeonhole Principle

We may also write P(n, r) in terms of factorials:

P(n, r) = n(n− 1) · · · (n− r + 1)

= n(n− 1) · · · (n− r + 1)(n− r) · · · 2 · 1

(n− r) · · · 2 · 1
= n!

(n− r)!
. (2.1)

Example 2.13 Using (2.1), we may rewrite the solution of Example 2.12 as

P(10, 4) = 10!

(10− 4)!
= 10!

6!
.

Example 2.14 In how many ways can seven distinct Martians and five distinct Jovians wait in line if
no two Jovians stand together?

We can line up the Martians and Jovians by a two-step process: Line up the
Martians; line up the Jovians. The Martians can line up in 7! = 5040 ways. Once we have
lined up the Martians (e.g., in positions M1–M7), since no two Jovians can stand together,
the Jovians have eight possible positions in which to stand (indicated by blanks):

−M1−M2−M3−M4−M5−M6−M7− .

Thus the Jovians can stand in P(8, 5) = 8 · 7 · 6 · 5 · 4 = 6720 ways. By the Multiplica-
tion Principle, the number of ways seven distinct Martians and five distinct Jovians can
wait in line if no two Jovians stand together is

5040 · 6720 = 33,868,800.

We turn next to combinations. A selection of objects without regard to order is
called a combination.

Definition 2.15 Given a set X = {x1, . . . , xn} containing n (distinct) elements,

(a) An r-combination of X is an unordered selection of r-elements of X (i.e., an
r-element subset of X).

(b) The number of r-combinations of a set of n distinct elements is denoted C(n, r)

or
(
n

r

)
.

Example 2.16 Agroup of five students, Mary, Boris, Rosa,Ahmad, and Nguyen, has decided to talk with
the Mathematics Department chairperson about having the Mathematics Department
offer more courses in discrete mathematics. The chairperson has said that she will speak
with three of the students. In how many ways can these five students choose three of
their group to talk with the chairperson?

In solving this problem, we must not take order into account. (For example, it will
make no difference whether the chairperson talks to Mary, Ahmad, and Nguyen or to
Nguyen, Mary, and Ahmad.) By simply listing the possibilities, we see that there are 10
ways that the five students can choose three of their group to talk to the chairperson:

MBR, MBA, MRA, BRA, MBN, MRN, BRN, MAN, BAN, RAN.

In the terminology of Definition 2.15, the number of ways the five students can choose
three of their group to talk with the chairperson is C(5, 3), the number of 3-combinations
of five elements. We have found that

C(5, 3) = 10.

322

Counting Methods and the Pigeonhole Principle

{a, b}

ab ba

{a, c}

ac ca

{a, d}

ad da

{b, c}

bc cb

{b, d}

bd db

{c, d}

cd dc

Figure 2.4 2-permutations of {a, b, c, d}.

We next derive a formula for C(n, r) by counting the number of r-permutations of
an n-element set in two ways. The first way simply uses the formula P(n, r). The second
way of counting the number of r-permutations of an n-element set involves C(n, r).
Equating the two values will enable us to derive a formula for C(n, r).

We can construct r-permutations of an n-element set X in two successive steps:
First, select an r-combination of X (an unordered subset of r items); second, order it. For
example, to construct a 2-permutation of {a, b, c, d}, we can first select a 2-combination
and then order it. Figure 2.4 shows how all 2-permutations of {a, b, c, d} are obtained
in this way. The Multiplication Principle tells us that the number of r-permutations is
the product of the number of r-combinations and the number of orderings of r elements.
That is,

P(n, r) = C(n, r)r!.

Therefore,

C(n, r) = P(n, r)

r!
.

Our next theorem states this result and gives some alternative ways to write C(n, r).

Theorem 2.17 The number of r-combinations of a set of n distinct objects is

C(n, r) = P(n, r)

r!
= n(n− 1) · · · (n− r + 1)

r!
= n!

(n− r)! r!
, r ≤ n.

Proof The proof of the first equation is given before the statement of the theorem.
The other forms of the equation follow from Theorem 2.10 and equation (2.1).

Example 2.18 In how many ways can we select a committee of three from a group of 10 distinct
persons?

Since a committee is an unordered group of people, the answer is

C(10, 3) = 10 · 9 · 8

3!
= 120.

Example 2.19 In how many ways can we select a committee of two women and three men from a group
of five distinct women and six distinct men?

As in Example 2.18, we find that the two women can be selected in

C(5, 2) = 10

323

Counting Methods and the Pigeonhole Principle

ways and that the three men can be selected in

C(6, 3) = 20

ways. The committee can be constructed in two successive steps: Select the women;
select the men. By the Multiplication Principle, the total number of committees is

10 · 20 = 200.

Example 2.20 How many eight-bit strings contain exactly four 1’s?
An eight-bit string containing four 1’s is uniquely determined once we tell which

bits are 1. This can be done in

C(8, 4) = 70

ways.

Example 2.21 An ordinary deck of 52 cards consists of four suits

clubs, diamonds, hearts, spades

of 13 denominations each

ace, 2–10, jack, queen, king.

(a) How many (unordered) five-card poker hands, selected from an ordinary 52-card
deck, are there?

(b) How many poker hands contain cards all of the same suit?

(c) How many poker hands contain three cards of one denomination and two cards
of a second denomination?

(a) The answer is given by the combination formula

C(52, 5) = 2,598,960.

(b) A hand containing cards all of the same suit can be constructed in two successive
steps: Select a suit; select five cards from the chosen suit. The first step can
be done in four ways, and the second step can be done in C(13, 5) ways. By the
Multiplication Principle, the answer is

4 · C(13, 5) = 5148.

(c) A hand containing three cards of one denomination and two cards of a second
denomination can be constructed in four successive steps: Select the first denomi-
nation; select the second denomination; select three cards of the first denomina-
tion; select two cards of the second denomination. The first denomination can be
chosen in 13 ways. Having selected the first denomination, we can choose the
second denomination in 12 ways. We can select three cards of the first denomi-
nation in C(4, 3) ways, and we can select two cards of the second denomination
in C(4, 2) ways. By the Multiplication Principle, the answer is

13 · 12 · C(4, 3) · C(4, 2) = 3744.

Example 2.22 How many routes are there from the lower-left corner of an n × n square grid to the
upper-right corner if we are restricted to traveling only to the right or upward? One such
route is shown in a 4× 4 grid in Figure 2.5(a).

324

Counting Methods and the Pigeonhole Principle

(a) (b)

Figure 2.5 (a) A 4× 4 grid with a route from the lower-left
corner to the upper-right corner. (b) The route in (a) transformed
to a route in a 5× 3 grid.

Each route can be described by a string of nR’s (right) and nU’s (up). For example,
the route shown in Figure 2.5(a) can be described by the string RUURRURU. Any such
string can be obtained by selecting n positions for the R’s, without regard to the order of
selection, among the 2n available positions in the string and then filling the remaining
positions with U’s. Thus there are C(2n, n) possible routes.

Example 2.23 How many routes are there from the lower-left corner of an n × n square grid to the
upper-right corner if we are restricted to traveling only to the right or upward and if
we are allowed to touch but not go above a diagonal line from the lower-left corner to
the upper-right corner?

We call a route that touches but does not go above the diagonal a good route, and
we call a route that goes above the diagonal a bad route. Our problem is to count the
number of good routes. We let Gn denote the number of good routes and Bn denote the
number of bad routes. In Example 2.22 we showed that

Gn + Bn = C(2n, n);

thus it suffices to compute the number of bad routes.
We call a route from the lower-left corner of an (n + 1) × (n − 1) grid to the

upper-right corner (with no restrictions) an (n + 1) × (n − 1) route. A 5 × 3 route is
shown in Figure 2.5(b). We show that the number of bad routes is equal to the number
of (n+ 1)× (n− 1) routes by describing a one-to-one, onto function from the set of bad
routes to the set of (n+ 1)× (n− 1) routes.

Given a bad route, we find the first move (starting from the lower left) that takes
it above the diagonal. Thereafter we replace each right move by an up move and each
up move by a right move. For example, the route of Figure 2.5(a) is transformed to
the route shown in Figure 2.5(b). This transformation can also be effected by rotating
the portion of the route following the first move above the diagonal about the dashed
line shown in Figure 2.5(b). We see that this transformation does indeed assign to each
bad route an (n+ 1)× (n− 1) route.

To show that our function is onto, consider any (n+ 1)× (n− 1) route. Since this
route ends above the diagonal, there is a first move where it goes above the diagonal.
We may then rotate the remainder of the route about the dashed line shown in
Figure 2.5(b) to obtain a bad route. The image of this bad route under our function
is the (n+ 1)× (n− 1) route with which we started. Therefore, our function is onto.

325

Counting Methods and the Pigeonhole Principle

Our function is also one-to-one, as we can readily verify that the function transforms
distinct bad routes to distinct (n+ 1)× (n− 1) routes. Therefore, the number of bad
routes equals the number of (n+ 1)× (n− 1) routes.

An argument like that in Example 2.22 shows that the number of (n+ 1)× (n− 1)

routes is equal to C(2n, n− 1). Thus the number of good routes is equal to

C(2n, n)− Bn = C(2n, n)− C(2n, n− 1) = (2n)!

n! n!
− (2n)!

(n− 1)! (n+ 1)!

= (2n)!

n! (n− 1)!

(
1

n
− 1

n+ 1

)
= (2n)!

n! (n− 1)!
· 1

n(n+ 1)

= (2n)!

(n+ 1)n! n!
= C(2n, n)

n+ 1
.

The numbers C(2n, n)/(n + 1) are called Catalan numbers in honor of the
Belgian mathematician Eugène-Charles Catalan (1814–1894), who discovered an ele-
mentary derivation of the formula C(2n, n)/(n+1). Catalan published numerous papers
in analysis, combinatorics, algebra, geometry, probability, and number theory. In 1844,
he conjectured that the only consecutive positive integers that are powers (i.e., ij , where
j ≥ 2) are 8 and 9. Over 150 years later, Preda Mihailescu proved the result (in 2002).

In this book, we denote the Catalan number C(2n, n)/(n + 1) as Cn, n ≥ 1, and
we define C0 to be 1. The first few Catalan numbers are

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42.

Like the Fibonacci numbers, the Catalan numbers have a way of appearing in unexpected
places.

Our next example illustrates a common error in counting—namely, counting some
objects more than once.

Example 2.24 What is wrong with the following argument, which purports to show that there are
C(8, 5)23 bit strings of length 8 containing at least five 0’s?

We can construct bit strings of length 8 by filling each of eight slots

with either 0 or 1. To ensure that there are at least five 0’s, we choose five slots and
place a 0 in each of them. The five slots can be chosen in C(8, 5) ways. We then fill the
remaining three slots with either 0 or 1. Since each of the three remaining slots can be
filled in two ways, the remaining slots can be filled in 23 ways. Thus there are C(8, 5)23

bit strings of length 8 containing at least five 0’s.

The problem is that some strings are counted more than one time. For example,
suppose that we choose the first five slots and place 0’s in them

0 0 0 0 0

If we then place 0 1 0 in the last three slots, we obtain the string

0 0 0 0 0 0 1 0 (2.2)

Now suppose that we choose the second through sixth slots and place 0’s in them

0 0 0 0 0

326

Counting Methods and the Pigeonhole Principle

If we then place 0 in the first slot and 1 0 in the last two slots, we obtain the string

0 0 0 0 0 0 1 0 (2.3)

In the argument given, strings (2.2) and (2.3) are counted as distinct strings.
A correct way to count the bit strings of length 8 containing at least five 0’s is to

count the number of strings containing exactly five 0’s, the number of strings containing
exactly six 0’s, the number of strings containing exactly seven 0’s, and the number
of strings containing exactly eight 0’s and sum these numbers. Notice that here each
string is counted one time since no string can contain exactly i 0’s and exactly j 0’s
when i �= j.

To construct a bit string of length 8 containing exactly five 0’s, we choose five slots
for the 0’s and put 1’s in the other three slots. Since we can choose five slots in C(8, 5)

ways, there are C(8, 5) bit strings of length 8 containing exactly five 0’s. Similarly,
there are C(8, 6) bit strings of length 8 containing exactly six 0’s, and so on. Therefore,
there are

C(8, 5)+ C(8, 6)+ C(8, 7)+ C(8, 8)

bit strings of length 8 containing at least five 0’s.

We close this section by providing another proof of Theorem 2.17 that gives a
formula for the number of r-element subsets of an n-element set. The proof is illus-
trated in Figure 2.6. Let X be an n-element set. We assume the formula P(n, r) =
n(n− 1) · · · (n− r+ 1) that counts the number of orderings of r-element subsets chosen
from X. To count the number of r-element subsets of X, we do not want to take order into
account—we want to consider permutations of the same subset equivalent. Formally, we
define a relation R on the set S of r-permutations of X by the following rule: p1Rp2 if
p1 and p2 are permutations of the same r-element subset of X. It is straightforward to
verify that R is an equivalence relation on S.

If p is an r-permutation of X, then p is a permutation of some r-element sub-
set Xr of X; thus, the equivalence class containing p consists of all permutations of
Xr. We see that each equivalence class has r! elements. An equivalence class is deter-
mined by the r-element subset of X that is permuted to obtain its members. Therefore,
there are C(n, r) equivalence classes. Since the set S has P(n, r) elements, C(n, r) =
P(n, r)/r!.

ab
ba

ac
ca

ad
da

bc
cb

bd
db

cd
dc

Figure 2.6 The alternative proof of Theorem 2.17 for n = 4 and
r = 2. Each box contains an equivalence class for the relation R on the
set of 2-permutations of X = {a, b, c, d} defined by p1Rp2 if p1 and
p2 are permutations of the same 2-element subset of X. There are
P(4, 2) = 12 2-permutations of X and 2 ways to permute each
2-permutation. Since each equivalence class corresponds to a subset of
X, 12/2 = C(4, 2).

Problem-Solving Tips

The key points to remember in this section are that a permutation takes order into account
and a combination does not take order into account. Thus, a key to solving counting

327

Counting Methods and the Pigeonhole Principle

problems is to determine whether we are counting ordered or unordered items. For
example, a line of distinct persons is considered ordered. Thus six distinct persons can
wait in line in 6! ways; the permutation formula is used.Acommittee is a typical example
of an unordered group. For example, a committee of three can be selected from a set of
six distinct persons in C(6, 3) ways; the combination formula is used.

Section Review Exercises

1. What is a permutation of x1, . . . , xn?

2. How many permutations are there of an n-element set? How is
this formula derived?

3. What is an r-permutation of x1, . . . , xn?

4. How many r-permutations are there of an n-element set? How
is this formula derived?

5. How do we denote the number of r-permutations of an
n-element set?

6. What is an r-combination of {x1, . . . , xn}?
7. How many r-combinations are there of an n-element set? How

is this formula derived?

8. How do we denote the number of r-combinations of an
n-element set?

Exercises

1. How many permutations are there of a, b, c, d?

2. List the permutations of a, b, c, d.

3. How many 3-permutations are there of a, b, c, d?

4. List the 3-permutations of a, b, c, d.

5. How many permutations are there of 11 distinct objects?

6. How many 5-permutations are there of 11 distinct objects?

7. In how many ways can we select a chairperson, vice-
chairperson, and recorder from a group of 11 persons?

8. In how many ways can we select a chairperson, vice-
chairperson, secretary, and treasurer from a group of
12 persons?

9. In how many different ways can 12 horses finish in the order
Win, Place, Show?

In Exercises 10–18, determine how many strings can be formed by
ordering the letters ABCDE subject to the conditions given.

10. Contains the substring ACE

11. Contains the letters ACE together in any order

12. Contains the substrings DB and AE

13. Contains either the substring AE or the substring EA or both

14. A appears before D. Examples: BCAED, BCADE

15. Contains neither of the substrings AB, CD

16. Contains neither of the substrings AB, BE

17. A appears before C and C appears before E

18. Contains either the substring DB or the substring BE or both

19. In how many ways can five distinct Martians and eight distinct
Jovians wait in line if no two Martians stand together?

20. In how many ways can five distinct Martians, ten distinct
Vesuvians, and eight distinct Jovians wait in line if no two
Martians stand together?

21. In how many ways can five distinct Martians and five distinct
Jovians wait in line?

22. In how many ways can five distinct Martians and five distinct
Jovians be seated at a circular table?

23. In how many ways can five distinct Martians and five distinct
Jovians be seated at a circular table if no two Martians sit
together?

24. In how many ways can five distinct Martians and eight dis-
tinct Jovians be seated at a circular table if no two Martians sit
together?

In Exercises 25–27, let X = {a, b, c, d}.
25. Compute the number of 3-combinations of X.

26. List the 3-combinations of X.

27. Show the relationship between the 3-permutations and the
3-combinations of X by drawing a picture like that in
Figure 2.4.

28. In how many ways can we select a committee of three from a
group of 11 persons?

29. In how many ways can we select a committee of four from a
group of 12 persons?

30. At one point in the Illinois state lottery Lotto game, a per-
son was required to choose six numbers (in any order) among
44 numbers. In how many ways can this be done? The state
was considering changing the game so that a person would be
required to choose six numbers among 48 numbers. In how
many ways can this be done?

31. Suppose that a pizza parlor features four specialty pizzas
and pizzas with three or fewer unique toppings (no choosing
anchovies twice!) chosen from 17 available toppings. How
many different pizzas are there?

32. Suppose that the pizza parlor of Exercise 31 has a special price
for four pizzas. How many ways can four pizzas be selected?

328

Counting Methods and the Pigeonhole Principle

Exercises 33–38 refer to a club consisting of six distinct men and
seven distinct women.

33. In how many ways can we select a committee of five persons?

34. In how many ways can we select a committee of three men
and four women?

35. In how many ways can we select a committee of four persons
that has at least one woman?

36. In how many ways can we select a committee of four persons
that has at most one man?

37. In how many ways can we select a committee of four persons
that has persons of both sexes?

38. In how many ways can we select a committee of four persons
so that Mabel and Ralph do not serve together?

39. In how many ways can we select a committee of four Repub-
licans, three Democrats, and two Independents from a group
of 10 distinct Republicans, 12 distinct Democrats, and four
distinct Independents?

40. How many eight-bit strings contain exactly three 0’s?

41. How many eight-bit strings contain three 0’s in a row and
five 1’s?

�42. How many eight-bit strings contain at least two 0’s in a row?

In Exercises 43–51, find the number of (unordered) five-card poker
hands, selected from an ordinary 52-card deck, having the proper-
ties indicated.

43. Containing four aces

44. Containing four of a kind, that is, four cards of the same
denomination

45. Containing all spades

46. Containing cards of exactly two suits

47. Containing cards of all suits

48. Of the form A2345 of the same suit

49. Consecutive and of the same suit (Assume that the ace is the
lowest denomination.)

50. Consecutive (Assume that the ace is the lowest denomination.)

51. Containing two of one denomination, two of another denomi-
nation, and one of a third denomination

52. Find the number of (unordered) 13-card bridge hands selected
from an ordinary 52-card deck.

53. How many bridge hands are all of the same suit?

54. How many bridge hands contain exactly two suits?

55. How many bridge hands contain all four aces?

56. How many bridge hands contain five spades, four hearts, three
clubs, and one diamond?

57. How many bridge hands contain five of one suit, four of
another suit, three of another suit, and one of another suit?

58. How many bridge hands contain four cards of three suits and
one card of the fourth suit?

59. How many bridge hands contain no face cards? (A face card
is one of 10, J, Q, K, A.)

In Exercises 60–64, a coin is flipped 10 times.

60. How many outcomes are possible? (An outcome is a list of
10 H’s and T’s that gives the result of each of 10 tosses. For
example, the outcome

H H T H T H H H T H

represents 10 tosses, where a head was obtained on the first
two tosses, a tail was obtained on the third toss, a head was
obtained on the fourth toss, etc.)

61. How many outcomes have exactly three heads?

62. How many outcomes have at most three heads?

63. How many outcomes have a head on the fifth toss?

64. How many outcomes have as many heads as tails?

Exercises 65–68 refer to a shipment of 50 microprocessors of which
four are defective.

65. In how many ways can we select a set of four microprocessors?

66. In how many ways can we select a set of four nondefective
microprocessors?

67. In how many ways can we select a set of four microprocessors
containing exactly two defective microprocessors?

68. In how many ways can we select a set of four microprocessors
containing at least one defective microprocessor?

�69. Show that the number of bit strings of length n ≥ 4 that contain
exactly two occurrences of 10 is C(n+ 1, 5).

�70. Show that the number of n-bit strings having exactly k 0’s,
with no two 0’s consecutive, is C(n− k + 1, k).

�71. Show that the product of any positive integer and its k − 1
successors is divisible by k!.

72. Show that there are (2n − 1)(2n − 3) · · · 3 · 1 ways to pick n

pairs from 2n distinct items.

Exercises 73–75 refer to an election in which two candidatesWright
and Upshaw ran for dogcatcher. After each vote was tabulated,
Wright was never behind Upshaw. This problem is known as the
ballot problem.

73. Suppose that each candidate received exactly r votes. Show
that the number of ways the votes could be counted is Cr , the
rth Catalan number.

74. Suppose that Wright received exactly r votes and Upshaw
received exactly u votes, r ≥ u > 0. Show that the number of
ways the votes could be counted is C(r + u, r) − C(r + u,

r + 1).

75. Show that if exactly n votes were cast, the number of ways the
votes could be counted is C(n, 	n/2
).

76. Suppose that we start at the origin in the xy-plane and take n

unit steps (i.e., each step is of length one), where each step is
either vertical (up or down) or horizontal (left or right). How
many such paths never go strictly below the x-axis?

77. Suppose that we start at the origin in the xy-plane and take n

unit steps (i.e., each step is of length one), where each step is
either vertical (up or down) or horizontal (left or right). How
many such paths stay in the first quadrant (x ≥ 0, y ≥ 0)?

329

Counting Methods and the Pigeonhole Principle

78. Show that the number of ways that 2n persons, seated around
a circular table, can shake hands in pairs without any arms
crossing is Cn, the nth Catalan number.

�79. Show that the print statement in the pseudocode

for i1 = 1 to n

for i2 = 1 to min(i1, n− 1)

for i3 = 1 to min(i2, n− 2)

. . .

for in−1 = 1 to min(in−2, 2)

for in = 1 to 1
println(i1, i2, . . . , in)

is executed Cn times, where Cn denotes the nth Catalan
number.

80. Suppose that we have n objects, r distinct and n− r identical.
Give another derivation of the formula

P(n, r) = r! C(n, r)

by counting the number of orderings of the n objects in two
ways:

■ Count the orderings by first choosing positions for the
r distinct objects.

■ Count the orderings by first choosing positions for the
n− r identical objects.

81. What is wrong with the following argument, which purports
to show that 4C(39, 13) bridge hands contain three or fewer
suits?

There are C(39, 13) hands that contain only clubs, dia-
monds, and spades. In fact, for any three suits, there are
C(39, 13) hands that contain only those three suits. Since
there are four 3-combinations of the suits, the answer is
4C(39, 13).

82. What is wrong with the following argument, which purports to
show that there are 134 · 48 (unordered) five-card poker hands
containing cards of all suits?

Pick one card of each suit. This can be done in
13 · 13 · 13 · 13= 134 ways. Since the fifth card can be
chosen in 48 ways, the answer is 134 · 48.

83. What is wrong with the following argument, which purports
to show that there are P(n, m)mn−m onto functions from the
n-element set X to the m-element set Y , n > m?

Let Y = {y1, . . . , ym}. To ensure that a function from
X to Y is onto Y , we select an m-permutation of X, say
x1, . . . , xm, and assign x1 the value y1, x2 the value y2, . . . ,

and xm the value ym. We can select the m-permutation in
P(n, m) ways. The remainder of the n − m elements in X

may be assigned values in Y arbitrarily. The first remaining
element in X can be assigned a value in Y in m ways. The next
remaining element in X can also be assigned a value in Y in
m ways, and so on. Thus the remaining n−m elements in X

can be assigned values in Y in mn−m ways. Thus the number
of functions from X onto Y is P(n, m)mn−m.

84. How many times is the string 10100001 counted in the erro-
neous argument given in Example 2.24?

85. How many times is the string 10001000 counted in the erro-
neous argument given in Example 2.24?

86. How many times is the string 00000000 counted in the erro-
neous argument given in Example 2.24?

87. Let sn,k denote the number of ways to seat n persons at k round
tables, with at least one person at each table. (The numbers sn,k

are called Stirling numbers of the first kind.) The ordering of
the tables is not taken into account. The seating arrangement
at a table is taken into account except for rotations. Examples:
The following pair is not distinct:

A

C B

D
C

B A

D

The following pair is not distinct:

A

B
C

D A

B
C

D

The following pair is distinct:

A

B
C

D A

B

C

D

The following pair is distinct:

A

B
C

D A

C
B

D

(a) Show that sn,k = 0 if k > n.

(b) Show that sn,n = 1 for all n ≥ 1.

(c) Show that sn,1 = (n− 1)! for all n ≥ 1.

(d) Show that sn,n−1 = C(n, 2) for all n ≥ 2.

(e) Show that

sn,2 = (n− 1)!

(
1+ 1

2
+ 1

3
+ · · · + 1

n− 1

)

for all n ≥ 2.

330

Counting Methods and the Pigeonhole Principle

(f) Show that

n∑

k=1

sn,k = n! for all n ≥ 1.

(g) Find a formula for sn,n−2, n ≥ 3, and prove it.

88. Let Sn,k denote the number of ways to partition an n-element
set into exactly k nonempty subsets. The order of the subsets
is not taken into account. (The numbers Sn,k are called Stirling
numbers of the second kind.)

(a) Show that Sn,k = 0 if k > n.

(b) Show that Sn,n = 1 for all n ≥ 1.

(c) Show that Sn,1 = 1 for all n ≥ 1.

(d) Show that S3,2 = 3.

(e) Show that S4,2 = 7.

(f) Show that S4,3 = 6.

(g) Show that Sn,2 = 2n−1 − 1 for all n ≥ 2.

(h) Show that Sn,n−1 = C(n, 2) for all n ≥ 2.

(i) Find a formula for Sn,n−2, n ≥ 3, and prove it.

89. Show that there are

n∑

k=1

Sn,k

equivalence relations on an n-element set. [The numbers Sn,k

are Stirling numbers of the second kind (see Exercise 88).]

90. If X is an n-element set and Y is an m-element set, n ≤ m,
how many one-to-one functions are there from X to Y?

91. If X and Y are n-element sets, how many one-to-one, onto
functions are there from X to Y?

92. Show that (n/k)k ≤ C(n, k) ≤ nk/k!.

Problem-Solving Corner Combinations

Problem
(a) How many routes are there from the lower-left

corner to the upper-right corner of an m×n grid
in which we are restricted to traveling only to
the right or upward? For example, the following
figure is a 3× 5 grid and one route is shown.

m � 3

n � 5

(b) Divide the routes into classes based on when
the route first meets the top edge to derive the
formula

n∑

k=0

C(k +m− 1, k) = C(m+ n, m).

Attacking the Problem
Example 2.22 asked how many paths there were from
the lower-left corner to the upper-right corner of an
n× n grid in which we are restricted to traveling only
to the right or upward. The solution to that problem
encoded each route as a string of n R’s (right) and n

U’s (up). The problem then became one of counting the
number of such strings.Any such string can be obtained
by selecting n positions for the R’s, without regard to
the order of selection, among the 2n available positions
in the string and then filling the remaining positions
with U’s. Thus the number of strings and number of
routes are equal to C(2n, n).

In the present problem, we can encode each route
as a string of n R’s (right) and m U’s (up). As in the
previous problem, we must count the number of such
strings. Any such string can be obtained by selecting
n positions for the R’s, without regard to the order of
selection, among the n + m available positions in the
string and then filling the remaining positions with U’s.
Thus the number of strings and number of routes are
equal to C(n+m, n). We have answered part (a).

In part (b) we are given a major hint: Divide the
routes into classes based on when the route first meets
the top edge. A route can first meet the top edge at any
one of n+ 1 positions. In the previous figure, the route
shown first meets the top edge at the third position from
the left. Before reading on, you might think about why
we might divide the routes into classes.

Notice that when we divide the routes into classes
based on when the route first meets the top edge:

■ The classes are disjoint.

331

Counting Methods and the Pigeonhole Principle

(A route cannot first meet the top edge in two or more
distinct positions.) Notice also that every route meets
the top edge somewhere, so

■ Every route is in some class.

In an terminology, the classes partition the set of routes.
Because the classes partition the set of routes, theAddi-
tion Principle applies and the sum of the numbers of
routes in each class is equal to the total number of
routes. (No route is counted twice since the classes do
not overlap, and every route is counted once since each
route is in some class.) Evidently, the equation we’re
supposed to prove results from equating the sum of the
number of routes in each class to the total number of
routes.

Finding a Solution
We have already solved part (a). For part (b), let’s look
at the 3 × 5 grid. There is exactly one route that first
meets the top edge at the first position from the left.
There are three routes that first meet the top edge at the
second position from the left:

Notice that the only variation in the preceding figures
occurs between the start and the circled dot. To put it
another way, after a route meets the circled dot, there
is only one way to finish the trip. Therefore, it suffices
to count the number of routes from the lower-left cor-
ner to the upper-right corner of a 2 × 1 grid. But we
already solved this problem in part (a)! The number
of routes from the lower-left corner to the upper-right
corner of a 2× 1 grid is equal to C(2+ 1, 1) = 3. In a
similar way, we find that the number of routes that first

meet the top edge at the third position from the left is
equal to the number of routes from the lower-left cor-
ner to the upper-right corner of a 2× 2 grid—namely,
C(2+ 2, 2) = 6. By summing we obtain all the routes:

C(5+ 3, 5) = C(0+ 2, 0)+ C(1+ 2, 1)

+C(2+ 2, 2)+ C(3+ 2, 3)

+C(4+ 2, 4)+ C(5+ 2, 5).

If we replace each term C(k + 3 − 1, k) by its value,
we obtain

56 = 1+ 3+ 6+ 10+ 15+ 21.

You should verify the preceding formula, find the six
routes that first meet the top edge at the third position
from the left, and see why the number of such routes
is equal to the number of routes from the lower-left
corner to the upper-right corner of a 2× 2 grid.

Formal Solution
(a) We can encode each route as a string of n R’s

(right) and m U’s (up). Any such string can
be obtained by selecting n positions for the
R’s, without regard to the order of selection,
among the n + m available positions in the
string and then filling the remaining positions
with U’s. Thus the number of routes is equal to
C(n+m, n).

(b) Each route can be described as a string contain-
ing n R’s and m U’s. The last U in such a string
marks the point at which the route first meets
the top edge. We count the strings by dividing
them into classes consisting of strings that end
U, UR, URR, and so on. There are

C(n+m− 1, n)

strings that end U, since we must choose n slots
among the first n + m − 1 slots for the n R’s.
There are

C((n− 1)+m− 1, n− 1)

strings that end UR, since we must choose
n−1 slots from among the first (n−1)+m−1
slots for the n − 1 R’s. In general, there are
C(k +m− 1, k) strings that end URn−k. Since
there are C(m + n, m) strings altogether, the
formula follows.

Summary of Problem-Solving Techniques
■ Look for a similar problem and imitate its

solution.

332

Counting Methods and the Pigeonhole Principle

■ Counting the number of members of a set in two
different ways leads to an equation. In particu-
lar, if {X1, X2, . . . , Xn} is a partition of X, the
Addition Principle applies and

|X| =
n∑

i=1

|Xi|.

■ Directly enumerate some of the items to be
counted.

■ Look for patterns.

Comments
It’s important to verify that an alleged partition is truly
a partition before using the Addition Principle. If X is
the set of five-bit strings and Xi is the set of five-bit
strings that contain i consecutive zeros, the Addition
Principle does not apply; the sets Xi are not pairwise
disjoint. For example, 00001 ∈ X2 ∩X3. As an exam-
ple of a partition of X, we could let Xi be the set of
five-bit strings that contain exactly i zeros.

Exercises
1. Divide the routes into classes based on when the

route first meets a vertical line, and use the Addi-
tion Principle to derive a formula like that proved
in this section.

2. Divide the routes into classes based on when the
route crosses the slanted line shown.

Use the Addition Principle to derive a formula like
that proved in this section.

3 ➜ Generalized Permutations and Combinations

In Section 2, we dealt with orderings and selections without allowing repetitions. In
this section we consider orderings of sequences containing repetitions and unordered
selections in which repetitions are allowed.

Example 3.1 How many strings can be formed using the following letters?

M I S S I S S I P P I

Because of the duplication of letters, the answer is not 11!, but some number less
than 11!.

Let us consider the problem of filling 11 blanks,

— — — — — — — — — — —,

with the letters given. There are C(11, 2) ways to choose positions for the two P’s. Once
the positions for the P’s have been selected, there are C(9, 4) ways to choose positions
for the four S’s. Once the positions for the S’s have been selected, there are C(5, 4) ways
to choose positions for the four I’s. Once these selections have been made, there is one
position left to be filled by the M. By the Multiplication Principle, the number of ways
of ordering the letters is

C(11, 2)C(9, 4)C(5, 4) = 11!

2! 9!

9!

4! 5!

5!

4! 1!
= 11!

2! 4! 4! 1!
= 34,650.

The solution to Example 3.1 assumes a nice form. The number 11 that appears
in the numerator is the total number of letters. The values in the denominator give the
numbers of duplicates of each letter. This method can be used to establish a general
formula.

333

Counting Methods and the Pigeonhole Principle

Theorem 3.2 Suppose that a sequence S of n items has n1 identical objects of type 1, n2 identical
objects of type 2, . . . , and nt identical objects of type t. Then the number of orderings
of S is

n!

n1! n2! · · · nt!
.

Proof We assign positions to each of the n items to create an ordering of S. We
may assign positions to the n1 items of type 1 in C(n, n1) ways. Having made these
assignments, we may assign positions to the n2 items of type 2 in C(n−n1, n2) ways,
and so on. By the Multiplication Principle, the number of orderings is

C(n, n1)C(n− n1, n2)C(n− n1 − n2, n3) · · ·C(n− n1 − · · · − nt−1, nt)

= n!

n1! (n− n1)!

(n− n1)!

n2! (n− n1 − n2)!
· · · (n− n1 − · · · − nt−1)!

nt! 0!

= n!

n1! n2! · · · nt!
.

Example 3.3 In how many ways can eight distinct books be divided among three students if Bill gets
four books and Shizuo and Marian each get two books?

Put the books in some fixed order. Now consider orderings of four B’s, two S’s,
and two M’s. An example is

B B B S M B M S.

Each such ordering determines a distribution of books. For the example ordering, Bill
gets books 1, 2, 3, and 6, Shizuo gets books 4 and 8, and Marian gets books 5 and 7.
Thus the number of ways of ordering BBBBSSMM is the number of ways to distribute
the books. By Theorem 3.2, this number is

8!

4! 2! 2!
= 420.

We can give an alternate proof of Theorem 3.2 by using relations. Suppose that a
sequence S of n items has ni identical objects of type i for i = 1, . . . , t. Let X denote
the set of n elements obtained from S by considering the ni objects of type i distinct for
i = 1, . . . , t. For example, if S is the sequence of letters

M I S S I S S I P P I,

X would be the set

{M, I1, S1, S2, I2, S3, S4, I3, P1, P2, I4}.
We define a relation R on the set of all permutations of X by the rule: p1Rp2 if p2

is obtained from p1 by permuting the order of the objects of type 1 (but not changing
their location) and/or permuting the order of the objects of type 2 (but not changing their
location) . . . and/or permuting the order of the objects of type t (but not changing their
location); for example,

(I1S1S2I2S3S4I3P1P2I4M) R (I2S3S2I1S4S1I3P1P2I4M).

It is straightforward to verify that R is an equivalence relation on the set of all permuta-
tions of X.

The equivalence class containing the permutation p consists of all permutations
of X that are identical if we consider the objects of type i identical for i = 1, . . . , t.

334

Counting Methods and the Pigeonhole Principle

Thus each equivalence class has n1! n2! · · · nt! elements. Since an equivalence class is
determined by an ordering of S, the number of orderings of S is equal to the number
of equivalence classes. There are n! permutations of X, so the number of orderings
of S is

n!

n1! n2! · · · nt!
.

Next, we turn to the problem of counting unordered selections where repetitions
are allowed.

Example 3.4 Consider three books: a computer science book, a physics book, and a history book.
Suppose that the library has at least six copies of each of these books. In how many ways
can we select six books?

The problem is to choose unordered, six-element selections from the set {computer
science, physics, history}, repetitions allowed. A selection is uniquely determined by the
number of each type of book selected. Let us denote a particular selection as

CS Physics History
× × × | × × | ×

Here we have designated the selection consisting of three computer science books, two
physics books, and one history book. Another example of a selection is

CS Physics History
| × × × × | × ×

which denotes the selection consisting of no computer science books, four physics books,
and two history books. We see that each ordering of six×’s and two |’s denotes a selection.
Thus our problem is to count the number of such orderings. But this is just the number
of ways

C(8, 2) = 28

of selecting two positions for the |’s from eight possible positions. Thus there are 28
ways to select six books.

The method used in Example 3.4 can be used to derive a general result.

Theorem 3.5 If X is a set containing t elements, the number of unordered, k-element selections
from X, repetitions allowed, is

C(k + t − 1, t − 1) = C(k + t − 1, k).

Proof Let X = {a1, . . . , at}. Consider the k + t − 1 slots

— — — · · ·— —

and k + t − 1 symbols consisting of k ×’s and t − 1 |’s. Each placement of these
symbols into the slots determines a selection. The number n1 of ×’s up to the first |
represents the selection of n1 a1’s; the number n2 of×’s between the first and second
|’s represents the selection of n2 a2’s; and so on. Since there are C(k + t − 1, t − 1)

ways to select the positions for the |’s, there are also C(k + t − 1, t − 1) selections.
This is equal to C(k + t − 1, k), the number of ways to select the positions for the
×’s; hence there are

C(k + t − 1, t − 1) = C(k + t − 1, k)

unordered, k-element selections from X, repetitions allowed.

335

Counting Methods and the Pigeonhole Principle

Example 3.6 Suppose that there are piles of red, blue, and green balls and that each pile contains at
least eight balls.

(a) In how many ways can we select eight balls?

(b) In how many ways can we select eight balls if we must have at least one ball of
each color?

By Theorem 3.5, the number of ways of selecting eight balls is

C(8+ 3− 1, 3− 1) = C(10, 2) = 45.

We can also use Theorem 3.5 to solve part (b) if we first select one ball of each
color. To complete the selection, we must choose five additional balls. This can be done in

C(5+ 3− 1, 3− 1) = C(7, 2) = 21

ways.

Example 3.7 In how many ways can 12 identical mathematics books be distributed among the students
Anna, Beth, Candy, and Dan?

We can use Theorem 3.5 to solve this problem if we consider the problem to be
that of labeling each book with the name of the student who receives it. This is the same
as selecting 12 items (the names of the students) from the set {Anna, Beth, Candy, Dan},
repetitions allowed. By Theorem 3.5, the number of ways to do this is

C(12+ 4− 1, 4− 1) = C(15, 3) = 455.

Example 3.8 (a) How many solutions in nonnegative integers are there to the equation

x1 + x2 + x3 + x4 = 29? (3.1)

(b) How many solutions in integers are there to (3.1) satisfying x1 > 0, x2 > 1,
x3 > 2, x4 ≥ 0?

(a) Each solution of (3.1) is equivalent to selecting 29 items, xi of type i,
i = 1, 2, 3, 4. According to Theorem 3.5, the number of selections is

C(29+ 4− 1, 4− 1) = C(32, 3) = 4960.

(b) Each solution of (3.1) satisfying the given conditions is equivalent to selecting
29 items, xi of type i, i = 1, 2, 3, 4, where, in addition, we must have at least
one item of type 1, at least two items of type 2, and at least three items of type 3.
First, select one item of type 1, two items of type 2, and three items of type 3.
Then, choose 23 additional items. By Theorem 3.5, this can be done in

C(23+ 4− 1, 4− 1) = C(26, 3) = 2600

ways.

Example 3.9 How many times is the print statement executed?

for i1 = 1 to n

for i2 = 1 to i1

for i3 = 1 to i2

. . .

for ik = 1 to ik−1

println(i1, i2, . . . , ik)

336

Counting Methods and the Pigeonhole Principle

Notice that each line of output consists of k integers

i1i2 · · · ik, (3.2)

where

n ≥ i1 ≥ i2 ≥ · · · ≥ ik ≥ 1, (3.3)

and that every sequence (3.2) satisfying (3.3) occurs. Thus the problem is to count
the number of ways of choosing k integers, with repetitions allowed, from the set
{1, 2, . . . , n}. [Any such selection can be ordered to produce (3.3).] By Theorem 3.5, the
total number of selections possible is

C(k + n− 1, k).

Problem-Solving Tips

The formulas in Section 3 generalize the formulas of Section 2 by allowing repetitions.
A permutation is an ordering of s1, . . . , sn, where the si are distinct. There are n! per-
mutations. Now suppose that we have n items containing duplicates—specifically, ni

identical objects of type i, for i = 1, . . . , t. Then the number of orderings is

n!

n1!n2! · · · nt!
.

To determine whether one of these formulas may be relevant to a particular problem,
first be sure that the problem asks for orderings. If the items to be ordered are distinct,
the permutation formula may be used. On the other hand, if there are duplicates among
the items to be ordered, the formula

n!

n1!n2! · · · nt!

may be used.
An r-combination is an unordered selection of r elements, repetitions not allowed,

from among n items. There are C(n, r) r-combinations. Now suppose that we want to
count unordered selections of k elements, repetitions allowed, from among t items. The
number of such selections is

C(k + t − 1, t − 1).

To determine whether one of these formulas may be relevant to a particular problem,
first be sure that the problem asks for unordered selections. If the items are to be selected
without repetition, the combination formula may be used. On the other hand, if the items
are to be selected with repetition, the formula

C(k + t − 1, t − 1)

may be used.
The following table summarizes the various formulas:

No Repetitions Repetitions Allowed

Ordered Selections n! n!/(n1! · · · nt!)
Unordered Selections C(n, r) C(k + t − 1, t − 1)

337

Counting Methods and the Pigeonhole Principle

Section Review Exercises

1. How many orderings are there of n items of t types with ni

identical objects of type i? How is this formula derived?
2. How many unordered, k-element selections are there from a

t-element set, repetitions allowed? How is this formula
derived?

Exercises

In Exercises 1–3, determine the number of strings that can be
formed by ordering the letters given.

1. GUIDE

2. SCHOOL

3. SALESPERSONS

4. How many strings can be formed by ordering the letters
SALESPERSONS if the four S’s must be consecutive?

5. How many strings can be formed by ordering the letters
SALESPERSONS if no two S’s are consecutive?

6. How many strings can be formed by ordering the letters
SCHOOL using some or all of the letters?

Exercises 7–9 refer to selections among Action Comics, Superman,
Captain Marvel, Archie, X-Man, and Nancy comics.

7. How many ways are there to select six comics?

8. How many ways are there to select 10 comics?

9. How many ways are there to select 10 comics if we choose at
least one of each book?

10. How many routes are there in the ordinary xyz-coordinate sys-
tem from the origin to the point (i, j, k), where i, j, and k are
positive integers, if we are limited to steps one unit in the pos-
itive x-direction, one unit in the positive y-direction, or one
unit in the positive z-direction?

11. An exam has 12 problems. How many ways can (integer)
points be assigned to the problems if the total of the points
is 100 and each problem is worth at least five points?

12. A bicycle collector has 100 bikes. How many ways can the
bikes be stored in four warehouses if the bikes and the ware-
houses are considered distinct?

13. A bicycle collector has 100 bikes. How many ways can
the bikes be stored in four warehouses if the bikes
are indistinguishable, but the warehouses are considered
distinct?

14. In how many ways can 10 distinct books be divided among
three students if the first student gets five books, the second
three books, and the third two books?

Exercises 15–21 refer to piles of identical red, blue, and green balls
where each pile contains at least 10 balls.

15. In how many ways can 10 balls be selected?

16. In how many ways can 10 balls be selected if at least one red
ball must be selected?

17. In how many ways can 10 balls be selected if at least one red
ball, at least two blue balls, and at least three green balls must
be selected?

18. In how many ways can 10 balls be selected if exactly one red
ball must be selected?

19. In how many ways can 10 balls be selected if exactly one red
ball and at least one blue ball must be selected?

20. In how many ways can 10 balls be selected if at most one red
ball is selected?

21. In how many ways can 10 balls be selected if twice as many
red balls as green balls must be selected?

In Exercises 22–27, find the number of integer solutions of

x1 + x2 + x3 = 15

subject to the conditions given.

22. x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

23. x1 ≥ 1, x2 ≥ 1, x3 ≥ 1

24. x1 = 1, x2 ≥ 0, x3 ≥ 0

25. x1 ≥ 0, x2 > 0, x3 = 1

26. 0 ≤ x1 ≤ 6, x2 ≥ 0, x3 ≥ 0

�27. 0 ≤ x1 < 6, 1 ≤ x2 < 9, x3 ≥ 0

�28. Find the number of solutions in integers to

x1 + x2 + x3 + x4 = 12

satisfying 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 8, and
0 ≤ x4 ≤ 9.

29. Prove that the number of solutions to the equation

x1 + x2 + x3 = n, n ≥ 3,

where x1, x2, and x3 are positive integers, is (n−1)(n−2)/2.

30. Show that the number of solutions in nonnegative integers of
the inequality

x1 + x2 + · · · + xn ≤ M,

where M is a nonnegative integer, is C(M + n, n).

31. How many integers between 1 and 1,000,000 have the sum of
the digits equal to 15?

�32. How many integers between 1 and 1,000,000 have the sum of
the digits equal to 20?

33. How many bridge deals are there? (Adeal consists of partition-
ing a 52-card deck into four hands, each containing 13 cards.)

338

Counting Methods and the Pigeonhole Principle

34. In how many ways can three teams containing four, two, and
two persons be selected from a group of eight persons?

35. A domino is a rectangle divided into two squares with each
square numbered one of 0, 1, . . . , 6, repetitions allowed. How
many distinct dominoes are there?

Exercises 36–41 refer to a bag containing 20 balls—six red, six
green, and eight purple.

36. In how many ways can we select five balls if the balls are
considered distinct?

37. In how many ways can we select five balls if balls of the same
color are considered identical?

38. In how many ways can we draw two red, three green, and two
purple balls if the balls are considered distinct?

39. We draw five balls, then replace the balls, and then draw five
more balls. In how many ways can this be done if the balls are
considered distinct?

40. We draw five balls without replacing them. We then draw five
more balls. In how many ways can this be done if the balls are
considered distinct?

41. We draw five balls and at least one is red, then replace them.
We then draw five balls and at most one is green. In how many
ways can this be done if the balls are considered distinct?

42. In how many ways can 15 identical mathematics books be
distributed among six students?

43. In how many ways can 15 identical computer science books
and 10 identical psychology books be distributed among five
students?

44. In how many ways can we place 10 identical balls in 12 boxes
if each box can hold one ball?

45. In how many ways can we place 10 identical balls in 12 boxes
if each box can hold 10 balls?

46. Show that (kn)! is divisible by (n!)k .

47. By considering

for i1 = 1 to n

for i2 = 1 to i1
println(i1, i2)

and Example 3.9, deduce

1+ 2+ · · · + n = n(n+ 1)

2
.

�48. Use Example 3.9 to prove the formula

C(k − 1, k − 1)+ C(k, k − 1)+ · · · + C(n+ k− 2, k− 1)

= C(k + n− 1, k).

49. Write an algorithm that lists all solutions in nonnegative inte-
gers to

x1 + x2 + x3 = n.

50. What is wrong with the following argument, which suppos-
edly counts the number of partitions of a 10-element set into
eight (nonempty) subsets?

List the elements of the set with blanks between them:

x1 — x2 — x3 — x4 — x5 — x6 — x7 — x8 — x9 — x10.

Every time we fill seven of the nine blanks with seven vertical
bars, we obtain a partition of {x1, . . . , x10} into eight sub-
sets. For example, the partition {x1}, {x2}, {x3, x4} {x5}, {x6},
{x7, x8} {x9}, {x10} would be represented as

x1 | x2 | x3 x4 | x5 | x6 | x7 x8 | x9 | x10.

Thus the solution to the problem is C(9, 7).

4 ➜ Algorithms for Generating Permutations
and Combinations

The rock group “Unhinged Universe” has recorded n videos whose running times are

t1, t2, . . . , tn

seconds. A tape is to be released that can hold C seconds. Since this is the first tape by
the Unhinged Universe, the group wants to include as much material as possible. Thus
the problem is to choose a subset {i1, . . . , ik} of {1, 2, . . . , n} such that the sum

k∑

j=1

tij (4.1)

339

Counting Methods and the Pigeonhole Principle

does not exceed C and is as large as possible. A straightforward approach is to examine
all subsets of {1, 2, . . . , n} and choose a subset so that the sum (4.1) does not exceed
C and is as large as possible. To implement this approach, we need an algorithm that
generates all combinations of an n-element set. In this section we develop algorithms to
generate combinations and permutations.

Since there are 2n subsets of an n-element set, the running time of an algorithm
that examines all subsets is �(2n). Such algorithms are impractical to run except for
small values of n. Unfortunately, there are problems (an example of which is the tape-
filling problem described previously) for which no method much better than the “list all”
approach is known.

Our algorithms list permutations and combinations in lexicographic order.
Lexicographic order generalizes ordinary dictionary order.

Given two distinct words, to determine whether one precedes the other in the
dictionary, we compare the letters in the words. There are two possibilities:

1. The words have different lengths, and each letter in the shorter word
is identical to the corresponding letter in the longer word.

2. The words have the same or different lengths, and at some
position, the letters in the words differ. (4.2)

If I holds, the shorter word precedes the longer. (For example, “dog” precedes
“doghouse” in the dictionary.) If 2 holds, we locate the leftmost position p at which the
letters differ. The order of the words is determined by the order of the letters at position p.
(For example, “gladiator” precedes “gladiolus” in the dictionary. At the leftmost position
at which the letters differ, we find “a” in “gladiator” and “o” in “gladiolus”; “a” precedes
“o” in the alphabet.)

Lexicographic order generalizes ordinary dictionary order by replacing the alpha-
bet by any set of symbols on which an order has been defined. We will be concerned
with strings of integers.

Definition 4.1 Let α = s1s2 · · · sp and β = t1t2 · · · tq be strings over {1, 2, . . . , n}. We say that α is
lexicographically less than β and write α < β if either

(a) p < q and si = ti for i = 1, . . . , p,

or

(b) for some i, si �= ti, and for the smallest such i, we have si < ti.

In Definition 4.1, case (a) corresponds to possibility 1 of (4.2) and case (b) corre-
sponds to possibility 2 of (4.2).

Example 4.2 Let α = 132 and β = 1324 be strings over {1, 2, 3, 4}. In the notation of Definition 4.1,
p = 3, q = 4, s1 = 1, s2 = 3, s3 = 2, t1 = 1, t2 = 3, t3 = 2, and t4 = 4. Since
p = 3 < 4 = q and si = ti for i = 1, 2, 3, condition (a) of Definition 4.1 is satisfied.
Therefore, α < β.

Example 4.3 Let α= 13246 and β= 1342 be strings over {1, 2, 3, 4, 5, 6}. In the notation of Defini-
tion 4.1, p = 5, q = 4, s1 = 1, s2 = 3, s3 = 2, s4 = 4, s5 = 6, t1 = 1, t2 = 3, t3 = 4,
and t4 = 2. The smallest i for which si �= ti is i = 3. Since s3 < t3, by condition (b) of
Definition 4.1, α < β.

340

Counting Methods and the Pigeonhole Principle

Example 4.4 Let α= 1324 and β= 1342 be strings over {1, 2, 3, 4}. In the notation of Definition 4.1,
p = q = 4, s1 = 1, s2 = 3, s3 = 2, s4 = 4, t1 = 1, t2 = 3, t3 = 4, and t4 = 2. The
smallest i for which si �= ti is i = 3. Since s3 < t3, by condition (b) of Definition 4.1,
α < β.

Example 4.5 Let α = 13542 and β = 21354 be strings over {1, 2, 3, 4, 5}. In the notation of Defini-
tion 4.1, s1 = 1, s2 = 3, s3 = 5, s4 = 4, s5 = 2, t1 = 2, t2 = 1, t3 = 3, t4 = 5, and
t5 = 4. The smallest i for which si �= ti is i = 1. Since s1 < t1, by condition (b) of
Definition 4.1, α < β.

For strings of the same length over {1, 2, . . . , 9}, lexicographic order is the same
as numerical order on the positive integers if we interpret the strings as decimal numbers
(see Examples 4.4 and 4.5). For strings of unequal length, lexicographic order may
be different than numerical order (see Example 4.3). Throughout the remainder of this
section, order will refer to lexicographic order.

First we consider the problem of listing all r-combinations of {1, 2, . . . , n}. In
our algorithm, we will list the r-combination {x1, . . . , xr} as the string s1 · · · sr, where
s1 < s2 < · · · < sr and {x1, . . . , xr} = {s1, . . . , sr}. For example, the 3-combination
{6, 2, 4} will be listed as 246.

We will list the r-combinations of {1, 2, . . . , n} in lexicographic order. Thus the
first listed string will be 12 · · · r and the last listed string will be (n− r + 1) · · · n.

Example 4.6 Consider the order in which the 5-combinations of {1, 2, 3, 4, 5, 6, 7} will be listed. The
first string is 12345, which is followed by 12346 and 12347. The next string is 12356,
followed by 12357. The last string will be 34567.

Example 4.7 Find the string that follows 13467 when we list the 5-combinations of X = {1, 2, 3, 4,

5, 6, 7}.
No string that begins 134 and represents a 5-combination of X exceeds 13467.

Thus the string that follows 13467 must begin 135. Since 13567 is the smallest string
that begins 135 and represents a 5-combination of X, the answer is 13567.

Example 4.8 Find the string that follows 2367 when we list the 4-combinations of X={1, 2, 3, 4,

5, 6, 7}.
No string that begins 23 and represents a 4-combination of X exceeds 2367. Thus

the string that follows 2367 must begin 24. Since 2456 is the smallest string that begins
24 and represents a 4-combination of X, the answer is 2456.

A pattern is developing. Given a string α= s1 · · · sr, which represents the
r-combination {s1, . . . , sr}, to find the next string β= t1 · · · tr, we find the rightmost
element sm that is not at its maximum value. (sr may have the maximum value n, sr−1

may have the maximum value n− 1, etc.) Then

ti = si, for i = 1, . . . , m− 1.

The element tm is equal to sm + 1. For the remainder of the string β we have

tm+1 · · · tr = (sm + 2)(sm + 3) · · · .

The algorithm follows.

341

Counting Methods and the Pigeonhole Principle

Algorithm 4.9 Generating Combinations

This algorithm lists all r-combinations of {1, 2, . . . , n} in increasing lexicographic
order.

Input: r, n

Output: All r-combinations of {1, 2, . . . , n} in increasing lexicographic
order

1. combination(r, n) {
2. for i = 1 to r

3. si = i

4. println(s1, . . . , sr) // print the first r-combination
5. for i = 2 to C(n, r) {
6. m = r

7. max val = n

8. while (sm == max val) {
9. // find the rightmost element not at its maximum value

10. m = m− 1
11. max val = max val− 1
12. }
13. // the rightmost element is incremented
14. sm = sm + 1
15. // the rest of the elements are the successors of sm

16. for j = m+ 1 to r

17. sj = sj−1 + 1
18. println(s1, . . . , sr) // print the ith combination
19. }
20. }

Example 4.10 We will show how Algorithm 4.9 generates the 5-combination of {1, 2, 3, 4, 5, 6, 7} that
follows 23467. We are supposing that

s1 = 2, s2 = 3, s3 = 4, s4 = 6, s5 = 7.

At line 13, we find that s3 is the rightmost element not at its maximum value. At line 14,
s3 is set to 5. At lines 16 and 17, s4 is set to 6 and s5 is set to 7. At this point

s1 = 2, s2 = 3, s3 = 5, s4 = 6, s5 = 7.

We have generated the 5-combination 23567, which follows 23467.

Example 4.11 The 4-combinations of {1, 2, 3, 4, 5, 6} as listed by Algorithm 4.9 are

1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346,

1356, 1456, 2345, 2346, 2356, 2456, 3456.

Like the algorithm for generating r-combinations, the algorithm to generate per-
mutations will list the permutations of {1, 2, . . . , n} in lexicographic order. (Exercise 16
asks for an algorithm that generates all r-permutations of an n-element set.)

342

Counting Methods and the Pigeonhole Principle

Example 4.12 To construct the permutation of {1, 2, 3, 4, 5, 6} that follows 163542, we should keep as
many digits as possible at the left the same.

Can the permutation following the given permutation have the form 1635−−? Since
the only permutation of the form 1635−− distinct from the given permutation is 163524,
and 163524 is smaller than 163542, the permutation following the given permutation is
not of the form 1635−−.

Can the permutation following the given permutation have the form 163−−−? The
last three digits must be a permutation of {2, 4, 5}. Since 542 is the largest permutation
of {2, 4, 5}, any permutation that begins 163 is smaller than the given permutation. Thus
the permutation following the given permutation is not of the form 163−−−.

The reason that the permutation following the given permutation cannot begin
1635 or 163 is that in either case the remaining digits in the given permutation (42 and
542, respectively) decrease. Therefore, working from the right, we must find the first
digit d whose right neighbor r satisfies d < r. In our case, the third digit, 3, has this
property. Thus the permutation following the given permutation will begin 16.

The digit following 16 must exceed 3. Since we want the next smallest permuta-
tion, the next digit is 4, the smallest available digit. Thus the desired permutation begins
164. The remaining digits 235 must be in increasing order to achieve the minimum value.
Therefore, the permutation following the given permutation is 164235.

We see that to generate all of the permutations of {1, 2, . . . , n}, we can begin with
the permutation 12 · · · n and then repeatedly use the method of Example 4.12 to generate
the next permutation. We will end when the permutation n(n− 1) · · · 21 is generated.

Example 4.13 Using the method of Example 4.12, we can list the permutations of {1, 2, 3, 4} in lexi-
cographic order as

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143,

2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241,

3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.

The algorithm follows.

Algorithm 4.14 Generating Permutations

This algorithm lists all permutations of {1, 2, . . . , n} in increasing lexicographic
order.

Input: n

Output: All permutations of {1, 2, . . . , n} in increasing lexicographic order

1. permutation(n) {
2. for i = 1 to n

3. si = i

4. println(s1, . . . , sn) // print the first permutation
5. for i = 2 to n! {
6. m = n− 1
7. while (sm > sm+1)

8. // find the first decrease working from the right
9. m = m− 1

10. k = n

343

Counting Methods and the Pigeonhole Principle

11. while (sm > sk)

12. // find the rightmost element sk with sm < sk

13. k = k − 1
14. swap(sm, sk)

15. p = m+ 1
16. q = n

17. while (p < q) {
18. // swap sm+1 and sn, swap sm+2 and sn−1, and so on
19. swap(sp, sq)

20. p = p+ 1
21. q = q− 1
22. }
23. println(s1, . . . , sn) // print the ith permutation
24. }
25. }

Example 4.15 We will show how Algorithm 4.14 generates the permutation that follows 163542. Sup-
pose that

s1 = 1, s2 = 6, s3 = 3, s4 = 5, s5 = 4, s6 = 2

and that we are at line 6. The largest index m satisfying sm < sm+1 is 3. At lines 10–13,
we find that the largest index k satisfying sk > sm is 5. At line 14, we swap sm and sk.
At this point, we have s = 164532. At lines 15–22, we reverse the order of the elements
s4s5s6 = 532. We obtain the desired permutation, 164235.

Section Review Exercises

1. Define lexicographic order.

2. Describe the algorithm for generating r-combinations.

3. Describe the algorithm for generating permutations.

Exercises

In Exercises 1–3, find the r-combination that will be generated by
Algorithm 4.9 with n = 7 after the r-combination given.

1. 1356 2. 12367 3. 14567

In Exercises 4–6, find the permutation that will be generated by
Algorithm 4.14 after the permutation given.

4. 12354 5. 625431 6. 12876543

7. For each string in Exercises 1–3, explain (as in Example 4.10)
exactly how Algorithm 4.9 generates the next r-combination.

8. For each string in Exercises 4–6, explain (as in Exam-
ple 4.15) exactly how Algorithm 4.14 generates the next
permutation.

9. Show the output from Algorithm 4.9 when n = 6 and r = 3.

10. Show the output from Algorithm 4.9 when n = 6 and r = 2.

11. Show the output from Algorithm 4.9 when n = 7 and r = 5.

12. Show the output from Algorithm 4.14 when n = 2.

13. Show the output from Algorithm 4.14 when n = 3.

14. Modify Algorithm 4.9 so that line 5

5. for i = 2 to C(n, r) {

is eliminated. Base the terminating condition on the fact that
the last r-combination has every element si equal to its maxi-
mum value.

15. Modify Algorithm 4.14 so that line 5

5. for i = 2 to n! {

is eliminated. Base the terminating condition on the fact that
the last permutation has the elements si in decreasing order.

16. Write an algorithm that generates all r-permutations of an
n-element set.

17. Write an algorithm whose input is an r-combination of
{1, 2, . . . , n}. The output is the next (in lexicographic

344

Counting Methods and the Pigeonhole Principle

order) r-combination. The first r-combination follows the last
r-combination.

18. Write an algorithm whose input is a permutation of
{1, 2, . . . , n}. The output is the next (in lexicographic order)
permutation. The first permutation follows the last permuta-
tion.

19. Write an algorithm whose input is an r-combination of
{1, 2, . . . , n}. The output is the previous (in lexicographic
order) r-combination. The last r-combination precedes the first
r-combination.

20. Write an algorithm whose input is a permutation of
{1, 2, . . . , n}. The output is the previous (in lexicographic
order) permutation. The last permutation precedes the first per-
mutation.

�21. Write a recursive algorithm that generates all r-combinations
of the set {s1, s2, . . . , sn}. Divide the problem into two sub-
problems:

■ List the r-combinations containing s1.

■ List the r-combinations not containing s1.

22. Write a recursive algorithm that generates all permuta-
tions of the set {s1, s2, . . . , sn}. Divide the problem into n

subproblems:

■ List the permutations that begin with s1.

■ List the permutations that begin with s2.
...

■ List the permutations that begin with sn.

5 ➜ Introduction to Discrete Probability†

Probability was developed in the seventeenth century to analyze games and, in this
earliest form, directly involved counting. For example, suppose that a six-sided fair
die whose sides are labeled 1, 2, 3, 4, 5, 6 is rolled (see Figure 5.1). “Fair” means that
each number is equally likely to appear when the die is rolled. To compute the chance
or probability that an even number appears, we first count how many ways an even
number can appear (three: 2, 4, 6) and how may ways an arbitrary number can appear
(six: 1, 2, 3, 4, 5, 6); then, the probability is the quotient: 3/6 = 1/2. After introducing
some terminology, we will give several examples of computing probabilities.

Figure 5.1 Rolling a fair die. “Fair”
means that each number is equally
likely to appear when the die is rolled.
[Photo by the author. Hand courtesy
of Ben Schneider.]

An experiment is a process that yields an outcome. An event is an outcome or
combination of outcomes from an experiment. The sample space is the event consisting
of all possible outcomes.

Example 5.1 Examples of experiments are

■ Rolling a six-sided die.

■ Randomly selecting five microprocessors from a lot of 1000 microprocessors.

■ Selecting a newborn child at St. Rocco’s Hospital.

†This section can be omitted without loss of continuity.

345

Counting Methods and the Pigeonhole Principle

Examples of events that might occur when the previous experiments are performed are

■ Obtaining a 4 when rolling a six-sided die.

■ Finding no defective microprocessors out of five randomly chosen from a lot
of 1000.

■ Selecting a newborn female child at St. Rocco’s Hospital.

The sample spaces for the previous experiments are

■ The numbers 1, 2, 3, 4, 5, 6—all possible outcomes when a die is rolled.

■ All possible combinations of five microprocessors selected from a lot of 1000
microprocessors.

■ All newborn children at St. Rocco’s Hospital.

If all outcomes in a finite sample space are equally likely, the probability of an event
is defined as the number of outcomes in the event divided by the number of outcomes in
the sample space. In the following section, we will relax the assumption that all outcomes
are equally likely.

Definition 5.2 The probability P(E) of an event E from the finite sample space S is

P(E) = |E||S| .
†

Example 5.3 Two fair dice are rolled. What is the probability that the sum of the numbers on the dice
is 10?

Since the first die can show any one of six numbers and the second die can show
any one of six numbers, by the Multiplication Principle there are 6 · 6 = 36 possible
sums; that is, the size of the sample space is 36. There are three possible ways to obtain
the sum of 10—(4, 6), (5, 5), (6, 4)—that is, the size of the event “obtaining a sum of
10” is 3. [The notation (x, y) means that we obtain x on the first die and y on the second
die.] Therefore, the probability is 3/36 = 1/12.

Example 5.4 Five microprocessors are randomly selected from a lot of 1000 microprocessors among
which 20 are defective. Find the probability of obtaining no defective microprocessors.

There are C(1000, 5) ways to select 5 microprocessors among 1000. There are
C(980, 5) ways to select 5 good microprocessors since there are 1000− 20 = 980 good
microprocessors. Therefore, the probability of obtaining no defective microprocessors is

C(980, 5)

C(1000, 5)
= 980 · 979 · 978 · 977 · 976

1000 · 999 · 998 · 997 · 996
= 0.903735781.

Example 5.5 In the Illinois state lottery Lotto game, to win the grand prize the contestant must match
six distinct numbers, in any order, among the numbers 1 through 52 randomly drawn by
a lottery representative. What is the probability of choosing the winning numbers?

†Recall that |X| is the number of elements in a finite set X.

346

Counting Methods and the Pigeonhole Principle

Six numbers among 52 can be selected in C(52, 6) ways. Since there is one winning
combination, the probability of choosing the winning numbers is

1

C(52, 6)
= 6!

52 · 51 · 50 · 49 · 48 · 47
= 0.000000049.

Example 5.6 A bridge hand consists of 13 cards from an ordinary 52-card deck. Find the probability
of obtaining a 4–4–4–1 distribution, that is, four cards in each of three different suits and
one card of a fourth suit.

There are C(52, 13) bridge hands. The one-card suit can be chosen in 4 ways, and
the card itself can be chosen in 13 ways. Having chosen this card, we must choose four
cards from each of the three remaining suits, which can be done in C(13, 4)3 ways. Thus
there are 4 · 13 · C(13, 4)3 hands with a 4–4–4–1 distribution. Therefore, the probability
of obtaining a 4–4–4–1 distribution is

4 · 13 · C(13, 4)3

C(52, 13)
= 0.03.

Section Review Exercises

1. What is an experiment?

2. What is an event?

3. What is a sample space?

4. If all outcomes in a finite sample space are equally likely, how
is the probability of an event defined?

Exercises

In Exercises 1–4, suppose that a coin is flipped and a die is rolled.

1. List the members of the sample space.

2. List the members of the event “the coin shows a head and the
die shows an even number.”

3. List the members of the event “the die shows an odd number.”

4. List the members of the event “the coin shows a head and the
die shows a number less than 4.”

In Exercises 5–7, two dice are rolled.

5. List the members of the event “the sum of the numbers on the
dice is even.”

6. List the members of the event “doubles occur” (i.e., the num-
bers are the same on both dice).

7. List the members of the event “4 appears on at least one die.”

8. Give an example of an experiment different from those in this
section.

9. Give an example of an event when the experiment of Exercise
8 is performed.

10. What is the sample space for the experiment of Exercise 8?

11. One fair die is rolled. What is the probability of getting a 5?

12. One fair die is rolled. What is the probability of getting an even
number?

13. One fair die is rolled. What is the probability of not getting
a 5?

14. A card is selected at random from an ordinary 52-card deck.
What is the probability that it is the ace of spades?

15. A card is selected at random from an ordinary 52-card deck.
What is the probability that it is a jack?

16. A card is selected at random from an ordinary 52-card deck.
What is the probability that it is a heart?

17. Two fair dice are rolled. What is the probability that the sum
of the numbers on the dice is 9?

18. Two fair dice are rolled. What is the probability that the sum
of the numbers on the dice is odd?

19. Two fair dice are rolled. What is the probability of doubles?

20. Four microprocessors are randomly selected from a lot of 100
microprocessors among which 10 are defective. Find the prob-
ability of obtaining no defective microprocessors.

21. Four microprocessors are randomly selected from a lot of
100 microprocessors among which 10 are defective. Find
the probability of obtaining exactly one defective micropro-
cessor.

22. Four microprocessors are randomly selected from a lot of 100
microprocessors among which 10 are defective. Find the prob-
ability of obtaining at most one defective microprocessor.

347

Counting Methods and the Pigeonhole Principle

23. In the California Daily 3 game, a contestant must select
three numbers among 0 to 9, repetitions allowed. A “straight
play” win requires that the numbers be matched in the exact
order in which they are randomly drawn by a lottery repre-
sentative. What is the probability of choosing the winning
numbers?

24. In the California Daily 3 game, a contestant must select three
numbers among 0 to 9. One type of “box play” win requires
that three distinct numbers match in any order those randomly
drawn by a lottery representative, repetitions allowed. What
is the probability of choosing the winning numbers, assuming
that the contestant chooses three distinct numbers?

25. In the Maryland Lotto game, to win the grand prize the con-
testant must match six distinct numbers, in any order, among
the numbers 1 through 49 randomly drawn by a lottery rep-
resentative. What is the probability of choosing the winning
numbers?

26. In the multi-state Big Game, to win the grand prize the con-
testant must match five distinct numbers, in any order, among
the numbers 1 through 50, and one Big Money Ball number
between 1 and 36, all randomly drawn by a lottery representa-
tive. What is the probability of choosing the winning numbers?

27. In the Maryland Cash In Hand game, to win the grand prize
the contestant must match seven distinct numbers, in any
order, among the numbers 1 through 31 randomly drawn by a
lottery representative. What is the probability of choosing the
winning numbers?

28. Find the probability of obtaining a bridge hand with 5–4–2–2
distribution, that is, five cards in one suit, four cards in another
suit, and two cards in each of the other two suits.

29. Find the probability of obtaining a bridge hand consisting only
of red cards, that is, no spades and no clubs.

Exercises 30–33 concern an unprepared student who takes a
10-question true–false quiz and guesses at the answer to every
question.

30. What is the probability that the student answers every question
correctly?

31. What is the probability that the student answers every question
incorrectly?

32. What is the probability that the student answers exactly one
question correctly?

33. What is the probability that the student answers exactly five
questions correctly?

Exercises 34–36 refer to a small consumer survey in which 10 peo-
ple were asked to choose their favorite cola among Coke, Pepsi,
and RC.

34. If each person chose a cola randomly, what is the probability
that no one chose Coke?

35. If each person chose a cola randomly, what is the probability
that at least one person did not choose Coke?

36. If each person chose a cola randomly, what is the probability
that everyone chose Coke?

37. If five student records are chosen randomly, what is the prob-
ability that they are chosen so that the first record selected has
the lowest grade point average (GPA), the second selected has
the second-lowest GPA, and so on?

Exercises 38–40 concern three persons who each randomly choose
a locker among 12 consecutive lockers.

38. What is the probability that the three lockers chosen are
consecutive?

39. What is the probability that no two lockers are consecutive?

40. What is the probability that at least two of the lockers are
consecutive?

Exercises 41–44 deal with a roulette wheel that has 38 numbers:
18 red, 18 black, a 0, and a 00 (0 and 00 are neither red nor
black). When the wheel is spun, all numbers are equally likely to be
selected.

41. What is the probability that the wheel lands on a black number?

42. What is the probability that the wheel lands on a black number
twice in a row?

43. What is the probability that the wheel lands on 0?

44. What is the probability that the wheel lands on 0 or 00?

Exercises 45–48 concern the Monty Hall problem, in which a con-
testant chooses one of three doors; behind one of the doors is a car,
and behind the other two are goats. After the contestant chooses a
door, the host opens one of the other two doors that hides a goat.
(Because there are two goats, the host can open a door that hides
a goat no matter which door the contestant first chooses.) The host
then gives the contestant the option of abandoning the chosen door
in favor of the still-closed, unchosen door. For each strategy, what
is the probability of winning the car?

45. Stay with the door initially chosen.

46. Make a random decision about whether to stay with the door
initially chosen or switch to the unchosen, unopened door.

47. Switch to the unchosen, unopened door.

48. Suppose that the host forgets which door hides the car and,
after the contestant chooses a door, picks a door at random.
If the door hides a car, the game is over. Assuming that the
host chooses a door that hides a goat, what is the probability
of winning the car for each strategy in Exercises 45–47?

Exercises 49–51 concern a variant of the Monty Hall problem, in
which a contestant chooses one of four doors; behind one of the
doors is a car, and behind the other three are goats. After the con-
testant chooses a door, the host opens one of the other three doors
that hides a goat. The host then gives the contestant the option of
abandoning the chosen door in favor of one of the two still-closed,
unchosen doors. For each strategy, what is the probability of win-
ning the car?

49. Stay with the door initially chosen.

50. Make a random decision about whether to stay with the door
initially chosen or switch to one of the unchosen, unopened
doors.

348

Counting Methods and the Pigeonhole Principle

51. Switch to one of the unchosen, unopened doors. The choice
between the two unchosen, unopened doors is made randomly.

52. In a multiple-choice exam, one question has three choices: A,
B, C. A student chooses A. The teacher then states that choice
C is incorrect. What is the probability of a correct answer if
the student stays with choice A? What is the probability of a
correct answer if the student switches to choice B?

53. Is the following reasoning correct? A county health inspec-
tor told a restaurant offering four-egg quiches that, because
research by the FDA (Food and Drug Administration) shows
that one in four eggs is contaminated with salmonella bacteria,
the restaurant should use only three eggs in each quiche.

54. A two-person game is played in which a fair coin is tossed
until either the sequence HT (heads, tails) or the sequence TT
(tails, tails) appears. If HT appears, the first player wins; if TT
appears, the second player wins. Would you rather be the first
or second player? Explain.

Exercises 55 and 56 refer to 10 identical compact discs that are
randomly given to Mary, Ivan, and Juan.

55. What is the probability that each person receives at least two
compact discs?

56. What is the probability that Ivan receives exactly three com-
pact discs?

6 ➜ Discrete Probability Theory†

In Section 5, we assume that all outcomes are equally likely; that is, if there are n

possible outcomes, the probability of each outcome is 1/n. In general, the outcomes are
not equally likely. For example, a “loaded” die is weighted so that certain numbers are
more likely to appear than others. To handle the case of outcomes that are not equally
likely, we assign a probability P(x) to each outcome x. The values P(x) need not all be
the same. We call P a probability function. Throughout this section, we assume that all
sample spaces are finite.

Definition 6.1 A probability function P assigns to each outcome x in a sample space S a number P(x)

so that

0 ≤ P(x) ≤ 1, for all x ∈ S,

and
∑

x∈S
P(x) = 1.

The first condition guarantees that the probability of an outcome is nonnegative
and at most 1, and the second condition guarantees that the sum of all the probabilities
is 1—that is, that some outcome will occur when the experiment is performed.

Example 6.2 Suppose that a die is loaded so that the numbers 2 through 6 are equally likely to appear,
but that 1 is three times as likely as any other number to appear. To model this situation,
we should have

P(2) = P(3) = P(4) = P(5) = P(6)

and

P(1) = 3P(2).

Since

1 = P(1)+ P(2)+ P(3)+ P(4)+ P(5)+ P(6)

= 3P(2)+ P(2)+ P(2)+ P(2)+ P(2)+ P(2) = 8P(2),

†This section can be omitted without loss of continuity.

349

Counting Methods and the Pigeonhole Principle

we must have P(2) = 1/8. Therefore,

P(2) = P(3) = P(4) = P(5) = P(6) = 1

8
and

P(1) = 3P(2) = 3

8
.

The probability of an event E is defined as the sum of the probabilities of the
outcomes in E.

Definition 6.3 Let E be an event. The probability of E, P(E), is

P(E) =
∑

x∈E
P(x).

Example 6.4 Given the assumptions of Example 6.2, the probability of an odd number is

P(1)+ P(3)+ P(5) = 3

8
+ 1

8
+ 1

8
= 5

8
.

Of course, for a fair die (with equally likely probabilities), the probability of an odd
number is 1/2.

Formulas
We next develop some formulas that are useful in computing probabilities.

Theorem 6.5 Let E be an event. The probability of E, the complement of E, satisfies

P(E)+ P(E) = 1.

Proof Suppose that

E = {x1, . . . , xk}
and

E = {xk+1, . . . , xn}.
Then

P(E) =
k∑

i=1

P(xi) and P(E) =
n∑

i=k+1

P(xi).

Now

P(E)+ P(E) =
k∑

i=1

P(xi)+
n∑

i=k+1

P(xi)

=
n∑

i=1

P(xi) = 1.

The last equality follows from Definition 6.1, which states that the sum of the prob-
abilities of all outcomes equals 1.

350

Counting Methods and the Pigeonhole Principle

Theorem 6.5 is often useful when it is easier to compute P(E) than P(E). After
computing P(E), we may obtain P(E) by subtracting P(E) from 1.

Example 6.6 Five microprocessors are randomly selected from a lot of 1000 microprocessors among
which 20 are defective. In Example 5.4, we found that the probability of obtaining no
defective microprocessors is 0.903735781. By Theorem 6.5, the probability of obtaining
at least one defective microprocessor is

1− 0.903735781 = 0.096264219.

Example 6.7 Birthday Problem

Find the probability that among n persons, at least two people have birthdays on the
same month and date (but not necessarily in the same year). Assume that all months and
dates are equally likely, and ignore February 29 birthdays.

We let E denote the event “at least two persons have the same birthday.” Then
E is the event “no two persons have the same birthday.” As we shall see, it is easier to
compute P(E) than P(E). We can use Theorem 6.5 to obtain the desired probability.

Since all months and dates are equally likely and we are ignoring February 29
birthdays, the size of the sample space is

365n.

The first person’s birthday can occur on any one of 365 days. If no two persons
have the same birthday, the second person’s birthday can occur on any day except the day
of the first person’s birthday. Therefore, the second person’s birthday can occur on any
one of 364 days. Similarly, the third person’s birthday can occur on any one of 363 days.
It follows that the size of the event “no two persons have the same birthday” is

365 · 364 · · · (365− n+ 1).

By Theorem 6.5, the probability that at least two persons have birthdays on the
same month and date is

1− 365 · 364 · · · (365− n+ 1)

365n
.

For n= 22, the probability is 0.475695, and for n= 23, the probability is 0.507297.
Thus if n ≥ 23, the probability is greater than 1/2 that at least two persons have
birthdays on the same month and date. Many persons would guess that n would have to
be considerably larger than 23 for the probability to be greater than 1/2.

If E1 and E2 are events, the event E1∪E2 represents the event E1 or E2 (or both),
and the event E1 ∩ E2 represents the event E1 and E2.

Example 6.8 Among a group of students, some take art and some take computer science. A student
is selected at random. Let A be the event “the student takes art,” and let C be the event
“the student takes computer science.” Then A ∪ C is the event “the student takes art or
computer science or both,” and A ∩ C is the event “the student takes art and computer
science.”

The next theorem gives a formula for the probability of the union of two events.

351

Counting Methods and the Pigeonhole Principle

Theorem 6.9 Let E1 and E2 be events. Then

P(E1 ∪ E2) = P(E1)+ P(E2)− P(E1 ∩ E2).

Proof Let

E1 = {x1, . . . , xi}
E2 = {y1, . . . , yj}

E1 ∩ E2 = {z1, . . . , zk},
and assume that each set element is listed exactly one time per set (see Figure 6.1).
Then in the list

x1, . . . , xi, y1, . . . , yj,

z1, . . . , zk occurs twice. It follows that

P(E1 ∪ E2) =
i∑

t=1

P(xt)+
j∑

t=1

P(yt)−
k∑

t=1

P(zk)

= P(E1)+ P(E2)− P(E1 ∩ E2).

x3

x1 x6

x7 x4 y6

y1

y2

y3

x2 = y4 = z1

x5 = y5 = z2

E1 E2

Figure 6.1 Events E1 and E2. The x’s denote the elements
in E1, the y’s denote the elements in E2, and the z’s denote
the elements in E1 ∩ E2. The z’s are thus found twice: once
among the x’s and again among the y’s.

Example 6.10 Two fair dice are rolled. What is the probability of getting doubles (two dice showing
the same number) or a sum of 6?

We let E1 denote the event “get doubles” and E2 denote the event “get a sum of 6.”
Since doubles can be obtained in six ways,

P(E1) = 6

36
= 1

6
.

Since the sum of 6 can be obtained in five ways [(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)],

P(E2) = 5

36
.

The event E1 ∩ E2 is “get doubles and get a sum of 6.” Since this last event can occur
only one way (by getting a pair of 3s),

P(E1 ∩ E2) = 1

36
.

352

Counting Methods and the Pigeonhole Principle

By Theorem 6.9, the probability of getting doubles or a sum of 6 is

P(E1 ∪ E2) = P(E1)+ P(E2)− P(E1 ∩ E2)

= 1

6
+ 5

36
− 1

36
= 5

18
.

Events E1 and E2 are mutually exclusive if E1 ∩ E2=∅. It follows from Theo-
rem 6.9 that if E1 and E2 are mutually exclusive,

P(E1 ∪ E2) = P(E1)+ P(E2).

Corollary 6.11 If E1 and E2 are mutually exclusive events,

P(E1 ∪ E2) = P(E1)+ P(E2).

Proof Since E1 and E2 are mutually exclusive events, E1 ∩ E2 = ∅. Therefore,
P(E1 ∩ E2) = 0. Theorem 6.9 now gives

P(E1 ∪ E2) = P(E1)+ P(E2)− P(E1 ∩ E2) = P(E1)+ P(E2).

Example 6.12 Two fair dice are rolled. Find the probability of getting doubles or the sum of 5.
We let E1 denote the event “get doubles” and E2 denote the event “get the sum

of 5.” Notice that E1 and E2 are mutually exclusive: You cannot get doubles and the
sum of 5 simultaneously. Since doubles can be obtained in six ways,

P(E1) = 6

36
= 1

6
.

Since the sum of 5 can be obtained in four ways [(1, 4), (2, 3), (3, 2), (4, 1)],

P(E2) = 4

36
= 1

9
.

By Corollary 6.11,

P(E1 ∪ E2) = P(E1)+ P(E2) = 1

6
+ 1

9
= 5

18
.

Conditional Probability
Suppose that we roll two fair dice. The sample space consists of all 36 possible outcomes
with each outcome assigned the value 1/36 (see Figure 6.2). The probability of getting
a sum of 10 is 1/12, the sum of the values of the outcomes that add up to 10.

Let us modify the example slightly. Suppose that we roll two dice and we are told
that at least one die is 5. Now the probability of getting a sum of 10 is no longer 1/12
because we know that one of the outcomes shown shaded in Figure 6.2 has occurred.
Since the 11 outcomes shaded are equally likely, the probability of getting a sum of 10
given that at least one die is 5 is 1/11. A probability given that some event occurred is
called a conditional probability.

We now discuss conditional probabilities in general. We let P(E |F) denote the
probability of E given F . In this situation, F becomes the new sample space. Since the
values of the outcomes in F originally summed to P(F), we change the value of each
outcome in F by dividing it by P(F) so that the reassigned values sum to 1. The outcomes
that satisfy E given that F occurred are precisely the outcomes in E ∩ F . Summing the

353

Counting Methods and the Pigeonhole Principle

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1
1, 2 2, 2 3, 2 4, 2 5, 2 6, 2
1, 3 2, 3 3, 3 4, 3 5, 3 6, 3
1, 4 2, 4 3, 4 4, 4 5, 4 6, 4
1, 5 2, 5 3, 5 4, 5 5, 5 6, 5
1, 6 2, 6 3, 6 4, 6 5, 6 6, 6

Figure 6.2 Rolling two fair dice. Since
each outcome is assigned the value
1/36, the probability of getting a sum of
10 is 1/12. If at least one die shows a 5,
one of the shaded outcomes occurs. The
shaded outcomes become the new
sample space, and each shaded outcome
is reassigned the value 1/11. The
probability of getting a sum of 10 given
that at least one 5 occurs is 1/11.

reassigned values of the outcomes in E ∩ F , we obtain the value of P(E |F):

P(E ∩ F)

P(F)
.

This discussion motivates the following definition.

Definition 6.13 Let E and F be events, and assume that P(F) > 0. The conditional probability of E
given F is

P(E |F) = P(E ∩ F)

P(F)
.

Example 6.14 We use Definition 6.13 to compute the probability of getting a sum of 10, given that at
least one die shows 5, when two fair dice are rolled.

Let E denote the event “getting a sum of 10,” and let F denote the event “at least
one die shows 5.” The event E∩F is “getting a sum of 10 and at least one die shows 5.”
Since only one outcome belongs to E ∩ F ,

P(E ∩ F) = 1

36
.

Since 11 outcomes belong to F (see Figure 6.2),

P(F) = 11

36
.

Therefore,

P(E |F) = P(E ∩ F)

P(F)
=

1

36
11

36

= 1

11
.

Example 6.15 Weather records show that the probability of high barometric pressure is 0.80, and the
probability of rain and high barometric pressure is 0.10. Using Definition 6.13, the

354

Counting Methods and the Pigeonhole Principle

probability of rain given high barometric pressure is

P(R |H) = P(R ∩H)

P(H)
= 0.10

0.80
= 0.125,

where R denotes the event “rain,” and H denotes the event “high barometric pressure.”

Independent Events
If the probability of event E does not depend on event F in the sense that P(E |F) =
P(E), we say that E and F are independent events. By Definition 6.13,

P(E |F) = P(E ∩ F)

P(F)
.

Thus if E and F are independent events,

P(E) = P(E |F) = P(E ∩ F)

P(F)

or

P(E ∩ F) = P(E)P(F).

We take this last equation as the formal definition of independent events.

Definition 6.16 Events E and F are independent if

P(E ∩ F) = P(E)P(F).

Example 6.17 Intuitively, if we flip a fair coin twice, the outcome of the second toss does not depend
on the outcome of the first toss (after all, coins have no memory). For example, if H is
the event “head on first toss,” and T is the event “tail on second toss,” we expect that
events H and T are independent. We use Definition 6.16 to verify that H and T are
indeed independent.

The event H ∩ T is the event “head on first toss and tail on second toss.” Thus
P(H ∩ T) = 1/4. Since P(H) = 1/2 = P(T), we have

P(H ∩ T) = 1

4
=
(

1

2

)(
1

2

)
= P(H)P(T).

Therefore, events H and T are independent.

Example 6.18 Joe and Alicia take a final examination in discrete mathematics. The probability that Joe
passes is 0.70, and the probability that Alicia passes is 0.95. Assuming that the events
“Joe passes” and “Alicia passes” are independent, find the probability that Joe or Alicia,
or both, passes the final exam.

We let J denote the event “Joe passes the final exam” and A denote the event
“Alicia passes the final exam.” We are asked to compute P(J ∪ A).

Theorem 6.9 says that

P(J ∪ A) = P(J)+ P(A)− P(J ∩ A).

Since we are given P(J) and P(A), we need only compute P(J ∩A). Because the events
J and A are independent, Definition 6.16 says that

P(J ∩ A) = P(J)P(A) = (0.70)(0.95) = 0.665.

355

Counting Methods and the Pigeonhole Principle

Therefore,

P(J ∪ A) = P(J)+ P(A)− P(J ∩ A) = 0.70+ 0.95− 0.665 = 0.985.

Pattern Recognition and Bayes’ Theorem
Pattern recognition places items into various classes based on features of the items.
For example, wine might be placed into the classes premium, table wine, and swill based
on features such as acidity and bouquet. One way to perform such a classification uses
probability theory. Given a set of features F , one computes the probability of a class
given F for each class and places the item into the most probable class; that is, the class C

chosen is the one for which P(C |F) is greatest.

Example 6.19 Let R denote class premium, T denote class table wine, and S denote class swill. Suppose
that a particular wine has feature set F and

P(R |F) = 0.2, P(T |F) = 0.5, P(S |F) = 0.3.

Since class table wine has the greatest probability, this wine would be classified as table
wine.

Bayes’ Theorem is useful in computing the probability of a class given a set of
features.

Theorem 6.20 Bayes’ Theorem
Suppose that the possible classes are C1, . . . , Cn. Suppose further that each pair of
classes is mutually exclusive and each item to be classified belongs to one of the
classes. For a feature set F , we have

P(Cj |F) = P(F |Cj)P(Cj)∑n
i=1 P(F |Ci)P(Ci)

.

Proof By Definition 6.13,

P(Cj |F) = P(Cj ∩ F)

P(F)
,

and again by Definition 6.13,

P(F |Cj) = P(F ∩ Cj)

P(Cj)
.

Combining these equations, we obtain

P(Cj |F) = P(Cj ∩ F)

P(F)
= P(F |Cj)P(Cj)

P(F)
.

To complete the proof of Bayes’ Theorem, we need to show that

P(F) =
n∑

i=1

P(F |Ci)P(Ci).

Because each item to be classified belongs to one of the classes, we have

F = (F ∩ C1) ∪ (F ∩ C2) ∪ · · · ∪ (F ∩ Cn).

356

Counting Methods and the Pigeonhole Principle

Since the Ci are pairwise mutually exclusive, the F ∩Ci are also pairwise mutually
exclusive. By Corollary 6.11,

P(F) = P(F ∩ C1)+ P(F ∩ C2)+ · · · + P(F ∩ Cn).

Again by Definition 6.13,

P(F ∩ Ci) = P(F |Ci)P(Ci).

Therefore,

P(F) =
n∑

i=1

P(F |Ci)P(Ci),

and the proof is complete.

Example 6.21 Telemarketing

At the telemarketing firm SellPhone, Dale, Rusty, and Lee make calls. The following
table shows the percentage of calls each caller makes and the percentage of persons who
are annoyed and hang up on each caller:

Caller

Dale Rusty Lee

Percent of calls 40 25 35
Percent of hang-ups 20 55 30

Let D denote the event “Dale made the call,” let R denote the event “Rusty made
the call,” let L denote the event “Lee made the call,” and let H denote the event “the caller
hung up.” Find P(D), P(R), P(L), P(H |D), P(H |R), P(H |L), P(D |H), P(R |H),
P(L |H), and P(H).

Since Dale made 40 percent of the calls,

P(D) = 0.4.

Similarly, from the table we obtain

P(R) = 0.25, P(L) = 0.35.

Given that Dale made the call, the table shows that 20 percent of the persons hung
up; therefore,

P(H |D) = 0.2.

Similarly,

P(H |R) = 0.55, P(H |L) = 0.3.

To compute P(D |H), we use Bayes’ Theorem:

P(D |H) = P(H |D)P(D)

P(H |D)P(D)+ P(H |R)P(R)+ P(H |L)P(L)

= (0.2)(0.4)

(0.2)(0.4)+ (0.55)(0.25)+ (0.3)(0.35)
= 0.248.

357

Counting Methods and the Pigeonhole Principle

A similar computation using Bayes’ Theorem gives

P(R |H) = 0.426.

Again using Bayes’ Theorem or noting that

P(D |H)+ P(R |H)+ P(L |H) = 1,

we obtain

P(L |H) = 0.326.

Finally, the proof of Bayes’ Theorem shows that

P(H) = P(H |D)P(D)+ P(H |R)P(R)+ P(H |L)P(L)

= (0.2)(0.4)+ (0.55)(0.25)+ (0.3)(0.35) = 0.3225.

Our last example of this section was suggested by Steve Jost.

Example 6.22 Detecting the HIV Virus

The enzyme-linked immunosorbent assay (ELISA) test is used to detect antibodies in
blood and can indicate the presence of the HIV virus. Approximately 15 percent of the
patients at one clinic have the HIV virus. Furthermore, among those that have the HIV
virus, approximately 95 percent test positive on the ELISA test. Among those that do
not have the HIV virus, approximately 2 percent test positive on the ELISA test. Find
the probability that a patient has the HIV virus if the ELISA test is positive.

The classes are “has the HIV virus,” which we denote H , and “does not have the
HIV virus” (H). The feature is “tests positive,” which we denote Pos. Using this notation,
the given information may be written

P(H) = 0.15, P(H) = 0.85, P(Pos |H) = 0.95, P(Pos |H) = 0.02.

Bayes’ Theorem gives the desired probability:

P(H |Pos) = P(Pos |H)P(H)

P(Pos |H)P(H)+ P(Pos |H)P(H)

= (0.95)(0.15)

(0.95)(0.15)+ (0.02)(0.85)
= 0.893.

Section Review Exercises

1. What is a probability function?

2. If P is a probability function and all outcomes are equally
likely, what is the value of P(x), where x is an outcome?

3. How is the probability of an event defined?

4. If E is an event, how are P(E) and P(E) related? Explain how
the formula is derived.

5. If E1 and E2 are events, what does the event E1 ∪ E2 repre-
sent?

6. If E1 and E2 are events, what does the event E1 ∩ E2 repre-
sent?

7. If E1 and E2 are events, how are P(E1 ∪ E2), P(E1 ∩ E2),
P(E1), and P(E2) related? Explain how the formula is derived.

8. Explain what it means for two events to be “mutually
exclusive.”

9. Give an example of mutually exclusive events.

10. If E1 and E2 are mutually exclusive events, how are P(E1 ∪
E2), P(E1), and P(E2) related? Explain how the formula is
derived.

11. Give an informal, intuitive description of the meaning of the
event E given F .

358

Counting Methods and the Pigeonhole Principle

12. How is the event E given F denoted?

13. Give a formula for the probability of E given F .

14. Explain what it means for two events to be “independent.”

15. Give an example of independent events.

16. What is pattern recognition?

17. State Bayes’ Theorem. Explain how the formula is derived.

Exercises

Exercises 1–3 refer to Example 6.2 in which a die is loaded so that
the numbers 2 through 6 are equally likely to appear, but 1 is three
times as likely as any other number to appear.

1. One die is rolled. What is the probability of getting a 5?

2. One die is rolled. What is the probability of getting an even
number?

3. One die is rolled. What is the probability of not getting a 5?

Exercises 4–13 refer to dice that are loaded so that the numbers 2,
4, and 6 are equally likely to appear. 1, 3, and 5 are also equally
likely to appear, but 1 is three times as likely as 2 is to appear.

4. One die is rolled. Assign probabilities to the outcomes that
accurately model the likelihood of the various numbers to
appear.

5. One die is rolled. What is the probability of getting a 5?

6. One die is rolled. What is the probability of getting an even
number?

7. One die is rolled. What is the probability of not getting a 5?

8. Two dice are rolled. What is the probability of getting doubles?

9. Two dice are rolled. What is the probability of getting a sum
of 7?

10. Two dice are rolled. What is the probability of getting doubles
or a sum of 6?

11. Two dice are rolled. What is the probability of getting a sum
of 6 given that at least one die shows 2?

12. Two dice are rolled. What is the probability of getting a sum
of 6 or doubles given that at least one die shows 2?

13. Two dice are rolled. What is the probability of getting a sum
of 6 or a sum of 8 given that at least one die shows 2?

In Exercises 14–18, suppose that a coin is flipped and a die is
rolled. Let E1 denote the event “the coin shows a tail,” let E2

denote the event “the die shows a 3,” and let E3 denote the event
“the coin shows heads and the die shows an odd number.”

14. List the elements of the event E1 or E2.

15. List the elements of the event E2 and E3.

16. Are E1 and E2 mutually exclusive?

17. Are E1 and E3 mutually exclusive?

18. Are E2 and E3 mutually exclusive?

19. Six microprocessors are randomly selected from a lot of 100
microprocessors among which 10 are defective. Find the
probability of obtaining no defective microprocessors.

20. Six microprocessors are randomly selected from a lot of 100
microprocessors among which 10 are defective. Find the

probability of obtaining at least one defective microprocessor.

21. Six microprocessors are randomly selected from a lot of 100
microprocessors among which 10 are defective. Find the prob-
ability of obtaining at least three defective microprocessors.

Exercises 22–29 refer to a family with four children. Assume that
it is equally probable for a boy or a girl to be born.

22. What is the probability of all girls?

23. What is the probability of exactly two girls?

24. What is the probability of at least one boy and at least one
girl?

25. What is the probability of all girls given that there is at least
one girl?

26. What is the probability of exactly two girls given that there is
at least one girl?

27. What is the probability of at least one boy and at least one girl
given that there is at least one girl?

28. Are the events “there are children of both sexes” and “there is
at most one boy” independent?

29. Are the events “there is at most one boy” and “there is at most
one girl” independent?

30. A family has n children. Assume that it is equally probable for
a boy or a girl to be born. For which values of n are the events
“there are children of both sexes” and “there is at most one
girl” independent?

Exercises 31–39 refer to a fair coin that is repeatedly flipped.

31. If the coin is flipped 10 times, what is the probability of no
heads?

32. If the coin is flipped 10 times, what is the probability of exactly
five heads?

33. If the coin is flipped 10 times, what is the probability of
“approximately” five heads, that is, exactly four or five or six
heads?

34. If the coin is flipped 10 times, what is the probability of at
least one head?

35. If the coin is flipped 10 times, what is the probability of at
most five heads?

36. If the coin is flipped 10 times, what is the probability of exactly
five heads given at least one head?

37. If the coin is flipped 10 times, what is the probability of
“approximately” five heads, that is, exactly four or five or six
heads given at least one head?

38. If the coin is flipped 10 times, what is the probability of at

359

Counting Methods and the Pigeonhole Principle

least one head given at least one tail?

39. If the coin is flipped 10 times, what is the probability of at
most five heads given at least one head?

40. Find the probability that among n persons, at least two people
have birthdays on April 1 (but not necessarily in the same
year). Assume that all months and dates are equally likely, and
ignore February 29 birthdays.

41. Find the least n such that among n persons, the probability that
at least two persons have birthdays onApril 1 (but not necessar-
ily in the same year) is greater than 1/2.Assume that all months
and dates are equally likely, and ignore February 29 birthdays.

42. Find the probability that among n ≥ 3 persons, at least three
people have birthdays on the same month and date (but not
necessarily in the same year). Assume that all months and
dates are equally likely, and ignore February 29 birthdays.

43. Under the conditions of Exercise 42, find the minimum value of
n for which the probability of at least three people having birth-
days on the same month and date is greater than or equal to 1/2.

44. Suppose that a professional wrestler is selected at random
among 90 wrestlers, where 35 are over 350 pounds, 20 are bad
guys, and 15 are over 350 pounds and bad guys. What is the
probability that the wrestler selected is over 350 pounds or a
bad guy?

45. Suppose that the probability of a person having a headache
is 0.01, that the probability of a person having a fever given
that the person has a headache is 0.4, and that the probability
of a person having a fever is 0.02. Find the probability that a
person has a headache given that the person has a fever.

Exercises 46–49 refer to a company that buys computers from
three vendors and tracks the number of defective machines. The
following table shows the results.

Vendor

Acme DotCom Nuclear

Percent purchased 55 10 35
Percent defective 1 3 3

Let A denote the event “the computer was purchased from Acme,”
let D denote the event “the computer was purchased from Dot-

Com,” let N denote the event “the computer was purchased from
Nuclear,” and let B denote the event “the computer was defective.”

46. Find P(A), P(D), and P(N).

47. Find P(B |A), P(B |D), and P(B |N).

48. Find P(A |B), P(D |B), and P(N |B).

49. Find P(B).

50. In Example 6.22, how small would P(H) have to be so that
the conclusion would be “no HIV” even if the result of the test
is positive?

51. Show that for any events E1 and E2,

P(E1 ∩ E2) ≥ P(E1)+ P(E2)− 1.

52. Use mathematical induction to show that if E1, E2, . . . , En

are events, then

P(E1 ∪ E2 ∪ · · · ∪ En) ≤
n∑

i=1

P(Ei).

53. If E and F are independent events, are E and F independent?

54. If E and F are independent events, are E and F independent?

55. Is the following reasoning correct? Explain.
A person, concerned about the possibility of a bomb on

a plane, estimates the probability of a bomb on a plane to be
0.000001. Not satisfied with the chances, the person computes
the probability of two bombs on a plane to be

0.0000012 = 0.000000000001.

Satisfied with the chances now, the person always carries a
bomb on a plane so that the probability of someone else car-
rying a bomb, and thus there being two bombs on the plane,
is 0.000000000001—small enough to be safe.

56. A track enthusiast decides to try to complete the East-South-
East Marathon. The runner will stop if the marathon is com-
pleted or after three attempts. The probability of completing
the marathon in one attempt is 1/3. Analyze the following
argument that, assuming independence, purportedly shows
that the runner is almost, but not quite, certain to complete the
marathon.

Since the probability of each attempt is 1/3 = 0.3333,
after three attempts the probability of completing the marathon
is 0.9999, which means that the runner is almost, but not quite,
certain to complete the marathon.

7 ➜ Binomial Coefficients and
Combinatorial Identities

At first glance the expression (a+ b)n does not have much to do with combinations; but
as we will see in this section, we can obtain the formula for the expansion of (a + b)n

by using the formula for the number of r-combinations of n objects. Frequently, we
can relate an algebraic expression to some counting process. Several advanced counting
techniques use such methods (see [Riordan; and Tucker]).

360

Counting Methods and the Pigeonhole Principle

TABLE 7.1 ■ Computing (a+ b)3.

Selection from Selection from Selection from
First Factor Second Factor Third Factor Product of

(a+ b) (a+ b) (a+ b) Selections

a a a aaa = a3

a a b aab = a2b

a b a aba = a2b

a b b abb = ab2

b a a baa = a2b

b a b bab = ab2

b b a bba = ab2

b b b bbb = b3

The Binomial Theorem gives a formula for the coefficients in the expansion of
(a+ b)n. Since

(a+ b)n = (a+ b)(a+ b) · · · (a+ b),︸ ︷︷ ︸
n factors

(7.1)

the expansion results from selecting either a or b from each of the n factors, multiplying
the selections together, and then summing all such products obtained. For example, in
the expansion of (a + b)3, we select either a or b from the first factor (a + b); either
a or b from the second factor (a + b); and either a or b from the third factor (a + b);
multiply the selections together; and then sum the products obtained. If we select a from
all factors and multiply, we obtain the term aaa. If we select a from the first factor, b

from the second factor, and a from the third factor and multiply, we obtain the term aba.
Table 7.1 shows all the possibilities. If we sum the products of all the selections, we
obtain

(a+ b)3 = (a+ b)(a+ b)(a+ b)

= aaa+ aab+ aba+ abb+ baa+ bab+ bba+ bbb

= a3 + a2b+ a2b+ ab2 + a2b+ ab2 + ab2 + b3

= a3 + 3a2b+ 3ab2 + b3.

In (7.1), a term of the form an−kbk arises from choosing b from k factors and a

from the other n− k factors. But this can be done in C(n, k) ways, since C(n, k) counts
the number of ways of selecting k things from n items. Thus an−kbk appears C(n, k)

times. It follows that

(a+ b)n = C(n, 0)anb0 + C(n, 1)an−1b1 + C(n, 2)an−2b2

+ · · · + C(n, n− 1)a1bn−1 + C(n, n)a0bn. (7.2)

This result is known as the Binomial Theorem.

Theorem 7.1 Binomial Theorem
If a and b are real numbers and n is a positive integer, then

(a+ b)n =
n∑

k=0

C(n, k)an−kbk.

Proof The proof precedes the statement of the theorem.

361

Counting Methods and the Pigeonhole Principle

The Binomial Theorem can also be proved using induction on n (see Exercise 16).
The numbers C(n, r) are known as binomial coefficients because they appear in

the expansion (7.2) of the binomial a+ b raised to a power.

Example 7.2 Taking n = 3 in Theorem 7.1, we obtain

(a+ b)3 = C(3, 0)a3b0 + C(3, 1)a2b1 + C(3, 2)a1b2 + C(3, 3)a0b3

= a3 + 3a2b+ 3ab2 + b3.

Example 7.3 Expand (3x− 2y)4 using the Binomial Theorem.
If we take a = 3x, b = −2y, and n = 4 in Theorem 7.1, we obtain

(3x− 2y)4 = (a+ b)4

= C(4, 0)a4b0 + C(4, 1)a3b1 + C(4, 2)a2b2

+C(4, 3)a1b3 + C(4, 4)a0b4

= C(4, 0)(3x)4(−2y)0 + C(4, 1)(3x)3(−2y)1

+C(4, 2)(3x)2(−2y)2 + C(4, 3)(3x)1(−2y)3

+C(4, 4)(3x)0(−2y)4

= 34x4 + 4 · 33x3(−2y)+ 6 · 32x2(−2)2y2

+ 4(3x)(−2)3y3 + (−2)4y4

= 81x4 − 216x3y + 216x2y2 − 96xy3 + 16y4.

Example 7.4 Find the coefficient of a5b4 in the expansion of (a+ b)9.
The term involving a5b4 arises in the Binomial Theorem by taking n = 9 and

k = 4:

C(n, k)an−kbk = C(9, 4)a5b4 = 126a5b4.

Thus the coefficient of a5b4 is 126.

1 5 10 10 5 1

1 3 3 1

1 1

1 4 6 4 1

1 2 1

1

Figure 7.1 Pascal’s triangle.

Example 7.5 Find the coefficient of x2y3z4 in the expansion of (x+ y + z)9.
Since

(x+ y + z)9 = (x+ y + z)(x+ y + z) · · · (x+ y + z) (nine terms),

we obtain x2y3z4 each time we multiply together x chosen from two of the nine terms,
y chosen from three of the nine terms, and z chosen from four of the nine terms. We can
choose two terms for the x’s in C(9, 2) ways. Having made this selection, we can choose
three terms for the y’s in C(7, 3) ways. This leaves the remaining four terms for the z’s.
Thus the coefficient of x2y3z4 in the expansion of (x+ y + z)9 is

C(9, 2)C(7, 3) = 9!

2! 7!

7!

3! 4!
= 9!

2! 3! 4!
= 1260.

We can write the binomial coefficients in a triangular form known as Pascal’s
triangle (see Figure 7.1). The border consists of 1’s, and any interior value is the sum of
the two numbers above it. This relationship is stated formally in the next theorem. The
proof is a combinatorial argument. An identity that results from some counting process is
called a combinatorial identity and the argument that leads to its formulation is called
a combinatorial argument.

362

Counting Methods and the Pigeonhole Principle

Theorem 7.6 C(n+ 1, k) = C(n, k − 1)+ C(n, k)

for 1 ≤ k ≤ n.

Proof Let X be a set with n elements. Choose a /∈ X. Then C(n+1, k) is the number
of k-element subsets of Y = X∪ {a}. Now the k-element subsets of Y can be divided
into two disjoint classes:

1. Subsets of Y not containing a.

2. Subsets of Y containing a.

The subsets of class 1 are just k-element subsets of X and there are C(n, k) of these.
Each subset of class 2 consists of a (k − 1)-element subset of X together with a and
there are C(n, k − 1) of these. Therefore,

C(n+ 1, k) = C(n, k − 1)+ C(n, k).

Theorem 7.6 can also be proved using Theorem 2.17 (Exercise 17 of this section).
We conclude by showing how the Binomial Theorem (Theorem 7.1) and

Theorem 7.6 can be used to derive other combinatorial identities.

Example 7.7 Use the Binomial Theorem to derive the equation

n∑

k=0

C(n, k) = 2n. (7.3)

The sum is the same as the sum in the Binomial Theorem,

n∑

k=0

C(n, k)an−kbk,

except that the expression an−kbk is missing. One way to “eliminate” this expression is
to take a = b = 1, in which case the Binomial Theorem becomes

2n = (1+ 1)n =
n∑

k=0

C(n, k)1n−k1k =
n∑

k=0

C(n, k).

Equation (7.3) can also be proved by giving a combinatorial argument. Given an
n-element set X, C(n, k) counts the number of k-element subsets. Thus the right side of
equation (7.3) counts the number of subsets of X. But the number of subsets of X is 2n;
we have reproved equation (7.3).

Example 7.8 Use Theorem 7.6 to show that

n∑

i=k

C(i, k) = C(n+ 1, k + 1). (7.4)

We use Theorem 7.6 in the form

C(i, k) = C(i+ 1, k + 1)− C(i, k + 1)

to obtain

C(k, k)+ C(k + 1, k)+ C(k + 2, k)+ · · · + C(n, k)

363

Counting Methods and the Pigeonhole Principle

= 1+ C(k + 2, k + 1)− C(k + 1, k + 1)+ C(k + 3, k + 1)

−C(k + 2, k + 1)+ · · · + C(n+ 1, k + 1)− C(n, k + 1)

= C(n+ 1, k + 1).

Exercise 48, Section 3, shows another way to prove (7.4).

Example 7.9 Use equation (7.4) to find the sum

1+ 2+ · · · + n.

We may write

1+ 2+ · · · + n = C(1, 1)+ C(2, 1)+ · · · + C(n, 1)

= C(n+ 1, 2) by equation (7.4)

= (n+ 1)n

2
.

Section Review Exercises

1. State the Binomial Theorem.

2. Explain how the Binomial Theorem is derived.

3. What is Pascal’s triangle?

4. State the formulas that can be used to generate Pascal’s triangle.

Exercises

1. Expand (x+ y)4 using the Binomial Theorem.

2. Expand (2c − 3d)5 using the Binomial Theorem.

In Exercises 3–9, find the coefficient of the term when the expression
is expanded.

3. x4y7; (x+ y)11

4. s6t6; (2s− t)12

5. x2y3z5; (x+ y + z)10

6. w2x3y2z5; (2w+ x+ 3y + z)12

7. a2x3; (a+ x+ c)2(a+ x+ d)3

8. a2x3; (a+ ax+ x)(a+ x)4

9. a3x4; (a+√ax+ x)2(a+ x)5

In Exercises 10–12, find the number of terms in the expansion of
each expression.

10. (x+ y + z)10

11. (w+ x+ y + z)12

�12. (x+ y + z)10(w+ x+ y + z)2

13. Find the next row of Pascal’s triangle given the row

1 7 21 35 35 21 7 1.

14. (a) Show thatC(n, k) < C(n, k+1) if and only if k <(n−1)/2.

(b) Use part (a) to deduce that the maximum of C(n, k) for
k = 0, 1, . . . , n is C(n, �n/2).

15. Use the Binomial Theorem to show that

0 =
n∑

k=0

(−1)kC(n, k).

16. Use induction on n to prove the Binomial Theorem.

17. Prove Theorem 7.6 by using Theorem 2.17.

18. Give a combinatorial argument to show that

C(n, k) = C(n, n− k).

�19. Prove equation (7.4) by giving a combinatorial argument.

20. Find the sum

1 · 2+ 2 · 3+ · · · + (n− 1)n.

�21. Use equation (7.4) to derive a formula for

12 + 22 + · · · + n2.

22. Use the Binomial Theorem to show that

n∑

k=0

2kC(n, k) = 3n.

23. Suppose that n is even. Prove that

n/2∑

k=0

C(n, 2k) = 2n−1 =
n/2∑

k=1

C(n, 2k − 1).

364

Counting Methods and the Pigeonhole Principle

24. Prove

(a+ b+ c)n =
∑

0≤i+j≤n

n!

i! j! (n− i− j)!
aibjcn−i−j.

25. Use Exercise 24 to write the expansion of (x+ y + z)3.

26. Prove

3n =
∑

0≤i+j≤n

n!

i! j! (n− i− j)!
.

�27. Give a combinatorial argument to prove that

n∑

k=0

C(n, k)2 = C(2n, n).

28. Prove

n(1+ x)n−1 =
n∑

k=1

C(n, k)kxk−1.

29. Use the result of Exercise 28 to show that

n2n−1 =
n∑

k=1

kC(n, k). (7.5)

�30. Prove equation (7.5) by induction.

31. A smoothing sequence b0, . . . , bk−1 is a (finite) sequence sat-
isfying bi≥ 0 for i = 0, . . . , k − 1, and

∑k−1
i=0 bi = 1. A

smoothing of the (infinite) sequence a1, a2, . . . by the smooth-
ing sequence b0, . . . , bk−1 is the sequence {a′j} defined by

a′j =
k−1∑

i=0

ai+jbi.

The idea is that averaging smooths noisy data.
The binomial smoother of size k is the sequence

B0

2n
, . . . ,

Bk−1

2n
,

where B0, . . . , Bk−1 is row n of Pascal’s triangle (row 0 being
the top row).

Let c0, c1 be the smoothing sequence defined by c0 =
c1= 1/2. Show that if a sequence a is smoothed by c, the
resulting sequence is smoothed by c, and so on k times; then,
the sequence that results can be obtained by one smoothing of
a by the binomial smoother of size k + 1.

32. In Example 1.6 we showed that there are 3n ordered pairs
(A, B) satisfying A⊆B⊆X, where X is an n-element
set. Derive this result by considering the cases |A| = 0,
|A| = 1, . . . , |A| = n, and then using the Binomial Theorem.

33. Show that
n∑

k=m

C(k, m)Hk = C(n+ 1, m+ 1)

(
Hn+1 − 1

m+ 1

)

for all n ≥ m, where Hk , the kth harmonic number, is defined
as

Hk =
k∑

i=1

1

i
.

34. Prove that
n∑

i=1

1

C(n, i)
= n+ 1

2n

n−1∑

i=0

2i

i+ 1
,

for all n ∈ Z+.

35. Prove that(
m

m+ n

)m (n

m+ n

)n

C(m+ n, m) < 1

for all m, n ∈ Z+.

�36. Prove that for all k ∈ Znonneg,
n∑

i=1

ik = nk+1

k + 1
+ Ckn

k + Ck−1n
k−1 + · · · + C1n+ C0,

for all n ∈ Z+.

8 ➜ The Pigeonhole Principle

The Pigeonhole Principle (also known as the Dirichlet Drawer Principle or the Shoe
Box Principle) is sometimes useful in answering the question: Is there an item having
a given property? When the Pigeonhole Principle is successfully applied, the principle
tells us only that the object exists; the principle will not tell us how to find the object or
how many there are.

The first version of the Pigeonhole Principle that we will discuss asserts that if n

pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons
(see Figure 8.1). The reason this statement is true can be seen by arguing by contradiction.
If the conclusion is false, each pigeonhole contains at most one pigeon and, in this case,
we can account for at most k pigeons. Since there are n pigeons and n > k, we have a
contradiction.

365

Counting Methods and the Pigeonhole Principle

Figure 8.1 n = 6 pigeons in k = 4 pigeonholes. Some pigeonhole contains at least
two pigeons.

Pigeonhole Principle
(First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two
pigeons.

We note that the Pigeonhole Principle tells us nothing about how to locate the
pigeonhole that contains two or more pigeons. It only asserts the existence of a pigeonhole
containing two or more pigeons.

To apply the Pigeonhole Principle, we must decide which objects will play the
roles of the pigeons and which objects will play the roles of the pigeonholes. Our first
example illustrates one possibility.

Example 8.1 Ten persons have first names Alice, Bernard, and Charles and last names Lee, McDuff,
and Ng. Show that at least two persons have the same first and last names.

There are nine possible names for the 10 persons. If we think of the persons as
pigeons and the names as pigeonholes, we can consider the assignment of names to
people to be that of assigning pigeonholes to the pigeons. By the Pigeonhole Principle,
some name (pigeonhole) is assigned to at least two persons (pigeons).

We next restate the Pigeonhole Principle in an alternative form.

Pigeonhole Principle
(Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y |, then f(x1) = f(x2)

for some x1, x2 ∈ X, x1 �= x2.

The second form of the Pigeonhole Principle can be reduced to the first form by
letting X be the set of pigeons and Y be the set of pigeonholes. We assign pigeon x

to pigeonhole f(x). By the first form of the Pigeonhole Principle, at least two pigeons,
x1, x2 ∈ X, are assigned to the same pigeonhole; that is, f(x1)= f(x2) for some x1, x2 ∈
X, x1 �= x2.

Our next examples illustrate the use of the second form of the Pigeonhole Principle.

Example 8.2 If 20 processors are interconnected, show that at least two processors are directly con-
nected to the same number of processors.

Designate the processors 1, 2, . . . , 20. Let ai be the number of processors to which
processor i is directly connected. We are to show that ai = aj , for some i �= j. The domain
of the function a is X = {1, 2, . . . , 20} and the range Y is some subset of {0, 1, . . . , 19}.
Unfortunately, |X| = |{0, 1, . . . , 19}| and we cannot immediately use the second form
of the Pigeonhole Principle.

Let us examine the situation more closely. Notice that we cannot have ai = 0, for
some i, and aj = 19, for some j, for then we would have one processor (the ith processor)
not connected to any other processor while, at the same time, some other processor (the

366

Counting Methods and the Pigeonhole Principle

jth processor) is connected to all the other processors (including the ith processor).
Thus the range Y is a subset of either {0, 1, . . . , 18} or {1, 2, . . . , 19}. In either case,
|Y | < 20 = |X|. By the second form of the Pigeonhole Principle, ai = aj , for some
i �= j, as desired.

Example 8.3 Show that if we select 151 distinct computer science courses numbered between 1 and
300 inclusive, at least two are consecutively numbered.

Let the selected course numbers be

c1, c2, . . . , c151. (8.1)

The 302 numbers consisting of (8.1) together with

c1 + 1, c2 + 1, . . . , c151 + 1 (8.2)

range in value between 1 and 301. By the second form of the Pigeonhole Principle,
at least two of these values coincide. The numbers (8.1) are all distinct and hence the
numbers (8.2) are also distinct. It must then be that one of (8.1) and one of (8.2) are
equal. Thus we have

ci = cj + 1

and course ci follows course cj .

Example 8.4 An inventory consists of a list of 89 items, each marked “available” or “unavailable.”
There are 45 available items. Show that there are at least two available items in the list
exactly nine items apart. (For example, available items at positions 13 and 22 or positions
69 and 78 satisfy the condition.)

Let ai denote the position of the ith available item. We must show that ai− aj = 9
for some i and j. Consider the numbers

a1, a2, . . . , a45 (8.3)

and

a1 + 9, a2 + 9, . . . , a45 + 9. (8.4)

The 90 numbers in (8.3) and (8.4) have possible values only from 1 to 89. By the second
form of the Pigeonhole Principle, two of the numbers must coincide. We cannot have
two of (8.3) or two of (8.4) identical; thus some number in (8.3) is equal to some number
in (8.4). Therefore, ai − aj = 9 for some i and j, as desired.

We next state yet another form of the Pigeonhole Principle.

Pigeonhole Principle
(Third Form)

Let f be a function from a finite set X into a finite set Y . Suppose that |X| = n and
|Y | = m. Let k = 	n/m
. Then there are at least k values a1, . . . , ak ∈ X such that

f(a1) = f(a2) = · · · = f(ak).

To prove the third form of the Pigeonhole Principle, we argue by contradiction.
Let Y = {y1, . . . , ym}. Suppose that the conclusion is false. Then there are at most k− 1
values x ∈ X with f(x) = y1; there are at most k− 1 values x ∈ X with f(x) = y2; . . . ;
there are at most k − 1 values x ∈ X with f(x) = ym. Thus there are at most m(k − 1)

members in the domain of f . But

m(k − 1) < m
n

m
= n,

367

Counting Methods and the Pigeonhole Principle

which is a contradiction. Therefore, there are at least k values, a1, . . . , ak ∈ X, such that

f(a1) = f(a2) = · · · = f(ak).

Our last example illustrates the use of the third form of the Pigeonhole Principle.

Example 8.5 A useful feature of black-and-white pictures is the average brightness of the picture. Let
us say that two pictures are similar if their average brightness differs by no more than
some fixed value. Show that among six pictures, there are either three that are mutually
similar or three that are mutually dissimilar.

Denote the pictures P1, P2, . . . , P6. Each of the five pairs

(P1, P2), (P1, P3), (P1, P4), (P1, P5), (P1, P6),

has the value “similar” or “dissimilar.” By the third form of the Pigeonhole Principle,
there are at least 	5/2
 = 3 pairs with the same value; that is, there are three pairs

(P1, Pi), (P1, Pj), (P1, Pk)

all similar or all dissimilar. Suppose that each pair is similar. (The case that each pair is
dissimilar is Exercise 14.) If any pair

(Pi, Pj), (Pi, Pk), (Pj, Pk) (8.5)

is similar, then these two pictures together with P1 are mutually similar and we have
found three mutually similar pictures. Otherwise, each of the pairs (8.5) is dissimilar and
we have found three mutually dissimilar pictures.

Section Review Exercises

1. State three forms of the Pigeonhole Principle. 2. Give an example of the use of each form of the Pigeonhole
Principle.

Exercises

1. Prove that if five cards are chosen from an ordinary 52-card
deck, at least two cards are of the same suit.

2. Prove that among a group of six students, at least two received
the same grade on the final exam. (The grades assigned were
chosen from A, B, C, D, F.)

3. Suppose that each person in a group of 32 people receives a
check in January. Prove that at least two people receive checks
on the same day.

4. Prove that among 35 students in a class, at least two have first
names that start with the same letter.

5. Prove that if f is a function from the finite set X to the finite
set Y and |X| > |Y |, then f is not one-to-one.

6. Suppose that six distinct integers are selected from the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Prove that at least two of the six
have a sum equal to 11. Hint: Consider the partition {1, 10},
{2, 9}, {3, 8}, {4, 7}, {5, 6}.

7. Thirteen persons have first names Dennis, Evita, and
Ferdinand and last names Oh, Pietro, Quine, and

Rostenkowski. Show that at least two persons have the same
first and last names.

8. Eighteen persons have first names Alfie, Ben, and Cissi and
last names Dumont and Elm. Show that at least three persons
have the same first and last names.

9. Professor Euclid is paid every other week on Friday. Show that
in some month she is paid three times.

10. Is it possible to interconnect five processors so that exactly
two processors are directly connected to an identical number
of processors? Explain.

11. An inventory consists of a list of 115 items, each marked “avail-
able” or “unavailable.” There are 60 available items. Show that
there are at least two available items in the list exactly four
items apart.

12. An inventory consists of a list of 100 items, each marked “avail-
able” or “unavailable.” There are 55 available items. Show that
there are at least two available items in the list exactly nine
items apart.

368

Counting Methods and the Pigeonhole Principle

�13. An inventory consists of a list of 80 items, each marked “avail-
able” or “unavailable.” There are 50 available items. Show that
there are at least two unavailable items in the list either three
or six items apart.

14. Complete Example 8.5 by showing that if the pairs (P1, Pi),
(P1, Pj), (P1, Pk) are dissimilar, there are three pictures that
are mutually similar or mutually dissimilar.

15. Does the conclusion to Example 8.5 necessarily follow if there
are fewer than six pictures? Explain.

16. Does the conclusion to Example 8.5 necessarily follow if there
are more than six pictures? Explain.

Answer Exercises 17–20 to give an argument that shows that if X is
any (n+2)-element subset of {1, 2, . . . , 2n+1} and m is the great-
est element in X, there exist distinct i and j in X with m = i+ j.

For each element k ∈ X− {m}, let

ak =

⎧
⎪⎨

⎪⎩

k if k ≤ m

2

m− k if k >
m

2
.

17. How many elements are in the domain of a?

18. Show that the range of a is contained in {1, 2, . . . , n}.
19. Explain why Exercises 17 and 18 imply that ai = aj for some

i �= j.

20. Explain why Exercise 19 implies that there exist distinct i and
j in X with m = i+ j.

21. Give an example of an (n + 1)-element subset X of
{1, 2, . . . , 2n+1} having the property: For no distinct i, j ∈ X

do we have i+ j ∈ X.

Answer Exercises 22–25 to give an argument that proves the
following result.

A sequence a1, a2, . . . , an2+1 of n2 + 1 distinct numbers
contains either an increasing subsequence of length
n+ 1 or a decreasing subsequence of length n+ 1.

Suppose by way of contradiction that every increasing or
decreasing subsequence has length n or less. Let bi be the length
of a longest increasing subsequence starting at ai, and let ci be the
length of a longest decreasing subsequence starting at ai.

22. Show that the ordered pairs (bi, ci), i = 1, . . . , n2 + 1, are
distinct.

23. How many ordered pairs (bi, ci) are there?

24. Explain why 1 ≤ bi ≤ n and 1 ≤ ci ≤ n.

25. What is the contradiction?

Answer Exercises 26–29 to give an argument that shows that in
a group of 10 persons there are at least two such that either the
difference or sum of their ages is divisible by 16. Assume that the
ages are given as whole numbers.

Let a1, . . . , a10 denote the ages. Let ri = ai mod 16 and let

si =
{

ri if ri ≤ 8

16− ri if ri > 8.

26. Show that s1, . . . , s10 range in value from 0 to 8.

27. Explain why sj = sk for some j �= k.

28. Suppose that sj = sk for some j �= k. Explain why if sj = rj
and sk = rk or sj = 16− rj and sk = 16− rk , then 16 divides
aj − ak .

29. Show that if the conditions in Exercise 28 fail, then 16 divides
aj + ak .

30. Show that in the decimal expansion of the quotient of two
integers, eventually some block of digits repeats. Examples:

1

6
= 0.1666 . . . ,

217

660
= 0.32878787

�31. Twelve basketball players, whose uniforms are numbered 1
through 12, stand around the center ring on the court in an
arbitrary arrangement. Show that some three consecutive play-
ers have the sum of their numbers at least 20.

�32. For the situation of Exercise 31, find and prove an estimate for
how large the sum of some four consecutive players’ numbers
must be.

�33. Let f be a one-to-one function from X = {1, 2, . . . , n} onto
X. Let f k = f ◦ f ◦ · · · ◦ f denote the k-fold composition
of f with itself. Show that there are distinct positive integers
i and j such that f i(x) = f j(x) for all x ∈ X. Show that for
some positive integer k, f k(x) = x for all x ∈ X.

�34. A 3 × 7 rectangle is divided into 21 squares each of which is
colored red or black. Prove that the board contains a nontrivial
rectangle (not 1 × k or k × 1) whose four corner squares are
all black or all red.

�35. Prove that if p ones and q zeros are placed around a circle in
an arbitrary manner, where p, q, and k are positive integers
satisfying p ≥ kq, the arrangement must contain at least k

consecutive ones.

�36. Write an algorithm that, given a sequence a, finds the length
of a longest increasing subsequence of a.

37. A 2k × 2k grid is divided into 4k2 squares and four k × k

subgrids. The following figure shows the grid for k = 4:

Show that it is impossible to mark k squares in the upper-left,
k × k subgrid and k squares in the lower-right, k × k subgrid
so that no two marked squares are in the same row, column, or
diagonal of the 2k × 2k grid.

This is a variant of the n-queens problem.

369

Counting Methods and the Pigeonhole Principle

Notes

An elementary book concerning counting methods is [Niven, 1965]. References on com-
binatorics are [Brualdi; Even, 1973; Liu, 1968; Riordan; and Roberts]. [Vilenkin] contains
many worked-out combinatorial examples. [Benjamin] contains an outstanding collection of
combinatorial proofs. The general discrete mathematical references [Liu, 1985; and Tucker]
devote several sections to the topics of this chapter. [Even, 1973; Hu; and Reingold] treat
combinatorial algorithms. References on probability are [Billingsley; Ghahramani; Kelly;
Ross; and Rozanov]. [Fukunaga; Gose; and Nadler] are texts on pattern recognition.

Chapter Review

Section 1
1. Multiplication Principle
2. Addition Principle
3. Inclusion-Exclusion Principle

Section 2
4. Permutation of x1, . . . , xn: ordering of x1, . . . , xn

5. n! = number of permutations of an n-element set
6. r-permutation of x1, . . . , xn: ordering of r elements of

x1, . . . , xn

7. P(n, r): number of r-permutations of an n-element set;

P(n, r) = n(n− 1) · · · (n− r + 1)

8. r-combination of {x1, . . . , xn}: (unordered) subset of
{x1, . . . , xn} containing r elements

9. C(n, r): number of r-combinations of an n-element set;
C(n, r) = P(n, r)/r! = n! / [(n− r)! r!]

Section 3
10. Number of orderings of n items of t types with ni identical

objects of type i = n!/[n1! · · · nt!]
11. Number of unordered, k-element selections from a

t-element set, repetitions allowed = C(k + t − 1, k)

Section 4
12. Lexicographic order
13. Algorithm for generating r-combinations: Algorithm 4.9
14. Algorithm for generating permutations: Algorithm 4.14

Section 5
15. Experiment

16. Event
17. Sample space
18. Probability of an event when all outcomes are equally

likely

Section 6
19. Probability function
20. Probability of an event
21. If E is an event, P(E)+ P(E) = 1.
22. If E1 and E2 are events, P(E1 ∪ E2) = P(E1) + P(E2) −

P(E1 ∩ E2).
23. Events E1 and E2 are mutually exclusive if E1 ∩ E2 = ∅.
24. If events E1 and E2 are mutually exclusive, P(E1 ∪ E2) =

P(E1)+ P(E2).
25. If E and F are events and P(F) > 0, the conditional proba-

bility of E given F is P(E |F) = P(E ∩ F)/P(F).
26. Events E and F are independent if P(E ∩ F) = P(E)P(F).
27. Bayes’Theorem: If the possible classes areC1, . . . , Cn, each

pair of these classes is mutually exclusive, and each item to
be classified belongs to one of these classes, for a feature
set F we have

P(Cj |F) = P(F |Cj)∑n

i=1 P(F |Ci)P(Ci)
.

Section 7
28. Binomial Theorem: (a+ b)n =∑n

k=0 C(n, k)an−kbk

29. Pascal’s triangle: C(n+ 1, k) = C(n, k − 1)+ C(n, k)

Section 8
30. Pigeonhole Principle (three forms)

Chapter Self-Test

Section 1
1. How many eight-bit strings begin with 0 and end with 101?

2. How many ways can we select three books each from a dif-
ferent subject from a set of six distinct history books, nine
distinct classics books, seven distinct law books, and four
distinct education books?

3. How many functions are there from an n-element set onto
{0, 1}?

4. A seven-person committee composed of Greg, Hwang,
Isaac, Jasmine, Kirk, Lynn, and Manuel is to select
a chairperson, vice-chairperson, social events chairper-
son, secretary, and treasurer. How many ways can the

370

Counting Methods and the Pigeonhole Principle

officers be chosen if either Greg is secretary or he is not an
officer?

Section 2
5. How many 3-combinations are there of six objects?

6. How many strings can be formed by ordering the letters
ABCDEF if A appears before C and E appears before C?

7. How many six-card hands chosen from an ordinary 52-
card deck contain three cards of one suit and three cards of
another suit?

8. A shipment of 100 compact discs contains five defective
discs. In how many ways can we select a set of four com-
pact discs that contains more defective than nondefective
discs?

Section 3
9. How many strings can be formed by ordering the letters

ILLINOIS?

10. How many strings can be formed by ordering the letters
ILLINOIS if some I appears before some L?

11. In how many ways can 12 distinct books be divided among
four students if each student gets three books?

12. How many integer solutions of

x1 + x2 + x3 + x4 = 17

satisfy x1 ≥ 0, x2 ≥ 1, x3 ≥ 2, x4 ≥ 3?

Section 4
13. Find the 5-combination that will be generated by

Algorithm 4.9 after 12467 if n = 7.

14. Find the 6-combination that will be generated by Algo-
rithm 4.9 after 145678 if n = 8.

15. Find the permutation that will be generated by
Algorithm 4.14 after 6427135.

16. Find the permutation that will be generated by Algo-
rithm 4.14 after 625431.

Section 5
17. A card is selected at random from an ordinary 52-card deck.

What is the probability that it is a heart?

18. Two fair dice are rolled. What is the probability that the sum
of the numbers on the dice is 8?

19. In the Maryland Cash In Hand game, the contestant chooses
seven distinct numbers among the numbers 1 through 31.
The contestant wins a modest amount ($40) if exactly five
numbers, in any order, match those among the seven distinct
numbers randomly drawn by a lottery representative. What
is the probability of winning $40?

20. Find the probability of obtaining a bridge hand with 6–5–
2–0 distribution, that is, six cards in one suit, five cards in
another suit, two cards in another suit, and no cards in the
fourth suit.

Section 6
21. A coin is loaded so that a head is five times as likely to occur

as a tail.Assign probabilities to the outcomes that accurately
model the likelihood of the outcomes to occur.

22. A family has three children. Assume that it is equally prob-
able for a boy or a girl to be born. Are the events “there
are children of both sexes” and “there is at most one girl”
independent? Explain.

23. Joe and Alicia take a final examination in C++. The prob-
ability that Joe passes is 0.75, and the probability that Ali-
cia passes is 0.80. Assume that the events “Joe passes the
final examination” and “Alicia passes the final examina-
tion” are independent. Find the probability that Joe does
not pass. Find the probability that both pass. Find the prob-
ability that both fail. Find the probability that at least one
passes.

24. Trisha, Roosevelt, and José write programs that schedule
tasks for manufacturing dog toys. The following table shows
the percentage of code written by each person and the per-
centage of buggy code for each person.

Coder

Trisha Roosevelt José

Percent of code 30 45 25
Percent of bugs 3 2 5

Given that a bug was found, find the probability that it was
in the code written by José.

Section 7
25. Expand the expression (s−r)4 using the Binomial Theorem.

26. Find the coefficient of x3yz4 in the expansion of (2x +
y + z)8.

27. Use the Binomial Theorem to prove that

n∑

k=0

2n−k(−1)kC(n, k) = 1.

28. Rotate Pascal’s triangle counterclockwise so that the top
row consists of 1’s. Explain why the second row lists the
positive integers in order 1, 2,

Section 8
29. Show that every set of 15 socks chosen among 14 pairs of

socks contains at least one matched pair.

30. Nineteen persons have first names Zeke, Wally, and Linda;
middle names Lee and David; and last names Yu, Zamora,
and Smith. Show that at least two persons have the same
first, middle, and last names.

371

Counting Methods and the Pigeonhole Principle

31. An inventory consists of a list of 200 items, each marked
“available” or “unavailable.” There are 110 available items.
Show that there are at least two available items in the list
exactly 19 items apart.

32. Let P = {p1, p2, p3, p4, p5} be a set of five (distinct) points
in the ordinary Euclidean plane each of which has integer
coordinates. Show that some pair has a midpoint that has
integer coordinates.

Computer Exercises

1. Write a program that generates all r-combinations of the
elements {1, . . . , n}.

2. Write a program that generates all permutations of the ele-
ments {1, . . . , n}.

3. Write a program that generates all r-permutations of the
elements {1, . . . , n}.

4. [Project] Report on algorithms different from those
presented in this chapter for generating combinations and
permutations. Implement some of these algorithms as pro-
grams.

5. Write a program that lists all permutations of ABCDEF in
which A appears before D.

6. Write a program that lists all permutations of ABCDEF in
which C and E are side by side in either order.

7. Write a program that lists all the ways that m distinct Mar-
tians and n distinct Jovians can wait in line if no two Jovians
stand together.

8. Write a program to compute the Catalan numbers.

9. Write a program that generates Pascal’s triangle to level n,
for arbitrary n.

10. Write a program that finds an increasing or decreasing sub-
sequence of length n + 1 of a sequence of n2 + 1 distinct
numbers.

Hints/Solutions to Selected Exercises

Section 1 Review
1. If an activity can be constructed in t successive steps and step 1

can be done in n1 ways, step 2 can be done in n2 ways, . . . ,

and step t can be done in nt ways, then the number of different
possible activities is n1 · n2 · · · nt . As an example, if there are
two choices for an appetizer and four choices for a main dish,
the total number of dinners is 2 · 4 = 8.

2. Suppose that X1, . . . , Xt are sets and that the ith set Xi has
ni elements. If {X1, . . . , Xt} is a pairwise disjoint family, the
number of possible elements that can be selected from X1 or
X2 or . . . or Xt is n1 + n2 + · · · + nt . As an example, suppose
that within a set of strings, two start with a and four start with
b. Then 2+ 4 = 6 start with either a or b.

3. |X ∪ Y | = |X| + |Y | − |X ∩ Y |. An example of the use of
the Inclusion-Exclusion Principle for two sets is provided by
Example 1.13.

Section 1
1. 2 · 4 4. 8 · 4 · 5 7. 62

10. 6+ 12+ 9 13. m+ n 16. 1+ 1

19. Since there are three kinds of cabs, two kinds of cargo beds,
and five kinds of engines, the correct number of ways to per-
sonalize the big pickups is 3 · 2 · 5 = 30, not 32.

20. 3: (1, 3), (2, 2), (3, 1), where (b, r) means the blue die shows
b and the red die shows r.

23. 6: (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), where (b, r)

means the blue die shows b and the red die shows r.

26. Since each die can show any one of five values, by the Mul-
tiplication Principle there are 5 · 5 outcomes in which neither
die shows 2.

28. 10 · 5 31. 24 34. 8

37. 24. (Once the first four bits are assigned values, the last four
bits are determined.)

38. 5 · 4 · 3 41. 3 · 4 · 3 44. 53

47. 4 · 3 50. 53 − 43 52. 200− 5+ 1

55. 40

58. One one-digit number contains 7. The distinct two-digit
numbers that contain 7 are 17, 27, . . . , 97 and 70, 71, . . . ,

76, 78, 79. There are 18 of these. The distinct three-digit num-
bers that contain 7 are 107 and 1xy, where xy is one of the
two-digit numbers listed above. The answer is 1+ 18+ 19.

61. 5+ (8+ 7+ · · · + 1)+ (7+ 6+ · · · + 1)

64. 10! 67. (3!)(5!)(2!)(3!)

71. 210 74. 214(216 − 2)

77. We count the number of n × n matrices that represent sym-
metric relations on an n-element set. Example 1.7 showed that
there are n2 − n entries off the main diagonal. Of these, half,
(n2 − n)/2, are above the main diagonal. Since there are n

entries on the main diagonal, there are

n2 − n

2
+ n = n2 + n

2

372

Counting Methods and the Pigeonhole Principle

entries on or above the main diagonal. These entries can be
assignedvaluesarbitrarilyandthereare2(n2+n)/2 ways toassign
these values. Because the relation is symmetric, once these val-
ues are assigned, the values below the main diagonal are deter-
mined. (Entry ij is 1 if and only if entry ji is 1.) Therefore there
are 2(n2+n)/2 symmetric relations on an n-element set.

80. We count the number of n×n matrices that represent reflexive
and antisymmetric relations on an n-element set.

Since the relation is reflexive, the main diagonal must
consist of 1’s. For i and j satisfying 1 ≤ i < j ≤ n, we can
assign the entries in row i, column j and row j, column i in
three ways:

Row i, Column j Row j, Column i

0 0
1 0
0 1

Since there are (n2 − n)/2 values of i and j satisfying 1 ≤
i < j ≤ n, we can assign the off-diagonal values in 3(n2−n)/2

ways. Therefore there are 3(n2−n)/2 reflexive and antisymmet-
ric relations on an n-element set.

83. The truth table of an n-variable function has 2n rows since
each variable can be either T or F. Each row of the table
can assign the function the value T or F. Since there are 2n

rows, the function value assignments can be made in 22n

ways. Therefore there are 22n

truth tables for an n-variable
function.

86. By the Inclusion-Exclusion Principle, the total number of pos-
sibilities = number of strings that begin 100+ number of
strings that have the fourth bit 1− number of strings that begin
100 and have the fourth bit 1, so the answer is 25 + 27 − 24.

89. By the Inclusion-Exclusion Principle, the total number of
possibilities = number in which Connie is chairperson +
number in which Alice is an officer − number in which
Connie is chairperson and Alice is an officer, so the answer
is 5 · 4+ 3 · 5 · 4− 2 · 4.

93. Let F be the set of students taking French, let B be the set of
students taking business, and let M be the set of students tak-
ing music. We are given that |F ∩B∩M| = 10, |F ∩B| = 36,
|F ∩ M| = 20, |B ∩ M| = 18, |F | = 65, |B| = 76, and
|M| = 63. By Exercise 92,

|F ∪ B ∪M| = |F | + |B| + |M| − |F ∩ B| − |F ∩M|
− |B ∩M| + |F ∩ B ∩M|

= 65+ 76+ 63− 36− 20− 18+ 10 = 140.

Thus 140 students are taking French or business or music.
Since there are 191 students, 191 − 140 = 51 are not any of
the three courses.

94. Let X be the set of integers between 1 and 10,000 that are mul-
tiples of 3, let Y be the set of integers between 1 and 10,000
that are multiples of 5, and let Z be the set of integers between
1 and 10,000 that are multiples of 11.

A multiple of 3 is of the form 3k for some integer k, so
a multiple of 3 between 1 and 10,000 satisfies

1 ≤ 3k ≤ 10,000.

Dividing by 3, we obtain

0.333 . . . = 1

3
≤ k ≤ 10,000

3
= 3333.333

Thus the multiples of 3 between 1 and 10,000 correspond to the
values k = 1, 2, . . . , 3333. Therefore there are 3333 multiples
of 3 between 1 and 10,000. Similarly, there are 2000 mul-
tiples of 5 between 1 and 10,000 and 909 multiples of 11
between 1 and 10,000. Therefore |X| = 3333, |Y | = 2000,
and |Z| = 909.

A number that is multiple of 3 and 5 is a multiple of
15. Arguing as in the previous paragraph, we find that there
are 666 multiples of 3 and 5 between 1 and 10,000. Similarly,
there are 303 multiples of 3 and 11 between 1 and 10,000, there
are 181 multiples of 5 and 11 between 1 and 10,000, and there
are 60 multiples of 3, 5, and 11 between 1 and 10,000. There-
fore |X ∩ Y | = 666, |X ∩ Z| = 303, |Y ∩ Z| = 181, and
|X ∩ Y ∩ Z| = 60. By Exercise 92,

|X ∪ Y ∪ Z| = |X| + |Y | + |Z| − |X ∩ Y | − |X ∩ Z|
− |Y ∩ Z| + |X ∩ Y ∩ Z|

= 3333+ 2000+ 909− 666− 303− 181

+ 60 = 5152.

Therefore there are 5152 integers between 1 and 10,000 that
are multiples of 3 or 5 or 11 or any combination thereof.

Section 2 Review
1. An ordering of x1, . . . , xn

2. There are n! permutations of an n-element set. There are n

ways to choose the first item, n− 1 ways to choose the second
item, and so on. Therefore, the total number of permutations
is

n(n− 1) · · · 2 · 1 = n!.

3. An ordering of r elements selected from x1, . . . , xn

4. There are n(n − 1) · · · (n − r + 1) r-permutations of an
n-element set. There are n ways to choose the first item,
n − 1 ways to choose the second item, . . . , and n − r + 1
ways to choose the rth element. Therefore, the total number of
r-permutations is

n(n− 1) · · · (n− r + 1).

5. P(n, r)

6. An r-element subset of {x1, . . . , xn}
7. There are

n!

(n− r)!r!

r-combinations of an n-element set.
There are P(n, r) ways to select an r-permutation of

an n-element set. This r-permutation can also be constructed

373

Counting Methods and the Pigeonhole Principle

by first choosing an r-combination [C(n, r) ways] and then
ordering it [r! ways]. Therefore, P(n, r) = C(n, r)r!. Thus

C(n, r) = P(n, r)

r!
= n(n− 1) · · · (n− r + 1)

r!

= n!

(n− r)!r!
.

8. C(n, r)

Section 2
1. 4! = 24

4. abc, acb, bac, bca, cab, cba, abd, adb, bad,

bda, dab, dba, acd, adc, cad, cda, dac, dca,

bcd, bdc, cbd, cdb, dbc, dcb

7. P(11, 3) = 11 · 10 · 9 10. 3!

13. 4! contain the substring AE and 4! contain the substring EA;
therefore, the total number is 2 · 4!.

16. We first count the number N of strings that contain either the
substring AB or the substring BE. The answer to the exercise
will be: Total number of strings −N or 5!−N.

According to Exercise 65, Section 1, the number of
strings that contain AB or BE= number of strings that contain
AB + number of strings that contain BE − number of strings
that contain AB and BE. A string contains AB and BE if and
only if it contains ABE and the number of such strings is 3!.
The number of strings that contain AB = number of strings
that contain BE = 4!. Thus the number of strings that contain
AB or BE is 4!+ 4!− 3!. The solution to the exercise is

5!− (2 · 4!− 3!).

19. 8!P(9, 5) = 8!(9 · 8 · 7 · 6 · 5)

21. 10!

24. Fix a seat for a Jovian. There are 7! arrangements for the
remaining Jovians. For each of these arrangements, we can
place the Martians in five of the eight in-between positions,
which can be done in P(8, 5) ways. Thus there are 7!P(8, 5)

such arrangements.

25. C(4, 3) = 4 28. C(11, 3)

31. C(17, 0)+ C(17, 1)+ C(17, 2)+ C(17, 3)+ 4

33. C(13, 5)

36. A committee that has at most one man has exactly one man
or no men. There are C(6, 1)C(7, 3) committees with exactly
one man. There are C(7, 4) committees with no men. Thus the
answer is C(6, 1)C(7, 3)+ C(7, 4).

39. C(10, 4)C(12, 3)C(4, 2)

42. First, we count the number of eight-bit strings with no two 0’s
in a row. We divide this problem into counting the number of
such strings with exactly eight 1’s, with exactly seven 1’s, and
so on.

There is one eight-bit string with no two 0’s in a row that
has exactly eight 1’s. Suppose that an eight-bit string with no
two 0’s in a row has exactly seven 1’s. The 0 can go in any one
of eight positions; thus there are eight such strings. Suppose

that an eight-bit string with no two 0’s in a row has exactly six
1’s. The two 0’s must go in two of the blanks shown:

1 1 1 1 1 1 ·
Thus the two 0’s can be placed in C(7, 2) ways. Thus there
are C(7, 2) such strings. Similarly, there are C(6, 3) eight-bit
strings with no two 0’s in a row that have exactly five 1’s and
there are C(5, 4) eight-bit strings with no two 0’s in a row that
have exactly four 1’s in a row. If a string has less than four 1’s,
it will have two 0’s in a row. Therefore, the number of eight-bit
strings with no two 0’s in a row is

1+ 8+ C(7, 2)+ C(6, 3)+ C(5, 4).

Since there are 28 eight-bit strings, there are

28 − [1+ 8+ C(7, 2)+ C(6, 3)+ C(5, 4)]

eight-bit strings that contain at least two 0’s in a row.

43. 1 · 48 (The four aces can be chosen in one way and the fifth
card can be chosen in 48 ways.)

46. First, we count the number of hands containing cards in spades
and hearts. Since there are 26 spades and hearts, there are
C(26, 5) ways to select five cards from among these 26. How-
ever, C(13, 5) contain only spades and C(13, 5) contain only
hearts. Therefore, there are

C(26, 5)− 2C(13, 5)

ways to select five cards containing cards in spades and hearts.
Since there are C(4, 2) ways to select two suits, the

number of hands containing cards of exactly two suits is

C(4, 2)[C(26, 5)− 2C(13, 5)].

49. There are nine consecutive patterns: A2345, 23456, 34567,
45678, 56789, 6789T, 789TJ, 89TJQ, 9TJQK. Corresponding
to the four possible suits, there are four ways for each pattern
to occur. Thus there are 9 · 4 hands that are consecutive and of
the same suit.

52. C(52, 13)

55. 1 · C(48, 9) (Select the aces, then select the nine remaining
cards.)

58. There are C(13, 4)C(13, 4)C(13, 4)C(13, 1) hands that con-
tain four spades, four hearts, four diamonds, and one club.
Since there are four ways to select the three suits to have four
cards each, there are 4C(13, 4)3C(13, 1) hands that contain
four cards of three suits and one card of the fourth suit.

60. 210 63. 29 65. C(50, 4)

68. C(50, 4) − C(46, 4) (Total number − number with no defec-
tives)

72. Order the 2n items. The first item can be paired in 2n−1 ways.
The next (not yet selected) item can be paired in 2n− 3 ways,
and so on.

73. A list of votes where Wright is never behind Upshaw and each
receives r votes is a string of r W ’s and r U’s where, reading the
string from left to right, the number of W ’s is always greater
than or equal to the number of U’s. Such a string can also

374

Counting Methods and the Pigeonhole Principle

be considered a path of the type described in Example 2.23,
where W is a move right and U is a move up. Example 2.23
proved that there are Cr such paths. Therefore, the number of
ways the votes can be counted in which Wright is never behind
Upshaw is Cr .

76. By Exercise 75, k vertical steps can occur in C(k, 	k/2
) ways,
since, at any point, the number of up steps is greater than or
equal to the number of down steps. Then, n − k horizontal
steps can be inserted among the k vertical steps in C(n, k)

ways. Since each horizontal step can occur in two ways, the
number of paths containing exactly k vertical steps that never
go strictly below the x-axis is

C(k, 	k/2
)C(n, k)2n−k.

Summing over all k, we find that the total number of paths is
n∑

k=0

C(k, 	k/2
)C(n, k)2n−k.

82. The solution counts ordered hands.

84. Once—when we choose the five slots with 0’s and 1’s for the
remaining slots.

92. Note that
n− i

k − i
≥ n

k
,

for i = 0, 1, . . . , k − 1. Therefore,

C(n, k) = n!

(n− k)!k!
= n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1
= n

k

n− 1

k − 1
· · · n− k + 1

1

≥ n

k

n

k
· · · n

k

=
(

n

k

)k

.

Also,

C(n, k) = n(n− 1) · · · (n− k + 1)

k!
≤ nn · · · n

k!
= nk

k!
.

Section 3 Review
1. n!/(n1! · · · nt!). The formula derives from the Multiplication

Principle. We first assign positions to the n1 items of type 1,
which can be done in C(n, n1) ways. Having made these
assignments, we next assign positions to the n2 items of type 2,
which can be done in C(n−n1, n2) ways, and so on. The num-
ber of orderings is then

C(n, n1)C(n− n1, n2) · · ·C(n− n1 − · · · − nt−1, nt),

which, after applying the formula for C(n, k) and simplifica-
tion, gives n!/(n1! · · · nt!).

2. C(k + t − 1, t − 1). The formula is obtained by considering
k + t − 1 slots and k + t − 1 symbols consisting of k ×’s and
t− 1 |’s. Each placement of these symbols into the slots deter-
mines a selection. The number n1 of×’s between the first and
second | represents n1 copies of the first element in the set. The
number n2 of×’s between the second and third | represents n2

copies of the second element in the set, and so on. Since there
are C(k + t − 1, t − 1) ways to select the positions of the |’s,
there are also C(k + t − 1, t − 1) selections.

Section 3
1. 5!

4. Permute one token with four S’s and other tokens with one
letter each from among ALEPERON , which can be done in
9!/2! ways.

7. C(6+ 6− 1, 6− 1)

10. Each such route can be designated by a string of i X’s, j Y ’s,
and k Z’s, where an X means move one unit in the x-direction,
a Y means move one unit in the y-direction, and a Z means
move one unit in the z-direction. There are

(i+ j + k)!

i!j!k!

such strings.

14. 10!/(5! · 3! · 2!)

15. C(10+ 3− 1, 10) 18. C(9+ 2− 1, 9)

21. Four, since the possibilities are (0, 0), (2, 1), (4, 2), and
(6, 3), where the pair (r, g) designates r red and g green balls.

22. C(15+ 3− 1, 15) 25. C(13+ 2− 1, 13)

28. C(12+ 4− 1, 12)

− [C(7+ 4− 1, 7)+ C(6+ 4− 1, 6)

+ C(3+ 4− 1, 3)+ C(2+ 4− 1, 2)

− C(1+ 4− 1, 1)]

33. 52!/(13!)4 36. C(20, 5) 39. C(20, 5)2

42. C(15+ 6− 1, 15) 45. C(10+ 12− 1, 10)

48. Apply the result of Example 3.9 to the inner k−1 nested loops
of that example. Next, write out the number of iterations for
i1 = 1; then i1 = 2; and so on. By Example 3.9, this sum is
equal to C(k + n− 1, k).

Section 4 Review
1. Let α = s1 · · · sp and β = t1 · · · tq be strings over {1,

2, . . . , n}. Then α is lexicographically less than β if either
p < q and si = ti for all i = 1, . . . , p; or for some i, si �= ti
and for the smallest such i, we have si < ti.

2. Given a string s1 . . . sr , which represents the r-combination
{s1, . . . , sr}, to find the following string t1 . . . tr , find the right-
most element sm that is not at its maximum value. (sr’s max-
imum value is n, sr−1’s maximum value is n − 1, etc.) Then
set ti = si for i = 1, . . . , m − 1; set tm = sm + 1; and
set tm+1 · · · tr = (sm + 2)(sm + 3) · · ·. Begin with the string
12 · · · r.

3. Given a string s, which represents a permutation, to find the
following string, find the rightmost digit d of s whose right
neighbor exceeds d. Find the rightmost element r that satisfies
d < r. Swap d and r. Finally, reverse the substring to the right
of d’s original position. Begin with the string 12 · · · n.

375

Counting Methods and the Pigeonhole Principle

Section 4
1. 1357 4. 12435

7. (For Exercise 1) At lines 8–12, we find the rightmost sm not
at its maximum value. In this case, m = 4. At line 14, we
increment sm. This makes the last digit 7. Since m is the right-
most position, at lines 16 and 17, we do nothing. The next
combination is 1357.

9. 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235,
236, 245, 246, 256, 345, 346, 356, 456

12. 12, 21

14. Input: r, n

Output: A list of all r-combinations of {1, 2, . . . , n} in
increasing lexicographic order

r comb(r, n) {
s0 = −1
for i = 1 to r

si = i

println(s1, . . . , sn)

while (true) {
m = r

max val = n

while (sm == max val) {
m = m− 1
max val = max val− 1

}
if (m == 0)

return
sm = sm + 1
for j = m+ 1 to r

sj = sj−1 + 1
println(s1, . . . , sn)

}
}

17. Input: s1, . . . , sr (an r-combination of {1, . . . , n}),
r, and n

Output: s1, . . . , sr , the next r-combination (The first
r-combination follows the last r-combination.)

next comb(s, r, n) {
s0 = n+ 1 // dummy value
m = r

max val = n

// loop test always fails if m = 0
while (sm == max val) {

// find rightmost element not at its maximum value
m = m− 1
max val = max val− 1

}
if (m == 0) // last r-combination detected

s1 = 0
m = 1

}
// increment rightmost element
sm = sm + 1

// rest of elements are successors of sm
for j = m+ 1 to r

sj = sj−1 + 1
}

19. Input: s1, . . . , sr (an r-combination of {1, . . . , n}),
r, and n

Output: s1, . . . , sr , the previous r-combination (The last
r-combination precedes the first r-combination.)

prev comb(s, r, n) {
s0 = n // dummy value
// find rightmost element at least
// 2 larger than its left neighbor
m = r

// loop test always fails if m = 1
while (sm − sm−1 == 1)

m = m− 1
sm = sm − 1
if (m == 1 ∧ s1 == 0)

m = 0
// set elements to right of index m to max values
for j = m+ 1 to r

sj = n+ j − r

}

21. Input: r, sk, sk+1, . . . , sn, a string α, k, and n

Output: A list of all r-combinations of {sk, sk+1, . . . , sn}
each prefixed by α [To list all r-combinations of
{s1, s2, . . . , sn}, invoke this function as
r comb2(r, s, 1, n, λ), where λ is the null string.]

r comb2(r, s, k, n, α) {
if (r == 0) {

println(α)

return
}
if (k == n) {

println(α, sn)

return
}
β = α+ “ ”+ sk
// print r-combinations containing sk
r comb2(r − 1, s, k + 1, n, β)

// print r-combinations not containing sk
if (r ≤ n− k)

r comb2(r, s, k + 1, n, α)

}

Section 5 Review
1. An experiment is a process that yields an outcome.

2. An event is an outcome or combination of outcomes from an
experiment.

3. The sample space is the event consisting of all possible
outcomes.

4. The number of outcomes in the event divided by the number
of outcomes in the sample space

376

Counting Methods and the Pigeonhole Principle

Section 5
1. (H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2),

(T, 3), (T, 4), (T, 5), (T, 6)

4. (H, 1), (H, 2), (H, 3)

5. (1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3),
(3, 5), (4, 2), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2),
(6, 4), (6, 6)

8. Three dice are rolled. 11. 1/6

14. 1/52 17. 4/36

20. C(90, 4)/C(100, 4)

23. 1/103

26. 1/[C(50, 5) · 36]

28.
4 · C(13, 5) · 3 · C(13, 4)C(13, 2)2

C(52, 13)

30. 1/210

33. C(10, 5)/210

34. 210/310

37. 1/5!

38. 10/C(12, 3) 41. 18/38

44. 2/38 45. 1/3

49. 1/4

52. The possibilities are: A (correct), B (incorrect), C (incorrect);
and A (incorrect), B (incorrect), C (incorrect). In the first case,
if the student stays with A, the answer will be correct; but if
the student switches to B, the answer will be incorrect. In the
second case, if the student stays with A, the answer will be
incorrect; but if the student switches to B, the answer will be
correct. Thus, the probability of a correct answer is 1/2.

55. There are C(10 + 3 − 1, 3 − 1) ways to distribute 10 com-
pact discs to Mary, Ivan, and Juan. If each receives at least
two compact discs, we must distribute the remaining six discs,
and there are C(6 + 3 − 1, 3 − 1) ways to do this. Thus the
probability that each person receives at least two discs is

C(6+ 3− 1, 3− 1)

C(10+ 3− 1, 3− 1)
.

Section 6 Review
1. Aprobability function P assigns to each outcome x in a sample

space S a number P(x) so that

0 ≤ P(x) ≤ 1, for all x ∈ S

and
∑

x∈S
P(x) = 1.

2. P(x) = 1/n, where n is the size of the sample space.

3. The probability of E is

P(E) =
∑

x∈E
P(x).

4. P(E)+ P(E) = 1

5. E1 or E2 (or both)

6. E1 and E2

7. P(E1 ∪E2) = P(E1)+P(E2)−P(E1 ∩E2). P(E1)+P(E2)

equals P(x) for all x ∈ E1 plus P(x) for all x ∈ E2, which is
equal to P(E1)+P(E2), except that P(x), for x ∈ E1 ∩E2, is
counted twice. The formula now follows.

8. Events E1 and E2 are mutually exclusive if E1 ∩ E2 = ∅.

9. If we roll two dice, the events “roll doubles” and “the sum is
odd” are mutually exclusive.

10. P(E1 ∪E2) = P(E1)+P(E2). This formula follows from the
formula of Exercise 7 because P(E1 ∩ E2) = 0.

11. E given F is the event E given that event F occurred.

12. E |F
13. P(E |F) = P(E ∩ F)/P(F)

14. Events E and F are independent if P(E ∩ F) = P(E)P(F).

15. If we roll two dice, the events “get an odd number on the
first die” and “get an even number on the second die” are
independent.

16. Pattern recognition places items into various classes based on
features of the items.

17. Suppose that the possible classes are C1, . . . , Cn. Suppose fur-
ther that each pair of classes is mutually exclusive and each
item to be classified belongs to one of the classes. For a feature
set F , we have

P(Cj |F) = P(F |Cj)P(Cj)∑n

i=1 P(F |Ci)P(Ci)
.

The equation

P(Cj |F) = P(Cj ∩ F)

P(F)
= P(F |Cj)P(Cj)

P(F)

follows from the definition of conditional probability. The
proof is completed by showing that

P(F) =
n∑

i=1

P(F |Ci)P(Ci),

which follows from the fact that each pair of classes is mutu-
ally exclusive and each item to be classified belongs to one of
the classes.

Section 6
1. 1/8

4. P(2) = P(4) = P(6) = 1/12. P(1) = P(3) = P(5) = 3/12.

7. 1− (1/4)

8. 3(1/12)2 + 3(3/12)2

377

Counting Methods and the Pigeonhole Principle

11. Let E denote the event “sum is 6,” and let F denote the event
“at least one die shows 2.” Then

P(E ∩ F) = P((2, 4))+ P((4, 2)) = 2

(
1

12

)2

= 2

144
,

and

P(F) = P((1, 2))+ P((2, 1))+ P((2, 2))+ P((2, 3))

+ P((2, 4))+ P((2, 5))+ P((2, 6))+ P((3, 2))

+ P((4, 2))+ P((5, 2))+ P((6, 2))

=
(

3

12

)(
1

12

)
+
(

1

12

)(
3

12

)
+
(

1

12

)2

+
(

1

12

)(
3

12

)
+
(

1

12

)2

+
(

1

12

)(
3

12

)

+
(

1

12

)2

+
(

3

12

)(
1

12

)
+
(

1

12

)2

+
(

3

12

)(
1

12

)
+
(

1

12

)2

= 23

144
.

Therefore,

P(E |F) = P(E ∩ F)

P(F)
=

2
144
23
144

= 2

23
.

14. (T,1), (T,2), (T,3), (T,4), (T,5), (T,6), (H,3)

17. Yes

19. C(90, 6)/C(100, 6)

22. 1/24

25.
1
24

24−1
24

= 1

15

28. Let E1 denote the event “children of both sexes,” and let E2

denote the event “at most one boy.” Then

P(E1) = 14

16
, P(E2) = 5

16
, and P(E1 ∩ E2) = 4

16
.

Now

P(E1 ∩ E2) = 1

4
�= 35

128
= P(E1)P(E2).

Therefore, the events E1 and E2 are not independent.

31. 1/210

34. 1− (1/210)

37. Let E denote the event “four or five or six heads,” and let F

denote the event “at least one head.” Then

P(E ∩ F) = C(10, 4)

210
+ C(10, 5)

210
+ C(10, 6)

210

= 210+ 252+ 210

210
= 0.65625.

Since P(F) = 1− (1/210) = 0.999023437,

P(E |F) = P(E ∩ F)

P(F)
= 0.65625

0.999023437
= 0.656891495.

40. Let E be the event “at least one person has a birthday on
April 1.” Then E is the event “no one has a birthday on April
1.” Now

P(E) = 1− P(E) = 1− 364 · 364 · · · 364

365 · 365 · · · 365
= 1−

(
364

365

)n

.

44. Let E1 denote the event “over 350 pounds,” and let E2 denote
the event “bad guy.” Then

P(E1 ∪ E2) = P(E1)+ P(E2)− P(E1 ∩ E2)

= 35

90
+ 20

90
− 15

90
= 40

90
.

46. P(A) = 0.55, P(D) = 0.10, P(N) = 0.35

49. P(B) = P(B |A)P(A)+ P(B |D)P(D)+ P(B |N)P(N)

= (0.10)(0.55)+ (0.30)(0.10)+ (0.30)(0.35) = 0.19

50. We require that

P(H |Pos) = 0.5 = (0.95)P(H)

(0.95)P(H)+ (0.02)(1− P(H))
.

Solving for P(H) gives P(H) = .0206.

53. Yes. Suppose that E and F are independent, that is,
P(E)P(F) = P(E ∩ F). Now

P(E)P(F) = (1− P(E))(1− P(F))

= 1− P(E)− P(F)+ P(E)P(F)

= 1− P(E)− P(F)+ P(E ∩ F).

By De Morgan’s law for sets,

E ∩ F = E ∪ F ;
thus,

P(E ∩ F) = P(E ∪ F)

= 1− P(E ∪ F)

= 1− [P(E)+ P(F)− P(E ∩ F)]

= 1− P(E)− P(F)+ P(E ∩ F).

Therefore,

P(E)P(F) = P(E ∩ F),

and E and F are independent.

56. Let Ei be the event “runner completes the marathon on
attempt i.” The error in the reasoning is assuming that P(E2) =
1/3 = P(E3). In fact, P(E2) �= 1/3 �= P(E3) because, if the
runner completes the marathon, it is not run again. Although
P(E1) = 1/3,

P(E2) = P(fail on attempt 1 and succeed on attempt 2)

= P(fail on attempt 1)P(succeed on attempt 2)

= 2

3
· 1

3
= 2

9
.

Similarly,

P(E3) = 2

3
· 2

3
· 1

3
= 4

27
.

378

Counting Methods and the Pigeonhole Principle

Thus, the probability of completing the marathon is

P(E1 ∪ E2 ∪ E3) = P(E1)+ P(E2)+ P(E3)

= 1

3
+ 2

9
+ 4

27
= 19

27
= 0.704,

which means that there is about a 70 percent chance that
the runner will complete the marathon—not exactly a virtual
certainty!

Section 7 Review
1. If a and b are real numbers and n is a positive integer, then

(a+ b)n =
n∑

k=0

C(n, k)an−kbk.

2. In the expansion of

(a+ b)n = (a+ b)(a+ b) · · · (a+ b)︸ ︷︷ ︸
n factors

,

the term an−kbk arises from choosing b from k factors and a

from the other n − k factors, which can be done in C(n, k)

ways. Summing over all k gives the Binomial Theorem.

3. Pascal’s triangle is an arrangement of the binomial coefficients
in triangular form. The border consists of 1’s, and any interior
value is the sum of the two numbers above it:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
...

4. C(n, 0) = C(n, n) = 1, for all n ≥ 0; and C(n + 1, k) =
C(n, k − 1)+ C(n, k), for all 1 ≤ k ≤ n

Section 7
1. x4 + 4x3y + 6x2y2 + 4xy3 + y4

3. C(11, 7)x4y7 6. 5,987,520

9. C(7, 3)+ C(5, 2), since

(a+√ax+ x)2(a+ x)5 = [(a+ x)+√ax]2(a+ x)5

= (a+ x)7 + 2
√

ax(a+ x)6 + ax(a+ x)5.

10. C(10+ 3− 1, 10) 13. 1 8 28 56 70 56 28 8 1

16. [Inductive Step only] Assume that the theorem is true
for n.

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)

n∑

k=0

C(n, k)an−kbk

=
n∑

k=0

C(n, k)an+1−kbk

+
n∑

k=0

C(n, k)an−kbk+1

=
n∑

k=0

C(n, k)an+1−kbk

+
n+1∑

k=1

C(n, k − 1)an+1−kbk

= C(n, 0)an+1b0 +
n∑

k=1

C(n, k)an+1−kbk

+ C(n, n)a0bn+1

+
n∑

k=1

C(n, k − 1)an+1−kbk

= C(n+ 1, 0)an+1b0

+
n∑

k=1

[C(n, k)+ C(n, k − 1)]an+1−kbk

+ C(n+ 1, n+ 1)a0bn+1

= C(n+ 1, 0)an+1b0

+
n∑

k=1

C(n+ 1, k)an+1−kbk

+ C(n+ 1, n+ 1)a0bn+1

=
n+1∑

k=0

C(n+ 1, k)an+1−kbk

19. The number of solutions in nonnegative integers of

x1 + x2 + · · · + xk+2 = n− k

is C(k+ 2+n− k− 1, n− k) = C(n+ 1, k+ 1). The number
of solutions is also the number of solutions C(k+1+n−k−1,

n− k) = C(n, k) with xk+2 = 0 plus the number of solutions

C(k + 1+ n− k − 1− 1, n− k − 1) = C(n− 1, k)

with xk+2 = 1 plus · · · plus the number of solutions C(k +
1 + 0 − 1, 0) = C(k, k) with xk+2 = n − k. The result now
follows.

22. Take a = 1 and b = 2 in the Binomial Theorem.

25. x3 + 3x2y + 3x2z + 3xy2 + 6xyz + 3xz2 + y3 + 3y2z

+ 3yz2 + z3

28. Set a = 1 and b = x and replace n by n − 1 in the Binomial
Theorem to obtain

(1+ x)n−1 =
n−1∑

k=0

C(n− 1, k)xk.

Now multiply by n to obtain

n(1+ x)n−1 = n

n−1∑

k=0

C(n− 1, k)xk

= n

n∑

k=1

C(n− 1, k − 1)xk−1

379

Counting Methods and the Pigeonhole Principle

=
n∑

k=1

n(n− 1)!

(n− k)! (k − 1)!
xk−1

=
n∑

k=1

n!

(n− k)! k!
kxk−1

=
n∑

k=1

C(n, k)kxk−1.

31. The solution is by induction on k. We omit the Basis Step.
Assume that the statement is true for k. After k iterations, we
obtain the sequence defined by

a′j =
k−1∑

i=0

ai+j

Bi

2n
.

Let B′0, . . . , B
′
k denote the row after B0, . . . , Bk−1 in Pascal’s

triangle. Smoothing a′ by c to obtain a′′ yields

a′′j = 1

2
(a′j + a′j+1)

= 1

2n+1

(
k−1∑

i=0

ai+jBi +
k−2∑

i=0

ai+j+1Bi

)

= 1

2n+1

(
ajB0+

k−1∑

i=1

ai+jBi+
k−2∑

i=0

ai+j+1Bi + ak+jBk−1

)

= 1

2n+1

(
ajB0+

k−1∑

i=1

ai+jBi+
k−1∑

i=1

ai+jBi−1 + ak+jBk−1

)

= 1

2n+1

(
ajB
′
0 +

k−1∑

i=1

ai+jB
′
i + ak+jB

′
k

)

= 1

2n+1

k∑

i=0

ai+jB
′
i,

and the Inductive Step is complete.

34. [Inductive Step only] Notice that

C(n+ 1, i)−1 + C(n+ 1, i+ 1)−1 = n+ 2

n+ 1
C(n, i)−1.

Now

n+1∑

i=1

C(n+ 1, i)−1

= 1

2

(
n+1∑

i=1

C(n+ 1, i)−1 +
n∑

i=0

C(n+ 1, i+ 1)−1

)

= 1

2

(
C(n+ 1, 1)−1+ n+ 2

n+ 1

n∑

i=1

C(n, i)−1+ C(n+ 1, n+ 1)−1

)

= 1

2

(
n+ 2

n+ 1
+ n+ 2

2n

n−1∑

i=0

2i

i+ 1

)

= n+ 2

2n+1

n∑

i=0

2i

i+ 1
.

Section 8 Review
1. First Form: If n pigeons fly into k pigeonholes and k < n,

some pigeonhole contains at least two pigeons.
Second Form: If f is a function from a finite set X to

a finite set Y and |X| > |Y |, then f(x1) = f(x2) for some
x1, x2 ∈ X, x1 �= x2.

Third Form: Let f be a function from a finite set X

to a finite set Y . Suppose that |X| = n and |Y | = m. Let
k = 	n/m
. Then there are at least k values a1, . . . , ak ∈ X

such that

f(a1) = f(a2) = · · · = f(ak).

2. First Form: If 20 persons (pigeons) go into six rooms
(pigeonholes), then some room contains at least two persons.

Second Form: In the previous example, let X be the set
of persons, and let Y be the set of rooms. If p is a person,
define a function f by letting f(p) be the room in which per-
son p is located. Then for some distinct persons p1 and p2,
f(p1) = f(p2); that is, the distinct persons p1 and p2 are in
the same room.

Third Form: Let X, Y , and f be as in the last example.
Then there are at least 	20/6
 = 4 persons p1, p2, p3, p4 such
that

f(p1) = f(p2) = f(p3) = f(p4);

that is, there are at least four persons in the same room.

Section 8
1. Let the five cards be the pigeons and the four suits be the

pigeonholes.Assign each card (pigeon) to its suit (pigeonhole).
By the Pigeonhole Principle, some pigeonhole (suit) will con-
tain at least two pigeons (cards), that is, at least two cards are
of the same suit.

4. Let the 35 students be the pigeons and the 24 letters of the
alphabet be the pigeonholes. Assign each student (pigeon) the
first letter of the first name (pigeonhole). By the Pigeonhole
Principle, some pigeonhole (letter) will contain at least two
pigeons (students), that is, at least two students have first names
that start with the same letter.

7. Let the 13 persons be the pigeons and the 12 = 3 · 4 possi-
ble names be the pigeonholes. Assign each person (pigeon)
that person’s name (pigeonhole). By the Pigeonhole Principle,
some pigeonhole (name) will contain at least two pigeons (per-
sons), that is, at least two persons have the same first and last
names.

10. Yes. Connect processors 1 and 2, 2 and 3, 2 and 4, 3 and
4. Processor 5 is not connected to any processors. Now only

380

Counting Methods and the Pigeonhole Principle

processors 3 and 4 are directly connected to the same number
of processors.

13. Let ai denote the position of the ith unavailable item. Consider

a1, . . . , a30; a1+ 3, . . . , a30+ 3; a1+ 6, . . . , a30+ 6.

These 90 numbers range in value from 1 to 86. By the second
form of the Pigeonhole Principle, two of these numbers are the
same. If ai = aj + 3, two are three apart. If ai = aj + 6, two
are six apart. If ai + 3 = aj + 6, two are three apart.

17. n+ 1

18. Suppose that k ≤ m/2. Clearly, k ≥ 1. Since m ≤ 2n+ 1,

k ≤ m

2
≤ n+ 1

2
< n+ 1.

Suppose that k > m/2. Then

m− k < m− m

2
= m

2
< n+ 1.

Because m is the largest element in X, k < m. Thus k+1 ≤ m

and so 1 ≤ m − k. Therefore, the range of a is contained in
{1, . . . , n}.

19. The second form of the Pigeonhole Principle applies.

20. Suppose that ai = aj . Then either i ≤ m/2 and j > m/2 or
j ≤ m/2 and i > m/2. We may assume that i ≤ m/2 and
j > m/2. Now

i+ j = ai +m− aj = m.

30. When we divide a by b, the possible remainders are 0, 1, . . . ,

b− 1. Consider what happens after b divisions.

34. We suppose that the board has three rows and seven columns.
We call two squares in one column that are the same color a
colorful pair. By the Pigeonhole Principle, each column con-
tains at least one colorful pair. Thus the board contains seven
colorful pairs, one in each column. Again by the Pigeonhole
Principle, at least four of these seven colorful pairs are the
same color, say red. Since there are three pairs of rows and
four red colorful pairs, a third application of the Pigeonhole
Principle shows that at least two columns contain red color-
ful pairs in the same rows. These colorful pairs determine a
rectangle whose four corner squares are red.

37. Suppose that it is possible to mark k squares in the upper-left
k × k subgrid and k squares in the lower-right k × k subgrid
so that no two marked squares are in the same row, column, or
diagonal of the 2k × 2k grid. Then the 2k marked squares are
contained in 2k− 1 diagonals. One diagonal begins at the top
left square and runs to the bottom right square; k−1 diagonals
begin at the k − 1 squares immediately to the right of the top
left square and run parallel to the first diagonal described; and
k− 1 diagonals begin at the k− 1 squares immediately under
the top left square and run parallel to the others described. By
the first form of the Pigeonhole Principle, some diagonal con-
tains two marked squares. This contradiction shows that it is
impossible to mark k squares in the upper-left k × k subgrid
and k squares in the lower-right k × k subgrid so that no two
marked squares are in the same row, column, or diagonal of
the 2k × 2k grid.

Chapter Self-Test
1. 24

2. 6 · 9 · 7+ 6 · 9 · 4+ 6 · 7 · 4+ 9 · 7 · 4

3. 2n − 2

4. 6 · 5 · 4 · 3+ 6 · 5 · 4 · 3 · 2

5. 6!/(3! 3!) = 20

6. We construct the strings by a three-step process. First, we
choose positions for A, C, and E [C(6, 3) ways]. Next, we
place A, C, and E in these positions. We can place C one way
(last), and we can place A and E two ways (AE or EA). Finally,
we place the remaining three letters (3! ways). Therefore, the
total number of strings is C(6, 3) · 2 · 3!.

7. Two suits can be chosen in C(4, 2) ways. We can choose three
cards of one suit in C(13, 3) ways and we can choose three
cards of the other suit in C(13, 3) ways. Therefore, the total
number of hands is C(4, 2)C(13, 3)2.

8. We must select either three or four defective discs. Thus the
total number of selections is C(5, 3)C(95, 1)+ C(5, 4).

9. 8!/(3!2!)

10. We count the number of strings in which no I appears before
any L and then subtract from the total number of strings.

We construct strings in which no I appears before any
L by a two-step process. First, we choose positions for N, O,
and S; then we place the I’s and L’s. We can choose positions
for N, O, and S in 8 · 7 · 6 ways. The I’s and L’s can then be
placed in only one way because the L’s must come first. Thus
there are 8 · 7 · 6 strings in which no I appears before any L.

Exercise 9 shows that there are 8!/(3! 2!) strings formed
by ordering the letters ILLINOIS. Therefore, there are

8!

3! 2!
− 8 · 7 · 6

strings formed by ordering the letters ILLINOIS in which some
I appears before some L.

11. 12!/(3!)4

12. C(11+ 4− 1, 4− 1)

13. 12567

14. 234567

15. 6427153

16. 631245

17. 1/4

18. 5/36

19.
C(7, 5)C(31− 7, 2)

C(31, 7)
= 21 · 276

2629575
= 0.002204158

20.
4 · C(13, 6) · 3 · C(13, 5) · 2 · C(13, 2)

C(52, 13)

21. P(H) = 5/6, P(T) = 1/6

22. Let S denote the event “children of both sexes,” and let G

denote the event “at most one girl.” Then

P(S) = 6

8
= 3

4

381

Counting Methods and the Pigeonhole Principle

P(G) = 4

8
= 1

2

P(S ∩G) = 3

8
.

Therefore,

P(S)P(G) = 3

4
· 1

2
= 3

8
= P(S ∩G),

and S and G are independent.

23. Let J denote the event “Joe passes,” and let A denote the event
“Alicia passes.” Then

P(Joe fails) = P(J) = 1− P(J) = 0.25

P(both pass) = P(J ∩ A) = P(J)P(A)

= (0.75)(0.80) = 0.6

P(both fail) = P(J ∩ A) = P(J ∪ A)

= 1− P(J ∪ A)

= 1− [P(J)+ P(A)− P(J ∩ A)]

= 1− [0.75+ 0.80− 0.6] = 0.05

P(at least one passes) = 1− P(both fail)

= 1− 0.05 = 0.95.

24. Let B denote the event “bug present,” and let T , R, and J

denote the events “Trisha (respectively, Roosevelt, José) wrote
the program.” Then

P(J |B) = P(B | J)P(J)

P(B | J)P(J)+ P(B | T)P(T)+ P(B |R)P(R)

= (0.05)(0.25)

(0.05)(0.25)+ (0.03)(0.30)+ (0.02)(0.45)

= 0.409836065.

25. (s− r)4 = C(4, 0)s4 + C(4, 1)s3(−r)+ C(4, 2)s2(−r)2

+ C(4, 3)s(−r)3 + C(4, 4)(−r)4

= s4 − 4s3r + 6s2r2 − 4sr3 + r4

26. 23 · 8!/(3! 1! 4!)

27. If we set a = 2 and b = −1 in the Binomial Theorem, we
obtain

1 = 1n = [2+ (−1)]n =
n∑

k=0

C(n, k)2n−k(−1)k.

28. C(n, 1) = n

29. Let the 15 individual socks be the pigeons and let the 14 types
of pairs be the pigeonholes. Assign each sock (pigeon) to its
type (pigeonhole). By the Pigeonhole Principle, some pigeon-
hole will contain at least two pigeons (the matched socks).

30. There are 3 · 2 · 3 = 18 possible names for the 19 persons.
We can consider the assignment of names to people to be that
of assigning pigeonholes to the pigeons. By the Pigeonhole
Principle, some name is assigned to at least two persons.

31. Let ai denote the position of the ith available item. The 220
numbers

a1, . . . , a110; a1 + 19, . . . , a110 + 19

range from 1 to 219. By the Pigeonhole Principle, two are the
same.

32. Each point has an x-coordinate that is either even or odd and
a y-coordinate that is either even or odd. Since there are four
possibilities and there are five points, by the Pigeonhole Prin-
ciple at least two points, pi = (xi, yi) and pj = (xj, yj) have

■ Both xi and xj even or both xi and xj odd.

and

■ Both yi and yj even or both yi and yj odd.

Therefore, xi + xj is even and yi + yj is even. In particular,
(xi+ xj)/2 and (yi+ yj)/2 are integers. Thus the midpoint of
the pair pi and pj has integer coordinates.

382

Recurrence
Relations

1 Introduction
2 Solving Recurrence

Relations
Problem-Solving Corner:
Recurrence Relations

3 Applications to the
Analysis of Algorithms
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

You want to tell me now?

Tell you what?

What it is you’re trying to find out. You know, it’s a funny
thing. You’re trying to find out what your father hired me
to find out and I’m trying to find out why you want to
find out.

You could go on forever, couldn’t you?

FROM THE BIG SLEEP

This chapter offers an introduction to recurrence relations. Recurrence relations are
useful in certain counting problems. A recurrence relation relates the nth element of a
sequence to its predecessors. Because recurrence relations are closely related to recursive
algorithms, recurrence relations arise naturally in the analysis of recursive algorithms.

1 ➜ Introduction

Consider the following instructions for generating a sequence:

1. Start with 5.

2. Given any term, add 3 to get the next term.

If we list the terms of the sequence, we obtain

5, 8, 11, 14, 17, (1.1)

The first term is 5 because of instruction 1. The second term is 8 because instruction 2
says to add 3 to 5 to get the next term, 8. The third term is 11 because instruction 2 says
to add 3 to 8 to get the next term, 11. By following instructions 1 and 2, we can compute
any term in the sequence. Instructions 1 and 2 do not give an explicit formula for the
nth term of the sequence in the sense of providing a formula that we can “plug n into”
to obtain the value of the nth term, but by computing term by term we can eventually
compute any term of the sequence.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

383

Recurrence Relations

If we denote the sequence (1.1) as a1, a2, . . . , we may rephrase instruction 1 as

a1 = 5 (1.2)

and we may rephrase instruction 2 as

an = an−1 + 3, n ≥ 2. (1.3)

Taking n = 2 in (1.3), we obtain

a2 = a1 + 3.

By (1.2), a1 = 5; thus

a2 = a1 + 3 = 5+ 3 = 8.

Taking n = 3 in (1.3), we obtain

a3 = a2 + 3.

Since a2 = 8,

a3 = a2 + 3 = 8+ 3 = 11.

By using (1.2) and (1.3), we can compute any term in the sequence just as we did using
instructions 1 and 2. We see that (1.2) and (1.3) are equivalent to instructions 1 and 2.

Equation (1.3) furnishes an example of a recurrence relation. A recurrence rela-
tion defines a sequence by giving the nth value in terms of certain of its predecessors. In
(1.3) the nth value is given in terms of the immediately preceding value. In order for a
recurrence relation such as (1.3) to define a sequence, a “start-up” value or values, such
as (1.2), must be given. These start-up values are called initial conditions. The formal
definitions follow.

Definition 1.1 A recurrence relation for the sequence a0, a1, . . . is an equation that relates an to certain
of its predecessors a0, a1, . . . , an−1.

Initial conditions for the sequence a0, a1, . . . are explicitly given values for a finite
number of the terms of the sequence.

We have seen that it is possible to define a sequence by a recurrence relation
together with certain initial conditions. Next we give several examples of recurrence
relations.

Example 1.2 The Fibonacci sequence is defined by the recurrence relation

fn = fn−1 + fn−2, n ≥ 3,

and initial conditions

f1 = 1, f2 = 1.

Example 1.3 A person invests $1000 at 12 percent interest compounded annually. If An represents the
amount at the end of n years, find a recurrence relation and initial conditions that define
the sequence {An}.

384

Recurrence Relations

At the end of n− 1 years, the amount is An−1. After one more year, we will have
the amount An−1 plus the interest. Thus

An = An−1 + (0.12)An−1 = (1.12)An−1, n ≥ 1. (1.4)

To apply this recurrence relation for n = 1, we need to know the value of A0.
Since A0 is the beginning amount, we have the initial condition

A0 = 1000. (1.5)

The initial condition (1.5) and the recurrence relation (1.4) allow us to compute
the value of An for any n. For example,

A3 = (1.12)A2 = (1.12)(1.12)A1

= (1.12)(1.12)(1.12)A0 = (1.12)3(1000) = 1404.93. (1.6)

Thus, at the end of the third year, the amount is $1404.93.
The computation (1.6) can be carried out for an arbitrary value of n to obtain

An = (1.12)An−1

...

= (1.12)n(1000).

We see that sometimes an explicit formula can be derived from a recurrence relation
and initial conditions. Finding explicit formulas from recurrence relations is the topic of
Section 2.

Although it is easy to obtain an explicit formula from the recurrence relation and
initial condition for the sequence of Example 1.3, it is not immediately apparent how to
obtain an explicit formula for the Fibonacci sequence. In Section 2 we give a method
that yields an explicit formula for the Fibonacci sequence.

Recurrence relations, recursive algorithms, and mathematical induction are closely
related. In all three, prior instances of the current case are assumed known. A recur-
rence relation uses prior values in a sequence to compute the current value. A recursive
algorithm uses smaller instances of the current input to process the current input. The
inductive step in a proof by mathematical induction assumes the truth of prior instances
of the statement to prove the truth of the current statement.

A recurrence relation that defines a sequence can be directly converted to an algo-
rithm to compute the sequence. For example, Algorithm 1.4, derived from recurrence
relation (1.4) and initial condition (1.5), computes the sequence of Example 1.3.

Algorithm 1.4 Computing Compound Interest

This recursive algorithm computes the amount of money at the end ofnyears assuming
an initial amount of $1000 and an interest rate of 12 percent compounded annually.

Input: n, the number of years

Output: The amount of money at the end of n years

1. compound interest(n) {
2. if (n == 0)

3. return 1000
4. return 1.12 ∗ compound interest(n− 1)

5. }

385

Recurrence Relations

Algorithm 1.4 is a direct translation of equations (1.4) and (1.5), which define the
sequence A0, A1, Lines 2 and 3 correspond to initial condition (1.5), and line 4
corresponds to recurrence relation (1.4).

Example 1.5 Let Sn denote the number of subsets of an n-element set. Since going from an (n− 1)-
element set to an n-element set doubles the number of subsets, we obtain the recurrence
relation

Sn = 2Sn−1.

The initial condition is

S0 = 1.

One of the main reasons for using recurrence relations is that sometimes it is easier
to determine the nth term of a sequence in terms of its predecessors than it is to find
an explicit formula for the nth term in terms of n. The next examples are intended to
illustrate this thesis.

Example 1.6 Let Sn denote the number of n-bit strings that do not contain the pattern 111. Develop a
recurrence relation for S1, S2, . . . and initial conditions that define the sequence S.

We will count the number of n-bit strings that do not contain the pattern 111

(a) that begin with 0;

(b) that begin with 10;

(c) that begin with 11.

Since the sets of strings of types (a), (b), and (c) are disjoint, by the Addition Principle
Sn will equal the sum of the numbers of strings of types (a), (b), and (c). Suppose that
an n-bit string begins with 0 and does not contain the pattern 111. Then the (n− 1)-bit
string following the initial 0 does not contain the pattern 111. Since any (n−1)-bit string
not containing 111 can follow the initial 0, there are Sn−1 strings of type (a). If an n-bit
string begins with 10 and does not contain the pattern 111, then the (n − 2)-bit string
following the initial 10 cannot contain the pattern 111; therefore, there are Sn−2 strings
of type (b). If an n-bit string begins with 11 and does not contain the pattern 111, then
the third bit must be 0. The (n − 3)-bit string following the initial 110 cannot contain
the pattern 111; therefore, there are Sn−3 strings of type (c). Thus

Sn = Sn−1 + Sn−2 + Sn−3, n ≥ 4.

By inspection, we find the initial conditions

S1 = 2, S2 = 4, S3 = 7.

Example 1.7 Recall that the Catalan number Cn is equal to the number of routes from the lower-left
corner of an n× n square grid to the upper-right corner if we are restricted to traveling
only to the right or upward and if we are allowed to touch but not go above a diagonal
line from the lower-left corner to the upper-right corner. We call such a route a good
route. We give a recurrence relation for the Catalan numbers.

We divide the good routes into classes based on when they first meet the diagonal
after leaving the lower-left corner. For example, the route in Figure 1.1 first meets the
diagonal at point (3, 3). We regard the routes that first meet the diagonal at (k, k) as
constructed by a two-step process: First, construct the part from (0, 0) to (k, k). Second,
construct the part from (k, k) to (n, n). A good route always leaves (0, 0) by moving
right to (1, 0) and it always arrives at (k, k) by moving up from (k, k − 1). The moves

386

Recurrence Relations

y

xx

y

Figure 1.1 Decomposition of a good route.

from (1, 0) to (k, k − 1) give a good route in the (k − 1) × (k − 1) grid with corners
at (1, 0), (1, k − 1), (k, k − 1), and (k, 0). [In Figure 1.1, we marked the points (1, 0)
and (k, k − 1), k = 3, with diamonds, and we isolated the (k − 1) × (k − 1) subgrid.]
Thus there are Ck−1 routes from (0, 0) to (k, k) that first meet the diagonal at (k, k).
The part from (k, k) to (n, n) is a good route in the (n− k)× (n− k) grid with corners
at (k, k), (k, n), (n, n), and (n, k) (see Figure 1.1). There are Cn−k such routes. By the
Multiplication Principle, there are Ck−1Cn−k good routes in an n × n grid that first
meet the diagonal at (k, k). The good routes that first meet the diagonal at (k, k) are
distinct from those that first meet the diagonal at (k′, k′), k �= k′. Thus we may use the
Addition Principle to obtain a recurrence relation for the total number of good routes in
an n× n grid:

Cn =
n∑

k=1

Ck−1Cn−k.

Example 1.8 Tower of Hanoi

The Tower of Hanoi is a puzzle consisting of three pegs mounted on a board and n disks
of various sizes with holes in their centers (see Figure 1.2). It is assumed that if a disk
is on a peg, only a disk of smaller diameter can be placed on top of the first disk. Given
all the disks stacked on one peg as in Figure 1.2, the problem is to transfer the disks to
another peg by moving one disk at a time.

We will provide a solution and then find a recurrence relation and an initial con-
dition for the sequence c1, c2, . . . , where cn denotes the number of moves our solution

1 2 3

Figure 1.2 Tower of Hanoi.

387

Recurrence Relations

1 32

Figure 1.3 After recursively moving the top n− 1 disks from peg 1 to peg 2
in the Tower of Hanoi.

takes to solve the n-disk puzzle. We will then show that our solution is optimal; that is,
we will show that no other solution uses fewer moves.

We give a recursive algorithm. If there is only one disk, we simply move it to the
desired peg. If we have n > 1 disks on peg 1 as in Figure 1.2, we begin by recursively
invoking our algorithm to move the top n − 1 disks to peg 2 (see Figure 1.3). During
these moves, the bottom disk on peg 1 stays fixed. Next, we move the remaining disk
on peg 1 to peg 3. Finally, we again recursively invoke our algorithm to move the n− 1
disks on peg 2 to peg 3. We have succeeded in moving n disks from peg 1 to peg 3.

If n > 1, we solve the (n − 1)-disk problem twice and we explicitly move one
disk. Therefore,

cn = 2cn−1 + 1, n > 1.

The initial condition is

c1 = 1.

In Section 2, we will show that cn = 2n − 1.

We next show that our solution is optimal. We let dn be the number of moves an
optimal solution requires. We use mathematical induction to show that

cn = dn, n ≥ 1. (1.7)

Basis Step (n = 1)
By inspection,

c1 = 1 = d1;
thus (1.7) is true when n = 1.

Inductive Step
Assume that (1.7) is true for n−1. Consider the point in an optimal solution to the n-disk
problem when the largest disk is moved for the first time. The largest disk must be on a
peg by itself (so that it can be removed from the peg) and another peg must be empty (so
that this peg can receive the largest disk). Thus the n− 1 smaller disks must be stacked
on a third peg (see Figure 1.3). In other words, the (n− 1) disk problem must have been
solved, which required at least dn−1 moves. The largest disk was then moved, which
required one additional move. Finally, at some point the n− 1 disks were moved on top
of the largest disk, which required at least dn−1 additional moves. It follows that

dn ≥ 2dn−1 + 1.

388

Recurrence Relations

By the inductive assumption, cn−1 = dn−1. Thus

dn ≥ 2dn−1 + 1 = 2cn−1 + 1 = cn. (1.8)

The last equality follows from the recurrence relation for the sequence c1, c2, By
definition, no solution can take fewer moves than an optimal solution, so

cn ≥ dn. (1.9)

Inequalities (1.8) and (1.9) combine to give

cn = dn.

The inductive step is complete. Therefore, our solution is optimal.

The Tower of Hanoi puzzle was invented by the French mathematician Édouard
Lucas in the late nineteenth century. (Lucas was the first person to call the sequence
1, 1, 2, 3, 5, . . . the Fibonacci sequence.) The following myth was also created to accom-
pany the puzzle (and, one assumes, to help market it). The puzzle was said to be derived
from a mythical gold tower that consisted of 64 disks. The 64 disks were to be transferred
by monks according to the rules set forth previously. It was said that before the monks
finished moving the tower, the tower would collapse and the world would end in a clap
of thunder. Since at least 264−1 = 18,446,744,073,709,551,615 moves are required to
solve the 64-disk Tower of Hanoi puzzle, we can be fairly certain that something would
happen to the tower before it was completely moved.

Example 1.9 The Cobweb in Economics

We assume an economics model in which the supply and demand are given by linear
equations (see Figure 1.4). Specifically, the demand is given by the equation

p = a− bq,

where p is the price, q is the quantity, and a and b are positive parameters. The idea
is that as the price increases, the consumers demand less of the product. The supply is
given by the equation

p = kq,

where p is the price, q is the quantity, and k is a positive parameter. The idea is that as
the price increases, the manufacturer is willing to supply greater quantities.

Price

Quantity

Demand

Supply

Figure 1.4 An economics
model. We assume further that there is a time lag as the supply reacts to changes. (For

example, it takes time to manufacture goods and it takes time to grow crops.) We denote
the discrete time intervals as n = 0, 1, We assume that the demand is given by the
equation

pn = a− bqn;

that is, at time n, the quantity qn of the product will be sold at price pn. We assume that
the supply is given by the equation

pn = kqn+1; (1.10)

that is, one unit of time is required for the manufacturer to adjust the quantity qn+1, at
time n+ 1, to the price pn, at the prior time n.

389

Recurrence Relations

If we solve equation (1.10) for qn+1 and substitute into the demand equation for
time n+ 1,

pn+1 = a− bqn+1,

we obtain the recurrence relation

pn+1 = a− b

k
pn

for the price. We will solve this recurrence relation in Section 2.
The price changes through time may be viewed graphically. If the initial price is

p0, the manufacturer will be willing to supply the quantity q1, at time n = 1. We locate
this quantity by moving horizontally to the supply curve (see Figure 1.5). However,
the market forces drive the price down to p1, as we can see by moving vertically to the
demand curve. At price p1, the manufacturer will be willing to supply the quantity q2 at
time n = 2, as we can see by moving horizontally to the supply curve. Now the market
forces drive the price up to p2, as we can see by moving vertically to the demand curve.
By continuing this process, we obtain the “cobweb” shown in Figure 1.5.

Price

Quantity

Demand

Supplyp0

q2

p2
p4
p6
p5
p3
p1

q4 q6 q7 q5 q3 q1

Figure 1.5 A cobweb with a stabilizing price.

For the supply and demand functions of Figure 1.5, the price approaches that
given by the intersection of the supply and demand curves. This is not always the case,
however. For example, in Figure 1.6, the price fluctuates between p0 and p1, whereas
in Figure 1.7, the price swings become more and more pronounced. The behavior is
determined by the slopes of the supply and demand lines. To produce the fluctuating
behavior of Figure 1.6, the angles α and β must add to 180◦. The slopes of the supply

Quantity

Demand

Supply

Price

p0 = p2 = p4 = …

q2 = q1 =
q4 = … q3 = …

p1 = p3 = p5 = …

Figure 1.6 A cobweb with a fluctuating price.

Price
Supply

Demand

Quantityq3q1q2q4

p2

p0

p1

p3

Figure 1.7 A cobweb with increasing price
swings.

390

Recurrence Relations

and demand curves are tan α and tan β, respectively; thus in Figure 1.6, we have

k = tan α = − tan β = b.

We have shown that the price fluctuates between two values when k = b. A similar
analysis shows that the price tends to that given by the intersection of the supply and
demand curves (Figure 1.5) when b < k; the increasing price-swings case (Figure 1.7)
occurs when b > k (see Exercises 38 and 39). In Section 2 we discuss the behavior of
the price through time by analyzing an explicit formula for the price pn.

It is possible to extend the definition of recurrence relation to include functions
indexed over n-tuples of positive integers. Our last example is of this form.

Example 1.10 Ackermann’s Function

Ackermann’s function can be defined by the recurrence relations

A(m, 0) = A(m− 1, 1), m = 1, 2, . . . , (1.11)
A(m, n) = A(m− 1, A(m, n− 1)), m = 1, 2, . . . ,

n = 1, 2, . . . , (1.12)

and the initial conditions

A(0, n) = n+ 1, n = 0, 1, (1.13)

Ackermann’s function is of theoretical importance because of its rapid rate of growth.
Functions related to Ackermann’s function appear in the time complexity of certain
algorithms such as the time to execute union/find algorithms (see [Tarjan, pp. 22–29]).

The computation

A(1, 1) = A(0, A(1, 0)) by (1.12)

= A(0, A(0, 1)) by (1.11)

= A(0, 2) by (1.13)

= 3 by (1.13)

illustrates the use of equations (1.11)–(1.13).

Problem-Solving Tips

To set up a recurrence relation, first define, say An, to be the desired quantity. For
example, let An denote the amount of money at the end of n years if $1000 is invested
at 12 percent interest compounded annually. Next, just as in proof by induction, look for
smaller instances within instance n. Continuing the compound interest example, instance
n− 1 is “within” instance n in the sense that the amount of money at the end of n years
is the amount at the end of n− 1 years plus interest. We obtain the recurrence relation

An = An−1 + (0.12)An−1.

Section Review Exercises

†1. What is a recurrence relation?

2. What is an initial condition?

3. What is compound interest and how can it be described by a
recurrence relation?

4. What is the Tower of Hanoi puzzle?

5. Give a solution of the Tower of Hanoi puzzle.

6. Describe the cobweb in economics.

7. Define Ackermann’s function.

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

391

Recurrence Relations

Exercises

In Exercises 1–3, find a recurrence relation and initial conditions
that generate a sequence that begins with the given terms.

1. 3, 7, 11, 15, . . .

2. 3, 6, 9, 15, 24, 39, . . .

3. 1, 1, 2, 4, 16, 128, 4096, . . .

In Exercises 4–8, assume that a person invests $2000 at 14 percent
interest compounded annually. Let An represent the amount at the
end of n years.

4. Find a recurrence relation for the sequence A0, A1,

5. Find an initial condition for the sequence A0, A1,

6. Find A1, A2, and A3.

7. Find an explicit formula for An.

8. How long will it take for a person to double the initial
investment?

If a person invests in a tax-sheltered annuity, the money invested, as
well as the interest earned, is not subject to taxation until withdrawn
from the account. In Exercises 9–12, assume that a person invests
$2000 each year in a tax-sheltered annuity at 10 percent inter-
est compounded annually. Let An represent the amount at the end
of n years.

9. Find a recurrence relation for the sequence A0, A1,

10. Find an initial condition for the sequence A0, A1,

11. Find A1, A2, and A3.

12. Find an explicit formula for An.

In Exercises 13–17, assume that a person invests $3000 at 12 per-
cent annual interest compounded quarterly. Let An represent the
amount at the end of n years.

13. Find a recurrence relation for the sequence A0, A1,

14. Find an initial condition for the sequence A0, A1,

15. Find A1, A2, and A3.

16. Find an explicit formula for An.

17. How long will it take for a person to double the initial
investment?

18. Let Sn denote the number of n-bit strings that do not contain the
pattern 000. Find a recurrence relation and initial conditions
for the sequence {Sn}.

Exercises 19–21 refer to the sequence S where Sn denotes the num-
ber of n-bit strings that do not contain the pattern 00.

19. Find a recurrence relation and initial conditions for the
sequence {Sn}.

20. Show that Sn= fn+2, n= 1, 2, . . . , where f denotes the
Fibonacci sequence.

21. By considering the number of n-bit strings with exactly i 0’s

and Exercise 20, show that

fn+2 =
�(n+1)/2�∑

i=0

C(n+ 1− i, i), n = 1, 2, . . . ,

where f denotes the Fibonacci sequence.

Exercises 22–24 refer to the sequence S1, S2, . . . , where Sn

denotes the number of n-bit strings that do not contain the
pattern 010.

22. Compute S1, S2, S3, and S4.

23. By considering the number of n-bit strings that do not contain
the pattern 010 that have no leading 0’s (i.e., that begin with
1); that have one leading 0 (i.e., that begin 01); that have two
leading 0’s; and so on, derive the recurrence relation

Sn = Sn−1 + Sn−3 + Sn−4 + Sn−5 + · · · + S1 + 3. (1.14)

24. By replacing n by n − 1 in (1.14), write a formula for Sn−1.

Subtract the formula for Sn−1 from the formula for Sn and use
the result to derive the recurrence relation

Sn = 2Sn−1 − Sn−2 + Sn−3.

In Exercises 25–33, C0, C1, C2, . . . denotes the sequence of
Catalan numbers.

25. Given that C0 = C1 = 1 and C2 = 2, compute C3, C4, and
C5 by using the recurrence relation of Example 1.7.

26. Show that the Catalan numbers are given by the recurrence
relation

(n+ 2)Cn+1 = (4n+ 2)Cn, n ≥ 0,

and initial condition C0 = 1.

27. Prove that n+ 2 < Cn for all n ≥ 4.
†�28. Prove that Cn is prime if and only if n = 2 or n = 3. Hint:

First, use proof by contradiction to prove that if n ≥ 5, Cn

is not prime. Use Exercises 26 and 27 and Exercise 25, Sec-
tion 5.3, to derive a contradiction. Now examine the cases
n = 0, 1, 2, 3, 4.

29. Prove that

Cn ≥ 4n−1

n2
for all n ≥ 1.

30. Derive a recurrence relation and an initial condition for the
number of ways to parenthesize the product

a1 ∗ a2 ∗ · · · ∗ an, n ≥ 2.

Examples: There is one way to parenthesize a1 ∗ a2, namely,
(a1 ∗ a2). There are two ways to parenthesize a1 ∗ a2 ∗ a3,
namely, ((a1 ∗ a2) ∗ a3) and (a1 ∗ (a2 ∗ a3)). Deduce that the
number of ways to parenthesize the product of n elements is
Cn−1, n ≥ 2.

�31. Derive a recurrence relation and an initial condition for the
number of ways to divide a convex (n + 2)-sided polygon,

†A starred exercise indicates a problem of above-average difficulty.

392

Recurrence Relations

n ≥ 1, into triangles by drawing n − 1 lines through the
corners that do not intersect in the interior of the polygon.
(A polygon is convex if any line joining two points in the poly-
gon lies wholly in the polygon.) For example, there are five
ways to divide a convex pentagon into triangles by drawing
two nonintersecting lines through the corners:

Deduce that the number of ways to divide a convex (n + 2)-
sided polygon into triangles by drawing n− 1 nonintersecting
lines through the corners is Cn, n ≥ 1.

32. How many parenthesized expressions are there containing n

distinct binary operators, n + 1 distinct variables, and n − 1
pairs of parentheses? For example, if n = 2, and we choose ∗
and + as the operators and x, y, and z as the variables, some
of the expressions are

(x ∗ y)+z, x ∗ (y+z), x ∗ (z+y), x+(z ∗ y), z ∗ (y+x).

33. Consider routes from the lower-left corner to the upper-right
corner in an (n+ 1)× (n+ 1) grid in which we are restricted
to traveling only to the right or upward. By dividing the routes
into classes based on when, after leaving the lower-left cor-
ner, the route first meets the diagonal line from the lower-left
corner to the upper-right corner, derive the recurrence relation

Cn = 1

2
C(2(n+ 1), n+ 1)−

n−1∑

k=0

CkC(2(n− k), n− k).

In Exercises 34 and 35, let Sn denote the number of routes from the
lower-left corner of an n×n grid to the upper-right corner in which
we are restricted to traveling to the right, upward, or diagonally
northeast [i.e., from (i, j) to (i + 1, j + 1)] and in which we are
allowed to touch but not go above a diagonal line from the lower-
left corner to the upper-right corner. The numbers S0, S1, . . . are
called the Schröder numbers.

34. Show that S0 = 1, S1 = 2, S2 = 6, and S3 = 22.

35. Derive a recurrence relation for the sequence of Schröder
numbers.

36. Write explicit solutions for the Tower of Hanoi puzzle for
n = 3, 4.

37. To what values do the price and quantity tend in Example 1.9
when b < k?

38. Show that when b < k in Example 1.9, the price tends to that
given by the intersection of the supply and demand curves.

39. Show that when b > k in Example 1.9, the differences between
successive prices increase.

Exercises 40–46 refer to Ackermann’s function A(m, n).

40. Compute A(2, 2) and A(2, 3).

41. Use induction to show that

A(1, n) = n+ 2, n = 0, 1,

42. Use induction to show that

A(2, n) = 3+ 2n, n = 0, 1

43. Guess a formula for A(3, n) and prove it by using induction.

�44. Prove that A(m, n) > n for all m ≥ 0, n ≥ 0 by induction on
m. The inductive step will use induction on n.

45. By using Exercise 44 or otherwise, prove that A(m, n) > 1
for all m ≥ 1, n ≥ 0.

46. By using Exercise 44 or otherwise, prove that A(m, n) <

A(m, n+ 1) for all m ≥ 0, n ≥ 0.

What we and others have called Ackermann’s function is actually
derived from Ackermann’s original function defined by

AO(0, y, z)=z+ 1, y, z ≥ 0,

AO(1, y, z)=y + z, y, z ≥ 0,

AO(2, y, z)=yz, y, z ≥ 0,

AO(x+ 3, y, 0)=1, x, y ≥ 0,

AO(x+ 3, y, z+ 1)=
AO(x+ 2, y, AO(x+ 3, y, z)), x, y, z ≥ 0.

Exercises 47–50 refer to the function AO and to Ackermann’s
function A.

47. Show that A(x, y)=AO(x, 2, y + 3) − 3 for y≥ 0 and
x = 0, 1, 2.

48. Show that AO(x, 2, 1) = 2 for x ≥ 2.

49. Show that AO(x, 2, 2) = 4 for x ≥ 2.

�50. Show that A(x, y) = AO(x, 2, y + 3)− 3 for x, y ≥ 0.

51. A network consists of n nodes. Each node has communica-
tions facilities and local storage. Periodically, all files must be
shared. A link consists of two nodes sharing files. Specifically,
when nodes A and B are linked, A transmits all its files to B

and B transmits all its files to A. Only one link exists at a time,
and after a link is established and the files are shared, the link
is deleted. Let an be the minimum number of links required
by n nodes so that all files are known to all nodes.

(a) Show that a2 = 1, a3 ≤ 3, a4 ≤ 4.

(b) Show that an ≤ an−1 + 2, n ≥ 3.

52. If Pn denotes the number of permutations of n distinct
objects, find a recurrence relation and an initial condition for
the sequence P1, P2,

53. Suppose that we have n dollars and that each day we buy either
orange juice ($1), milk ($2), or beer ($2). If Rn is the number
of ways of spending all the money, show that

Rn = Rn−1 + 2Rn−2.

Order is taken into account. For example, there are 11 ways
to spend $4: MB, BM, OOM, OOB, OMO, OBO, MOO, BOO,
OOOO, MM, BB.

54. Suppose that we have n dollars and that each day we buy either
tape ($1), paper ($1), pens ($2), pencils ($2), or binders ($3).
If Rn is the number of ways of spending all the money, derive
a recurrence relation for the sequence R1, R2,

393

Recurrence Relations

55. Let Rn denote the number of regions into which the plane is
divided by n lines. Assume that each pair of lines meets in a
point, but that no three lines meet in a point. Derive a recur-
rence relation for the sequence R1, R2,

Exercises 56 and 57 refer to the sequence Sn defined by

S1 = 0, S2 = 1, Sn = Sn−1 + Sn−2

2
, n = 3, 4,

56. Compute S3 and S4.

�57. Guess a formula for Sn and use induction to show that it is
correct.

�58. Let Fn denote the number of functions f from X = {1, . . . , n}
into X having the property that if i is in the range of f , then
1, 2, . . . , i− 1 are also in the range of f . (Set F0 = 1.) Show
that the sequence F0, F1, . . . satisfies the recurrence relation

Fn =
n−1∑

j=0

C(n, j)Fj.

59. If α is a bit string, let C(α) be the maximum number of consec-
utive 0’s in α. [Examples: C(10010) = 2, C(00110001) = 3.]
Let Sn be the number of n-bit strings α with C(α) ≤ 2.

Develop a recurrence relation for S1, S2,

60. The sequence g1, g2, . . . is defined by the recurrence relation

gn = gn−1 + gn−2 + 1, n ≥ 3,

and initial conditions

g1 = 1, g2 = 3.

By using mathematical induction or otherwise, show that

gn = 2fn+1 − 1, n ≥ 1,

where f1, f2, . . . is the Fibonacci sequence.

61. Consider the formula

un =
{

u3n+1 if n is odd and greater than 1
un/2 if n is even and greater than 1

and initial condition u1 = 1. Explain why the formula is not a
recurrence relation. A longstanding, open conjecture is that for
every positive integer n, un is defined and equal to 1. Compute
un for n = 2, . . . , 7.

62. Define the sequence t1, t2, . . . by the recurrence relation

tn = tn−1tn−2, n ≥ 3,

and initial conditions

t1 = 1, t2 = 2.

What is wrong with the following “proof” that tn = 1 for all
n ≥ 1?

Basis Step For n = 1, we have t1 = 1; thus, the Basis Step
is verified.

Inductive Step Assume that tk = 1 for k < n. We must prove
that tn = 1. Now

tn = tn−1tn−2

= 1 · 1 by the inductive assumption
= 1.

The Inductive Step is complete.

63. Derive a recurrence relation for C(n, k), the number of
k-element subsets of an n-element set. Specifically, write
C(n+ 1, k) in terms of C(n, i) for appropriate i.

64. Derive a recurrence relation for S(k, n), the number of ways
of choosing k items, allowing repetitions, from n available
types. Specifically, write S(k, n) in terms of S(k − 1, i) for
appropriate i.

65. Let S(n, k) denote the number of functions from {1, . . . , n}
onto {1, . . . , k}. Show that S(n, k) satisfies the recurrence
relation

S(n, k) = kn −
k−1∑

i=1

C(k, i)S(n, i).

66. The Lucas sequence L1, L2, . . . (named after Édouard Lucas,
the inventor of the Tower of Hanoi puzzle) is defined by the
recurrence relation

Ln = Ln−1 + Ln−2, n ≥ 3,

and the initial conditions

L1 = 1, L2 = 3.

(a) Find the values of L3, L4, and L5.

(b) Show that

Ln+2 = fn+1 + fn+3, n ≥ 1,

where f1, f2, . . . denotes the Fibonacci sequence.

67. Establish the recurrence relation

sn+1,k = sn,k−1 + nsn,k

for Stirling numbers of the first kind.

68. Establish the recurrence relation

Sn+1,k = Sn,k−1 + kSn,k

for Stirling numbers of the second kind.

�69. Show that

Sn,k = 1

k!

k∑

i=0

(−1)i(k − i)nC(k, i),

where Sn,k denotes a Stirling number of the second kind.

70. Assume that a person invests a sum of money at r percent com-
pounded annually. Explain the rule of thumb: To estimate the
time to double the investment, divide 70 by r.

394

Recurrence Relations

71. Derive a recurrence relation for the number of multiplications
needed to evaluate ann×ndeterminant by the cofactor method.

A rise/fall permutation is a permutation p of 1, 2, . . . , n satisfying

p(i) < p(i+ 1) for i = 1, 3, 5, . . .

and

p(i) > p(i+ 1) for i = 2, 4, 6,

For example, there are five rise/fall permutations of 1, 2, 3, 4:

1, 3, 2, 4; 1, 4, 2, 3; 2, 3, 1, 4;
2, 4, 1, 3; 3, 4, 1, 2.

Let En denote the number of rise/fall permutations of 1, 2, . . . , n.

(Define E0 = 1.) The numbers E0, E1, E2, . . . are called the Euler
numbers.

72. List all rise/fall permutations of 1, 2, 3. What is the value of
E3?

73. List all rise/fall permutations of 1, 2, 3, 4, 5. What is the value
of E5?

74. Show that in a rise/fall permutation of 1, 2, . . . , n, n must
occur in position 2i, for some i.

�75. Use Exercise 74 to derive the recurrence relation

En =
�n/2�∑

j=1

C(n− 1, 2j − 1)E2j−1En−2j.

�76. By considering where 1 must occur in a rise/fall permutation,
derive the recurrence relation

En =
�(n−1)/2)�∑

j=0

C(n− 1, 2j)E2jEn−2j−1.

�77. Prove that

En = 1

2

n−1∑

j=1

C(n− 1, j)EjEn−j−1.

2 ➜ Solving Recurrence Relations

To solve a recurrence relation involving the sequence a0, a1, . . . is to find an explicit
formula for the general term an. In this section we discuss two methods of solving
recurrence relations: iteration and a special method that applies to linear homogeneous
recurrence relations with constant coefficients. For more powerful methods, such as
methods that make use of generating functions, consult [Brualdi].

To solve a recurrence relation involving the sequence a0, a1, . . . by iteration, we
use the recurrence relation to write the nth term an in terms of certain of its predecessors
an−1, . . . , a0. We then successively use the recurrence relation to replace each of an−1, . . .

by certain of their predecessors. We continue until an explicit formula is obtained. The
iterative method was used to solve the recurrence relation of Example 1.3.

Example 2.1 We can solve the recurrence relation

an = an−1 + 3, (2.1)

subject to the initial condition

a1 = 2,

by iteration. Replacing n by n− 1 in (2.1), we obtain

an−1 = an−2 + 3.

If we substitute this expression for an−1 into (2.1), we obtain

an = an−1 + 3

↓
= an−2 + 3 + 3

= an−2 + 2 · 3. (2.2)

Replacing n by n− 2 in (2.1), we obtain

an−2 = an−3 + 3.

395

Recurrence Relations

If we substitute this expression for an−2 into (2.2), we obtain

an = an−2 + 2 · 3

↓
= an−3 + 3 + 2 · 3

= an−3 + 3 · 3.

In general, we have

an = an−k + k · 3.

If we set k = n− 1 in this last expression, we have

an = a1 + (n− 1) · 3.

Since a1 = 2, we obtain the explicit formula

an = 2+ 3(n− 1)

for the sequence a.

Example 2.2 We can solve the recurrence relation

Sn = 2Sn−1

of Example 1.5, subject to the initial condition

S0 = 1,

by iteration:

Sn = 2Sn−1 = 2(2Sn−2) = · · · = 2nS0 = 2n.

Example 2.3 Population Growth

Assume that the deer population of Rustic County is 1000 at time n = 0 and that the
increase from time n − 1 to time n is 10 percent of the size at time n − 1. Write a
recurrence relation and an initial condition that define the deer population at time n and
then solve the recurrence relation.

Let dn denote the deer population at time n. We have the initial condition

d0 = 1000.

The increase from time n− 1 to time n is dn − dn−1. Since this increase is 10 percent of
the size at time n− 1, we obtain the recurrence relation

dn − dn−1 = 0.1dn−1,

which may be rewritten

dn = 1.1dn−1.

The recurrence relation may be solved by iteration:

dn = 1.1dn−1 = 1.1(1.1dn−2) = (1.1)2(dn−2)

= · · · = (1.1)nd0 = (1.1)n1000.

The assumptions imply exponential population growth.

396

Recurrence Relations

Example 2.4 Find an explicit formula for cn, the minimum number of moves in which the n-disk
Tower of Hanoi puzzle can be solved (see Example 1.8).

In Example 1.8 we obtained the recurrence relation

cn = 2cn−1 + 1 (2.3)

and initial condition

c1 = 1.

Applying the iterative method to (2.3), we obtain

cn = 2cn−1 + 1

= 2(2cn−2 + 1)+ 1

= 22cn−2 + 2+ 1

= 22(2cn−3 + 1)+ 2+ 1

= 23cn−3 + 22 + 2+ 1
...

= 2n−1c1 + 2n−2 + 2n−3 + · · · + 2+ 1

= 2n−1 + 2n−2 + 2n−3 + · · · + 2+ 1

= 2n − 1.

The last step results from the formula for the geometric sum.

Example 2.5 We can solve the recurrence relation

pn = a− b

k
pn−1

for the price pn in the economics model of Example 1.9 by iteration. To simplify the
notation, we set s = −b/k.

pn = a+ spn−1

= a+ s(a+ spn−2)

= a+ as+ s2pn−2

= a+ as+ s2(a+ spn−3)

= a+ as+ as2 + s3pn−3

...

= a+ as+ as2 + · · · + asn−1 + snp0

= a− asn

1− s
+ snp0

= sn

(−a

1− s
+ p0

)
+ a

1− s

=
(
− b

k

)n(−ak

k + b
+ p0

)
+ ak

k + b
. (2.4)

397

Recurrence Relations

We see that if b/k < 1, the term
(
−b

k

)n(−ak

k + b
+ p0

)

becomes small as n gets large so that the price tends to stabilize at approximately ak/(k+
b). If b/k = 1, (2.4) shows that pn oscillates between p0 and p1. If b/k > 1, (2.4) shows
that the differences between successive prices increase. Previously, we observed these
properties graphically (see Example 1.9).

We turn next to a special class of recurrence relations.

Definition 2.6 A linear homogeneous recurrence relation of order k with constant coefficients is a
recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k, ck �= 0. (2.5)

Notice that a linear homogeneous recurrence relation of order k with constant
coefficients (2.5), together with the k initial conditions

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1,

uniquely defines a sequence a0, a1,

Example 2.7 The recurrence relations

Sn = 2Sn−1 (2.6)

of Example 2.2 and

fn = fn−1 + fn−2, (2.7)

which defines the Fibonacci sequence, are both linear homogeneous recurrence relations
with constant coefficients. The recurrence relation (2.6) is of order 1 and (2.7) is of
order 2.

Example 2.8 The recurrence relation

an = 3an−1an−2 (2.8)

is not a linear homogeneous recurrence relation with constant coefficients. In a linear
homogeneous recurrence relation with constant coefficients, each term is of the form
cak. Terms such as an−1an−2 are not permitted. Recurrence relations such as (2.8) are
said to be nonlinear.

Example 2.9 The recurrence relation

an − an−1 = 2n

is not a linear homogeneous recurrence relation with constant coefficients because the
expression on the right side of the equation is not zero. (Such an equation is said to be
inhomogeneous. Linear inhomogeneous recurrence relations with constant coefficients
are discussed in Exercises 40–46.)

398

Recurrence Relations

Example 2.10 The recurrence relation

an = 3nan−1

is not a linear homogeneous recurrence relation with constant coefficients because the
coefficient 3n is not constant. It is a linear homogeneous recurrence relation with non-
constant coefficients.

We will illustrate the general method of solving linear homogeneous recurrence
relations with constant coefficients by finding an explicit formula for the sequence defined
by the recurrence relation

an = 5an−1 − 6an−2 (2.9)

and initial conditions

a0 = 7, a1 = 16. (2.10)

Often in mathematics, when trying to solve a more difficult instance of some problem,
we begin with an expression that solved a simpler version. For the first-order recurrence
relation (2.6), we found in Example 2.2 that the solution was of the form

Sn = tn;

thus for our first attempt at finding a solution of the second-order recurrence relation
(2.9), we will search for a solution of the form Vn = tn.

If Vn = tn is to solve (2.9), we must have

Vn = 5Vn−1 − 6Vn−2

or

tn = 5tn−1 − 6tn−2

or

tn − 5tn−1 + 6tn−2 = 0.

Dividing by tn−2, we obtain the equivalent equation

t2 − 5t + 6 = 0. (2.11)

Solving (2.11), we find the solutions

t = 2, t = 3.

At this point, we have two solutions S and T of (2.9), given by

Sn = 2n, Tn = 3n. (2.12)

We can verify (see Theorem 2.11) that if S and T are solutions of (2.9), then bS + dT ,
where b and d are any numbers whatever, is also a solution of (2.9). In our case, if we

399

Recurrence Relations

define the sequence U by the equation

Un = bSn + dTn

= b2n + d3n,

U is a solution of (2.9).
To satisfy the initial conditions (2.10), we must have

7 = U0 = b20 + d30 = b+ d, 16 = U1 = b21 + d31 = 2b+ 3d.

Solving these equations for b and d, we obtain

b = 5, d = 2.

Therefore, the sequence U defined by

Un = 5 · 2n + 2 · 3n

satisfies the recurrence relation (2.9) and the initial conditions (2.10). We conclude
that

an = Un = 5 · 2n + 2 · 3n, for n = 0, 1,

At this point we will summarize and justify the techniques used to solve the pre-
ceding recurrence relation.

Theorem 2.11 Let

an = c1an−1 + c2an−2 (2.13)

be a second-order, linear homogeneous recurrence relation with constant coefficients.
If S and T are solutions of (2.13), then U = bS+dT is also a solution of (2.13).
If r is a root of

t2 − c1t − c2 = 0, (2.14)

then the sequence rn, n = 0, 1, . . . , is a solution of (2.13).
If a is the sequence defined by (2.13),

a0 = C0, a1 = C1, (2.15)

and r1 and r2 are roots of (2.14) with r1 �= r2, then there exist constants b and d such
that

an = brn
1 + drn

2 , n = 0, 1,

Proof Since S and T are solutions of (2.13),

Sn = c1Sn−1 + c2Sn−2, Tn = c1Tn−1 + c2Tn−2.

400

Recurrence Relations

If we multiply the first equation by b and the second by d and add, we obtain

Un = bSn + dTn = c1(bSn−1 + dTn−1)+ c2(bSn−2 + dTn−2)

= c1Un−1 + c2Un−2.

Therefore, U is a solution of (2.13).
Since r is a root of (2.14),

r2 = c1r + c2.

Now

c1r
n−1 + c2r

n−2 = rn−2(c1r + c2) = rn−2r2 = rn;
thus the sequence rn, n = 0, 1, . . . , is a solution of (2.13).

If we set Un = brn
1 + drn

2 , then U is a solution of (2.13). To meet the initial
conditions (2.15), we must have

U0 = b+ d = C0, U1 = br1 + dr2 = C1.

If we multiply the first equation by r1 and subtract, we obtain

d(r1 − r2) = r1C0 − C1.

Since r1 − r2 �= 0, we can solve for d. Similarly, we can solve for b. With these
choices for b and d, we have

U0 = C0, U1 = C1.

Let a be the sequence defined by (2.13) and (2.15). Since U also satisfies (2.13) and
(2.15), it follows that Un = an, n = 0, 1,

Example 2.12 More Population Growth

Assume that the deer population of Rustic County is 200 at time n = 0 and 220 at time
n = 1 and that the increase from time n − 1 to time n is twice the increase from time
n − 2 to time n − 1. Write a recurrence relation and an initial condition that define the
deer population at time n and then solve the recurrence relation.

Let dn denote the deer population at time n. We have the initial conditions

d0 = 200, d1 = 220.

The increase from time n− 1 to time n is dn − dn−1, and the increase from time n− 2
to time n− 1 is dn−1 − dn−2. Thus we obtain the recurrence relation

dn − dn−1 = 2 (dn−1 − dn−2),

which may be rewritten

dn = 3dn−1 − 2dn−2.

To solve this recurrence relation, we first solve the quadratic equation

t2 − 3t + 2 = 0

to obtain roots 1 and 2. The sequence d is of the form

dn = b · 1n + c · 2n = b+ c2n.

401

Recurrence Relations

To meet the initial conditions, we must have

200 = d0 = b+ c, 220 = d1 = b+ 2c.

Solving for b and c, we find that b = 180 and c = 20. Thus dn is given by

dn = 180+ 20 · 2n.

As in Example 2.3, the growth is exponential.

Example 2.13 Find an explicit formula for the Fibonacci sequence.
The Fibonacci sequence is defined by the linear homogeneous, second-order

recurrence relation

fn − fn−1 − fn−2 = 0, n ≥ 3,

and initial conditions

f1 = 1, f2 = 1.

We begin by using the quadratic formula to solve

t2 − t − 1 = 0.

The solutions are

t = 1±√5

2
.

Thus the solution is of the form

fn = b

(
1+√5

2

)n

+ d

(
1−√5

2

)n

.

To satisfy the initial conditions, we must have

b

(
1+√5

2

)
+ d

(
1−√5

2

)
= 1

b

(
1+√5

2

)2

+ d

(
1−√5

2

)2

= 1.

Solving these equations for b and d, we obtain

b = 1√
5
, d = − 1√

5
.

Therefore, an explicit formula for the Fibonacci sequence is

fn = 1√
5

(
1+√5

2

)n

− 1√
5

(
1−√5

2

)n

.

Surprisingly, even though fn is an integer, the preceding formula involves the
irrational number

√
5.

402

Recurrence Relations

Theorem 2.11 states that any solution of (2.13) may be given in terms of two basic
solutions rn

1 and rn
2 . However, in case (2.14) has two equal roots r, we obtain only one

basic solution rn. The next theorem shows that in this case, nrn furnishes the other basic
solution.

Theorem 2.14 Let

an = c1an−1 + c2an−2 (2.16)

be a second-order linear homogeneous recurrence relation with constant coefficients.
Let a be the sequence satisfying (2.16) and

a0 = C0, a1 = C1.

If both roots of

t2 − c1t − c2 = 0 (2.17)

are equal to r, then there exist constants b and d such that

an = brn + dnrn, n = 0, 1,

Proof The proof of Theorem 2.11 shows that the sequence rn, n = 0, 1, . . . , is a
solution of (2.16). We show that the sequence nrn, n = 0, 1, . . . , is also a solution of
(2.16).

Since r is the only solution of (2.17), we must have

t2 − c1t − c2 = (t − r)2.

It follows that

c1 = 2r, c2 = −r2.

Now

c1
[
(n− 1)rn−1

]+ c2
[
(n− 2)rn−2

] = 2r(n− 1)rn−1 − r2(n− 2)rn−2

= rn [2(n− 1)− (n− 2)] = nrn.

Therefore, the sequence nrn, n = 0, 1, . . . , is a solution of (2.16).
By Theorem 2.11, the sequence U defined by Un = brn + dnrn is a solution of

(2.16).
The proof that there are constants b and d such that U0 = C0 and U1 = C1 is

similar to the argument given in Theorem 2.11 and is left as an exercise (Exercise 48).
It follows that Un = an, n = 0, 1,

Example 2.15 Solve the recurrence relation

dn = 4(dn−1 − dn−2) (2.18)

subject to the initial conditions

d0 = 1 = d1.

According to Theorem 2.11, Sn= rn is a solution of (2.18), where r is a solution
of

t2 − 4t + 4 = 0. (2.19)

403

Recurrence Relations

Thus we obtain the solution

Sn = 2n

of (2.18). Since 2 is the only solution of (2.19), by Theorem 2.14,

Tn = n2n

is also a solution of (2.18). Thus the general solution of (2.18) is of the form

U = aS + bT.

We must have

U0 = 1 = U1.

These last equations become

aS0 + bT0 = a+ 0b = 1, aS1 + bT1 = 2a+ 2b = 1.

Solving for a and b, we obtain

a = 1, b = −1

2
.

Therefore, the solution of (2.18) is

dn = 2n − n2n−1.

For the general linear homogeneous recurrence relation of order k with constant
coefficients (2.5), if r is a root of

tk − c1t
k−1 − c2t

k−2 − · · · − ck = 0

of multiplicity m, it can be shown that

rn, nrn, . . . , nm−1rn

are solutions of (2.5). This fact can be used, just as in the previous examples for recurrence
relations of order 2, to solve a linear homogeneous recurrence relation of order k with
constant coefficients. For a precise statement and a proof of the general result, see
[Brualdi].

Problem-Solving Tips

To solve a recurrence relation in which an is defined in terms of its immediate predeces-
sor an−1

an = . . . an−1 . . . ,

use iteration. Start with the original equation

an = . . . an−1

Substitute for an−1, which will yield an expression involving an−2, to obtain

an = . . . an−2

404

Recurrence Relations

Continue until you obtain ak (e.g., a0), whose value is given explicitly as the initial
condition

an = . . . ak

Plug in the value for ak and you have solved the recurrence relation.
To solve the recurrence relation

an = c1an−1 + c2an−2,

first solve the equation

t2 − c1t − c2 = 0.

If the roots are r1 and r2, r1 �= r2, the solution is

an = brn
1 + drn

2

for some constants b and d. To determine these constants, use the initial conditions, say
a0 = C0, a1 = C1. Set n = 0 and then n = 1 in

an = brn
1 + drn

2

to obtain

C0 = a0 = b+ d

C1 = a1 = br1 + dr2.

Now solve

C0 = b+ d

C1 = br1 + dr2

for b and d to obtain the solution of the recurrence relation.
If the roots of

t2 − c1t − c2 = 0

are r1 and r2, r1 = r2, the solution is

an = brn + dnrn

for some constants b and d, where r = r1 = r2. To determine these constants, use the
initial conditions, say a0 = C0, a1 = C1. Set n = 0 and then n = 1 in

an = brn + dnrn

to obtain

C0 = a0 = b

C1 = a1 = br + dr.

Now solve

C0 = b

C1 = br + dr

for b and d to obtain the solution of the recurrence relation.

405

Recurrence Relations

Section Review Exercises

1. Explain how to solve a recurrence relation by iteration.

2. What is an nth-order, linear homogeneous recurrence relation
with constant coefficients?

3. Give an example of a second-order, linear homogeneous recur-
rence relation with constant coefficients.

4. Explain how to solve a second-order, linear homogeneous
recurrence relation with constant coefficients.

Exercises

Tell whether or not each recurrence relation in Exercises 1–10 is a
linear homogeneous recurrence relation with constant coefficients.
Give the order of each linear homogeneous recurrence relation
with constant coefficients.

1. an = −3an−1

2. an = 2nan−1

3. an = 2nan−2 − an−1

4. an = an−1 + n

5. an = 7an−2 − 6an−3

6. an = an−1 + 1+ 2n−1

7. an = (lg 2n)an−1 − [lg(n− 1)]an−2

8. an = 6an−1 − 9an−2

9. an = −an−1 − an−2

10. an = −an−1 + 5an−2 − 3an−3

In Exercises 11–26, solve the given recurrence relation for the ini-
tial conditions given.

11. Exercise 1; a0 = 2

12. Exercise 2; a0 = 1

13. Exercise 4; a0 = 0

14. an = 2nan−1; a0 = 1

15. an = 6an−1 − 8an−2; a0 = 1, a1 = 0

16. an = 7an−1 − 10an−2; a0 = 5, a1 = 16

17. an = 2an−1 + 8an−2; a0 = 4, a1 = 10

18. 2an = 7an−1 − 3an−2; a0 = a1 = 1

19. Exercise 6; a0 = 0

20. Exercise 8; a0 = a1 = 1

21. an = −8an−1 − 16an−2; a0 = 2, a1 = −20

22. 9an = 6an−1 − an−2; a0 = 6, a1 = 5

23. The Lucas sequence

Ln = Ln−1 + Ln−2, n ≥ 3; L1 = 1, L2 = 3

24. Exercise 53, Section 1

25. Exercise 55, Section 1

26. The recurrence relation preceding Exercise 56, Section 1

27. The population of Utopia increases 5 percent per year. In 2000
the population was 10,000. What was the population in 1970?

28. Assume that the deer population of Rustic County is 0 at time
n = 0. Suppose that at time n, 100n deer are introduced into

Rustic County and that the population increases 20 percent
each year. Write a recurrence relation and an initial condition
that define the deer population at time n and then solve the
recurrence relation. The following formula may be of use:

n−1∑

i=1

ixi−1 = (n− 1)xn − nxn−1 + 1

(x− 1)2
.

Exercises 29–33 concern Toots and Sly, who flip fair pennies. If the
pennies are both heads or both tails, Toots wins. If one penny is a
head and the other a tail, Sly wins. Toots starts with T pennies, and
Sly starts with S pennies.

29. Let pn denote the probability that Toots wins all of Sly’s pen-
nies if Toots starts with n pennies. Write a recurrence relation
for pn.

30. What is the value of p0?

31. What is the value of pS+T ?

32. Solve your recurrence relation of Exercise 29.

33. Find the probability that Toots wins all of Sly’s pennies.

Sometimes a recurrence relation that is not a linear homogeneous
equation with constant coefficients can be transformed into a linear
homogeneous equation with constant coefficients. In Exercises 34
and 35, make the given substitution and solve the resulting recur-
rence relation, then find the solution to the original recurrence
relation.

34. Solve the recurrence relation
√

an = √an−1 + 2
√

an−2

with initial conditions a0 = a1 = 1 by making the substitution
bn = √an.

35. Solve the recurrence relation

an =
√

an−2

an−1

with initial conditions a0 = 8, a1 = 1/(2
√

2) by taking
the logarithm of both sides and making the substitution
bn = lg an.

In Exercises 36–38, solve the recurrence relation for the initial
conditions given.

36. an = −2nan−1 + 3n(n− 1)an−2; a0 = 1, a1 = 2

�37. cn = 2+∑n−1
i=1 ci, n ≥ 2; c1 = 1

�38. A(n, m) = 1+A(n−1, m−1)+A(n−1, m), n−1 ≥ m ≥ 1,

n ≥ 2; A(n, 0) = A(n, n) = 1, n ≥ 0

406

Recurrence Relations

39. Show that

fn+1 ≥
(

1+√5

2

)n−1

, n ≥ 1,

where f denotes the Fibonacci sequence.

40. The equation

an = c1an−1 + c2an−2 + f(n) (2.20)

is called a second-order, linear inhomogeneous recurrence
relation with constant coefficients.

Let g(n) be a solution of (2.20). Show that any solution
U of (2.20) is of the form

Un = Vn + g(n), (2.21)

where V is a solution of the homogeneous equation (2.13).

If f(n) = C in (2.20), it can be shown that g(n) = C′ in (2.21)
if 1 is not a root of

t2 − c1t − c2 = 0, (2.22)

g(n)=C′n if 1 is a root of (2.22) of multiplicity one, and
g(n)=C′n2 if 1 is a root of (2.22) of multiplicity two. Similarly, if
f(n)=Cn, it can be shown that g(n)=C′1n+C′0 if 1 is not a root
of (2.22), g(n)=C′1n

2 +C′0n if 1 is a root of multiplicity one, and
g(n)=C′1n

3+C′0n
2 if 1 is a root of multiplicity two. If f(n)=Cn2,

it can be shown that g(n) = C′2n
2 + C′1n + C′0 if 1 is not a root

of (2.22), g(n)=C′2n
3+C′1n

2+C′0 if 1 is a root of multiplicity
one, and g(n)=C′2n

4 + C′1n
3 + C′0n

2 if 1 is a root of multiplicity
two. If f(n)=Cn, it can be shown that g(n)=C′Cn if C is not a
root of (2.22), g(n) = C′nCn if C is a root of multiplicity one, and
g(n) = C′n2Cn if C is a root of multiplicity two. The constants can
be determined by substituting g(n) into the recurrence relation and
equating coefficients on the two sides of the resulting equation. As
examples, the constant terms on the two sides of the equation must
be equal, and the coefficient of n on the left side of the equation
must equal the coefficient of n on the right side of the equation. Use
these facts together with Exercise 40 to find the general solutions
of the recurrence relations of Exercises 41–46.

41. an= 6an−1 − 8an−2 + 3

42. an= 7an−1 − 10an−2 + 16n

43. an= 2an−1 + 8an−2 + 81n2

44. 2an = 7an−1 − 3an−2 + 2n

45. an=−8an−1 − 16an−2 + 3n

46. 9an= 6an−1 − an−2 + 5n2

47. The equation

an = f(n)an−1 + g(n)an−2 (2.23)

is called a second-order, linear homogeneous recurrence
relation. The coefficients f(n) and g(n) are not necessarily
constant. Show that if S and T are solutions of (2.23), then
bS + dT is also a solution of (2.23).

48. Suppose that both roots of

t2 − c1t − c2 = 0

are equal to r, and suppose that an satisfies

an = c1an−1 + c2an−2, a0 = C0, a1 = C1.

Show that there exist constants b and d such that

an = brn + dnrn, n = 0, 1, . . . ,

thus completing the proof of Theorem 2.14.

49. Let an be the minimum number of links required to solve the
n-node communication problem (see Exercise 51, Section 1).
Use iteration to show that an ≤ 2n− 4, n ≥ 4.

The n-disk, four-peg Tower of Hanoi puzzle has the same rules as
the three-peg puzzle; the only difference is that there is an extra
peg. Exercises 50–53 refer to the following algorithm to solve the
n-disk, four-peg Tower of Hanoi puzzle.

Assume that the pegs are numbered 1, 2, 3, 4 and that the
problem is to move the disks, which are initially stacked on peg 1,
to peg 4. If n = 1, move the disk to peg 4 and stop. If n > 1, let kn

be the largest integer satisfying

kn∑

i=1

i ≤ n.

Fix kn disks at the bottom of peg 1. Recursively invoke this algo-
rithm to move the n− kn disks at the top of peg 1 to peg 2. During
this part of the algorithm, the kn bottom disks on peg 1 remain fixed.
Next, move the kn disks on peg 1 to peg 4 by invoking the optimal
three-peg algorithm (see Example 1.8) and using only pegs 1, 3,
and 4. Finally, again recursively invoke this algorithm to move the
n − kn disks on peg 2 to peg 4. During this part of the algorithm,
the kn disks on peg 4 remain fixed. Let T(n) denote the number of
moves required by this algorithm.

This algorithm, although not known to be optimal, uses as
few moves as any other algorithm that has been proposed for the
four-peg problem.

50. Derive the recurrence relation

T(n) = 2T(n− kn)+ 2kn − 1.

51. Compute T(n) for n = 1, . . . , 10. Compare these values with
the optimal number of moves to solve the three-peg problem.

�52. Let

rn = n− kn(kn + 1)

2
.

Using induction or otherwise, prove that

T(n) = (kn + rn − 1)2kn + 1.

�53. Show that T(n) = O(4
√

n).

�54. Give an optimal algorithm to solve a variant of the Tower of
Hanoi puzzle in which a stack of disks, except for the begin-
ning and ending stacks, is allowed as long as the largest disk
in the stack is on the bottom (the disks above the largest disk
in the stack can be ordered in any way whatsoever). The prob-
lem is to transfer the disks to another peg by moving one disk
at a time beginning with all the disks stacked on one peg in
order from largest (bottom) to smallest as in the original puzzle.
The end position will be the same as in the original puzzle—
the disks will be stacked in order from largest (bottom) to
smallest. Prove that your algorithm is optimal. This problem
is due to John McCarthy.

407

Recurrence Relations

Problem-Solving Corner Recurrence Relations

Problem
(a) Several persons order compact discs. Their names, together with their order codes, are entered into a spreadsheet:

The records are to be sorted in alphabetical order, but an error occurs when the names are sorted but the order
codes are unchanged:

As a result, no one receives the correct compact discs. Let Dn denote the number of ways that n persons can
all receive the wrong orders. Show that the sequence D1, D2, . . . satisfies the recurrence relation

Dn = (n− 1)(Dn−1 +Dn−2).

(b) Solve the recurrence relation of part (a) by making the substitution Cn = Dn − nDn−1.

408

Recurrence Relations

Attacking the Problem
Before attacking the problem, consider what is required
for part (a). To prove the recurrence relation, we must
reduce the n-person problem to the (n−1)- and (n−2)-
person problems (since in the formula Dn is given in
terms of Dn−1 and Dn−2). Thus as we look systemati-
cally at some examples, we should try to see how the
case for n persons relates to the cases for n−1 and n−2
persons. The situation is similar to that of mathemati-
cal induction and recursive algorithms in which a given
instance of a problem is related to smaller instances of
the same problem.

Now for some examples. The smallest case is
n= 1. A single person must get the correct order, so
D1 = 0. For n = 2, there is one way for everyone to
get the wrong orders: Person 1 gets order 2, and per-
son 2 gets order 1. Thus D2 = 1. Before continuing,
let’s develop some notation for the distribution of the
orders. Carefully chosen notation can help in solving
a problem.

We’ll write

c1, c2, . . . , cn

to mean that person 1 got order c1, person 2 got order
c2, and so on. The one way for two persons to get the
wrong orders is denoted 2,1.

If n = 3, person 1 gets either order 2 or 3, so the
possibilities are 2,?,? and 3,?,?. Let’s fill in the missing
numbers. Suppose that person 1 gets order 2. Person
2 can’t get order 1 (for then person 3 would get the
correct order); thus, person 2 gets order 3. This leaves
order 1 for person 3. Thus if person 1 gets order 2, the
only possibility is

2, 3, 1.

Suppose that person 1 gets order 3. Person 3 can’t
get order 1 (for then person 2 would get the correct
order); thus, person 3 gets order 2. This leaves order 1
for person 2. Thus if person 1 gets order 3, the only
possibility is

3, 1, 2.

Thus D3 = 2.
Let’s check that the recurrence relation holds for

n = 3:

D3 = 2 = 2(1+ 0) = (3− 1)(D2 +D1).

If n = 4, person 1 gets either order 2, 3, or 4,
so the possibilities are 2,?,?,?; 3,?,?,?; and 4,?,?,?. (If
there are n persons, person 1 gets either order 2 or 3
or . . . or n. These n − 1 possibilities account for the
leading n − 1 factor in the recurrence relation.) Let’s

fill in the missing numbers. Suppose that person 1 gets
order 2. If person 2 gets order 1, then person 3 gets
order 4 and person 4 gets order 3, which gives 2,1,4,3.
If person 2 does not get order 1, the possibilities are
2,3,4,1 and 2,4,1,3. Thus if person 1 gets order 2, there
are three possibilities. Similarly, if person 1 gets order
3, there are three possibilities, and if person 1 gets order
4, there are three possibilities. You should list the pos-
sibilities to confirm this last statement. Thus D4 = 9.

Let’s check that the recurrence relation also holds
for n = 4:

D4 = 9 = 3(2+ 1) = (4− 1)(D3 +D2).

Before reading on, work through the case n = 5.
List only the possibilities when person 1 gets order 2.
(There are too many possibilities to list them all.) Also
verify the recurrence relation for n = 5.

Notice that if person 1 gets order 2 and person 2
gets order 1, the number of ways for the other persons to
get the wrong orders is Dn−2 (the remaining n− 2 per-
sons must all get the wrong orders). This accounts for
the presence of Dn−2 in the recurrence relation. We’ll
have a solution, provided that the Dn−1 term appears in
the remaining case: Person 1 gets order 2, but person 2
does not get order 1.

Finding a Solution
Suppose there are n persons. Let’s summarize the argu-
ment we’ve developed through our examples. Person 1
gets either order 2, or 3, . . . , or n; so there are n−1 pos-
sible ways for person 1 to get the wrong order. Suppose
that person 1 gets order 2. There are two possibilities:
Person 2 gets order 1, person 2 does not get order 1.
If person 2 gets order 1, the number of ways for the
other persons to get the wrong orders is Dn−2. The
remaining case is that person 2 does not get order 1.

Let’s write out carefully what it is we have to count.
Persons 2, 3, . . . , n have among themselves orders
1, 3, 4, . . . , n (order 2 is missing because person 1
has it). We want to find the number of ways for per-
sons 2, 3, . . . , n each to get the wrong order and for
person 2 not to get order 1. This is almost the problem
of n − 1 persons all getting the wrong orders. We can
turn it into this problem if we tell persons 2, 3, . . . , n

that order 1 is order 2. Now person 2 will not get order 1
because person 2 thinks it’s order 2. Since there aren−1
persons, there are Dn−1 ways for persons 2, 3, . . . , n

each to get the wrong order and for person 2 not to get
order 1. It follows that there are Dn−1+Dn−2 ways for
person 1 to get order 2 and for all the others to get the
wrong orders. Since there are n− 1 possible ways for

409

Recurrence Relations

person 1 to get the wrong order, the recurrence relation
now follows.

The recurrence relation defines Dn in terms of
Dn−1 and Dn−2 so it can’t be solved using iteration.
Also, the recurrence relation does not have constant
coefficients (although it is linear) so it can’t be solved
using Theorem 2.11 or 2.14. This explains the need to
make the substitution in part (b). Evidently, after mak-
ing the substitution, the recurrence relation for Cn can
be solved by the methods of Section 2.

If we expand

Dn = (n− 1)(Dn−1 +Dn−2),

we obtain

Dn = nDn−1 −Dn−1 + (n− 1)Dn−2.

If we then move nDn−1 to the left side of the equation
(to obtain an expression equal to Cn), we obtain

Dn − nDn−1 = −Dn−1 + (n− 1)Dn−2.

Now the left side of the equation is equal to Cn and
the right side is equal to −Cn−1. Thus we obtain the
recurrence relation

Cn = −Cn−1.

This equation may be solved by iteration.

Formal Solution
Part (a): Suppose that n persons all have the wrong
orders. We consider the order that one person p has.
Suppose that p has q’s order. We consider two cases: q

has p’s order, and q does not have p’s order.
There are Dn−2 distributions in which q has p’s

order since the remaining n − 2 orders are in posses-
sion of the remaining n − 2 persons, but each has the
wrong order.

We show that there are Dn−1 distributions in which
q does not have p’s order. Note that the set of orders S

that the n−1 persons (excluding p) possess includes all
except q’s (which p has). Temporarily assign owner-
ship of p’s order to q. Then any distribution of S among
the n − 1 persons in which no one has his or her own
order yields a distribution in which q does not have
the order that is really p’s. Since there are Dn−1 such
distributions, there are Dn−1 distributions in which q

does not have p’s order.
It follows that there are Dn−1+Dn−2 distributions

in which p has q’s order. Since p can have any one of
n− 1 orders, the recurrence relation follows.

Part (b): Making the given substitution, we obtain

Cn = −Cn−1.

Using iteration, we obtain

Cn = (−1)1Cn−1

= (−1)2Cn−2 = · · ·
= (−1)n−2C2

= (−1)nC2

= (−1)n(D2 − 2D1) = (−1)n.

Therefore,

Dn − nDn−1 = (−1)n.

Solving this last recurrence relation by iteration, we
obtain

Dn = (−1)n + nDn−1

= (−1)n + n[(−1)n−1 + (n− 1)Dn−2]

= (−1)n + n(−1)n−1

+ n(n− 1)[(−1)n−2 + (n− 2)Dn−3]

...

= (−1)n + n(−1)n−1 + n(n− 1)(−1)n−2 + · · ·
− [n(n− 1) · · · 4]+ [n(n− 1) · · · 3].

Summary of Problem-Solving Techniques
■ When examples get too wordy, develop a nota-

tion for concisely describing the examples. Care-
fully chosen notation can help enormously in
solving a problem.

■ When looking at examples, try to see how the
current problem relates to smaller instances of
the same problem.

■ It often helps to write out carefully what is to be
counted.

■ It is sometimes possible to convert a recurrence
relation that is not a linear homogeneous equa-
tion with constant coefficients into a linear
homogeneous equation with constant coeffi-
cients. Such a recurrence relation can then be
solved by the methods of Section 2.

Comment
The technical name of a permutation in which no ele-
ment is in its original position is a derangement.

Probability
We can compute the probability that no one receives
the correct order if we assume that all permutations are

410

Recurrence Relations

equally likely. In this case, since there are n! permuta-
tions, the probability that no one receives the correct
order is

Dn

n!
= 1

n!
{(−1)n + n(−1)n−1

+ n(n− 1)(−1)n−2 + · · ·
− [n(n− 1) · · · 4]+ [n(n− 1) · · · 3]}

= (−1)n

n!
+ (−1)n−1

(n− 1)!
+ (−1)n−2

(n− 2)!
+ · · ·

− 1

3!
+ 1

2!
.

As n increases, the additional terms are so small that
the probability changes very little. In other words, for
sufficiently large n, the probability that no one receives
the correct order is essentially insensitive to the number
of orders!

Calculus tells us that

ex =
∞∑

i=0

xi

i!
.

In particular,

e−1 =
∞∑

i=0

(−1)i

i!
= 1

2!
− 1

3!
+ 1

4!
· · · .

Thus for large n, the probability that no one receives
the correct order is approximately e−1 = 0.368.

3 ➜ Applications to the Analysis of Algorithms

In this section we use recurrence relations to analyze the time algorithms require. The
technique is to develop a recurrence relation and initial conditions that define a sequence
a1, a2, . . . , where an is the time (best-case, average-case, or worst-case time) required
for an algorithm to execute an input of size n. By solving the recurrence relation, we can
determine the time needed by the algorithm.

Our first algorithm is a version of the selection sorting algorithm. This algorithm
selects the largest item and places it last, then recursively repeats this process.

Algorithm 3.1 Selection Sort

This algorithm sorts the sequence

s1, s2, . . . , sn

in nondecreasing order by first selecting the largest item and placing it last and then
recursively sorting the remaining elements.

Input: s1, s2, . . . , sn and the length n of the sequence

Output: s1, s2, . . . , sn, arranged in nondecreasing order

1. selection sort(s, n) {
2. // base case
3. if (n == 1)

4. return
5. // find largest
6. max index = 1 // assume initially that s1 is largest
7. for i = 2 to n

8. if (si > smax index) // found larger, so update
9. max index = i

10. // move largest to end
11. swap(sn, smax index)

12. selection sort(s, n− 1)

13. }

411

Recurrence Relations

As a measure of the time required by this algorithm, we count the number of
comparisons bn at line 8 required to sort n items. (Notice that the best-case, average-
case, and worst-case times are all the same for this algorithm.) We immediately obtain
the initial condition

b1 = 0.

To obtain a recurrence relation for the sequence b1, b2, . . . , we simulate the execution
of the algorithm for arbitrary input of size n > 1. We count the number of comparisons
at each line and then sum these numbers to obtain the total number of comparisons
bn. At lines 1–7, there are zero comparisons (of the type we are counting). At line 8,
there are n − 1 comparisons (since line 7 causes line 8 to be executed n − 1 times).
There are zero comparisons at lines 9–11. The recursive call occurs at line 12, where we
invoke this algorithm with input of size n− 1. But, by definition, this algorithm requires
bn−1 comparisons for input of size n − 1. Thus there are bn−1 comparisons at line 12.
Therefore, the total number of comparisons is

bn = n− 1+ bn−1,

which yields the desired recurrence relation.
Our recurrence relation can be solved by iteration:

bn = bn−1 + n− 1

= (bn−2 + n− 2)+ (n− 1)

= (bn−3 + n− 3)+ (n− 2)+ (n− 1)

...

= b1 + 1+ 2+ · · · + (n− 2)+ (n− 1)

= 0+ 1+ 2+ · · · + (n− 1) = (n− 1)n

2
= �(n2).

Thus the time required by Algorithm 3.1 is �(n2).
Our next algorithm (Algorithm 3.2) is binary search. Binary search looks for a

value in a sorted sequence and returns the index of the value if it is found or 0 if it is not
found. The algorithm uses the divide-and-conquer approach. The sequence is divided
into two nearly equal parts (line 4). If the item is found at the dividing point (line 5),
the algorithm terminates. If the item is not found, because the sequence is sorted, an
additional comparison (line 7) will locate the half of the sequence in which the item
appears if it is present. We then recursively invoke binary search (line 11) to continue
the search.

Algorithm 3.2 Binary Search

This algorithm looks for a value in a nondecreasing sequence and returns the index
of the value if it is found or 0 if it is not found.

Input: A sequence si, si+1, . . . , sj, i ≥ 1, sorted in nondecreasing order, a
value key, i, and j

Output: The output is an index k for which sk = key, or if key is not in the
sequence, the output is the value 0.

1. binary search(s, i, j, key) {
2. if (i > j) // not found
3. return 0

412

Recurrence Relations

4. k = �(i+ j)/2�
5. if (key == sk) // found
6. return k

7. if (key < sk) // search left half
8. j = k − 1
9. else // search right half

10. i = k + 1
11. return binary search(s, i, j, key)
12. }

Example 3.3 We illustrate Algorithm 3.2 for the input

s1 = ‘B’, s2 = ‘D’, s3 = ‘F ’, s4 = ‘S’,

and key= ‘S’. At line 2, since i > j (1 > 4) is false, we proceed to line 4, where we set
k to 2. At line 5, since key (‘S’) is not equal to s2 (‘D’) , we proceed to line 7. At line 7,
key < sk (‘S’ < ‘D’) is false, so at line 10, we set i to 3. We then invoke this algorithm
with i = 3, j = 4 to search for key in

s3 = ‘F ’, s4 = ‘S’.

At line 2, since i > j (3 > 4) is false, we proceed to line 4, where we set k to 3.
At line 5, since key (‘S’) is not equal to s3 (‘F ’), we proceed to line 7. At line 7, key
< sk (‘S’ < ‘F ’) is false, so at line 10, we set i to 4. We then invoke this algorithm with
i = j = 4 to search for key in

s4 = ‘S’.

At line 2, since i > j (4 > 4) is false, we proceed to line 4, where we set k to 4. At
line 5, since key (‘S’) is equal to s4 (‘S’), we return 4, the index of key in the sequence s.

Next we turn to the worst-case analysis of binary search. We define the worst-case
time required by binary search to be the number of times the algorithm is invoked in the
worst case for a sequence containing n items. We let an denote the worst-case time.

Suppose that n is 1; that is, suppose that the sequence consists of one element si

and i = j. In the worst case, the item will not be found at line 5, so the algorithm will be
invoked a second time at line 11. However, at the second invocation we will have i > j

and the algorithm will terminate unsuccessfully at line 3. We have shown that if n is 1,
the algorithm is invoked twice. We obtain the initial condition

a1 = 2. (3.1)

Now suppose that n > 1. In this case, i < j, so the condition in line 2 is false.
In the worst case, the item will not be found at line 5, so the algorithm will be invoked
at line 11. By definition, the invocation at line 11 will require a total of am invocations,
where m is the size of the sequence that is input at line 11. Since the sizes of the left
and right sides of the original sequence are �(n − 1)/2� and �n/2� and the worst case
occurs with the larger sequence, the total number of invocations at line 11 will be a�n/2�.
The original invocation together with the invocations at line 11 gives all the invocations;
thus we obtain the recurrence relation

an = 1+ a�n/2�. (3.2)

The recurrence relation (3.2) is typical of those that result from divide-and-
conquer algorithms. Such recurrence relations are usually not easily solved explicitly

413

Recurrence Relations

(see, however, Exercise 6). Rather, one estimates the growth of the sequence involved
using theta notation. Our method of deriving a theta notation for the sequence defined
by (3.1) and (3.2) illustrates a general method of handling such recurrence relations.
First we explicitly solve (3.2) in case n is a power of 2. When n is not a power of 2, n

lies between two powers of 2, say 2k−1 and 2k, and an lies between a2k−1 and a2k . Since
explicit formulas are known for a2k−1 and a2k , we can estimate an and thereby derive a
theta notation for an.

First we solve the recurrence relation (3.2) in case n is a power of 2. If n = 2k,
(3.2) becomes

a2k = 1+ a2k−1 , k = 1, 2,

If we let bk = a2k , we obtain the recurrence relation

bk = 1+ bk−1, k = 1, 2, . . . , (3.3)

and the initial condition

b0 = 2.

The recurrence relation (3.3) can be solved by the iterative method:

bk = 1+ bk−1 = 2+ bk−2 = · · · = k + b0 = k + 2.

Thus, if n = 2k,

an = 2+ lg n. (3.4)

An arbitrary value of n falls between two powers of 2, say

2k−1 < n ≤ 2k. (3.5)

Since the sequence a is nondecreasing (a fact that can be proved using induction—see
Exercise 5),

a2k−1 ≤ an ≤ a2k . (3.6)

Notice that (3.5) gives

k − 1 < lg n ≤ k. (3.7)

From (3.4), (3.6), and (3.7), we deduce that

lg n < 1+ k = a2k−1 ≤ an ≤ a2k = 2+ k < 3+ lg n = O(lg n).

Therefore, an = �(lg n), so binary search is �(lg n) in the worst case. This result is
important enough to highlight as a theorem.

Theorem 3.4 The worst-case time for binary search for input of size n is �(lg n).

Proof The proof precedes the statement of the theorem.

For our last example, we present and analyze another sorting algorithm known
as merge sort (Algorithm 3.8). We will show that merge sort has worst-case run time
�(n lg n), so for large input, merge sort is much faster than selection sort (Algorithm 3.1),
which has worst-case run time �(n2). You will find that any sorting algorithm that
compares elements and, based on the result of a comparison, moves items around in an
array is �(n lg n) in the worst case; thus merge sort is optimal within this class of sorting
algorithms.

414

Recurrence Relations

In merge sort the sequence to be sorted,

si, . . . , sj,

is divided into two nearly equal sequences,

si, . . . , sm, sm+1, . . . , sj,

where m = �(i+ j)/2�. Each of these sequences is recursively sorted, after which they
are combined to produce a sorted arrangement of the original sequence. The process of
combining two sorted sequences is called merging.

Algorithm 3.5 Merging Two Sequences

This algorithm combines two nondecreasing sequences into a single nondecreasing
sequence.

Input: Two nondecreasing sequences: si, . . . , sm and sm+1, . . . , sj , and
indexes i, m, and j

Output: The sequence ci, . . . , cj consisting of the elements si, . . . , sm and
sm+1, . . . , sj combined into one nondecreasing sequence

1. merge(s, i, m, j, c) {
2. // p is the position in the sequence si, . . . , sm

3. // q is the position in the sequence sm+1, . . . , sj

4. // r is the position in the sequence ci, . . . , cj

5. p = i

6. q = m+ 1
7. r = i

8. // copy smaller of sp and sq

9. while (p ≤ m ∧ q ≤ j) {
10. if (sp < sq) {
11. cr = sp

12. p = p+ 1
13. }
14. else {
15. cr = sq

16. q = q+ 1
17. }
18. r = r + 1
19. }
20. // copy remainder of first sequence
21. while (p ≤ m) {
22. cr = sp

23. p = p+ 1
24. r = r + 1
25. }
26. // copy remainder of second sequence
27. while (q ≤ j) {
28. cr = sq

29. q = q+ 1
30. r = r + 1
31. }
32. }

415

Recurrence Relations

Example 3.6 Figure 3.1 shows how Algorithm 3.5 merges the sequences

1, 3, 4 and 2, 4, 5, 6.

134

si, ..., sm:

134 134 134 134 134 134

p p p p p p p

2456

sm�1, ..., sj:

2456 2456 2456 2456 2456 2456

q q q q q q q

1

ci , ..., cj:

12 123 1234 12344 123445 1234456

r r r r r r r

Figure 3.1 Merging si, . . . , sm and sm+1, . . . , sj . The result is ci, . . . , cj .

Theorem 3.7 shows that in the worst case, n− 1 comparisons are needed to merge
two sequences the sum of whose lengths is n.

Theorem 3.7 In the worst case, Algorithm 3.5 requires j− i comparisons. In particular, in the worst
case, n−1 comparisons are needed to merge two sequences the sum of whose lengths
is n.

Proof In Algorithm 3.5, the comparison of elements in the sequences occurs in the
while loop at line 10. The while loop will execute as long as p ≤ m and q ≤ j. Thus,
in the worst case, Algorithm 3.5 requires j − i comparisons.

We next use Algorithm 3.5 (merging) to construct merge sort.

Algorithm 3.8 Merge Sort

This recursive algorithm sorts a sequence into nondecreasing order by using Algo-
rithm 3.5, which merges two nondecreasing sequences.

Input: si, . . . , sj, i, and j

Output: si, . . . , sj , arranged in nondecreasing order

1. merge sort(s, i, j) {
2. // base case: i == j

3. if (i == j)

4. return
5. // divide sequence and sort
6. m = �(i+ j)/2�
7. merge sort(s, i, m)

8. merge sort(s, m+ 1, j)

416

Recurrence Relations

9. // merge
10. merge(s, i, m, j, c)

11. // copy c, the output of merge, into s

12. for k = i to j

13. sk = ck

14. }

Example 3.9 Figure 3.2 shows how Algorithm 3.8 sorts the sequence

12, 30, 21, 8, 6, 9, 1, 7.

Merge
one-element

arrays

12

30

21

8

6

9

1

7

Merge
two-element

arrays

12

30

8

21

6

9

1

7

Merge
four-element

arrays

8

12

21

30

1

6

7

9

1

6

7

8

9

12

21

30

Figure 3.2 Sorting by merge sort.

We conclude by showing that merge sort (Algorithm 3.8) is �(n lg n) in the worst
case. The method of proof is the same as we used to show that binary search is �(lg n)

in the worst case.

Theorem 3.10 Merge sort (Algorithm 3.8) is �(n lg n) in the worst case.

Proof Let an be the number of comparisons required byAlgorithm 3.8 to sort n items
in the worst case. Then a1 = 0. If n > 1, an is at most the sum of the numbers of
comparisons in the worst case resulting from the recursive calls at lines 7 and 8, and
the number of comparisons in the worst case required by merge at line 10. That is,

an ≤ a�n/2� + a�(n+1)/2� + n− 1.

In fact, this upper bound is achievable (see Exercise 12), so that

an = a�n/2� + a�(n+1)/2� + n− 1.

First we solve the preceding recurrence relation in case n is a power of 2, say
n = 2k. The equation becomes

a2k = 2a2k−1 + 2k − 1.

417

Recurrence Relations

We may solve this last equation by using iteration (see Section 2):

a2k = 2a2k−1 + 2k − 1

= 2[2a2k−2 + 2k−1 − 1]+ 2k − 1

= 22a2k−2 + 2 · 2k − 1− 2

= 22[2a2k−3 + 2k−2 − 1]+ 2 · 2k − 1− 2

= 23a2k−3 + 3 · 2k − 1− 2− 22

...

= 2ka20 + k · 2k − 1− 2− 22 − · · · − 2k−1

= k · 2k − (2k − 1)

= (k − 1)2k + 1. (3.8)

An arbitrary value of n falls between two powers of 2, say,

2k−1 < n ≤ 2k. (3.9)

Since the sequence a is nondecreasing (see Exercise 25),

a2k−1 ≤ an ≤ a2k . (3.10)

Notice that (3.9) gives

k − 1 < lg n ≤ k. (3.11)

From (3.8), (3.10), and (3.11), we deduce that

�(n lg n) = (−2+ lg n)
n

2
< (k − 2)2k−1 + 1 = a2k−1

≤ an ≤ a2k ≤ k2k + 1 ≤ (1+ lg n)2n+ 1 = O(n lg n).

Therefore, an = �(n lg n), so merge sort is �(n lg n) in the worst case.

As remarked previously, any comparison-based sorting algorithm is �(n lg n) in
the worst case. This result implies, in particular, that merge sort is �(n lg n) in the worst
case. If we had already proved this result, to prove that merge sort is �(n lg n) in the
worst case, it would have been sufficient to prove that merge sort is O(n lg n) in the
worst case.

Even though merge sort, Algorithm 3.8, is optimal, it may not be the algorithm
of choice for a particular sorting problem. Factors such as the average-case time of the
algorithm, the number of items to be sorted, available memory, the data structures to
be used, whether the items to be sorted are in memory or reside on peripheral storage
devices such as disks or tapes, whether the items to be sorted are already “nearly” sorted,
and the hardware to be used must be taken into account.

Section Review Exercises

1. Explain how to find a recurrence relation that describes the time
a recursive algorithm requires.

2. How does selection sort work?

3. What is the time required by selection sort?

4. How does binary search work? What properties must the input
have?

418

Recurrence Relations

5. Write a recurrence relation that describes the worst-case time
required by binary search.

6. What is the worst-case time of binary search?

7. How does the merge algorithm work? What properties must the
input have?

8. What is the worst-case time of the merge algorithm?

9. Explain how merge sort works.

10. Write a recurrence relation that describes the worst-case time
required by merge sort.

11. Why is it easy to solve for the worst-case time of merge sort if
the input size is a power of two?

12. Explain, in words, how we can obtain bounds on the worst-case
time of merge sort for input of arbitrary size if we know the
worst-case time when the input size is a power of two.

13. What is the worst-case time of merge sort?

Exercises

Exercises 1–4 refer to the sequence

s1 = ‘C’, s2 = ‘G’, s3 = ‘J’, s4 = ‘M’, s5 = ‘X’.

1. Show how Algorithm 3.2 executes in case key = ‘G’.

2. Show how Algorithm 3.2 executes in case key = ‘P’.

3. Show how Algorithm 3.2 executes in case key = ‘C’.

4. Show how Algorithm 3.2 executes in case key = ‘Z’.

5. Let an denote the worst-case time of binary search (Algo-
rithm 3.2). Prove that an ≤ an+1 for n ≥ 1.

�6. Prove that if an is the number of times the binary search
algorithm (Algorithm 3.2) is invoked in the worst case for
a sequence containing n items, then

an = 2+ �lg n�
for every positive integer n.

7. Give an example to show that if the input to Algorithm 3.2
is not in nondecreasing order, Algorithm 3.2 may not find key
even if it is present.

8. Suppose that the input toAlgorithm 3.2 is not in nondecreasing
order. Could Algorithm 3.2 erroneously find key even though
it is not present?

9. Write a nonrecursive version of the binary search algorithm.

�10. Write a nonrecursive version of the binary search algorithm
that uses at most 1+ �lg n� array comparisons. The input is a
sequence s1, . . . , sn, sorted in nondecreasing order, a value key
to search for, and n. Assume that the only array comparisons
allowed are si < key and si == key.

11. Assume the conditions of Exercise 10 and assume further that
one incorrect response to an array comparison is allowed. [An
“incorrect response to an array comparison” occurs in one of
four ways: (1) si < key is true, but in the algorithm, the rela-
tion si < key evaluates to false. (2) si < key is false, but in the
algorithm, the relation si < key evaluates to true. (3) si== key
is true, but in the algorithm, the relation si== key evaluates to
false. (4) si== key is false, but in the algorithm, the relation
si== key evaluates to true.] Write an algorithm that uses at
most 3+ 2�lg n� array comparisons to determine whether key
is in the sequence. (The problem can be solved in fewer than
3+ 2�lg n� array comparisons in the worst case.)

12. Professor T. R. S. Eighty proposes the following version of
binary search:

binary search2(s, i, j, key) {
if (i > j)

return 0
k = �(i+ j)/2�
if (key == sk)

return k

k1 = binary search2(s, i, k − 1, key)
k2 = binary search2(s, k + 1, j, key)
return k1+ k2

}

(a) Show that binary search2 is correct; that is, if key is
present, the algorithm returns its index, but if key is not
present, it returns 0.

(b) Find the worst-case running time of binary search2.

13. Professor Larry proposes the following version of binary
search:

binary search3(s, i, j, key) {
while (i ≤ j) {

k = �(i+ j)/2�
if (key == sk)

return k

if (key < sk)

j = k

else
i = k

}
return 0

}

Is the Professor’s version correct (i.e., does it find key if it is
present and return 0 if it is not present)? If the Professor’s
version is correct, what is the worst-case time?

14. Professor Curly proposes the following version of binary
search:

binary search4(s, i, j, key) {
if (i > j)

return 0

419

Recurrence Relations

k = �(i+ j)/2�
if (key == sk)

return k

flag = binary search4(s, i, k − 1, key)
if (flag == 0)

return binary search4(s, k + 1, j, key)
else

return flag
}

Is the Professor’s version correct (i.e., does it find key if it is
present and return 0 if it is not present)? If the Professor’s
version is correct, what is the worst-case time?

15. Professor Moe proposes the following version of binary
search:

binary search5(s, i, j, key) {
if (i > j)

return 0
k = �(i+ j)/2�
if (key == sk)

return k

if (key < sk)

return binary search5(s, i, k, key)
else

return binary search5(s, k + 1, j, key)
}

Is the Professor’s version correct (i.e., does it find key if it is
present and return 0 if it is not present)? If the Professor’s
version is correct, what is the worst-case time?

16. Suppose that we replace the line

k = �(i+ j)/2�

with

k = �i+ (j − i)/3�

in Algorithm 3.2. Is the resulting algorithm still correct (i.e.,
does it find key if it is present and return 0 if it is not present)?
If it is correct, what is the worst-case time?

17. Suppose that we replace the line

k = �(i+ j)/2�

with

k = �j − 2�

in Algorithm 3.2. Is the resulting algorithm still correct (i.e.,
does it find key if it is present and return 0 if it is not present)?
If it is correct, what is the worst-case time?

18. Suppose that algorithm A requires �n lg n� comparisons to sort
n items and algorithm B requires �n2/4� comparisons to sort
n items. For which n is algorithm B superior to algorithm A?

19. Show how merge sort (Algorithm 3.8) sorts the sequence 1, 9,
7, 3.

20. Show how merge sort (Algorithm 3.8) sorts the sequence 2, 3,
7, 2, 8, 9, 7, 5, 4.

21. Suppose that we have two sequences each of size n sorted in
nondecreasing order.

(a) Under what conditions does the maximum number of
comparisons occur in Algorithm 3.5?

(b) Under what conditions does the minimum number of
comparisons occur in Algorithm 3.5?

22. Let an be as in the proof of Theorem 3.10. Describe input for
which

an = a�n/2� + a�(n+1)/2� + n− 1.

23. What is the minimum number of comparisons required by
Algorithm 3.8 to sort an array of size 6?

24. What is the maximum number of comparisons required by
Algorithm 3.8 to sort an array of size 6?

25. Let an be as in the proof of Theorem 3.10. Show that an ≤ an+1

for all n ≥ 1.

26. Let an denote the number of comparisons required by merge
sort in the worst case. Show that an ≤ 3n lg n for n =
1, 2, 3,

27. Show that in the best case, merge sort requires �(n lg n)

comparisons.

Exercises 28–32 refer to Algorithm 3.11.

Algorithm 3.11
Computing an Exponential
This algorithm computes an recursively, where a is a real number
and n is a positive integer.

Input: a (a real number), n (a positive integer)

Output: an

1. exp1(a, n) {
2. if (n == 1)

3. return a

4. m = �n/2�
5. return exp1(a, m) ∗ exp1(a, n−m)

6. }

Let bn be the number of multiplications (line 5) required to
compute an.

28. Explain how Algorithm 3.11 computes an.

29. Find a recurrence relation and initial conditions for the
sequence {bn}.

30. Compute b2, b3, and b4.

31. Solve the recurrence relation of Exercise 29 in case n is a power
of 2.

32. Prove that bn = n− 1 for every positive integer n.

Exercises 33–38 refer to Algorithm 3.12.

Algorithm 3.12
Computing an Exponential
This algorithm computes an recursively, where a is a real number
and n is a positive integer.

420

Recurrence Relations

Input: a (a real number), n (a positive integer)

Output: an

1. exp2(a, n) {
2. if (n == 1)

3. return a

4. m = �n/2�
5. power = exp2(a, m)

6. power = power ∗ power
7. if (n is even)

8. return power
9. else

10. return power ∗ a

11. }

Let bn be the number of multiplications (lines 6 and 10) required
to compute an.

33. Explain how Algorithm 3.12 computes an.

34. Show that

bn =
{

b(n−1)/2 + 2 if n is odd
bn/2 + 1 if n is even.

35. Find b1, b2, b3, and b4.

36. Solve the recurrence relation of Exercise 34 in case n is a power
of 2.

37. Show, by an example, that b is not nondecreasing.

�38. Prove that bn = �(lg n).

Exercises 39–44 refer to Algorithm 3.13.

Algorithm 3.13
Finding the Largest and Smallest Elements in a
Sequence
This recursive algorithm finds the largest and smallest elements in
a sequence.

Input: si, . . . , sj, i, and j

Output: large (the largest element in the sequence), small
(the smallest element in the sequence)

1. large small(s, i, j, large, small) {
2. if (i == j) {
3. large = si
4. small = si
5. return
6. }
7. m = �(i+ j)/2�
8. large small(s, i, m, large left, small left)
9. large small(s, m+ 1, j, large right, small right)

10. if (large left > large right)
11. large = large left
12. else
13. large = large right
14. if (small left > small right)
15. small = small right
16. else

17. small = small left
18. }

Let bn be the number of comparisons (lines 10 and 14) required for
an input of size n.

39. Explain how Algorithm 3.13 finds the largest and smallest
elements.

40. Show that b1 = 0 and b2 = 2.

41. Find b3.

42. Establish the recurrence relation

bn = b�n/2� + b�(n+1)/2� + 2 (3.12)

for n > 1.

43. Solve the recurrence relation (3.12) in case n is a power of 2
to obtain

bn = 2n− 2, n = 1, 2, 4,

44. Use induction to show that

bn = 2n− 2

for every positive integer n.

Exercises 45–48 refer to Algorithm 3.13, with the following inserted
after line 6.

6a. if (j == i+ 1) {
6b. if (si > sj) {
6c. large = si
6d. small = sj
6e. }
6f. else {
6g. small = si
6h. large = sj
6i. }
6j. return
6k. }

Let bn be the number of comparisons (lines 6b, 10, and 14) for an
input of size n.

45. Show that b1 = 0 and b2 = 1.

46. Compute b3 and b4.

47. Show that the recurrence relation (3.12) holds for n > 2.

48. Solve the recurrence relation (3.12) in case n is a power of 2
to obtain

bn = 3n

2
− 2, n = 2, 4, 8,

�49. Modify Algorithm 3.13 by inserting the lines preceding Exer-
cise 45 after line 6 and replacing line 7 with the following.

7a. if (j − i is odd ∧ (1+ j − i)/2 is odd)

7b. m = �(i+ j)/2� − 1
7c. else
7d. m = �(i+ j)/2�

Show that in the worse case, this modified algorithm requires at
most �(3n/2)−2� comparisons to find the largest and smallest
elements in an array of size n.

421

Recurrence Relations

Exercises 50–54 refer to Algorithm 3.14.

Algorithm 3.14
Insertion Sort (Recursive Version)
This algorithm sorts the sequence

s1, s2, . . . , sn

in nondecreasing order by recursively sorting the first n − 1
elements and then inserting sn in the correct position.

Input: s1, s2, . . . , sn and the length n of the sequence

Output: s1, s2, . . . , sn arranged in nondecreasing order

1. insertion sort(s, n) {
2. if (n == 1)

3. return
4. insertion sort(s, n− 1)

5. i = n− 1
6. temp = sn
7. while (i ≥ 1 ∧ si > temp) {
8. si+1 = si
9. i = i− 1

10. }
11. si+1 = temp
12. }

Let bn be the number of times the comparison si > temp in line 7
is made in the worst case. Assume that if i < 1, the comparison
si > temp is not made.

50. Explain how Algorithm 3.14 sorts the sequence.

51. Which input produces the worst-case behavior for Algo-
rithm 3.14?

52. Find b1, b2, and b3.

53. Find a recurrence relation for the sequence {bn}.
54. Solve the recurrence relation of Exercise 53.

Exercises 55–57 refer to Algorithm 3.15.

Algorithm 3.15

Input: s1, . . . , sn, n

Output: s1, . . . , sn

algor1(s, n) {
i = n

while (i ≥ 1) {
si = si + 1
i = �i/2�

}
n = �n/2�
if (n ≥ 1)

algor1(s, n)

}

Let bn be the number of times the statement si = si+1 is executed.

55. Find a recurrence relation for the sequence {bn} and compute
b1, b2, and b3.

56. Solve the recurrence relation of Exercise 55 in case n is a
power of 2.

57. Prove that bn = �((lg n)2).

58. Find a theta notation in terms of n for the number of times
algor2 is called when invoked as algor2(1, n).

algor2(i, j) {
if (i == j)

return
k = �(i+ j)/2�
algor2(i, k)

algor2(k + 1, j)

}

Exercises 59–63 refer to Algorithm 3.16.

Algorithm 3.16

Input: A sequence si, . . . , sj of zeros and ones

Output: si, . . . , sj where all the zeros precede all the ones

sort(s, i, j) {
if (i == j)

return
if (si == 1) {

swap(si, sj)

sort(s, i, j − 1)

}
else

sort(s, i+ 1, j)

}

59. Use mathematical induction on n, the number of items in the
input sequence, to prove that sort does produce as output a
rearranged version of the input sequence in which all of the
zeros precede all of the ones. (The Basis Step is n = 1.)

Let bn denote the number of times sort is called when the input
sequence contains n items.

60. Find b1, b2, and b3.

61. Write a recurrence relation for bn.

62. Solve your recurrence relation of Exercise 61 for bn.

63. In theta notation, what is the running time of sort as a function
of n, the number of items in the input sequence?

64. Solve the recurrence relation

an = 3a�n/2� + n, n > 1,

in case n is a power of 2. Assume that a1 = 1.

65. Show that an = �(nlg 3), where an is as in Exercise 64.

Exercises 66–73 refer to an algorithm that accepts as input the
sequence

si, . . . , sj.

If j > i, the subproblems

si, . . . , s�(i+j)/2� and s�(i+j)/2+1�, . . . , sj

422

Recurrence Relations

are solved recursively. Solutions to subproblems of sizes m and k

can be combined in time cm,k to solve the original problem. Let bn

be the time required by the algorithm for an input of size n.

66. Write a recurrence relation for bn assuming that cm,k = 3.

67. Write a recurrence relation for bn assuming that cm,k = m+k.

68. Solve the recurrence relation of Exercise 66 in case n is a power
of 2, assuming that b1 = 0.

69. Solve the recurrence relation of Exercise 66 in case n is a power
of 2, assuming that b1 = 1.

70. Solve the recurrence relation of Exercise 67 in case n is a power
of 2, assuming that b1 = 0.

71. Solve the recurrence relation of Exercise 67 in case n is a power
of 2, assuming that b1 = 1.

�72. Assume that if m1 ≥ m2 and k1 ≥ k2, then cm1,k1 ≥ cm2,k2 .
Show that the sequence b1, b2, . . . is nondecreasing.

�73. Assuming that cm,k =m+ k and b1 = 0, show that bn ≤
4n lg n.

Exercises 74–79 refer to the following situation. We let Pn denote
a particular problem of size n. If Pn is divided into subproblems
of sizes i and j, there is an algorithm that combines the solutions
of these two subproblems into a solution to Pn in time at most
2+ lg(ij). Assume that a problem of size 1 is already solved.

74. Write a recursive algorithm to solve Pn similar to Algo-
rithm 3.8.

75. Let an be the worst-case time to solve Pn by the algorithm of
Exercise 74. Show that

an ≤ a�n/2� + a�(n+1)/2� + 2 lg n.

76. Let bn be the recurrence relation obtained from Exercise 75 by
replacing “≤” by “=.” Assume that b1 = a1 = 0. Show that
if n is a power of 2,

bn = 4n− 2 lg n− 4.

77. Show that an ≤ bn for n = 1, 2, 3,

78. Show that bn ≤ bn+1 for n = 1, 2, 3,

79. Show that an ≤ 8n for n = 1, 2, 3,

80. Suppose that {an} is a nondecreasing sequence and that when-
ever m divides n,

an = an/m + d,

where d is a positive real number and m is an integer satisfying
m > 1. Show that an = �(lg n).

�81. Suppose that {an} is a nondecreasing sequence and that when-
ever m divides n,

an = can/m + d,

where c and d are real numbers satisfying c > 1 and d > 0, and
m is an integer satisfying m > 1. Show that an = �(nlogm c).

82. [Project] Investigate other sorting algorithms. Consider specif-
ically complexity, empirical studies, and special features of the
algorithms (see [Knuth, 1998b]).

Notes

Recurrence relations are treated more fully in [Liu, 1985; Roberts; and Tucker]. Several
applications to the analysis of algorithms are presented in [Johnsonbaugh].

[Cull] gives algorithms for solving certain Tower of Hanoi problems with minimum
space and time complexity. [Hinz] is a comprehensive discussion of the Tower of Hanoi with
50 references.

The cobweb in economics first appeared in [Ezekiel].
All data structures and algorithms books have extended discussions of searching and

sorting (see, e.g., [Brassard; Cormen; Johnsonbaugh; Knuth, 1998b; Kruse; and Nyhoff]).
Recurrence relations are also called difference equations. [Goldberg] contains a dis-

cussion of difference equations and applications.

Chapter Review

Section 1
1. Recurrence relation
2. Initial condition
3. Compound interest
4. Tower of Hanoi
5. Cobweb in economics
6. Ackermann’s function

Section 2
7. Solving a recurrence relation by iteration

8. nth-order, linear homogeneous recurrence relation with
constant coefficients and how to solve a second-order
recurrence relation

9. Population growth

Section 3
10. How to find a recurrence relation that describes the time

required by a recursive algorithm
11. Selection sort
12. Binary search
13. Merging sequences
14. Merge sort

423

Recurrence Relations

Chapter Self-Test

Section 1
1. Answer parts (a)–(c) for the sequence defined by the rules:

1. The first term is 3.

2. The nth term is n plus the previous term.
(a) Write the first four terms of the sequence.

(b) Find an initial condition for the sequence.

(c) Find a recurrence relation for the sequence.

2. Assume that a person invests $4000 at 17 percent interest
compounded annually. Let An represent the amount at the
end of n years. Find a recurrence relation and an initial con-
dition for the sequence A0, A1,

3. Let Pn be the number of partitions of an n-element set. Show
that the sequence P0, P1, . . . satisfies the recurrence relation

Pn =
n−1∑

k=0

C(n− 1, k)Pk.

4. Suppose that we have a 2 × n rectangular board divided
into 2n squares. Let an denote the number of ways to exactly
cover this board by 1×2 dominoes. Show that the sequence
{an} satisfies the recurrence relation

an = an−1 + an−2.

Show that an = fn+1, where {fn} is the Fibonacci sequence.

Section 2
5. Is the recurrence relation

an = an−1 + an−3

a linear homogeneous recurrence relation with constant
coefficients?

In Exercises 6 and 7, solve the recurrence relation subject to the
initial conditions.

6. an = −4an−1 − 4an−2; a0 = 2, a1 = 4

7. an = 3an−1 + 10an−2; a0 = 4, a1 = 13

8. Let cn denote the number of strings over {0, 1, 2} of length n

that contain an even number of 1’s. Write a recurrence rela-
tion and initial condition that define the sequence c1, c2,
Solve the recurrence relation to obtain an explicit formula
for cn.

Section 3

Exercises 9–12 refer to the following algorithm.

Algorithm
Polynomial Evaluation
This algorithm evaluates the polynomial

p(x) =
n∑

k=0

ckx
n−k

at the point t.

Input: The sequence of coefficients c0, c1, . . . , cn,
the value t, and n

Output: p(t)

poly(c, n, t) {
if (n == 0)

return c0

return t ∗ poly(c, n− 1, t)+ cn

}

Let bn be the number of multiplications required to compute p(t).

9. Find a recurrence relation and an initial condition for the
sequence {bn}.

10. Compute b1, b2, and b3.

11. Solve the recurrence relation of Exercise 9.

12. Suppose that we compute p(t) by a straightforward tech-
nique that requires n− k multiplications to compute ckt

n−k.
How many multiplications would be required to compute
p(t)? Would you prefer this method or the preceding algo-
rithm? Explain.

Computer Exercises

1. Write a program that prints the amount accumulated yearly
if a person invests n dollars at p percent compounded
annually.

2. Write a program that prints the amount accumulated yearly
if a person invests n dollars at p percent annual interest
compounded m times yearly.

3. Write a program that solves the three-peg Tower of Hanoi
puzzle.

4. Write a program that solves the four-peg Tower of Hanoi
puzzle in fewer moves than does the solution to the three-
peg puzzle.

5. Write a program to display the cobweb of economics.

6. Write a program to compute Ackermann’s function.

7. Write a program that prints a solution to the n-node com-
munication program (see Exercise 51, Section 1).

424

Recurrence Relations

8. Write a program that prints all the ways to spend n dollars
under the conditions of Exercise 53, Section 1.

9. Write a program that prints all n-bit strings that do not con-
tain the pattern 010.

10. Write a program to compute the Lucas sequence (see Exer-
cise 66, Section 1).

11. Write a program to list all rise/fall permutations of length n

(see the definition before Exercise 72, Section 1).

12. Implement Algorithms 3.1 (selection sort) and 3.8 (merge
sort) and other sorting algorithms as programs and compare
the times needed to sort n items.

13. Implement binary search (Algorithm 3.2) as a program.
Measure the time used by the program for various keys
and for various values of n. Compare these results with the
theoretical estimate for the worst-case time �(lg n).

14. Write a program to merge two sequences.

15. Implement a computation of an nonrecursively that uses
repeated multiplication and Algorithms 3.11 and 3.12 as
computer programs, and compare the times needed to exe-
cute each.

16. Implement the methods of computing the largest and small-
est elements in an array (see Exercises 39–49, Section 3)
and compare the times needed to execute each.

Hints/Solutions to Selected Exercises

Section 1 Review
1. A recurrence relation defines the nth term of a sequence in

terms of certain of its predecessors.

2. An initial condition for a sequence is an explicitly given value
for a particular term in the sequence.

3. Compound interest is interest on interest. If a person invests d

dollars at p percent compounded annually and we let An be the
amount of money earned after n years, the recurrence relation

An =
(

1+ p

100

)
An−1

together with the initial condition A0 = d defines the sequence
{An}.

4. The Tower of Hanoi puzzle consists of three pegs mounted on
a board and disks of various sizes with holes in their centers.
Only a disk of smaller diameter can be placed on a disk of
larger diameter. Given all the disks stacked on one peg, the
problem is to transfer the disks to another peg by moving one
disk at a time.

5. If there is one disk, move it and stop. If there are n > 1 disks,
recursively move n−1 disks to an empty peg. Move the largest
disk to the remaining empty peg. Recursively move n−1 disks
on top of the largest disk.

6. We assume that at time n, the quantity qn sold at price pn is
given by the equation pn = a− bqn, where a and b are posi-
tive parameters. We also assume that pn = kqn+1, where k is
another positive parameter. If we graph the price and quantity
over time, the graph resembles a cobweb (see, e.g., Figure 1.5).

7. Ackermann’s function A(m, n) is defined by the recurrence
relations

A(m, 0) = A(m− 1, 1), m ≥ 1

A(m, n) = A(m− 1, A(m, n− 1)), m ≥ 1, n ≥ 1

and initial conditions

A(0, n) = n+ 1, n ≥ 0.

Section 1
1. an = an−1 + 4; a1 = 3

4. An = (1.14)An−1 5. A0 = 2000

6. A1 = 2280, A2 = 2599.20, A3 = 2963.088

7. An = (1.14)n2000

8. We must have An = 4000 or (1.14)n2000 = 4000 or
(1.14)n= 2. Taking the logarithm of both sides, we must have
n log 1.14= log 2. Thus

n = log 2

log 1.14
= 5.29.

18. We count the number of n-bit strings not containing the pat-
tern 000.

■ Begin with 1. In this case, if the remaining (n− 1)-bit
string does not contain 000, neither will the n-bit string.
There are Sn−1 such (n− 1)-bit strings.

■ Begin with 0. There are two cases to consider.

1. Begin with 01. In this case, if the remaining (n−2)-
bit string does not contain 000, neither will the n-bit
string. There are Sn−2 such (n− 2)-bit strings.

2. Begin with 00. Then the third bit must be a 1 and
if the remaining (n− 3)-bit string does not contain
000, neither will the n-bit string. There are Sn−3

such (n− 3)-bit strings.

Since the cases are mutually exclusive and cover all n-
bit strings (n > 3) not containing 000, we have Sn = Sn−1 +
Sn−2 + Sn−3 for n > 3. S1= 2 (there are two 1-bit strings),
S2= 4 (there are four 2-bit strings), and S3= 7 (there are eight
3-bit strings but one of them is 000).

19. There are Sn−1 n-bit strings that begin 1 and do not contain the
pattern 00 and there are Sn−2 n-bit strings that begin 0 (since
the second bit must be 1) and do not contain the pattern 00.
Thus Sn = Sn−1+Sn−2. Initial conditions are S1 = 2, S2 = 3.

22. S1 = 2, S2 = 4, S3 = 7, S4 = 12

25. C3 = 5, C4 = 14, C5 = 42

425

Recurrence Relations

28. We first prove that if n ≥ 5, then Cn is not prime. Suppose,
by way of contradiction, that Cn is prime for some n ≥ 5. By
Exercise 27, n+ 2 < Cn. Thus Cn does not divide n+ 2. By
Exercise 26,

(n+ 2)Cn+1 = (4n+ 2)Cn.

Thus Cn divides (n+2)Cn+1. By Exercise 25, Section 5.3, Cn

divides either n+ 2 or Cn+1. Since Cn does not divide n+ 2,
Cn divides Cn+1. Therefore there exists an integer k ≥ 1 sat-
isfying Cn+1 = kCn. Thus

(n+ 2)kCn = (4n+ 2)Cn.

Canceling Cn, we obtain

(n+ 2)k = (4n+ 2).

If k = 1, the preceding equation becomes n+2 = 4n+2, and
thus n = 0, which contradicts the fact that n ≥ 5. Similarly,
if k = 2, then n = 1, and if k = 3, then n = 4, both of which
contradict the fact that n ≥ 5. If k ≥ 4,

4n+ 2 = k(n+ 2) ≥ 4(n+ 2) = 4n+ 8.

Therefore 0 ≥ 6. Thus k does not exist. This contradiction
shows that if n ≥ 5, Cn is not prime.

Directly checking n = 0, 1, 2, 3, 4 shows that only
C2 = 2 and C3 = 5 are prime.

31. Let Pn denote the number of ways to divide a convex (n+ 2)-
sided polygon, n ≥ 1, into triangles by drawing n − 1 lines
through the corners that do not intersect in the interior of the
polygon. We note that P1 = 1.

Suppose that n > 1 and consider a convex (n+2)-sided
polygon (see the following figure).

n + 2 – (k + 1) + 1 = n – k + 2 sides

a

b

k + 1 sides

We choose one edge ab and construct a partition of the poly-
gon by a two-step procedure. First we select a triangle to which
side ab belongs. This triangle divides the original polygon into
two polygons: one having k + 1 sides, for some k satisfying
1 ≤ k ≤ n; and the other having n− k + 2 sides (see the pre-
ceding figure). By definition, the (k+1)-sided polygon can be
partitioned in Pk−1 ways and the (n−k+2)-sided polygon can
be partitioned in Pn−k ways. (For the degenerate cases k = 1
and k = n, we set P0 = 1.) Therefore, the total number of

ways to partition the (n+ 2)-sided polygon is

Pn =
n∑

k=1

Pk−1Pn−k.

Since the sequence P1, P2, . . . satisfies the same recurrence
relation as the Catalan sequence C1, C2, . . . and P0 = P1 =
1 = C0 = C1, it follows that Pn = Cn for all n ≥ 1.

36. [For n = 3]

Step 1—move disk 3 from peg 1 to peg 3.

Step 2—move disk 2 from peg 1 to peg 2.

Step 3—move disk 3 from peg 3 to peg 2.

Step 4—move disk 1 from peg 1 to peg 3.

Step 5—move disk 3 from peg 2 to peg 1.

Step 6—move disk 2 from peg 2 to peg 3.

Step 7—move disk 3 from peg 1 to peg 3.

38. Let α and β be the angles shown in Figure 1.6. The geometry
of the situation shows that the price tends to stabilize if and
only if α+ β > 180◦. This last condition holds if and only if
−tan β < tan α. Since b = −tan β and k = tan α, we conclude
that the price stabilizes if and only if b < k.

40. A(2, 2) = 7, A(2, 3) = 9 43. A(3, n) = 2n+3 − 3

46. If m = 0,

A(m, n+ 1) = A(0, n+ 1)

= n+ 2 > n+ 1

= A(0, n) = A(m, n).

The last inequality follows from Exercise 44.

47. Use Exercises 41 and 42.

50. We prove the statement by using induction on x. The inductive
step will itself require induction on y.

Exercise 47 shows that the equation is true for x =
0, 1, 2 and for all y.

Basis Step (x = 2) See Exercise 47.

Inductive Step (Case x implies case x + 1) Assume that
x ≥ 2 and

A(x, y) = AO(x, 2, y + 3)− 3 for all y ≥ 0.

We must prove that

A(x+ 1, y) = AO(x+ 1, 2, y + 3)− 3 for all y ≥ 0.

We establish this last equation by induction on y.

Basis Step (y = 0) We must prove that

A(x+ 1, 0) = AO(x+ 1, 2, 3)− 3.

Now
AO(x+ 1, 2, 3)− 3
= AO(x, 2, AO(x+ 1, 2, 2))− 3 by definition
= AO(x, 2, 4)− 3 by Exercise 49
= A(x, 1) by the inductive

assumption on x

= A(x+ 1, 0) by (1.11).

426

Recurrence Relations

Inductive Step (Case y implies case y + 1) Assume that

A(x+ 1, y) = AO(x+ 1, 2, y + 3)− 3.

We must prove that

A(x+ 1, y + 1) = AO(x+ 1, 2, y + 4)− 3.

Now

AO(x+ 1, 2, y + 4)− 3

= AO(x, 2, AO(x+ 1, 2, y + 3))− 3 by definition

= AO(x, 2, A(x+ 1, y)+ 3)− 3 by the inductive
assumption on y

= A(x, A(x+ 1, y)) by the inductive
assumption on x

= A(x+ 1, y + 1) by (1.12).

53. Suppose that we have n dollars. If we buy orange juice the first
day, we have n − 1 dollars left, which may be spent in Rn−1

ways. Similarly, if the first day we buy milk or beer, there are
Rn−2 ways to spend the remaining dollars. Since these cases
are disjoint, Rn = Rn−1 + 2Rn−2.

56. S3 = 1/2, S4 = 3/4

58. A function f from X = {1, . . . , n} into X will be denoted
(i1, i2, . . . , in), which means that f(k) = ik . The problem then
is to count the number of ways to select i1, . . . , in so that if i

occurs, so do 1, 2, . . . , i− 1.
We shall count the number of such functions having

exactly j 1’s. Such functions can be constructed in two steps:
Pick the positions for the j 1’s; then place the other numbers.
There are C(n, j) ways to place the 1’s. The remaining num-
bers must be selected so that if i appears, so do 1, . . . , i − 1.
There are Fn−j ways to select the remaining numbers, since
the remaining numbers must be selected from {2, . . . , n}. Thus
there are C(n, j)Fn−j functions of the desired type having
exactly j 1’s. Therefore, the total number of functions from X

into X having the property that if i is in the range of f , then
so are 1, . . . , i− 1, is

n∑

j=1

C(n, j)Fn−j =
n∑

j=1

C(n, n− j)Fn−j

=
n−1∑

j=0

C(n, j)Fj.

61. {un} is not a recurrence relation because, if n is odd and greater
than 1, un is defined in terms of the successor u3n+1. ui, for
2 ≤ i ≤ 7, is equal to one. As examples,

u2 = u1 = 1

u3 = u10 = u5 = u16 = u8 = u4 = u2 = 1.

64. Use equation (7.4) to write

S(k, n) =
n∑

i=1

S(k − 1, i).

67. Choose one of n+1 people, say P . There are sn,j−1 ways for P

to sit alone. (Seat the other n people at the other k− 1 tables.)

Next we count the number of arrangements in which P is not
alone. Seat everyone but P at k tables. This can be done in sn,k

ways. Now P can be seated to the right of someone in n ways.
Thus there are nsn,k arrangements in which P is not alone. The
recurrence relation now follows.

70. Let An denote the amount at the end of n years and let i be the
interest rate expressed as a decimal. The discussion following
Example 1.3 shows that

An = (1+ i)nA0.

The value of n required to double the amount satisfies

2A0 = (1+ i)nA0 or 2 = (1+ i)n.

If we take the natural logarithm (logarithm to the base e) of
both sides of this equation, we obtain

ln 2 = n ln(1+ i).

Thus

n = ln 2

ln(1+ i)
.

Since ln 2 = 0.6931472 . . . and ln(1 + i) is approximately
equal to i for small values of i, n is approximately equal to
0.69 . . . /i, which, in turn, is approximately equal to 70/r.

72. 1, 3, 2; 2, 3, 1; E3 = 2

75. We count the number of rise/fall permutations of 1, . . . , n

by considering how many have n in the second, fourth, . . . ,

positions.
Suppose that n is in the second position. Since any of the

remaining numbers is less than n, any of them may be placed in
the first position. Thus we may select the number to be placed
in the first position in C(n− 1, 1) ways and, after selecting it,
we may arrange it in E1 = 1 way. The last n − 2 positions
can be filled in En−2 ways since any rise/fall permutation of
the remaining n − 2 numbers gives a rise/fall permutation of
1, . . . , n. Thus the number of rise/fall permutations of 1, . . . , n

with n in the second position is C(n− 1, 1)E1En−2.
Suppose that n is in the fourth position. We may select

numbers to be placed in the first three positions in C(n− 1, 3)

ways. After selecting the three items, we may arrange them
in E3 ways. The last n− 4 numbers can be arranged in En−4

ways. Thus the number of rise/fall permutations of 1, . . . , n

with n in the fourth position is C(n− 1, 3)E3En−4.
In general, the number of rise/fall permutations of

1, . . . , n with n in the (2j)th position is

C(n− 1, 2j − 1)E2j−1En−2j.

Summing over all j gives the desired recurrence relation.

Section 2 Review
1. Use the recurrence relation to write the nth term in terms of cer-

tain of its predecessors. Then successively use the recurrence
relation to replace each of the resulting terms by certain of their
predecessors. Continue until an explicit formula is obtained.

427

Recurrence Relations

2. An nth-order, linear homogeneous recurrence relation with
constant coefficients is a recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k.

3. an = 6an−1 − 8an−2

4. To solve

an = c1an−1 + c2an−2,

first solve the equation

t2 = c1t + c2

for t. Suppose that the roots are t1 and t2 and that t1 �= t2. Then
the general solution is of the form

an = btn1 + dtn2 ,

where b and d are constants. The values of the constants can
be obtained from the initial conditions.

If t1 = t2 = t, the general solution is of the form

an = btn + dntn,

where again b and d are constants. The values of the constants
can again be obtained from the initial conditions.

Section 2
1. Yes; order 1

4. No

7. No

10. Yes; order 3

11. an = 2(−3)n

15. an = 2n+1 − 4n

18. an = (22−n + 3n)/5

21. an = 2(−4)n + 3n(−4)n

24. Rn = [(−1)n + 2n+1]/3

28. Let dn denote the deer population at time n. The initial condi-
tion is d0 = 0. The recurrence relation is

dn = 100n+ 1.2dn−1, n > 0.

dn = 100n+ 1.2dn−1 = 100n+ 1.2[100(n− 1)+ 1.2dn−2]

= 100n+ 1.2 · 100(n− 1)+ 1.22dn−2

= 100n+ 1.2 · 100(n− 1)

+ 1.22[100(n− 2)+ 1.2dn−3]

= 100n+ 1.2 · 100(n− 1)

+ 1.22 · 100(n− 2)+ 1.23dn−3

...

=
n−1∑

i=0

1.2i · 100(n− i)+ 1.2nd0

=
n−1∑

i=0

1.2i · 100(n− i)

= 100n

n−1∑

i=0

1.2i − 1.2 · 100
n−1∑

i=1

i · 1.2i−1

= 100n(1.2n − 1)

1.2− 1

− 120
(n− 1)1.2n − n1.2n−1 + 1

(1.2− 1)2
, n > 0.

29. From pn−1= 1
2 pn + 1

2 pn−2, we obtain pn= 2pn−1 − pn−2.

32. pn = n/(S + T)

36. Set bn = an/n! to obtain bn = −2bn−1 + 3bn−2. Solving
gives an = n! bn = (n!/4)[5− (−3)n].

39. We establish the inequality by using induction on n.
The base cases n = 1 and n = 2 are left to the reader.

Now assume that the inequality is true for values less than
n+ 1. Then

fn+2 = fn+1 + fn

≥
(

1+√5

2

)n−1

+
(

1+√5

2

)n−2

=
(

1+√5

2

)n−2(
1+√5

2
+ 1

)

=
(

1+√5

2

)n−2(
1+√5

2

)2

=
(

1+√5

2

)n

,

and the Inductive Step is complete.

41. an = b2n + d4n + 1

44. an = b/2n + d3n − (4/3)2n

47. The argument is identical to that given in Theorem 2.11.

50. Recursively invoking this algorithm to move the n− kn disks
at the top of peg 1 to peg 2 takes T(n−kn) moves. Moving the
kn disks on peg 1 to peg 4 requires 2kn−1 moves (see Example
2.4). Recursively invoking this algorithm to move the n− kn

disks on peg 2 to peg 4 again takes T(n − kn) moves. The
recurrence relation now follows.

53. From the inequality

kn(kn + 1)

2
≤ n,

we can deduce kn ≤
√

2n. Since

n− kn ≤ kn(kn + 1)

2
,

it follows that rn ≤ kn. Therefore,

T(n) = (kn + rn − 1)2kn + 1

< 2kn2kn + 1

≤ 2
√

2n2
√

2n + 1

= O(4
√

n).

428

Recurrence Relations

Section 3 Review
1. Let bn denote the time required for input of size n. Simulate

the execution of the algorithm and count the time required by
the various steps. Then bn is equal to the sum of the times
required by the various steps.

2. Selection sort selects the largest element, places it last, and
then recursively sorts the remaining sequence.

3. �(n2)

4. Binary search examines the middle item in the sequence.
If the middle item is the desired item, binary search termi-
nates. Otherwise, binary search compares the middle item with
the desired item. If the desired item is less than the middle
item, binary search recursively searches in the left half of
the sequence. If the desired item is greater than the middle
item, binary search recursively searches in the right half of the
sequence. The input must be sorted.

5. If an is the worst-case time for input of size n, an = 1+a�n/2�.
6. �(lg n)

7. Merge maintains two pointers to elements in the two input
sequences. Initially the pointers reference the first elements in
the sequences. Merge copies the smaller element to the output
and moves the pointer to the next element in the sequence that
contains the element just copied. It then repeats this process.
When a pointer moves off the end of one of the sequences,
merge concludes by copying the rest of the other sequence to
the output. Both input sequences must be sorted.

8. �(n), where n is the sum of the lengths of the input sequences

9. Merge sort first divides the input into two nearly equal parts.
It then recursively sorts each half and merges the halves to
produce sorted output.

10. an = a�n/2� + a�(n+1)/2� + n− 1

11. If the input size is a power of two, the size is always divisible
by 2 and the floors vanish.

12. An arbitrary input size falls between two powers of two. Since
we know the worst-case time when the input size is a power
of two, we may bound the worst-case time for input of arbi-
trary size by the worst-case times for inputs whose sizes are
the powers of two that bound it.

13. �(n lg n)

Section 3
1. At line 2, since i > j (1 > 5) is false, we proceed to line 4,

where we set k to 3. At line 5, since key (‘G’) is not equal to
s3 (‘J’), we proceed to line 7. At line 7, key < sk (‘G’ < ‘J’)
is true, so at line 8 we set j to 2. We then invoke this algorithm
with i = 1, j = 2 to search for key in

s1 = ‘C’, s2 = ‘G’.

At line 2, since i > j (1 > 2) is false, we proceed to
line 4, where we set k to 1.At line 5, since key (‘G’) is not equal
to s1 (‘C’), we proceed to line 7.At line 7, key < sk (‘G’ < ‘C’)
is false, so at line 10 we set i to 2. We then invoke this algorithm

with i = j = 2 to search for key in

s2 = ‘G’.

At line 2, since i > j (2 > 2) is false, we proceed to
line 4, where we set k to 2. At line 5, since key (‘G’) is equal
to s2 (‘G’), we return 2, the index of key in the sequence s.

4. At line 2, since i > j (1 > 5) is false, we proceed to line 4,
where we set k to 3. At line 5, since key (‘Z’) is not equal to
s3 (‘J’), we proceed to line 7. At line 7, key < sk (‘Z’ < ‘J’) is
false, so at line 10 we set i to 4. We then invoke this algorithm
with i = 4, j = 5 to search for key in

s4 = ‘M’, s5 = ‘X’.

At line 2, since i > j (4 > 5) is false, we proceed to
line 4, where we set k to 4.At line 5, since key (‘Z’) is not equal
to s4 (‘M’) we proceed to line 7.At line 7, key < sk (‘Z’ < ‘M’)
is false, so at line 10 we set i to 5. We then invoke this algorithm
with i = j = 5 to search for key in

s5 = ‘X’.

At line 2, since i > j (5 > 5) is false, we proceed to
line 4, where we set k to 5.At line 5, since key (‘Z’) is not equal
to s5 (‘X’), we proceed to line 7.At line 7, key < sk (‘Z’ < ‘X’)
is false, so at line 10 we set i to 6. We then invoke this algorithm
with i = 6, j = 5.

At line 2, since i > j (6 > 5) is true, we return 0 to
indicate that we failed to find key.

7. Consider the input 10, 4, 2 and key = 10.

10. The idea is to repeatedly divide the sequence as nearly as pos-
sible into two parts and retain the part that might contain the
key. Only after obtaining a subsequence of length 1 or 2, do we
test whether the subsequence contains the key. The following
algorithm implements this design.

binary search nonrecurs(s, n, key) {
i = 1
j = n

// the body of the loop executes only if the subsequence
// si, . . . , sj has length greater than or equal to 3
while (i < j − 1) {

k = �(i+ j)/2�
if (sk < key)

i = k + 1
else

j = k

}
for k = i to j

if (sk == key)
return k

return 0
}

We first prove that if a sequence of length n is input to the
while loop, where n is a power of 2, say n = 2m, m ≥ 2, the
loop iterates m− 1 times. The proof is by induction on m. The
Basis Step is m = 2. In this case n = 4. Assuming that i = 1
and n = 4, in the while loop, k is first set to 2. Then either i is

429

Recurrence Relations

set to 3 or j is set to 2. Thus the loop does not execute again.
Therefore the loop iterates 1 = m− 1 time. The Basis Step is
complete.

Now suppose that if a sequence of length n = 2m is
input to the while loop, the loop iterates m− 1 times. Suppose
that n = 2m+1. Assuming that i = 1 and n = 2m+1, in the
while loop, k is first set to 2m. Then either i is set to 2m+1 or j

is set to 2m. Thus at the next iteration of the loop, a sequence of
length 2m is processed. By the inductive assumption, the loop
iterates an additional m− 1 times. Therefore the loop iterates
a total of m times. The Inductive Step is complete.

Next we prove that if a sequence of length n, where
n satisfies 2m−1 < n ≤ 2m, m ≥ 2, is input to the while
loop, the loop iterates at most m − 1 times. The proof is by
induction on m. The Basis Step is m = 2. In this case we have
2 < n ≤ 4. Thus n is either 3 or 4. In the preceding paragraphs,
we proved that if n = 4 the loop iterates one time. If n = 3, it
is easy to check that the loop iterates one time. The Basis Step
is complete.

Now assume that if a sequence of length n, where n

satisfies 2m−1 < n ≤ 2m, m ≥ 2, is input to the while loop, the
loop iterates at most m−1 times. Suppose that n satisfies 2m <

n ≤ 2m+1. When n is even, the sequence is divided evenly and
the next sequence processed by the loop has length n/2. Since
n/2 satisfies 2m−1 < n/2 ≤ 2m, by the inductive assumption
the loop iterates at most m− 1 more times. When n is odd, the
sequence is divided into two parts—one part of length (n−1)/2
and the other of length (n + 1)/2. Since n is odd, 2m < n <

2m+1. Therefore 2m < n+ 1≤ 2m+1. Thus 2m−1 < (n+1)/2 ≤
2m. In this case, the inductive assumption tells us that the loop
iterates at most m − 1 more times. We also have 2m ≤ n −
1 < 2m+1 and 2m−1≤ (n − 1)/2 < 2m. If 2m−1 < (n − 1)/2,
we may use the inductive assumption to conclude that the loop
iterates at most m − 1 more times. If 2m−1 = (n − 1)/2, we
may use the result proved just after the algorithm to conclude
that the loop iterates m − 2 more times. In every case the
loop iterates at most m− 1 more times. Together with the first
iteration, we conclude that if n satisfies 2m < n ≤ 2m+1,
the while loop iterates at most m times. The Inductive Step is
complete.

Suppose that n satisfies 2m−1 < n ≤ 2m. Then the while
loop iterates at most m−1 times. This accounts for m−1 tests
of the form sk < key. At the for loop, either i = j or i = j+1.
Thus there are at most two additional comparisons (of the form
sk == key). Thus if n satisfies 2m−1 < n ≤ 2m, the algorithm
uses at most m + 1 comparisons. Since 2m−1 < n ≤ 2m,
m− 1 < lg n ≤ m. Therefore �lg n� = m. Thus the algorithm
uses at most 1+m = 1+ �lg n� comparisons.

13. The algorithm is not correct. If s is a sequence of length 1,
s1 = 9, and key = 8, the algorithm does not terminate.

16. The algorithm is correct. The worst-case time is �(log n).

18. Algorithm B is superior if 2 ≤ n ≤ 15. (For n = 1 and n = 16,
the algorithms require equal numbers of comparisons.)

21. Suppose that the sequences are a1, . . . , an and b1, . . . , bn.
(a) a1 <b1 <a2 <b2 < · · · (b) an <b1

24. 11

28. Algorithm 3.11 computes an by using the formula an =
aman−m.

29. bn = b�n/2� + b�(n+1)/2� + 1, b1 = 0

30. b2 = 1, b3 = 2, b4 = 3 31. bn = n− 1

32. We prove the formula by using mathematical induction. The
Basis Step, n = 1, has already been established.

Assume that bk = k − 1 for all k < n. We show that
bn = n− 1. Now

bn = b�n/2� + b�(n+1)/2� + 1

=
⌊

n

2

⌋
− 1+

⌊
n+ 1

2

⌋
− 1+ 1

by the inductive assumption

=
⌊

n

2

⌋
+
⌊

n+ 1

2

⌋
− 1 = n− 1.

45. If n = 1, then i = j and we return before reaching line 6b, 10,
or 14. Therefore, b1 = 0. If n = 2, then j = i + 1. There is
one comparison at line 6b and we return before reaching line
10 or 14. Therefore, b2 = 1.

46. b3 = 3, b4 = 4

47. When n > 2, b�(n+1)/2� comparisons are required for the first
recursive call and b�n/2� comparisons are required for the sec-
ond recursive call. Two additional comparisons are required at
lines 10 and 14. The recurrence relation now follows.

48. Suppose that n = 2k . Then (3.12) becomes

b2k = 2b2k−1 + 2.

Now

b2k = 2b2k−1 + 2

= 2[2b2k−2 + 2]+ 2

= 22b2k−2 + 22 + 2 = · · ·
= 2k−1b21 + 2k−1 + 2k−2 + · · · + 2

= 2k−1 + 2k−1 + · · · + 2

= 2k−1 + 2k − 2

= n− 2+ n

2
= 3n

2
− 2.

49. We use the following fact, which can be verified by considering
the cases x even and x odd:
⌈

3x

2
− 2

⌉
+
⌈

3(x+ 1)

2
− 2

⌉
= 3x− 2 for x = 1, 2,

Let an denote the number of comparisons required by
the algorithm in the worst case. The cases n = 1 and n = 2
may be directly verified. (The case n = 2 is the Basis Step.)

Inductive Step Assume that ak ≤ �(3k/2) − 2� for 2 ≤ k

< n. We must show that the inequality holds for k = n.
If n is odd, the algorithm partitions the array into sub-

classes of sizes (n− 1)/2 and (n+ 1)/2. Now

an = a(n−1)/2 + a(n+1)/2 + 2

≤
⌈

(3/2)(n− 1)

2
− 2

⌉

430

Recurrence Relations

+
⌈

(3/2)(n+ 1)

2
− 2

⌉
+ 2

= 3(n− 1)

2
− 2+ 2 = 3n

2
− 3

2

=
⌈

3n

2
− 2

⌉
.

The case n even is treated similarly.

58. �(n)

59. If n = 1, sort just returns; therefore, all of the zeros precede
all of the ones. The Basis Step is proved.

Assume that for input of size n−1, after sort is invoked
all of the zeros precede all of the ones. Suppose that sort is
invoked with input of size n. If the first element is a one, it is
swapped with the last element. sort is then called recursively
on the first n−1 elements. By the inductive assumption, within
the first n− 1 elements all of the zeros precede all of the ones.
Since the last element is a one, all of the zeros precede all of
the ones for all n elements. If the first element is a zero, sort is
called recursively on the last n− 1 elements. By the inductive
assumption, within the last n−1 elements all of the zeros pre-
cede all of the ones. Since the first element is a zero, all of the
zeros precede all of the ones for all n elements. In either case,
sort does produce as output a rearranged version of the input
sequence in which all of the zeros precede all of the ones, and
the Inductive Step is complete.

64. If n = 2k ,

a2k = 3a2k−1 + 2k,

so

an = a2k = 3a2k−1 + 2k

= 3[3a2k−2 + 2k−1]+ 2k

= 32a2k−2 + 3 · 2k−1 + 2k

...

= 3ka20 + 3k−1 · 21 + 3k−2 · 22 + · · ·
+ 3 · 2k−1 + 2k

= 3k + 2(3k − 2k) (∗)
= 3 · 3k − 2 · 2k

= 3 · 3lg n − 2n.

Line (∗) results from the equation

(a− b)(ak−1b0 + ak−2b1 + · · · + a1bk−2 + a0bk−1)= ak−bk

with a = 3 and b = 2.

66. bn = b�(1+n)/2� + b�n/2� + 3

69. bn = 4n− 3

72. We will show that bn ≤ bn+1, n = 1, 2, We have the
recurrence relation

bn = b�(1+n)/2� + b�n/2� + c�(1+n)/2�,�n/2�.

Basis Step b2 = 2b1 + c1,1 ≥ 2b1 ≥ b1

Inductive Step Assume that the statement holds for k < n.

In case n is even, we have bn = 2bn/2 + cn/2,n/2; so

bn+1 = b(n+2)/2 + bn/2 + c(n+2)/2,n/2

≥ bn/2 + bn/2 + cn/2,n/2 = bn.

The case n is odd is similar.

74. ex74(s, i, j) {
if (i == j)

return
m = �(i+ j)/2�
ex74(s, i, m)

ex74(s, m+ 1, j)

combine(s, i, m, j)

}
77. We prove the inequality by using mathematical induction.

Basis Step a1 = 0 ≤ 0 = b1

Inductive Step Assume that ak ≤ bk for k < n. Then

an ≤ a�n/2� + a�(n+1)/2� + 2 lg n

≤ b�n/2� + b�(n+1)/2� + 2 lg n = bn.

80. Let c = a1. If n is a power of m, say n = mk , then

an = amk = amk−1 + d

= [amk−2 + d]+ d

= amk−2 + 2d

...

= am0 + kd = c + kd.

An arbitrary value of n falls between two powers of m, say

mk−1 < n ≤ mk.

This last inequality implies that

k − 1 < logm n ≤ k.

Since the sequence a is nondecreasing,

amk−1 ≤ an ≤ amk .

Now

�(logm n) = c + (−1+ logm n)d ≤ c + (k − 1)d

= amk−1 ≤ an

and

an ≤ amk = c + kd

≤ c + (1+ logm n)d = O(logm n).

Thus an = �(logm n). Which means an = �(lg n).

Chapter Self-Test
1. (a) 3, 5, 8, 12 (b) a1 = 3 (c) an = an−1 + n

2. An = (1.17)An−1, A0 = 4000

3. Let X be an n-element set and choose x ∈ X. Let k be a fixed
integer, 0 ≤ k ≤ n− 1. We can select a k-element subset Y of
X− {x} in C(n− 1, k) ways. Having done this, we can parti-
tion Y in Pk ways. This partition together with X−Y partitions

431

Recurrence Relations

X. Since all partitions of X can be generated in this way, we
obtain the desired recurrence relation.

4. If the first domino is placed as shown, there are an−1 ways to
cover the 2× (n− 1) board that remains.

2 � 12

n

If the first two dominoes are placed as shown, there are
an−2 ways to cover the 2× (n− 2) board that remains.

1 � 2

1 � 2
2

n

It follows that an = an−1 + an−2.
By inspection, a1 = 1 and a2 = 2. Since {an} satis-

fies the same recurrence relation as the Fibonacci sequence
and a1 = f2 and a2 = f3, it follows that ai = fi+1 for
i = 1, 2,

5. Yes

6. an = 2(−2)n − 4n(−2)n

7. an = 3 · 5n + (−2)n

8. Consider a string of length n that contains an even number of
1’s that begins with 0. The string that follows the 0 may be any

string of length n− 1 that contains an even number of 1’s, and
there are cn−1 such strings.Astring of length n that contains an
even number of 1’s that begins with 2 can be followed by any
string of length n− 1 that contains an even number of 1’s, and
there are cn−1 such strings. A string of length n that contains
an even number of 1’s that begins with 1 can be followed by
any string of length n− 1 that contains an odd number of 1’s.
Since there are 3n−1 strings altogether of length n−1 and cn−1

of these contain an even number of 1’s, there are 3n−1 − cn−1

strings of length n − 1 that contain an odd number of 1’s. It
follows that

cn = 2cn−1 + 3n−1 − cn−1 = cn−1 + 3n−1.

An initial condition is c1 = 2, since there are two strings (0
and 2) that contain an even number (namely, zero) of 1’s.

We may solve the recurrence relation by iteration:

cn = cn−1 + 3n−1 = cn−2 + 3n−2 + 3n−1

...

= c1 + 31 + 32 + · · · + 3n−1

= 2+ 3n − 3

3− 1
= 3n + 1

2
.

9. bn = bn−1 + 1, b0 = 0

10. b1 = 1, b2 = 2, b3 = 3

11. bn = n

12. n(n + 1)/2 = O(n2). The given algorithm is faster than the
straightforward technique and is, therefore, preferred.

432

Graph Theory

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

433

Graph Theory

1 Introduction
2 Paths and Cycles

Problem-Solving Corner:
Graphs

3 Hamiltonian Cycles and
the Traveling
Salesperson Problem

4 A Shortest-Path Algorithm
5 Representations of Graphs
6 Isomorphisms of Graphs
7 Planar Graphs
8 Instant Insanity

Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

Well, I got on the road, and I went north to Providence.
Met the Mayor.
The Mayor of Providence!
He was sitting in the hotel lobby.
What’d he say?
He said, “Morning!” And I said, “You got a fine city here,
Mayor.” And then he had coffee with me. And then I went
to Waterbury. Waterbury is a fine city. Big clock city, the
famous Waterbury clock. Sold a nice bill there. And then
Boston—Boston is the cradle of the Revolution. A fine city.
And a couple of other towns in Massachusetts, and on to
Portland and Bangor and straight home!

FROM DEATH OF A SALESMAN

Although the first paper in graph theory goes back to 1736 (see Example 2.16) and
several important results in graph theory were obtained in the nineteenth century, it is
only since the 1920s that there has been a sustained, widespread, intense interest in graph
theory. Indeed, the first text on graph theory ([König]) appeared in 1936. Undoubtedly,
one of the reasons for the recent interest in graph theory is its applicability in many
diverse fields, including computer science, chemistry, operations research, electrical
engineering, linguistics, and economics.

We begin with some basic graph terminology and examples. We then discuss some
important concepts in graph theory, including paths and cycles. Two classical graph prob-
lems, the existence of Hamiltonian cycles and the traveling salesperson problem, are then
considered. A shortest-path algorithm is presented that efficiently finds a shortest path
between two given points. After presenting ways of representing graphs, we study the
question of when two graphs are essentially the same (i.e., when two graphs are isomor-
phic) and when a graph can be drawn in the plane without having any of its edges cross.We
conclude by presenting a solution based on a graph model to the Instant Insanity puzzle.

434

Graph Theory

Muddy Gap

Lander

Shoshoni

Casper

Douglas

Gillette
Buffalo

Sheridan

Greybull

Worland

Figure 1.1 Part of the Wyoming highway system.

1 ➜ Introduction

Figure 1.1 shows the highway system in Wyoming that a particular person is responsible
for inspecting. Specifically, this road inspector must travel all of these roads and file
reports on road conditions, visibility of lines on the roads, status of traffic signs, and so
on. Since the road inspector lives in Greybull, the most economical way to inspect all of
the roads would be to start in Greybull, travel each of the roads exactly once, and return
to Greybull. Is this possible? See if you can decide before reading on.

The problem can be modeled as a graph. In fact, since graphs are drawn with
dots and lines, they look like road maps. In Figure 1.2, we have drawn a graph G that
models the map of Figure 1.1. The dots in Figure 1.2 are called vertices and the lines
that connect the vertices are called edges. (Later in this section we will define all of these
terms carefully.) We have labeled each vertex with the first three letters of the city to
which it corresponds. We have labeled the edges e1, . . . , e13. When we draw a graph,
the only information of importance is which vertices are connected by which edges. For
this reason, the graph of Figure 1.2 could just as well be drawn as in Figure 1.3.

e1

e4

e9

e2

e6

e11

e12

e13

Gre

Wor

Sho

Lan
Mud

Cas
Dou

Gil
Buf

She

e10

e5
e7 e8

e3

G

Figure 1.2 A graph model of
the highway system shown in
Figure 1.1.

e1e4e9

e2e6
e11

e12

e13

Gre
Wor

Sho

Lan

Mud

Cas

Dou Gil

Buf
She

e10 e5
e7

e8

e3

G

Figure 1.3 An alternative, but
equivalent, graph model of the highway
system shown in Figure 1.1.

435

Graph Theory

If we start at a vertex v0, travel along an edge to vertex v1, travel along another
edge to vertex v2, and so on, and eventually arrive at vertex vn, we call the complete
tour a path from v0 to vn. The path that starts at She, then goes to Buf, and ends at Gil
corresponds to a trip on the map of Figure 1.1 that begins in Sheridan, goes to Buffalo,
and ends at Gillette. The road inspector’s problem can be rephrased for the graph model
G in the following way: Is there a path from vertex Gre to vertex Gre that traverses every
edge exactly once?

We can show that the road inspector cannot start in Greybull, travel each of the
roads exactly once, and return to Greybull. To put the answer in graph terms, there is no
path from vertex Gre to vertex Gre in Figure 1.2 that traverses every edge exactly once.
To see this, suppose that there is such a path and consider vertex Wor. Each time we
arrive at Wor on some edge, we must leave Wor on a different edge. Furthermore, every
edge that touches Wor must be used. Thus the edges at Wor occur in pairs. It follows
that an even number of edges must touch Wor. Since three edges touch Wor, we have a
contradiction. Therefore, there is no path from vertex Gre to vertex Gre in Figure 1.2
that traverses every edge exactly once. The argument applies to an arbitrary graph G. If
G has a path from vertex v to v that traverses every edge exactly once, an even number
of edges must touch each vertex. We discuss this problem in greater detail in Section 2.

At this point we give some formal definitions.

Definition 1.1 A graph (or undirected graph) G consists of a set V of vertices (or nodes) and a set
E of edges (or arcs) such that each edge e ∈ E is associated with an unordered pair
of vertices. If there is a unique edge e associated with the vertices v and w, we write
e = (v, w) or e = (w, v). In this context, (v, w) denotes an edge between v and w in an
undirected graph and not an ordered pair.

A directed graph (or digraph) G consists of a set V of vertices (or nodes) and a
set E of edges (or arcs) such that each edge e ∈ E is associated with an ordered pair of
vertices. If there is a unique edge e associated with the ordered pair (v, w) of vertices,
we write e = (v, w), which denotes an edge from v to w.

An edge e in a graph (undirected or directed) that is associated with the pair of
vertices v and w is said to be incident on v and w, and v and w are said to be incident on
e and to be adjacent vertices.

If G is a graph (undirected or directed) with vertices V and edges E, we write
G = (V, E).

Unless specified otherwise, the sets E and V are assumed to be finite and V is
assumed to be nonempty.

Example 1.2 In Figure 1.2 the (undirected) graph G consists of the set

V = {Gre, She, Wor, Buf, Gil, Sho, Cas, Dou, Lan, Mud}
of vertices and the set

E = {e1, e2, . . . , e13}
of edges. Edge e1 is associated with the unordered pair {Gre, She} of vertices, and edge
e10 is associated with the unordered pair {Cas, Dou} of vertices. Edge e1 is denoted
(Gre, She) or (She, Gre), and edge e10 is denoted (Cas, Dou) or (Dou, Cas). Edge e4 is
incident on Wor and Buf, and the vertices Wor and Buf are adjacent.

Example 1.3 A directed graph is shown in Figure 1.4. The directed edges are indicated by arrows.
Edge e1 is associated with the ordered pair (v2, v1) of vertices, and edge e7 is associated

436

Graph Theory

with the ordered pair (v6, v6) of vertices. Edge e1 is denoted (v2, v1), and edge e7 is
denoted (v6, v6).

v2

e2

v5

e1

v 1

e3
v3

e5

v6

e7

e6

v4

e4

Figure 1.4 A
directed graph.

Definition 1.1 allows distinct edges to be associated with the same pair of vertices.
For example, in Figure 1.5, edges e1 and e2 are both associated with the vertex pair
{v1, v2}. Such edges are called parallel edges. An edge incident on a single vertex is
called a loop. For example, in Figure 1.5, edge e3 = (v2, v2) is a loop. A vertex, such
as vertex v4 in Figure 1.5, that is not incident on any edge is called an isolated vertex.
A graph with neither loops nor parallel edges is called a simple graph.

v2

e2

v5

e3

v3

e5

v6

v4

e4e1

v1

Figure 1.5 A graph with parallel edges and
loops.

Example 1.4 Since the graph of Figure 1.2 has neither parallel edges nor loops, it is a simple graph.

Some authors do not permit loops and parallel edges when they define graphs.
One would expect that if agreement has not been reached on the definition of “graph,”
most other terms in graph theory would also not have standard definitions. This is indeed
the case. In reading articles and books about graphs, it is necessary to check on the
definitions being used.

We turn next to an example that shows how a graph model can be used to analyze
a manufacturing problem.

Example 1.5 Frequently in manufacturing, it is necessary to bore many holes in sheets of metal (see
Figure 1.6). Components can then be bolted to these sheets of metal. The holes can be
drilled using a drill press under the control of a computer. To save time and money, the
drill press should be moved as quickly as possible. We model the situation as a graph.

The vertices of the graph correspond to the holes (see Figure 1.7). Every pair of
vertices is connected by an edge. We write on each edge the time to move the drill

Figure 1.6 A sheet of
metal with holes for bolts.

a
8

6

9
12

4

4
2

3 5

6

b

c

e

d

Figure 1.7 A graph model
of sheet metal in Figure 1.6.
The edge weight is the time to
move the drill press.

437

Graph Theory

press between the corresponding holes. A graph with numbers on the edges (such as the
graph of Figure 1.7) is called a weighted graph. If edge e is labeled k, we say that the
weight of edge e is k. For example, in Figure 1.7 the weight of edge (c, e) is 5. In a
weighted graph, the length of a path is the sum of the weights of the edges in the path.
For example, in Figure 1.7 the length of the path that starts at a, visits c, and terminates
at b is 8. In this problem, the length of a path that starts at vertex v1 and then visits
v2, v3, . . . , in this order, and terminates at vn represents the time it takes the drill press to
start at hole h1 and then move to h2, h3, . . . , in this order, and terminate at hn, where hole
hi corresponds to vertex vi. A path of minimum length that visits every vertex exactly
one time represents the optimal path for the drill press to follow.

Suppose that in this problem the path is required to begin at vertex a and end at
vertex e. We can find the minimum-length path by listing all possible paths from a to e that
pass through every vertex exactly one time and choose the shortest one (see Table 1.1).
We see that the path that visits the vertices a, b, c, d, e, in this order, has minimum length.
Of course, a different pair of starting and ending vertices might produce an even shorter
path.

TABLE 1.1 ■ Paths in the graph of
Figure 1.7 from a to e that pass
through every vertex exactly one
time, and their lengths.

Path Length

a, b, c, d, e 21
a, b, d, c, e 28
a, c, b, d, e 24
a, c, d, b, e 26
a, d, b, c, e 27
a, d, c, b, e 22

Listing all paths from vertex v to vertex w, as we did in Example 1.5, is a rather
time-consuming way to find a minimum-length path from v to w that visits every vertex
exactly one time. Unfortunately, no one knows a method that is much more practical for
arbitrary graphs. This problem is a version of the traveling salesperson problem. We
discuss that problem in Section 3.

Example 1.6 Bacon Numbers

Actor Kevin Bacon has appeared in numerous films including Diner and Apollo 13.
Actors who have appeared in a film with Bacon are said to have Bacon number one.
For example, Ellen Barkin has Bacon number one because she appeared with Bacon
in Diner. Actors who did not appear in a film with Bacon but who appeared in a film
with an actor whose Bacon number is one are said to have Bacon number two. Higher
Bacon numbers are defined similarly. For example, Bela Lugosi has Bacon number three.
Lugosi was in Black Friday with Emmett Vogan, Vogan was in With a Song in My Heart
with Robert Wagner, and Wagner was in Wild Things with Bacon. We next develop a
graph model for Bacon numbers.

We let vertices denote actors, and we place one edge between two distinct actors
if they appeared in at least one film together (see Figure 1.8). In an unweighted graph,
the length of a path is the number of edges in the path. Thus an actor’s Bacon number
is the length of a shortest path from the vertex corresponding to that actor to the vertex
corresponding to Bacon. In Section 4, we discuss the general problem of finding shortest

438

Graph Theory

Kevin
Bacon

Ellen
Barkin

Charles
Siebert

Dennis
Quaid

Robert
Wagner

Emmett
Vogan

Bela
Lugosi

...

Figure 1.8 Part of a graph that models Bacon numbers. The vertices denote actors.
There is an edge between two distinct actors if they appeared in at least one film
together. For example, there is an edge between Ellen Barkin and Dennis Quaid
because they both appeared in The Big Easy. An actor’s Bacon number is the length
of a shortest path from that actor to Bacon. For example, Bela Lugosi’s Bacon
number is three because the length of a shortest path from Lugosi to Bacon is three.

paths in graphs. Unlike the situation in Example 1.5, there are efficient algorithms for
finding shortest paths.

It is interesting that most actors, even actors who died many years ago, have Bacon
numbers of three or less. See Exercise 30 for a similar graph model.

Example 1.7 Similarity Graphs

This example deals with the problem of grouping “like” objects into classes based on
properties of the objects. For example, suppose that a particular algorithm is implemented
in C++ by a number of persons and we want to group “like” programs into classes based
on certain properties of the programs (see Table 1.2). Suppose that we select as properties

1. The number of lines in the program

2. The number of return statements in the program

3. The number of function calls in the program

TABLE 1.2 ■ C++ programs that implement the same algorithm.

Number of Number of Number of
Program Program Lines return Statements Function Calls

1 66 20 1
2 41 10 2
3 68 5 8
4 90 34 5
5 75 12 14

A similarity graph G is constructed as follows. The vertices correspond to pro-
grams. A vertex is denoted (p1, p2, p3), where pi is the value of property i. We define
a dissimilarity function s as follows. For each pair of vertices v= (p1, p2, p3) and
w = (q1, q2, q3), we set

s(v, w) = |p1 − q1| + |p2 − q2| + |p3 − q3|.

439

Graph Theory

If we let vi be the vertex corresponding to program i, we obtain

s(v1, v2) = 36, s(v1, v3) = 24, s(v1, v4) = 42, s(v1, v5) = 30,

s(v2, v3) = 38, s(v2, v4) = 76, s(v2, v5) = 48, s(v3, v4) = 54,

s(v3, v5) = 20, s(v4, v5) = 46.

If v and w are vertices corresponding to two programs, s(v, w) is a measure of
how dissimilar the programs are. A large value of s(v, w) indicates dissimilarity, while
a small value indicates similarity.

v1

v4

v3

v5

v2

Figure 1.9 A
similarity graph
corresponding to the
programs of
Table 1.2 with
S = 25.

For a fixed number S, we insert an edge between vertices v and w if s(v, w) < S.
(In general, there will be different similarity graphs for different values of S.) We say that
v and w are in the same class if v = w or there is a path from v to w. In Figure 1.9 we
show the graph corresponding to the programs of Table 1.2 with S = 25. In this graph,
the programs are grouped into three classes: {1, 3, 5}, {2}, and {4}. In a real problem, an
appropriate value for S might be selected by trial and error or the value of S might be
selected automatically according to some predetermined criteria.

Example 1.8 The n-Cube (Hypercube)

The traditional computer, often called a serial computer, executes one instruction at a
time. Our definition of “algorithm” also assumes that one instruction is executed at a time.
Such algorithms are called serial algorithms. As hardware costs have declined, it has
become feasible to build parallel computers with many processors that are capable of
executing several instructions at a time. Graphs are often convenient models to describe
these machines. The associated algorithms are known as parallel algorithms. Many
problems can be solved much faster using parallel computers rather than serial computers.
We discuss one model for parallel computation known as the n-cube or hypercube.

010

000

101

110

001

111

011

100

Figure 1.10 The 3-cube.

The n-cube has 2n processors, n ≥ 1, which are represented by vertices (see
Figure 1.10) labeled 0, 1, . . . , 2n − 1. Each processor has its own local memory. An
edge connects two vertices if the binary representation of their labels differs in exactly
one bit. During one time unit, all processors in the n-cube may execute an instruction
simultaneously and then communicate with an adjacent processor. If a processor needs
to communicate with a nonadjacent processor, the first processor sends a message that
includes the route to, and ultimate destination of, the recipient. It may take several time
units for a processor to communicate with a nonadjacent processor.

The n-cube may also be described recursively. The 1-cube has two processors,
labeled 0 and 1, and one edge. Let H1 and H2 be two (n − 1)-cubes whose vertices
are labeled in binary 0, . . . , 2n−1 − 1 (see Figure 1.11). We place an edge between each
pair of vertices, one from H1 and one from H2, provided that the vertices have identical
labels. We then change the label L on each vertex in H1 to 0L and we change the label
L on each vertex in H2 to 1L. We obtain an n-cube (Exercise 39). See Exercises 43–45
for an alternative way to construct the n-cube.

The n-cube is an important model of computation because several such machines
have been built and are running. Furthermore, several other parallel computation models
can be simulated by the hypercube. The latter point is considered in more detail in
Examples 3.5 and 6.3.

We conclude this introductory section by defining some special graphs that appear
frequently in graph theory.

Definition 1.9 The complete graph on n vertices, denoted Kn, is the simple graph with n vertices in
which there is an edge between every pair of distinct vertices.

440

Graph Theory

H2H1

0110

0010

0111

0011

1110

1010

1111

1011

0100

0000 0001

1100

1000

0101 1101

1001

110

010

111

011

110

010

111

011

100

000 001

100

000

101 101

001

Figure 1.11 Combining two 3-cubes to obtain a 4-cube.

Example 1.10 The complete graph on four vertices, K4, is shown in Figure 1.12.

Figure 1.12 The
complete graph K4.

Definition 1.11 A graph G = (V, E) is bipartite if there exist subsets V1 and V2 (either possibly empty)
of V such that V1 ∩ V2 = ∅, V1 ∪ V2 = V , and each edge in E is incident on one vertex
in V1 and one vertex in V2.

Example 1.12 The graph in Figure 1.13 is bipartite since if we let

V1 = {v1, v2, v3} and V2 = {v4, v5},
v1

v2

v3

v 4

v 5

Figure 1.13 A
bipartite graph.

each edge is incident on one vertex in V1 and one vertex in V2.

Notice that Definition 1.11 states that if e is an edge in a bipartite graph, then
e is incident on one vertex in V1 and one vertex in V2. It does not state that if v1 is
a vertex in V1 and v2 is a vertex in V2, then there is an edge between v1 and v2. For
example, the graph of Figure 1.13 is bipartite since each edge is incident on one vertex
in V1 = {v1, v2, v3} and one vertex in V2 = {v4, v5}. However, not all edges between
vertices in V1 and V2 are in the graph. For example, the edge (v1, v5) is absent.

441

Graph Theory

Example 1.13 The graph in Figure 1.14 is not bipartite. It is often easiest to prove that a graph is not
bipartite by arguing by contradiction.

v4

v3

v5

v8 v9

v6

v7

v2

v1

Figure 1.14 A graph that is not
bipartite.

Suppose that the graph in Figure 1.14 is bipartite. Then the vertex set can be
partitioned into two subsets V1 and V2 such that each edge is incident on one vertex in
V1 and one vertex in V2. Now consider the vertices v4, v5, and v6. Since v4 and v5 are
adjacent, one is in V1 and the other in V2. We may assume that v4 is in V1 and that v5 is in
V2. Since v5 and v6 are adjacent and v5 is in V2, v6 is in V1. Since v4 and v6 are adjacent
and v4 is in V1, v6 is in V2. But now v6 is in both V1 and V2, which is a contradiction
since V1 and V2 are disjoint. Therefore, the graph in Figure 1.14 is not bipartite.

Example 1.14 The complete graph K1 on one vertex is bipartite. We may let V1 be the set containing
the one vertex and V2 be the empty set. Then each edge (namely none!) is incident on
one vertex in V1 and one vertex in V2.

Definition 1.15 The complete bipartite graph on m and n vertices, denoted Km,n, is the simple graph
whose vertex set is partitioned into sets V1 with m vertices and V2 with n vertices in
which the edge set consists of all edges of the form (v1, v2) with v1 ∈V1 and v2 ∈V2.

Example 1.16 The complete bipartite graph on two and four vertices, K2,4, is shown in Figure 1.15.

Figure 1.15 The
complete bipartite
graph K2,4.

Problem-Solving Tips

To model a given situation as a graph, you must first decide what the vertices represent.
Then an edge between two vertices represents some kind of relation. For example, if

442

Graph Theory

several teams play soccer games, we could let the vertices represent the teams. We could
then put an edge between two vertices (teams) if the two teams represented by the two
vertices played at least one game. The graph would then show which teams have played
each other.

To determine whether a graph is bipartite, try to separate the vertices into two
disjoint sets V1 and V2 so that each edge is incident on one vertex in one set and one
vertex in the other set. If you succeed, the graph is bipartite and you have discovered the
sets V1 and V2. If you fail, the graph is not bipartite. To try to separate the vertices into
two disjoint sets, pick a start vertex v. Put v ∈ V1. Put all vertices adjacent to v in V2.
Pick a vertex w ∈ V2. Put all vertices adjacent to w in V1. Pick a vertex v′ ∈ V2, v′ �= v.
Put all vertices adjacent to v′ in V2. Continue in this way. If you can put each vertex into
either V1 or V2, but not both, the graph is bipartite. If at some point, you are forced to
put a vertex into both V1 and V2, the graph is not bipartite.

Section Review Exercises

†1. Define undirected graph.

2. Give an example of something in the real world that can be
modeled by an undirected graph.

3. Define directed graph.

4. Give an example of something in the real world that can be
modeled by a directed graph.

5. What does it mean for an edge to be incident on a vertex?

6. What does it mean for a vertex to be incident on an edge?

7. What does it mean for v and w to be adjacent vertices?

8. What are parallel edges?

9. What is a loop?

10. What is an isolated vertex?

11. What is a simple graph?

12. What is a weighted graph?

13. Give an example of something in the real world that can be
modeled by a weighted graph.

14. Define length of path in a weighted graph.

15. What is a similarity graph?

16. Define n-cube.

17. What is a serial computer?

18. What is a serial algorithm?

19. What is a parallel computer?

20. What is a parallel algorithm?

21. What is the complete graph on n vertices? How is it denoted?

22. Define bipartite graph.

23. What is the complete bipartite graph on m and n vertices? How
is it denoted?

Exercises

In a tournament, the Snow beat the Pheasants once, the Skyscrapers
beat the Tuna once, the Snow beat the Skyscrapers twice, the Pheas-
ants beat the Tuna once, and the Pheasants beat the Snow once.
In Exercises 1–4, use a graph to model the tournament. The teams
are the vertices. Describe the kind of graph used (e.g., undirected
graph, directed graph, simple graph).

1. There is an edge between teams if the teams played.

2. There is an edge between teams for each game played.

3. There is an edge from team ti to team tj if ti beat tj at least one
time.

4. There is an edge from team ti to team tj for each victory of ti
over tj .

Explain why none of the graphs in Exercises 5–7 has a path from
a to a that passes through each edge exactly one time.

5.

e

c

b

a

d

6.

a

d

b

c

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

443

Graph Theory

7.
ba c

f d

g h i

e

Show that each graph in Exercises 8–10 has a path from a to a that
passes through each edge exactly one time by finding such a path
by inspection.

8.
a

b

d

c

e

f

9.
a

d e f

cb

10.
ba c

g

ed f

h i

For each graph G = (V, E) in Exercises 11–13, find V , E, all par-
allel edges, all loops, all isolated vertices, and tell whether G is a
simple graph. Also, tell on which vertices edge e1 is incident.

11.

v1

e6

v2 e3

v3

e2e1

v4
e4

e5

12.
e2

e8

e5

v1

e1

e6

v2

e7

v4

v3e3

v5

e4

13. v1

v2 v3

14. Draw K3 and K5.

15. Find a formula for the number of edges in Kn.

16. Give an example of a bipartite graph different from those in
the examples of this section. Specify the disjoint vertex sets.

State which graphs in Exercises 17–23 are bipartite graphs. If the
graph is bipartite, specify the disjoint vertex sets.

17. v1

e4

e2

v4 v5e5

v3

v2

e1

e3

18.
v1 v2 v3 v4

v5 v6 v7
v8

v9
v10

e1
e2 e4 e7

e8
e9

e3 e5 e6

19. Figure 1.2 20. Figure 1.5

21. Exercise 11 22. Exercise 12

23. Exercise 13 24. Draw K2,3 and K3,3.

25. Find a formula for the number of edges in Km,n.

26. Most authors require that V1 and V2 be nonempty in Defini-
tion 1.11. According to these authors, which of the graphs in
Examples 1.12–1.14 are bipartite?

In Exercises 27–29, find a path of minimum length from v to w in
the graph of Figure 1.7 that passes through each vertex exactly one
time.

27. v = b, w = e 28. v = c, w = d

29. v = a, w = b

30. Paul Erdős (1913–1996) was one of the most prolific mathe-
maticians of all time. He was the author or co-author of nearly
1500 papers. Mathematicians who co-authored a paper with
Erdős are said to have Erdős number one. Mathematicians
who did not co-author a paper with Erdős but who co-authored
a paper with a mathematician whose Erdős number is one
are said to have Erdős number two. Higher Erdős numbers
are defined similarly. For example, the author of this book
has Erdős number five. Johnsonbaugh co-authored a paper
with Tadao Murata, Murata co-authored a paper with A. T.
Amin,Amin co-authored a paper with Peter J. Slater, Slater co-

444

Graph Theory

authored a paper with Frank Harary, and Harary co-authored a
paper with Erdős. Develop a graph model for Erdős numbers.
In your model, what is an Erdős number?

31. Is the graph model for Bacon numbers (see Example 1.6) a
simple graph?

32. Draw the similarity graph that results from setting S = 40 in
Example 1.7. How many classes are there?

33. Draw the similarity graph that results from setting S = 50 in
Example 1.7. How many classes are there?

34. In general, is “is similar to” an equivalence relation?

35. Suggest additional properties for Example 1.7 that might be
useful in comparing programs.

36. How might one automate the selection of S to group data into
classes using a similarity graph?

37. Draw a 2-cube.

38. Draw a picture like that in Figure 1.11 to show how a 3-cube
may be constructed from two 2-cubes.

39. Prove that the recursive construction in Example 1.8 actually
yields an n-cube.

40. How many edges are incident on a vertex in an n-cube?

41. How many edges are in an n-cube?
†�42. In how many ways can the vertices of an n-cube be labeled

0, . . . , 2n − 1 so that there is an edge between two vertices if
and only if the binary representation of their labels differs in
exactly one bit?

[Bain] invented an algorithm to draw the n-cube in the plane. In
the algorithm, all vertices are on the unit circle in the xy-plane.
The angle of a point is the angle from the positive x-axis counter-
clockwise to the ray from the origin to the point. The input is n.

1. If n = 0, put one unlabeled vertex at (−1, 0) and stop.

2. Recursively invoke this algorithm with input n− 1.

3. Move each vertex so that its new angle is half the current
angle, maintaining edge connections.

4. Reflect each vertex and edge in the x-axis.

5. Connect each vertex above the x-axis to its mirror image
below the x-axis.

6. Prefix 0 to the label of each vertex above the x-axis, and
prefix 1 to the label of each vertex below the x-axis.

The following figures show how the algorithm draws the 2-cube
and 3-cube.

00 011 001

111 101

000

100110

010
01

11 10

43. Show how the algorithm constructs the 2-cube from the 1-cube.

44. Show how the algorithm constructs the 3-cube from the 2-cube.

45. Show how the algorithm constructs the 4-cube from the 3-cube.

Exercises 46–48 refer to the following graph. The vertices represent
offices. An edge connects two offices if there is a communication
link between the two. Notice that any office can communicate with
any other either directly through a communication link or by having
others relay the message.

a
b c

d

e

fg

h

i

j
k

46. Show, by giving an example, that communication among all
offices is still possible even if some communication links are
broken.

47. What is the maximum number of communication links that can
be broken with communication among all offices still possible?

48. Show a configuration in which the maximum number of com-
munication links are broken with communication among all
offices still possible.

49. In the following graph the vertices represent cities and the
numbers on the edges represent the costs of building the indi-
cated roads. Find a least-expensive road system that connects
all the cities.

a

15

14

d
12 e6

b

5

9 8

30

20

10

5 7

c

gf

In a precedence graph, the vertices model certain actions. For
example, a vertex might model a statement in a computer program.
There is an edge from vertex v to vertex w if the action modeled by
v must occur before the action modeled by w. Draw a precedence
graph for each computer program in Exercises 50–52.

50. x = 1
y = 2
z = x+ y

z = z+ 1

51. x = 1
y = 2
z = y + 2
w = x+ 5
x = z+ w

52. x = 1
y = 2
z = 3
a = x+ y

b = y + z

c = x+ z

c = c + 1
x = a+ b+ c

53. Let G denote the set of simple graphs G = (V, E), where
V = {1, 2, . . . , n} for some n ∈ Z+. Define a function f from
G to Znonneg by the rule f(G) = |E|. Is f one-to-one? Is f

onto? Explain.

†A starred exercise indicates a problem of above-average difficulty.

445

Graph Theory

2 ➜ Paths and Cycles

If we think of the vertices in a graph as cities and the edges as roads, a path corresponds
to a trip beginning at some city, passing through several cities, and terminating at some
city. We begin by giving a formal definition of path.

Definition 2.1 Let v0 and vn be vertices in a graph. A path from v0 to vn of length n is an alternating
sequence of n+1 vertices and n edges beginning with vertex v0 and ending with vertex vn,

(v0, e1, v1, e2, v2, . . . , vn−1, en, vn),

in which edge ei is incident on vertices vi−1 and vi for i = 1, . . . , n.

The formalism in Definition 2.1 means: Start at vertex v0; go along edge e1 to v1;
go along edge e2 to v2; and so on.

Example 2.2 In the graph of Figure 2.1,

(1, e1, 2, e2, 3, e3, 4, e4, 2) (2.1)

is a path of length 4 from vertex 1 to vertex 2.

3

4

2

1

5

6

7

e2

e1

e5 e6

e7

e8

e4

e3

G

Figure 2.1 A connected graph with
paths (1, e1, 2, e2, 3, e3, 4, e4, 2) of
length 4 and (6) of length 0.

Example 2.3 In the graph of Figure 2.1, the path (6) consisting solely of vertex 6 is a path of length 0
from vertex 6 to vertex 6.

In the absence of parallel edges, in denoting a path we may suppress the edges.
For example, the path (2.1) may also be written

(1, 2, 3, 4, 2).

A connected graph is a graph in which we can get from any vertex to any other
vertex on a path. The formal definition follows.

Definition 2.4 A graph G is connected if given any vertices v and w in G, there is a path from v to w.

446

Graph Theory

Example 2.5 The graph G of Figure 2.1 is connected since, given any vertices v and w in G, there is
a path from v to w.

Example 2.6 The graph G of Figure 2.2 is not connected since, for example, there is no path from
vertex v2 to vertex v5.

v1

e1

G

e3 v3

v2

e2

v4

v5

e4

v6

Figure 2.2 A graph that is not
connected.

Example 2.7 Let G be the graph whose vertex set consists of the 50 states of the United States. Put
an edge between states v and w if v and w share a border. For example, there is an edge
between California and Oregon and between Illinois and Missouri. There is no edge
between Georgia and New York, nor is there an edge between Utah and New Mexico.
(Touching does not count; the states must share a border.) The graph G is not connected
because there is no path from Hawaii to California (or from Hawaii to any other state).

As we can see from Figures 2.1 and 2.2, a connected graph consists of one
“piece,” while a graph that is not connected consists of two or more “pieces.” These
“pieces” are subgraphs of the original graph and are called components. We give the
formal definitions beginning with subgraph.

A subgraph G′ of a graph G is obtained by selecting certain edges and vertices
from G subject to the restriction that if we select an edge e in G that is incident on
vertices v and w, we must include v and w in G′. The restriction is to ensure that G′ is
actually a graph. The formal definition follows.

Definition 2.8 Let G = (V, E) be a graph. We call (V ′, E′) a subgraph of G if

(a) V ′ ⊆ V and E′ ⊆ E.

(b) For every edge e′ ∈ E′, if e′ is incident on v′ and w′, then v′, w′ ∈ V ′.

Example 2.9 The graph G′ = (V ′, E′) of Figure 2.3 is a subgraph of the graph G = (V, E) of Figure
2.4 since V ′ ⊆ V and E′ ⊆ E.

G�

e8

v2

v3 v4 e5v6 v7

v1

e10 e11

Figure 2.3 A subgraph of the
graph of Figure 2.4.

e1 e9 e10 e11

e4
e8 e5

e7

e6

v1

v6v4v3 v7

v8

e3

v2 e2

v5

G

Figure 2.4 A graph, one of
whose subgraphs is shown in
Figure 2.3.

447

Graph Theory

Example 2.10 Find all subgraphs of the graph G of Figure 2.5 having at least one vertex.
If we select no edges, we may select one or both vertices yielding the subgraphs

G1, G2, and G3 shown in Figure 2.6. If we select the one available edge e1, we must
select the two vertices on which e1 is incident. In this case, we obtain the subgraph G4

shown in Figure 2.6. Thus G has the four subgraphs shown in Figure 2.6.

v2

Gv1

e1

Figure 2.5 The graph
for Example 2.10.

G1

v1 e1

v1 v1

v2 v2 v2

G2 G3 G4

Figure 2.6 The four subgraphs of the
graph of Figure 2.5.

We can now define “component.”

Definition 2.11 Let G be a graph and let v be a vertex in G. The subgraph G′ of G consisting of all edges
and vertices in G that are contained in some path beginning at v is called the component
of G containing v.

Example 2.12 The graph G of Figure 2.1 has one component, namely itself. Indeed, a graph is connected
if and only if it has exactly one component.

Example 2.13 Let G be the graph of Figure 2.2. The component of G containing v3 is the subgraph

G1 = (V1, E1), V1 = {v1, v2, v3}, E1 = {e1, e2, e3}.

The component of G containing v4 is the subgraph

G2 = (V2, E2), V2 = {v4}, E2 = ∅.

The component of G containing v5 is the subgraph

G3 = (V3, E3), V3 = {v5, v6}, E3 = {e4}.

Another characterization of the components of a graph G = (V, E) is obtained by
defining a relation R on the set of vertices V by the rule

v1Rv2 if there is a path from v1 to v2.

It can be shown (Exercise 68) that R is an equivalence relation on V and that if v ∈ V ,
the set of vertices in the component containing v is the equivalence class

[v] = {w ∈ V | w R v}.

Notice that the definition of “path” allows repetitions of vertices or edges or both.
In the path (2.1), vertex 2 appears twice.

Subclasses of paths are obtained by prohibiting duplicate vertices or edges or by
making the vertices v0 and vn of Definition 2.1 identical.

448

Graph Theory

Definition 2.14 Let v and w be vertices in a graph G.
A simple path from v to w is a path from v to w with no repeated vertices.
A cycle (or circuit) is a path of nonzero length from v to v with no repeated edges.
A simple cycle is a cycle from v to v in which, except for the beginning and ending

vertices that are both equal to v, there are no repeated vertices.

Example 2.15 For the graph of Figure 2.1, we have the following information.

Path Simple Path? Cycle? Simple Cycle?

(6, 5, 2, 4, 3, 2, 1) No No No
(6, 5, 2, 4) Yes No No
(2, 6, 5, 2, 4, 3, 2) No Yes No
(5, 6, 2, 5) No Yes Yes
(7) Yes No No

We next reexamine the problem introduced in Section 1 of finding a cycle in a
graph that traverses each edge exactly one time.

Example 2.16 Ko..nigsberg Bridge Problem

The first paper in graph theory was Leonhard Euler’s in 1736. The paper presented a
general theory that included a solution to what is now called the Königsberg bridge
problem.

Two islands lying in the Pregel River in Königsberg (now Kaliningrad in Russia)
were connected to each other and the river banks by bridges, as shown in Figure 2.7.
The problem is to start at any location—A, B, C, or D; walk over each bridge exactly
once; then return to the starting location.

The bridge configuration can be modeled as a graph, as shown in Figure 2.8. The
vertices represent the locations and the edges represent the bridges. The Königsberg
bridge problem is now reduced to finding a cycle in the graph of Figure 2.8 that includes
all of the edges and all of the vertices. In honor of Euler, a cycle in a graph G that includes
all of the edges and all of the vertices of G is called an Euler cycle.† From the discussion
of Section 1, we see that there is no Euler cycle in the graph of Figure 2.8 because the
number of edges incident on vertex A is odd. (In fact, in the graph of Figure 2.8, every
vertex is incident on an odd number of edges.)

A

D

B C

Pregel

River

Figure 2.7 The bridges of Königsberg.

A

D

B C

Figure 2.8 A graph
model of the bridges of
Königsberg.

†For technical reasons, if G consists of one vertex v and no edges, we call the path (v) an Euler cycle for G.

449

Graph Theory

The solution to the existence of Euler cycles is nicely stated by introducing the
degree of a vertex. The degree of a vertex v, δ(v), is the number of edges incident on v.
(By definition, each loop on v contributes 2 to the degree of v.) In Section 1 we found
that if a graph G has an Euler cycle, then every vertex in G has even degree. We can
also prove that G is connected.

Theorem 2.17 If a graph G has an Euler cycle, then G is connected and every vertex has even degree.

Proof Suppose that G has an Euler cycle. We argued in Section 1 that every vertex
in G has even degree. If v and w are vertices in G, the portion of the Euler cycle that
takes us from v to w serves as a path from v to w. Therefore, G is connected.

The converse of Theorem 2.17 is also true. We give a proof by mathematical
induction due to [Fowler].

Theorem 2.18 If G is a connected graph and every vertex has even degree, then G has an Euler
cycle.

Proof The proof is by induction on the number n of edges in G.

Basis Step (n = 0)
Since G is connected, if G has no edges, G consists of a single vertex. An Euler cycle
consists of the single vertex and no edges.

Inductive Step
Suppose that G has n edges, n > 0, and that any connected graph with k edges, k < n,
in which every vertex has even degree, has an Euler cycle.

It is straightforward to verify that a connected graph with one or two vertices,
each of which has even degree, has an Euler cycle (see Exercise 69); thus we assume
that the graph has at least three vertices.

Since G is connected, there are vertices v1, v2, and v3 in G with edge e1 incident
on v1 and v2 and edge e2 incident on v2 and v3. We delete edges e1 and e2, but
no vertices, and add an edge e incident on v1 and v3 to obtain the graph G′ [see
Figure 2.9(a)]. Notice that each component of the graph G′ has less than n edges and
that in each component of the graph G′, every vertex has even degree. We show that
G′ has either one or two components.

Let v be a vertex. Since G is connected, there is a path P in G from v to v1.
Let P ′ be the portion of the path P starting at v whose edges are also in G′. Now P ′

ends at either v1, v2, or v3 because the only way that P could fail to be a path in G′

is that P contains one of the deleted edges e1 or e2. If P ′ ends at v1, then v is in the
same component as v1 in G′. If P ′ ends at v3 [see Figure 2.9(b)], then v is in the same
component as v3 in G′, which is in the same component as v1 in G′ (since edge e in
G′ is incident on v1 and v3). If P ′ ends at v2, then v2 is in the same component as v.
Therefore, any vertex in G′ is in the same component as either v1 or v2. Thus G′ has
one or two components.

If G′ has one component, that is, if G′ is connected, we may apply the inductive
hypothesis to conclude that G′ has an Euler cycle C′. This Euler cycle may be modified
to produce an Euler cycle in G: We simply replace the occurrence of edge e in C′ by
edges e1 and e2.

450

Graph Theory

v1 e1
v2 e2

v3

e

(a)

P

P�

v

v1 v3
v2

e1 e2

e

C�

C�

v1 e1 e2 v3
v2

(b) (c)

e

Figure 2.9 The proof of Theorem 2.18. In (a), edges e1 and e2 are deleted and edge e is added. In (b), P
(shown in color) is a path in G from v to v1, and P ′ (shown in heavy color) is the portion of P starting at v
whose edges are also in G′. As shown, P ′ ends at v3. Since edge e is in G′, there is a path in G′ from v to v1.
Thus v and v1 are in the same component. In (c), C′ (shown with a heavy line) is an Euler cycle for one
component, and C′′ (shown with a light, solid line) is an Euler cycle for the other component. If we replace e
in C′ by e1, C′′, e2, we obtain an Euler cycle (shown in color) for G.

Suppose that G′ has two components [see Figure 2.9(c)]. By the inductive hypothesis,
the component containing v1 has an Euler cycle C′ and the component containing v2

has an Euler cycle C′′ beginning and ending at v2. An Euler cycle in G is obtained
by modifying C′ by replacing (v1, v3) in C′ by (v1, v2) followed by C′′ followed by
(v2, v3) or by replacing (v3, v1) in C′ by (v3, v2) followed by C′′ followed by (v2, v1).
The Inductive Step is complete; G has an Euler cycle.

If G is a connected graph and every vertex has even degree and G has only a few
edges, we can usually find an Euler cycle by inspection.

Example 2.19 Let G be the graph of Figure 2.10. Use Theorem 2.18 to verify that G has an Euler cycle.
Find an Euler cycle for G.

v1

v2

v4v3

v6

v5

v7

Figure 2.10 The graph
for Example 2.19.

We observe that G is connected and that

δ(v1) = δ(v2) = δ(v3) = δ(v5) = 4, δ(v4) = 6, δ(v6) = δ(v7) = 2.

Since the degree of every vertex is even, by Theorem 2.18, G has an Euler cycle. By
inspection, we find the Euler cycle

(v6, v4, v7, v5, v1, v3, v4, v1, v2, v5, v4, v2, v3, v6).

Example 2.20 A domino is a rectangle divided into two squares with each square numbered one of
0, 1, . . . , 6 (see Figure 2.11). Two squares on a single domino can have the same number.
We show that the distinct dominoes can be arranged in a circle so that touching dominoes
have adjacent squares with identical numbers.

451

Graph Theory

Figure 2.11 Dominoes. [Photo by
the author.]

We model the situation as a graph G with seven vertices labeled 0, 1, . . . , 6. The
edges represent the dominoes: There is one edge between each distinct pair of vertices
and there is one loop at each vertex. Notice that G is connected. Now the dominoes can
be arranged in a circle so that touching dominoes have adjacent squares with identical
numbers if and only if G contains an Euler cycle. Since the degree of each vertex is
8 (remember that a loop contributes 2 to the degree), each vertex has even degree. By
Theorem 2.18, G has an Euler cycle. Therefore, the dominoes can be arranged in a circle
so that touching dominoes have adjacent squares with identical numbers.

What can be said about a connected graph in which not all the vertices have even
degree? The first observation (Corollary 2.22) is that the number of vertices of odd degree
is even. This follows from the fact (Theorem 2.21) that the sum of all of the degrees in
a graph is an even number.

Theorem 2.21 If G is a graph with m edges and vertices {v1, v2, . . . , vn}, then

n∑

i=1

δ(vi) = 2m.

In particular, the sum of the degrees of all the vertices in a graph is even.

Proof When we sum over the degrees of all the vertices, we count each edge (vi, vj)

twice—once when we count it as (vi, vj) in the degree of vi and again when we count
it as (vj, vi) in the degree of vj . The conclusion follows.

Corollary 2.22 In any graph, the number of vertices of odd degree is even.

Proof Let us divide the vertices into two groups: those with even degree x1, . . . , xm

and those with odd degree y1, . . . , yn. Let

S = δ(x1)+ δ(x2)+ · · · + δ(xm), T = δ(y1)+ δ(y2)+ · · · + δ(yn).

By Theorem 2.21, S+T is even. Since S is the sum of even numbers, S is even. Thus
T is even. But T is the sum of n odd numbers, and therefore n is even.

Suppose that a connected graph G has exactly two vertices v and w of odd degree.
Let us temporarily insert an edge e from v to w. The resulting graph G′ is connected and
every vertex has even degree. By Theorem 2.18, G′ has an Euler cycle. If we delete e

from this Euler cycle, we obtain a path with no repeated edges from v to w containing

452

Graph Theory

all the edges and vertices of G. We have shown that if a graph has exactly two vertices
v and w of odd degree, there is a path with no repeated edges containing all the edges
and vertices from v to w. The converse can be proved similarly.

Theorem 2.23 A graph has a path with no repeated edges from v to w (v �= w) containing all the
edges and vertices if and only if it is connected and v and w are the only vertices
having odd degree.

Proof Suppose that a graph has a path P with no repeated edges from v to w con-
taining all the edges and vertices. The graph is surely connected. If we add an edge
from v to w, the resulting graph has an Euler cycle, namely, the path P together with
the added edge. By Theorem 2.17, every vertex has even degree. Removing the added
edge affects only the degrees of v and w, which are each reduced by 1. Thus in the
original graph, v and w have odd degree and all other vertices have even degree.

The converse was discussed just before the statement of the theorem.

Generalizations of Theorem 2.23 are given as Exercises 42 and 44.
We conclude by proving a rather special result.

Theorem 2.24 If a graph G contains a cycle from v to v, G contains a simple cycle from v to v.

Proof Let

C = (v0, e1, v1, . . . , ei, vi, ei+1, . . . , ej, vj, ej+1, vj+1, . . . , en, vn)

be a cycle from v to v where v = v0 = vn (see Figure 2.12). If C is not a simple cycle,
then vi = vj , for some i < j < n. We can replace C by the cycle

C′ = (v0, e1, v1, . . . , ei, vi, ej+1, vj+1, . . . , en, vn).

If C′ is not a simple cycle from v to v, we repeat the previous procedure. Eventually
we obtain a simple cycle from v to v.

v0 � vn� v

e1

v1

en

e j�1

v j�1

e i

e j

v i � v j

e i�1

Figure 2.12 A cycle that either is a simple cycle or
can be reduced to a simple cycle.

Section Review Exercises

1. What is a path?

2. What is a simple path?

3. Give an example of a path that is not a simple path.

4. What is a cycle?

5. What is a simple cycle?

6. Give an example of a cycle that is not a simple cycle.

7. Define connected graph.

8. Give an example of a connected graph.

9. Give an example of a graph that is not connected.

10. What is a subgraph?

453

Graph Theory

11. Give an example of a subgraph.

12. What is a component of a graph?

13. Give an example of a component of a graph.

14. If a graph is connected, how many components does it have?

15. Define degree of vertex v.

16. What is an Euler cycle?

17. State a necessary and sufficient condition that a graph have an
Euler cycle.

18. Give an example of a graph that has an Euler cycle. Specify
the Euler cycle.

19. Give an example of a graph that does not have an Euler cycle.
Prove that it does not have an Euler cycle.

20. What is the relationship between the sum of the degrees of the
vertices in a graph and the number of edges in the graph?

21. In any graph, must the number of vertices of odd degree be
even?

22. State a necessary and sufficient condition that a graph have a
path with no repeated edges from v to w (v �= w) containing
all the edges and vertices.

23. If a graph G contains a cycle from v to v, must G contain a
simple cycle from v to v?

Exercises

In Exercises 1–9, tell whether the given path in the graph is

(a) A simple path

(b) A cycle

(c) A simple cycle

a

d

b

e

c

1. (b, b) 2. (e, d, c, b)

3. (a, d, c, d, e) 4. (d, c, b, e, d)

5. (b, c, d, a, b, e, d, c, b) 6. (b, c, d, e, b, b)

7. (a, d, c, b, e) 8. (d)

9. (d, c, b)

In Exercises 10–18, draw a graph having the given properties or
explain why no such graph exists.

10. Six vertices each of degree 3

11. Five vertices each of degree 3

12. Four vertices each of degree 1

13. Six vertices; four edges

14. Four edges; four vertices having degrees 1, 2, 3, 4

15. Four vertices having degrees 1, 2, 3, 4

16. Simple graph; six vertices having degrees 1, 2, 3, 4, 5, 5

17. Simple graph; five vertices having degrees 2, 3, 3, 4, 4

18. Simple graph; five vertices having degrees 2, 2, 4, 4, 4

19. Find all the simple cycles in the following graph.

a

b
e

c

g

d

f

20. Find all simple paths from a to e in the graph of Exercise 19.

21. Find all connected subgraphs of the following graph contain-
ing all of the vertices of the original graph and having as few
edges as possible. Which are simple paths? Which are cycles?
Which are simple cycles?

a

b
e

c

g

d

f

Find the degree of each vertex for the following graphs.

22.

v1

v4

v2

v3

v5

23.
v3

v1

v2

v6 v9

v7

v4

v5 v8 v10

In Exercises 24–27, find all subgraphs having at least one vertex
of the graph given.

24. e1

v1 v2

25.
v1

e1

v2

e2

454

Graph Theory

26. v1

e2e1

v2 v3

�27. v1

v2 v3

In Exercises 28–33, decide whether the graph has an Euler cycle.
If the graph has an Euler cycle, exhibit one.

28. Exercise 21 29. Exercise 22

30. Exercise 23 31. Figure 2.4

32.

a g

b d f

h ji

c e

33.
b e f j

c g h k

a
d i

34. The following graph is continued to an arbitrary, finite depth.
Does the graph contain an Euler cycle? If the answer is yes,
describe one.

35. When does the complete graph Kn contain an Euler cycle?

36. When does the complete bipartite graph Km,n contain an Euler
cycle?

37. For which values of m and n does the graph contain an Euler
cycle?

m vertices

n vertices

38. For which values of n does the n-cube contain an Euler cycle?

In Exercises 39 and 40, verify that the number of vertices of odd
degree in the graph is even.

39. a b c

d

g

e

h

f i

j

40. a b

c d

41. For the graph of Exercise 39, find a path with no repeated edges
from d to e containing all the edges.

42. Let G be a connected graph with four vertices v1, v2, v3, and
v4 of odd degree. Show that there are paths with no repeated
edges from v1 to v2 and from v3 to v4 such that every edge in
G is in exactly one of the paths.

43. Illustrate Exercise 42 using the following graph.

a b

f g

c e

h

i

d

44. State and prove a generalization of Exercise 42 where the num-
ber of vertices of odd degree is arbitrary.

In Exercises 45 and 46, tell whether each assertion is true or false.
If false, give a counterexample and if true, prove it.

45. Let G be a graph and let v and w be distinct vertices. If there
is a path from v to w, there is a simple path from v to w.

46. If a graph contains a cycle that includes all the edges, the cycle
is an Euler cycle.

47. Let G be a connected graph. Suppose that an edge e is in a
cycle. Show that G with e removed is still connected.

48. Give an example of a connected graph such that the removal
of any edge results in a graph that is not connected. (Assume
that removing an edge does not remove any vertices.)

�49. Can a knight move around a chessboard and return to its origi-
nal position making every move exactly once? (Amove is con-
sidered to be made when the move is made in either direction.)

50. Show that if G′ is a connected subgraph of a graph G, then G′
is contained in a component.

51. Show that if a graph G is partitioned into connected subgraphs
so that each edge and each vertex in G belong to one of the
subgraphs, the subgraphs are components.

455

Graph Theory

52. Let G be a directed graph and let G′ be the undirected graph
obtained from G by ignoring the direction of edges in G.
Assume that G is connected. If v is a vertex in G, we say the
parity of v is even if the number of edges of the form (v, w)

is even; odd parity is defined similarly. Prove that if v and w

are vertices in G having odd parity, it is possible to change the
orientation of certain edges in G so that v and w have even
parity and the parity of all other vertices in G is unchanged.

�53. Show that the maximum number of edges in a simple, discon-
nected graph with n vertices is (n− 1)(n− 2)/2.

�54. Show that the maximum number of edges in a simple, bipartite
graph with n vertices is 	n2/4
.

A vertex v in a connected graph G is an articulation point if the
removal of v and all edges incident on v disconnects G.

55. Give an example of a graph with six vertices that has exactly
two articulation points.

56. Give an example of a graph with six vertices that has no artic-
ulation points.

57. Show that a vertex v in a connected graph G is an articulation
point if and only if there are vertices w and x in G having the
property that every path from w to x passes through v.

Let G be a directed graph and let v be a vertex in G. The indegree
of v, in(v), is the number of edges of the form (w, v). The outdegree
of v, out(v), is the number of edges of the form (v, w). A directed
Euler cycle in G is a sequence of edges of the form

(v0, v1), (v1, v2), . . . , (vn−1, vn),

where v0 = vn, every edge in G occurs exactly one time, and all
vertices appear.

58. Show that a directed graph G contains a directed Euler cycle
if and only if the undirected graph obtained by ignoring the
directions of the edges of G is connected and in(v) = out(v)
for every vertex v in G.

A de Bruijn sequence for n (in 0’s and 1’s) is a sequence

a1, . . . , a2n

of 2n bits having the property that if s is a bit string of length n, for
some m,

s = amam+1 · · · am+n−1. (2.2)

In (2.2), we define a2n+i = ai for i = 1, . . . , 2n − 1.

59. Verify that 00011101 is a de Bruijn sequence for n = 3.

60. Let G be a directed graph with vertices corresponding to all
bit strings of length n− 1. A directed edge exists from vertex
x1 · · · xn−1 to x2 · · · xn. Show that a directed Euler cycle in G

corresponds to a de Bruijn sequence.

�61. Show that there is a de Bruijn sequence for every n = 1, 2,

�62. A closed path is a path from v to v. Show that a connected
graph G is bipartite if and only if every closed path in G has
even length.

63. How many paths of length k ≥ 1 are there in Kn?

64. Show that there are

n(n− 1)[(n− 1)k − 1]

n− 2

paths whose lengths are between 1 and k, inclusive, in Kn,
n > 2.

65. Let v and w be distinct vertices in Kn. Let pm denote the
number of paths of length m from v to w in Kn, 1 ≤ m ≤ n.

(a) Derive a recurrence relation for pm.

(b) Find an explicit formula for pm.

66. Let v and w be distinct vertices in Kn, n ≥ 2. Show that the
number of simple paths from v to w is

(n− 2)!
n−2∑

k=0

1

k!
.

�67. [Requires calculus] Show that there are 	n!e−1
 simple paths
in Kn. (e = 2.71828 . . . is the base of the natural logarithm.)

68. Let G be a graph. Define a relation R on the set V of vertices
of G as vRw if there is a path from v to w. Prove that R is an
equivalence relation on V .

69. Prove that a connected graph with one or two vertices, each of
which has even degree, has an Euler cycle.

Let G be a connected graph. The distance between vertices v and
w in G, dist(v, w), is the length of a shortest path from v to w. The
diameter of G is

d(G) = max{dist(v, w) | v and w are vertices in G}.

70. Find the diameter of the graph of Figure 2.10.

71. Find the diameter of the n-cube. In the context of parallel com-
putation, what is the meaning of this value?

72. Find the diameter of Kn, the complete graph on n vertices.

73. Show that the number of paths in the following graph from
v1 to v1 of length n is equal to the (n + 1)st Fibonacci
number fn+1.

v1 v2

74. Let G be a simple graph with n vertices in which every vertex
has degree k and

k ≥ n− 3

2
if n mod 4 = 1

k ≥ n− 1

2
if n mod 4 �= 1.

Show that G is connected.

A cycle in a simple directed graph [i.e., a directed graph in which
there is at most one edge of the form (v, w) and no edges of the
form (v, v)] is a sequence of three or more vertices

(v0, v1, . . . , vn)

456

Graph Theory

in which (vi−1, vi) is an edge for i = 1, . . . , n and v0 = vn. A
directed acyclic graph (dag) is a simple directed graph with no
cycles.

75. Show that a dag has at least one vertex with no out edges [i.e.,
there is at least one vertex v such that there are no edges of the
form (v, w)].

76. Show that the maximum number of edges in an n-vertex dag
is n(n− 1)/2.

77. An independent set in a graph G is a subset S of the vertices of
G having the property that no two vertices in S are adjacent.
(Note that ∅ is an independent set for any graph.) Prove the
following result due to [Prodinger].

Let Pn be the graph that is a simple path with n ver-
tices. Prove that the number of independent sets in Pn is equal
to fn+2, n = 1, 2, . . . , where {fn} is the Fibonacci sequence.

78. Let G be a graph. Suppose that for every pair of distinct ver-
tices v1 and v2 in G, there is a unique vertex w in G such that
v1 and w are adjacent and v2 and w are adjacent.

(a) Prove that if v and w are nonadjacent vertices in G, then
δ(v) = δ(w).

(b) Prove that if there is a vertex of degree k > 1 and no vertex
is adjacent to all other vertices, then the degree of every
vertex is k.

Problem-Solving Corner Graphs

Problem
Is it possible in a department of 25 persons, racked by
dissension, for each person to get along with exactly
five others?

Attacking the Problem
Where do we start? Since this problem is in a chap-
ter, which deals with graphs, it would probably be
a good idea to try to model the problem as a graph.
If this problem were not associated with a particular
section or chapter in the book, we might try several
approaches—one of which might be to model the prob-
lem as a graph. Many discrete problems can be solved
by modeling them using graphs. This is not to say that
this is the only approach possible. Most of the time
by taking different approaches, we can solve a single
problem in many ways. (A nice example is [Wagon].)

Finding a Solution
A fundamental issue in building a graph model is to
figure out what the graph is—what are the vertices,
and what are the edges? In this problem, there’s not
much choice; we have persons and dissension. Let’s
try letting the vertices be the people. It’s very common
in a graph model for the edges to indicate a relation-
ship between the vertices. Here the relationship is “gets
along with,” so we’ll put an edge between two vertices
(people) if they get along.

Now suppose that each person gets along with
exactly five others. For example, in the figure that fol-
lows, which shows part of our graph, Jeremy gets along

with Samantha, Alexandra, Lance, Bret, and Tiffany,
and no others.

Samantha

Alexandra

Lance

Bret

Tiffany

Jeremy

It follows that the degree of every vertex is 5. Now
let’s take stock of the situation: We have 25 vertices
and each vertex has degree 5. Before reading on, try to
determine whether this is possible.

Corollary 2.22 says that the number of vertices of
odd degree is even. We have a contradiction because
the number of vertices of odd degree is odd. Therefore,
it is not possible in a department of 25 persons racked
by dissension for each person to get along with exactly
five others.

Formal Solution
No. It is not possible in a department of 25 persons
racked by dissension for each person to get along with
exactly five others. Suppose by way of contradiction
that it is possible. Consider a graph where the vertices
are the persons and an edge connects two vertices (peo-
ple) if the people get along. Since every vertex has odd
degree, the number of vertices of odd degree is odd,
which is a contradiction.

457

Graph Theory

Summary of Problem-Solving Techniques
■ Many discrete problems can be solved by mod-

eling them using graphs.

■ To build a graph model, determine what the ver-
tices represent and what the edges represent.

■ It’s very common in a graph model for the edges
to indicate a relationship between the vertices.

3 ➜ Hamiltonian Cycles and the Traveling
Salesperson Problem

Sir William Rowan Hamilton marketed a puzzle in the mid-1800s in the form of a
dodecahedron (see Figure 3.1). Each corner bore the name of a city and the problem was
to start at any city, travel along the edges, visit each city exactly one time, and return to
the initial city. The graph of the edges of the dodecahedron is given in Figure 3.2. We can
solve Hamilton’s puzzle if we can find a cycle in the graph of Figure 3.2 that contains
each vertex exactly once (except for the starting and ending vertex that appears twice).
See if you can find a solution before looking at a solution given in Figure 3.3.

a

b h

g

p

t

sm

l

d

c

j

k

n

e

r

q

o

f

i

Figure 3.1 Hamilton’s puzzle.

a b

c

d

e

g
f h

t
p

q

r
s

o

n

i

km
l

j

Figure 3.2 The graph
of Hamilton’s puzzle.

e

a b

c

d

l
m

n

o

t
s r

q
p

g

f
h

i

j

k

Figure 3.3 Visiting each vertex
once in the graph of Figure 3.2.

In honor of Hamilton, we call a cycle in a graph G that contains each vertex in G

exactly once, except for the starting and ending vertex that appears twice, a Hamiltonian
cycle.

Hamilton (1805–1865) was one of Ireland’s greatest scholars. He was professor
of astronomy at the University of Dublin, where he published articles in physics and
mathematics. In mathematics, Hamilton is most famous for inventing the quaternions, a
generalization of the complex number system. The quaternions provided inspiration for
the development of modern abstract algebra. In this connection, Hamilton introduced
the term vector.

Example 3.1 The cycle (a, b, c, d, e, f, g, a) is a Hamiltonian cycle for the graph of Figure 3.4.

a b

g e

f d
c

Figure 3.4 A graph with a
Hamiltonian cycle.

The problem of finding a Hamiltonian cycle in a graph sounds similar to the
problem of finding an Euler cycle in a graph. An Euler cycle visits each edge once,
whereas a Hamiltonian cycle visits each vertex once; however, the problems are actually
quite distinct. For example, the graph G of Figure 3.4 does not have an Euler cycle
since there are vertices of odd degree, yet Example 3.1 showed that G has a Hamiltonian
cycle. Furthermore, unlike the situation for Euler cycles (see Theorems 2.17 and 2.18),
no easily verified necessary and sufficient conditions are known for the existence of a
Hamiltonian cycle in a graph.

458

Graph Theory

The following examples show that sometimes we can argue that a graph does not
contain a Hamiltonian cycle.

Example 3.2 Show that the graph of Figure 3.5 does not contain a Hamiltonian cycle.
Since there are five vertices, a Hamiltonian cycle must have five edges. Suppose

that we could eliminate edges from the graph, leaving just a Hamiltonian cycle. We
would have to eliminate one edge incident at v2 and one edge incident at v4, since each
vertex in a Hamiltonian cycle has degree 2. But this leaves only four edges—not enough
for a Hamiltonian cycle of length 5. Therefore, the graph of Figure 3.5 does not contain
a Hamiltonian cycle.

v1

v3

v4 v2
v5

Figure 3.5 A graph with
no Hamiltonian cycle.

We must be careful not to count an eliminated edge more than once when using
an argument like that in Example 3.2 to show that a graph does not have a Hamiltonian
cycle. Notice in Example 3.2 (which refers to Figure 3.5) that if we eliminate one edge
incident at v2 and one edge incident at v4, these edges are distinct. Therefore, we are
correct in reasoning that we must eliminate two edges from the graph of Figure 3.5 to
produce a Hamiltonian cycle.

As an example of double counting, consider the following faulty argument that
purports to show that the graph of Figure 3.6 has no Hamiltonian cycle. Since there
are five vertices, a Hamiltonian cycle must have five edges. Suppose that we could
eliminate edges from the graph to produce a Hamiltonian cycle. We would have to
eliminate two edges incident at c and one edge incident at each of a, b, d, and e. This
leaves two edges—not enough for a Hamiltonian cycle. Therefore, the graph of Figure
3.6 does not contain a Hamiltonian cycle. The error in this argument is that if we eliminate
two edges incident at c (as we must do), we also eliminate edges incident at two of a, b,
d, or e. We must not count the two eliminated edges incident at the two vertices again.
Notice that the graph of Figure 3.6 does have a Hamiltonian cycle.

a b

e d

c

Figure 3.6 A graph
with a Hamiltonian cycle.

Example 3.3 Show that the graph G of Figure 3.7 does not contain a Hamiltonian cycle.

a b c

e

g k

m

i

h j

d f

G
l

Figure 3.7 A graph
with no Hamiltonian
cycle.

Suppose that G has a Hamiltonian cycle H . The edges (a, b), (a, g), (b, c), and
(c, k) must be in H since each vertex in a Hamiltonian cycle has degree 2. Thus edges
(b, d) and (b, f) are not in H . Therefore, edges (g, d), (d, e), (e, f), and (f, k) are in H .
The edges now known to be in H form a cycle C. Adding an additional edge to C will
give some vertex in H degree greater than 2. This contradiction shows that G does not
have a Hamiltonian cycle.

459

Graph Theory

The traveling salesperson problem is related to the problem of finding a
Hamiltonian cycle in a graph. (We referred briefly to a variant of the traveling salesperson
problem in Section 1.) The problem is: Given a weighted graph G, find a minimum-length
Hamiltonian cycle in G. If we think of the vertices in a weighted graph as cities and the
edge weights as distances, the traveling salesperson problem is to find a shortest route in
which the salesperson can visit each city one time, starting and ending at the same city.

Example 3.4 The cycle C = (a, b, c, d, a) is a Hamiltonian cycle for the graph G of Figure 3.8.
Replacing any of the edges in C by either of the edges labeled 11 would increase the
length of C; thus C is a minimum-length Hamiltonian cycle for G. Thus C solves the
traveling salesperson problem for G.

a b2

d c3

2 3
11

11

Figure 3.8 A graph for
the traveling salesperson
problem.

Although there are algorithms (see, e.g., [Even, 1979]) for finding an Euler cycle, if
there is one, in time �(n) for a graph having n edges, every known algorithm for finding
Hamiltonian cycles requires either exponential or factorial time in the worst case. For this
reason, methods that produce near-minimum-length cycles are often used for problems
that ask for a solution to the traveling salesperson problem. Instant fame awaits the
discoverer of a polynomial-time algorithm for solving the Hamiltonian cycle problem
(or the traveling salesperson problem) or of a proof that there is no polynomial-time
algorithm for these problems.

We conclude this section by looking at Hamiltonian cycles in the n-cube.

Example 3.5 Gray Codes and Hamiltonian Cycles in the n-Cube

Consider a ring model for parallel computation that, when represented as a graph, is
a simple cycle (see Figure 3.9). The vertices represent processors. An edge between
processors p and q indicates that p and q can communicate directly with one another.
We see that each processor can communicate directly with exactly two other processors.
Nonadjacent processors communicate by sending messages.

Figure 3.9 The ring
model for parallel
computation.

The n-cube (see Example 1.7) is another model for parallel computation. The n-
cube has a greater degree of connectivity among its processors. We consider the question
of when an n-cube can simulate a ring model with 2n processors. In graph terminology,
we are asking when the n-cube contains a simple cycle with 2n vertices as a subgraph or,
since the n-cube has 2n processors, when the n-cube contains a Hamiltonian cycle. [We
leave to the exercises the question of when an n-cube can simulate a ring model with an
arbitrary number of processors (see Exercise 18).]

We first observe that if the n-cube contains a Hamiltonian cycle, we must have
n ≥ 2 since the 1-cube has no cycles at all.

Recall (see Example 1.7) that we may label the vertices of the n-cube 0, 1, . . . ,

2n− 1 in such a way that an edge connects two vertices if and only if the binary rep-
resentation of their labels differs in exactly one bit. Thus the n-cube has a Hamiltonian
cycle if and only if n ≥ 2 and there is a sequence,

s1, s2, . . . , s2n (3.1)

where each si is a string of n bits, satisfying:

■ Every n-bit string appears somewhere in the sequence.

■ si and si+1 differ in exactly one bit, i = 1, . . . , 2n − 1.

■ s2n and s1 differ in exactly one bit.

460

Graph Theory

A sequence (3.1) is called a Gray code. When n ≥ 2, a Gray code (3.1) corresponds to
the Hamiltonian cycle

s1, s2, . . . , s2n , s1

since every vertex appears and the edges (si, si+1), i = 1, . . . , 2n − 1, and (s2n , s1) are
distinct. When n = 1, the Gray code 0, 1 corresponds to the path (0, 1, 0), which is not
a cycle because the edge (0, 1) is repeated.

Gray codes have been extensively studied in other contexts. For example, Gray
codes have been used in converting analog information to digital form (see [Deo]). We
show how to construct a Gray code for each positive integer n, thus proving that the
n-cube has a Hamiltonian cycle for every positive integer n ≥ 2.

Theorem 3.6 Let G1 denote the sequence 0, 1. We define Gn in terms of Gn−1 by the following
rules:

(a) Let GR
n−1 denote the sequence Gn−1 written in reverse.

(b) Let G′n−1 denote the sequence obtained by prefixing each member of Gn−1

with 0.

(c) Let G′′n−1 denote the sequence obtained by prefixing each member of GR
n−1

with 1.

(d) Let Gn be the sequence consisting of G′n−1 followed by G′′n−1.

Then Gn is a Gray code for every positive integer n.

Proof We prove the theorem by induction on n.

Basis Step (n = 1)
Since the sequence 0, 1 is a Gray code, the theorem is true when n is 1.

Inductive Step
Assume that Gn−1 is a Gray code. Each string in G′n−1 begins with 0, so any differ-
ence between consecutive strings must result from differing bits in the corresponding
strings in Gn−1. But since Gn−1 is a Gray code, each consecutive pair of strings in
Gn−1 differs in exactly one bit. Therefore, each consecutive pair of strings in G′n−1
differs in exactly one bit. Similarly, each consecutive pair of strings in G′′n−1 differs
in exactly one bit.

Let α denote the last string in G′n−1, and let β denote the first string in G′′n−1. If
we delete the first bit from α and the first bit from β, the resulting strings are identical.
Since the first bit in α is 0 and the first bit in β is 1, the last string in G′n−1 and the
first string in G′′n−1 differ in exactly one bit. Similarly, the first string in G′n−1 and the
last string in G′′n−1 differ in exactly one bit. Therefore, Gn is a Gray code.

Corollary 3.7 The n-cube has a Hamiltonian cycle for every positive integer n ≥ 2.

461

Graph Theory

Example 3.8 We use Theorem 3.6 to construct the Gray code G3 beginning with G1.

G1: 0 1

GR
1 : 1 0

G′1: 00 01

G′′1: 11 10

G2: 00 01 11 10

GR
2 : 10 11 01 00

G′2: 000 001 011 010

G′′2: 110 111 101 100

G3: 000 001 011 010 110 111 101 100

We close this section by examining a problem that goes back some 200 years.

Example 3.9 The Knight’s Tour

In chess, the knight’s move consists of moving two squares horizontally or vertically
and then moving one square in the perpendicular direction. For example, in Figure 3.10
a knight on the square marked K can move to any of the squares marked X. A knight’s
tour of an n × n board begins at some square, visits each square exactly once making
legal moves, and returns to the initial square. The problem is to determine for which n

a knight’s tour exists.

X

X

X

X

K

X

X

X

X

Figure 3.10 The
knight’s legal moves
in chess.

We can use a graph to model this problem. We let the squares of the board, alter-
nately colored black and white in the usual way, be the vertices of the graph, and we
place an edge between two vertices if the corresponding squares on the board represent
a legal move for the knight (see Figure 3.11). We denote the graph as GKn. Then there
is a knight’s tour on the n× n board if and only if GKn has a Hamiltonian cycle.

We show that if GKn has a Hamiltonian cycle, n is even. To see this, note that GKn

is bipartite. We can partition the vertices into sets V1, those corresponding to the white
squares, and V2, those corresponding to the black squares; each edge is incident on a
vertex in V1 and V2. Since any cycle must alternate between a vertex in V1 and one in
V2, any cycle in GKn must have even length. But since a Hamiltonian cycle must visit
each vertex exactly once, a Hamiltonian cycle in GKn must have length n2. Thus n must
be even.

Figure 3.11 A 4× 4
chessboard and the
graph GK4.

In view of the preceding result, the smallest possible board that might have a
knight’s tour is the 2 × 2 board, but it does not have a knight’s tour because the board
is so small the knight has no legal moves. The next smallest board that might have a
knight’s tour is the 4×4 board, although, as we shall show, it too does not have a knight’s
tour.

We argue by contradiction to show that GK4 does not have a Hamiltonian cycle.
Suppose that GK4 has a Hamiltonian cycle C = (v1, v2, . . . , v17). We assume that v1

corresponds to the upper-left square. We call the eight squares across the top and bottom
outside squares, and we call the other eight squares inside squares. Notice that the knight
must arrive at an outside square from an inside square and that the knight must move from
an outside square to an inside square. Thus in the cycle C, each vertex corresponding to
an outside square must be preceded and followed by a vertex corresponding to an inside
square. Since there are equal numbers of outside and inside squares, vertices vi where
i is odd correspond to outside squares, and vertices vi where i is even correspond to

462

Graph Theory

inside squares. But looking at the moves the knight makes, we see that vertices vi where
i is odd correspond to white squares, and vertices vi where i is even correspond to black
squares. Therefore, the only outside squares visited are white and the only inside squares
visited are black. Thus C is not a Hamiltonian cycle. This contradiction completes the
proof that GK4 has no Hamiltonian cycle. This argument was given by Louis Pósa when
he was a teenager.

The graph GK6 has a Hamiltonian cycle. This fact can be proved by simply exhibit-
ing one (see Exercise 21). It can be shown using elementary methods that GKn has a
Hamiltonian cycle for all even n ≥ 6 (see [Schwenk]). The proof explicitly constructs
Hamiltonian cycles for certain smaller boards and then pastes smaller boards together
to obtain Hamiltonian cycles for the larger boards.

Problem-Solving Tips

An Euler cycle starts at a vertex, traverses each edge exactly one time, and returns to the
initial vertex. Theorems 2.17 and 2.18 allow us to easily determine whether a graph has
an Euler cycle: A graph G has an Euler cycle if and only if G is connected and every
vertex has even degree.

A Hamiltonian cycle starts at a vertex, visits each vertex exactly one time (except
for the initial vertex, which is visited twice: at the beginning and end of the cycle), and
returns to the initial vertex. Unlike Theorems 2.17 and 2.18, no easily verified necessary
and sufficient condition is known for a graph to have a Hamiltonian cycle. If a relatively
small graph has a Hamiltonian cycle, trial and error will discover one. If a graph does
not have a Hamiltonian cycle, you can sometimes use the fact that a Hamiltonian cycle
in a graph containing n vertices has length n together with proof by contradiction to
prove that it does not have a Hamiltonian cycle. Two proof-by-contradiction techniques
were shown in Section 3. In the first, we assume that the graph has a Hamiltonian cycle.
Certain edges cannot appear in the Hamiltonian cycle: If a graph has a vertex v of degree
greater than 2, only two edges incident on v can appear in the Hamiltonian cycle. We
can sometimes obtain a contradiction by showing that so many edges must be eliminated
that the graph cannot have a Hamiltonian cycle (see Example 3.2).

In the second proof-by-contradiction technique shown in Section 3, we again
assume that the graph with n vertices has a Hamiltonian cycle. We then argue that
certain edges must be in the Hamiltonian cycle. For example, if a vertex v has degree 2,
both edges incident on v must be in the cycle. We can sometimes obtain a contradiction
by showing that edges that must be in the Hamiltonian cycle form a cycle of length less
than n (see Example 3.3).

Section Review Exercises

1. What is a Hamiltonian cycle?

2. Give an example of a graph that has a Hamiltonian cycle and an
Euler cycle. Prove that the graph has the specified properties.

3. Give an example of a graph that has a Hamiltonian cycle
but not an Euler cycle. Prove that the graph has the specified
properties.

4. Give an example of a graph that does not have a Hamiltonian
cycle but does have an Euler cycle. Prove that the graph has the
specified properties.

5. Give an example of a graph that has neither a Hamiltonian
cycle nor an Euler cycle. Prove that the graph has the speci-
fied properties.

6. What is the traveling salesperson problem? How is it related to
the Hamiltonian cycle problem?

7. What is the ring model for parallel computation?

8. What is a Gray code?

9. Explain how to construct a Gray code.

463

Graph Theory

Exercises

Find a Hamiltonian cycle in each graph.

1.
a b c

i j

d he
f

g

2.
a

g

f

e d

n

m
l

k c

bj

o

i

p

h

Show that none of the graphs contains a Hamiltonian cycle.

3.
a

c

j

l

b

i

d

k

e hgf

4.
a b

o p

f g i k

e

l

h

c d

m n

j

5.
a b c d e

i j

f hg

Determine whether or not each graph contains a Hamiltonian
cycle. If there is a Hamiltonian cycle, exhibit it; otherwise, give
an argument that shows there is no Hamiltonian cycle.

6.

f e

h

g

c

d

i

l

j

k

a b

m

7.
a b c

d

h

s t

p q r

m

g

l

e f

i j

n o

k

8.
a b

c

f g

e
d

9. Give an example of a graph that has an Euler cycle but contains
no Hamiltonian cycle.

10. Give an example of a graph that has an Euler cycle that is also
a Hamiltonian cycle.

11. Give an example of a graph that has an Euler cycle and a
Hamiltonian cycle that are not identical.

�12. For which values of m and n does the graph of Exercise 37,
Section 2, contain a Hamiltonian cycle?

13. Modify the graph of Exercise 37, Section 2, by inserting an
edge between the vertex in row i, column 1, and the vertex
in row i, column m, for i = 1, . . . , n. Show that the resulting
graph always has a Hamiltonian cycle.

14. Show that if n ≥ 3, the complete graph on n vertices Kn

contains a Hamiltonian cycle.

15. When does the complete bipartite graph Km,n contain a
Hamiltonian cycle?

464

Graph Theory

16. Show that the cycle (e, b, a, c, d, e) provides a solution to the
traveling salesperson problem for the graph shown.

a 5 b

c

d e

6 6
4

3
4

8
7

5
7

17. Solve the traveling salesperson problem for the graph.

a

e

b d

3 4

4
c

6
27

7

5

6

5

�18. Let m and n be integers satisfying 1 ≤ m ≤ 2n. Prove that the
n-cube has a simple cycle of length m if and only if m ≥ 4
and m is even.

19. Use Theorem 3.6 to compute the Gray code G4.

20. Let G be a bipartite graph with disjoint vertex sets V1 and V2,
as in Definition 1.11. Show that if G has a Hamiltonian cycle,
V1 and V2 have the same number of elements.

21. Find a Hamiltonian cycle in GK6 (see Example 3.9).

22. Describe a graph model appropriate for solving the following
problem: Can the permutations of {1, 2, . . . , n} be arranged in

a sequence so that adjacent permutations

p: p1, . . . , pn and q: q1, . . . , qn

satisfy pi �= qi for i = 1, . . . , n?

23. Solve the problem of Exercise 22 for n = 1, 2, 3, 4. (The
answer to the question is “yes” for n ≥ 5; see [“Problem
1186”].

24. Show that the consecutive labels of the vertices on the unit
circle in Bain’s depiction of the n-cube (see Exercises 43–45,
Section 1) give a Gray code.

A Hamiltonian path in a graph G is a simple path that contains
every vertex in G exactly once. (A Hamiltonian path begins and
ends at different vertices.)

25. If a graph has a Hamiltonian cycle, must it have a Hamiltonian
path? Explain.

26. If a graph has a Hamiltonian path, must it have a Hamiltonian
cycle? Explain.

27. Does the graph of Figure 3.5 have a Hamiltonian path?

28. Does the graph of Figure 3.7 have a Hamiltonian path?

29. Does the graph of Exercise 3 have a Hamiltonian path?

30. Does the graph of Exercise 4 have a Hamiltonian path?

31. Does the graph of Exercise 5 have a Hamiltonian path?

32. Does the graph of Exercise 6 have a Hamiltonian path?

33. Does the graph of Exercise 7 have a Hamiltonian path?

34. Does the graph of Exercise 8 have a Hamiltonian path?

35. For which values of m and n does the graph of Exercise 37,
Section 2, have a Hamiltonian path?

36. For which n does the complete graph on n vertices have a
Hamiltonian path?

4 ➜ A Shortest-Path Algorithm

Recall (see Section 1) that a weighted graph is a graph in which values are assigned to
the edges and that the length of a path in a weighted graph is the sum of the weights of
the edges in the path. We let w(i, j) denote the weight of edge (i, j). In weighted graphs,
we often want to find a shortest path (i.e., a path having minimum length) between
two given vertices. Algorithm 4.1, due to E. W. Dijkstra, which efficiently solves this
problem, is the topic of this section.

Edsger W. Dijkstra (1930–2002) was born in The Netherlands. He was an early
proponent of programming as a science. So dedicated to programming was he that when
he was married in 1957, he listed his profession as a programmer. However, the Dutch
authorities said that there was no such profession, and he had to change the entry to
“theoretical physicist.” He won the prestigious Turing Award from the Association for
Computing Machinery in 1972. He was appointed to the Schlumberger Centennial Chair
in Computer Science at the University of Texas at Austin in 1984 and retired as Professor
Emeritus in 1999.

Throughout this section, G denotes a connected, weighted graph. We assume that
the weights are positive numbers and that we want to find a shortest path from vertex a

to vertex z. The assumption that G is connected can be dropped (see Exercise 9).

465

Graph Theory

Dijkstra’s algorithm involves assigning labels to vertices. We let L(v) denote
the label of vertex v. At any point, some vertices have temporary labels and the rest
have permanent labels. We let T denote the set of vertices having temporary labels.
In illustrating the algorithm, we will circle vertices having permanent labels. We will
show later that if L(v) is the permanent label of vertex v, then L(v) is the length of a
shortest path from a to v. Initially, all vertices have temporary labels. Each iteration of
the algorithm changes the status of one label from temporary to permanent; thus we may
terminate the algorithm when z receives a permanent label. At this point L(z) gives the
length of a shortest path from a to z.

Algorithm 4.1 Dijkstra’s Shortest-Path Algorithm

This algorithm finds the length of a shortest path from vertex a to vertex z in a
connected, weighted graph. The weight of edge (i, j) is w(i, j) > 0 and the label of
vertex x is L(x). At termination, L(z) is the length of a shortest path from a to z.

Input: A connected, weighted graph in which all weights are positive;
vertices a and z

Output: L(z), the length of a shortest path from a to z

1. dijkstra(w, a, z, L) {
2. L(a) = 0
3. for all vertices x �= a

4. L(x) = ∞
5. T = set of all vertices
6. // T is the set of vertices whose shortest distance from a has
7. // not been found
8. while (z ∈ T) {
9. choose v ∈ T with minimum L(v)

10. T = T − {v}
11. for each x ∈ T adjacent to v

12. L(x) = min{L(x), L(v)+ w(v, x)}
13. }
14. }

Example 4.2 We show how Algorithm 4.1 finds a shortest path from a to z in the graph of Figure 4.1.
(The vertices in T are uncircled and have temporary labels. The circled vertices have
permanent labels.) Figure 4.2 shows the result of executing lines 2–5. At line 8, z is not
circled. We proceed to line 9, where we select vertex a, the uncircled vertex with the
smallest label, and circle it (see Figure 4.3). At lines 11 and 12 we update each of the

a z

b c

f g

d e

2

3

2

1

3

7

1

6

5

2

4

4

Figure 4.1 The graph for
Example 4.2.

a
0

2

� 2 �

1

z
�

�

67

e

3
�
d 4 �

4

5 g�f

3

2

1

b c

Figure 4.2 Initialization in Dijkstra’s
shortest-path algorithm.

466

Graph Theory

a

0
2

2 2 �

1

z

�

�

67

e

3
�
d 4 �

4

5 gf

3

2

1

b c

1

Figure 4.3 The first iteration of
Dijkstra’s shortest-path algorithm.

a

0
2

2 2 �

1

z

�

67

e

3

d 4 �

4

5 g
f

3

2

1

b c

1

4

6

Figure 4.4 The second iteration of
Dijkstra’s shortest-path algorithm.

uncircled vertices, b and f , adjacent to a. We obtain the new labels

L(b) = min{∞, 0+ 2} = 2, L(f) = min{∞, 0+ 1} = 1

(see Figure 4.3). At this point, we return to line 8.
Since z is not circled, we proceed to line 9, where we select vertex f , the uncircled

vertex with the smallest label, and circle it (see Figure 4.4). At lines 11 and 12 we update
each label of the uncircled vertices, d and g, adjacent to f . We obtain the labels shown
in Figure 4.4.

You should verify that the next iteration of the algorithm produces the labeling
shown in Figure 4.5 and that at the termination of the algorithm, z is labeled 5, indicating
that the length of a shortest path from a to z is 5. A shortest path is given by (a, b, c, z).

0
2

2 2 4

1

�

67

3

4

4

5

3

2

1

1

4

6

6

b
c

a ze
d

f
g

Figure 4.5 The third iteration of Dijkstra’s
shortest-path algorithm.

We next show that Algorithm 4.1 is correct. The proof hinges on the fact that
Dijkstra’s algorithm finds the lengths of shortest paths from a in nondecreasing order.

Theorem 4.3 Dijkstra’s shortest-path algorithm (Algorithm 4.1) correctly finds the length of a
shortest path from a to z.

Proof We use mathematical induction on i to prove that the ith time we arrive at line
9, L(v) is the length of a shortest path from a to v. When this is proved, correctness
of the algorithm follows since when z is chosen at line 9, L(z) will give the length of
a shortest path from a to z.

Basis Step (i = 1)
The first time we arrive at line 9, because of the initialization steps (lines 2–4), L(a)

is zero and all other L-values are∞. Thus a is chosen the first time we arrive at line 9.
Since L(a) is zero, L(a) is the length of a shortest path from a to a.

467

Graph Theory

Inductive Step
Assume that for all k < i, the kth time we arrive at line 9, L(v) is the length of a
shortest path from a to v.

Suppose that we are at line 9 for the ith time and we choose v in T with minimum
value L(v).

First we show that if there is a path from a to a vertex w whose length is less
than L(v), then w is not in T (i.e., w was previously selected at line 9). Suppose by
way of contradiction that w is in T . Let P be a shortest path from a to w, let x be
the vertex nearest a on P that is in T , and let u be the predecessor of x on P (see
Figure 4.6). Then u is not in T , so u was chosen at line 9 during a previous iteration
of the while loop. By the inductive assumption, L(u) is the length of a shortest path
from a to u. Now

L(x) ≤ L(u)+ w(u, x) ≤ length of P < L(v).

But this inequality shows that v is not the vertex in T with minimum L(v) [L(x) is
smaller]. This contradiction completes the proof that if there is a path from a to a
vertex w whose length is less than L(v), then w is not in T .

a

… x …
u

w

P

Figure 4.6 The proof of Theorem 4.3. P is a
shortest path from a to w, x is the vertex
nearest a on P that is in T , and u is the
predecessor of x on P .

The preceding result shows, in particular, that if there were a path from a to
v whose length is less than L(v), v would already have been selected at line 9 and
removed from T . Therefore, every path from a to v has length at least L(v). By
construction, there is a path from a to v of length L(v), so this is a shortest path from
a to v. The proof is complete.

Algorithm 4.1 finds the length of a shortest path from a to z. In most applications,
we would also want to identify a shortest path. A slight modification of Algorithm 4.1
allows us to find a shortest path.

Example 4.4 Find a shortest path from a to z and its length for the graph of Figure 4.7.
We will apply Algorithm 4.1 with a slight modification. In addition to circling a

vertex, we will also label it with the name of the vertex from which it was labeled.
Figure 4.7 shows the result of executing lines 2–4 of Algorithm 4.1. First, we circle

a (see Figure 4.8). Next, we label the vertices b and d adjacent to a. Vertex b is labeled
“a, 2” to indicate its value and the fact that it was labeled from a. Similarly, vertex d is
labeled “a, 1.”

Next, we circle vertex d and update the label of the vertex e adjacent to d (see
Figure 4.9). Then we circle vertex b and update the labels of vertices c and e (see
Figure 4.10). Next, we circle vertex e and update the label of vertex z (see Figure 4.11).

468

Graph Theory

a
0

2

� 3 �

2

z
�

�

2

1

1 e� d

1

b c

Figure 4.7 Initialization in Dijkstra’s
shortest-path algorithm.

a

0
2

3 �

2

z
�

�

2

1

1 ed

1

b c

a, 2

a, 1

Figure 4.8 The first iteration of Dijkstra’s
shortest-path algorithm.

a

0
2

3 �
2

z
�1

1 e
d

1

b c

a, 2

a, 1 d, 2 2

Figure 4.9 The second iteration of
Dijkstra’s shortest-path algorithm.

a

0
2

3

2

z
�1

1 e
d

1

b c

a, 2

a, 1 d, 2 2

b, 5

Figure 4.10 The third iteration of
Dijkstra’s shortest-path algorithm.

a

0
2

3

2

z
1

1
ed

1

b c

a, 2

a, 1 d, 2 2

b, 5

e, 4

Figure 4.11 The conclusion of Dijkstra’s
shortest-path algorithm.

At this point, we may circle z, so the algorithm terminates. The length of a shortest path
from a to z is 4. Starting at z, we can retrace the labels to find the shortest path

(a, d, e, z).

Our next theorem shows that Dijkstra’s algorithm is �(n2) in the worst case.

Theorem 4.5 For input consisting of an n-vertex, simple, connected, weighted graph, Dijkstra’s
algorithm (Algorithm 4.1) has worst-case run time �(n2).

Proof We consider the time spent in the loops, which provides an upper bound on
the total time. Line 4 is executed O(n) times. Within the while loop, line 9 takes time
O(n) (we could find the minimum L(v) by examining all the vertices in T). The body
of the for loop (line 12) takes time O(n). Since lines 9 and 12 are nested within a

469

Graph Theory

while loop, which takes time O(n), the total time for lines 9 and 12 is O(n2). Thus
Dijkstra’s algorithm runs in time O(n2).

In fact, for an appropriate choice of z, the time is �(n2) for Kn, the complete
graph on n vertices, because every vertex is adjacent to every other. Thus the worst-
case run time is �(n2).

Any shortest-path algorithm that receives as input Kn, the complete graph on n

vertices, must examine all of the edges of Kn at least once. Since Kn has n(n−1)/2 edges
(see Exercise 15, Section 1), its worst-case run time must be at least n(n−1)/2 = �(n2).
It follows from Theorem 4.5 that Algorithm 4.1 is optimal.

Section Review Exercises

1. Describe Dijkstra’s shortest-path algorithm.

2. Give an example to show how Dijkstra’s shortest-path algorithm
finds a shortest path.

3. Prove that Dijkstra’s shortest-path algorithm correctly finds a
shortest path.

Exercises

In Exercises 1–5, find the length of a shortest path and a shortest
path between each pair of vertices in the weighted graph.

a z

c

i

b d

h j

3

6

2

2

f
7 6

2 7
4 4

3
4

6

2

5

3

5

4

5

7
e

5 4
g

1. a, f 2. a, g 3. a, z

4. b, j 5. h, d

6. Write an algorithm that finds the length of a shortest path
between two given vertices in a connected, weighted graph
and also finds a shortest path.

7. Write an algorithm that finds the lengths of the shortest paths
from a given vertex to every other vertex in a connected,
weighted graph G.

�8. Write an algorithm that finds the lengths of the shortest paths
between all vertex pairs in a simple, connected, weighted graph
having n vertices in time O(n3).

9. Modify Algorithm 4.1 so that it accepts a weighted graph that
is not necessarily connected. At termination, what is L(z) if
there is no path from a to z?

10. True or false? When a connected, weighted graph and ver-
tices a and z are input to the following algorithm, it returns the
length of a shortest path from a to z. If the algorithm is correct,
prove it; otherwise, give an example of a connected, weighted
graph and vertices a and z for which it fails.

Algorithm 4.6

algor(w, a, z) {
length = 0
v = a

T = set of all vertices
while (v¬ = z) {

T = T − {v}
choose x ∈ T with minimum w(v, x)

length = length+ w(v, x)

v = x

}
return length

}

11. True or false? Algorithm 4.1 finds the length of a shortest
path in a connected, weighted graph even if some weights
are negative. If true, prove it; otherwise, provide a counter-
example.

5 ➜ Representations of Graphs

In the preceding sections we represented a graph by drawing it. Sometimes, as for
example in using a computer to analyze a graph, we need a more formal representation.
Our first method of representing a graph uses the adjacency matrix.

470

Graph Theory

Example 5.1 Adjacency Matrix

Consider the graph of Figure 5.1. To obtain the adjacency matrix of this graph, we first
select an ordering of the vertices, say a, b, c, d, e. Next, we label the rows and columns
of a matrix with the ordered vertices. The entry in this matrix in row i, column j, i �= j,
is the number of edges incident on i and j. If i = j, the entry is twice the number of
loops incident on i. The adjacency matrix for this graph is

a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 0 1
0 1 2 0 1
0 0 0 0 2
1 1 1 2 0

⎞

⎟⎟⎟⎟⎠
.

a b

d e

c

Figure 5.1 The graph for
Example 5.1. Notice that we can obtain the degree of a vertex v in a graph G by summing row

v or column v in G’s adjacency matrix.
The adjacency matrix is not a very efficient way to represent a graph. Since the

matrix is symmetric about the main diagonal (the elements on a line from the upper-left
corner to the lower-right corner), the information, except that on the main diagonal,
appears twice.

Example 5.2 The adjacency matrix of the simple graph of Figure 5.2 is

A =
a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
0 1 1 0 0

⎞

⎟⎟⎟⎟⎠
.

a b

d e

c

Figure 5.2 The graph
for Example 5.2.

We will show that if A is the adjacency matrix of a simple graph G, the powers
of A,

A, A2, A3, . . . ,

count the number of paths of various lengths. More precisely, if the vertices of G are
labeled 1, 2, . . . , the ijth entry in the matrix An is equal to the number of paths from i to
j of length n. For example, suppose that we square the matrix A of Example 5.2 to obtain

A2 =

⎛

⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
0 1 1 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
0 1 1 0 0

⎞

⎟⎟⎟⎟⎠
=

a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎜⎝

2 0 2 0 1
0 3 1 2 1
2 1 3 0 1
0 2 0 2 1
1 1 1 1 2

⎞

⎟⎟⎟⎟⎠
.

Consider the entry for row a, column c in A2, obtained by multiplying pairwise the
entries in row a by the entries in column c of the matrix A and summing:

a

b d

(0 1 0 1 0)

c⎛

⎜⎜⎜⎜⎝

0
1
0
1
1

⎞

⎟⎟⎟⎟⎠

b

d

= 0 · 0+ 1 · 1+ 0 · 0+ 1 · 1+ 0 · 1 = 2.

471

Graph Theory

The only way a nonzero product appears in this sum is if both entries to be multiplied
are 1. This happens if there is a vertex v whose entry in row a is 1 and whose entry in
column c is 1. In other words, there must be edges of the form (a, v) and (v, c). Such
edges form a path (a, v, c) of length 2 from a to c and each path increases the sum by 1.
In this example, the sum is 2 because there are two paths

(a, b, c), (a, d, c)

of length 2 from a to c. In general, the entry in row x and column y of the matrix A2 is
the number of paths of length 2 from vertex x to vertex y.

The entries on the main diagonal of A2 give the degrees of the vertices (when the
graph is a simple graph). Consider, for example, vertex c. The degree of c is 3 since c

is incident on the three edges (c, b), (c, d), and (c, e). But each of these edges can be
converted to a path of length 2 from c to c:

(c, b, c), (c, d, c), (c, e, c).

Similarly, a path of length 2 from c to c defines an edge incident on c. Thus the number
of paths of length 2 from c to c is 3, the degree of c.

We now use induction to show that the entries in the nth power of an adjacency
matrix give the number of paths of length n.

k

j
i

Figure 5.3 The proof of
Theorem 5.3. A path from i
to k of length n+ 1 whose
next-to-last vertex is j
consists of a path of length n
from i to j followed by edge
(j, k). If there are sj paths of
length n from i to j and tj is
1 if edge (j, k) exists and 0
otherwise, the sum of sjtj
over all j gives the number
of paths of length n+ 1 from
i to k.

Theorem 5.3 If A is the adjacency matrix of a simple graph, the ijth entry of An is equal to the
number of paths of length n from vertex i to vertex j, n = 1, 2,

Proof We will use induction on n.
If n = 1, A1 is simply A. The ijth entry is 1 if there is an edge from i to j,

which is a path of length 1, and 0 otherwise. Thus the theorem is true if n = 1. The
Basis Step has been verified.

Assume that the theorem is true for n. Now

An+1 = AnA

so that the ikth entry in An+1 is obtained by multiplying pairwise the elements in the
ith row of An by the elements in the kth column of A and summing:

kth column of A

ith row of An (s1, s2, . . . , sj, . . . , sm)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1
t2
...

tj
...

tm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= s1t1 + s2t2 + · · · + sjtj + · · · + smtm

= ikth entry in An+1.

By induction, sj gives the number of paths of length n from i to j in the graph G.
Now tj is either 0 or 1. If tj is 0, there is no edge from j to k, so there are sjtj = 0
paths of length n + 1 from i to k, where the last edge is (j, k). If tj is 1, there is an
edge from vertex j to vertex k (see Figure 5.3). Since there are sj paths of length n

from vertex i to vertex j, there are sjtj = sj paths of length n+ 1 from i to k, where
the last edge is (j, k) (see Figure 5.3). Summing over all j, we will count all paths

472

Graph Theory

of length n+ 1 from i to k. Thus the ikth entry in An+1 gives the number of paths of
length n+ 1 from i to k, and the Inductive Step is verified.

By the Principle of Mathematical Induction, the theorem is established.

Example 5.4 After Example 5.2, we showed that if A is the matrix of the graph of Figure 5.2, then

A2 =

a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎜⎝

2 0 2 0 1
0 3 1 2 1
2 1 3 0 1
0 2 0 2 1
1 1 1 1 2

⎞

⎟⎟⎟⎟⎠
.

By multiplying,

A4 = A2A2 =

⎛

⎜⎜⎜⎜⎝

2 0 2 0 1
0 3 1 2 1
2 1 3 0 1
0 2 0 2 1
1 1 1 1 2

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

2 0 2 0 1
0 3 1 2 1
2 1 3 0 1
0 2 0 2 1
1 1 1 1 2

⎞

⎟⎟⎟⎟⎠
,

we find that

A4 =

a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎜⎝

9 3 11 1 6
3 15 7 11 8

11 7 15 3 8
1 11 3 9 6
6 8 8 6 8

⎞

⎟⎟⎟⎟⎠
.

The entry from row d, column e is 6, which means that there are six paths of length 4
from d to e. By inspection, we find them to be

(d, a, d, c, e), (d, c, d, c, e), (d, a, b, c, e),

(d, c, e, c, e), (d, c, e, b, e), (d, c, b, c, e).

Another useful matrix representation of a graph is known as the incidence matrix.

v4

e1

e4

v1

v5

v2 v3

e2

e7

e5 e6

e3

Figure 5.4 The graph for
Example 5.5.

Example 5.5 Incidence Matrix

To obtain the incidence matrix of the graph in Figure 5.4, we label the rows with the
vertices and the columns with the edges (in some arbitrary order). The entry for row v

and column e is 1 if e is incident on v and 0 otherwise. Thus the incidence matrix for the
graph of Figure 5.4 is

v1

v2

v3

v4

v5

e1 e2 e3 e4 e5 e6 e7⎛

⎜⎜⎜⎜⎝

1 1 1 0 0 0 0
0 0 1 1 1 0 1
0 0 0 0 0 1 0
1 1 0 1 0 0 0
0 0 0 0 1 1 0

⎞

⎟⎟⎟⎟⎠
.

A column such as e7 is understood to represent a loop.

473

Graph Theory

Notice that in a graph without loops each column has two 1’s and that the sum of
a row gives the degree of the vertex identified with that row.

Section Review Exercises

1. What is an adjacency matrix?

2. If A is the adjacency matrix of a simple graph, what are the
values of the entries in An?

3. What is an incidence matrix?

Exercises

In Exercises 1–6, write the adjacency matrix of each graph.

1.

x1 x2

b

x5

x8e d

a c

x3

x6 x7

x4

2.

x1

x11

f

a b

cd

g
e

x5

x6 x7 x8

x9 x10

x4 x3

x2

3.

x2

a

x1

b

d

x3

x4

c

e

4. The graph of Figure 2.2

5. The complete graph on five vertices K5

6. The complete bipartite graph K2,3

In Exercises 7–12, write the incidence matrix of each graph.

7. The graph of Exercise 1 8. The graph of Exercise 2

9. The graph of Exercise 3 10. The graph of Figure 2.1

11. The complete graph on five vertices K5

12. The complete bipartite graph K2,3

In Exercises 13–17, draw the graph represented by each adjacency
matrix.

13.
a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎝

2 0 0 1 0
0 0 1 0 1
0 1 2 1 1
1 0 1 0 0
0 1 1 0 0

⎞

⎟⎟⎟⎠

14.
a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 2

⎞

⎟⎟⎟⎠

15.
a

b

c

d

e

f

a b c d e f⎛

⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1
0 2 0 1 2 0
1 0 0 0 0 1
0 1 0 0 1 0
0 2 0 1 0 0
1 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

16.
a

b

c

d

e

f

a b c d e f⎛

⎜⎜⎜⎜⎜⎝

4 1 1 1 0 2
1 0 1 1 1 0
1 1 0 1 1 3
1 1 1 0 1 1
0 1 1 1 0 1
2 0 3 1 1 0

⎞

⎟⎟⎟⎟⎟⎠

17. The 7× 7 matrix whose ijth entry is 1 if i+ 1 divides j+ 1 or
j + 1 divides i+ 1, i �= j; whose ijth entry is 2 if i = j; and
whose ijth entry is 0 otherwise

18. Write the adjacency matrices of the components of the graphs
given by the adjacency matrices of Exercises 13–17.

19. Compute the squares of the adjacency matrices of K5 and the
graphs of Exercises 1 and 3.

20. Let A be the adjacency matrix for the graph of Exercise 1.
What is the entry in row a, column d of A5?

21. Suppose that a graph has an adjacency matrix of the form

A =
(

A′

A′′

)
,

where all entries of the submatrices A′ and A′′ are 0. What
must the graph look like?

22. Repeat Exercise 21 with “adjacency” replaced by “incidence.”

23. Let A be an adjacency matrix of a graph. Why is An symmetric
about the main diagonal for every positive integer n?

474

Graph Theory

In Exercises 24 and 25, draw the graphs represented by the inci-
dence matrices.

24. a

b

c

d

e

⎛

⎜⎜⎜⎝

1 0 0 0 0 1
0 1 1 0 1 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 1 1

⎞

⎟⎟⎟⎠

25. a

b

c

d

e

⎛

⎜⎜⎜⎝

0 1 0 0 1 1
0 1 1 0 1 0
0 0 0 0 0 1
1 0 0 1 0 0
1 0 0 1 0 0

⎞

⎟⎟⎟⎠

26. What must a graph look like if some row of its incidence matrix
consists only of 0’s?

27. Let A be the adjacency matrix of a graph G with n vertices.
Let

Y = A+ A2 + · · · + An−1.

If some off-diagonal entry in the matrix Y is zero, what can
you say about the graph G?

Exercises 28–31 refer to the adjacency matrix A of K5.

28. Let n be a positive integer. Explain why all the diagonal

elements of An are equal and all the off-diagonal elements of
An are equal.

Let dn be the common value of the diagonal elements of An and let
an be the common value of the off-diagonal elements of An.

�29. Show that

dn+1 = 4an; an+1 = dn + 3an; an+1 = 3an + 4an−1.

�30. Show that

an = 1

5
[4n + (−1)n+1].

31. Show that

dn = 4

5
[4n−1 + (−1)n].

�32. Derive results similar to those of Exercises 29–31 for the adja-
cency matrix A of the graph Km.

�33. Let A be the adjacency matrix of the graph Km,n. Find a for-
mula for the entries in Aj .

6 ➜ Isomorphisms of Graphs

The following instructions are given to two persons who cannot see each other’s paper:
“Draw and label five vertices a, b, c, d, and e. Connect a and b, b and c, c and d, d

and e, and a and e.” The graphs produced are shown in Figure 6.1. Surely these figures
define the same graph even though they appear dissimilar. Such graphs are said to be
isomorphic.

x4

a

e

d c

b

x5 x3

x1 x2

A

C

E B

D

y1
y4

y3

y2

y5

G1

G2

Figure 6.1
Isomorphic graphs.

Definition 6.1 Graphs G1 and G2 are isomorphic if there is a one-to-one, onto function f from the
vertices of G1 to the vertices of G2 and a one-to-one, onto function g from the edges of
G1 to the edges of G2, so that an edge e is incident on v and w in G1 if and only if the
edge g(e) is incident on f(v) and f(w) in G2. The pair of functions f and g is called an
isomorphism of G1 onto G2.

475

Graph Theory

Example 6.2 An isomorphism for the graphs G1 and G2 of Figure 6.1 is defined by

f(a) = A, f(b) = B, f(c) = C, f(d) = D, f(e) = E,

g(xi) = yi, i = 1, . . . , 5.

If we define a relation R on a set of graphs by the rule G1 R G2 if G1 and G2

are isomorphic, R is an equivalence relation. Each equivalence class consists of a set of
mutually isomorphic graphs.

Example 6.3 The Mesh Model for Parallel Computation

Previously, we considered the problem of when the n-cube could simulate a ring model
for parallel computation (see Example 3.5). We now consider when the n-cube can
simulate the mesh model for parallel computation.

The two-dimensional mesh model for parallel computation when described as a
graph consists of a rectangular array of vertices connected as shown (see Figure 6.2).
The problem “When can an n-cube simulate a two-dimensional mesh?” can be rephrased
in graph terminology as “When does an n-cube contain a subgraph isomorphic to a two-
dimensional mesh?” We show that if M is a mesh p vertices by q vertices, where p ≤ 2i

and q ≤ 2j , then the (i+ j)-cube contains a subgraph isomorphic to M. (In Figure 6.2,
we may take p = 6, q = 4, i = 3, and j = 2. Thus our result shows that the 5-cube
contains a subgraph isomorphic to the graph in Figure 6.2.)

10

vy � 11

01

00

vx � 011
000 001 010 110 111

v

Figure 6.2 Mesh model for
parallel computation.

Let M be a mesh p vertices by q vertices, where p ≤ 2i and q ≤ 2j . We consider M

to be a rectangular array in ordinary 2-space with p vertices in the horizontal direction and
q vertices in the vertical direction (see Figure 6.2).As coordinates for the vertices, we use
elements of Gray codes. (Gray codes are discussed in Example 3.5.) The coordinates in
the horizontal direction are the first p members of an i-bit Gray code, and the coordinates
in the vertical direction are the first q members of a j-bit Gray code (see Figure 6.2). If
a vertex v is in the mesh, we let vx denote the horizontal coordinate of v and vy denote
the vertical coordinate of v. We then define a function f on the vertices of M by

f(v) = vxvy.

(The string vxvy is the string vx followed by the string vy.) Notice that f is one-to-one.
If (v, w) is an edge in M, the bit strings vxvy and wxwy differ in exactly one bit.

Thus (vxvy, wxwy) is an edge in the (i + j)-cube. We define a function g on the edges
of M by

g ((v, w)) = (vxvy, wxwy).

Notice that g is one-to-one. The pair f, g of functions is an isomorphism of M onto the

476

Graph Theory

subgraph (V, E) of the (i+ j)-cube where

V = {f(v) | v is a vertex in M}, E = {g(e) | e is an edge in M}.

Therefore, if M is a mesh p vertices by q vertices, where p ≤ 2i and q ≤ 2j , the
(i+ j)-cube contains a subgraph isomorphic to M.

The argument given extends to an arbitrary number of dimensions (see Exer-
cise 11); that is, if M is a p1 × p2 × · · · × pk mesh, where pi ≤ 2ti for i = 1, . . . , k,
then the (t1 + t2 + · · · + tk)-cube contains a subgraph isomorphic to M.

In general, the adjacency matrix of a graph changes when the ordering of its vertices
is changed. We can show that graphs G1 and G2 are isomorphic if and only if for some
ordering of their vertices, their adjacency matrices are equal.

Theorem 6.4 Graphs G1 and G2 are isomorphic if and only if for some ordering of their vertices,
their adjacency matrices are equal.

Proof Suppose that G1 and G2 are isomorphic. Then there is a one-to-one, onto
function f from the vertices of G1 to the vertices of G2 and a one-to-one, onto
function g from the edges of G1 to the edges of G2, so that an edge e is incident on v

and w if and only if the edge g(e) is incident on f(v) and f(w) in G2.
Let v1, . . . , vn be an ordering of the vertices of G1. Let A1 be the adjacency

matrix of G1 relative to the ordering v1, . . . , vn, and let A2 be the adjacency matrix of
G2 relative to the ordering f(v1), . . . , f(vn). Suppose that the entry in row i, column
j, i �= j, of A1 is equal to k. Then there are k edges, say e1, . . . , ek, incident on vi

and vj . Therefore, there are exactly k edges g(e1), . . . , g(ek) incident on f(vi) and
f(vj) in G2. Thus the entry in row i, column j in A2, which counts the number of
edges incident on f(vi) and f(vj), is also equal to k. A similar argument shows that
the entries on the diagonals in A1 and A2 are also equal. Therefore, A1 = A2.

The converse is similar and is left as an exercise (see Exercise 30).

Corollary 6.5 Let G1 and G2 be simple graphs. The following are equivalent:

(a) G1 and G2 are isomorphic.

(b) There is a one-to-one, onto function f from the vertex set of G1 to the vertex
set of G2 satisfying the following: Vertices v and w are adjacent in G1 if and
only if the vertices f(v) and f(w) are adjacent in G2.

Proof It follows immediately from Definition 6.1 that (a) implies (b).
We prove that (b) implies (a). Suppose there is one-to-one, onto function f

from the vertex set of G1 to the vertex set of G2 satisfying the following: Vertices v

and w are adjacent in G1 if and only if the vertices f(v) and f(w) are adjacent in G2.
Let v1, . . . , vn be an ordering of the vertices of G1. Let A1 be the adjacency

matrix of G1 relative to the ordering v1, . . . , vn, and let A2 be the adjacency matrix of
G2 relative to the ordering f(v1), . . . , f(vn). Since G1 and G2 are simple graphs, the
entries in the adjacency matrices are either 1 (to indicate that vertices are adjacent)
or 0 (to indicate that vertices are not adjacent). Because vertices v and w are adjacent
in G1 if and only if the vertices f(v) and f(w) are adjacent in G2, it follows that
A1 = A2. By Theorem 6.4, G1 and G2 are isomorphic.

477

Graph Theory

Example 6.6 The adjacency matrix of graph G1 in Figure 6.1 relative to the vertex ordering
a, b, c, d, e,

a

b

c

d

e

a b c d e⎛

⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞

⎟⎟⎟⎟⎠
,

is equal to the adjacency matrix of graph G2 in Figure 6.1 relative to the vertex ordering
A, B, C, D, E,

A

B

C

D

E

A B C D E⎛

⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞

⎟⎟⎟⎟⎠
.

We see again that G1 and G2 are isomorphic.

An interesting problem is to determine whether two graphs are isomorphic.
Although every known algorithm to test whether two graphs are isomorphic requires
exponential or factorial time in the worst case, there are algorithms that can determine
whether a pair of graphs is isomorphic in linear time in the average case (see [Read] and
[Babai]).

The following is one way to show that two simple graphs G1 and G2 are not
isomorphic. Find a property of G1 that G2 does not have but that G2 would have if
G1 and G2 were isomorphic. Such a property is called an invariant. More precisely, a
property P is an invariant if whenever G1 and G2 are isomorphic graphs:

If G1 has property P , G2 also has property P .

By Definition 6.1, if graphs G1 and G2 are isomorphic, there are one-to-one,
onto functions from the edges (respectively, vertices) of G1 to the edges (respectively,
vertices) of G2. Thus, if G1 and G2 are isomorphic, then G1 and G2 have the same
number of edges and the same number of vertices. Therefore, if e and n are nonnegative
integers, the properties “has e edges” and “has n vertices” are invariants.

Example 6.7 The graphs G1 and G2 in Figure 6.3 are not isomorphic, since G1 has seven edges and
G2 has six edges and “has seven edges” is an invariant.

G1 G2

Figure 6.3 Nonisomorphic
graphs. G1 has seven edges and G2
has six edges.

478

Graph Theory

Example 6.8 Show that if k is a positive integer, “has a vertex of degree k” is an invariant.
Suppose G1 and G2 are isomorphic graphs and f (respectively, g) is a one-to-one,

onto function from the vertices (respectively, edges) of G1 onto the vertices (respectively,
edges) of G2. Suppose that G1 has a vertex v of degree k. Then there are k edges e1, . . . , ek

incident on v. By Definition 6.1, g(e1), . . . , g(ek) are incident on f(v). Because g is one-
to-one, δ(f(v)) ≥ k.

Let E be an edge that is incident on f(v) in G2. Since g is onto, there is an edge e

in G1 with g(e) = E. Since g(e) is incident on f(v) in G2, by Definition 6.1, e is incident
on v in G1. Since e1, . . . , ek are the only edges in G1 incident on v, e = ei for some
i ∈ {1, . . . , k}. Now g(ei) = g(e) = E. Thus δ(f(v)) = k, so G2 has a vertex, namely
f(v), of degree k.

Example 6.9 Since “has a vertex of degree 3” is an invariant, the graphs G1 and G2 of Figure 6.4 are
not isomorphic; G1 has vertices (a and f) of degree 3, but G2 does not have a vertex of
degree 3. Notice that G1 and G2 have the same numbers of edges and vertices.

a b c

d

e f

g i

k

h

l

G1 G2

j

Figure 6.4 Nonisomorphic
graphs. G1 has vertices of degree 3,
but G2 has no vertices of degree 3.

Another invariant that is sometimes useful is “has a simple cycle of length k.” We
leave the proof that this property is an invariant to the exercises (Exercise 17).

Example 6.10 Since “has a simple cycle of length 3” is an invariant, the graphs G1 and G2 of
Figure 6.5 are not isomorphic; the graph G2 has a simple cycle of length 3, but all
simple cycles in G1 have length at least 4. Notice that G1 and G2 have the same numbers
of edges and vertices and that every vertex in G1 or G2 has degree 4.

a b

d c

e f

h g

1 2

4 3

5
6

7
8

G1 G2

Figure 6.5 Nonisomorphic graphs.
G2 has a simple cycle of length 3, but
G1 has no simple cycles of length 3.

479

Graph Theory

It would be easy to test whether a pair of graphs is isomorphic if we could
find a small number of easily checked invariants that isomorphic graphs and only
isomorphic graphs share. Unfortunately, no one has succeeded in finding such a set
of invariants.

Section Review Exercises

1. Define what it means for two graphs to be isomorphic.

2. Give an example of isomorphic, nonidentical graphs. Explain
why they are isomorphic.

3. Give an example of two graphs that are not isomorphic.
Explain why they are not isomorphic.

4. What is an invariant in a graph?

5. How is “invariant” related to isomorphism?

6. How can one determine whether graphs are isomorphic from
their adjacency matrices?

7. What is the mesh model for parallel computation?

Exercises

In Exercises 1–4, prove that the graphs G1 and G2 are isomorphic.

1.
a 1

2

3

4

g

f

e

b

c

d

7

6

5

G1 G2

2.
a

f c

b

e d
G1

G2

1 2

5

4

3

6

3.

c

d

b

54

3

e

a 21

G1 G2

4.

e
a

b

c
hi

j g
f

d

1 2

36

5 4

87
9

10

G1 G2

Any graph isomorphic to G1 and G2 is called the Petersen
graph. The Petersen graph is much used as an example; in
fact, D. A. Holton and J. Sheehan wrote an entire book about
it (see [Holton]).

5. Prove that the following graph is the Petersen graph; that is,
prove that it is isomorphic to the graphs in Exercise 4.

1

26 8
7

345
10 9

6. Draw a graph with 10 vertices. Label each vertex with one of
the 10 distinct two-element subsets of {1, 2, 3, 4, 5}. Put an
edge between two vertices if their labels (i.e., subsets) have
no elements in common. Prove that your graph is the Petersen
graph; that is, prove that it is isomorphic to the graphs in
Exercise 4.

480

Graph Theory

In Exercises 7–9, prove that the graphs G1 and G2 are not iso-
morphic.

7. a

c

e
d b

1 2

5 4

6 3

G1 G2

8. a b

e

f c

d
G1

The second graph is G2 of Exercise 2.

9. 1a b

c

d

ef

g

h

2 3 4

5 6 7 8

G1 G2

In Exercises 10–15, determine whether the graphs G1 and G2 are
isomorphic. Prove your answer.

10. a

c

b

3

1 2

4
5 6e f

d

G1 G2

11.

5

1ba

cl
i

jk

f

g

h

e

d

2

4 3

6

8 7

9 10

12 11

G1 G2

12.

G1

a

d

e

c

b

4

35

1 2

G2

�13.

G1

c

a

b

d

f e

1

3

4

6 5

G2

2

�14.

G1

a b

d c

e

fg

G2

1 2

4

5

7 6

3

�15.

G2

a b

g

G1

7

8
e f

4

3

1 2

6 5

h

cd

16. Show that if M is a p1 × p2 × · · · × pk mesh, where pi ≤ 2ti

for i = 1, . . . , k, then the (t1 + t2 + · · · + tk)-cube contains a
subgraph isomorphic to M.

In Exercises 17–21, show that the property given is an invariant.

17. Has a simple cycle of length k

18. Has n vertices of degree k

19. Is connected

20. Has n simple cycles of length k

481

Graph Theory

21. Has an edge (v, w), where δ(v) = i and δ(w) = j

22. Find an invariant not given in this section or in Exercises
17–21. Prove that your property is an invariant.

In Exercises 23–25, tell whether or not each property is an invari-
ant. If the property is an invariant, prove that it is; otherwise, give
a counterexample.

23. Has an Euler cycle

24. Has a vertex inside some simple cycle

25. Is bipartite

26. Draw all nonisomorphic simple graphs having three vertices.

27. Draw all nonisomorphic simple graphs having four vertices.

28. Draw all nonisomorphic, cycle-free, connected graphs having
five vertices.

29. Draw all nonisomorphic, cycle-free, connected graphs having
six vertices.

30. Show that graphs G1 and G2 are isomorphic if their vertices
can be ordered so that their adjacency matrices are equal.

The complement of a simple graph G is the simple graph G with
the same vertices as G. An edge exists in G if and only if it does
not exist in G.

31. Draw the complement of the graph G1 of Exercise 7.

32. Draw the complement of the graph G2 of Exercise 7.

�33. Show that if G is a simple graph, either G or G is connected.

34. A simple graph G is self-complementary if G and G are
isomorphic.

(a) Find a self-complementary graph having five vertices.

(b) Find another self-complementary graph.

35. Let G1 and G2 be simple graphs. Show that G1 and G2 are
isomorphic if and only if G1 and G2 are isomorphic.

36. Given two graphs G1 and G2, suppose that there is a one-to-
one, onto function f from the vertices of G1 to the vertices of
G2 and a one-to-one, onto function g from the edges of G1 to
the edges of G2, so that if an edge e is incident on v and w in
G1, the edge g(e) is incident on f(v) and f(w) in G2. Are G1

and G2 isomorphic?

A homomorphism from a graph G1 to a graph G2 is a function f

from the vertex set of G1 to the vertex set of G2 with the property
that if v and w are adjacent in G1, then f(v) and f(w) are adjacent
in G2.

37. Suppose that G1 and G2 are simple graphs. Show that if f is
a homomorphism of G1 to G2 and f is one-to-one and onto,
G1 and G2 are isomorphic.

In Exercises 38–42, for each pair of graphs, give an example of a
homomorphism from G1 to G2.

38.

a b c d 1 2 3

G1 G2

39.

1 2

5 4

6 3

w x

z y

G2G1

40. G1 = G1 of Exercise 39; G2 = G1 of Exercise 38

41. G1 = G1 of Exercise 38

1 2

3

G2

42.

1 2 3
4

5

a

g b

cf

e d

G1 G2

�43. [Hell] Show that the only homomorphism from the graph to
itself is the identity function.

a b

i d

g f

h

j

e

c

482

Graph Theory

7 ➜ Planar Graphs

Three cities, C1, C2, and C3, are to be directly connected by expressways to each of three
other cities, C4, C5, and C6. Can this road system be designed so that the expressways
do not cross? A system in which the roads do cross is illustrated in Figure 7.1. If you
try drawing a system in which the roads do not cross, you will soon be convinced that it
cannot be done. Later in this section we explain carefully why it cannot be done.

C1 C2 C3

C4 C5 C6

K3, 3

Figure 7.1 Cities connected by
expressways.

Definition 7.1 A graph is planar if it can be drawn in the plane without its edges crossing.

In designing printed circuits it is desirable to have as few lines cross as possible;
thus the designer of printed circuits faces the problem of planarity.

D

1 2

4 3

6
5

B

C

A

Figure 7.2 A
connected, planar
graph with f = 4
faces (A, B, C, D),
e = 8 edges, and
v = 6 vertices;
f = e− v+ 2.

If a connected, planar graph is drawn in the plane, the plane is divided into con-
tiguous regions called faces. A face is characterized by the cycle that forms its boundary.
For example, in the graph of Figure 7.2, face A is bounded by the cycle (5, 2, 3, 4, 5)
and face C is bounded by the cycle (1, 2, 5, 1). The outer face D is considered to be
bounded by the cycle (1, 2, 3, 4, 6, 1). The graph of Figure 7.2 has f = 4 faces, e = 8
edges, and v = 6 vertices. Notice that f , e, and v satisfy the equation

f = e− v+ 2. (7.1)

In 1752, Euler proved that equation (7.1) holds for any connected, planar graph. At the
end of this section we will show how to prove (7.1), but for now let us show how (7.1)
can be used to show that certain graphs are not planar.

Example 7.2 Show that the graph K3,3 of Figure 7.1 is not planar.
Suppose that K3,3 is planar. Since every cycle has at least four edges, each face

is bounded by at least four edges. Thus the number of edges that bound faces is at least
4f . In a planar graph, each edge belongs to at most two bounding cycles. Therefore,

2e ≥ 4f.

Using (7.1), we find that

2e ≥ 4(e− v+ 2). (7.2)

For the graph of Figure 7.1, e = 9 and v = 6, so (7.2) becomes

18 = 2 · 9 ≥ 4(9− 6+ 2) = 20,

which is a contradiction. Therefore, K3,3 is not planar.

By a similar kind of argument (see Exercise 15), we can show that the graph K5

of Figure 7.3 is not planar.

a b

ce

d

Figure 7.3 The
nonplanar graph K5.

483

Graph Theory

Obviously, if a graph contains K3,3 or K5 as a subgraph, it cannot be planar. The
converse is not true; however, if we introduce the concept of “homeomorphic graphs,”
we can obtain a true statement similar to the converse (see Theorem 7.7).

Definition 7.3 If a graph G has a vertex v of degree 2 and edges (v, v1) and (v, v2) with v1 �= v2, we
say that the edges (v, v1) and (v, v2) are in series. A series reduction consists of deleting
the vertex v from the graph G and replacing the edges (v, v1) and (v, v2) by the edge
(v1, v2). The resulting graph G′ is said to be obtained from G by a series reduction. By
convention, G is said to be obtainable from itself by a series reduction.

Example 7.4 In the graph G of Figure 7.4, the edges (v, v1) and (v, v2) are in series. The graph G′ of
Figure 7.4 is obtained from G by a series reduction.

v2 v3

v1 v4

v5

v

v2 v3

v1 v4

v5
G G�

Figure 7.4 G′ is obtained from G by a series
reduction.

Definition 7.5 Graphs G1 and G2 are homeomorphic if G1 and G2 can be reduced to isomorphic graphs
by performing a sequence of series reductions.

According to Definitions 7.3 and 7.5, any graph is homeomorphic to itself. Also,
graphs G1 and G2 are homeomorphic if G1 can be reduced to a graph isomorphic to G2

or if G2 can be reduced to a graph isomorphic to G1.

Example 7.6 The graphs G1 and G2 of Figure 7.5 are homeomorphic since they can both be reduced
to the graph G′ of Figure 7.5 by a sequence of series reductions.

G1 G2 G�

Figure 7.5 G1 and G2 are homeomorphic; each can be reduced to G′.

If we define a relation R on a set of graphs by the rule G1 R G2 if G1 and G2 are
homeomorphic, R is an equivalence relation. Each equivalence class consists of a set of
mutually homeomorphic graphs.

We now state a necessary and sufficient condition for a graph to be planar. The
theorem was first stated and proved by Kuratowski in 1930. The proof appears in [Even,
1979].

484

Graph Theory

Theorem 7.7 Kuratowski’s Theorem
A graph G is planar if and only if G does not contain a subgraph homeomorphic to
K5 or K3,3.

Example 7.8 Show that the graph G of Figure 7.6 is not planar by using Kuratowski’s Theorem.
Let us try to find K3,3 in the graph G of Figure 7.6. We first note that the vertices

a, b, f , and e each have degree 4. In K3,3 each vertex has degree 3, so let us eliminate
the edges (a, b) and (f, e) so that all vertices have degree 3 (see Figure 7.6). We note that
if we eliminate one more edge, we will obtain two vertices of degree 2 and we can then
carry out two series reductions. The resulting graph will have nine edges; since K3,3 has
nine edges, this approach looks promising. Using trial and error, we finally see that if
we eliminate edge (g, h) and carry out the series reductions, we obtain an isomorphic
copy of K3,3 (see Figure 7.7). Therefore, the graph G of Figure 7.6 is not planar, since
it contains a subgraph homeomorphic to K3,3.

a

f

e

b
g

h

c

d

a

f

e

b
g

h

c

d

Eliminate edges
(a, b) (f, e)

G

Figure 7.6 Eliminating edges to obtain a subgraph.

a

f

e

b
g

h

c

d

a

f

e

b
g

h

c

d

Eliminate edge
(g, h)

a

f

e

b

c

d

Series
reductions

K3, 3

Figure 7.7 Elimination of an edge to obtain a subgraph, followed by series reductions.

Although Theorem 7.7 does give an elegant characterization of planar graphs, it
does not lead to an efficient algorithm for recognizing planar graphs. However, algorithms
are known that can determine whether a graph having n vertices is planar in time O(n)

(see [Even, 1979]).

485

Graph Theory

We will conclude this section by proving Euler’s formula.

f � 2, e � 1, v � 1

f � 1, e � 1, v � 2

Figure 7.8 The
Basis Step of
Theorem 7.9.

Theorem 7.9 Euler’s Formula for Graphs
If G is a connected, planar graph with e edges, v vertices, and f faces, then

f = e− v+ 2. (7.3)

Proof We will use induction on the number of edges.
Suppose that e = 1. Then G is one of the two graphs shown in Figure 7.8. In

either case, the formula holds. We have verified the Basis Step.
Suppose that the formula holds for connected, planar graphs with n edges. Let

G be a graph with n+1 edges. First, suppose that G contains no cycles. Pick a vertex
v and trace a path starting at v. Since G is cycle-free, every time we trace an edge,
we arrive at a new vertex. Eventually, we will reach a vertex a, with degree 1, that
we cannot leave (see Figure 7.9). We delete a and the edge x incident on a from the
graph G. The resulting graph G′ has n edges; hence, by the inductive assumption,
(7.3) holds for G′. Since G has one more edge than G′, one more vertex than G′, and
the same number of faces as G′, it follows that (7.3) also holds for G.

x a

G G�

Figure 7.9 The proof of Theorem 7.9 for the case that G has no
cycles. We find a vertex a of degree 1 and delete a and the edge x
incident on it.

Now suppose that G contains a cycle. Let x be an edge in a cycle (see Fig-
ure 7.10). Now x is part of a boundary for two faces. This time we delete the edge x

but no vertices to obtain the graph G′ (see Figure 7.10). Again G′ has n edges; hence,

G

x

G�

Figure 7.10 The proof of Theorem 7.9 for the case that G
has a cycle. We delete edge x in a cycle.

486

Graph Theory

by the inductive assumption, (7.3) holds for G′. Since G has one more face than G′,
one more edge than G′, and the same number of vertices as G′, it follows that (7.3)
also holds for G.

Since we have verified the Inductive Step, by the Principle of Mathematical
Induction, the theorem is proved.

Section Review Exercises

1. What is a planar graph?

2. What is a face?

3. State Euler’s equation for a connected, planar graph.

4. What are series edges?

5. What is a series reduction?

6. Define homeomorphic graphs.

7. State Kuratowski’s theorem.

Exercises

In Exercises 1–3, show that each graph is planar by redrawing it
so that no edges cross.

1.

b

e d

a c

2.

a c

d f

b

e

3.

a

e

i

b

f

j

c d

g

k

h

l

In Exercises 4 and 5, show that each graph is not planar by finding
a subgraph homeomorphic to either K5 or K3,3.

4. a b

e d

f c

5.
a

b

c

g

d

e

f

In Exercises 6–8, determine whether each graph is planar. If the
graph is planar, redraw it so that no edges cross; otherwise, find a
subgraph homeomorphic to either K5 or K3,3.

6. a b

e d

f c

487

Graph Theory

7.

e

a b

d c

8.

dg

h c

a b

f e

9. A connected, planar graph has nine vertices having degrees
2, 2, 2, 3, 3, 3, 4, 4, and 5. How many edges are there? How
many faces are there?

10. Show that adding or deleting loops, parallel edges, or edges in
series does not affect the planarity of a graph.

11. Show that any graph having four or fewer vertices is planar.

12. Show that any graph having five or fewer vertices and a vertex
of degree 2 is planar.

13. Show that in any simple, connected, planar graph, e ≤ 3v−6.

14. Give an example of a simple, connected, nonplanar graph for
which e ≤ 3v− 6.

15. Use Exercise 13 to show that K5 is not planar.

�16. Show that if a simple graph G has 11 or more vertices, then
either G or its complement G is not planar.

�17. Prove that if a planar graph has an Euler cycle, it has an Euler
cycle with no crossings. A path P in a planar graph has a cross-
ing if a vertex v appears at least twice in P and P crosses itself
at v; that is,

P = (. . . , w1, v, w2, . . . , w3, v, w4, . . .),

where the vertices are arranged so that w1, v, w2 crosses w3,
v, w4 at v as in the following figure.

w1

w3

w4

w2

v

A coloring of a graph G by the colors C1, C2, . . . , Cn assigns to
each vertex a color Ci so that any vertex has a color different from
that of any adjacent vertex. For example, the following graph is col-
ored with three colors. The rest of the exercises deal with coloring
planar graphs.

C1 C2

C1 C2

C3

C1

C1

C2

C3 C3

A planar map is a planar graph where the faces are interpreted as
countries, the edges are interpreted as borders between countries,
and the vertices represent the intersections of borders. The problem
of coloring a planar map G, so that no countries with adjoining
boundaries have the same color, can be reduced to the problem of
coloring a graph by first constructing the dual graph G′ of G in
the following way. The vertices of the dual graph G′ consist of one
point in each face of G, including the unbounded face. An edge in
G′ connects two vertices if the corresponding faces in G are sepa-
rated by a boundary. Coloring the map G is equivalent to coloring
the vertices of the dual graph G′.

18. Find the dual of the following map.

A

E

B C

F G

HD

19. Show that the dual of a planar map is a planar graph.

20. Show that any coloring of the map of Exercise 18, excluding
the unbounded region, requires at least three colors.

21. Color the map of Exercise 18, excluding the unbounded region,
using three colors.

22. Find the dual of the following map.

A

E

G

B M

CD

HF I
J
K

L

23. Show that any coloring of the map of Exercise 22, excluding
the unbounded region, requires at least four colors.

24. Color the map of Exercise 22, excluding the unbounded region,
using four colors.

A triangulation of a simple, planar graph G is obtained from G

by connecting as many vertices as possible while maintaining pla-
narity and not introducing loops or parallel edges.

488

Graph Theory

25. Find a triangulation of the following graph.

26. Show that if a triangulation G′ of a simple, planar graph G can
be colored with n colors, so can G.

27. Show that in a triangulation of a simple, planar graph, 3f = 2e.

Appel and Haken proved (see [Appel]) that every simple, planar
graph can be colored with four colors. The problem had been posed
in the mid-1800s and for years no one had succeeded in giving a
proof. Those working on the four-color problem in recent years had
one advantage their predecessors did not—the use of fast electronic
computers. The following exercises show how the proof begins.

Suppose there is a simple, planar graph that requires more
than four colors to color. Among all such graphs, there is one
with the fewest number of vertices. Let G be a triangulation of

this graph. Then G also has a minimal number of vertices and by
Exercise 26, G requires more than four colors to color.

28. If the dual of a map has a vertex of degree 3, what must the
original map look like?

29. Show that G cannot have a vertex of degree 3.

�30. Show that G cannot have a vertex of degree 4.

�31. Show that G has a vertex of degree 5.

The contribution of Appel and Haken was to show that only a finite
number of cases involving the vertex of degree 5 needed to be con-
sidered and to analyze all of these cases and show that all could
be colored using four colors. The reduction to a finite number of
cases was facilitated by using the computer to help find the cases
to be analyzed. The computer was then used again to analyze the
resulting cases.

�32. Show that any simple, planar graph can be colored using five
colors.

8 ➜ Instant Insanity

Instant Insanity is a puzzle consisting of four cubes each of whose faces is painted one
of four colors: red, white, blue, or green (see Figure 8.1). (There are different versions of
the puzzle, depending on which faces are painted which colors.) The problem is to stack
the cubes, one on top of the other, so that whether the cubes are viewed from front, back,
left, or right, one sees all four colors (see Figure 8.2). Since 331,776 different stacks
are possible (see Exercise 12), a solution by hand by trial and error is impractical. We
present a solution, using a graph model, that makes it possible to discover a solution, if
there is one, in a few minutes!

1

R R

B

2 3

B W

R

4

G G

W

W B

G

Figure 8.1 An Instant Insanity puzzle.

Cube 1

Cube 2

Cube 3

Cube 4

R

W

B

G G

W

B

R

Figure 8.2 A
solution to the Instant
Insanity puzzle of
Figure 8.1.

First, notice that any particular stacking can be represented by two graphs, one
representing the front/back colors and the other representing the left/right colors. For
example, in Figure 8.3 we represent the stacking of Figure 8.2. The vertices represent
the colors, and an edge connects two vertices if the opposite faces have those colors. For
example, in the front/back graph, the edge labeled 1 connects R and W, since the front
and back faces of cube 1 are red and white. As another example, in the left/right graph,
W has a loop, since both the left and right faces of cube 3 are white.

We can also construct a stacking from a pair of graphs such as those in Figure 8.3,
which represent a solution of the Instant Insanity puzzle. Begin with the front/back graph.
Cube 1 is to have red and white opposing faces. Arbitrarily assign one of these colors,
say red, to the front. Then cube 1 has a white back face. The other edge incident on W is
2, so make cube 2’s front face white. This gives cube 2 a blue back face. The other edge
incident on B is 3, so make cube 3’s front face blue. This gives cube 3 a green back face.
The other edge incident on G is 4. Cube 4 then gets a green front face and a red back

489

Graph Theory

R B

W G

1 3

2

4

(a) Front/back

R

G
W

B

1 2

43

(b) Left/right

Figure 8.3 Graphs that represent
the stacking of Figure 8.2.

R

B
G

Cube 1

Figure 8.4 Rotating a cube to
obtain a left/right orientation, without
changing the front/back colors.

face. The front and back faces are now properly aligned. At this point, the left and right
faces are randomly arranged; however, we will show how to correctly orient the left and
right faces without altering the colors of the front and back faces.

Cube 1 is to have red and green opposing left and right faces. Arbitrarily assign
one of these colors, say green, to the left. Then cube 1 has a red right face. Notice that by
rotating the cube, we can obtain this left/right orientation without changing the colors
of the front and back (see Figure 8.4). We can similarly orient cubes 2, 3, and 4. Notice
that cubes 2 and 3 have the same colors on opposing sides. The stacking of Figure 8.2
has been reconstructed.

It is apparent from the preceding discussion that a solution to the Instant Insanity
puzzle can be obtained if we can find two graphs like those of Figure 8.3. The properties
needed are

■ Each vertex should have degree 2. (8.1)

■ Each cube should be represented by an edge exactly once in each graph. (8.2)

■ The two graphs should not have any edges in common. (8.3)

Property (8.1) assures us that each color can be used twice, once on the front (or left)
and once on the back (or right). Property (8.2) assures us that each cube is used exactly
once. Property (8.3) assures us that, after orienting the front and back sides, we can
successfully orient the left and right sides.

To obtain a solution, we first draw a graph G that represents all of the faces of all
of the cubes. The vertices of G represent the four colors, and an edge labeled i connects
two vertices (colors) if the opposing faces of cube i have those colors. In Figure 8.5 we
have drawn the graph that represents the cubes of Figure 8.1. Then, by inspection, we
find two subgraphs of G satisfying properties (8.1)–(8.3). Try your hand at the method
by finding another solution to the puzzle represented by Figure 8.5.

R B

W

1

3 4

1

2

34
4

3
2

1

2

G

Figure 8.5 A graph representation of the
Instant Insanity puzzle of Figure 8.1.

490

Graph Theory

Example 8.1 Find a solution to the Instant Insanity puzzle of Figure 8.6.

2 2

3

3

4
4

4 1 2 1

R B

W
G

1

3

Figure 8.6 The Instant
Insanity puzzle for
Example 8.1.

We begin by trying to construct one subgraph having properties (8.1) and (8.2).
We arbitrarily choose a vertex, say B, and choose two edges incident on vertex B. Sup-
pose that we select the two edges shown as solid lines in Figure 8.7. Now consider the
problem of picking two edges incident on vertex R. We cannot select any edges incident
on B or G since B and G must each have degree 2. Since each cube must appear in each
subgraph exactly once, we cannot select any of the edges labeled 1 or 2 since we already
have selected edges with these labels. Edges incident on R that cannot be selected are
shown dashed in Figure 8.7. This leaves only the edge labeled 4. Since we need two
edges incident on R, our initial selection of edges incident on B must be revised.

For our next attempt at choosing two edges incident on vertex B, let us select the
edges labeled 2 and 3, as shown in Figure 8.8. Since this choice includes one edge incident
on R, we must choose one additional edge incident on R. We have three possibilities
for selecting the additional edge (shown in color in Figure 8.8). (The loop incident at R

counts as two edges and so cannot be chosen.) If we select the edge labeled 1 incident
on R and G, we would need a loop at W labeled 4. Since there is no such loop, we do not
select this edge. If we select the edge labeled 1 incident on R and W , we can then select the
edge labeled 4 incident on W and G (see Figure 8.9). We have obtained one of the graphs.

2
2

3

4 1 2 1

R B

G

1

W

Figure 8.7 Trying to find a
subgraph of Figure 8.6
satisfying (8.1) and (8.2).

2

3

4 1 2

R B

G

1

W

2

Figure 8.8 Another attempt to
find a subgraph of Figure 8.6
satisfying (8.1) and (8.2).

BR

GW

1 2

4

3

Figure 8.9 A subgraph of
Figure 8.6 satisfying (8.1)
and (8.2).

2

4 1

B

Figure 8.10 Edges
incident onB not used
in Figure 8.9.

We now look for a second graph having no edges in common with the graph just
chosen. Let us again begin by picking two edges incident on B. Because we cannot
reuse edges, our choices are limited to three edges (see Figure 8.10). Choosing the edges
labeled 1 and 4 leads to the graph of Figure 8.11. The graphs of Figures 8.9 and 8.11
solve the Instant Insanity puzzle of Figure 8.6.

2

R B

W

G

3

4 1

Figure 8.11 Another subgraph of Figure 8.6, with no edges in
common with Figure 8.9, satisfying (8.1) and (8.2). This graph and
that of Figure 8.9 solve the Instant Insanity puzzle of Figure 8.6.

491

Graph Theory

Section Review Exercises

1. Describe the Instant Insanity puzzle. 2. Describe how to solve the Instant Insanity puzzle.

Exercises

Find solutions to the following Instant Insanity puzzles.

1.

R B

W G2

4

1

13 24
1

42
3

3

2.

R
B

21

3

4

3

23 41 2

W
G

4 1

3.

R B

W G

2

3

13 432 1

4 4

2
1

4.
4

1

2

1

143

2

3 4

W
3

G

B

R

2

5.

4

3

1

1
3

1

2

4

B

3

GW

R

4

2

2

6.

1

1

1

243
3

W G

BR

2 3
4

4

2

7. (a) Find all subgraphs of Figure 8.5 satisfying properties (8.1)
and (8.2).

(b) Find all the solutions to the Instant Insanity puzzle of
Figure 8.5.

8. (a) Represent the Instant Insanity puzzle by a graph.

W

B

G W

B

W W

G

W
G

G

G
R

W

B G

R

R W

G

B W

R

B

1 2 3 4

(b) Find a solution to the puzzle.

(c) Find all subgraphs of your graph of part (a) satisfying
properties (8.1) and (8.2).

(d) Use (c) to show that the puzzle has a unique solution.

9. Show that the following Instant Insanity puzzle has no solu-
tion by giving an argument to show that no subgraph satisfies
properties (8.1) and (8.2). Notice that there is no solution even
though each cube contains all four colors.

492

Graph Theory

4

1
2

3
4

4

3

2

11

2

3

W
G

R B

�10. Give an example of an Instant Insanity puzzle satisfying:

(a) There is no solution.

(b) Each cube contains all four colors.

(c) There is a subgraph satisfying properties (8.1) and (8.2).

11. Show that there are 24 orientations of a cube.

12. Number the cubes of an Instant Insanity puzzle 1, 2, 3, and
4. Show that the number of stackings in which the cubes are
stacked 1, 2, 3, and 4, reading from bottom to top, is 331,776.

�13. How many Instant Insanity graphs are there; that is, how many
graphs are there with four vertices and 12 edges—three of each
of four types?

Exercises 14–21 refer to a modified version of Instant Insanity
where a solution is defined to be a stacking that, when viewed from
the front, back, left, or right, shows one color. (The front, back, left,
and right are of different colors.)

14. Give an argument that shows that if we graph the puzzle as in
regular Instant Insanity, a solution to modified Instant Insanity
consists of two subgraphs of the form shown in the figure, with
no edges or vertices in common.

1
2
3

4

Find solutions to modified Instant Insanity for the following puzzles.

15.
3
4
1

2

3

1

2

4

1

R

W

B

G

3

2
4

16.

1

R

2

W

B

G
3

1 4
2

3
2

1
3

4

4

17.
R B

W G

1

13 1 2 4 3 4 2

43

2

18. Graph of Exercise 6

19. Show that for Figure 8.5, Instant Insanity, as given in the
text, has a solution, but the modified version does not have a
solution.

20. Show that if modified Instant Insanity has a solution, the ver-
sion given in the text must also have a solution.

21. Is it possible for neither version of Instant Insanity to have
a solution even if each cube contains all four colors? If the
answer is yes, prove it; otherwise, give a counterexample.

Notes

Virtually any reference on discrete mathematics contains one or more chapters on graph
theory. Books specifically on graph theory are [Berge; Bondy; Chartrand; Deo; Even, 1979;
Gibbons; Harary; König; Ore; West; and Wilson]. [Deo; Even, 1979; and Gibbons] empha-
size graph algorithms. [Brassard, Cormen, and Johnsonbaugh] also treat graphs and graph
algorithms.

[Akl; Leighton; Lester; Lewis; Miller; and Quinn] discuss parallel computers and
algorithms for parallel computers. Our results on subgraphs of the hypercube are from [Saad].

Euler’s original paper on the Königsberg bridges, edited by J. R. Newman, was reprinted
as [Newman].

In [Gardner, 1959], Hamiltonian cycles are related to the Tower of Hanoi puzzle.
Concerning the traveling salesperson problem, [Applegate] is accurately self-described

as “the definitive book on the subject.”

493

Graph Theory

In many cases, so-called branch-and-bound methods (see, e.g., [Tucker]) often give
solutions to the traveling salesperson problem more efficiently than will exhaustive search.

Dijkstra’s shortest-path algorithm appears in [Dijkstra, 1959].
The complexity of the graph isomorphism problem is discussed in [Köbler].
Appel and Haken published their solution to the four-color problem in [Appel].

Chapter Review

Section 1
1. Graph G = (V, E) (undirected and directed)
2. Vertex
3. Edge
4. Edge e is incident on vertex v

5. Vertex v is incident on edge e

6. v and w are adjacent vertices
7. Parallel edges
8. Loop
9. Isolated vertex

10. Simple graph
11. Weighted graph
12. Weight of an edge
13. Length of a path in a weighted graph
14. Similarity graph
15. Dissimilarity function
16. n-cube (hypercube)
17. Serial computer
18. Serial algorithm
19. Parallel computer
20. Parallel algorithm
21. Complete graph on n vertices, Kn

22. Bipartite graph
23. Complete bipartite graph on m and n vertices, Km,n

Section 2
24. Path
25. Simple path
26. Cycle
27. Simple cycle
28. Connected graph
29. Subgraph
30. Component of a graph
31. Degree of a vertex δ(v)

32. Königsberg bridge problem
33. Euler cycle
34. A graph G has an Euler cycle if and only if G is connected

and every vertex has even degree.
35. The sum of the degrees of all vertices in a graph is equal to

twice the number of edges.
36. In any graph, the number of vertices of odd degree is even.
37. A graph has a path with no repeated edges from v to w

(v �= w) containing all the edges and vertices if and only if
it is connected and v and w are the only vertices having odd
degree.

38. If a graph G contains a cycle from v to v, G contains a
simple cycle from v to v.

Section 3
39. Hamiltonian cycle
40. Traveling salesperson problem
41. Ring model for parallel computation
42. Gray code

Section 4
43. Dijkstra’s shortest-path algorithm

Section 5
44. Adjacency matrix
45. If A is the adjacency matrix of a simple graph, the ijth entry

of An is equal to the number of paths of length n from vertex
i to vertex j.

46. Incidence matrix

Section 6
47. Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic

if there are one-to-one, onto functions f : V1 → V2 and
g: E1 → E2 such that e ∈ E1 is incident on v, w ∈ V1

if and only if g(e) is incident on f(v) and f(w).
48. Graphs G1 and G2 are isomorphic if and only if, for some

orderings of their vertices, their adjacency matrices are
equal.

49. Mesh model for parallel computation
50. Invariant

Section 7
51. Planar graph
52. Face
53. Euler’s equation for connected, planar graphs: f = e−v+2
54. Edges in series
55. Series reduction
56. Homeomorphic graphs
57. Kuratowski’s theorem: A graph is planar if and only if it

does not contain a subgraph homeomorphic to K5 or K3,3.

Section 8
58. Instant Insanity

494

Graph Theory

59. How to solve an Instant Insanity puzzle

Chapter Self-Test

Section 1
1. For the graph G = (V, E), find V, E, all parallel edges, all

loops, and all isolated vertices, and state whether G is a sim-
ple graph. Also state on which vertices edge e3 is incident
and on which edges vertex v2 is incident.

v1 v2

v4

e3

e2

e1 v3

G

2. Explain why the graph does not have a path from a to a that
passes through each edge exactly one time.

a c

e g

b

d

f

3. Draw K2,5, the complete bipartite graph on 2 and 5 vertices.

4. Prove that the n-cube is bipartite for all n ≥ 1.

Section 2
5. Tell whether the path (v2, v3, v4, v2, v6, v1, v2) in the graph

is a simple path, a cycle, a simple cycle, or none of these.

v1

e7

v6

v2e1 e2 v3

e3

v4
v5e9 e10

e11

e6

e4e5

v7

e8

6. Draw all subgraphs containing exactly two edges of the fol-
lowing graph.

v1

e1

v2 v3 v4

e2 e3

7. Find a connected subgraph of the graph of Exercise 5 con-
taining all of the vertices of the original graph and having
as few edges as possible.

8. Does the graph of Exercise 5 contain an Euler cycle?
Explain.

Section 3
9. Find a Hamiltonian cycle in the graph of Exercise 5.

10. Find a Hamiltonian cycle in the 3-cube.

11. Show that the graph has no Hamiltonian cycle.

a
b

d

e

c

g
f

12. Show that the cycle (a, b, c, d, e, f, g, h, i, j, a) provides a
solution to the traveling salesperson problem for the graph
shown.

1
1

e

3 3

68
4

fij 32

a b c d645

h 2 g

Section 4

Exercises 13–16 refer to the following graph.

e

1 c 6b d

1 1
14

a z

h 8 i 3 j

36
2

6

4
f g6

8

3 3

5
1 2

13. Find the length of a shortest path from a to i.

14. Find the length of a shortest path from a to z.

15. Find a shortest path from a to z.

16. Find the length of a shortest path from a to z that passes
through c.

Section 5
17. Write the adjacency matrix of the graph of Exercise 5.

18. Write the incidence matrix of the graph of Exercise 5.

19. If A is the adjacency matrix of the graph of Exercise 5, what
does the entry in row v2 and column v3 of A3 represent?

20. Can a column of an incidence matrix consist only of zeros?
Explain.

495

Graph Theory

Section 6

In Exercises 21 and 22, determine whether the graphs G1 and
G2 are isomorphic. Prove your answer.

21.

v1 v2 w1 w2

v3v5

v4
w4 w5

w3

G1

G2

22.

v1 v2

v5 v6

v3 v4

w1

w4

w3

w6

w5

w2

G1 G2

23. Draw all nonisomorphic, simple graphs having exactly five
vertices and two edges.

24. Draw all nonisomorphic, simple graphs having exactly five
vertices, two components, and no cycles.

Section 7

In Exercises 25 and 26, determine whether the graph is planar. If
the graph is planar, redraw it so that no edges cross; otherwise,
find a subgraph homeomorphic to either K5 or K3,3.

25.

a b

f e

h

g

c

d

26.
a

e

c

i

f g

j

b

h

d

27. Show that any simple, connected graph with 31 edges and
12 vertices is not planar.

28. Show that the n-cube is planar if n ≤ 3 and not planar if
n > 3.

Section 8
29. Represent the Instant Insanity puzzle by a graph.

B

R

R

W

W

R

R

R

1 2 3 4

G WG
G W

BG

G W B B
B R WB

30. Find a solution to the puzzle of Exercise 29.

31. Find all subgraphs of the graph of Exercise 29 satisfying
properties (8.1) and (8.2).

32. Use Exercise 31 to determine how many solutions the puz-
zle of Exercise 29 has.

Computer Exercises
1. Write a program that accepts as input any of the following:

■ a listing of edges of a graph given as pairs of positive
integers

■ the adjacency matrix
■ the incidence matrix

and outputs the other two.

2. Write a program that determines whether a graph contains
an Euler cycle.

3. Write a program that finds an Euler cycle in a connected
graph in which all vertices have even degree.

4. Write a program that randomly generates an n×n adjacency
matrix. Have your program print the adjacency matrix, the
number of edges, the number of loops, and the degree of
each vertex.

5. Write a program that determines whether a graph is a bipar-
tite graph. If it is a bipartite graph, the program should list
the disjoint sets of vertices.

6. Write a program that accepts as input the edges of a graph
and then draws the graph using a computer graphics display.

7. Write a program that lists all simple paths between two given
vertices.

496

Graph Theory

8. Write a program that determines whether a path is a simple
path, a cycle, or a simple cycle.

9. Write a program that checks whether a proposed cycle is a
Hamiltonian cycle.

10. Write a program that checks whether a proposed path is a
Hamiltonian path.

11. Write a program that constructs a Gray code.

12. Implement Dijkstra’s shortest-path algorithm as a program.
The program should find a shortest path and its length.

13. Write a program that tests whether a proposed isomorphism
is an isomorphism.

14. Write a program to determine whether a graph is planar.

15. Write a program that solves an arbitrary Instant Insanity
puzzle.

Hints/Solutions to Selected Exercises

Section 1 Review
1. An undirected graph consists of a set V of vertices and a set

E of edges such that each edge e ∈ E is associated with an
unordered pair of vertices.

2. Friendship can be modeled by an undirected graph by letting
the vertices denote the people and placing an edge between
two people if they are friends.

3. A directed graph consists of a set V of vertices and a set E of
edges such that each edge e ∈ E is associated with an ordered
pair of vertices.

4. Precedence can be modeled by a directed graph by letting the
vertices denote the tasks and placing a directed edge from task
ti to task tj if ti must be completed before tj .

5. If edge e is associated with vertices v and w, e is said to be
incident on v and w.

6. If edge e is associated with vertices v and w, v and w are said
to be incident on e.

7. If edge e is associated with vertices v and w, v and w are said
to be adjacent.

8. Parallel edges are edges that are incident on the same pair of
vertices.

9. An edge incident on a single vertex is called a loop.

10. A vertex that is not incident on any edge is called an isolated
vertex.

11. A simple graph is a graph with neither loops nor parallel edges.

12. A weighted graph is a graph with numbers assigned to the
edges.

13. A map with distances can be modeled as a weighted graph.
The vertices are the cities, the edges are the roads between the
cities, and the numbers on the edges are the distances between
the cities.

14. The length of a path in a weighted graph is the sum of the
weights of its edges.

15. A similarity graph has a dissimilarity function s where s(v, w)

measures the dissimilarity of vertices v and w.

16. The n-cube has 2n vertices labeled 0, 1, . . . , 2n − 1. An edge
connects two vertices if the binary representation of their labels
differs in exactly one bit.

17. A serial computer executes one instruction at a time.

18. A serial algorithm executes one instruction at a time.

19. A parallel computer can execute several instructions at a time.

20. A parallel algorithm can execute several instructions at a time.

21. The complete graph on n vertices has one edge between each
distinct pair of vertices. It is denoted Kn.

22. A graph G = (V, E) is bipartite if there exist subsets V1 and
V2 (either possibly empty) of V such that V1 ∩ V2 = ∅,
V1 ∪ V2 = V , and each edge in E is incident on one vertex in
V1 and one vertex in V2.

23. The complete bipartite graph on m and n vertices has disjoint
vertex sets V1 with m vertices and V2 with n vertices in which
the edge set consists of all edges of the form (v1, v2) with
v1 ∈ V1 and v2 ∈ V2.

Section 1
1. The graph is an undirected, simple graph.

Snow

Tuna

SkyscrapersPheasants

4. The graph is a directed, nonsimple graph.

Snow

Tuna

SkyscrapersPheasants

Snow

Tuna

SkyscrapersPheasants

Snow

Tuna

SkyscrapersPheasants

497

Graph Theory

5. Since an odd number of edges touch some vertices (c and d),
there is no path from a to a that passes through each edge
exactly one time.

8. (a, c, e, b, c, d, e, f, d, b, a)

11. V = {v1, v2, v3, v4}. E = {e1, e2, e3, e4, e5, e6}. e1 and e6 are
parallel edges. e5 is a loop. There are no isolated vertices. G

is not a simple graph. e1 is incident on v1 and v2.

14.

K3 K5

17. Bipartite. V1 = {v1, v2, v5}, V2 = {v3, v4}.
20. Not bipartite

23. Bipartite. V1 = {v1}, V2 = {v2, v3}.
24.

K2, 3 K3, 3

27. (b, c, a, d, e)

32. Two classes

1 2

3

4
5

37.
00 01

1110

40. n

43.

0

1

1 1

1

0 0

0

1 0

1 0

01 00

11 10

46.

a

b c

d

e

k

f

g

h

i

j

49.

b

a

f d

c

e

g

5

6
5 7

8 20

50.

x = 1

y = 2

z = x + y z = z + 1

53. f is not one-to-one. Let G1 be the graph with vertex set
{1, 2, 3} and edge set {(1, 2)}, and let G2 be the graph with
vertex set {1, 2, 3, 4} and edge set {(1, 2)}. Then G1 �= G2,
but f(G1) = 1 = f(G2).

f is onto. Let n be a nonnegative integer. If n = 0, let
G be the graph with vertex set {1, 2, 3} and edge set ∅. Then
f(G) = 0 = n. If n > 0, let G be the graph with vertex set
{1, 2, . . . , n, n+ 1} and edge set

{(1, 2), (2, 3), . . . , (n, n+ 1)}.

Then f(G) = n. Therefore f is onto.

Section 2 Review
1. A path is an alternating sequence of vertices and edges

(v0, e1, v1, e2, v2, . . . , vn−1, en, vn),

in which edge ei is incident on vertices vi−1 and vi for
i = 1, . . . , n.

2. A simple path is a path with no repeated vertices.

3. (1, 2, 3, 1)

4. A cycle is path of nonzero length from v to v with no repeated
edges.

5. A simple cycle is a cycle from v to v in which, except for the
beginning and ending vertices that are both equal to v, there
are no repeated vertices.

6. (1, 2, 3, 1, 4, 5, 1)

7. A graph is connected, if, given any vertices v and w, there is a
path from v to w.

498

Graph Theory

8.
1 2

3

9.
1 2

3

4 5

10. Let G = (V, E) be a graph. (V ′, E′) is a subgraph of G if
V ′ ⊆ V , E′ ⊆ E, and, for every edge e′ ∈ E′, if e′ is incident
on v′ and w′, then v′, w′ ∈ V ′.

11. The graph of Exercise 8 is a subgraph of the graph of Exer-
cise 9.

12. Let G be a graph and let v be a vertex in G. The subgraph G′ of
G consisting of all edges and vertices in G that are contained
in some path beginning at v is called the component of G

containing v.

13. The graph of Exercise 8 is a component of the graph of
Exercise 9.

14. One

15. The degree of vertex v is the number of edges incident on v.

16. An Euler cycle in a graph G is a cycle that includes all of the
edges and all of the vertices of G.

17. A graph G has an Euler cycle if and only if G is connected and
the degree of every vertex is even.

18. The graph of Exercise 8 has the Euler cycle (1, 2, 3, 1).

19. The graph of Exercise 9 does not have an Euler cycle because
it is not connected.

20. The sum of the degrees of the vertices in a graph equals twice
the number of edges in the graph.

21. Yes

22. The graph is connected and v and w are the only vertices having
odd degree.

23. Yes

Section 2
1. Cycle, simple cycle

4. Cycle, simple cycle

7. Simple path
10. 13.

16. Suppose that there is such a graph with vertices a, b, c, d, e, f .
Suppose that the degrees of a and b are 5. Since the graph is

simple, the degrees of c, d, e, and f are each at least 2; thus
there is no such graph.

19. (a, a), (b, c, g, b), (b, c, d, f, g, b),
(b, c, d, e, f, g, b), (c, g, f, d, c),
(c, g, f, e, d, c), (d, f, e, d)

22. Every vertex has degree 4.

24. G1 = ({v1}, ∅)

G2 = ({v2}, ∅)

G3 = ({v1, v2}, ∅)

G4 = ({v1, v2}, {e1})
27. There are 17 subgraphs. 28. No Euler cycle

31. No Euler cycle

34. For

1

2 3

654

7 10
98

an Euler cycle is (10, 9, 6, 5, 9, 8, 5, 4, 8, 7, 4, 2, 5, 3, 2, 1, 3,
6, 10). The method generalizes.

37. m = n = 2 or m = n = 1

39. d and e are the only vertices of odd degree.

42. The argument is similar to that of the proof of Theorem 2.23.

45. True. In the path, for all repeated a,

(. . . , a, . . . , b, a, . . .)

eliminate a, . . . , b.

47. Suppose that e = (v, w) is in a cycle. Then there is a path P

from v to w not including e. Let x and y be vertices in G−{e}.
Since G is connected, there is a path P ′ in G from v to w.
Replace any occurrence of e in P ′ by P . The resulting path
from v to w lies in G− {e}. Therefore, G− {e} is connected.

50. The union of all connected subgraphs containing G′ is a
component.

53. Let G be a simple, disconnected graph with n vertices having
the maximum number of edges. Show that G has two compo-
nents. If one component has i vertices, show that the compo-
nents are Ki and Kn−i. Use Exercise 11, Section 1, to find a
formula for the number of edges in G as a function of i. Show
that the maximum occurs when i = 1.

55.

58. Modify the proofs of Theorems 2.17 and 2.18.

61. Use Exercises 58 and 60.

64. We first count the number of paths

(v0, v1, . . . , vk)

499

Graph Theory

of length k ≥ 1. The first vertex v0 may be chosen in n ways.
Each subsequent vertex may be chosen in n − 1 ways (since
it must be different from its predecessor). Thus the number of
paths of length k is n(n− 1)k .

The number of paths of length k, 1 ≤ k ≤ n, is
n∑

k=1

n(n− 1)k = n(n− 1)
(n− 1)k − 1

(n− 1)− 1

= n(n− 1)[(n− 1)k − 1]

n− 2
.

68. If v is a vertex in V , the path consisting of v and no edges is a
path from v to v; thus vRv for every vertex v in V . Therefore,
R is reflexive.

Suppose that vRw. Then there is a path (v0, . . . , vn),
where v0 = v and vn = w. Now (vn, . . . , v0) is a path from w

to v, and thus wRv. Therefore, R is symmetric.
Suppose that vRw and wRx. Then there is a path P1

from v to w and a path P2 from w to x. Now P1 followed
by P2 is a path from v to x, and thus vRx. Therefore, R is
transitive.

Since R is reflexive, symmetric, and transitive on V , R

is an equivalence relation on V .

70. 2

73. Let sn denote the number of paths of length n from v1 to v1. We
show that the sequences s1, s2, . . . and f1, f2, . . . satisfy the
same recurrence relation, s1 = f2, and s2 = f3, from which it
follows that sn = fn+1 for n ≥ 1.

If n = 1, there is one path of length 1 from v1 to v1,
namely the loop on v1; thus, s1 = f2.

If n = 2, there are two paths of length 2 from v1 to
v1 : (v1, v1, v1) and (v1, v2, v1); thus, s2 = f3.

Assume that n > 2. Consider a path of length n from v1

to v1. The path must begin with the loop (v1, v1) or the edge
(v1, v2).

If the path begins with the loop, the remainder of the
path must be a path of length n− 1 from v1 to v1. Since there
are sn−1 such paths, there are sn−1 paths of length n from v1

to v1 that begin (v1, v1, . . .).
If the path begins with the edge (v1, v2), the next edge

in the path must be (v2, v1). The remainder of the path must
be a path of length n − 2 from v1 to v1. Since there are sn−2

such paths, there are sn−2 paths of length n from v1 to v1 that
begin (v1, v2, v1, . . .).

Since any path of length n > 2 from v1 to v1 begins
with the loop (v1, v1) or the edge (v1, v2), it follows that

sn = sn−1 + sn−2.

Because the sequences s1, s2, . . . and f1, f2, . . . satisfy
the same recurrence relation, s1 = f2, and s2 = f3, it follows
that sn = fn+1 for n ≥ 1.

75. Suppose that every vertex has an out edge. Choose a vertex
v0. Follow an edge out of v0 to a vertex v1. (By assumption,
such an edge exists.) Continue to follow an edge out of vi to
a vertex vi+1. Since there are a finite number of vertices, we
will eventually return to a previously visited vertex. At this
point, we will have discovered a cycle, which is a contradic-
tion. Therefore, a dag has at least one vertex with no out edges.

Section 3 Review
1. A Hamiltonian cycle in a graph G is a cycle that contains each

vertex in G exactly once, except for the starting and ending
vertex that appears twice.

2. The graph of Figure 3.9 has a Hamiltonian cycle and an Euler
cycle. The Hamiltonian and Euler cycles are the graph itself.

3. The graph of Figure 3.2 has a Hamiltonian cycle, but not an
Euler cycle. The Hamiltonian cycle is shown in Figure 3.3. The
graph does not have an Euler cycle, because all of the vertices
have odd degree.

4. The graph

1 6

2

3

4

5

has an Euler cycle because it is connected and every vertex has
even degree. It does not have a Hamiltonian cycle. To prove
that it does not have a Hamiltonian cycle, we argue by con-
tradiction. Suppose that the graph has a Hamiltonian cycle.
Then, because vertices 2, 3, 4, and 5 all have degree 2, all
the edges in the graph would have to be included in a Hamil-
tonian cycle. Since the graph itself is not a cycle, we have a
contradiction.

5. The graph consisting of two vertices and no edges has nei-
ther a Hamiltonian cycle nor an Euler cycle because it is not
connected.

6. The traveling salesperson problem is: Given a weighted graph
G, find a minimum-length Hamiltonian cycle in G. The Hamil-
tonian cycle problem simply asks for a Hamiltonian cycle—
any Hamiltonian cycle will do. The traveling salesperson prob-
lem asks not just for a Hamiltonian cycle, but for one of min-
imum length.

7. A simple cycle

8. A Gray code is a sequence s1, s2, . . . , s2n , where each si is a
string of n bits, satisfying the following:

■ Every n-bit string appears somewhere in the sequence.

■ si and si+1 differ in exactly one bit, i = 1, . . . ,

2n − 1.

■ s2n and s1 differ in exactly one bit.

9. See Theorem 3.6.

Section 3
1. (d, a, e, b, c, h, g, f, j, i, d)

3. We would have to eliminate two edges each at b, d, i, and k,
leaving 19− 8 = 11 edges. A Hamiltonian cycle would have
12 edges.

6. (a, b, c, j, i, m, k, d, e, f, l, g, h, a)

500

Graph Theory

9.
a b

c

d e

12. If n is even and m > 1 or if m is even and n > 1, there is a
Hamiltonian cycle. The sketch shows the solution in case n is
even.

Start/finish

If n = 1 or if m = 1, there is no cycle and, in particular,
there is no Hamiltonian cycle. Suppose that n and m are both
odd and that the graph has a Hamiltonian cycle. Since there
are nm vertices, this cycle has nm edges; therefore, the Hamil-
tonian cycle contains an odd number of edges. However, we
note that in a Hamiltonian cycle, there must be as many “up”
edges as “down” edges and as many “left” edges as “right”
edges. Thus a Hamiltonian cycle must have an even number
of edges. This contradiction shows that if n and m are both
odd, the graph does not have a Hamiltonian cycle.

15. When m = n and n > 1

18. Any cycle C in the n-cube has even length since the vertices
in C alternate between an even and an odd number of 1’s.

Suppose that the n-cube has a simple cycle of length m.
We just observed that m is even. Now m > 0, by definition.
Since the n-cube is a simple graph, m �= 2. Therefore, m ≥ 4.

Now suppose that m ≥ 4 and m is even. Let G be the
first m/2 members of the Gray code Gn−1. Then 0G, 1GR

describes a simple cycle of length m in the n-cube.

21.

25. Yes. If (v1, . . . , vn−1, vn), v1 = vn, is a Hamiltonian cycle,
(v1, . . . , vn−1) is a Hamiltonian path.

28. Yes, (a, b, d, g, m, l, h, i, j, e, f, k, c)

31. Yes, (i, j, g, h, e, d, c, b, a, f)

34. Yes, (a, c, d, f, g, e, b)

Section 4 Review
1. Label the start vertex 0 and all other vertices ∞. Let T be

the set of all vertices. Choose v ∈ T with minimum label and
remove v from T . For each x ∈ T adjacent to v, relabel x with
the minimum of its current label and the label of v+ w(v, x),
where w(v, x) is the weight of edge (v, x). Repeat if z /∈ T .

2. See Example 4.2.

3. See the proof of Theorem 4.3.

Section 4
1. 7; (a, b, c, f)

4. 7; (b, c, f, j)

6. An algorithm can be modeled after Example 4.2.

9. Modify Algorithm 4.1 so that it begins by assigning the weight
∞ to each nonexistent edge. The algorithm then continues as
written. At termination, L(z) will be equal to∞ if there is no
path from a to z.

Section 5 Review
1. Order the vertices and label the rows and columns of a matrix

with the ordered vertices. The entry in row i, column j, i �= j,
is the number of edges incident on i and j. If i = j, the entry is
twice the number of loops incident on i. The resulting matrix
is the adjacency matrix of the graph.

2. The ijth entry in An is equal to the number of paths of length
n from vertex i to vertex j.

3. Order the vertices and edges and label the rows of a matrix
with the vertices and the columns with the edges. The entry
in row v and column e is 1 if e is incident on v and 0 oth-
erwise. The resulting matrix is the incidence matrix of the
graph.

Section 5
1. ⎛

⎜⎜⎜⎝

a b c d e

a 0 1 1 1 1
b 1 0 1 0 0
c 1 1 0 1 1
d 1 0 1 0 1
e 1 0 1 1 0

⎞

⎟⎟⎟⎠

4. ⎛

⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6

v1 0 1 1 0 0 0
v2 1 0 1 0 0 0
v3 1 1 0 0 0 0
v4 0 0 0 0 0 0
v5 0 0 0 0 0 1
v6 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎠

7. ⎛

⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8

a 1 0 1 0 1 1 0 0
b 1 1 0 0 0 0 0 0
c 0 1 0 1 1 0 1 0
d 0 0 0 1 0 1 0 1
e 0 0 1 0 0 0 1 1

⎞

⎟⎟⎟⎠

10.

501

Graph Theory

⎛

⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 e7 e8

1 1 0 0 0 0 0 0 0
2 1 1 0 1 1 1 0 0
3 0 1 1 0 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 0 0 0 1 0 1 0
6 0 0 0 0 0 1 1 1
7 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

13.
a b

c

d

e

16.

f a e
b

cd

19. [For K5]
⎛

⎜⎜⎝

4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4

⎞

⎟⎟⎠

22. The graph is not connected.

24.
b

a

e

d

c

27. G is not connected.

28. Because of the symmetry of the graph, if v and w are vertices
in K5, there is the same number of paths of length n from v

to v as there is from w to w. Thus all the diagonal elements
of An are equal. Similarly, all the off-diagonal elements of An

are equal.

31. If n ≥ 2,

dn = 4an−1 by Exercise 29

= 4

(
1

5

)
[4n−1 + (−1)n] by Exercise 30.

The formula can be directly verified for n = 1.

Section 6 Review
1. Graphs G1 and G2 are isomorphic if there is a one-to-one, onto

function f from the vertices of G1 to the vertices of G2 and a
one-to-one, onto function g from the edges of G1 to the edges
of G2, so that an edge e is incident on v and w in G1 if and
only if the edge g(e) is incident on f(v) and f(w) in G2.

2. The following graphs

a 1 2

43

b

dc

are isomorphic. An isomorphism is given by f(a) = 1, f(b) =
2, f(c) = 4, f(d) = 3, and g(a, b) = (1, 2), g(b, c) = (2, 4),
g(c, d) = (4, 3), g(d, a) = (3, 1).

3. The following graphs

are not isomorphic; the first graph has two vertices, but the
second graph has three vertices.

4. A property P is an invariant if, whenever G1 and G2 are
isomorphic graphs, if G1 has property P , then G2 also has
property P .

5. To show that two graphs are not isomorphic, find an invariant
that one graph has and the other does not have.

6. Two graphs are isomorphic if and only if for some orderings
of their vertices, their adjacency matrices are equal.

7. A rectangular array of vertices

Section 6
1. Relative to the vertex orderings a, b, c, d, e, f, g for G1, and

1, 3, 5, 7, 2, 4, 6 for G2, the adjacency matrices of G1 and G2

are equal.

4. Relative to the vertex orderings a, b, c, d, e, f, g, h, i, j for G1,
and 5, 6, 1, 2, 7, 4, 10, 8, 3, 9 for G2, the adjacency matrices
of G1 and G2 are equal.

7. The graphs are not isomorphic since they do not have the same
number of vertices.

10. The graphs are not isomorphic since G1 has a simple cycle of
length 3 and G2 does not.

13. The graphs are not isomorphic. The edge (1, 4) in G2 has
δ(1) = 3 and δ(4) = 3 but there is no such edge in G1 (see
also Exercise 21).

In Exercises 17–23, we use the notation of Definition 6.1.

17. If (v0, v1, . . . , vk) is a simple cycle of length k in G1, then
(f(v0), f(v1), . . . , f(vk)) is a simple cycle of length k in G2.
[The vertices f(vi), i = 1, . . . , k − 1, are distinct, since f is
one-to-one.]

20. In the hint to Exercise 17, we showed that if C=
(v0, v1, . . . , vk) is a simple cycle of length k in G1, then
(f(v0), f(v1), . . . , f(vk)), which here we denote f(C), is
a simple cycle of length k in G1. Let C1, C2, . . . , Cn

denote the n simple cycles of length k in G1. Then f(C1),

f(C2), . . . , f(Cn) are n simple cycles of length k in G2.
Moreover, since f is one-to-one, f(C1), f(C2), . . . ,f(Cn) are
distinct.

502

Graph Theory

23. The property is an invariant. If (v0, v1, . . . , vn) is an Euler
cycle in G1, then, since g is onto, (f(v0), f(v1), . . . , f(vn)) is
an Euler cycle in G2.

26.

29.

31.
a

e

c

bd

34.

(a) (b)

37. Define g((v, w)) = (f(v), f(w)).

38. f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 2

41. f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 1

Section 7 Review
1. A graph that can be drawn in the plane without its edges

crossing

2. A contiguous region 3. f = e− v+ 2

4. Edges of the form (v, v1) and (v, v2), where v has degree 2
and v1 �= v2

5. Given edges of the form (v, v1) and (v, v2), where v has
degree 2 and v1 �= v2, a series reduction deletes vertex v and
replaces (v, v1) and (v, v2) by (v1, v2).

6. Two graphs are homeomorphic if they can be reduced
to isomorphic graphs by performing a sequence of series
reductions.

7. A graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3,3.

Section 7
1.

a

e

c

b

d

4.

a

f

c

b d

e

is K3, 3

6. Planar

a

f c

b

de

9. 2e = 2+ 2+ 2+ 3+ 3+ 3+ 4+ 4+ 5,
so e = 14. f = e− v+ 2 = 14− 9+ 2 = 7

12. A graph with five or fewer vertices and a vertex of degree
2 is homeomorphic to a graph with four or fewer vertices.
Such a graph cannot contain a homeomorphic copy of K3,3

or K5.

15. If K5 is planar, e ≤ 3v− 6 becomes 10 ≤ 3 · 5− 6 = 9.

18.

CBA

H

GF
E

D

503

Graph Theory

22.

A

E
F

H

L

K

J

I

G

B
M

CD

25.

28. It contains

31. Assume that G does not have a vertex of degree 5.
Show that 2e ≥ 6v. Now use Exercise 13 to deduce a
contradiction.

Section 8 Review
1. Instant Insanity consists of four cubes each of whose faces is

painted one of the four colors, red, white, blue, or green. The
problem is to stack the cubes, one on top of the other, so that
whether the stack is viewed from front, back, left, or right, one
sees all four colors.

2. Draw a graph G, where the vertices represent the four colors
and an edge labeled i connects two vertices if the opposing
faces of cube i have those colors. Find two graphs where

■ Each vertex has degree 2.

■ Each cube represents an edge exactly once in each
graph.

■ The graphs have no edges in common.

One graph represents the front/back stacking, and the other
represents the left/right stacking.

Section 8
1.

2

3 1 4 2

4

3 1

R B

W G

R B

W G

G1 G2

4.

1

2

3
4 3 1

2

4
R B

W G

R B

W G

G2G1

7. (a)
2

1

2

3 3

1 1

4 4�

2

4

1

3 4 1

3 2

1

3 2
3

4

2

1 3

2

R B

W G

R B

W G

R B

W G

R B

W G

R B

W G

R B

W G

R B

W G

G1 G2

G4G3

G5 G6

G7

4�

4�

(b) Solutions are G1, G5; G1, G7; G2, G4; G2, G6;
G3, G6; and G3, G7.

13. One edge can be chosen in C(2+4−1, 2) = 10 ways. The three
edges labeled 1 can be chosen in C(3+10−1, 3) = 220 ways.
Thus the total number of graphs is 2204.

15.

R B W G

3
4
1

2

4
3
2

1

19. According to Exercise 14, not counting loops, every vertex
must have degree at least 4. In Figure 8.5, not counting loops,

504

Graph Theory

vertex W has degree 3 and, therefore, Figure 8.5 does not have
a solution to the modified version of Instant Insanity. Figure 8.3
gives a solution to regular Instant Insanity for Figure 8.5.

Chapter Self-Test
1. V = {v1, v2, v3, v4}. E = {e1, e2, e3}. e1 and e2 are parallel

edges. There are no loops. v1 is an isolated vertex. G is not a
simple graph. e3 is incident on v2 and v4. v2 is incident on e1,
e2, and e3.

2. There are vertices (a and e) of odd degree.

3.

4. If we let V1 denote the set of vertices containing an even num-
ber of 1’s and V2 the set of vertices containing an odd number
of 1’s, each edge is incident on one vertex in V1 and one vertex
in V2. Therefore, the n-cube is bipartite.

5. It is a cycle.

6.

e2

v2

v1

v3 v4 v2 v3

v1

v4 v2 v3

v1 v1 v1

v4v2 v3 v4v3v2

v4

v1

e1 e3e1 e3e2

e2e1 e3e1 e3e2

7. v1 v2 v3

v4v5

v7

v6

e1 e2

e3

e10

e8e11

8. No. There are vertices of odd degree.

9. (v1, v2, v3, v4, v5, v7, v6, v1)

10. (000, 001, 011, 010, 110, 111, 101, 100, 000)

11. A Hamiltonian cycle would have seven edges. Suppose that
the graph has a Hamiltonian cycle. We would have to elim-
inate three edges at vertex b and one edge at vertex f . This
leaves 10− 4 = 6 edges, not enough for a Hamiltonian cycle.
Therefore, the graph does not have a Hamiltonian cycle.

12. In a minimum-weight Hamiltonian cycle, every vertex must
have degree 2. Therefore, edges (a, b), (a, j), (j, i), (i, h),
(g, f), (f, e), and (e, d) must be included. We cannot include
edge (b, h) or we will complete a cycle. This implies that we
must include edges (h, g) and (b, c). Since vertex g now has
degree 2, we cannot include edge (c, g) or (g, d). Thus we must
include (c, d). This is a Hamiltonian cycle and the argument
shows that it is unique. Therefore, it is minimal.

13. 9 14. 11

15. (a, e, f, i, g, z)

16. 12

17.
⎛

⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7

v1 0 1 0 0 0 1 0
v2 1 0 1 1 0 1 1
v3 0 1 0 1 0 0 0
v4 0 1 1 0 1 0 0
v5 0 0 0 1 0 1 1
v6 1 1 0 0 1 0 1
v7 0 1 0 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

18.
⎛

⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

v1 1 0 0 0 0 0 1 0 0 0 0
v2 1 1 0 1 1 1 0 0 0 0 0
v3 0 1 1 0 0 0 0 0 0 0 0
v4 0 0 1 1 0 0 0 0 0 1 0
v5 0 0 0 0 0 0 0 1 1 1 0
v6 0 0 0 0 0 1 1 0 1 0 1
v7 0 0 0 0 1 0 0 1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

19. The number of paths of length 3 from v2 to v3

20. No. Each edge is incident on at least one vertex.

21. The graphs are isomorphic. The orderings v1, v2, v3, v4, v5

and w3, w1, w4, w2, w5 produce equal adjacency matrices.

22. The graphs are isomorphic. The orderings v1, v2, v3, v4, v5,
v6 and w3, w6, w2, w5, w1, w4 produce equal adjacency
matrices.

23.

24.

25. The graph is planar:

a d

f b

c
e

h
g

505

Graph Theory

26. The graph is not planar; the following subgraph is homeomor-
phic to K5:

a d

e

i

g

f
b

c

h

27. A simple, planar, connected graph with e edges and v vertices
satisfies e ≤ 3v−6 (see Exercise 13, Section 7). If e = 31 and
v = 12, the inequality is not satisfied, so such a graph cannot
be planar.

28. For n = 1, 2, 3, it is possible to draw the n-cube in the plane
without having any of its edges cross:

n = 2n = 1 n = 3

We argue by contradiction to show that the 4-cube is not
planar. Suppose that the 4-cube is planar. Since every cycle has
at least four edges, each face is bounded by at least four edges.
Thus the number of edges that bound faces is at least 4f . In
a planar graph, each edge belongs to at most two bounding
cycles. Therefore, 2e ≥ 4f . Using Euler’s formula for graphs,
we find that

2e ≥ 4(e− v+ 2).

For the 4-cube, we have e = 32 and v = 16, so Euler’s formula
becomes

64 = 2 · 32 ≥ 4(32− 16+ 2) = 72,

which is a contradiction. Therefore, the 4-cube is not planar.
The n-cube, for n > 4, is not planar since it contains the
4-cube.

29.

R B

W G

4
3

2

3

21134
4

1

2

30. See the hints for Exercises 31 and 32.

31.

G6

4 3 1 2 4 3 2 4 1

2

3

4 1�

2

3

1 4

2

3

3 2

4

1

G5G4

G3G2G1

1�

We denote the two edges incident on B and G labeled 1 in the
graph of Exercise 29 as 1 and 1′ here.

32. The puzzle of Exercise 29 has four solutions. Using the nota-
tion of Exercise 31, the solutions are G1, G5; G2, G5; G3, G6;
and G4, G6.

506

Trees

1 Introduction
2 Terminology and

Characterizations of Trees
Problem-Solving Corner:
Trees

3 Spanning Trees
4 Minimal Spanning Trees
5 Binary Trees
6 Tree Traversals
7 Decision Trees and the

Minimum Time for Sorting
8 Isomorphisms of Trees
9 Game Trees

Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

I talk to the trees, but they don’t listen to me.

FROM PAINT YOUR WAGON

Trees form one of the most widely used subclasses of graphs. Computer science, in par-
ticular, makes extensive use of trees. In computer science, trees are useful in organizing
and relating data in a database (see Example 1.7). Trees also arise in theoretical problems
such as the optimal time for sorting (see Section 7).

In this chapter we begin by giving the requisite terminology. We look at subclasses
of trees (e.g., rooted trees and binary trees) and many applications of trees (e.g., spanning
trees, decision trees, and game trees).

1 ➜ Introduction

Figure 1.1 shows the results of the semifinals and finals of a classic tennis competition
at Wimbledon, which featured four of the greatest players in the history of tennis. At
Wimbledon, when a player loses, she is out of the tournament. Winners continue to play
until only one person, the champion, remains. (Such a competition is called a single-
elimination tournament.) Figure 1.1 shows that in the semifinals Monica Seles defeated
Martina Navratilova and Steffi Graf defeated Gabriela Sabatini. The winners, Seles and
Graf, then played, and Graf defeated Seles. Steffi Graf, being the sole undefeated player,
became Wimbledon champion.

If we regard the single-elimination tournament of Figure 1.1 as a graph (see
Figure 1.2), we obtain a tree. If we rotate Figure 1.2, it looks like a natural tree (see
Figure 1.3). The formal definition follows.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

507

Trees

Seles

Graf

Sabatini

Navratilova

Seles

Graf

Graf

WIMBLEDON
CHAMPION

FINALS

SEMIFINALS

Figure 1.1 Semifinals and finals at Wimbledon.

v4

v5

v6

v7

v2

v3

v1

Figure 1.2 The tournament of
Figure 1.1 as a tree.

v7

v2

v1

v6 v5 v4

v3

(b)(a)

Figure 1.3 The tree of Figure 1.2 rotated (a)
compared with a natural tree (b).

Definition 1.1 A (free) tree T is a simple graph satisfying the following: If v and w are vertices in T,
there is a unique simple path from v to w.

A rooted tree is a tree in which a particular vertex is designated the root.

Example 1.2 If we designate the winner as the root, the single-elimination tournament of Figure 1.1
(or Figure 1.2) is a rooted tree. Notice that if v and w are vertices in this graph, there is
a unique simple path from v to w. For example, the unique simple path from v2 to v7 is
(v2, v1, v3, v7).

In contrast to natural trees, which have their roots at the bottom, in graph theory
rooted trees are typically drawn with their roots at the top. Figure 1.4 shows the way
the tree of Figure 1.2 would be drawn (with v1 as root). First, we place the root v1 at
the top. Under the root and on the same level, we place the vertices, v2 and v3, that can
be reached from the root on a simple path of length 1. Under each of these vertices and
on the same level, we place the vertices, v4, v5, v6, and v7, that can be reached from the
root on a simple path of length 2. We continue in this way until the entire tree is drawn.
Since the simple path from the root to any given vertex is unique, each vertex is on a
uniquely determined level. We call the level of the root level 0. The vertices under the
root are said to be on level 1, and so on. Thus the level of a vertex v is the length of the
simple path from the root to v. The height of a rooted tree is the maximum level number
that occurs.

v1

v2

v4 v5 v6 v7

v3

Figure 1.4
The tree
Figure 1.3(a)
with the root at
the top.

Example 1.3 The vertices v1, v2, v3, v4, v5, v6, v7 in the rooted tree of Figure 1.4 are on (respectively)
levels 0, 1, 1, 2, 2, 2, 2. The height of the tree is 2.

508

Trees

Example 1.4 If we designate e as the root in the tree T of Figure 1.5, we obtain the rooted tree T ′

shown in Figure 1.5. The vertices a, b, c, d, e, f, g, h, i, j are on (respectively) levels 2,
1, 2, 1, 0, 1, 1, 2, 2, 3. The height of T ′ is 3.

T T�

a

b

d

e

c
f

h

i

j

a

b g

c i h

d

e

f

j

g

Root

Figure 1.5 A tree T and a rooted tree T ′. T ′ is obtained from T by designating e as
the root.

Example 1.5 A rooted tree is often used to specify hierarchical relationships. When a tree is used in
this way, if vertex a is on a level one less than the level of vertex b and a and b are
adjacent, then a is “just above” b and a logical relationship exists between a and b: a

dominates b or b is subordinate to a in some way. An example of such a tree, which is the
administrative organizational chart of a hypothetical university, is given in Figure 1.6.

President

Vice-President
for Academic

Affairs

Vice-President
for Administrative

Affairs

Director of
Academic
Planning

Dean of
Arts/

Sciences

Dean of
Business

Director of
Purchasing

Mathematics

Chair
of Computer

Science

Chair
of

Accounting

Chair
of

Figure 1.6 An administrative organizational chart.

Example 1.6 Computer File Systems

Modern computer operating systems organize folders and files using a tree structure. A
folder contains other folders and files. Figure 1.7 shows the Windows Explorer display
of folders on the left and files on the right on a particular computer. Figure 1.8 shows
the same structure as a rooted tree. The root is called Desktop. Under Desktop are My
Documents, My Computer, and others. Under My Documents are Fax, My Data Sources,
My Pictures, and others. Under My Pictures are archived, basement water, and My

509

Trees

Figure 1.7 Windows Explorer display of folders and files on a
particular computer. The folders appear on the left and files appear on the
right. Under basement water, which is highlighted, are the files
11-18-03, DSC01007 11-18-03, and others, which appear on the right.

My Documents My Computer My Network Places

Fax My Data Sources My Pictures

Desktop

archived basement water My eBooks

11-18-03 DSC01007 11-18-03 DSC01008 11-18-03

Figure 1.8 The structure of Figure 1.7 shown as a rooted tree.

eBooks. Under basement water, which is highlighted, are the files 11-18-03, DSC01007
11-18-03, and others, which appear on the right of Figure 1.7.

Example 1.7 Hierarchical Definition Trees

Figure 1.9 is an example of a hierarchical definition tree. Such trees are used to show
logical relationships among records in a database. [Recall that a database is a collection
of records that are manipulated by a computer.] The tree of Figure 1.9 might be used
as a model for setting up a database to maintain records about books housed in several
libraries.

510

Trees

Author Location Publisher

Book

Availability

Figure 1.9 A hierarchical definition tree.

Example 1.8 Huffman Codes

The most common way to represent characters internally in a computer is by using
fixed-length bit strings. For example, ASCII (American Standard Code for Information
Interchange) represents each character by a string of seven bits. Examples are given in
Table 1.1.

TABLE 1.1 ■ A portion of
the ASCII table.

Character ASCII Code

A 100 0001
B 100 0010
C 100 0011
1 011 0001
2 011 0010
! 010 0001
* 010 1010

Huffman codes, which represent characters by variable-length bit strings, provide
alternatives to ASCII and other fixed-length codes. The idea is to use short bit strings to
represent the most frequently used characters and to use longer bit strings to represent
less frequently used characters. In this way it is generally possible to represent strings of
characters, such as text and programs, in less space than ifASCII were used. For example,
Huffman codes are used with other techniques to compress data for fax machines.

1

Root

0

01

1

1

0

0

O

R

ST

A

Figure 1.10 A
Huffman code.

AHuffman code is most easily defined by a rooted tree (see Figure 1.10). To decode
a bit string, we begin at the root and move down the tree until a character is encountered.
The bit, 0 or 1, tells us whether to move right or left. As an example, let us decode the
string

01010111. (1.1)

We begin at the root. Since the first bit is 0, the first move is right. Next, we move left and
then right. At this point, we encounter the first character R. To decode the next character,
we begin again at the root. The next bit is 1, so we move left and encounter the next
character A. The last bits 0111 decode as T. Therefore, the bit string (1.1) represents the
word RAT.

Given a tree that defines a Huffman code, such as Figure 1.10, any bit string
[e.g., (1.1)] can be uniquely decoded even though the characters are represented by
variable-length bit strings. For the Huffman code defined by the tree of Figure 1.10, the
character A is represented by a bit string of length 1, whereas S and T are represented
by bit strings of length 4. (A is represented as 1, S is represented as 0110, and T is
represented as 0111.)

Huffman gave an algorithm (Algorithm 1.9) to construct a Huffman code from
a table giving the frequency of occurrence of the characters to be represented so that
the code constructed represents strings of characters in minimal space, provided that the
strings to be represented have character frequencies identical to the character frequencies
in the table.Aproof that the code constructed is optimal may be found in [Johnsonbaugh].

Algorithm 1.9 Constructing an Optimal Huffman Code

This algorithm constructs an optimal Huffman code from a table giving the frequency
of occurrence of the characters to be represented. The output is a rooted tree with the
vertices at the lowest levels labeled with the frequencies and with the edges labeled
with bits as in Figure 1.10. The coding tree is obtained by replacing each frequency
with a character having that frequency.

511

Trees

Input: A sequence of n frequencies, n ≥ 2

Output: A rooted tree that defines an optimal Huffman code

huffman(f, n) {
if (n == 2) {

let f1 and f2 denote the frequencies
let T be as in Figure 1.11
return T

}
let fi and fj denote the smallest frequencies
replace fi and fj in the list f by fi + fj

T ′ = huffman(f, n− 1)

replace a vertex in T ′ labeled fi + fj by the tree shown in Figure 1.12
to obtain the tree T

return T

}

1 0

f1 f2

Figure 1.11
The case n = 2 for
Algorithm 1.9.

fi fj

1 0

Figure 1.12
The case n > 2 for
Algorithm 1.9.

Example 1.10 We show how Algorithm 1.9 constructs an optimal Huffman code using Table 1.2.

TABLE 1.2 ■ Input for Example 1.10.

Character Frequency

! 2
@ 3
7
$ 8
% 12

The algorithm begins by repeatedly replacing the smallest two frequencies with
the sum until a two-element sequence is obtained:

2, 3, 7, 8, 12→ 2+ 3, 7, 8, 12

5, 7, 8, 12→ 5+ 7, 8, 12

8, 12, 12→ 8+ 12, 12

12, 20

The algorithm then constructs trees working backward beginning with the two-element
sequence 12, 20 as shown in Figure 1.13. For example, the second tree is obtained from
the first by replacing the vertex labeled 20 by the tree of Figure 1.14 since 20 arose as
the sum of 8 and 12. Finally, to obtain the optimal Huffman coding tree, we replace each
frequency by a character having that frequency (see Figure 1.15).

1 0

2012 1 0

128

1 0

75

1 0

128

1 0

7

1 0

1281 0

32

1 0

12

1 0 1 0

Figure 1.13 Constructing an optimal Huffman code.

512

Trees

1 0

128

Figure 1.14
The tree that replaces
the vertex labeled 20
in Figure 1.13.

1 0

@!

1 0 1 0

1 0

$ %

Figure 1.15 The final
tree of Figure 1.13 with
each frequency replaced
by a character having that
frequency.

1 0

32

1 0

0

0

7

18

12 1

Figure 1.16
Another optimal
Huffman tree for
Example 1.10.

Notice that the Huffman tree for Table 1.2 is not unique. When 12 is replaced by
5, 7, because there are two vertices labeled 12, there is a choice. In Figure 1.13, we
arbitrarily chose one of the vertices labeled 12. If we choose the other vertex labeled
12, we will obtain the tree of Figure 1.16. Either of the Huffman trees gives an optimal
code; that is, either will encode text having the frequencies of Table 1.2 in exactly the
same (optimal) space.

Section Review Exercises

†1. Define free tree.

2. Define rooted tree.

3. What is the level of a vertex in a rooted tree?

4. What is the height of a rooted tree?

5. Give an example of a hierarchical definition tree.

6. Explain how files and folders in a computer system are orga-
nized into a rooted tree structure.

7. What is a Huffman code?

8. Explain how to construct an optimal Huffman code.

Exercises

Which of the graphs in Exercises 1–4 are trees? Explain.

1. 2.

3. 4.

5. For which values of m and n is the complete bipartite graph
on m and n vertices a tree?

6. For which values of n is the complete graph on n vertices a
tree?

7. For which values of n is the n-cube a tree?

8. Find the level of each vertex in the tree shown.

Root
b

d

ka

c
f

g

h

i

j
e

9. Find the height of the tree of Exercise 8.

10. Draw the tree T of Figure 1.5 as a rooted tree with a as root.
What is the height of the resulting tree?

11. Draw the tree T of Figure 1.5 as a rooted tree with b as root.
What is the height of the resulting tree?

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

513

Trees

12. Give an example similar to Example 1.5 of a tree that is used
to specify hierarchical relationships.

13. Give an example different from Example 1.7 of a hierarchical
definition tree.

Decode each bit string using the Huffman code given.

1 0

0

0

0

0

1

1

1

1

1 0

S A

D L

P

N

E

14. 011000010 15. 01110100110

16. 01111001001110 17. 1110011101001111

Encode each word using the preceding Huffman code.

18. den 19. need

20. leaden 21. penned

22. What factors in addition to the amount of memory used should
be considered when choosing a code, such as ASCII or a
Huffman code, to represent characters in a computer?

23. What techniques in addition to the use of Huffman codes might
be used to save memory when storing text?

24. Construct an optimal Huffman code for the set of letters in the
table.

Letter Frequency Letter Frequency

α 5 δ 11
β 6 ε 20
γ 6

25. Construct an optimal Huffman code for the set of letters in the
table.

Letter Frequency Letter Frequency

I 7.5 C 5.0
U 20.0 H 10.0
B 2.5 M 2.5
S 27.5 P 25.0

26. Use the code developed in Exercise 25 to encode the follow-
ing words (which have frequencies consistent with the table
of Exercise 25):

bus, cups, mush, puss, sip, push,

cuss, hip, pup, pups, hips.

27. Construct two optimal Huffman coding trees for the table of
Exercise 24 of different heights.

28. Construct an optimal Huffman code for the set of letters in the
table.

Letter Frequency Letter Frequency

a 2 d 8
b 3 e 13
c 5 f 21

29. Professor TerA. Byte needs to store text made up of the charac-
ters A, B, C, D, E, which occur with the following frequencies:

Character Frequency Character Frequency

A 6 D 2
B 2 E 8
C 3

Professor Byte suggests using the variable-length codes

Character Code

A 1
B 00
C 01
D 10
E 0

which, he argues, store the text in less space than that used by
an optimal Huffman code. Is the professor correct? Explain.

30. Show that any tree with two or more vertices has a vertex of
degree 1.

31. Show that a tree is a planar graph.

32. Show that a tree is a bipartite graph.

33. Show that the vertices of a tree can be colored with two colors
so that each edge is incident on vertices of different colors.

The eccentricity of a vertex v in a tree T is the maximum length of
a simple path that begins at v.

34. Find the eccentricity of each vertex in the tree of Figure 1.5.

A vertex v in a tree T is a center for T if the eccentricity of v is
minimal.

35. Find the center(s) of the tree of Figure 1.5.
†�36. Show that a tree has either one or two centers.

�37. Show that if a tree has two centers they are adjacent.

38. Define the radius r of a tree using the concepts of eccentricity
and center. Is it always true, according to your definition of
radius, that 2r = d? Explain.

39. Give an example of a tree T that does not satisfy the following
property: If v and w are vertices in T, there is a unique path
from v to w.

†A starred exercise indicates a problem of above-average difficulty.

514

Trees

2 ➜ Terminology and Characterizations of Trees

A portion of the family tree of the ancient Greek gods is shown in Figure 2.1. (Not all
children are listed.) As shown, we can regard a family tree as a rooted tree. The vertices
adjacent to a vertex v and on the next-lower level are the children of v. For example,
Kronos’s children are Zeus, Poseidon, Hades, and Ares. The terminology adapted from
a family tree is used routinely for any rooted tree. The formal definitions follow.

Zeus Poseidon Hades Ares

Aphrodite Kronos Atlas Prometheus

Uranus

Apollo Athena Hermes Heracles

Eros

Figure 2.1 A portion of the family tree of ancient Greek gods.

Definition 2.1 Let T be a tree with root v0. Suppose that x, y, and z are vertices in T and that
(v0, v1, . . . , vn) is a simple path in T. Then

(a) vn−1 is the parent of vn.

(b) v0, . . . , vn−1 are ancestors of vn.

(c) vn is a child of vn−1.

(d) If x is an ancestor of y, y is a descendant of x.

(e) If x and y are children of z, x and y are siblings.

(f) If x has no children, x is a terminal vertex (or a leaf).

(g) If x is not a terminal vertex, x is an internal (or branch) vertex.

(h) The subtree of T rooted at x is the graph with vertex set V and edge set E, where
V is x together with the descendants of x and

E = {e | e is an edge on a simple path from x to some vertex in V }.

Example 2.2 In the rooted tree of Figure 2.1,

(a) The parent of Eros is Aphrodite.

(b) The ancestors of Hermes are Zeus, Kronos, and Uranus.

(c) The children of Zeus are Apollo, Athena, Hermes, and Heracles.

(d) The descendants of Kronos are Zeus, Poseidon, Hades, Ares, Apollo, Athena,
Hermes, and Heracles.

(e) Aphrodite and Prometheus are siblings.

(f) The terminal vertices are Eros, Apollo, Athena, Hermes, Heracles, Poseidon,
Hades, Ares, Atlas, and Prometheus.

515

Trees

(g) The internal vertices are Uranus, Aphrodite, Kronos, and Zeus.

(h) The subtree rooted at Kronos is shown in Figure 2.2.

Apollo Athena Hermes Heracles

Zeus Poseidon Hades Ares

Kronos

Figure 2.2 The subtree rooted at Kronos of the
tree of Figure 2.1.

v0�vn

vn�1

vj+1 vj

vj�1

vi+1

vi�1v1

v2

vi

Figure 2.3 A simple cycle.

The remainder of this section is devoted to providing alternative characterizations
of trees. Let T be a tree. We note that T is connected since there is a simple path from
any vertex to any other vertex. Further, we can show that T does not contain a cycle. To
see this, suppose that T contains a cycle C′. T contains a simple cycle (see Figure 2.3)

C = (v0, . . . , vn),

v0 = vn. Since T is a simple graph, C cannot be a loop; so C contains at least two distinct
vertices vi and vj, i < j. Now

(vi, vi+1, . . . , vj), (vi, vi−1, . . . , v0, vn−1, . . . , vj)

are distinct simple paths fromvi tovj , which contradicts the definition of a tree. Therefore,
a tree cannot contain a cycle.

A graph with no cycles is called an acyclic graph. We just showed that a tree is a
connected, acyclic graph. The converse is also true; every connected, acyclic graph is a
tree. The next theorem gives this characterization of trees as well as others.

Theorem 2.3 Let T be a graph with n vertices. The following are equivalent.

(a) T is a tree.

(b) T is connected and acyclic.

(c) T is connected and has n− 1 edges.

(d) T is acyclic and has n− 1 edges.

Proof To show that (a)–(d) are equivalent, we will prove four results: If (a),
then (b); if (b), then (c); if (c), then (d); and if (d), then (a).

[If (a), then (b).] The proof of this result was given before the statement of the
theorem.

[If (b), then (c).] Suppose that T is connected and acyclic. We will prove that
T has n− 1 edges by induction on n.

If n= 1, T consists of one vertex and zero edges, so the result is true if n = 1.

516

Trees

P
v

Figure 2.4 The proof of
Theorem 2.3 [if (b), then (c)]. P is
a simple path. v and the edge
incident on v are removed so that
the inductive hypothesis can be
invoked.

Now suppose that the result holds for a connected, acyclic graph with n vertices.
Let T be a connected, acyclic graph with n + 1 vertices. Choose a path P with no
repeated edges of maximum length. Since T acyclic, P contains no cycles. Therefore,
P contains a vertex v of degree 1 (see Figure 2.4). Let T ∗ be T with v and the
edge incident on v removed. Then T ∗ is connected and acyclic, and because T ∗

contains n vertices, by the inductive hypothesis T ∗ contains n− 1 edges. Therefore,
T contains n edges. The inductive argument is complete and this portion of the proof
is complete.

[If (c), then (d).] Suppose that T is connected and has n − 1 edges. We must
show that T is acyclic.

Suppose that T contains at least one cycle. Since removing an edge from a
cycle does not disconnect a graph, we may remove edges, but no vertices, from
cycle(s) in T until the resulting graph T ∗ is connected and acyclic. Now T ∗ is an
acyclic, connected graph with n vertices. We may use our just proven result, (b)
implies (c), to conclude that T ∗ has n − 1 edges. But now T has more than n − 1
edges. This is a contradiction. Therefore, T is acyclic. This portion of the proof is
complete.

[If (d), then (a).] Suppose that T is acyclic and has n− 1 edges. We must show
that T is a tree, that is, that T is a simple graph and that T has a unique simple path
from any vertex to any other vertex.

The graph T cannot contain any loops because loops are cycles and T is acyclic.
Similarly, T cannot contain distinct edges e1 and e2 incident on v and w because we
would then have the cycle (v, e1, w, e2, v). Therefore, T is a simple graph.

Suppose, by way of contradiction, that T is not connected (see Figure 2.5).
Let

T1, T2, . . . , Tk

be the components of T. Since T is not connected, k > 1. Suppose that Ti has ni

vertices. Each Ti is connected and acyclic, so we may use our previously proven
result, (b) implies (c), to conclude that Ti has ni − 1 edges. Now

n− 1 = (n1 − 1)+ (n2 − 1)+ · · · + (nk − 1) (counting edges)

< (n1 + n2 + · · · + nk)− 1 (since k > 1)

= n− 1, (counting vertices)

which is impossible. Therefore, T is connected.
Suppose that there are distinct simple paths P1 and P2 from a to b in T (see

Figure 2.6). Let c be the first vertex after a on P1 that is not in P2; let d be the

T1

n1 vertices

n1�n2�…�nk total vertices
(n1 − 1)�(n2 − 1)�…�(nk − 1) total edges

T2

n2 vertices

Tk

nk vertices
nk − 1 edgesn2 − 1 edgesn1 − 1 edges

Figure 2.5 The proof of Theorem 2.3 [if (d), then (a)]. The Ti

are components of T. Ti has ni vertices and ni − 1 edges. A
contradiction results from the fact that the total number of
edges must equal n− 1.

517

Trees

a b

d

c
e

P1

P2

Figure 2.6 The proof of Theorem 2.3 [if (d), then (a)]. P1 (shown
dashed) and P2 (shown in color) are distinct simple paths from a to
b. c is the first vertex after a on P1 not in P2. d is the vertex
preceding c on P1. e is the first vertex after d on P1 that is also on
P2. As shown, a cycle results, which gives a contradiction.

vertex preceding c on P1; and let e be the first vertex after d on P1 that is also on P2.
Let

(v0, v1, . . . , vn−1, vn)

be the portion of P1 from d = v0 to e = vn. Let

(w0, w1, . . . , wm−1, wm)

be the portion of P2 from d = w0 to e = wm. Now

(v0, . . . , vn = wm, wm−1, . . . , w1, w0) (2.1)

is a cycle in T, which is a contradiction. [In fact, (2.1) is a simple cycle since no
vertices are repeated except for v0 and w0.] Thus there is a unique simple path from
any vertex to any other vertex in T. Therefore, T is a tree. This completes the proof.

Problem-Solving Tips

This section introduces some useful terminology and provides several different
characterizations of trees. If T is a graph with n vertices, the following are equivalent
(Theorem 2.3):

(a) T is a tree.

(b) If v and w are vertices in T , there is a unique simple path from v to w (definition
of tree).

(c) T is connected and acyclic.

(d) T is connected and has n− 1 edges.

(e) T is acyclic and has n− 1 edges.

You can use the preceding characterizations in various ways. For example, a graph
with four edges and six vertices cannot be a tree because it violates parts (d) and (e).
Furthermore, the graph is either not connected or contains a cycle. (If it is both connected
and acyclic, it would be a tree and thus have five edges.)Aconnected graph with n vertices
and more than n−1 edges must contain a cycle. (If it were acyclic, it would be a tree and,
therefore, have n− 1 edges.)

518

Trees

Section Review Exercises

1. Define parent in a rooted tree.

2. Define descendant in a rooted tree.

3. Define sibling in a rooted tree.

4. Define terminal vertex in a rooted tree.

5. Define internal vertex in a rooted tree.

6. Define acyclic graph.

7. Give alternative characterizations of trees.

Exercises

Answer the questions in Exercises 1–6 for the tree in Figure 2.1.

1. Find the parent of Poseidon.

2. Find the ancestors of Eros.

3. Find the children of Uranus.

4. Find the descendants of Zeus.

5. Find the siblings of Ares.

6. Draw the subtree rooted at Aphrodite.

Answer the questions in Exercises 7–15 for the following tree.

j

f g h i
e

c d
b

a

7. Find the parents of c and of h.

8. Find the ancestors of c and of j.

9. Find the children of d and of e.

10. Find the descendants of c and of e.

11. Find the siblings of f and of h.

12. Find the terminal vertices. 13. Find the internal vertices.

14. Draw the subtree rooted at j. 15. Draw the subtree rooted at e.

16. Answer the questions in Exercises 7–15 for the following tree.

a

edcb

i j k l

q

f g h

m n o p

r
17. What can you say about two vertices in a rooted tree that have

the same parent?

18. What can you say about two vertices in a rooted tree that have
the same ancestors?

19. What can you say about a vertex in a rooted tree that has no
ancestors?

20. What can you say about two vertices in a rooted tree that have
a descendant in common?

21. What can you say about a vertex in a rooted tree that has no
descendants?

In Exercises 22–26, draw a graph having the given properties or
explain why no such graph exists.

22. Six edges; eight vertices

23. Acyclic; four edges, six vertices

24. Tree; all vertices of degree 2

25. Tree; six vertices having degrees 1, 1, 1, 1, 3, 3

26. Tree; four internal vertices; six terminal vertices

27. Explain why if we allow cycles of length 0, a graph consisting
of a single vertex and no edges is not acyclic.

28. Explain why if we allow cycles to repeat edges, a graph con-
sisting of a single edge and two vertices is not acyclic.

29. The connected graph shown has a unique simple path from any
vertex to any other vertex, but it is not a tree. Explain.

v1

v2

A forest is a simple graph with no cycles.

30. Explain why a forest is a union of trees.

31. If a forest F consists of m trees and has n vertices, how many
edges does F have?

32. If P1 = (v0, . . . , vn) and P2 = (w0, . . . , wm) are distinct
simple paths from a to b in a simple graph G, is

(v0, . . . , vn = wm, wm−1, . . . , w1, w0)

necessarily a cycle? Explain. (This exercise is relevant to the
last paragraph of the proof of Theorem 2.3.)

33. Show that a graph G with n vertices and fewer than n − 1
edges is not connected.

�34. Prove that T is a tree if and only if T is connected and when
an edge is added between any two vertices, exactly one cycle
is created.

35. Show that if G is a tree, every vertex of degree 2 or more is an
articulation point.

36. Give an example to show that the converse of Exercise 35 is
false, even if G is assumed to be connected.

519

Trees

Problem-Solving Corner Trees

Problem
Let T be a simple graph. Prove that T is a tree if and
only if T is connected but the removal of any edge (but
no vertices) from T disconnects T.

Attacking the Problem
Let’s be clear about what we have to prove. Since
the statement is “if and only if,” we must prove two
statements:

If T is a tree, then T is connected but the removal of
any edge (but no vertices) from T disconnects T.

(1)

If T is connected but the removal of any edge (but no
vertices) from T disconnects T, then T is a tree.

(2)

In (1), from the assumption that T is a tree, we must
deduce that T is connected but the removal of any edge
(but no vertices) from T disconnects T. In (2), from the
assumption that T is connected but the removal of any
edge (but no vertices) from T disconnects T, we must
deduce that T is a tree.

In developing a proof, it is usually helpful to
review definitions and other results related to the
statement to be proved. Here of direct relevance are
the definition of a tree and Theorem 2.3, which gives
equivalent conditions for a graph to be a tree.

Definition 1.1 states:

A tree T is a simple graph satisfying the following:
If v and w are vertices in T, there is a
unique simple path from v to w.

(3)

Theorem 2.3 states that the following are equi-
valent for an n-vertex graph T :

T is a tree. (4)

T is connected and acyclic. (5)

T is connected and has n− 1 edges. (6)

T is acyclic and has n− 1 edges. (7)

Finding a Solution
Let’s first try to prove (1). We assume that T is a tree. We
must prove two things: T is connected, and the removal
of any edge (but no vertices) from T disconnects T.

Statements (5) and (6) immediately tell us that T

is connected. None of the statements (3) through (7)
directly tells us anything about removal of edges or
about a graph that’s not connected. However, if we
argue by contradiction and assume that the removal of
some edge (but no vertices) from T does not disconnect
T, then when we remove that edge from T, the graph T ′

that results is connected. In this case, for the graph T ′,
(5) is true, but (6) and (7) are false, which is a contra-
diction since either (5), (6), and (7) are all true (and the
graph is a tree), or (5) , (6) , and (7) are all false (and
the graph is a not a tree).

Now consider proving (2). We assume that T is
connected and that the removal of any edge (but no
vertices) from T disconnects T. We must show that T

is a tree. Let’s try to show that T is connected and
acyclic. We can then appeal to (5) to conclude that T

is a tree.
Since T is connected, all we have to do is show

that T is acyclic. Again, we’ll approach this by contra-
diction. Suppose that T has a cycle. Keeping in mind
what we’re assuming (the removal of any edge from T

disconnects T), try to figure out how to deduce a con-
tradiction from the assumption that T contains a cycle
before reading on.

If we delete an edge from T ’s cycle, T will remain
connected. This contradiction shows that T is acyclic.
By (5), T is a tree.

Formal Solution
Suppose that T has n vertices.

Suppose that T is a tree. Then by Theorem 2.3,
T is connected and has n − 1 edges. Suppose that
we can remove an edge from T to obtain T ′ so that
T ′ is connected. Since T contains no cycles, T ′ also
contains no cycles. By Theorem 2.3, T ′ is a tree.
Again by Theorem 2.3, T ′ has n − 1 edges. This
is a contradiction. Therefore, T is connected, but
the removal of any edge (but no vertices) from T

disconnects T .
If T is connected and the removal of any edge (but

no vertices) from T disconnects T, then T contains no
cycles. By Theorem 2.3, T is a tree.

Summary of Problem-Solving Techniques
■ When trying to construct a proof, write out care-

fully what is assumed and what is to be proved.

520

Trees

■ When trying to construct a proof, consider using
closely related definitions and theorems.

■ When trying to construct a proof, review the
proofs of similar and related theorems.

■ If none of the conditions of potentially useful def-
initions and theorems applies, try proof by con-

tradiction. When you assume the negation of the
hypotheses, additional statements become avail-
able that might make some of the conditions of
the definitions and theorems apply.

3 ➜ Spanning Trees

In this section we consider the problem of finding a subgraph T of a graph G such that T

is a tree containing all of the vertices of G. Such a tree is called a spanning tree. We will
see that the methods of finding spanning trees may be applied to other problems as well.

Definition 3.1 A tree T is a spanning tree of a graph G if T is a subgraph of G that contains all of the
vertices of G.

Example 3.2 A spanning tree of the graph G of Figure 3.1 is shown in black.

Example 3.3 In general, a graph will have several spanning trees. Another spanning tree of the graph
G of Figure 3.1 is shown in Figure 3.2.

a e1 b

e10 e9 e8 e4 e2

e6

e7
e12

e3

g

c

e

d

f

e5e11 h

a e1 b

e10 e9 e8 e4 e2

e6

e7
e12

e3

g

c

e

d

f

e5e11 h

Figure 3.1 A graph and a spanning
tree shown in black.

a b

g

c

e

d

f h

Figure 3.2 Another spanning
tree (in black) of the graph of
Figure 3.1.

Suppose that a graph G has a spanning tree T. Let a and b be vertices of G. Since
a and b are also vertices in T and T is a tree, there is a path P from a to b. However, P

also serves as a path from a to b in G; thus G is connected. The converse is also true.

Theorem 3.4 A graph G has a spanning tree if and only if G is connected.

Proof We have already shown that if G has a spanning tree, then G is connected.
Suppose that G is connected. If G is acyclic, by Theorem 2.3, G is a tree.

Suppose that G contains a cycle. We remove an edge (but no vertices) from this
cycle. The graph produced is still connected. If it is acyclic, we stop. If it contains
a cycle, we remove an edge from this cycle. Continuing in this way, we eventually
produce an acyclic, connected subgraph T. By Theorem 2.3, T is a tree. Since T

contains all the vertices of G, T is a spanning tree of G.

521

Trees

An algorithm for finding a spanning tree based on the proof of Theorem 3.4 would
not be very efficient; it would involve the time-consuming process of finding cycles. We
can do much better. We shall illustrate the first algorithm for finding a spanning tree by
an example and then we will state the algorithm.

Example 3.5 Find a spanning tree for the graph G of Figure 3.1.
We will use a method called breadth-first search (Algorithm 3.6). The idea of

breadth-first search is to process all the vertices on a given level before moving to the
next-higher level.

First, select an ordering, say abcdefgh, of the vertices of G. Select the first vertex
a and label it the root. Let T consist of the single vertex a and no edges. Add to T all
edges (a, x) and vertices on which they are incident, for x = b to h, that do not produce a
cycle when added to T. We would add to T edges (a, b), (a, c), and (a, g). (We could use
either of the parallel edges incident on a and g.) Repeat this procedure with the vertices
on level 1 by examining each in order:

b: Include (b, d).

c: Include (c, e).

g: None

Repeat this procedure with the vertices on level 2:

d: Include (d, f).

e: None

Repeat this procedure with the vertices on level 3:

f : Include (f, h).

Since no edges can be added to the single vertex h on level 4, the procedure ends. We
have found the spanning tree shown in Figure 3.1.

We formalize the method of Example 3.5 as Algorithm 3.6.

Algorithm 3.6 Breadth-First Search for a Spanning Tree

This algorithm finds a spanning tree using the breadth-first search method.

Input: A connected graph G with vertices ordered

v1, v2, . . . , vn

Output: A spanning tree T

bfs(V, E) {
// V = vertices ordered v1, . . . , vn; E = edges
// V ′ = vertices of spanning tree T ; E′ = edges of spanning tree T

// v1 is the root of the spanning tree
// S is an ordered list
S = (v1)

V ′ = {v1}
E′ = ∅

while (true) {

522

Trees

for each x ∈ S, in order,
for each y ∈ V − V ′, in order,

if ((x, y) is an edge)
add edge (x, y) to E′ and y to V ′

if (no edges were added)
return T

S = children of S ordered consistently with the original vertex ordering
}

}

Exercise 20 is to prove that Algorithm 3.6 finds a spanning tree.
Breadth-first search can be used to test whether an arbitrary graph G with n vertices

is connected (see Exercise 30). We use the method of Algorithm 3.6 to produce a tree T .
Then G is connected if and only if T has n vertices.

Breadth-first search can also be used to find minimum-length paths in an unweighted
graph from a fixed vertex v to all other vertices (see Exercise 24). We use the method
of Algorithm 3.6 to generate a spanning tree rooted at v. We note that the length of a
shortest path from v to a vertex on level i of the spanning tree is i. Dijkstra’s shortest-
path algorithm for weighted graphs can be considered as a generalization of breadth-first
search (see Exercise 25).

An alternative to breadth-first search is depth-first search, which proceeds to
successive levels in a tree at the earliest possible opportunity.

Algorithm 3.7 Depth-First Search for a Spanning Tree

This algorithm finds a spanning tree using the depth-first search method.

Input: A connected graph G with vertices ordered
v1, v2, . . . , vn

Output: A spanning tree T

dfs(V, E) {
// V ′ = vertices of spanning tree T ; E′ = edges of spanning tree T

// v1 is the root of the spanning tree
V ′ = {v1}
E′ = ∅

w = v1

while (true) {
while (there is an edge (w, v) that when added to T does not create a cycle

in T) {
choose the edge (w, vk) with minimum k that when added to T

does not create a cycle in T

add (w, vk) to E′

add vk to V ′

w = vk

}
if (w == v1)

return T

w = parent of w in T // backtrack
}

}

Exercise 21 is to prove that Algorithm 3.7 finds a spanning tree.

523

Trees

Example 3.8 Use depth-first search (Algorithm 3.7) to find a spanning tree for the graph of
Figure 3.2 with the vertex ordering abcdefgh.

We select the first vertex a and call it the root (see Figure 3.2). Next, we add the
edge (a, x), with minimal x, to our tree. In our case we add the edge (a, b).

We repeat this process. We add the edges (b, d), (d, c), (c, e), (e, f), and (f, h). At
this point, we cannot add an edge of the form (h, x), so we backtrack to the parent f of
h and try to add an edge of the form (f, x). Again, we cannot add an edge of the form
(f, x), so we backtrack to the parent e of f . This time we succeed in adding the edge
(e, g). At this point, no more edges can be added, so we finally backtrack to the root and
the procedure ends.

Because of the line in Algorithm 3.7 where we retreat along an edge toward the
initially chosen root, depth-first search is also called backtracking. In the following
example, we use backtracking to solve a puzzle.

Example 3.9 Four-Queens Problem

The four-queens problem is to place four tokens on a 4 × 4 grid so that no two tokens
are on the same row, column, or diagonal. Construct a backtracking algorithm to solve
the four-queens problem. (To use chess terminology, this is the problem of placing four
queens on a 4× 4 board so that no queen attacks another queen.)

The idea of the algorithm is to place tokens successively in the columns. When
it is impossible to place a token in a column, we backtrack and adjust the token in the
preceding column.

Algorithm 3.10 Solving the Four-Queens Problem Using Backtracking

This algorithm uses backtracking to search for an arrangement of four tokens on a
4× 4 grid so that no two tokens are on the same row, column, or diagonal.

Input: An array row of size 4

Output: true, if there is a solution
false, if there is no solution
[If there is a solution, the kth queen is in column k, row row(k).]

four queens(row) {
k = 1 // start in column 1

// start in row 1
// since row(k) is incremented prior to use, set row(1) to 0
row(1) = 0
while (k > 0) {

row(k) = row(k)+ 1
// look for a legal move in column k

while (row(k) ≤ 4 ∧ column k, row(k) conflicts)
// try next row
row(k) = row(k)+ 1

if (row(k) ≤ 4)

if (k == 4)

return true
else { // next column

524

Trees

k = k + 1
row(k) = 0

}
else // backtrack to previous column

k = k − 1
}
return false // no solution

}

The tree that Algorithm 3.10 generates is shown in Figure 3.3. The number-
ing indicates the order in which the vertices are generated. The solution is found at
vertex 8.

The n-queens problem is to place n tokens on an n× n grid so that no two tokens
are on the same row, column, or diagonal. Checking that there is no solution to the two-
or three-queens problem (see Exercise 10) is straightforward. We have just seen that

0 0 00

0 0 00

0 0 00

0 0 00

0 0 01

0 0 00

0 0 00

0 0 00

0 0 00

0 0 01

0 0 00

0 0 00

0 0 00

0 0 01

0 0 00

1 0 00

0 1 00

0 0 01

0 0 00

1 0 00

0 1 00

0 0 01

0 0 10

1 0 00

0 0 01

0 0 00

0 0 00

1 0 00

0 0 01

0 0 00

1 0 00

0 0 00

0 0 01

0 1 00

0 0 00

1 0 00

1 5

6

7

8

3

4

2

SOLUTION

Figure 3.3 The tree generated by the backtracking algorithm
(Algorithm 3.10) in the search for a solution to the four-queens problem.

525

Trees

Algorithm 3.10 generates a solution to the four-queens problem. Many constructions
have been given to generate solutions to the n-queens problem for all n ≥ 4 (see, e.g.,
[Johnsonbaugh]).

Backtracking or depth-first search is especially attractive in a problem such as that
in Example 3.9, where all that is desired is one solution. Since a solution, if one exists,
is found at a terminal vertex, by moving to the terminal vertices as rapidly as possible,
in general we can avoid generating some unnecessary vertices.

Problem-Solving Tips

Depth-first search and breadth-first search are the basis of many graph algorithms. For
example, either can be used to determine whether a graph is connected: If we can visit
every vertex in a graph from an initial vertex, the graph is connected; otherwise, it is
not connected (see Exercises 30 and 31). Depth-first search can be used as a searching
algorithm, in which case it is called backtracking. In Algorithm 3.10, backtracking is
used to search for solutions to the 4-queens problem. Backtracking can also be used
to search for Hamiltonian cycles in a graph, to generate permutations, to solve Sudoku
puzzles, and to determine whether two graphs are isomorphic.

Section Review Exercises

1. What is a spanning tree?

2. State a necessary and sufficient condition for a graph to have a
spanning tree.

3. Explain how breadth-first search works.

4. Explain how depth-first search works.

5. What is backtracking?

Exercises

1. Use breadth-first search (Algorithm 3.6) with the vertex
ordering hgfedcba to find a spanning tree for graph G of
Figure 3.1.

2. Use breadth-first search (Algorithm 3.6) with the vertex
ordering hfdbgeca to find a spanning tree for graph G of
Figure 3.1.

3. Use breadth-first search (Algorithm 3.6) with the vertex
ordering chbgadfe to find a spanning tree for graph G of
Figure 3.1.

4. Use depth-first search (Algorithm 3.7) with the vertex ordering
hgfedcba to find a spanning tree for graph G of Figure 3.1.

5. Use depth-first search (Algorithm 3.7) with the vertex ordering
hfdbgeca to find a spanning tree for graph G of Figure 3.1.

6. Use depth-first search (Algorithm 3.7) with the vertex ordering
dhcbefag to find a spanning tree for graph G of Figure 3.1.

In Exercises 7–9, find a spanning tree for each graph.

7. a b c d

g
h

fe

i j k l

8.

g c

a

e

h b

df

i
j

k
l

9.

a

b

c

d f

g

e

i

h

10. Show that there is no solution to the two-queens or the three-
queens problem.

11. Show all solutions to the four-queens problem.

12. Find a solution to the five-queens and six-queens problems.

526

Trees

13. Show all solutions to the five-queens problem in which one
queen is in the first column, second row.

14. How many solutions are there to the five-queens problem?

15. Show all solutions to the six-queens problem in which one
queen is in row 2, column 1, and a second queen is in row 4,
column 2.

16. True or false? If G is a connected graph and T is a spanning
tree for G, there is an ordering of the vertices of G such that
Algorithm 3.6 produces T as a spanning tree. If true, prove it;
otherwise, give a counterexample.

17. True or false? If G is a connected graph and T is a spanning
tree for G, there is an ordering of the vertices of G such that
Algorithm 3.7 produces T as a spanning tree. If true, prove it;
otherwise, give a counterexample.

18. Show, by an example, that Algorithm 3.6 can produce identi-
cal spanning trees for a connected graph G from two distinct
vertex orderings of G.

19. Show, by an example, that Algorithm 3.7 can produce identi-
cal spanning trees for a connected graph G from two distinct
vertex orderings of G.

20. Prove that Algorithm 3.6 is correct.

21. Prove that Algorithm 3.7 is correct.

22. Under what conditions is an edge in a connected graph G con-
tained in every spanning tree of G?

23. Let T and T ′ be two spanning trees of a connected graph G.
Suppose that an edge x is in T but not in T ′. Show that there
is an edge y in T ′ but not in T such that (T − {x}) ∪ {y} and
(T ′ − {y}) ∪ {x} are spanning trees of G.

24. Write an algorithm based on breadth-first search that finds the
minimum length of each path in an unweighted graph from a
fixed vertex v to all other vertices.

25. Let G be a weighted graph in which the weight of each edge
is a positive integer. Let G′ be the graph obtained from G by
replacing each edge

k

in G of weight k by k unweighted edges in series:

k edges

Show that Dijkstra’s algorithm for finding the minimum length
of each path in the weighted graph G from a fixed vertex v to
all other vertices and performing a breadth-first search in the
unweighted graph G′ starting with vertex v are, in effect, the
same process.

26. Let T be a spanning tree for a graph G. Show that if an edge
in G, but not in T, is added to T, a unique cycle is produced.

A cycle as described in Exercise 26 is called a fundamental cycle.
The fundamental cycle matrix of a graph G has its rows indexed by
the fundamental cycles of G relative to a spanning tree T for G and

its columns indexed by the edges of G. The ijth entry is 1 if edge j

is in the ith fundamental cycle and 0 otherwise. For example, the
fundamental cycle matrix of the graph G of Figure 3.1 relative to
the spanning tree shown in Figure 3.1 is

(abdca)
(efdbace)
(ageca)
(aga)
(abga)

⎛

⎜⎜⎜⎝

e7 e6 e11 e10 e2 e1 e3 e4 e5 e8 e9 e12

1 0 0 0 0 1 1 0 0 0 0 1
0 1 0 0 0 1 1 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 1 0

⎞

⎟⎟⎟⎠
.

Find the fundamental cycle matrix of each graph. The spanning
tree to be used is drawn in black.

27.
a e1 b

d e

c

e7

e2 e5

e3

e8 e6

e4

28.
a

b c e

d

f

g

e1

e2

e3

e4

e5

e7

e6

e9

e11

e10

e12

e13e8

29.
a b c

d

e f

e3

e2

e4

e9

e7 e8

e6
e5

e1

30. Write a breadth-first search algorithm to test whether a graph
is connected.

31. Write a depth-first search algorithm to test whether a graph is
connected.

32. Write a depth-first search algorithm that finds all solutions to
the four-queens problem.

33. Modify Algorithm 3.6 so that it tracks the parent p of a vertex
c (p is the parent of c if c was visited from p).

34. Write an algorithm that uses the output of your algorithm in
Exercise 33 to print each vertex and its parent.

35. Modify Algorithm 3.7 so that it tracks the parent p of a vertex
c (p is the parent of c if c was visited from p).

527

Trees

36. Write an algorithm that uses the output of your algorithm in
Exercise 35 to print each vertex and its parent.

37. Write a backtracking algorithm that outputs all permutations
of 1, 2, . . . , n.

38. Write a backtracking algorithm that outputs all subsets of
{1, 2, . . . , n}.

39. Sudoku is a puzzle in which the goal is to fill in a 9× 9 grid so
that each of the numbers 1 through 9 appears in each column,
each row, and each 3× 3 box delineated by the heavy lines:

1

2

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

8

8

9

9

9

As shown, in each puzzle some numbers are given. Solve the
preceding Sudoku puzzle.

40. Write a backtracking algorithm that solves an arbitrary Sudoku
puzzle.

41. The minimum-queens problem asks for the minimum number
of queens that can attack all of the squares of ann×nboard (i.e.,
the minimum number of queens such that each row, column,
and diagonal contains at least one queen). Write a backtrack-
ing algorithm that determines whether k queens can attack all
squares of an n× n board.

42. The subset-sum problem is: Given a set {c1, . . . , cn} of positive
integers and a positive integer M, find all subsets {ck1 , . . . , ckj

}
of {c1, . . . , cn} satisfying

j∑

i=1

cki
= M.

Write a backtracking algorithm to solve the subset-sum
problem.

4 ➜ Minimal Spanning Trees

The weighted graph G of Figure 4.1 shows six cities and the costs of building roads
between certain pairs of cities. We want to build the lowest-cost road system that will
connect the six cities. The solution can be represented by a subgraph. This subgraph
must be a spanning tree since it must contain all the vertices (so that each city is in the
road system), it must be connected (so that any city can be reached from any other), and
it must have a unique simple path between each pair of vertices (since a graph containing
multiple simple paths between a vertex pair could not represent a minimum-cost system).
Thus what is needed is a spanning tree the sum of whose weights is a minimum. Such a
tree is called a minimal spanning tree.

G

3

2

6

3

4

12 5

6

1 2

4

6
5

3

Figure 4.1 Six cities 1–6 and
the costs of building roads
between certain pairs of them.

Definition 4.1 Let G be a weighted graph. A minimal spanning tree of G is a spanning tree of G with
minimum weight.

528

Trees

Example 4.2 The tree T ′ shown in Figure 4.2 is a spanning tree for graph G of Figure 4.1. The weight
of T ′ is 20. This tree is not a minimal spanning tree since spanning tree T shown in
Figure 4.3 has weight 12. We will see later that T is a minimal spanning tree for G.

4

2

36

5

T �

1 2

43

65

Figure 4.2 A spanning tree of weight 20 of
the graph of Figure 4.1.

4

2
3

2

1
T

1 2

3 4

5 6

Figure 4.3 A spanning tree of
weight 12 of the graph of
Figure 4.1.

The algorithm to find a minimal spanning tree that we will discuss is known as
Prim’s Algorithm (Algorithm 4.3). This algorithm builds a tree by iteratively adding
edges until a minimal spanning tree is obtained. The algorithm begins with a single
vertex. Then at each iteration, it adds to the current tree a minimum-weight edge that
does not complete a cycle. Another algorithm to find a minimal spanning tree, known as
Kruskal’s Algorithm, is presented in the exercises (see Exercises 20–22).

Algorithm 4.3 Prim’s Algorithm

This algorithm finds a minimal spanning tree in a connected, weighted graph.

Input: A connected, weighted graph with vertices 1, . . . , n and start
vertex s. If (i, j) is an edge, w(i, j) is equal to the weight of (i, j);
if (i, j) is not an edge, w(i, j) is equal to∞ (a value greater than
any actual weight).

Output: The set of edges E in a minimal spanning tree (mst)

prim(w, n, s) {
// v(i) = 1 if vertex i has been added to mst
// v(i) = 0 if vertex i has not been added to mst

1. for i = 1 to n

2. v(i) = 0
// add start vertex to mst

3. v(s) = 1
// begin with an empty edge set

4. E = ∅

// put n− 1 edges in the minimal spanning tree
5. for i = 1 to n− 1 {

// add edge of minimum weight with one vertex in mst and one vertex
// not in mst

6. min = ∞
7. for j = 1 to n

8. if (v(j) == 1) // if j is a vertex in mst
9. for k = 1 to n

10. if (v(k) == 0 ∧ w(j, k) < min) {

529

Trees

11. add vertex = k

12. e = (j, k)

13. min = w(j, k)

14. }
// put vertex and edge in mst

15. v(add vertex) = 1
16. E = E ∪ {e}
17. }
18. return E

19. }

Example 4.4 Show how Prim’s Algorithm finds a minimal spanning tree for the graph of Figure 4.1.
Assume that the start vertex s is 1.

At line 3 we add vertex 1 to the minimal spanning tree. The first time we execute
the for loop in lines 7–14, the edges with one vertex in the tree and one vertex not in the
tree are

Edge Weight

(1, 2) 4
(1, 3) 2
(1, 5) 3

The edge (1, 3) with minimum weight is selected. At lines 15 and 16, vertex 3 is added
to the minimal spanning tree and edge (1, 3) is added to E.

The next time we execute the for loop in lines 7–14, the edges with one vertex in
the tree and one vertex not in the tree are

Edge Weight

(1, 2) 4
(1, 5) 3
(3, 4) 1
(3, 5) 6
(3, 6) 3

The edge (3, 4) with minimum weight is selected. At lines 15 and 16, vertex 4 is added
to the minimal spanning tree and edge (3, 4) is added to E.

The next time we execute the for loop in lines 7–14, the edges with one vertex in
the tree and one vertex not in the tree are

Edge Weight

(1, 2) 4
(1, 5) 3
(2, 4) 5
(3, 5) 6
(3, 6) 3
(4, 6) 6

This time two edges have minimum weight 3. A minimal spanning tree will be con-
structed when either edge is selected. In this version, edge (1, 5) is selected. At lines

530

Trees

15 and 16, vertex 5 is added to the minimal spanning tree and edge (1, 5) is added
to E.

The next time we execute the for loop in lines 7–14, the edges with one vertex in
the tree and one vertex not in the tree are

Edge Weight

(1, 2) 4
(2, 4) 5
(3, 6) 3
(4, 6) 6
(5, 6) 2

The edge (5, 6) with minimum weight is selected. At lines 15 and 16, vertex 6 is added
to the minimal spanning tree and edge (5, 6) is added to E.

The last time we execute the for loop in lines 7–14, the edges with one vertex in
the tree and one vertex not in the tree are

Edge Weight

(1, 2) 4
(2, 4) 5

The edge (1, 2) with minimum weight is selected. At lines 15 and 16, vertex 2 is added
to the minimal spanning tree and edge (1, 2) is added to E. The minimal spanning tree
constructed is shown in Figure 4.3.

Prim’s Algorithm furnishes an example of a greedy algorithm. A greedy algo-
rithm is an algorithm that optimizes the choice at each iteration. The principle can
be summarized as “doing the best locally.” In Prim’s Algorithm, since we want a
minimal spanning tree, at each iteration we simply add an available edge with mini-
mum weight.

Optimizing at each iteration does not necessarily give an optimal solution to the
original problem. We will show shortly (Theorem 4.5) that Prim’s Algorithm is correct—
we do obtain a minimal spanning tree. As an example of a greedy algorithm that does not
lead to an optimal solution, consider a “shortest-path algorithm” in which at each step
we select an available edge having minimum weight incident on the most recently added
vertex. If we apply this algorithm to the weighted graph of Figure 4.4 to find a shortest
path from a to z, we would select the edge (a, c) and then the edge (c, z). Unfortunately,
this is not the shortest path from a to z.

2 4

61

8

b

a

c

z

Figure 4.4 A graph that shows that
selecting an edge having minimum
weight incident on the most
recently added vertex does
not necessarily yield a shortest
path. Starting at a, we obtain
(a, c, z), but the shortest path from
a to z is (a, b, z).

We next show that Prim’s Algorithm is correct.

Theorem 4.5 Prim’s Algorithm (Algorithm 4.3) is correct; that is, at the termination of Algo-
rithm 4.3, T is a minimal spanning tree.

Proof We let Ti denote the graph constructed by Algorithm 4.3 after the ith iteration
of the for loop, lines 5–17. More precisely, the edge set of Ti is the set E constructed
after the ith iteration of the for loop, lines 5–17, and the vertex set of Ti is the set of
vertices on which the edges in E are incident. We let T0 be the graph constructed by
Algorithm 4.3 just before the for loop at line 5 is entered for the first time; T0 consists
of the single vertex s and no edges. Subsequently in this proof, we suppress the vertex
set and refer to a graph by specifying its edge set.

By construction, at the termination of Algorithm 4.3, the resulting graph, Tn−1,
is a connected, acyclic subgraph of the given graph G containing all the vertices of
G; hence Tn−1 is a spanning tree of G.

531

Trees

We use induction to show that for all i = 0, . . . , n−1, Ti is contained in a mini-
mal spanning tree. It then follows that at termination, Tn−1 is a minimal spanning tree.

If i = 0, T0 consists of a single vertex. In this case T0 is contained in every
minimal spanning tree. We have verified the Basis Step.

Next, assume that Ti is contained in a minimal spanning tree T ′. Let V be the
set of vertices in Ti. Algorithm 4.3 selects an edge (j, k) of minimum weight, where
j ∈ V and k /∈ V , and adds it to Ti to produce Ti+1. If (j, k) is in T ′, then Ti+1 is
contained in the minimal spanning tree T ′. If (j, k) is not in T ′, T ′ ∪ {(j, k)} contains
a cycle C. Choose an edge (x, y) in C, different from (j, k), with x ∈ V and y /∈ V .
Then

w(x, y) ≥ w(j, k). (4.1)

Because of (4.1), the graph T ′′ = [T ′∪{(j, k)}]−{(x, y)} has weight less than or equal
to the weight of T ′. Since T ′′ is a spanning tree, T ′′ is a minimal spanning tree. Since
Ti+1 is contained in T ′′, the Inductive Step has been verified. The proof is complete.

Our version of Prim’s Algorithm examines �(n3) edges in the worst case (see
Exercise 6) to find a minimal spanning tree for a graph having n vertices. It is possible
(see Exercise 8) to implement Prim’s Algorithm so that only �(n2) edges are examined
in the worst case. Since Kn has �(n2) edges, the latter version is optimal.

Section Review Exercises

1. What is a minimal spanning tree?

2. Explain how Prim’s Algorithm finds a minimal spanning tree.

3. What is a greedy algorithm?

Exercises

In Exercises 1–5, find the minimal spanning tree given by Algo-
rithm 4.3 for each graph.

1.

1

5

2 4

3

3 21

4

3

3
1

2.

7 8 9

1 2 3

4 6

12 5

8 9

2

4

10

1

11 5

13 3

6
7

14

3.
1

3

5

2

4

6

2

2

3

3
1

3
3

4

2

4. 1

10

2

11

3

12

10

3

5

4

2

4

7

6

9

4

3

5

6

4

4 3

8 8

5

26

2 9

8

6

6

3 7
5

532

Trees

5.

13

12

7

1

14

5

9

7

4

7

5 2 7

9

10

515

3

16

4

8
1

6

1
14

4

4
6

2

6
2

6
6

4
7

11

13 2

1

4

8

1110

8

6. Show that Algorithm 4.3 examines �(n3) edges in the worst
case.

Exercises 7–9 refer to an alternate version of Prim’s Algorithm
(Algorithm 4.6).

Algorithm 4.6
Alternate Version of Prim’s Algorithm
This algorithm finds a minimal spanning tree in a connected,
weighted graph G. At each step, some vertices have temporary
labels and some have permanent labels. The label of vertex i is
denoted Li.

Input: A connected, weighted graph with vertices 1, . . . , n

and start vertex s. If (i, j) is an edge, w(i, j) is equal
to the weight of (i, j); if (i, j) is not an edge, w(i, j) is
equal to∞ (a value greater than any actual weight).

Output: A minimal spanning tree T

prim alternate(w, n, s) {
let T be the graph with vertex s and no edges
for j = 1 to n {

Lj = w(s, j) // these labels are temporary
back(j) = s

}
Ls = 0
make Ls permanent
while (temporary labels remain) {

choose the smallest temporary label Li

make Li permanent
add edge (i, back(i)) to T

add vertex i to T

for each temporary label Lk

if (w(i, k) < Lk) {
Lk = w(i, k)

back(k) = i

}
}
return T

}

7. Show how Algorithm 4.6 finds a minimal spanning tree for the
graphs of Exercises 1–5.

8. Show that Algorithm 4.6 examines �(n2) edges in the worst
case.

9. Prove that Algorithm 4.6 is correct; that is, at the termination
of Algorithm 4.6, T is a minimal spanning tree.

10. Let G be a connected, weighted graph, let v be a vertex in G,
and let e be an edge of minimum weight incident on v. Show
that e is contained in some minimal spanning tree.

11. Let G be a connected, weighted graph and let v be a vertex
in G. Suppose that the weights of the edges incident on v are
distinct. Let e be the edge of minimum weight incident on v.
Must e be contained in every minimal spanning tree?

12. Show that any algorithm that finds a minimal spanning tree in
Kn, when all the weights are the same, must examine every
edge in Kn.

13. Show that if all weights in a connected graph G are distinct,
G has a unique minimal spanning tree.

In Exercises 14–16, decide if the statement is true or false. If the
statement is true, prove it; otherwise, give a counterexample. In
each exercise, G is a connected, weighted graph.

14. If all the weights in G are distinct, distinct spanning trees of
G have distinct weights.

15. If e is an edge in G whose weight is less than the weight of
every other edge, e is in every minimal spanning tree of G.

16. If T is a minimal spanning tree of G, there is a labeling of the
vertices of G so that Algorithm 4.3 produces T.

17. Let G be a connected, weighted graph. Show that if, as long as
possible, we remove an edge from G having maximum weight
whose removal does not disconnect G, the result is a minimal
spanning tree for G.

�18. Write an algorithm that finds a maximal spanning tree in a
connected, weighted graph.

19. Prove that your algorithm in Exercise 18 is correct.

Kruskal’s Algorithm finds a minimal spanning tree in a connected,
weighted graph G having n vertices as follows. The graph T ini-
tially consists of the vertices of G and no edges. At each iteration,
we add an edge e to T having minimum weight that does not com-
plete a cycle in T. When T has n− 1 edges, we stop.

20. Formally state Kruskal’s Algorithm.

21. Show how Kruskal’s Algorithm finds minimal spanning trees
for the graphs of Exercises 1–5.

22. Show that Kruskal’s Algorithm is correct; that is, at the termi-
nation of Kruskal’s Algorithm, T is a minimal spanning tree.

23. LetV be a set ofnvertices and let s be a “dissimilarity function”
on V×V (see Example 8.1.7). Let G be the complete, weighted
graph having vertices V and weights w(vi, vj)= s(vi, vj).
Modify Kruskal’s Algorithm so that it groups data into classes.
This modification is known as the method of nearest neigh-
bors (see [Gose]).

Exercises 24–30 refer to the following situation. Suppose that we
have stamps of various denominations and that we want to choose
the minimum number of stamps to make a given amount of postage.
Consider a greedy algorithm that selects stamps by choosing as

533

Trees

many of the largest denomination as possible, then as many of the
second-largest denomination as possible, and so on.

24. Show that if the available denominations are 1, 8, and 10 cents,
the algorithm does not always produce the fewest number of
stamps to make a given amount of postage.

�25. Show that if the available denominations are 1, 5, and 25 cents,
the algorithm produces the fewest number of stamps to make
any given amount of postage.

26. Find positive integers a1 and a2 such that a1 > 2a2 > 1, a2

does not divide a1, and the algorithm, with available denomi-
nations 1, a1, a2, does not always produce the fewest number
of stamps to make a given amount of postage.

�27. Find positive integers a1 and a2 such that a1 > 2a2 > 1, a2

does not divide a1, and the algorithm, with available denom-
inations 1, a1, a2, produces the fewest number of stamps to
make any given amount of postage. Prove that your values do
give an optimal solution.

�28. Suppose that the available denominations are

1 = a1 < a2 < · · · < an.

Show, by giving counterexamples, that the condition

ai ≥ 2ai−1 − ai−2, 3 ≤ i ≤ n,

is neither necessary nor sufficient for the greedy algorithm to
be optimal for all amounts of postage.

�29. Suppose that the available denominations are

1 = a1 < a2 < · · · < am.

Prove that if the greedy algorithm is optimal for all amounts of
postage less than am−1+am, then it is optimal for all amounts
of postage.

30. Show that the bound am−1 + am in Exercise 29 cannot be
lowered.

31. What is wrong with the following “proof” that the greedy algo-
rithm is optimal for all amounts of postage for the denomina-
tions 1, 5, and 6?

We will prove that for all i ≥ 1, the greedy algorithm is
optimal for all amounts of postage n ≤ 6i. The Basis Step is
i = 1, which is true by inspection.

For the Inductive Step, assume that the greedy algorithm
is optimal for all amounts of postage n ≤ 6i. We must show
that the greedy algorithm is optimal for all amounts of postage
n ≤ 6(i + 1). We may assume that n > 6i. Now n − 6 ≤ 6i,
so by the inductive assumption, the greedy algorithm is opti-
mal for n − 6. Suppose that the greedy algorithm chooses k

stamps for n − 6. In determining the postage for the amount
n, the greedy algorithm will first choose a 6-cent stamp and
then stamps for n− 6 for a total of k + 1 stamps These k + 1
stamps must be optimal or otherwise n−6 would use less than
k stamps. The Inductive Step is complete.

5 ➜ Binary Trees

Binary trees are among the most important special types of rooted trees. Every vertex
in a binary tree has at most two children (see Figure 5.1). Moreover, each child is
designated as either a left child or a right child. When a binary tree is drawn, a left
child is drawn to the left and a right child is drawn to the right. The formal definition
follows.

f g

b c

a

e
d

Figure 5.1 A binary tree.

Definition 5.1 A binary tree is a rooted tree in which each vertex has either no children, one child, or
two children. If a vertex has one child, that child is designated as either a left child or
a right child (but not both). If a vertex has two children, one child is designated a left
child and the other child is designated a right child.

Example 5.2 In the binary tree of Figure 5.1, vertex b is the left child of vertex a and vertex c is the
right child of vertex a. Vertex d is the right child of vertex b; vertex b has no left child.
Vertex e is the left child of vertex c; vertex c has no right child.

Example 5.3 A tree that defines a Huffman code is a binary tree. For example, in the Huffman coding
tree of Figure 1.10, moving from a vertex to a left child corresponds to using the bit 1,
and moving from a vertex to a right child corresponds to using the bit 0.

534

Trees

A full binary tree is a binary tree in which each vertex has either two children or
zero children. A fundamental result about full binary trees is our next theorem.

Theorem 5.4 If T is a full binary tree with i internal vertices, then T has i + 1 terminal vertices
and 2i+ 1 total vertices.

Proof The vertices of T consist of the vertices that are children (of some parent)
and the vertices that are not children (of any parent). There is one nonchild—the root.
Since there are i internal vertices, each having two children, there are 2i children.
Thus the total number of vertices of T is 2i+1, and the number of terminal vertices is

(2i+ 1)− i = i+ 1.

Example 5.5 A single-elimination tournament is a tournament in which a contestant is eliminated
after one loss. The graph of a single-elimination tournament is a full binary tree (see
Figure 5.2). The contestants’ names are listed on the left. Winners progress to the right.
Eventually, there is a single winner at the root. If the number of contestants is not a power
of 2, some contestants receive byes. In Figure 5.2, contestant 7 has a first-round bye.

Root
Winner

Contestant 1

Contestant 2

Contestant 3

Contestant 4

Contestant 5

Contestant 6

Contestant 7

Contestant m �1

Contestant m

Figure 5.2 The graph (full binary tree) of a single-elimination tournament.

We show that if there are n contestants in a single-elimination tournament, a total
of n− 1 matches are played.

The number of contestants is the same as the number of terminal vertices, and
the number of matches i is the same as the number of internal vertices. Thus, by
Theorem 5.4,

n+ i = 2i+ 1,

so that i = n− 1.

535

Trees

Our next result about binary trees relates the number of terminal vertices to the
height.

Theorem 5.6 If a binary tree of height h has t terminal vertices, then

lg t ≤ h. (5.1)

Proof We will prove the equivalent inequality

t ≤ 2h (5.2)

by induction on h. Inequality (5.1) is obtained from (5.2) by taking the logarithm to
the base 2 of both sides of (5.2).

If h = 0, the binary tree consists of a single vertex. In this case, t = 1 and thus
(5.2) is true.

Assume that the result holds for a binary tree whose height is less than h. Let T

be a binary tree of height h > 0 with t terminal vertices. Suppose first that the root of
T has only one child. If we eliminate the root and the edge incident on the root, the
resulting tree has height h− 1 and the same number of terminals as T. By induction,
t ≤ 2h−1. Since 2h−1 < 2h, (5.2) is established for this case.

Now suppose that the root of T has children v1 and v2. Let Ti be the subtree
rooted at vi and suppose that Ti has height hi and ti terminal vertices, i = 1, 2. By
induction,

ti ≤ 2hi , i = 1, 2. (5.3)

The terminal vertices of T consist of the terminal vertices of T1 and T2. Hence

t = t1 + t2. (5.4)

Combining (5.3) and (5.4), we obtain

t = t1 + t2 ≤ 2h1 + 2h2 ≤ 2h−1 + 2h−1 = 2h.

The inductive step has been verified and the proof is complete.

Example 5.7 The binary tree in Figure 5.3 has height h = 3 and the number of terminals t = 8. For
this tree, the inequality (5.1) becomes an equality.

Figure 5.3 A binary tree of height h = 3 with t = 8
terminals. For this binary tree, lg t = h.

Suppose that we have a set S whose elements can be ordered. For example, if S

consists of numbers, we can use ordinary ordering defined on numbers, and if S consists

536

Trees

of strings of alphabetic characters, we can use lexicographic order. Binary trees are used
extensively in computer science to store elements from an ordered set such as a set of
numbers or a set of strings. If data item d(v) is stored in vertex v and data item d(w) is
stored in vertex w, then if v is a left child (or right child) of w, some ordering relationship
will be guaranteed to exist between d(v) and d(w). One example is a binary search tree.

Definition 5.8 A binary search tree is a binary tree T in which data are associated with the vertices.
The data are arranged so that, for each vertex v in T, each data item in the left subtree
of v is less than the data item in v, and each data item in the right subtree of v is greater
than the data item in v.

Example 5.9 The words

old programmers never die

they just lose their memories (5.5)

may be placed in a binary search tree as shown in Figure 5.4. Notice that for any vertex
v, each data item in the left subtree of v is less than (i.e., precedes alphabetically) the data
item in v and each data item in the right subtree of v is greater than the data item in v.

OLD

NEVER PROGRAMMERS

JUST THEIR

DIE THEY

MEMORIES

LOSE T

Figure 5.4 A binary search tree.

In general, there will be many ways to place data into a binary search tree.
Figure 5.5 shows another binary search tree that stores the words (5.5).

The binary search tree T of Figure 5.4 was constructed in the following way.
We inspect each of the words (5.5) in the order in which they appear, old first, then
programmers, then never, and so on. To start, we create a vertex and place the first
word old in this vertex. We designate this vertex the root. Thereafter, given a word in
the list (5.5), we add a vertex v and an edge to the tree and place the word in the vertex
v. To decide where to add the vertex and edge, we begin at the root. If the word to be
added is less than (using lexicographic order) the word at the root, we move to the left
child; if the word to be added is greater than the word at the root, we move to the right
child. If there is no child, we create one, put in an edge incident on the root and new

537

Trees

NEVER

JUST PROGRAMMERS

MEMORIES THEY

DIE THEIROLDLOSE

Figure 5.5 Another binary search tree that stores the same words as the tree in
Figure 5.4.

vertex, and place the word in the new vertex. If there is a child v, we repeat this process.
That is, we compare the word to be added with the word at v and move to the left child
of v if the word to be added is less than the word at v; otherwise, we move to the right
child of v. If there is no child to move to, we create one, put in an edge incident on v

and the new vertex, and place the word in the new vertex. If there is a child to move
to, we repeat this process. Eventually, we place the word in the tree. We then get the
next word in the list, compare it with the root, move left or right, compare it with the
new vertex, move left or right, and so on, and eventually store it in the tree. In this way,
we store all of the words in the tree and thus create a binary search tree. We formally
state this method of constructing a binary search tree as Algorithm 5.10.

Algorithm 5.10 Constructing a Binary Search Tree

This algorithm constructs a binary search tree. The input is read in the order submitted.
After each word is read, it is inserted into the tree.

Input: A sequence w1, . . . , wn of distinct words and the length n of the
sequence

Output: A binary search tree T

make bin search tree(w, n) {
let T be the tree with one vertex, root
store w1 in root
for i = 2 to n {

v = root
search = true // find spot for wi

while (search) {
s = word in v

if (wi < s)

if (v has no left child) {
add a left child l to v

store wi in l

search = false // end search
}
else

v = left child of v

else // wi > s

538

Trees

if (v has no right child) {
add a right child r to v

store wi in r

search = false // end search
}
else

v = right child of v

} // end while
} // end for
return T

}

Binary search trees are useful for locating data. That is, given a data item D, we
can easily determine if D is in a binary search tree and, if it is present, where it is located.
To determine if a data item D is in a binary search tree, we would begin at the root. We
would then repeatedly compare D with the data item at the current vertex. If D is equal
to the data item at the current vertex, we have found D, so we stop. If D is less than the
data item at the current vertex v, we move to v’s left child and repeat this process. If D

is greater than the data item at the current vertex v, we move to v’s right child and repeat
this process. If at any point the child to move to is missing, we conclude that D is not in
the tree. (Exercise 6 asks for a formal statement of this process.)

The time spent searching for an item in a binary search tree is longest when the
item is not present and we follow a longest path from the root. Thus the maximum time
to search for an item in a binary search tree is approximately proportional to the height
of the tree. Therefore, if the height of a binary search tree is small, searching the tree will
always be very fast (see Exercise 25). Many ways are known to minimize the height of
a binary search tree (see, e.g., [Cormen]).

We make more precise statements about worst-case searching in a binary search
tree. Let T be a binary search tree with n vertices and let T ∗ be the full binary tree obtained
from T by adding left and right children to existing vertices in T wherever possible. In
Figure 5.6, we show the full binary tree that results from modifying the binary search
tree of Figure 5.4. The added vertices are drawn as boxes. An unsuccessful search in T

corresponds to arriving at an added (box) vertex in T ∗. Let us define the worst-case time
needed to execute the search procedure as the height h of the tree T ∗. By Theorem 5.6,
lg t ≤ h, where t is the number of terminal vertices in T ∗. The full binary tree T ∗ has n

internal vertices, so by Theorem 5.4, t = n+ 1. Thus in the worst case, the time will be
equal to at least lg t = lg(n+ 1). Exercise 7 shows that if the height of T is minimized,
the worst case requires time equal to �lg(n+ 1)�. For example, since

�lg(2,000,000+ 1)� = 21,

it is possible to store 2 million items in a binary search tree and find an item, or determine
that it is not present, in at most 21 steps.

T*

Figure 5.6 Expanding a binary
search tree to a full binary tree.

Section Review Exercises

1. Define binary tree.

2. What is a left child in a binary tree?

3. What is a right child in a binary tree?

4. What is a full binary tree?

5. If T is a full binary tree with i internal vertices, how many
terminal vertices does T have?

6. If T is a full binary tree with i internal vertices, how many total
vertices does T have?

539

Trees

7. How is the height of a binary tree related to the number of its
terminal vertices?

8. What is a binary search tree?

9. Give an example of a binary search tree.

10. Give an algorithm to construct a binary search tree.

Exercises

Exercises 1–4 concern n teams that play a single-elimination
tournament.

1. After the teams are assigned, in how many ways can the tourna-
ment unfold? For example, if there are three teams, Scientists,
Whales, Pilots, assigned as

Scientists

Whales

Pilots

one way the tournament can unfold is

Scientists

Whales

Whales

Pilots

Whales

There are three other ways that the tournament can unfold:

(a) Whales defeat Scientists; Pilots defeat Whales.

(b) Scientist defeat Whales; Scientists defeat Pilots.

(c) Scientist defeat Whales; Pilots defeat Scientists.

Thus, if three teams play a single-elimination tournament, after
the teams are assigned, the tournament can unfold in four ways.

2. As of 2007, the NCAA men’s basketball tournament was a
65-team single-elimination tournament. After the teams are
assigned, in how many ways can the tournament unfold? How
many (base-10) digits does this number have?

3. Suppose that after the teams are assigned in the NCAA men’s
basketball tournament, someone randomly guesses how the
tournament will unfold. What is the probability that the guess
is correct?

4. Is the value in Exercise 3 a good estimate of the chance that
someone knowledgeable about basketball will successfully
predict how the tournament will unfold?

5. Place the words FOUR SCORE AND SEVEN YEARS AGO
OUR FOREFATHERS BROUGHT FORTH, in the order in
which they appear, in a binary search tree.

6. Write a formal algorithm for searching in a binary search tree.

7. Write an algorithm that stores n distinct words in a binary
search tree T of minimal height. Show that the derived tree T ∗,
as described in the text, has height �lg(n+ 1)�.

8. True or false? Let T be a binary tree. If for every vertex v in T

the data item in v is greater than the data item in the left child
of v and the data item in v is less than the data item in the right

child of v, then T is a binary search tree. Explain.

In Exercises 9–11, draw a graph having the given properties or
explain why no such graph exists.

9. Full binary tree; four internal vertices; five terminal vertices

10. Full binary tree; height = 3; nine terminal vertices

11. Full binary tree; height = 4; nine terminal vertices

12. A full m-ary tree is a rooted tree such that every parent has
m ordered children. If T is a full m-ary tree with i internal
vertices, how many vertices does T have? How many terminal
vertices does T have? Prove your results.

13. Give an algorithm for constructing a full binary tree with n > 1
terminal vertices.

14. Give a recursive algorithm to insert a word in a binary search
tree.

15. Find the maximum height of a full binary tree having t terminal
vertices.

16. Write an algorithm that tests whether a binary tree in which
data are stored in the vertices is a binary search tree.

17. Let T be a full binary tree. Let I be the sum of the lengths
of the simple paths from the root to the internal vertices. We
call I the internal path length. Let E be the sum of the lengths
of the simple paths from the root to the terminal vertices. We
call E the external path length. Prove that if T has n internal
vertices, then E = I + 2n.

A binary tree T is balanced if for every vertex v in T, the heights of
the left and right subtrees of v differ by at most 1. (Here the height
of a “missing subtree” is defined to be −1.)

State whether each tree in Exercises 18–21 is balanced or not.

18. a

b c

d

19.
a

cb

d e

20.
a

cb

g h

d e f

21. a

hg

b

d e f

c

540

Trees

In Exercises 22–24, Nh is defined as the minimum number of
vertices in a balanced binary tree of height h and f1, f2, . . . denotes
the Fibonacci sequence.

22. Show that N0 = 1, N1 = 2, and N2 = 4.

23. Show that Nh = 1+Nh−1 +Nh−2, for h ≥ 0.

24. Show that Nh = fh+3 − 1, for h ≥ 0.

�25. Show that the height h of an n-vertex balanced binary tree
satisfies h = O(lg n). This result shows that the worst-case

time to search in an n-vertex balanced binary search tree is
O(lg n).

�26. Prove that if a binary tree of height h has n ≥ 1 vertices, then
lg n < h+1. This result, together with Exercise 25, shows that
the worst-case time to search in an n-vertex balanced binary
search tree is �(lg n).

6 ➜ Tree Traversals

Breadth-first search and depth-first search provide ways to “walk” a tree, that is, to
traverse a tree in a systematic way so that each vertex is visited exactly once. In this
section we consider three additional tree-traversal methods. We define these traversals
recursively.

Algorithm 6.1 Preorder Traversal

This recursive algorithm processes the vertices of a binary tree using preorder
traversal.

Input: PT, the root of a binary tree, or the special value null to indicate
that no tree is input

Output: Dependent on how “process” is interpreted in line 3

preorder(PT) {
1. if (PT == null)
2. return
3. process PT
4. l = left child of PT
5. preorder(l)
6. r = right child of PT
7. preorder(r)
}

Let us examine Algorithm 6.1 for some simple cases. If no tree is input (i.e.,
PT equals null), nothing is processed since, in this case, the algorithm simply returns
at line 2.

Suppose that the input consists of a tree with a single vertex. We set PT to the
root and call preorder(PT). Since PT is not equal to null, we proceed to line 3, where
we process the root. At line 5, we call preorder with PT equal to null since there is
no left child. However, we just saw that when no tree is input to preorder, nothing
is processed. Similarly at line 7, when no tree is input to preorder, again nothing is
processed. Thus when the input consists of a tree with a single vertex, we process the root
and return.

Now suppose that the input is the tree of Figure 6.1. We set PT to the root and
call preorder(PT). Since PT is not equal to null, we proceed to line 3, where we process
the root. At line 5 we call preorder with PT equal to the left child of the root (see
Figure 6.2). We just saw that if the tree input to preorder consists of a single vertex,
preorder processes that vertex. Thus we next process vertex B. Similarly, at line 7, we
process vertex C. Thus the vertices are processed in the order ABC.

541

Trees

A

B C

Figure 6.1
Input for
Algorithm 6.1.

PT

B

Figure 6.2
At line 5 of
Algorithm 6.1,
where the input is
the tree of
Figure 6.1.

Example 6.2 In what order are the vertices of the tree of Figure 6.3 processed if preorder traversal is
used?

A

B F

D G

E H

I

C

J

Figure 6.3 A binary tree.
Preorder is ABCDEFGHIJ .
Inorder is CBDEAFIHJG.
Postorder is CEDBIJHGFA.

Following lines 3–7 (root/left/right) of Algorithm 6.1, the traversal proceeds as
shown in Figure 6.4. Thus the order of processing is ABCDEFGHIJ.

B

C D

F

G

C

LeftRoot Right

Root Left Right

Root Left

FB

Right

H

I J
E

Root Left Right

H

I J

G

H

I J

Root Left Right

RightLeft

A

A

A B C D E F G H I J

B C D E F G

D

E

Root

Figure 6.4 Preorder traversal of the tree in Figure 6.3.

542

Trees

Inorder traversal and postorder traversal are obtained by changing the position of
line 3 (root) in Algorithm 6.1. “Pre,” “in,” and “post” refer to the position of the root
in the traversal; that is, “preorder” means root first, “inorder” means root second, and
“postorder” means root last.

Algorithm 6.3 Inorder Traversal

This recursive algorithm processes the vertices of a binary tree using inorder traversal.

Input: PT, the root of a binary tree, or the special value null to indicate
that no tree is input

Output: Dependent on how “process” is interpreted in line 5

inorder(PT) {
1. if (PT == null)
2. return
3. l = left child of PT
4. inorder(l)
5. process PT
6. r = right child of PT
7. inorder(r)
}

Example 6.4 In what order are the vertices of the binary tree of Figure 6.3 processed if inorder traversal
is used?

Following lines 3–7 (left/root/right) of Algorithm 6.3, we obtain the inorder listing
CBDEAFIHJG.

Algorithm 6.5 Postorder Traversal

This recursive algorithm processes the vertices of a binary tree using postorder
traversal.

Input: PT, the root of a binary tree, or the special value null to indicate
that no tree is input

Output: Dependent on how “process” is interpreted in line 7

postorder(PT) {
1. if (PT == null)
2. return
3. l = left child of PT
4. postorder(l)
5. r = right child of PT
6. postorder(r)
7. process PT
}

Example 6.6 In what order are the vertices of the binary tree of Figure 6.3 processed if postorder
traversal is used?

Following lines 3–7 (left/right/root) of Algorithm 6.5, we obtain the postorder
listing CEDBIJHGFA.

543

Trees

A

B

D

E

F

G

H

I J

C

START
END

Figure 6.5 Preorder traversal.

A

B

D

E

F

G

H

I J

C

END
START

Figure 6.6 Reverse postorder
traversal.

Notice that preorder traversal may be obtained by following the route shown in
Figure 6.5, and that reverse postorder traversal may be obtained by following the route
shown in Figure 6.6.

If data are stored in a binary search tree, as described in Section 5, inorder traversal
will process the data in order, since the sequence left/root/right agrees with the ordering
of the data in the tree.

In the remainder of this section we consider binary tree representations of arith-
metic expressions. Such representations facilitate the computer evaluation of expres-
sions.

We will restrict our operators to +, −, ∗, and /. An example of an expression
involving these operators is

(A+ B) ∗ C −D/E. (6.1)

This standard way of representing expressions is called the infix form of an expression.
The variables A, B, C, D, and E are referred to as operands. The operators +, −, ∗,
and / operate on pairs of operands or expressions. In the infix form of an expression, an
operator appears between its operands.

�

* /

D E

A B

+ C

Figure 6.7 The
binary tree
representation of the
expression
(A+B) ∗C−D/E.

An expression such as (6.1) can be represented as a binary tree. The terminal
vertices correspond to the operands, and the internal vertices correspond to the operators.
The expression (6.1) would be represented as shown in Figure 6.7. In the binary tree
representation of an expression, an operator operates on its left and right subtrees. For
example, in the subtree whose root is / in Figure 6.7, the divide operator operates on
the operands D and E; that is, D is to be divided by E. In the subtree whose root is ∗ in
Figure 6.7, the multiplication operator operates on the subtree headed by+, which itself
represents an expression, and C.

In a binary tree we distinguish the left and right subtrees of a vertex. The left
and right subtrees of a vertex correspond to the left and right operands or expressions.
This left/right distinction is important in expressions. For example, 4− 6 and 6− 4 are
different.

If we traverse the binary tree of Figure 6.7 using inorder, and insert a pair of
parentheses for each operation, we obtain

(((A+ B) ∗ C)− (D/E)) .

This form of an expression is called the fully parenthesized form of the expression. In
this form we do not need to specify which operations (such as multiplication) are to be

544

Trees

performed before others (such as addition), since the parentheses unambiguously dictate
the order of operations.

If we traverse the tree of Figure 6.7 using postorder, we obtain

AB+C∗DE/− .

This form of the expression is called the postfix form of the expression (or reverse
Polish notation). In postfix, the operator follows its operands. For example, the first
three symbols AB+ indicate that A and B are to be added. Advantages of the postfix
form over the infix form are that in postfix no parentheses are needed and no conventions
are necessary regarding the order of operations. The expression will be unambiguously
evaluated. For these reasons and others, many compilers translate infix expressions
to postfix form. Also, some calculators require expressions to be entered in postfix
form.

A third form of an expression can be obtained by applying preorder traversal to a
binary tree representation of an expression. In this case, the result is called the prefix
form of the expression (or Polish notation). As in postfix, no parentheses are needed
and no conventions are necessary regarding the order of operations. The prefix form of
(6.1), obtained by applying preorder traversal to the tree of Figure 6.7, is

− ∗ +ABC/DE.

Section Review Exercises

1. What is preorder traversal?

2. Give an algorithm to execute a preorder traversal.

3. What is inorder traversal?

4. Give an algorithm to execute an inorder traversal.

5. What is postorder traversal?

6. Give an algorithm to execute a postorder traversal.

7. What is the prefix form of an expression?

8. What is an alternative name of the prefix form of an expression?

9. What is the infix form of an expression?

10. What is the postfix form of an expression?

11. What is an alternative name of the postfix form of an
expression?

12. What advantages do prefix and postfix forms of expressions
have over the infix form?

13. Explain how a tree can be used to represent an expression.

Exercises

In Exercises 1–5, list the order in which the vertices are processed
using preorder, inorder, and postorder traversal.

1.

B

D E

C

A
2.

C

B

A

D

E

F

3.

CB

D

E

F G

ML

I

H

J

K

A
4.

B

D

E

A

C

545

Trees

5.

B

C

A

D G

F

E

In Exercises 6–10, represent the expression as a binary tree and
write the prefix and postfix forms of the expression.

6. (A+ B) ∗ (C −D)

7. ((A− C) ∗D) / (A+ (B +D))

8. (A ∗ B + C ∗D)− (A/B − (D+ E))

9. (((A+ B) ∗ C +D) ∗ E)− ((A+ B) ∗ C −D)

10. (A ∗ B − C/D+ E)+ (A− B − C −D ∗D)/(A+ B + C)

In Exercises 11–15, represent the postfix expression as a binary
tree and write the prefix form, the usual infix form, and the fully
parenthesized infix form of the expression.

11. AB+C− 12. ABC+−
13. ABCD+∗/E− 14. ABC∗∗CDE+/−
15. AB+CD∗EF/−−A∗
In Exercises 16–21, find the value of the postfix expression if A = 1,
B = 2, C = 3, and D = 4.

16. ABC+− 17. AB+C−
18. AB+CD∗AA/−−B∗ 19. ABC∗∗ABC++−
20. ABAB∗+∗D∗ 21. ADBCD∗−+∗
22. Show, by example, that distinct binary trees with vertices A,

B, and C can have the same preorder listing ABC.

23. Show that there is a unique binary tree with six vertices whose
preorder vertex listing is ABCEFD and whose inorder vertex
listing is ACFEBD.

�24. Write an algorithm that reconstructs the binary tree given its
preorder and inorder vertex orderings.

25. Give examples of distinct binary trees, B1 and B2, each with
two vertices, with the preorder vertex listing of B1 equal to the
preorder listing of B2 and the postorder vertex listing of B1

equal to the postorder listing of B2.

26. Let P1 and P2 be permutations of ABCDEF . Is there a binary
tree with vertices A, B, C, D, E, and F whose preorder listing
is P1 and whose inorder listing is P2? Explain.

27. Write a recursive algorithm that prints the contents of the ter-
minal vertices of a binary tree from left to right.

28. Write a recursive algorithm that interchanges all left and right
children of a binary tree.

29. Write a recursive algorithm that initializes each vertex of a
binary tree to the number of its descendants.

30. Write an algorithm that returns the number of terminal nodes
in a binary tree.

31. Prove that the algorithm

funnyorder(PT) {
if (PT == null)

return
process PT
r = right child of PT
funnyorder(r)
l = left child of PT
funnyorder(l)

}

visits the nodes in the reverse order of postorder.

In Exercises 32 and 33, every expression involves only the operands
A, B, . . . , Z and the operators +, −, ∗, /.

�32. Give a necessary and sufficient condition for a string of sym-
bols to be a valid postfix expression.

33. Write an algorithm that, given the binary tree representation
of an expression, outputs the fully parenthesized infix form of
the expression.

34. Write an algorithm that prints the characters and their codes
given a Huffman coding tree (see Example 1.8). Assume that
each terminal vertex stores a character and its frequency.

Use the following definitions in Exercises 35–40.
Let G = (V, E) be a simple undirected graph. A ver-

tex cover of G is a subset V ′ of V such that for each edge
(v, w) ∈ E, either v ∈ V ′ or w ∈ V ′. The size of a vertex
cover V ′ is the number of vertices in V ′. An optimal vertex
cover is a vertex cover of minimum size.

An edge disjoint set for G is a subset E′ of E such that
for every pair of distinct edges e1 = (v1, w1) and e2 =
(v2, w2) in E′, we have

{v1, w1} ∩ {v2, w2} = ∅.

35. Prove that for every n, there is a connected graph with n ver-
tices that has a vertex cover of size 1.

36. Show that the size of an optimal vertex cover of the complete
graph on n vertices is n− 1.

37. Could the size of an optimal vertex cover of a graph with n

vertices equal n? Explain.

�38. Write an algorithm that finds an optimal vertex cover of a tree
T = (V, E) whose worst-case time is �(|E|).

39. Show that if V ′ is any vertex cover of a graph G and E′ is any
edge disjoint set for G, then |E′| ≤ |V ′|.

40. Give an example of a connected graph in which, for every
vertex cover V ′ and every edge disjoint set E′, we have
|E′| < |V ′|. Prove that your example has the required property.

41. Show how a binary tree with n edges can be encoded as a
string of n + 1 ones and n + 1 zeros where, reading from
left to right, the number of zeros never exceeds the number
of ones. Show that each such string represents a binary tree.

546

Trees

Hint: Consider a preorder traversal of the binary tree in which
a one means that an edge is present, and a zero means that an

edge is absent. Add an extra one to the beginning of the string,
and delete the last zero.

7 ➜ Decision Trees and the Minimum Time for Sorting

The binary tree of Figure 7.1 gives an algorithm for choosing a restaurant. Each internal
vertex asks a question. If we begin at the root, answer each question, and follow the
appropriate edge, we will eventually arrive at a terminal vertex that chooses a restaurant.
Such a tree is called a decision tree. In this section we use decision trees to specify
algorithms and to obtain lower bounds on the worst-case time for sorting as well as
solving certain coin puzzles. We begin with coin puzzles.

Spanish ?

Cheap ?

Afghan ? Polish ?

3 Stars ?No Yes

No Yes

No Yes

No Yes

No Yes

On
the
Tao

Cafe
Ba-Ba-Reeba!

Helmand Aurelio's
Pizza

Senkowski
Home
Bakery

Jimmy's
Place

Figure 7.1 A decision tree.

Example 7.1 Five-Coins Puzzle

Five coins are identical in appearance, but one coin is either heavier or lighter than the
others, which all weigh the same. The problem is to identify the bad coin and determine
whether it is heavier or lighter than the others using only a pan balance (see Figure 7.2),
which compares the weights of two sets of coins.

Figure 7.2 A pan balance for
comparing weights of coins.

An algorithm to solve the puzzle is given in Figure 7.3 as a decision tree. The coins
are labeled C1, C2, C3, C4, C5. As shown, we begin at the root and place coin C1 in the
left pan and coin C2 in the right pan.An edge labeled means that the left side of the pan
balance is heavier than the right side. Similarly, an edge labeled means that the right
side of the pan balance is heavier than the left side, and an edge labeled means that the
two sides balance. For example, at the root when we compare C1 with C2, if the left side
is heavier than the right side, we know that either C1 is the heavy coin or C2 is the light
coin. In this case, as shown in the decision tree, we next compare C1 with C5 (which is
known to be a good coin) and immediately determine whether the bad coin is C1 or C2 and
whether it is heavy or light. The terminal vertices give the solution. For example, when
we compare C1 with C5 and the pans balance, we follow the edge to the terminal vertex
labeled C2, L, which tells us that the bad coin is C2 and that it is lighter than the others.

547

Trees

C1 : C2

C1 : C5 C3 : C4 C1 : C5

C3 : C5 C1 : C5 C3 : C5

C1, H C2, L

C3, H C4, L C5, L C5, H C4, H C3, L

C2, H C1, L

Figure 7.3 An algorithm to solve the five-coins puzzle.

If we define the worst-case time to solve a coin-weighing problem to be the number
of weighings required in the worst case, it is easy to determine the worst-case time from
the decision tree; the worst case time is equal to the height of the tree. For example, the
height of the decision tree of Figure 7.3 is 3, so the worst-case time for this algorithm is
equal to 3.

We can use decision trees to show that the algorithm given in Figure 7.3 to solve
the five-coins puzzle is optimal, that is, that no algorithm that solves the five-coins puzzle
has worst-case time less than 3.

We argue by contradiction to show that no algorithm that solves the five-coins
puzzle has worst-case time less than 3. Suppose that there is an algorithm that solves
the five-coins puzzle in the worst case in two or fewer weighings. The algorithm can be
described by a decision tree, and since the worst case time is 2 or less, the height of the
decision tree is 2 or less. Since each internal vertex has at most three children, such a
tree can have at most nine terminal vertices (see Figure 7.4). Now the terminal vertices
correspond to possible outcomes. Thus a decision tree of height 2 or less can account
for at most nine outcomes. But the five-coins puzzle has 10 outcomes:

C1, L, C1, H, C2, L, C2, H, C3, L,

C3, H, C4, L, C4, H, C5, L, C5, H.

9 outcomes

Figure 7.4 A five-coins puzzle algorithm that uses at most two weighings.

548

Trees

6 outcomes

C1C2 : C3C4

edge
does
not
exist

Figure 7.5 A four-coins puzzle algorithm that begins by comparing two coins against
two coins.

This is a contradiction. Therefore, no algorithm that solves the five-coins puzzle has
worst-case time less than 3, and the algorithm of Figure 7.3 is optimal.

We have seen how a decision tree can be used to give a lower bound for the
worst-case time to solve a problem. Sometimes, the lower bound is unattainable.

Consider the four-coins puzzle (all the rules are the same as for the five-coins
puzzle except that the number of coins is reduced by one). Since there are now eight
outcomes rather than 10, we can conclude that any algorithm to solve the four-coins
puzzle requires at least two weighings in the worst case. (This time we cannot conclude
that at least three weighings are required in the worst case.) However, closer inspection
shows that, in fact, three weighings are required.

The first weighing either compares two coins against two coins or one coin against
one coin. Figure 7.5 shows that if we begin by comparing two coins against two coins,
the decision tree can account for at most six outcomes. Since there are eight outcomes, no
algorithm that begins by comparing two coins against two coins can solve the problem
in two weighings or less in the worst case. Similarly, Figure 7.6 shows that if we begin
by comparing one coin against one coin and the coins balance, the decision tree can
account for only three outcomes. Since four outcomes are possible after identifying two
good coins, no algorithm that begins by comparing one coin against one coin can solve
the problem in two weighings or less in the worst case. Therefore, any algorithm that
solves the four-coins puzzle requires at least three weighings in the worst case.

3 outcomes

C1 : C2

Figure 7.6 A four-coins puzzle
algorithm that begins by
comparing one coin against one
coin.

If we modify the four-coins puzzle by requiring only that we identify the bad
coin (without determining whether it is heavy or light), we can solve the puzzle in two
weighings in the worst case (see Exercise 1).

We turn now to sorting. We can use decision trees to estimate the worst-case time
to sort.

The sorting problem is easily described: Given n items

x1, . . . , xn,

arrange them in nondecreasing (or nonincreasing) order. We restrict our attention to
sorting algorithms that repeatedly compare two elements and, based on the result of the
comparison, modify the original list.

Example 7.2 An algorithm to sort a1, a2, a3 is given by the decision tree of Figure 7.7. Each edge is
labeled with the arrangement of the list based on the answer to the question at an internal
vertex. The terminal vertices give the sorted order.

549

Trees

a2 < a3?

a1 < a2?

Yes No

a1, a2, a3
Yes No

Yes No

a1 < a3?Yes No

a2 < a3?a1 < a3?

a1, a3, a2

a1, a3, a2 a3, a1, a2 a2, a3, a1 a3, a2, a1

a2, a1, a3

a2, a3, a1

a2, a1, a3a1, a2, a3

NoYes

Figure 7.7 An algorithm to sort a1, a2, a3.

Let us define the worst-case time to sort to be the number of comparisons in the
worst case. Just as in the case of the decision trees that solve coin puzzle problems, the
height of a decision tree that solves a sorting problem is equal to the worst-case time. For
example, the worst-case time for the algorithm given by the decision tree of Figure 7.7
is equal to 3. We show that this algorithm is optimal, that is, that no algorithm that sorts
three items has worst-case time less than 3.

We argue by contradiction to show that no algorithm that sorts three items has
worst-case time less than 3. Suppose that there is an algorithm that sorts three items
in the worst case in two or fewer comparisons. The algorithm can be described by a
decision tree, and since the worst-case time is 2 or less, the height of the decision tree
is 2 or less. Since each internal vertex has at most two children, such a tree can have
at most four terminal vertices (see Figure 7.8). Now the terminal vertices correspond to
possible outcomes. Thus a decision tree of height 2 or less can account for at most four
outcomes. But the problem of sorting three items has six possible outcomes (when the
items are distinct), corresponding to the 3! = 6 ways that three items can be arranged:

s1, s2, s3, s1, s3, s2, s2, s1, s3, s2, s3, s1, s3, s1, s2, s3, s2, s1.

4 outcomes

Figure 7.8 A sorting algorithm that makes at most two comparisons.

550

Trees

This is a contradiction. Therefore, no algorithm that sorts three items has worst-case time
less than 3, and the algorithm of Figure 7.7 is optimal.

Since 4! = 24, there are 24 possible outcomes to the problem of sorting four items
(when the items are distinct). To accommodate 24 terminal vertices, we must have a
tree of height at least 5 (see Figure 7.9). Therefore, any algorithm that sorts four items
requires at least five comparisons in the worst case. Exercise 9 is to give an algorithm
that sorts four items using five comparisons in the worst case.

0
1
2
3
4
5

1
2
4
8

16
32

Level Number of Vertices

Figure 7.9 Level compared with the maximum number of vertices in that level in a binary tree.

The method of Example 7.2 can be used to give a lower bound on the number of
comparisons required in the worst case to sort an arbitrary number of items.

Theorem 7.3 If f(n) is the number of comparisons needed to sort n items in the worst case by a
sorting algorithm, then f(n) = 	(n lg n).

Proof Let T be the decision tree that represents the algorithm for input of size n and
let h denote the height of T. Then the algorithm requires h comparisons in the worst
case, so

h = f(n). (7.1)

The tree T has at least n! terminal vertices, so by Theorem 5.6,

lg n! ≤ h. (7.2)

lg n! = �(n lg n); thus, for some positive constant C,

Cn lg n ≤ lg n! (7.3)

for all but finitely many integers n. Combining (7.1) through (7.3), we obtain

Cn lg n ≤ f(n)

for all but finitely many integers n. Therefore,

f(n) = 	(n lg n).

Merge sort uses �(n lg n) comparisons in the worst case and is, by Theorem 7.3,
optimal. Many other sorting algorithms are known that also attain the optimal number
�(n lg n) of comparisons; one, tournament sort, is described before Exercise 14.

551

Trees

Section Review Exercises

1. What is a decision tree?

2. How is the height of a decision tree that represents an algorithm
related to the worst-case time of the algorithm?

3. Use decision trees to explain why worst-case sorting requires
at least 	(n lg n) comparisons.

Exercises

1. Four coins are identical in appearance, but one coin is either
heavier or lighter than the others, which all weigh the same.
Draw a decision tree that gives an algorithm that identifies in
at most two weighings the bad coin (but not necessarily deter-
mines whether it is heavier or lighter than the others) using
only a pan balance.

2. Show that at least two weighings are required to solve the
problem of Exercise 1.

3. Eight coins are identical in appearance, but one coin is either
heavier or lighter than the others, which all weigh the same.
Draw a decision tree that gives an algorithm that identifies in
at most three weighings the bad coin and determines whether
it is heavier or lighter than the others using only a pan balance.

4. Twelve coins are identical in appearance, but one coin is
either heavier or lighter than the others, which all weigh the
same. Draw a decision tree that gives an algorithm that iden-
tifies in at most three weighings the bad coin and determines
whether it is heavier or lighter than the others using only a pan
balance.

5. What is wrong with the following argument, which suppos-
edly shows that the twelve-coins puzzle requires at least four
weighings in the worst case if we begin by weighing four coins
against four coins?

If we weigh four coins against four coins and they bal-
ance, we must then determine the bad coin from the remain-
ing four coins. But the discussion in this section showed that
determining the bad coin from among four coins requires at
least three weighings in the worst case. Therefore, in the worst
case, if we begin by weighing four coins against four coins,
the twelve-coins puzzle requires at least four weighings.

�6. Thirteen coins are identical in appearance, but one coin is either
heavier or lighter than the others, which all weigh the same.
How many weighings in the worst case are required to find the
bad coin and determine whether it is heavier or lighter than the
others using only a pan balance? Prove your answer.

7. Solve Exercise 6 for the fourteen-coins puzzle.

8. (3n − 3)/2, n ≥ 2, coins are identical in appearance, but one
coin is either heavier or lighter than the others, which all weigh
the same. [Kurosaka] gave an algorithm to find the bad coin
and determine whether it is heavier or lighter than the others
using only a pan balance in n weighings in the worst case.
Prove that the coin cannot be found and identified as heavy or
light in fewer than n weighings.

Exercises 9 and 10 concern the following variant of the coin-
weighing problem. We are given n coins, some of which are bad, but

are otherwise identical in appearance. All of the good coins have
the same weight. All of the bad coins also have the same weight,
but they are lighter than the good coins. We assume that there is at
least one bad coin and at least one good coin among the n coins.
The task is to determine the number of bad coins.

9. Show that at least log3(n − 1) weighings are necessary to
determine the number of bad coins.

10. Show how to determine the number of bad coins in at most
n− 1 weighings.

11. Give an algorithm that sorts four items using five comparisons
in the worst case.

12. Use decision trees to find a lower bound on the number of
comparisons required to sort five items in the worst case. Give
an algorithm that uses this number of comparisons to sort five
items in the worst case.

13. Use decision trees to find a lower bound on the number of
comparisons required to sort six items in the worst case. Give
an algorithm that uses this number of comparisons to sort six
items in the worst case.

Exercises 14 –20 refer to tournament sort.

Tournament Sort. We are given a sequence

s1, . . . , s2k

to sort in nondecreasing order.
We will build a binary tree with terminal vertices labeled

s1, . . . , s2k . An example is shown.

30 1 12 40 3 9 35 50

50

40 50

5094030

Working left to right, create a parent for each pair and
label it with the maximum of the children. Continue in this way
until you reach the root. At this point, the largest value, m, has
been found.

To find the second-largest value, first pick a value v less
than all the items in the sequence. Replace the terminal vertex
w containing m with v. Relabel the vertices by following the
path from w to the root, as shown. At this point, the second-
largest value is found. Continue until the sequence is ordered.

552

Trees

30 1 12 40 3 9 35 v = 0

40

40 35

3594030

14. Why is the name “tournament” appropriate?

15. Draw the two trees that would be created after the preceding
tree when tournament sort is applied.

16. How many comparisons does tournament sort require to find
the largest element?

17. Show that any algorithm that finds the largest value among n

items requires at least n− 1 comparisons.

18. How many comparisons does tournament sort require to find
the second-largest element?

19. Write tournament sort as a formal algorithm.

20. Show that if n is a power of 2, tournament sort requires
�(n lg n) comparisons.

21. Give an example of a real situation (like that of Figure 7.1)
that can be modeled as a decision tree. Draw the decision tree.

22. Draw a decision tree that can be used to determine who must
file a federal tax return.

23. Draw a decision tree that gives a reasonable strategy for play-
ing blackjack (see, e.g., [Ainslie]).

8 ➜ Isomorphisms of Trees

You should already be familiar with what it means for two graphs to be isomorphic. In
this section we discuss isomorphic trees, isomorphic rooted trees, and isomorphic binary
trees.

Simple graphs G1 and G2 are isomorphic if and only if there is a one-to-one, onto
function f from the vertex set of G1 to the vertex set of G2 that preserves the adjacency
relation in the sense that vertices vi and vj are adjacent in G1 if and only if the vertices
f(vi) and f(vj) are adjacent in G2. Since a (free) tree is a simple graph, trees T1 and T2

are isomorphic if and only if there is a one-to-one, onto function f from the vertex set
of T1 to the vertex set of T2 that preserves the adjacency relation; that is, vertices vi and
vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) are adjacent in T2.

Example 8.1 The function f from the vertex set of the tree T1 shown in Figure 8.1 to the vertex set of
the tree T2 shown in Figure 8.2 defined by

f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 4, f(e) = 5

is a one-to-one, onto function that preserves the adjacency relation. Thus the trees T1

and T2 are isomorphic.

T1

a d

e

c
b

Figure 8.1 A tree.

1 2

4 5

3

T2

Figure 8.2 A tree
isomorphic to the tree
in Figure 8.1.

As in the case of graphs, we can show that two trees are not isomorphic if we can
exhibit an invariant that the trees do not share.

Example 8.2 The trees T1 and T2 of Figure 8.3 are not isomorphic because T2 has a vertex (x) of
degree 3, but T1 does not have a vertex of degree 3.

553

Trees

v xw y

zb dc ea
T1 T2

Figure 8.3 Nonisomorphic trees.
T2 has a vertex of degree 3, but T2
does not.

We can show that there are three nonisomorphic trees with five vertices. The three
nonisomorphic trees are shown in Figures 8.1 and 8.3.

Theorem 8.3 There are three nonisomorphic trees with five vertices.

Proof We will give an argument to show that any tree with five vertices is isomorphic
to one of the trees in Figure 8.1 or 8.3.

If T is a tree with five vertices, by Theorem 2.3 T has four edges. If T had a
vertex v of degree greater than 4, v would be incident on more than four edges. It
follows that each vertex in T has degree at most 4.

We will first find all nonisomorphic trees with five vertices in which the max-
imum vertex degree that occurs is 4. We will next find all nonisomorphic trees with
five vertices in which the maximum vertex degree that occurs is 3, and so on.

Let T be a tree with five vertices and suppose that T has a vertex v of degree
4. Then there are four edges incident on v and, because of Theorem 2.3, these are all
the edges. It follows that in this case T is isomorphic to the tree in Figure 8.1.

Suppose that T is a tree with five vertices and the maximum vertex degree that
occurs is 3. Let v be a vertex of degree 3. Then v is incident on three edges, as shown
in Figure 8.4. The fourth edge cannot be incident on v since then v would have degree
4. Thus the fourth edge is incident on one of v1, v2, or v3. Adding an edge incident
on any of v1, v2, or v3 gives a tree isomorphic to the tree T2 of Figure 8.3.

v2

v1

v3

v

Figure 8.4 Vertex
v has degree 3.

v1 v v2

Figure 8.5 Vertex
v has degree 2.

w1 w2

Figure 8.6 Adding a
third edge to the
graph of Figure 8.5.

Now suppose that T is a tree with five vertices and the maximum vertex degree
that occurs is 2. Let v be a vertex of degree 2. Then v is incident on two edges, as shown
in Figure 8.5. A third edge cannot be incident on v; thus it must be incident on either
v1 or v2. Adding the third edge gives the graph of Figure 8.6. For the same reason,
the fourth edge cannot be incident on either of the vertices w1 or w2 of Figure 8.6.
Adding the last edge gives a tree isomorphic to the tree T1 of Figure 8.3.

Since a tree with five vertices must have a vertex of degree 2, we have found
all nonisomorphic trees with five vertices.

554

Trees

For two rooted trees T1 and T2 to be isomorphic, there must be a one-to-one, onto
function f from T1 to T2 that preserves the adjacency relation and that preserves the
root. The latter condition means that f(root of T1) = root of T2. The formal definition
follows.

Definition 8.4 Let T1 be a rooted tree with root r1 and let T2 be a rooted tree with root r2. The rooted
trees T1 and T2 are isomorphic if there is a one-to-one, onto function f from the vertex
set of T1 to the vertex set of T2 satisfying the following:

(a) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) are
adjacent in T2.

(b) f(r1) = r2.

We call the function f an isomorphism.

Example 8.5 The rooted trees T1 and T2 in Figure 8.7 are isomorphic. An isomorphism is

f(v1) = w1, f(v2) = w3, f(v3) = w4, f(v4) = w2,

f(v5) = w7, f(v6) = w6, f(v7) = w5.

T1 T2

v1 w1

w2v3 v4
v2

v5 v6 v7 w5 w6 w7

w3
w4

Figure 8.7 Isomorphic rooted
trees.

The isomorphism of Example 8.5 is not unique. Can you find another isomorphism
of the rooted trees of Figure 8.7?

Example 8.6 The rooted trees T1 and T2 of Figure 8.8 are not isomorphic since the root of T1 has
degree 3 but the root of T2 has degree 2. These trees are isomorphic as free trees. Each
is isomorphic to the tree T2 of Figure 8.3.

v1

T1

w1

T2

v2
w2

w4 w5

w3
v3 v4

v5

Figure 8.8 Nonisomorphic
rooted trees. (The trees are
isomorphic as free trees.)

555

Trees

Arguing as in the proof of Theorem 8.3, we can show that there are four noniso-
morphic rooted trees with four vertices.

Theorem 8.7 There are four nonisomorphic rooted trees with four vertices. These four rooted trees
are shown in Figure 8.9.

(a) (b) (d)(c)

Figure 8.9 The four nonisomorphic
rooted trees with four vertices.

Proof We first find all nonisomorphic rooted trees with four vertices in which the
root has degree 3; we then find all nonisomorphic rooted trees with four vertices in
which the root has degree 2; and so on. We note that the root of a rooted tree with
four vertices cannot have degree greater than 3.

A rooted tree with four vertices in which the root has degree 3 must be isomor-
phic to the tree in Figure 8.9(a).

A rooted tree with four vertices in which the root has degree 2 must be isomor-
phic to the tree in Figure 8.9(b).

Let T be a rooted tree with four vertices in which the root has degree 1. Then
the root is incident on one edge. The two remaining edges may be added in one of
two ways [see Figure 8.9(c) and (d)]. Therefore, all nonisomorphic rooted trees with
four vertices are shown in Figure 8.9.

Binary trees are special kinds of rooted trees; thus an isomorphism of binary trees
must preserve the adjacency relation and must preserve the roots. However, in binary
trees a child is designated a left child or a right child. We require that an isomorphism
of binary trees preserve the left and right children. The formal definition follows.

Definition 8.8 Let T1 be a binary tree with root r1 and let T2 be a binary tree with root r2. The binary
trees T1 and T2 are isomorphic if there is a one-to-one, onto function f from the vertex
set of T1 to the vertex set of T2 satisfying the following:

(a) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) are
adjacent in T2.

(b) f(r1) = r2.

(c) v is a left child of w in T1 if and only if f(v) is a left child of f(w) in T2.

(d) v is a right child of w in T1 if and only if f(v) is a right child of f(w) in T2.

We call the function f an isomorphism.

Example 8.9 The binary trees T1 and T2 in Figure 8.10 are isomorphic. The isomorphism is f(vi) = wi

for i = 1, . . . , 4.

556

Trees

v3

v1

T1

w3

w1

T2

v2 w2

v4 w4

Figure 8.10 Isomorphic binary trees.

Example 8.10 The binary trees T1 and T2 in Figure 8.11 are not isomorphic. The root v1 in T1 has a
right child, but the root w1 in T2 has no right child.

v3

v1

T1

w3

w1

T2

v2 w2

v4 w4

Figure 8.11 Nonisomorphic binary trees.
(The trees are isomorphic as rooted trees and
as free trees.)

The trees T1 and T2 in Figure 8.11 are isomorphic as rooted trees and as free trees.
As rooted trees, either of the trees of Figure 8.11 is isomorphic to the rooted tree T of
Figure 8.9(c).

Arguing as in the proofs of Theorems 8.3 and 8.7, we can show that there are five
nonisomorphic binary trees with three vertices.

Theorem 8.11 There are five nonisomorphic binary trees with three vertices. These five binary trees
are shown in Figure 8.12.

(a) (b) (c) (d) (e)

Figure 8.12 The five nonisomorphic binary trees with
three vertices.

Proof We first find all nonisomorphic binary trees with three vertices in which the
root has degree 2. We then find all nonisomorphic binary trees with three vertices
in which the root has degree 1. We note that the root of any binary tree cannot have
degree greater than 2.

A binary tree with three vertices in which the root has degree 2 must be iso-
morphic to the tree in Figure 8.12(a). In a binary tree with three vertices in which the
root has degree 1, the root either has a left child and no right child or has a right child
and no left child. If the root has a left child, the child itself has either a left or a right
child. We obtain the two binary trees in Figure 8.12(b) and (c). Similarly, if the root
has a right child, the child itself has either a left or a right child. We obtain the two
binary trees in Figure 8.12(d) and (e). Therefore, all nonisomorphic binary trees with
three vertices are shown in Figure 8.12.

557

Trees

If S is a set of trees of a particular type (e.g., S is a set of free trees or S is a set
of rooted trees or S is a set of binary trees) and we define a relation R on S by the rule
T1 R T2 if T1 and T2 are isomorphic, R is an equivalence relation. Each equivalence class
consists of a set of mutually isomorphic trees.

In Theorem 8.3 we showed that there are three nonisomorphic free trees having
five vertices. In Theorem 8.7 we showed that there are four nonisomorphic rooted trees
having four vertices. In Theorem 8.11 we showed that there are five nonisomorphic
binary trees having three vertices. You might have wondered if there are formulas for the
number of nonisomorphic n-vertex trees of a particular type. There are formulas for the
number of nonisomorphic n-vertex free trees, for the number of nonisomorphic n-vertex
rooted trees, and for the number of nonisomorphic n-vertex binary trees. The formulas
for the number of nonisomorphic free trees and for the number of nonisomorphic rooted
trees with n vertices are quite complicated. They appear in [Deo, Sec. 10-3]. We derive
a formula for the number of binary trees with n vertices.

Figure 8.13 The two
nonisomorphic binary
trees with two vertices.

Theorem 8.12 There are Cn nonisomorphic binary trees with n vertices where Cn = C(2n, n)/(n+1)

is the nth Catalan number.

Proof Let an denote the number of binary trees with n vertices. For example,
a0= 1 since there is one binary tree having no vertices; a1= 1 since there is one
binary tree having one vertex; a2 = 2 since there are two binary trees having two
vertices (see Figure 8.13); and a3 = 5 since there are five binary trees having three
vertices (see Figure 8.12).

We derive a recurrence relation for the sequence a0, a1, Consider the con-
struction of a binary tree with n vertices, n > 0. One vertex must be the root. Since
there are n− 1 vertices remaining, if the left subtree has k vertices, the right subtree
must have n− k− 1 vertices. We construct an n-vertex binary tree whose left subtree
has k vertices and whose right subtree has n− k − 1 vertices by a two-step process:
Construct the left subtree, construct the right subtree. (Figure 8.14 shows this con-
struction for n = 6 and k = 2.) By the Multiplication Principle, this construction can
be carried out in akan−k−1 ways. Different values of k give distinct n-vertex binary
trees, so by the Addition Principle, the total number of n-vertex binary trees is

n−1∑

k=0

akan−k−1.

We obtain the recurrence relation

an =
n−1∑

k=0

akan−k−1, n ≥ 1.

But this recurrence relation and initial condition a0 = 1 define the sequence of Catalan
numbers. Thus an is equal to the Catalan number C(2n, n)/(n+ 1).

There is no efficient method known to decide whether two arbitrary graphs are
isomorphic. The situation is different for trees. It is possible to determine in poly-
nomial time whether two arbitrary trees are isomorphic. As a special case, we give
a linear-time algorithm to determine whether two binary trees T1 and T2 are isomor-
phic. The algorithm is based on preorder traversal (see Section 6). We first check that

558

Trees

(b)

(f)

(b)

(g)

(b)

(e)

(b)

(d)

(b) (c)

Two vertices
(a) (b) (c)

(d) (e) (f) (g)

Three vertices in right subtree

(a) (c) (a) (a) (a) (a)

(d) (e) (f) (g)

in left subtree

Figure 8.14 The proof of Theorem 8.12 for the case n = 6 vertices and k = 2 vertices in the left subtree.

each of T1 and T2 is nonempty, after which we check that the left subtrees of T1 and T2

are isomorphic and that the right subtrees of T1 and T2 are isomorphic.

Algorithm 8.13 Testing Whether Two Binary Trees Are Isomorphic

Input: The roots r1 and r2 of two binary trees. (If the first tree is empty, r1

has the special value null. If the second tree is empty, r2 has the
special value null.)

Output: true, if the trees are isomorphic
false, if the trees are not isomorphic

bin tree isom(r1, r2) {
1. if (r1 == null ∧ r2 == null)
2. return true

// now one or both of r1 or r2 is not null
3. if (r1 == null ∨ r2 == null)
4. return false

// now neither of r1 or r2 is null
5. lc r1 = left child of r1

6. lc r2 = left child of r2

7. rc r1 = right child of r1

8. rc r2 = right child of r2

9. return bin tree isom(lc r1, lc r2) ∧ bin tree isom(rc r1, rc r2)

}

559

Trees

As a measure of the time required by Algorithm 8.13, we count the number of
comparisons with null in lines 1 and 3. We show that Algorithm 8.13 is a linear-time
algorithm in the worst case.

Theorem 8.14 The worst-case time of Algorithm 8.13 is �(n), where n is the total number of vertices
in the two trees.

Proof Let an denote the number of comparisons with null in the worst case required
by Algorithm 8.13, where n is the total number of vertices in the trees input. We use
mathematical induction to prove that

an ≤ 3n+ 2 for n ≥ 0.

Basis Step (n = 0)
If n = 0, the trees input to Algorithm 8.13 are both empty. In this case, there are two
comparisons with null at line 1, after which the procedure returns. Thus a0 = 2 and
the inequality holds when n = 0.

Inductive Step
Assume that

ak ≤ 3k + 2

when k < n. We must show that

an ≤ 3n+ 2.

We first find an upper bound for the number of comparisons in the worst case
when the total number of vertices in the trees input to the procedure is n > 0 and
neither tree is empty. In this case, there are four comparisons at lines 1 and 3. Let L

denote the sum of the numbers of vertices in the two left subtrees of the trees input and
let R denote the sum of the numbers of vertices in the two right subtrees of the trees
input. Then at line 9 there are at most aL + aR additional comparisons. Therefore,
at most 4 + aL + aR comparisons are required in the worst case. By the inductive
assumption,

aL ≤ 3L+ 2 and aR ≤ 3R+ 2. (8.1)

Now

2+ L+ R = n (8.2)

because the vertices comprise the two roots, the vertices in the left subtrees, and the
vertices in the right subtrees. Combining (8.1) and (8.2), we obtain

4+ aL + aR ≤ 4+ (3L+ 2)+ (3R+ 2) = 3(2+ L+ R)+ 2 = 3n+ 2.

If either tree is empty, four comparisons are required at lines 1 and 3, after
which the procedure returns. Thus, whether one of the trees is empty or not, at most
3n+ 2 comparisons are required in the worst case. Therefore,

an ≤ 3n+ 2,

and the Inductive Step is complete. We conclude that the worst-case time of
Algorithm 8.13 is O(n).

560

Trees

If n is even, say n = 2k, one can use induction to show (see Exercise 24) that
when two k-vertex isomorphic binary trees are input to Algorithm 8.13, the number
of comparisons is equal to 3n+ 2. Using this result, one can show (see Exercise 25)
that if n is odd, say n = 2k + 1, when the two binary trees shown in Figure 8.15
are input to Algorithm 8.13, the number of comparisons is equal to 3n+ 1. Thus the
worst-case time of Algorithm 8.13 is 	(n).

k vertices k + 1 vertices

r1 r2

Figure 8.15 Two binary trees that
give worst-case run time 3n+ 1 for
Algorithm 8.13 when n = 2k + 1 is
odd.

Since the worst-case time is O(n) and 	(n), the worst-case time of Algo-
rithm 8.13 is �(n).

[Aho] gives an algorithm whose worst-case time is linear in the number of ver-
tices that determines whether two arbitrary (not necessarily binary) rooted trees are
isomorphic.

Section Review Exercises

1. What does it mean for two free trees to be isomorphic?

2. What does it mean for two rooted trees to be isomorphic?

3. What does it mean for two binary trees to be isomorphic?

4. How many n-vertex, nonisomorphic binary trees are there?

5. Describe a linear-time algorithm to test whether two binary trees
are isomorphic.

Exercises

In Exercises 1–6, determine whether each pair of free trees is iso-
morphic. If the pair is isomorphic, specify an isomorphism. If the
pair is not isomorphic, give an invariant that one tree satisfies but
the other does not.

1.
v1 w1

T1 T2

v2
v3

v6

v4
v5

w2

w6w5

w4w3

2. T1 as in Exercise 1

T2

w1 w2

w5w3 w4

w6

3.

T1 T2

w1v1

w2

w4

w6w5

w3

v4

v6v5

v3v2

561

Trees

4.

T1 T2

v1 w1

v2 w2v3 v4 v5 v6 w3 w4 w5 w6

5.

T1 T2

v1 w1

v2

v7

v8 v9

v3 v4

v10

v11

v12

v5 v6

w3

w8

w4

w9

w5

w12

w10

w11

w6

w7

w2

6.

T1 T2

v1 w1

v8

v12v11

v6

v9

v3
v2

v5

v4

v7

v10

w2

w3

w6

w9 w10
w11

w12

w8

w5

w4

w7

In Exercises 7–9, determine whether each pair of rooted trees is
isomorphic. If the pair is isomorphic, specify an isomorphism. If
the pair is not isomorphic, give an invariant that one tree satis-
fies but the other does not. Also, determine whether the trees are
isomorphic as free trees.

7.

v2 v4

v6

v8v7

v5

v1

v3
w 2

w 7

w 5

w 1

T1 T2

w 3
w 4

w6

w 8

8. T1 and T2 as in Exercise 3

9.

v3

v5

v4

v1

v2

w 4

w 5

w 1

T1 T2

w 2

w 3

In Exercises 10–12, determine whether each pair of binary trees
is isomorphic. If the pair is isomorphic, specify an isomorphism.
If the pair is not isomorphic, give an invariant that one tree satis-
fies but the other does not. Also, determine whether the trees are
isomorphic as free trees or as rooted trees.

10. T1 and T2 as in Exercise 9

11.
v1

v2

v5

v3

v4

v 6

T1

w 1

w 2

w 5

w 3

w 4

w 6

T2

12.

v 5

T1

v 6

v 4

v 2

v 3

v 1

w 1

w 2

w 5

w 3

w 4

w 6

T2

13. Draw all nonisomorphic free trees having three vertices.

14. Draw all nonisomorphic free trees having four vertices.

15. Draw all nonisomorphic free trees having six vertices.

16. Draw all nonisomorphic rooted trees having three vertices.

17. Draw all nonisomorphic rooted trees having five vertices.

18. Draw all nonisomorphic binary trees having two vertices.

19. Draw all nonisomorphic binary trees having four vertices.

20. Draw all nonisomorphic full binary trees having seven ver-
tices. (A full binary tree is a binary tree in which each internal
vertex has two children.)

21. Draw all nonisomorphic full binary trees having nine vertices.

22. Find a formula for the number of nonisomorphic n-vertex full
binary trees.

23. Find all nonisomorphic (as free trees and not as rooted trees)
spanning trees for each graph in Exercises 7–9, Section 3.

24. Use induction to show that when two k-vertex isomorphic
binary trees are input to Algorithm 8.13, the number of com-
parisons with null is equal to 6k + 2.

25. Show that when the two binary trees shown in Figure 8.15 are
input to Algorithm 8.13, the number of comparisons with null
is equal to 6k + 4.

562

Trees

26. Write an algorithm to generate an n-vertex random binary tree.

In Exercises 27–33, C1, C2, . . . denotes the sequence of Catalan
numbers. Let X1 denote the set of nonisomorphic full binary trees
having n terminal vertices, n ≥ 2, and let X2 denote the set of non-
isomorphic full binary trees having n+ 1 terminal vertices, n ≥ 1,
with one terminal vertex designated as “marked.”

27. Given an (n−1)-vertex binary tree T , n ≥ 2, construct a binary
tree from T by adding a left child to every vertex in T that does
not have a left child, and adding a right child to every vertex in
T that does not have a right child. (A terminal vertex will add
both a left and right child.) Show that this mapping is one-to-
one and onto from the set of all nonisomorphic (n− 1)-vertex
binary trees to X1. Conclude that |X1| = Cn−1 for all n ≥ 2.

28. Show that |X2| = (n+ 1)Cn for all n ≥ 1.

Given a tree T ∈ X1, for each vertex v in T , we construct two trees
in X2 as follows. One tree in X2 is obtained by inserting two new
children of v—one is a new left child, which is marked, and the
other is the root of the original subtree in T rooted at v. The other
tree in X2 is obtained by inserting two new children of v—one is a
new right child, which is marked, and the other is the root of the
original subtree in T rooted at v. Let XT denote the set of all such
trees constructed. This construction is due to Ira Gessel and was
forwarded to the author by Arthur Benjamin.

29. Show that |XT | = 2(2n− 1) for all T ∈ X1.

30. Show that if T1 and T2 are distinct trees in X1, then XT1∩
XT2 = ∅.

31. Show that
⋃

T∈X1
XT = X2.

32. Use Exercises 29–31 to show that (n+1)Cn = 2(2n−1)Cn−1

for all n ≥ 2.

33. Use Exercise 32 to give another derivation of the explicit for-
mula for the nth Catalan number Cn = C(2n, n)/(n+ 1).

34. An ordered tree is a tree in which the order of the children is
taken into account. For example, the ordered trees

are not isomorphic. Show that the number of nonisomorphic
ordered trees with n edges is equal to Cn, the nth Catalan num-
ber. Hint: Consider a preorder traversal of an ordered tree in
which 1 means down and 0 means up.

35. [Project] Report on the formulas for the number of nonisomor-
phic free trees and for the number of nonisomorphic rooted
trees with n vertices (see [Deo]).

9 ➜ Game Trees

Trees are useful in the analysis of games such as tic-tac-toe, chess, and checkers, in which
players alternate moves. In this section we show how trees can be used to develop game-
playing strategies. This kind of approach is used in the development of many computer
programs that allow human beings to play against computers or even computers against
computers.

As an example of the general approach, consider a version of the game of nim.
Initially, there are n piles, each containing a number of identical tokens. Players alternate
moves. A move consists of removing one or more tokens from any one pile. The player
who removes the last token loses. As a specific case, consider an initial distribution
consisting of two piles: one containing three tokens and one containing two tokens. All
possible move sequences can be listed in a game tree (see Figure 9.1). The first player
is represented by a box and the second player is represented by a circle. Each vertex
shows a particular position in the game. In our game, the initial position is shown as(3

2

)
. A path represents a sequence of moves. If a position is shown in a square, it is the

first player’s move; if a position is shown in a circle, it is the second player’s move. A
terminal vertex represents the end of the game. In nim, if the terminal vertex is a circle,
the first player removed the last token and lost the game. If the terminal vertex is a box,
the second player lost.

The analysis begins with the terminal vertices. We label each terminal vertex with
the value of the position to the first player. If the terminal vertex is a circle, since the
first player lost, this position is worthless to the first player and we assign it the value 0
(see Figure 9.2). If the terminal vertex is a box, since the first player won, this position

563

Trees

0
01

2

2
2

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

1
1

1
0

0
0

0
1

0
0

1
1

0
1

2
0

1
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

1
1

0
1

2
0

1
0

0
1

0
0

2
0

1
0

0
0

1
0

0
0

0
2

1
2

3
1

3
0

3
2

0
2

2
1

2
0

0
2

1
1

1
0

0
1

0
0

2
1

0
0

1
1

0
1

3
0

2
0

1
0

0
0

1
0

0
1

0
0

0
0

1
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

Figure 9.1 A game tree for nim. The initial distribution is two piles of three and two tokens, respectively.

0

1

000000

0

1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0

1 0

00 0

0

1

1 1 1 1 1 0 0 1 1

1

1 0 1

1 0

1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1

1

1

0

00

0

0

0 1

1 0 0 1

Figure 9.2 The game tree of Figure 9.1 showing the values of all vertices.

564

Trees

is valuable to the first player and we label it with a value greater than 0, say 1 (see
Figure 9.2). At this point, all terminal vertices have been assigned values.

Now, consider the problem of assigning values to the internal vertices. Sup-
pose, for example, that we have an internal box, all of whose children have been
assigned a value. For example, if we have the situation shown in Figure 9.3, the first
player (box) should move to the position represented by vertex B, since this posi-
tion is the most valuable. In other words, box moves to a position represented by
a child with the maximum value. We assign this maximum value to the box
vertex.

A B C

0 1 0

Figure 9.3 The first player (box)
should move to position B since it
is most valuable. This maximum
value (1) is assigned to the box.

A B C

1 1 0

Figure 9.4 The second player (circle)
should move to position C since it is
least valuable (to box). This minimum
value (0) is assigned to the circle.

Consider the situation from the second (circle) player’s point of view. Suppose that
we have the situation shown in Figure 9.4. Circle should move to the position represented
by vertex C, since this position is least valuable to box and therefore most valuable to
circle. In other words, circle moves to a position represented by a child with the minimum
value. We assign this minimum value to the circle vertex. The process by which circle
seeks the minimum of its children and box seeks the maximum of its children is called
the minimax procedure.

Working upward from the terminal vertices and using the minimax procedure, we
can assign values to all of the vertices in the game tree (see Figure 9.2). These numbers
represent the value of the game, at any position, to the first player. Notice that the root in
Figure 9.2, which represents the original position, has a value of 1. This means that the
first player can always win the game by using an optimal strategy. This optimal strategy
is contained in the game tree: The first player always moves to a position that maximizes
the value of the children. No matter what the second player does, the first player can
always move to a vertex having value 1. Ultimately, a terminal vertex having value 1 is
reached where the first player wins the game.

Many interesting games, such as chess, have game trees so large that it is not
feasible to use a computer to generate the entire tree. Nevertheless, the concept of a
game tree is still useful for analyzing such games.

When using a game tree we should use a depth-first search. If the game tree is
so large that it is not feasible to reach a terminal vertex, we limit the level to which
depth-first search is carried out. The search is said to be an n-level search if we limit the
search to n levels below the given vertex. Since the vertices at the lowest level may not
be terminal vertices, some method must be found to assign them a value. This is where
the specifics of the game must be dealt with. An evaluation function E is constructed
that assigns each possible game position P the value E(P) of the position to the first
player. After the vertices at the lowest level are assigned values by using the function E,
the minimax procedure can be applied to generate the values of the other vertices. We
illustrate these concepts with an example.

565

Trees

Example 9.1 Apply the minimax procedure to find the value of the root in tic-tac-toe using a two-level,
depth-first minimax search. Use the evaluation function E, which assigns a position the
value

NX −NO

where NX (respectively, NO) is the number of rows, columns, or diagonals containing
an X (respectively, O) that X (respectively, O) might complete. For example, position
P of Figure 9.5 has NX = 2, since X might complete the column or the diagonal, and
NO = 1, since O can complete only a column. Therefore,

E(P) = 2− 1 = 1.

P

Figure 9.5 The value of
position P is
E(P) = NX−NO = 2−1 = 1.

In Figure 9.6, we have drawn the game tree for tic-tac-toe to level 2. We have
omitted symmetric positions. We first assign to the vertices at level 2 the values given by
E (see Figure 9.7). Next, we compute circle’s values by minimizing over the children.
Finally, we compute the value of the root by maximizing over the children. Using this
analysis, the first move by the first player would be to the center square.

X
O

X X X XO O
O

O

XO X
O O

X X X

O O

O
X X

O

X X
X

Figure 9.6 The game tree for tic-tac-toe to level 2 with symmetric positions omitted.

�1

1

�2 1

�1 �11 1 0 0 �1 �2 0 0 1 2

Figure 9.7 The game tree of Figure 9.6 with the values of all
vertices shown.

Evaluation of a game tree, or even a part of a game tree, can be a time-consuming
task, so any technique that reduces the effort is welcomed. The most general technique
is called alpha-beta pruning. In general, alpha-beta pruning allows us to bypass many
vertices in a game tree yet still find the value of a vertex. The value obtained is the same
as if we had evaluated all the vertices.

As an example, consider the game tree in Figure 9.8. Suppose that we want to
evaluate vertex A using a two-level, depth-first search. We evaluate children left to right.

566

Trees

B C D

A

E F G H I J K L M

x

32 y

3 2 6 3 6 44 1 ?

ALPHA CUTOFF

Figure 9.8 Evaluating vertex A using a
two-level, depth-first search with alpha-beta
pruning. An alpha cutoff occurs at vertex C
when vertex I is evaluated since I’s value (1) is
less than or equal to the current lower-bound
estimate (2) for vertex A.

We begin at the lower left by evaluating the vertices E, F , and G. The values shown
are obtained from an evaluation function. Vertex B is 2, the minimum of its children. At
this point, we know that the value x of A must be at least 2, since the value of A is the
maximum of its children; that is,

x ≥ 2. (9.1)

This lower bound for A is called an alpha value of A. The next vertices to be evaluated
are H , I, and J . When I evaluates to 1, we know that the value y of C cannot exceed 1,
since the value of C is the minimum of its children; that is

y ≤ 1. (9.2)

It follows from (9.1) and (9.2) that whatever the value of y is, it will not affect the value
of x; thus we need not concern ourselves further with the subtree rooted at vertex C. We
say that an alpha cutoff occurs. We next evaluate the children of D and then D itself.
Finally, we find that the value of A is 3.

To summarize, an alpha cutoff occurs at a box vertex v when a grandchild w of v

has a value less than or equal to the alpha value of v. The subtree whose root is the parent
of w may be deleted (pruned). This deletion will not affect the value of v. An alpha value
for a vertex v is only a lower bound for the value of v. The alpha value of a vertex is
dependent on the current state of the search and changes as the search progresses.

Similarly, a beta value of a circle vertex is an upper bound for v. A beta cutoff
occurs at a circle vertex v when a grandchild w of v has a value greater than or equal
to the beta value of v. The subtree whose root is the parent of w may be pruned. This
deletion will not affect the value of v. A beta value for a vertex v is only an upper bound
for the value of v. The beta value of a vertex is dependent on the current state of the
search and changes as the search progresses.

Example 9.2 Evaluate the root of the tree of Figure 9.9 using depth-first search with alpha-beta pruning.
Assume that children are evaluated left to right. For each vertex whose value is computed,
write the value in the vertex. Place a check by the root of each subtree that is pruned.
The value of each terminal vertex is written under the vertex.

We begin by evaluating vertices A, B, C, and D (see Figure 9.10). Next, we find
that the value of E is 6. This results in a beta value of 6 for F . Next, we evaluate vertex
G. Since its value is 8 and 8 exceeds the beta value of F , we obtain a beta cutoff and

567

Trees

93 5 6 1 8 2 3 1 6 5 1 3 8

Figure 9.9 The game tree for Example 9.2.

A

3

F

E
H K

L

I

S

RO6 3 9

6 8

8

B C D G J M N P Q

5 6 1 8 3 9 1 3 8

8

Figure 9.10 Evaluating the root of the game tree of Figure 9.9
using depth-first search with alpha-beta pruning. Checked vertices
are roots of subtrees that are pruned. The values of vertices that are
evaluated are written inside the vertices.

prune the subtree with root H . The value of F is 6. This results in an alpha value of 6
for I. Next, we evaluate vertices J and K. Since the value 3 of K is less than the alpha
value 6 of I, an alpha cutoff occurs and the subtree with root L may be pruned. Next, we
evaluate M, N, O, P , Q, R, and S. No further pruning is possible. Finally, we determine
that the root I has value 8.

It has been shown (see [Pearl]) that for game trees in which every parent has n

children and in which the terminal values are randomly ordered, for a given amount of
time, the alpha-beta procedure permits a search depth 4/3 greater than the pure minimax
procedure, which evaluates every vertex. [Pearl] also shows that for such game trees,
the alpha-beta procedure is optimal.

Other techniques have been combined with alpha-beta pruning to facilitate the
search of a game tree. One idea is to order the children of the vertices to be evaluated so
that the most promising moves are examined first (see Exercises 23–26). Another idea
is to allow a variable-depth search in which the search backtracks when it reaches an
unpromising position as measured by some function.

Some game-playing programs have been incredibly successful. The best chess,
backgammon, and checkers programs play at a level comparable to the best human
players. The world checkers champion is a program named Chinook developed by a
team from the University of Alberta. In 2007, they proved that Chinook can never lose.
The best an opponent can hope for is a draw. In 1997 the IBM chess program, Deep
Blue, defeated Garry Kasparov, who had been world champion since 1985, in a six-game
match. Deep Blue won two games, drew three, and lost one.

568

Trees

Section Review Exercises

1. What is a game tree?

2. What is the minimax procedure?

3. What is an n-level search?

4. What is an evaluation function?

5. Explain how alpha-beta pruning works.

6. What is an alpha value?

7. What is an alpha cutoff?

8. What is a beta value?

9. What is a beta cutoff?

Exercises

1. Draw the complete game tree for a version of nim in which
the initial position consists of one pile of six tokens and a
turn consists of taking one, two, or three tokens. Assign val-
ues to all vertices so that the resulting tree is analogous to
Figure 9.2. Assume that the last player to take a token loses.
Will the first or second player, playing an optimal strategy,
always win? Describe an optimal strategy for the winning
player.

2. Draw the complete game tree for nim in which the initial posi-
tion consists of two piles of three tokens each. Omit symmet-
ric positions. Assume that the last player to take a token loses.
Assign values to all vertices so that the resulting tree is analo-
gous to Figure 9.2. Will the first or second player, playing an
optimal strategy, always win? Describe an optimal strategy for
the winning player.

3. Draw the complete game tree for nim in which the initial posi-
tion consists of two piles, one containing three tokens and the
other containing two tokens.Assume that the last player to take
a token wins. Assign values to all vertices so that the resulting
tree is analogous to Figure 9.2. Will the first or second player,
playing an optimal strategy, always win? Describe an optimal
strategy for the winning player.

4. Draw the complete game tree for nim in which the initial posi-
tion consists of two piles of three tokens each. Omit symmet-
ric positions. Assume that the last player to take a token wins.
Assign values to all vertices so that the resulting tree is analo-
gous to Figure 9.2. Will the first or second player, playing an
optimal strategy, always win? Describe an optimal strategy for
the winning player.

5. Draw the complete game tree for the version of nim described
in Exercise 1. Assume that the last person to take a token wins.
Assign values to all vertices so that the resulting tree is analo-
gous to Figure 9.2. Will the first or second player, playing an
optimal strategy, always win? Describe an optimal strategy for
the winning player.

6. Give an example of a (possibly hypothetical) complete game
tree in which a terminal vertex is 1 if the first player won and
0 if the first player lost having the following properties: There
are more 0’s than 1’s among the terminal vertices, but the first
player can always win by playing an optimal strategy.

Exercises 7 and 8 refer to nim and nim′. Nim is the game using n

piles of tokens as described in this section in which the last player
to move loses. Nim′ is the game using n piles of tokens as described
in this section except that the last player to move wins. We fix n piles
each with a fixed number of tokens. We assume that at least one pile
has at least two tokens.

�7. Show that the first player can always win nim if and only if
the first player can always win nim′.

�8. Given a winning strategy for a particular player for nim,
describe a winning strategy for this player for nim′.

Evaluate each vertex in each game tree. The values of the terminal
vertices are given.

9.

6 12 2 1 7 208 6 10 16

10.

5 10 15 1 9 134 5

569

Trees

11.

12 8 4 9 5 1 10 11 14 2 3 13 1 6

12.

6

2 1 9 6

6 4 5 6 1 8 3 2 1 4 2 8 12 3

3

13.

12 4 9 3 6 3 7 3 6 8 10 6 2 9

14. Evaluate the root of each of the trees of Exercises 9–13 using
a depth-first search with alpha-beta pruning. Assume that chil-
dren are evaluated left to right. For each vertex whose value is
computed, write the value in the vertex. Place a check by the
root of each subtree that is pruned. The value of each terminal
vertex is written under the vertex.

In Exercises 15–18, determine the value of the tic-tac-toe position
using the evaluation function of Example 9.1.

15.

16.

17.

18.

19. Assume that the first player moves to the center square in tic-
tac-toe. Draw a two-level game tree, with the root having an
X in the center square. Omit symmetric positions. Evaluate
all the vertices using the evaluation function of Example 9.1.
Where will O move?

�20. Would a two-level search program based on the evaluation
function E of Example 9.1 play a perfect game of tic-tac-toe?
If not, can you alter E so that a two-level search program will
play a perfect game of tic-tac-toe?

21. Write an algorithm that evaluates vertices of a game tree to
level n using depth-first search. Assume the existence of an
evaluation function E.

�22. Write an algorithm that evaluates the root of a game tree using
an n-level, depth-first search with alpha-beta pruning. Assume
the existence of an evaluation function E.

The following approach often leads to more pruning than pure
alpha-beta minimax. First, perform a two-level search. Evaluate
children from left to right. At this point, all the children of the root
will have values. Next, order the children of the root with the most
promising moves to the left. Now, use an n-level, depth-first search
with alpha-beta pruning. Evaluate children from left to right.

Carry out this procedure for n = 4 for each game tree of
Exercises 23–25. Place a check by the root of each subtree that
is pruned. The value of each vertex, as given by the evaluation
function, is given under the vertex.

570

Trees

23.

11 6 6 8 7 10

9 13 3 1 9 7 16 4 4 16 9 14 6 8 8 16 12 13 20

24.

9 9 6 8 7 10

9 13 3 1 9 7 16 4 4 16 9 14 6 8 8 16 12 13 20

25.

40 23 20 38 30 10 70 35

42 56 9 9 22 21 10 6 41 40 20 3 43 13 37 56 3 34 35 13 55 6 33 44 52 51 9 25 30 50

26. Write an algorithm to carry out the procedure described before
Exercise 23.

Mu Torere is a two-person game played by the Maoris (see [Bell]).
The board is an eight-pointed star with a circular area in the center
known as the putahi.

PUTAHI

The first player has four black tokens and the second player has
four white tokens. The initial position is shown. A player who can-
not make a move loses. Players alternate moves. At most one token
can occupy a point of the star or the putahi. A move consists of

(a) Moving to an adjacent point

(b) Moving from the putahi to a point

(c) Moving from a point to the putahi provided that one or
both of the adjacent points contain the opponent’s pieces

�27. Develop an evaluation function for Mu Torere.

�28. Combine the evaluation function in Exercise 27 with a two-
level search of the game tree to obtain a game-playing algo-
rithm for Mu Torere. Evaluate the game-playing ability of this
algorithm.

�29. Can the first player always win in Mu Torere?

�30. Can the first player always tie in Mu Torere?

571

Trees

31. [Project] According to [Nilsson], the complete game tree for
chess has over 10100 vertices. Report on how this estimate was
obtained.

�32. [Project] Develop an evaluation function for Kalah. (See
[Ainslie] for the rules.)

�33. Develop a game-playing algorithm for Kalah based on the
evaluation function of Exercise 32. Evaluate the game-playing
ability of this algorithm.

Notes

The following are recommended references on trees: [Berge; Bondy; Deo; Even, 1979;
Gibbons; Harary; Knuth, 1997; Liu, 1985; and Ore].

See [Date] for the use of trees in hierarchical databases.
[Johnsonbaugh] has additional information on Huffman codes and a proof that

Algorithm 1.9 constructs an optimal Huffman tree.
[Golomb, 1965] describes backtracking and contains several examples and

applications.
Minimal spanning tree algorithms and their implementation can be found in [Tarjan].
[Johnsonbaugh] discusses the minimal time for sorting as well as lower bounds for

other problems.
Classical sorting algorithms are thoroughly covered in [Knuth, 1998b]. See [Akl;

Leighton; Lester; Lewis; Miller; and Quinn] for sorting using parallel machines.
Good references on game trees are [Nievergelt; Nilsson; and Slagle]. In [Frey], the

minimax procedure is applied to a simple game. Various methods to speed up the search of
the game tree are discussed and compared. Computer programs are given. [Berlekamp, 2001,
2003] contains a general theory of games as well as analyses of many specific games.

Chapter Review

Section 1
1. Free tree
2. Rooted tree
3. Level of a vertex in a rooted tree
4. Height of a rooted tree
5. Hierarchical definition tree
6. Huffman code

Section 2
7. Parent
8. Ancestor
9. Child

10. Descendant
11. Sibling
12. Terminal vertex
13. Internal vertex
14. Subtree
15. Acyclic graph
16. Alternative characterizations of trees (Theorem 2.3)

Section 3
17. Spanning tree
18. A graph has a spanning tree if and only if it is connected.
19. Breadth-first search

20. Depth-first search
21. Backtracking

Section 4
22. Minimal spanning tree
23. Prim’s Algorithm to find a minimal spanning tree
24. Greedy algorithm

Section 5
25. Binary tree
26. Left child in a binary tree
27. Right child in a binary tree
28. Full binary tree
29. If T is full binary tree with i internal vertices, then T has

i+ 1 terminal vertices and 2i+ 1 total vertices.
30. If a binary tree of height h has t terminal vertices, then

lg t ≤ h.
31. Binary search tree
32. Algorithm to construct a binary search tree

Section 6
33. Preorder traversal
34. Inorder traversal
35. Postorder traversal

572

Trees

36. Prefix form of an expression (Polish notation)
37. Infix form of an expression
38. Postfix form of an expression (reverse Polish notation)
39. Tree representation of an expression

Section 7
40. Decision tree
41. The height of a decision tree that represents an algorithm is

proportional to the worst-case time of the algorithm.
42. Any sorting algorithm requires at least 	(n lg n) compar-

isons in the worst case to sort n items.

Section 8
43. Isomorphic free trees
44. Isomorphic rooted trees

45. Isomorphic binary trees
46. The Catalan number C(2n, n)/(n+1) is equal to the number

of nonisomorphic binary trees with n vertices.
47. Linear-time algorithm (Algorithm 8.13) to test whether two

binary trees are isomorphic

Section 9
48. Game tree
49. Minimax procedure
50. n-level search
51. Evaluation function
52. Alpha-beta pruning
53. Alpha value
54. Alpha cutoff
55. Beta value
56. Beta cutoff

Chapter Self-Test

Section 1
1. Draw the free tree as a rooted tree with root c.

a

c

b

d

e
f i

j

k

l
g

h

2. Find the level of every vertex in the adjacent tree rooted
at c.

3. Find the height of the adjacent tree rooted at c.

4. Construct an optimal Huffman code for the set of letters in
the table.

Letter Frequency

A 5
B 8
C 5
D 12
E 20
F 10

Section 2
5. Draw the free tree of Exercise 1 as a rooted tree with root

f . Find

(a) The parent of a.

(b) The children of b.

(c) The terminal vertices.

(d) The subtree rooted at e.

Answer true or false in Exercises 6–8 and explain your answer.

6. If T is a tree with six vertices, T must have five edges.

7. If T is a rooted tree with six vertices, the height of T is at
most 5.

8. An acyclic graph with eight vertices has seven edges.

Section 3
9. Use breadth-first search (Algorithm 3.6) with the vertex

ordering eachgbdfi to find a spanning tree for the follow-
ing graph.

a b c

g h i

d fe

10. Use depth-first search (Algorithm 3.7) with the vertex
ordering eachgbdfi to find a spanning tree for the graph of
Exercise 9.

11. Use breadth-first search (Algorithm 3.6) with the vertex
ordering fdehagbci to find a spanning tree for the graph
of Exercise 9.

573

Trees

12. Use depth-first search (Algorithm 3.7) with the vertex
ordering fdehagbci to find a spanning tree for the graph
of Exercise 9.

Section 4
13. Find a minimal spanning tree for the following graph.

1 2 38 14

7 8 910 20

4 6

2

16

12

4

18 28

6

5
2230

24 26

14. In what order are the edges added by Prim’s Algorithm for
the graph of Exercise 13 if the initial vertex is 1?

15. In what order are the edges added by Prim’s Algorithm for
the graph of Exercise 13 if the initial vertex is 6?

16. Give an example of the use of the greedy method that does
not lead to an optimal algorithm.

Section 5
17. Draw a binary tree with exactly two left children and one

right child.

18. A full binary tree has 15 internal vertices. How many termi-
nal vertices does it have?

19. Place the words

word processing produces clean manuscripts

but not necessarily clear prose

in the order in which they appear, in a binary search tree.

20. Explain how we would look for MORE in the binary search
tree of Exercise 19.

Section 6

Exercises 21–23 refer to the following binary tree.

A

F

B C

D

G E

21. List the order in which the vertices are processed using
preorder traversal.

22. List the order in which the vertices are processed using
inorder traversal.

23. List the order in which the vertices are processed using pos-
torder traversal.

24. Represent the prefix expression−∗E/BD−CA as a binary
tree. Also write the postfix form and the fully parenthesized
infix form of the expression.

Section 7
25. Six coins are identical in appearance, but one coin is either

heavier or lighter than the others, which all weigh the same.
Prove that at least three weighings are required in the worst
case to identify the bad coin and determine whether it is
heavy or light using only a pan balance.

26. Draw a decision tree that gives an algorithm to solve the
coin puzzle of Exercise 25 in at most three weighings in the
worst case.

27. Professor E. Sabic claims to have discovered an algorithm
that uses at most 100n comparisons in the worst case to sort
n items, for all n ≥ 1. The professor’s algorithm repeatedly
compares two elements and, based on the result of the com-
parison, modifies the original list. Give an argument that
shows that the professor must be mistaken.

28. The binary insertion sort algorithm sorts an array of size n

as follows. If n = 1, 2, or 3, the algorithm uses an optimal
sort. If n > 3, the algorithm sorts s1, . . . , sn in the following
way. First, s1, . . . , sn−1 is recursively sorted. Then binary
search is used to determine the correct position for sn, after
which sn is inserted in its correct position. Determine the
number of comparisons used by binary insertion sort in the
worst case for n = 4, 5, 6. Does any algorithm use fewer
comparisons for n = 4, 5, 6?

Section 8

Answer true or false in Exercises 29 and 30 and explain your
answer.

29. If T1 and T2 are isomorphic as rooted trees, then T1 and T2

are isomorphic as free trees.

30. If T1 and T2 are rooted trees that are isomorphic as free trees,
then T1 and T2 are isomorphic as rooted trees.

31. Determine whether the free trees are isomorphic. If the trees
are isomorphic, give an isomorphism. If the trees are not
isomorphic, give an invariant the trees do not share.

v1

T1

w1

T2

v2
v3

v7v4
v5 v6

v8

w4
w3

w2

w5 w6 w7 w8

574

Trees

32. Determine whether the rooted trees are isomorphic. If the
trees are isomorphic, give an isomorphism. If the trees are
not isomorphic, give an invariant the trees do not share.

v1 w1

T1 T2

w2

w5

w6 w7

w3 w4
v2 v3 v4

v7

v6
v5

Section 9
33. Find the value of the tic-tac-toe position using the evaluation

function of Example 9.1.

34. Give an evaluation function for a tic-tac-toe position differ-
ent from that of Example 9.1. Attempt to discriminate more
among the positions than does the evaluation function of
Example 9.1.

35. Evaluate each vertex in the game tree. The values of the
terminal vertices are given.

3 6 8 2 1 7 3 42 8

36. Evaluate the root of the tree of Exercise 35 using the min-
imax procedure with alpha-beta pruning. Assume that the
children are evaluated left to right. For each vertex whose
value is computed, write the value in the vertex. Place a
check by the root of each subtree that is pruned.

Computer Exercises

1. Write a program that tests if a graph is a tree.

2. Write a program that, given the adjacency matrix of a tree
and a vertex v, draws the tree rooted at v using a computer
graphics display.

3. Write a program that, given a frequency table for characters,
constructs an optimal Huffman code.

4. Write a program that encodes and decodes text given a Huff-
man code.

5. Compute a table of characters and frequencies by sampling
some text. Use your program of Exercise 3 to generate an
optimal Huffman code. Use your program of Exercise 4 to
encode some sample text. Compare the number of bits used
to encode the text using the Huffman code with the number
of bits used to encode the text in ASCII.

6. Write a program that, given a tree T , computes the eccen-
tricity of each vertex in T and finds the center(s) of T .

7. Write a program that, given a rooted tree and a vertex v,

(a) Finds the parent of v.

(b) Finds the ancestors of v.

(c) Finds the children of v.

(d) Finds the descendants of v.

(e) Finds the siblings of v.

(f) Determines whether v is a terminal vertex.

8. Write a program that finds a spanning tree in a graph.

9. Write a program that determines whether a graph is con-
nected.

10. Write a program that finds the components of a graph.

11. Write a program to solve the n-queens problem.

12. Write a backtracking program to determine whether two
graphs are isomorphic.

13. Write a backtracking program that determines whether a
graph can be colored with n colors and, if it can be colored
with n colors, produces a coloring.

14. Write a backtracking program that determines whether a
graph has a Hamiltonian cycle and, if there is a Hamilto-
nian cycle, finds it.

15. Write a program that, given a graph G and a spanning tree
for G, computes the fundamental cycle matrix of G.

16. Implement Prim’s Algorithm as a program.

17. Implement Kruskal’s Algorithm (given before Exercise 20,
Section 4) as a program.

18. Write a program that accepts strings and puts them into a
binary search tree.

19. Write a program that constructs all n-vertex binary trees.

20. Write a program that generates a random n-vertex binary
tree.

21. Implement preorder, postorder, and inorder tree traversals
as programs.

575

Trees

22. Implement tournament sort as a program.

23. Implement Algorithm 8.13, which tests whether two binary
trees are isomorphic, as a program.

24. Write a program to generate the complete game tree for nim
in which the initial position consists of two piles of four
tokens each. Assume that the last player to take a token
loses.

25. Implement the minimax procedure as a program.

26. Implement the minimax procedure with alpha-beta pruning
as a program.

27. Implement the method of playing tic-tac-toe in Example 9.1
as a program.

28. Write a program that plays a perfect game of tic-tac-toe.

29. [Project] Develop a computer program to play a game that
has relatively simple rules. Suggested games are Cribbage,
Othello, The Mill, Battleship, and Kalah.

Hints/Solutions to Selected Exercises

Section 1 Review
1. A free tree T is a simple graph satisfying the following: If v

and w are vertices in T , there is a unique simple path from v

to w.

2. A rooted tree is a tree in which a particular vertex is designated
the root.

3. The level of a vertex v is the length of the simple path from
the root to v.

4. The height of a rooted tree is the maximum level number that
occurs.

5. See Figure 1.9.

6. In the rooted tree structure, each vertex represents a file or
a folder. Directly under a folder f are the folders and files
contained in f .

7. A Huffman code can be defined by a rooted tree. The code for
a particular character is obtained by following the simple path
from the root to that character. Each edge is labeled with 0 or
1, and the sequence of bits encountered on the simple path is
the code for that character.

8. Suppose that there are n frequencies. If n = 2, build the
tree shown in Figure 1.11 and stop. Otherwise, let fi and fj

denote the smallest frequencies, and replace them in the list by
fi+fj . Recursively construct an optimal Huffman coding tree
using the modified list. In the tree that results, add two edges
to a vertex labeled fi+ fj , and label the added vertices fi

and fj .

Section 1
1. The graph is a tree. For any vertices v and w, there is a unique

simple path from v to w.

4. The graph is a tree. For any vertices v and w, there is a unique
simple path from v to w.

7. n = 1

8. a-1; b-1; c-1; d-1; e-2; f -3; g-3; h-4; i-2; j-3; k-0

11. Height = 4

a

b

c

d f

e

g

h
i

j

14. PEN 17. SALAD

18. 0111100010 21. 0110000100100001111

24.
1 0

1 0

1 0 1 0

27. Another tree is shown in the hint for Exercise 24.

1 0

1 0

1 0

1 0

32. Let T be a tree. Root T at some arbitrary vertex. Let V be the
set of vertices on even levels and let W be the set of vertices
on odd levels. Since each edge is incident on a vertex in V and
a vertex in W , T is a bipartite graph.

576

Trees

35. e, g

38. The radius is the eccentricity of a center. It is not necessarily
true that 2r = d (see Figure 1.5).

Section 2 Review
1. Let (v0, . . . , vn−1, vn) be a path from the root v0 to vn. We call

vn−1 the parent of vn.

2. Let (v0, . . . , vn) be a path from the root v0 to vn. We call
(vi, . . . , vn) descendants of vi−1.

3. v and w are siblings if they have the same parent.

4. A terminal vertex is one with no children.

5. If v is not a terminal vertex, it is an internal vertex.

6. An acyclic graph is a graph with no cycles.

7. See Theorem 2.3.

Section 2
1. Kronos

4. Apollo, Athena, Hermes, Heracles

7. b; d 10. e, f, g, j; j

13. a, b, c, d, e 17. They are siblings.
22. 25.

27. A single vertex is a “cycle” of length 0.

30. Each component of a forest is connected and acyclic and, there-
fore, a tree.

33. Suppose that G is connected. Add parallel edges until the
resulting graph G∗ has n−1 edges. Since G∗ is connected and
has n−1 edges, by Theorem 2.3, G∗ is acyclic. But adding an
edge in parallel introduces a cycle. Contradiction.

36.

Section 3 Review
1. A tree T is a spanning tree of a graph G if T is a subgraph of

G that contains all of the vertices of G.

2. A graph G has a spanning tree if and only if G is connected.

3. Select an ordering of the vertices. Select the first vertex and
label it the root. Let T consist of this single vertex and no
edges. Add to the tree all edges incident on this single vertex
that do not produce a cycle when added to the tree.Also add the
vertices incident on these edges. Repeat this procedure with
the vertices on level 1, then those on level 2, and so on.

4. Select an ordering of the vertices. Select the first vertex and
label it the root. Add an edge incident on this vertex to the tree,
and add the additional vertex v incident on this edge. Next add
an edge incident on v that does not produce a cycle when added
to the tree, and add the additional vertex incident on this edge.
Repeat this process. If, at any point, we cannot add an edge
incident on a vertex w, we backtrack to the parent p of w and
try to add an edge incident on p. When we finally backtrack
to the root and cannot add more edges, depth-first search con-
cludes.

5. Depth-first search

Section 3
1.

4. The path (h, f, e, g, b, d, c, a)

7.

10. The two-queens problem clearly has no solution. For the three-
queens problem, by symmetry, the only possible first column
positions are upper left and second from top. If the first move
is first column, upper left, the second move must be to the
bottom of the second column. Now no move is possible for
the third column. If the first move is first column, second from
top, there is no move possible in column two. Therefore, there
is no solution to the three-queens problem.

13.

�

�

�

�

�

17. False. Consider K4.

20. First, show that the graph T constructed is a tree. Now use
induction on the level of T to show that T contains all the
vertices of G.

23. Suppose that x is incident on vertices a and b. Removing x

from T produces a disconnected graph with two components,
U and V . Vertices a and b belong to different components—
say, a ∈ U and b ∈ V . There is a path P from a to b in T ′.
As we move along P , at some point we encounter an edge
y = (v, w) with v ∈ U, w ∈ V . Since adding y to T − {x}
produces a connected graph, (T − {x}) ∪ {y} is a spanning
tree. Clearly, (T ′ − {y}) ∪ {x} is a spanning tree.

577

Trees

26. Suppose that T has n vertices. If an edge is added to T , the
resulting graph T ′ is connected. If T ′ were acyclic, T ′ would
be a tree with n edges and n vertices. Thus T ′ contains a cycle.
If T ′ contains two or more cycles, we would be able to produce
a connected graph T ′′ by deleting two or more edges from T ′.
But now T ′′ would be a tree with n vertices and fewer than
n− 1 edges—an impossibility.

27. ⎛

⎜⎝

e1 e2 e6 e5 e3 e4 e7 e8

(abca) 1 0 0 0 1 1 0 0
(acda) 0 1 0 0 1 0 0 1
(acdb) 0 0 1 0 0 1 0 1
(bcdeb) 0 0 0 1 0 1 1 1

⎞

⎟⎠

30. Input: A graph G = (V, E) with n vertices
Output: true if G is connected

false if G is not connected

is connected(V, E) {
T = bfs(V, E)

// T = (V ′, E′) is the spanning tree returned by bfs
if (|V ′| == n)

return true
else

return false
}

33. bfs track parent(V, E, parent) {
S = (v1)

// set v1’s parent to 0 to indicate that v1 has no parent
parent(v1) = 0
V ′ = {v1}
E′ = ∅

while (true) {
for each x ∈ S, in order,

for each y ∈ V − V ′, in order
if ((x, y) is an edge) {

add edge (x, y) to E′ and y to V ′
parent(y) = x

}
if (no edges were added)

return T

S = children of S ordered consistently with the original
vertex ordering

}
}

34. print parents(V, parent) {
for each v ∈ V

println(v, parent(v))
}

37. An algorithm can be obtained by modifying the four-queens
algorithm. The array row is replaced by the array p, which
is the permutation. A conflict for p(k) now means that for
some i < k, p(i) = p(k), that is, the value p(k) has already
been assigned. To obtain all of the permutations, when we
find a permutation, we print it and continue (whereas in the
four-queens algorithm, being content with one solution, we
terminated the algorithm).

perm(n) {
k = 1
p(1) = 0
while (k > 0) {

p(k) = p(k)+ 1
while (p(k) ≤ n ∧ p(k) conflicts)

p(k) = p(k)+ 1
if (p(k) ≤ n)

if (k == n)

println(p)

else {
k = k + 1
p(k) = 0

}
else

k = k − 1
}

}

40. The idea of the backtracking algorithm is to scan the grid (we
chose to scan top to bottom, left to right), skipping positions
where numbers were preassigned, and, at the next available
position, we try 1, then 2, then 3, and so on, until we find a legal
value (i.e., a value that does not conflict within its 3× 3 sub-
square, within its row, or within its column). If such a value is
found, we continue with the next available position. If no such
value can be found, we backtrack to the last position where
we assigned a value; if that value was i, we try i+ 1, i+ 2 and
so on.

In the following algorithm, the value s(i, j) is the value
in row i, column j, or 0 if no value is stored there. We assume
that initially all values in s are set to 0, except for those values
that are specified in the puzzle. Finally, show values prints the
array s.

sudoku(s) {
i = 0
j = 1
// advance advances i and j to the next position in which
// a value is not specified. It proceeds down a column first.
advance(i, j)
while (i ≥ 1 ∧ j ≥ 1) {

// search for a legal value
s(i, j) = s(i, j)+ 1
// not valid(i, j) returns true if the value s(i, j)

// conflicts with the previously chosen and specified
// values, and false otherwise.
while (s(i, j) < 10 ∧ not valid(i, j))

s(i, j) = s(i, j)+ 1
// if no value found, backtrack
if (s(i, j) == 10) {

s(i, j) = 0
// retreat moves i and j to the previous position in
// which a value is not specified. It proceeds up a
// column first.
retreat(i, j)

}

578

Trees

else
advance(i, j) // sets j to 10 if advanced off board

if (j == 10) {
// Solution!
show values()
return

}
}

}

Section 4 Review
1. A minimal spanning tree is a spanning tree with minimum

weight.

2. Prim’sAlgorithm builds a minimal spanning tree by iteratively
adding edges. The algorithm begins with a single vertex. Then
at each iteration, it adds to the current tree a minimum-weight
edge that does not complete a cycle.

3. A greedy algorithm optimizes the choice at each iteration.

Section 4
1. 4.

10. If v is the first vertex examined by Prim’s Algorithm, the
edge will be in the minimal spanning tree constructed by the
algorithm.

13. Suppose that G has two minimal spanning trees T1 and T2.
Then, there exists an edge x in T1 that is not in T2. By
Exercise 23, Section 3, there exists an edge y in T2 that is not
in T1 such that T3 = (T1−{x})∪{y} and T4 = (T2−{y})∪{x}
are spanning trees. Since x and y have different weights, either
T3 or T4 has weight less than T1. This is a contradiction.

14. False

1

4

6

2 5

a b

cd

16. False. Consider K5 with the weight of every edge equal to 1.

20. Input: The edges E of an n-vertex, connected, weighted
graph. If e is an edge, w(e) is equal to the weight
of e; if e is not an edge, w(e) is equal to∞ (a value
greater than any actual weight).

Output: A minimal spanning tree.

kruskal(E, w, n) {
V ′ = ∅

E′ = ∅

T ′ = (V ′, E′)
while (|E′| < n− 1) {

among all edges that if added to T ′ would not
complete a cycle, choose e = (vi, vj) of
minimum weight

E′ = E′ ∪ {e}
V ′ = V ′ ∪ {vi, vj}
T ′ = (V ′, E′)

}
return T ′

}

23. Terminate Kruskal’s Algorithm after k iterations. This groups
the data into n− k classes.

27. We show that a1 = 7 and a2 = 3 provide a solution. We
use induction on n to show that the greedy solution gives an
optimal solution for n ≥ 1. The cases n = 1, 2, . . . , 8 may be
verified directly.

We first show that if n ≥ 9, there is an optimal solution
containing at least one 7. Let S′ be an optimal solution. Sup-
pose that S′ contains no 7’s. Since S′ contains at most two 1’s
(since S′ is optimal), S′ contains at least three 3’s. We replace
three 3’s by one 7 and two 1’s to obtain a solution S. Since
|S| = |S′|, S is optimal.

If we remove a 7 from S, we obtain a solution S∗ to the
(n−7)-problem. IfS∗were not optimal,S could not be optimal.
Thus S∗ is optimal. By the inductive assumption, the greedy
solution GS∗ to the (n − 7)-problem is optimal, so |S∗| =
|GS∗|. Notice that 7 together with GS∗ is the greedy solution
GS to the n-problem. Since |GS| = |S|, GS is optimal.

29. Suppose that the greedy algorithm is optimal for all denomi-
nations less than am−1 + am. We use induction on n to show
that the greedy algorithm is optimal for all n. We may assume
that n ≥ am−1 + am.

Consider an optimal solution S for n. First suppose that
S uses at least one am coin. The solution, S with one am coin
removed, is optimal for n−am. (If there was a solution for n−
am using fewer coins, we could add one am coin to it to obtain
a solution for n using fewer coins than S, which is impossible.)
By the inductive assumption, the greedy solution for n − am

is optimal. If we add one am coin to the greedy solution for
n−am, we obtain a solution G for n that uses the same number
of coins as S. Therefore, G is optimal. But G is also greedy
because the greedy solution begins by removing one am coin.

Now suppose that S does not use an am coin. Let i be the
largest index such that S uses an ai coin. The solution, S with
one ai coin removed, is optimal for n − ai. By the inductive
assumption, the greedy solution for n− ai is optimal. Now

n ≥ am−1 + am ≥ ai + am,

so n − ai ≥ am. Therefore, the greedy solution uses at least
one am coin. Thus there is an optimal solution for n− ai that
uses an am coin. If we add one ai coin to this optimal solution,
we obtain an optimal solution for n that uses an am coin. The
argument in the preceding paragraph can now be repeated to
show that the greedy solution is optimal.

579

Trees

Section 5 Review
1. A binary tree is a rooted tree in which each vertex has either

no children, one child, or two children.

2. A left child of vertex v is a child designated as “left.”

3. A right child of vertex v is a child designated as “right.”

4. A full binary tree is a binary tree in which each vertex has
either two children or zero children.

5. i+ 1 6. 2i+ 1

7. If a binary tree of height h has t terminal vertices, then lg t ≤ h.

8. A binary search tree is a binary tree T in which data are asso-
ciated with the vertices. The data are arranged so that, for each
vertex v in T , each data item in the left subtree of v is less than
the data item in v, and each data item in the right subtree of v

is greater than the data item in v.

9. See Figures 5.4 and 5.5.

10. Insert the first data item in a vertex and label it the root. Insert
the next data items in the tree according to the following steps.
Begin at the root. If the data item to be added is less than
the data item at the current vertex, move to the left child and
repeat; otherwise, move to the right child and repeat. If there
is no child, create one, put an edge incident on it and the last
vertex visited, and store the data item in the added vertex.

Section 5
1. Example 5.5 showed that n− 1 games are played. Since there

are two choices for the winner of each game, the tournament
can unfold in 2n−1 ways.

4. No. Based on past performance, it is likely that certain
teams will defeat other teams. Someone knowledgeable about
basketball will take this into account. For example, through
2007 a number 16 seed has never defeated a number 1 seed.

5.
FOUR

AND SCORE

BROUGHT YEARS

AGO SEVEN

FORTH

FOREFATHERS OUR

8. False. Consider

M

A Y

B Z

9.

12. mi+ 1, (m− 1)i+ 1

15. t − 1

18. Balanced

21. Balanced

22. A tree of height 0 has one vertex, so N0 = 1. In a balanced
binary tree of height 1, the root must have at least one child.
If the root has exactly one child, the number of vertices will
be minimized. Therefore, N1 = 2. In a balanced binary tree of
height 2, there must be a path from the root to a terminal vertex
of length 2. This accounts for three vertices. But for the tree
to be balanced, the root must have two children. Therefore,
N2 = 4.

25. Suppose that there are n vertices in a balanced binary tree of
height h. Then

n ≥ Nh = fh+3 − 1 >

(
3

2

)h+2

− 1,

for h ≥ 3. The equality comes from Exercise 24. Therefore,

n+ 1 >

(
3

2

)h+2

.

Taking the logarithm to the base 3/2 of each side, we obtain

log3/2(n+ 1) > h+ 2.

Therefore,

h < [log3/2(n+ 1)]− 2 = O(lg n).

Section 6 Review
1. Preorder traversal processes the vertices of a binary tree by

beginning at the root and recursively processing the current
vertex, the vertex’s left subtree, and then the vertex’s right
subtree.

2. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

preorder (PT) {
if (PT == null)

return
process PT
l = left child of PT
preorder(l)
r = right child of PT
preorder (r)

}

3. Inorder traversal processes the vertices of a binary tree by
beginning at the root and recursively processing the vertex’s
left subtree, the current vertex, and then the vertex’s right
subtree.

4. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

580

Trees

inorder (PT) {
if (PT == null)

return
l = left child of PT
inorder(l)
process PT
r = right child of PT
inorder (r)

}

5. Postorder traversal processes the vertices of a binary tree by
beginning at the root and recursively processing the vertex’s
left subtree, the vertex’s right subtree, and then the current
vertex.

6. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

postorder (PT) {
if (PT == null)

return
l = left child of PT
postorder (l)

r = right child of PT
postorder (r)

process PT
}

7. In the prefix form of an expression, an operator precedes its
operands.

8. Polish notation

9. In the infix form of an expression, an operator is between its
operands.

10. In the postfix form of an expression, an operator follows its
operands.

11. Reverse Polish notation

12. No parentheses are needed.

13. In a tree representation of an expression, the internal vertices
represent operators, and the operators operate on the subtrees.

Section 6
1. preorder inorder postorder

ABDCE BDAEC DBECA
4. preorder inorder postorder

ABCDE EDCBA EDCBA
6.

*

+ –

A B C D

prefix: ∗ + AB− CD
postfix: AB+ CD− ∗

9.

*

–

*

*

+

+

+

+

A

E

C

D

B

A B

C

D

prefix: − ∗ + ∗ +ABCDE + ∗ + ABCD
postfix: AB+ C ∗ D+ E ∗ AB+ C ∗ D+−

11.

+

–

A B

C

prefix: −+ ABC
usual infix: A+ B − C

parened infix: ((A+ B)− C)

14.

*

/

–

+

*

B C

CA

D E

prefix: − ∗ A ∗ BC/C + DE
usual infix: A ∗ B ∗ C − C/(D+ E)

parened infix: ((A ∗ (B ∗ C))− (C/(D+ E)))

16. −4 19. 0

22.
A

B

C

A

B

C

25.
A

B

A

B

28. Input: PT , the root of a binary tree

Output: Dependent on how “process” is interpreted

swap children (PT) {
if (PT == null)

return
swap the left and right children of PT
l = left child of PT
swap children(l)

r = right child of PT
swap children(r)

}

581

Trees

31. If T is a binary tree, we let post(T) denote the order in which
the vertices of T are visited under postorder traversal. We let
revpost(T) denote the reverse of post(T). We prove by induc-
tion on the number of nodes in a tree T that the order in which
funnyorder visits the nodes of T is revpost(T).

The assertion is evident if T has no nodes. Thus the
basis step is proved.

Now assume that the order in which funnyorder visits
the nodes of a tree T ′ having fewer than n nodes is revpost(T ′).
Let T be an n-node tree. We must prove that the order in which
funnyorder visits the nodes of T is revpost(T).

Let T1 be the left subtree of T , let T2 be the right subtree
of T , and let r be the root of T . By the inductive assumption, the
order in which funnyorder visits the nodes of T1 is revpost(T1),
and the order in which funnyorder visits the nodes of T2 is
revpost(T2). The pseudocode shows that the order in which
funnyorder visits the nodes of T is

r, revpost(T2), revpost(T1).

The reverse of this list is

post(T1), post(T2), r,

which is the order in which postorder visits the nodes of T .
The inductive step is complete.

32. Define an initial segment of a string to be the first i ≥ 1
characters for some i. Define r(x) = 1, for x = A, B, . . . , Z;
and r(x) = −1, for x = +,−, ∗, /. If x1 · · · xn is a string over
{A, . . . , Z,+,−, ∗, /}, define

r(x1 · · · xn) = r(x1)+ · · · + r(xn).

Then a string s is a postfix string if and only if r(s) = 1 and
r(s′) ≥ 1, for all initial segments s′ of s.

35. Let G be the graph with vertex set {1, 2, . . . , n} and edge set

{(1, i) | i = 2, . . . n}.

The {1} is a vertex cover of G of size 1.

38. Input: PT , the root of a nonempty tree

Output: Each vertex of the tree has a field in cover that is
set to true if that vertex is in the vertex cover or to
false if that vertex is not in the vertex cover.

tree cover(PT) {
flag = false
ptr = first child of PT
while (ptr ! = null) {

tree cover(ptr)
if (in cover of ptr == false)

flag = true
ptr = next sibling of ptr

}
in cover of PT = flag

}

Section 7

1.

C4C1 C2 C3 C3 C2 C1

C1 : C2

C1 : C3C1 : C3C1 : C3

Section 7 Review
1. A decision tree is a binary tree in which the internal ver-

tices contain questions with two possible answers, the edges
are labeled with answers to the questions, and the termi-
nal vertices represent decisions. If we begin at the root,
answer each question, and follow the appropriate edges, we
will eventually arrive at a terminal vertex that represents a
decision.

2. The worst-case time of an algorithm is proportional to the
height of the decision tree that represents the algorithm.

3. A decision tree that represents a sorting algorithm has n!
terminal vertices corresponding to the n! possible permuta-
tions of input of size n. If h is the height of the tree, then h

comparisons are required in the worst case. Since lg n! ≤ h

and lg n! = �(n lg n), worst-case sorting requires at least
	(n lg n) comparisons.

582

Trees

4. In this graph only, if the left pan is heavier, go right.

C1C2C3C4 : C5C6C7C8

C1C2C5 : C3C4C6

C1 : C2 C7 : C8 C3 : C4

C1, L
C6, H

C2, L C8, H C7, H C3, L
C5, H

C4, L

C5C6C1 : C7C8C2

C5 : C6 C3 : C4 C7 : C8

C5, L
C2, H

C6, L C4, H C3, H C7, L
C1, H

C8, L

C1C2C3 : C9C10C11

C9 : C10 C1 : C12 C9 : C10

C10, H
C11, H

C9, H C12, H C12, L C9, L
C11, L

C10, L

7. There are 28 possible outcomes to the fourteen-coins puzzle.
A tree of height 3 has at most 27 terminal vertices; thus at least
four weighings are required in the worst case. In fact, there is
an algorithm that uses four weighings in the worst case: We
begin by weighing four coins against four coins. If the coins do
not balance, we proceed as in the solution given for Exercise 4
(for the 12-coins puzzle). In this case, at most three weigh-
ings are required. If the coins do balance, we disregard these
coins; our problem then is to find the bad coin from among the
remaining six coins. The six-coins puzzle can be solved in at
most three weighings in the worst case, which, together with
the initial weighing, requires four weighings in the worst case.

9. Let f(n) denote the number of weighings needed to solve the
n-coin problem in the worst case. Let T be the decision tree that
represents this algorithm for input of size n and let h denote
the height of T . Then the algorithm requires h weighings in
the worst case so h = f(n). Since there are n − 1 possible
outcomes, T has at least n−1 terminal vertices. By the analog
of Theorem 5.6 for “trinary” trees, log3(n− 1) ≤ h = f(n).

12. The decision tree analysis shows that at least �lg 5!� = 7 com-
parisons are required to sort five items in the worst case. The
following algorithm sorts five items using at most seven com-
parisons in the worst case.

Given the sequence a1, . . . , a5, we first sort a1, a2 (one
comparison) and then a3, a4 (one comparison). (We assume
now that a1 < a2 and a3 < a4.) We then compare a2 and a4.
Let us assume that a2 < a4. (The case a2 > a4 is symmetric
and for this reason that part of the algorithm is omitted.) At
this point we know that

a1 < a2 < a4 and a3 < a4.

Next we determine where a5 belongs among a1, a2, and a4 by
first comparing a5 with a2. If a5 < a2, we next compare a5

with a1; but if a5 > a2, we next compare a5 with a4. In either
case, two additional comparisons are required. At this point,
a1, a2, a4, a5 is sorted. Finally, we insert a3 in its proper place.
If we first compare a3 with the second-smallest item among
a1, a2, a4, a5, only one additional comparison will be required,
for a total of seven comparisons. To justify this last statement,
we note that the following arrangements are possible after we
insert a5 in its correct position:

a5 < a1 < a2 < a4

a1 < a5 < a2 < a4

a1 < a2 < a5 < a4

a1 < a2 < a4 < a5.

If a3 is less than the second item, only one additional com-
parison is needed (with the first item) to locate the correct
position for a3. If a3 is greater than the second item, at most
one additional comparison is needed to locate the correct posi-
tion for a3. In the first three cases, we need only compare a3

with either a2 or a5 to find the correct position for a3 since we
already know that a3 < a4. In the fourth case, if a3 is greater
than a2, we know that it goes between a2 and a4.

14. We can consider the numbers as contestants and the internal
vertices as winners where the larger value wins.

17. Suppose we have an algorithm that finds the largest value
among x1, . . . , xn. Let x1, . . . , xn be the vertices of a graph.
An edge exists between xi and xj if the algorithm compares
xi and xj . The graph must be connected. The least number of
edges necessary to connect n vertices is n− 1.

20. By Exercise 16, Tournament Sort requires 2k − 1 compar-
isons to find the largest element. By Exercise 18, Tournament
Sort requires k comparisons to find the second-largest element.
Similarly, Tournament Sort requires at most k comparisons to

583

Trees

find the third-largest, at most k comparisons to find the fourth-
largest, and so on. Thus the total number of comparisons is at
most

[2k − 1]+ (2k − 1)k ≤ 2k + k2k

≤ k2k + k2k

= 2 · 2kk = 2n lg n.

Section 8 Review
1. Free trees T1 and T2 are isomorphic if there is a one-to-one,

onto function f from the vertex set of T1 to the vertex set of T2

satisfying the following: Vertices vi and vj are adjacent in T1

if and only if the vertices f(vi) and f(vj) are adjacent in T2.

2. Let T1 be a rooted tree with root r1 and let T2 be a rooted
tree with root r2. Then T1 and T2 are isomorphic if there is a
one-to-one, onto function f from the vertex set of T1 to the
vertex set of T2 satisfying the following:

(a) vi and vj are adjacent in T1 if and only if f(vi) and f(vj)

are adjacent in T2.

(b) f(r1) = f(r2).

3. Let T1 be a binary tree with root r1 and let T2 be a binary
tree with root r2. Then T1 and T2 are isomorphic if there is a
one-to-one, onto function f from the vertex set of T1 to the
vertex set of T2 satisfying the following:

(a) vi and vj are adjacent in T1 if and only if f(vi) and f(vj)

are adjacent in T2.

(b) f(r1) = f(r2).

(c) v is a left child of w in T1 if and only if f(v) is a left child
of f(w) in T2.

(d) v is a right child of w in T1 if and only if f(v) is a right
child of f(w) in T2.

4. C(2n, n)/(n+ 1)

5. Given binary trees T1 and T2, we first check whether either is
empty (in which case it is immediate whether they are isomor-
phic). If both are nonempty, we first check whether the left
subtrees are isomorphic and then whether the right subtrees
are isomorphic. T1 and T2 are isomorphic if and only if their
left and right subtrees are isomorphic.

Section 8
1. Isomorphic. f(v1) = w1, f(v2) = w5, f(v3) = w3,

f(v4) = w4, f(v5) = w2, f(v6) = w6.

4. Not isomorphic. T2 has a simple path of length 2 from a vertex
of degree 1 to a vertex of degree 1, but T1 does not.

7. Isomorphic as rooted trees. f(v1)=w1, f(v2)=w4,
f(v3)=w3, f(v4)=w2, f(v5)=w6, f(v6)=w5, f(v7)=w7,
f(v8)=w8. Also isomorphic as free trees.

10. Not isomorphic as binary trees. The root of T1 has a left child
but the root of T2 does not. Isomorphic as rooted trees and as
free trees.

13.

16.

19.

22. Let bn denote the number of nonisomorphic, n-vertex full
binary trees. Since every full binary tree has an odd number of
vertices, bn = 0 if n is even. We show that if n = 2i+1 is odd,

bn = Ci,

where Ci denotes the ith Catalan number.
The last equation follows from the fact that there is a

one-to-one, onto function from the set of i-vertex binary trees
to the set of (2i+ 1)-vertex full binary trees. Such a function
may be constructed as follows. Given an i-vertex binary tree,
at every terminal vertex we add two children. At every vertex
with one child, we add an additional child. Since the tree that
is obtained has i internal vertices, there are 2i + 1 vertices
total (Theorem 5.4). The tree constructed is a full binary tree.
Notice that this function is one-to-one. Given a (2i+1)-vertex
full binary tree T ′, if we eliminate all the terminal vertices,
we obtain an i-vertex binary tree T . The image of T is T ′.
Therefore, the function is onto.

25. There are four comparisons at lines 1 and 3. By Exercise 24,
the call bin tree isom(lc r1, lc r2) requires 6(k−1)+2 com-
parisons. The call bin tree isom(rc r1, rc r2) requires four
comparisons. Thus the total number of comparisons is

4+ 6(k − 1)+ 2+ 4 = 6k + 4.

27. Let T ∗ denote the tree constructed. Then T ∗ is a full binary tree.
Each vertex in T becomes an internal vertex in T ∗. Since we
added only terminal vertices, the original n−1 vertices in T are
the only internal vertices in T ∗. By Theorem 5.4, T ∗ has n ter-
minal vertices. Therefore T ∗ ∈ X1. We leave it to the reader to
check that this mapping is a bijection. By Theorem 8.12, there
are Cn−1 (n− 1)-vertex binary trees. Therefore |X1| = Cn−1.

29. By Theorem 5.4, a tree in X1 has n − 1 internal vertices and
2n − 1 total vertices. Thus we may choose the vertex v in
2n − 1 ways and the vertex to mark (left or right) in 2 ways.
Therefore |XT | = 2(2n− 1).

33. Using iteration, we have

Cn = 2(2n− 1)

n+ 1
Cn−1

= 2(2n− 1)

n+ 1

2(2n− 3)

n
Cn−2

= 22(2n− 1)(2n− 3)

(n+ 1)n
Cn−2

584

Trees

= 23(2n− 1)(2n− 3)(2n− 5)

(n+ 1)n(n− 1)
Cn−3

...

= 2n−1(2n− 1)(2n− 3) · · · 3
(n+ 1)n(n− 1) · · · 3 C1

= 1

n+ 1

[
2n(2n− 1)(2n− 3) · · · 3

n(n− 1) · · · 3 · 2

]

= 1

n+ 1

[
2nn!(2n− 1)(2n− 3) · · · 3

n!n!

]

= 1

n+ 1

{
[(2n)(2n− 2) · · · 2][(2n− 1)(2n− 3) · · · 3]

n!n!

}

= 1

n+ 1

(2n)!

n!n!
= 1

n+ 1
C(2n, n).

Section 9 Review
1. In a game tree, each vertex shows a particular position in the

game. In particular, the root shows the initial configuration of
the game. The children of a vertex show all possible responses
by a player to the position shown in the vertex.

2. In the minimax procedure, values are first assigned to the ter-

minal vertices in a game tree. Then, working from the bottom
up, the value of a circle is set to the minimum of the values of
its children, and the value of a box is set to the maximum of
the values of its children.

3. A search that terminates n levels below the given vertex.

4. An evaluation function assigns to each possible game position
the value of the position to the first player.

5. Alpha-beta pruning deletes (prunes) parts of the game tree and
thus omits evaluating parts of it when the minimax procedure
is applied. Alpha-beta pruning works as follows. Suppose that
a box vertex v is known to have a value of at least x. When a
grandchild w of v has a value of at most x, the subtree whose
root is the parent of w is deleted. Similarly, suppose that a
circle vertex v is known to have a value of at most x. When a
grandchild w of v has a value of at least x, the subtree whose
root is the parent of w is deleted.

6. An alpha value is a lower bound for a box vertex.

7. An alpha cutoff occurs at a box vertex when a grandchild w

of v has a value less than or equal to the alpha value of v.

8. A beta value is an upper bound for a circle vertex.

9. A beta cutoff occurs at a circle vertex when a grandchild w of
v has a value greater than or equal to the beta value of v.

Section 9
1.

3 0

1 0
2 1

4

0 12 1
0 1

1 0
1

0

02
0 1

1 0

0
0

0
0

1
1

0
0

0
0

001

1
0

31 1 2 1

11 001
1

0

5

0
1

02 1 0 11 00
0

1
1

0
1

0

01

3 21 1 1 0

0
0

1
0

00

4 3

6 1

0011 00

2 1

1
0

1 00 1

1 0 0

The first player always wins. The winning strategy is to first
take one token; then, whatever the second player does, leave
one token.

4. The second player always wins. If two piles remain, leave piles
with equal numbers of tokens. If one pile remains, take it.

7. Suppose that the first player can win in nim. The first player
can always win in nim′ by adopting the following strategy:
Play nim′ exactly like nim unless the move would leave an
odd number of singleton piles and no other pile. In this case,
leave an even number of piles.

Suppose that the first player can always win in nim′. The
first player can always win in nim by adopting the following

strategy: Play nim exactly like nim′ unless the move would
leave an even number of singleton piles and no other pile. In
this case, leave an odd number of piles.

9.

6 12 2 1 7 208 6 10 16

12

12

8 16 20

8 20

20

12. The value of the root is 3.

585

Trees

14. (For Exercise 11)

3

5

10

8 2 3412 9 5

12 9 5

10

11

10

1 10

15. 3− 2 = 1

18. 4− 1 = 3

19.

O X

X

O
X 3

X
O X

X
O

X
O

X
X O

O
X 4

X
O

4�1 � 3

X
O

5�1 � 4

X
X

O

4�1 � 3

X

O will move to a corner.

3

X
X

X
X

4�0 � 44�1 � 3 4�2 � 2 5�2 � 33�1 � 2

22. Input: The root PT of a game tree; the type PT type
of PT (box or circle); the level PT level of PT;
the maximum level n to which the search is to
be conducted; an evaluation function E; and
a number ab val (which is either the alpha- or
beta-value of the parent of PT). (The initial call
sets ab val to∞ if PT is a box vertex or to
−∞ if PT is a circle vertex.)

Output: The game tree with PT evaluated

alpha beta prune(PT, PT type, PT level, n, E, ab val) {
if (PT level == n) {

contents(PT) = E(PT)

return
}
if (PT type == box) {

contents(PT) = −∞
for each child C of PT {

alpha beta prune(C, circle, PT level+ 1, n,

E, content(PT))

c val = contents(C)

if (c val ≥ ab val) {
contents(PT) = ab val
return

}

if (c val > contents(PT))

contents(PT) = c val
}

}
else {

contents(PT) = ∞
for each child C of PT {

alpha beta prune(C, box, PT level+ 1, n,

E, content(PT))

c val = contents(C)

if (c val ≤ ab val) {
contents(PT) = ab val
return

}
if (c val < contents(PT))

contents(PT) = c val
}

}
}

23. We first obtain the values 6, 6, 7 for the children of the root.
Then we order the children of the root with the rightmost child
first and use the alpha-beta procedure to obtain

586

Trees

4

8

8

8

8 9

8 8

12

12 39

7

1 7

4

4 4

7

9 1613

9 1

Chapter Self-Test
1. c

a

b

d

e

g

f

h j k l

i

2. a-2, b-1, c-0, d-3, e-2, f -3, g-4, h-5, i-4, j-5, k-5, l-5

3. 5

4.

F D E

B

A C

01

0101

01

01

5. (a) b

(b) a, c
f

e g i

lkjh
bd

a c

(c) d, a, c, h, j, k, l

(d)
e

d
b

a c

6. True. See Theorem 2.3.

7. True. A tree of height 6 or more must have seven or more
vertices.

8. False.

9. a b c

d
e

f

g h i

10. a b c

f

ihg

d e

11. a b c

d
e

f

g h i

12. a b c

d
e

f

g h i

587

Trees

13.
1 2 3

4
5

6

7 8 9

8 14

62 12

416

10

14. (1, 4), (1, 2), (2, 5), (2, 3), (3, 6), (6, 9), (4, 7), (7, 8)

15. (6, 9), (3, 6), (2, 3), (2, 5), (1, 2), (1, 4), (4, 7), (7, 8)

16. Consider a “shortest-path algorithm” in which at each step we
select an available edge having minimum weight incident on
the most recently added vertex (see the discussion preceding
Theorem 4.5).

17. 18. 16

19.
WORD

PROCESSING

CLEAN PRODUCES

BUT MANUSCRIPTS PROSE

CLEAR NOT

NECESSARILY

20. We first compare MORE with the word WORD in the root.
Since MORE is less than WORD, we go to the left child. Next,
we compare MORE with PROCESSING. Since MORE is less
than PROCESSING, we go to the left child. Since MORE is
greater than CLEAN, we go to the right child. Since MORE is
greater than MANUSCRIPTS, we go to the right child. Since
MORE is less than NOT, we go to the left child. Since MORE
is less than NECESSARILY, we attempt to go to the left child.
Since there is no left child, we conclude that MORE is not in
the tree.

21. ABFGCDE 22. BGFAEDC 23. GFBEDCA

24.

A

B

C

D

E

–

–

/

*

postfix: EBD/ ∗CA− −
parened infix: ((E ∗ (B/D))− (C − A))

25. An algorithm that requires at most two weighings can be rep-
resented by a decision tree of height at most 2. However,
such a tree has at most nine terminal vertices. Since there are
12 possible outcomes, there is no such algorithm. Therefore, at
least three weighings are required in the worst case to identify
the bad coin and determine whether it is heavy or light.

26.

C1C2 : C3C4

C1 : C2

C1, H

C3 : C1

C1 : C2

C3 : C1

C2, H C2, L C1, L

C4, L C3, L

C1 : C5

C1 : C6

C5, L C5, H

C6, L C6, H C3, H C4, H

27. According to Theorem 7.3, any sorting algorithm requires at
least Cn lg n comparisons in the worst case. Since Professor
Sabic’s algorithm uses at most 100n comparisons, we must
have Cn lg n ≤ 100n for all n ≥ 1. If we cancel n, we obtain

C lg n ≤ 100 for all n ≥ 1, which is false. Therefore, the pro-
fessor does not have a sorting algorithm that uses at most 100n

comparisons in the worst case for all n ≥ 1.

588

Trees

28. In the worst case, three comparisons are required to sort three
items using an optimal sort (see Example 7.2).

If n = 4, binary insertion sort sorts three items (three
comparisons—worst case) and then inserts the fourth item in
the sorted three-item list (two comparisons—worst case) for a
total of five comparisons in the worst case.

If n = 5, binary insertion sort sorts four items (five
comparisons—worst case) and then inserts the fifth item in
the sorted four-item list (three comparisons—worst case) for
a total of eight comparisons in the worst case.

If n = 6, binary insertion sort sorts five items (eight
comparisons—worst case) and then inserts the sixth item in
the sorted five-item list (three comparisons—worst case) for a
total of eleven comparisons in the worst case.

The decision tree analysis shows that any algorithm
requires at least five comparisons in the worst case to sort
four items. Thus binary insertion sort is optimal if n = 4.

The decision tree analysis shows that any algorithm
requires at least seven comparisons in the worst case to sort
five items. It is possible, in fact, to sort five items using seven
comparisons in the worst case. Thus binary insertion sort is
not optimal if n = 5.

The decision tree analysis shows that any algorithm
requires at least ten comparisons in the worst case to sort six
items. It is possible, in fact, to sort six items using ten com-
parisons in the worst case. Thus binary insertion sort is not
optimal if n = 6.

29. True. If f is an isomorphism of T1 and T2 as rooted trees, f is
also an isomorphism of T1 and T2 as free trees.

30. False.

T1 T2

31. Isomorphic. f(v1) = w6, f(v2) = w2, f(v3) = w5, f(v4) =
w7, f(v5) = w4, f(v6) = w1, f(v7) = w3, f(v8) = w8.

32. Not isomorphic. T1 has a vertex (v3) on level 1 of degree 3,
but T2 does not.

33. 3− 1 = 2

34. Let each row, column, or diagonal that contains one X and two
blanks count 1. Let each row, column, or diagonal that con-
tains two X’s and one blank count 5. Let each row, column,
or diagonal that contains three X’s count 100. Let each row,
column, or diagonal that contains one O and two blanks count
−1. Let each row, column, or diagonal that contains two O’s
and one blank count −5. Let each row, column, or diagonal
that contains three O’s count −100. Sum the values obtained.

35.

6 7 3

6 8 7 3 8

3 6 8 2 1 7 3 2 4 8

7

36.

6 7

6 7 3

3 6 8 1 7 3 2

7

589

590

Network Models

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

591

Network Models

1 Introduction
2 A Maximal Flow

Algorithm
3 The Max Flow, Min Cut

Theorem
4 Matching

Problem-Solving Corner:
Matching
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

Just go with the flow, Shel, just go with the flow.

FROM THE IN-LAWS

In this chapter we discuss network models, which make use of directed graphs. The
major portion of the chapter is devoted to the problem of maximizing the flow through
a network. The network might be a transportation network through which commodities
flow, a pipeline network through which oil flows, a computer network through which
data flow, or any number of other possibilities. In each case the problem is to find a
maximal flow. Many other problems, which on the surface seem not to be flow problems,
can, in fact, be modeled as network flow problems.

Maximizing the flow in a network is a problem that belongs both to graph theory
and to operations research. The traveling salesperson problem furnishes another example
of a problem in graph theory and operations research. Operations research studies the
very broad category of problems of optimizing the performance of a system. Typical
problems studied in operations research are network problems, allocation of resources
problems, and personnel assignment problems.

1 ➜ Introduction

Consider the directed graph in Figure 1.1, which represents an oil pipeline network. Oil
is unloaded at the dock a and pumped through the network to the refinery z. The vertices
b, c, d, and e represent intermediate pumping stations. The directed edges represent
subpipelines of the system and show the direction the oil can flow. The labels on the
edges show the capacities of the subpipelines. The problem is to find a way to maximize
the flow from the dock to the refinery and to compute the value of this maximum flow.
Figure 1.1 provides an example of a transport network.

Definition 1.1 A transport network (or more simply network) is a simple, weighted, directed graph
satisfying:

592

Network Models

z = refinerya = dock

b c2

3 4

5 4

2

d e2

Figure 1.1 A transport network.

(a) A designated vertex, the source, has no incoming edges.

(b) A designated vertex, the sink, has no outgoing edges.

(c) The weight Cij of the directed edge (i, j), called the capacity of (i, j), is a non-
negative number.

Example 1.2 The graph of Figure 1.1 is a transport network. The source is vertex a and the sink
is vertex z. The capacity of edge (a, b), Cab, is 3 and the capacity of edge (b, c), Cbc,

is 2.

Throughout this chapter, if G is a network, we will denote the source by a and the
sink by z.

A flow in a network assigns a flow in each directed edge that does not exceed the
capacity of that edge. Moreover, it is assumed that the flow into a vertex v, which is
neither the source nor the sink, is equal to the flow out of v. The next definition makes
these ideas precise.

Definition 1.3 Let G be a transport network. Let Cij denote the capacity of the directed edge (i, j). A
flow F in G assigns each directed edge (i, j) a nonnegative number Fij such that:

(a) Fij ≤ Cij .

(b) For each vertex j, which is neither the source nor the sink,
∑

i

Fij =
∑

i

Fji. (1.1)

[In a sum such as (1.1), unless specified otherwise, the sum is assumed to be taken over
all vertices i. Also, if (i, j) is not an edge, we set Fij = 0.]

We call Fij the flow in edge (i, j). For any vertex j, we call

∑

i

Fij

the flow into j and we call
∑

i

Fji

the flow out of j.

The property expressed by equation (1.1) is called conservation of flow. In the
oil-pumping example of Figure 1.1, conservation of flow means that oil is neither used
nor supplied at pumping stations b, c, d, and e.

593

Network Models

Example 1.4 The assignments,

Fab = 2, Fbc = 2, Fcz = 3, Fad = 3,

Fdc = 1, Fde = 2, Fez = 2,

define a flow for the network of Figure 1.1. For example, the flow into vertex d,

Fad = 3,

is the same as the flow out of vertex d,

Fdc + Fde = 1+ 2 = 3.

In Figure 1.2 we have redrawn the network of Figure 1.1 to show the flow of
Example 1.4. An edge e is labeled “x, y” if the capacity of e is x and the flow in e is y.
This notation will be used throughout this chapter.a

b c2, 2
3, 2 4, 3

5, 3

2, 1

d e2, 2
4, 2

z

Figure 1.2 Flow in a
network. Edges are labeled
x, y to indicate capacity x
and flow y.

Notice that in Example 1.4, the flow out of the source a,

Fab + Fad,

is the same as the flow into the sink z,

Fcz + Fez;
both values are 5. The next theorem shows that it is always true that the flow out of the
source equals the flow into the sink.

Theorem 1.5 Given a flow F in a network, the flow out of the source a equals the flow into the sink
z; that is, ∑

i

Fai =
∑

i

Fiz.

Proof Let V be the set of vertices. We have

∑

j∈V

(
∑

i∈V
Fij

)
=
∑

j∈V

(
∑

i∈V
Fji

)
,

since each double sum is ∑

e∈E
Fe,

where E is the set of edges. Now

0 =
∑

j∈V

(
∑

i∈V
Fij −

∑

i∈V
Fji

)

=
(
∑

i∈V
Fiz −

∑

i∈V
Fzi

)
+
(
∑

i∈V
Fia −

∑

i∈V
Fai

)

+
∑

j∈V
j �=a,z

(
∑

i∈V
Fij −

∑

i∈V
Fji

)

=
∑

i∈V
Fiz −

∑

i∈V
Fai

since Fzi = 0 = Fia, for all i ∈ V , and (Definition 1.3b)
∑

i∈V
Fij −

∑

i∈V
Fji = 0 if j ∈ V − {a, z}.

In light of Theorem 1.5, we can state the following definition.

594

Network Models

Definition 1.6 Let F be a flow in a network G. The value
∑

i

Fai =
∑

i

Fiz

is called the value of the flow F.

Example 1.7 The value of the flow in the network of Figure 1.2 is 5.

The problem for a transport network G may be stated: Find a maximal flow in G;
that is, among all possible flows in G, find a flow F so that the value of F is a maximum.
In the next section we give an algorithm that efficiently solves this problem. We conclude
this section by giving additional examples.

Example 1.8 A Pumping Network

Figure 1.3 represents a pumping network in which water for two cities, A and B, is
delivered from three wells, w1, w2, and w3. The capacities of the intermediate systems
are shown on the edges. Vertices b, c, and d represent intermediate pumping stations.
Model this system as a transport network.

6 b 4
w1 A

B

c

d3

22

3

3

4

w2

w3

Figure 1.3 A pumping network.
Water for cities A and B is
delivered from wells w1, w2, and
w3. Capacities are shown on the
edges.

To obtain a designated source and sink, we can obtain an equivalent transport
network by tying together the sources into a supersource and tying together the sinks
into a supersink (see Figure 1.4). In Figure 1.4,∞ represents an unlimited capacity.

6 b 4w1 A

B

c

d3

22

3

3

4

a z

w3

w2

�

�

�

�

�

Figure 1.4 The network of Figure 1.3 with a designated source
and sink.

595

Network Models

Example 1.9 A Traffic Flow Network

It is possible to go from city A to city C directly or by going through city B. During the
period 6:00 p.m. to 7:00 p.m., the average trip times are

A to B 15 minutes

B to C 30 minutes

A to C 30 minutes.

The maximum capacities of the routes are

A to B 3000 vehicles

B to C 2000 vehicles

A to C 4000 vehicles.

Represent the flow of traffic from A to C during the period 6:00 p.m. to 7:00 p.m. as a
network.

A vertex will represent a city at a particular time (see Figure 1.5). An edge connects
X, t1 to Y, t2 if we can leave city X at t1 p.m. and arrive at city Y at t2 p.m. The capacity
of an edge is the capacity of the route. Edges of infinite capacity connect A, t1, to A, t2,
and B, t1 to B, t2 to indicate that any number of cars can wait at city A or city B. Finally,
we introduce a supersource and supersink.

A, 6:15

A, 6:30

C, 6:30

C, 6:45

C, 7:00

B, 6:15

B, 6:30

A, 6:00

�

4000

3000

2000
4000

3000

2000

4000

��

�

�

�

�

�
a z

�

Figure 1.5 A network that represents the flow of traffic from city A to
city C during the period 6:00 p.m. to 7:00 p.m.

Variants of the network flow problem have been used in the design of efficient com-
puter networks (see [Jones; Kleinrock]). In a model of a computer network, a vertex is a
message or switching center, an edge represents a channel on which data can be transmit-
ted between vertices, a flow is the average number of bits per second being transmitted
on a channel, and the capacity of an edge is the capacity of the corresponding channel.

Section Review Exercises

†1. What is a network?

1. What is a source in a network?

2. What is a sink in a network?

4. What is a capacity in a network?

5. What is a flow in a network?

6. What is a flow in an edge?

7. What is a flow into a vertex?

8. What is a flow out of a vertex?

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

596

Network Models

9. What is conservation of flow?

10. Given a flow in a network, what is the relation between the
flow out of the source and the flow into the sink?

11. What is a supersource?

12. What is a supersink?

Exercises

In Exercises 1–3, fill in the missing edge flows so that the result is
a flow in the given network. Determine the values of the flows.

1.

a z

b c

d e3, 2

6,

5,

5, 3

5, 3

4,

6,

2.

a z

b c

d e5, 3

4, 0

6,2

4,

3, 2

2,

2,5,

3.

a z

b c

f g5, 2

4, 3

5,

4,

5,

4, 2
2,

ed

4, 2

4,
1, 6,

3, 1

4. The following graph represents a pumping network in which
oil for three refineries, A, B, and C, is delivered from three
wells, w1, w2, and w3. The capacities of the intermediate
systems are shown on the edges. Vertices b, c, d, e, and f

represent intermediate pumping stations. Model this system
as a network.

b 4 c

e f2

d

3 4
A

B

C

w1

w2

w3

3

2

5

5 6

6

2
3

4

8

5. Model the system of Exercise 4 as a network assuming that
well w1 can pump at most 2 units, well w2 at most 4 units, and
well w3 at most 7 units.

6. Model the system of Exercise 5 as a network assuming, in
addition to the limitations on the wells, that city A requires 4
units, city B requires 3 units, and city C requires 4 units.

7. Model the system of Exercise 6 as a network assuming, in
addition to the limitations on the wells and the requirements
by the cities, that the intermediate pumping station d can pump
at most 6 units.

8. There are two routes from city A to city D. One route passes
through city B and the other route passes through city C. Dur-
ing the period 7:00 a.m. to 8:00 a.m., the average trip times are

A to B 30 minutes

A to C 15 minutes

B to D 15 minutes

C to D 15 minutes.

The maximum capacities of the routes are

A to B 1000 vehicles

A to C 3000 vehicles

B to D 4000 vehicles

C to D 2000 vehicles.

Represent the flow of traffic from A to D during the period
7:00 a.m. to 8:00 a.m. as a network.

9. In the system shown, we want to maximize the flow from a to z.
The capacities are shown on the edges. The flow between two
vertices, neither of which is a or z, can be in either direction.
Model this system as a network.

b 3 c

g h

e 4
z

5
5

6

2

84

10

6

4

d

6

6

f

5

a

6

10

10. Give an example of a network with exactly two maximal
flows, where each Fij is a nonnegative integer.

11. What is the maximum number of edges that an n-vertex net-
work can have?

597

Network Models

2 ➜ A Maximal Flow Algorithm

If G is a transport network, a maximal flow in G is a flow with maximum value. In
general, there will be several flows having the same maximum value. In this section we
give an algorithm for finding a maximal flow. The basic idea is simple—start with some
initial flow and iteratively increase the value of the flow until no more improvement is
possible. The resulting flow will then be a maximal flow.

We can take the initial flow to be the one in which the flow in each edge is zero.
To increase the value of a given flow, we must find a path from the source to the sink
and increase the flow along this path.

It is helpful at this point to introduce some terminology. Throughout this section,
G denotes a network with source a, sink z, and capacity C. Momentarily, consider the
edges of G to be undirected and let

P = (v0, v1, . . . , vn), v0 = a, vn = z,

be a path from a to z in this undirected graph. (All paths in this section are with reference
to the underlying undirected graph.) If an edge e in P is directed from vi−1 to vi, we say
that e is properly oriented (with respect to P); otherwise, we say that e is improperly
oriented (with respect to P) (see Figure 2.1).

a � v0

v1

v2

vi�1
vn � z

Properly
oriented Improperly

oriented

Path P

vi

vn�1

vi+1

Figure 2.1 Properly and improperly oriented edges. Edge (vi−1, vi) is properly
oriented because it is oriented in the a-to-z direction. Edge (vi, vi+1) is improperly
oriented because it is not in the a-to-z direction.

If we can find a path P from the source to the sink in which every edge in P is
properly oriented and the flow in each edge is less than the capacity of the edge, it is
possible to increase the value of the flow.

Example 2.1 Consider the path from a to z in Figure 2.2. All the edges in P are properly oriented. The
value of the flow in this network can be increased by 1, as shown in Figure 2.3.

a

b

z

c

4, 1
2, 1

3, 1

Figure 2.2 A path all of whose
edges are properly oriented.

a

b

c

z

3, 2 2, 2 4, 2

Figure 2.3 After increasing the
flow of Figure 2.2 by 1.

It is also possible to increase the flow in certain paths from the source to the sink
in which we have properly and improperly oriented edges. Let P be a path from a to
z and let x be a vertex in P that is neither a nor z (see Figure 2.4). There are four
possibilities for the orientations of the edges e1 and e2 incident on x. In case (a), both
edges are properly oriented. In this case, if we increase the flow in each edge by �, the

598

Network Models

a z
x

(a)
e1 e2

a z
x

(b)
e1 e2

a z
x

(c)
e1 e2

a z
x

(d)
e1 e2

Figure 2.4 The four possible orientations of the edges incident on x.

flow into x will still equal the flow out of x. In case (b), if we increase the flow in e2

by �, we must decrease the flow in e1 by � so that the flow into x will still equal the
flow out of x. Case (c) is similar to case (b), except that we increase the flow in e1 by
� and decrease the flow in e2 by �. In case (d), we decrease the flow in both edges
by �. In every case, the resulting edge assignments give a flow. Of course, to carry out
these alterations, we must have flow less than capacity in a properly oriented edge and
a nonzero flow in an improperly oriented edge.

Example 2.2 Consider the path from a to z in Figure 2.5. Edges (a, b), (c, d), and (d, z) are prop-
erly oriented and edge (c, b) is improperly oriented. We decrease the flow by 1 in the
improperly oriented edge (c, b) and increase the flow by 1 in the properly oriented edges
(a, b), (c, d), and (d, z) (see Figure 2.6). The value of the new flow is 1 greater than that
of the original flow.

a

3, 1
4, 1

3, 2 5, 1

b

c

d

z

Figure 2.5 A path with an improperly oriented
edge: (c, b).

a

3, 2
4, 0

3, 3 5, 2

b

c

d

z

Figure 2.6 After increasing the flow of
Figure 2.5 by 1.

We summarize the method of Examples 2.1 and 2.2 as a theorem.

Theorem 2.3 Let P be a path from a to z in a network G satisfying the following conditions:

(a) For each properly oriented edge (i, j) in P,

Fij < Cij.

(b) For each improperly oriented edge (i, j) in P,

0 < Fij.

Let

� = min X,

599

Network Models

where X consists of the numbers Cij − Fij , for properly oriented edges (i, j) in P ,
and Fij , for improperly oriented edges (i, j) in P . Define

F ∗ij =

⎧
⎪⎨

⎪⎩

Fij if (i, j) is not in P

Fij +� if (i, j) is properly oriented in P

Fij −� if (i, j) is not properly oriented in P.

Then F* is a flow whose value is � greater than the value of F.

Proof (See Figures 2.2, 2.3, 2.5, and 2.6.) The argument that F ∗ is a flow is given
just before Example 2.2. Since the edge (a, v) in P is increased by �, the value of
F ∗ is � greater than the value of F .

In the next section we show that if there are no paths satisfying the conditions of
Theorem 2.3, the flow is maximal. Thus it is possible to construct an algorithm based on
Theorem 2.3. The outline is as follows:

1. Start with a flow (e.g., the flow in which the flow in each edge is 0).

2. Search for a path satisfying the conditions of Theorem 2.3. If no such path exists,
stop; the flow is maximal.

3. Increase the flow through the path by �, where � is defined as in Theorem 2.3,
and go to line 2.

In the formal algorithm, we search for a path satisfying the conditions of Theo-
rem 2.3 while simultaneously keeping track of the quantities

Cij − Fij, Fij.

Algorithm 2.4 Finding a Maximal Flow in a Network

This algorithm finds a maximal flow in a network. The capacity of each edge is a
nonnegative integer.

Input: A network with source a, sink z, capacity C, vertices a = v0, . . . ,
vn = z, and n

Output: A maximal flow F

max flow(a, z, C, v, n) {
// v’s label is (predecessor(v), val(v))
// start with zero flow

1. for each edge (i, j)

2. Fij = 0
3. while (true) {

// remove all labels
4. for i = 0 to n {
5. predecessor(vi) = null
6. val(vi) = null
7. }

// label a

600

Network Models

8. predecessor(a) =—
9. val(a) = ∞

// U is the set of unexamined, labeled vertices
10. U = {a}

// continue until z is labeled
11. while (val(z) == null) {
12. if (U == ∅) // flow is maximal
13. return F

14. choose v in U

15. U = U − {v}
16. � = val(v)
17. for each edge (v, w) with val(w) == null
18. if (Fvw < Cvw) {
19. predecessor(w) = v

20. val(w) = min{�, Cvw − Fvw}
21. U = U ∪ {w}
22. }
23. for each edge (w, v) with val(w) == null
24. if (Fwv > 0) {
25. predecessor(w) = v

26. val(w) = min{�, Fwv}
27. U = U ∪ {w}
28. }
29. } // end while (val(z) == null) loop

// find path P from a to z on which to revise flow
30. w0 = z

31. k = 0
32. while (wk¬= a) {
33. wk+1 = predecessor(wk)

34. k = k + 1
35. }
36. P = (wk+1, wk, . . . , w1, w0)

37. � = val(z)
38. for i = 1 to k + 1 {
39. e = (wi, wi−1)

40. if (e is properly oriented in P)
41. Fe = Fe +�

42. else
43. Fe = Fe −�

44. }
45. } // end while (true) loop

}

A proof that Algorithm 2.4 terminates is left as an exercise (Exercise 19). If the
capacities are allowed to be nonnegative rational numbers, the algorithm also terminates;
however, if arbitrary nonnegative real capacities are allowed and we permit the edges
in line 17 to be examined in any order, the algorithm may not terminate (see [Ford,
pp. 21–22]).

Algorithm 2.4 is often referred to as the labeling procedure. We will illustrate the
algorithm with two examples.

601

Network Models

Example 2.5 In this discussion, if vertex v satisfies

predecessor(v) = p and val(v) = t,

we show v’s label on the graph as (p, t).
At lines 1 and 2, we initialize the flow to 0 in each edge (see Figure 2.7). Next, at

lines 4–7 we set all labels to null. Then, at lines 8 and 9 we label vertex a as (−,∞). At
line 10 we set U = {a}. We then enter the while loop (line 11).

a

2, 0

(�, �) z

d

5, 0

b c

(a, 3)

2, 0

(b, 2)

(c, 2)2, 0

3, 0

(a, 5)

e

4, 0

4, 0

Figure 2.7 After the first labeling. Vertex v is
labeled (predecessor(v), val(v)).

Since z is not labeled and U is not empty, we move to line 14, where we choose
vertex a in U and remove it from U at line 15. At this point, U = ∅. We set � to
∞ [= val(a)] at line 16. At line 17 we examine the edges (a, b) and (a, d) since neither
b nor d is labeled. For edge (a, b) we have

Fab = 0 < Cab = 3.

At lines 19 and 20, we label vertex b as (a, 3) since

predecessor(b) = a

and

val(b) = min{�, 3− 0} = min{∞, 3− 0} = 3.

At line 21, we add b to U. Similarly, we label vertex d as (a, 5) and add d to U. At this
point, U = {b, d}.

We then return to the top of the while loop (line 11). Since z is not labeled and
U is not empty, we move to line 14, where we choose a vertex in U. Suppose that we
choose b. We remove b from U at line 15. We set � to 3 [= val(b)] at line 16. At line 17
we examine edge (b, c). At lines 19 and 20 we label vertex c as (b, 2) since

predecessor(c) = b

and

val(c) = min{�, 2− 0} = min{3, 2− 0} = 2.

At line 21 we add c to U. At this point, U = {c, d}.
We then return to the top of the while loop (line 11). Since z is not labeled and U is

not empty, we move to line 14, where we choose a vertex in U. Suppose that we choose
c. We remove c from U at line 15. We set � to 2 [= val(c)] at line 16. At line 17 we
examine edge (c, z). At lines 19 and 20 we label vertex z as (c, 2). At line 21, we add z

to U. At this point, U = {d, z}.
We then return to the top of the while loop (line 11). Since z is labeled, we proceed

to line 30. At lines 30–36, by following predecessors from z, we find the path

P = (a, b, c, z)

602

Network Models

from a to z. At line 37 we set � to 2. Since each edge in P is properly oriented, at line 41
we increase the flow in each edge in P by � = 2 to obtain Figure 2.8.

We then return to the top of the while loop (line 3). Next, at lines 4–7 we set all
labels to null. Then, at lines 8 and 9 we label vertex a as (−,∞) (see Figure 2.8). At
line 10 we set U = {a}. We then enter the while loop (line 11).

a

2, 2

(−1, �) z

d

5, 0

b c

(a, 1)

2, 0

(d, 2)

(c, 2)2, 0

3, 2

(a, 5)

e

4, 0

4, 2

(d, 2)

Figure 2.8 After increasing the flow on
path (a, b, c, z) by 2 and the second
labeling.

Since z is not labeled and U is not empty, we move to line 14, where we choose
vertex a in U and remove it from U at line 15. At lines 19 and 20 we label vertex b as
(a, 1), and we label vertex d as (a, 5). We add b and d to U so that U = {b, d}.

We then return to the top of the while loop (line 11). Since z is not labeled and U is
not empty, we move to line 14, where we choose a vertex in U. Suppose that we choose
b. We remove b from U at line 15. At line 17 we examine edge (b, c). Since Fbc = Cbc,
we do not label vertex c at this point. Now U = {d}.

We then return to the top of the while loop (line 11). Since z is not labeled and U

is not empty, we move to line 14, where we choose vertex d in U and remove it from U

at line 15. At lines 19 and 20 we label vertex c as (d, 2) and we label vertex e as (d, 2).
We add c and e to U so that U = {c, e}.

We then return to the top of the while loop (line 11). Since z is not labeled and
U is not empty, we move to line 14, where we choose a vertex in U. Suppose that we
choose c in U and remove it from U at line 15. At lines 19 and 20 we label vertex z as
(c, 2). We add z to U so that U = {z, e}.

We then return to the top of the while loop (line 11). Since z is labeled, we proceed
to line 30. At line 36 we find that

P = (a, d, c, z).

Since each edge in P is properly oriented, at line 41 we increase the flow in each edge
in P by � = 2 to obtain Figure 2.9.

You should check that the next iteration of the algorithm produces the labeling
shown in Figure 2.9. Increasing the flow by � = 2 produces Figure 2.10.

We then return to the top of the while loop (line 3). Next, at lines 4–7 we set all
labels to null. Then, at lines 8 and 9 we label vertex a as (−,∞) (see Figure 2.10). At
line 10 we set U = {a}. We then enter the while loop (line 11).

Since z is not labeled and U is not empty, we move to line 14, where we choose
vertex a in U and remove it from U at line 15. At lines 19 and 20 we label vertex b as
(a, 1) and we label vertex d as (a, 1). We add b and d to U so that U = {b, d}.

We then return to the top of the while loop (line 11). Since z is not labeled and
U is not empty, we move to line 14, where we choose a vertex in U. Suppose that we
choose b. We remove b from U at line 15. At line 17, we examine edge (b, c). Since
Fbc = Cbc, we do not label vertex c. Now U = {d}.

603

Network Models

a

2, 2

(−1, �) z

d

5, 2

b c

(a, 1)

2, 0

(d, 2)

(e, 2)2, 2

3, 2

(a, 3)

e

4, 0

4, 4

Figure 2.9 After increasing the flow
on path (a, d, c, z) by 2 and the third
labeling.

a

2, 2

(−1, �) z

d

5, 4

b c

(a, 1)

2, 2

2, 2

3, 2

(a, 1)

e

4, 2

4, 4

Figure 2.10 After increasing the flow on
path (a, d, e, z) by 2 and the fourth and
final labeling. The flow is maximal.

We then return to the top of the while loop (line 11). Since z is not labeled and U is
not empty, we move to line 14, where we choose vertex d in U and remove it from U at
line 15. At line 17 we examine edges (d, c) and (d, e). Since Fdc = Cdc and Fde = Cde,
we do not label either vertex c or vertex e. Now U = ∅.

We then return to the top of the while loop (line 11). Since z is not labeled, we
move to line 12. Since U is empty, the algorithm terminates. The flow of Figure 2.10 is
maximal.

Our last example shows how to modify Algorithm 2.4 to generate a maximal flow
from a given flow.

Example 2.6 Replace the zero flow in lines 1 and 2 of Algorithm 2.4 with the flow of Figure 2.11 and
then find a maximal flow.

a

4, 4

(−1, �) z

e

4, 2

b c

(a, 1)

2, 0

4, 2

3, 2

(a, 1)

f

2, 0

5, 4

3, 2
d

(b, 1) (e, 1)

(f, 1)

Figure 2.11 After labeling.

After initializing the given flow, we move to lines 4–7, where we set all labels to
null. Then, at lines 8 and 9 we label vertex a as (−,∞) (see Figure 2.11). At line 10 we
set U = {a}. We then enter the while loop (line 11).

Since z is not labeled and U is not empty, we move to line 14, where we choose
vertex a in U and remove it from U at line 15. At lines 19 and 20, we label vertex b as
(a, 1) and we label vertex d as (a, 1). We add b and d to U so that U = {b, d}.

We then return to the top of the while loop (line 11). Since z is not labeled and
U is not empty, we move to line 14, where we choose a vertex in U. Suppose that we
choose b. We remove b from U at line 15. At line 17 we examine edges (b, c) and (e, b).
Since Fbc = Cbc, we do not label vertex c. At lines 25 and 26, vertex e is labeled (b, 1)

since

val(e) = min{val(b), Feb} = min{1, 2} = 1.

604

Network Models

We then return to the top of the while loop (line 11). We ultimately label z (see
Figure 2.11), and at line 36 we find the path

P = (a, b, e, f, z).

Edges (a, b), (e, f), and (f, z) are properly oriented, so the flow in each is increased by
1. Since edge (e, b) is improperly oriented, its flow is decreased by 1. We obtain the flow
of Figure 2.12.

Another iteration of the algorithm produces the maximal flow shown in Figure 2.13.

a

4, 4

z

e

4, 2

b c

2, 1

4, 1

3, 3

f

2, 1

5, 4

3, 2
d

Figure 2.12 After increasing the
flow on path (a, b, e, f, z) by 1. Notice
that edge (e, b) is improperly oriented
and so has its flow decreased by 1.

a

4, 4

z

e

4, 3

b c

2, 2

4, 1

3, 3

f

2, 2

5, 4

3, 3
d

Figure 2.13 After increasing the
flow on path (a, d, e, f, z) by 1. The
flow is maximal.

Section Review Exercises

1. What is a maximal flow?

2. What is a properly oriented edge with respect to a path?

3. What is an improperly oriented edge with respect to a path?

4. When can we increase the flow in a path from the source to the
sink?

5. Explain how to increase the flow under the conditions of
Exercise 4.

6. Explain how to find a maximal flow in a network.

Exercises

In Exercises 1–3, a path from the source a to the sink z in a network
is given. Find the maximum possible increase in the flow obtainable
by altering the flows in the edges in the path.

1.

a

b

c

d
z

3, 1 4, 1 3, 2
3, 0

2.

5, 1

a b d

c
z

5, 2 3, 2 6, 3

3.

a

b c e f

d z

6, 1
6, 2

4, 3 1, 1
4, 2

8, 1

In Exercises 4–12, use Algorithm 2.4 to find a maximal flow in each
network.

4. Figure 1.4

5. Figure 1.5

605

Network Models

6.

a

3

z

b

4

c d

2

1

f

5

3

2

e

4

7. Exercise 5, Section 1

8. Exercise 6, Section 1

9. Exercise 7, Section 1

10. Exercise 8, Section 1

11. Exercise 9, Section 1

12.

6b 8c 10d e

612 147 1410 10

6 12 6 10

122

a z
11

8
10

9
8 7 12

f g i

4j lk 2m n

9

8

8

10

6 2

h

In Exercises 13–18, find a maximal flow in each network starting
with the flow given.

13. Figure 1.2 14. Exercise 1, Section 1

15. Exercise 2, Section 1 16. Exercise 3, Section 1

17. Figure 1.4 with flows

Fa,w1 = 2, Fw1,b = 2, FbA = 0, FcA = 0,

FAz = 0, Fa,w2 = 0, Fw2,b = 0, Fbc = 2,

FcB = 4, FBz = 4, Fa,w3 = 2, Fw3,d = 2,

Fdc = 2.

18. Figure 1.4 with flows

Fa,w1 = 1, Fw1,b = 1, FbA = 4,

FcA = 2, FAz = 6, Fa,w2 = 3,

Fw2,b = 3, Fbc = 0, FcB = 1,

FBz = 1, Fa,w3 = 3, Fw3,d = 3,

Fdc = 3.

19. Show that Algorithm 2.4 terminates.

3 ➜ The Max Flow, Min Cut Theorem

In this section we show that at the termination of Algorithm 2.4, the flow in the network
is maximal. Along the way we will define and discuss cuts in networks.

Let G be a network and consider the flow F at the termination of Algorithm 2.4.
Some vertices are labeled and some are unlabeled. Let P (P) denote the set of labeled
(unlabeled) vertices. (Recall that P denotes the complement of P .) Then the source a is
in P and the sink z is in P . The set S of edges (v, w), with v ∈ P and w ∈ P , is called
a cut, and the sum of the capacities of the edges in S is called the capacity of the cut.
We will see that this cut has a minimum capacity and, since a minimal cut corresponds
to a maximal flow (Theorem 3.9), the flow F is maximal. We begin with the formal
definition of cut.

Throughout this section, G is a network with source a and sink z. The capacity of
edge (i, j) is Cij.

Definition 3.1 A cut (P, P) in G consists of a set P of vertices and the complement P of P , with a ∈ P

and z ∈ P .

Example 3.2 Consider the network G of Figure 3.1. If we let P = {a, b, d}, then P = {c, e, f, z} and
(P, P) is a cut in G. As shown, we sometimes indicate a cut by drawing a dashed line to
partition the vertices.

606

Network Models

a

4, 4

z

e

4, 2

b c

2, 1

4, 1

3, 3

f

2, 0

5, 4

3, 2
d

Figure 3.1 A cut in a network. The
dashed line divides the vertices into sets
P = {a, b, d} and P = {c, e, f, z}
producing the cut (P, P).

Example 3.3 Figure 2.10 shows the labeling at the termination of Algorithm 2.4 for a particular
network. If we let P (P) denote the set of labeled (unlabeled) vertices, we obtain the cut
shown in Figure 3.2.

a

2, 2

z

d

b c

2, 2

3, 2

e

4, 2

5, 4

5, 4

2, 2

Figure 3.2 A network at termination of
Algorithm 2.4. The cut (P, P),
P = {a, b, d}, is obtained by letting P be
the set of labeled vertices.

We next define the capacity of a cut.

Definition 3.4 The capacity of the cut (P, P) is the number

C(P, P) =
∑

i∈P

∑

j∈P
Cij.

Example 3.5 The capacity of the cut of Figure 3.1 is

Cbc + Cde = 8.

Example 3.6 The capacity of the cut of Figure 3.2 is

Cbc + Cdc + Cde = 6.

The next theorem shows that the capacity of any cut is always greater than or equal
to the value of any flow.

607

Network Models

Theorem 3.7 Let F be a flow in G and let (P, P) be a cut in G. Then the capacity of (P, P) is greater
than or equal to the value of F ; that is,

∑

i∈P

∑

j∈P
Cij ≥

∑

i

Fai. (3.1)

(The notation
∑

i means the sum over all vertices i.)

Proof Note that
∑

j∈P

∑

i∈P
Fji =

∑

j∈P

∑

i∈P
Fij,

since either side of the equation is merely the sum of Fij over all i, j ∈ P .
Now
∑

i

Fai =
∑

j∈P

∑

i

Fji −
∑

j∈P

∑

i

Fij

=
∑

j∈P

∑

i∈P
Fji +

∑

j∈P

∑

i∈P
Fji −

∑

j∈P

∑

i∈P
Fij −

∑

j∈P

∑

i∈P
Fij

=
∑

j∈P

∑

i∈P
Fji −

∑

j∈P

∑

i∈P
Fij ≤

∑

j∈P

∑

i∈P
Fji ≤

∑

j∈P

∑

i∈P
Cji.

Example 3.8 In Figure 3.1, the value 5 of the flow is less than the capacity 8 of the cut.

A minimal cut is a cut having minimum capacity.

Theorem 3.9 Max Flow, Min Cut Theorem
Let F be a flow in G and let (P, P) be a cut in G. If equality holds in (3.1), then the
flow is maximal and the cut is minimal. Moreover, equality holds in (3.1) if and only
if

(a) Fij = Cij for i ∈ P, j ∈ P

and

(b) Fij = 0 for i ∈ P, j ∈ P .

Proof The first statement follows immediately.
The proof of Theorem 3.7 shows that equality holds precisely when

∑

j∈P

∑

i∈P
Fij = 0 and

∑

j∈P

∑

i∈P
Fji =

∑

j∈P

∑

i∈P
Cji;

thus the last statement is also true.

Example 3.10 In Figure 3.2, the value of the flow and the capacity of the cut are both 6; therefore, the
flow is maximal and the cut is minimal.

We can use Theorem 3.9 to show that Algorithm 2.4 produces a maximal flow.

608

Network Models

Theorem 3.11 At termination, Algorithm 2.4 produces a maximal flow. Moreover, if P (respectively,
P) is the set of labeled (respectively, unlabeled) vertices at the termination of Algo-
rithm 2.4, the cut (P, P) is minimal.

Proof Let P (P) be the set of labeled (unlabeled) vertices of G at the termination
of Algorithm 2.4. Consider an edge (i, j), where i ∈ P, j ∈ P . Since i is labeled, we
must have

Fij = Cij;
otherwise, we would have labeled j at lines 19 and 20. Now consider an edge (j, i),
where j ∈ P, i ∈ P . Since i is labeled, we must have

Fji = 0;
otherwise, we would have labeled j at lines 25 and 26. By Theorem 3.9, the flow at the
termination of Algorithm 2.4 is maximal and the cut (P, P) is minimal.

Section Review Exercises

1. What is a cut in a network?

2. What is the capacity of a cut?

3. What is the relation between the capacity of any cut and the
value of any flow?

4. What is a minimal cut?

5. State the max flow, min cut theorem.

6. Explain how the max flow, min cut theorem proves that the algo-
rithm of Section 2 correctly finds a maximal flow in a network.

Exercises

In Exercises 1–3, find the capacity of the cut (P, P). Also, determine
whether the cut is minimal.

1. P = {a, d} for Exercise 1, Section 1

2. P = {a, d, e} for Exercise 2, Section 1

3. P = {a, b, c, d} for Exercise 3, Section 1

In Exercises 4–16, find a minimal cut in each network.

4. Figure 1.1 5. Figure 1.4

6. Figure 1.5 7. Exercise 1, Section 1

8. Exercise 2, Section 1 9. Exercise 3, Section 1

10. Exercise 4, Section 1 11. Exercise 5, Section 1

12. Exercise 6, Section 1 13. Exercise 7, Section 1

14. Exercise 8, Section 1 15. Exercise 9, Section 1

16. Exercise 12, Section 2

Exercises 17–22 refer to a network G that, in addition to having
nonnegative integer capacities Cij , has nonnegative integer mini-
mal edge flow requirements mij . That is, a flow F must satisfy

mij ≤ Fij ≤ Cij

for all edges (i, j).

17. Give an example of a network G, in which mij ≤ Cij for all
edges (i, j), for which no flow exists.

Define

C(P, P) =
∑

i∈P

∑

j∈P
Cij,

m(P, P) =
∑

i∈P

∑

j∈P
mij, m(P, P) =

∑

i∈P

∑

j∈P
mij.

18. Show that the value V of any flow satisfies

m(P, P)− C(P, P) ≤ V ≤ C(P, P)−m(P, P)

for any cut (P, P).

19. Show that if a flow exists in G, a maximal flow exists in G

with value

min{C(P, P)−m(P, P) | (P, P) is a cut in G}.
20. Assume that G has a flow F . Develop an algorithm for finding

a maximal flow in G.

21. Show that if a flow exists in G, a minimal flow exists in G

with value

max{m(P, P)− C(P, P) | (P, P) is a cut in G}.
22. Assume that G has a flow F . Develop an algorithm for finding

a minimal flow in G.

23. True or false? If F is a flow in a network G and (P, P) is a cut
in G and the capacity of (P, P) exceeds the value of the flow,
F , then the cut (P, P) is not minimal and the flow F is not
maximal. If true, prove it; otherwise, give a counterexample.

609

Network Models

4 ➜ Matching

In this section we consider the problem of matching elements in one set to elements in
another set. We will see that this problem can be reduced to finding a maximal flow in a
network. We begin with an example.

Example 4.1 Suppose that four persons A, B, C, and D apply for five jobs J1, J2, J3, J4, and J5.
Suppose that applicant A is qualified for jobs J2 and J5; applicant B is qualified for jobs
J2, and J5; applicant C is qualified for jobs J1, J3, J4, and J5; and applicant D is qualified
for jobs J2 and J5. Is it possible to find a job for each applicant?

The situation can be modeled by the graph of Figure 4.1. The vertices represent the
applicants and the jobs. An edge connects an applicant to a job for which the applicant
is qualified. We can show that it is not possible to match a job to each applicant by
considering applicants A, B, and D, who are qualified for jobs J2 and J5. If A and B

are assigned a job, none remains for D. Therefore, no assignments exist for A, B, C,

and D.

A

B

C

D

J1

J2

J3

J4

J5

Figure 4.1 Applicants (A, B, C, D) and jobs
(J1, J2, J3, J4, J5). An edge connects an applicant to a
job for which the applicant is qualified. The black
lines show a maximal matching (i.e., the maximum
number of applicants have jobs).

In Example 4.1 a matching consists of finding jobs for qualified persons.Amaximal
matching finds jobs for the maximum number of persons. A maximal matching for
the graph of Figure 4.1 is shown with black lines. A complete matching finds jobs for
everyone. We showed that the graph of Figure 4.1 has no complete matching. The formal
definitions follow.

Definition 4.2 Let G be a directed, bipartite graph with disjoint vertex sets V and W in which the edges
are directed from vertices in V to vertices in W . (Any vertex in G is either in V or in W .)
A matching for G is a set of edges E with no vertices in common. A maximal matching
for G is a matching E in which E contains the maximum number of edges. A complete
matching for G is a matching E having the property that if v ∈ V , then (v, w) ∈ E for
some w ∈ W .

Example 4.3 The matching for the graph of Figure 4.2, shown with black lines, is a maximal matching
and a complete matching.

610

Network Models

A

B

C

W

X

Y

Z

Figure 4.2 The black lines show a maximal
matching (the maximum number of edges are used)
and a complete matching (each of A, B, and C is
matched).

In the next example we illustrate how the matching problem can be modeled as a
network problem.

Example 4.4 A Matching Network

Model the matching problem of Example 4.1 as a network.
We first assign each edge in the graph of Figure 4.1 capacity 1 (see Figure 4.3).

Next we add a supersource a and edges of capacity 1 from a to each of A, B, C, and D.
Finally, we introduce a supersink z and edges of capacity 1 from each of J1, J2, J3, J4,
and J5 to z. We call a network such as that of Figure 4.3 a matching network.

A

B

C

D

J1

z

a

1, 1

1, 1

1, 1

1, 0

1, 1

1, 1

1, 0

1, 0
1, 0

1, 1

1, 0

1, 0
1, 0

1, 0

1, 1

1, 0

1, 1

1, 1
1, 0

J2

J3

J4

J5

Figure 4.3 The matching problem (Figure 4.1) as a matching
network.

The next theorem relates matching networks and flows.

Theorem 4.5 Let G be a directed, bipartite graph with disjoint vertex sets V and W in which the
edges are directed from vertices in V to vertices in W . (Any vertex in G is either in V

or in W .)

(a) A flow in the matching network gives a matching in G. The vertex v ∈ V is
matched with the vertex w ∈ W if and only if the flow in edge (v, w) is 1.

(b) A maximal flow corresponds to a maximal matching.

(c) A flow whose value is |V | corresponds to a complete matching.

Proof Let a (z) represent the source (sink) in the matching network, and suppose
that a flow is given.

611

Network Models

Suppose that the edge (v, w), v ∈ V, w ∈ W, has flow 1. The only edge into
vertex v is (a, v). This edge must have flow 1; thus the flow into vertex v is 1. Since
the flow out of v is also 1, the only edge of the form (v, x) having flow 1 is (v, w).
Similarly, the only edge of the form (x, w) having flow 1 is (v, w). Therefore, if E is
the set of edges of the form (v, w) having flow 1, the members of E have no vertices
in common; thus E is a matching for G.

Parts (b) and (c) follow from the fact that the number of vertices in V matched
is equal to the value of the corresponding flow.

Since a maximal flow gives a maximal matching,Algorithm 2.4 applied to a match-
ing network produces a maximal matching. In practice, the implementation of Algorithm
2.4 can be simplified by using the adjacency matrix of the graph (see Exercise 11).

Example 4.6 The matching of Figure 4.1 is represented as a flow in Figure 4.3. Since the flow is
maximal, the matching is maximal.

Next, we turn to the existence of a complete matching in a directed, bipartite graph
G with vertex sets V and W . If S ⊆ V , we let

R(S) = {w ∈ W | v ∈ S and (v, w) is an edge in G}.

Suppose that G has a complete matching. If S ⊆ V , we must have

|S| ≤ |R(S)|.

It turns out that if |S| ≤ |R(S)| for all subsets S of V , then G has a complete matching.
This result was first given by the English mathematician Philip Hall and is known as
Hall’s Marriage Theorem, since if V is a set of men and W is a set of women and edges
exist from v ∈ V to w ∈ W if v and w are compatible, the theorem gives a condition
under which each man can marry a compatible woman.

Theorem 4.7 Hall’s Marriage Theorem
Let G be a directed, bipartite graph with disjoint vertex sets V and W in which the
edges are directed from vertices in V to vertices in W. (Any vertex in G is either in V
or in W.) There exists a complete matching in G if and only if

|S| ≤ |R(S)| for all S ⊆ V. (4.1)

Proof We have already pointed out that if there is a complete matching in G, con-
dition (4.1) holds.

Suppose that condition (4.1) holds. Let n = |V | and let (P, P) be a minimal cut
in the matching network. If we can show that the capacity of this cut is n, a maximal
flow would have value n. The matching corresponding to this maximal flow would
be a complete matching.

The argument is by contradiction. Assume that the capacity of the minimal cut
(P, P) is less than n. The capacity of this cut is the number of edges in the set

E = {(x, y) | x ∈ P, y ∈ P}

612

Network Models

v1

w1

a z

R (V *)

V *

v2

v3

v4

v5

w2

w3

Figure 4.4 The proof of Theorem 4.7.
V = {v1, v2, v3, v4, v5}; n = |V | = 5; W = {w1, w2, w3}; the
cut is (P, P), where P = {a, v3, v4, v5, w3};
V ∗ = V ∩ P = {v3, v4, v5}; R (V ∗) = {w2, w3};
W1 = R (V ∗) ∩ P = {w3}; W2 = R (V ∗) ∩ P = {w2};
E = {(a, v1), (a, v2), (v3, w2), (w3, z)}. The capacity of the
cut is |E| = 4 < n. The type I edges are (a, v1) and (a, v2).
Edge (v3, w2) is the only type II edge, and edge (w3, z) is the
only type III edge.

(see Figure 4.4). A member of E is one of the three types:

Type I: (a, v), v ∈ V ;
Type II: (v, w), v ∈ V, w ∈ W;
Type III: (w, z), w ∈ W.

We will estimate the number of edges of each type.
If V ⊆ P , the capacity of the cut is n (see Figure 4.5); thus

V ∗ = V ∩ P

is nonempty. It follows that there are n− |V ∗| edges in E of type I.
We partition R(V ∗) into the sets

W1 = R(V ∗) ∩ P and W2 = R(V ∗) ∩ P.

Then there are at least |W1| edges in E of type III. Thus there are less than

n− (n− |V ∗|)− |W1| = |V ∗| − |W1|

edges of type II in E. Since each member of W2 contributes at most one type II edge,

|W2| < |V ∗| − |W1|.

Thus

|R(V ∗)| = |W1| + |W2| < |V ∗|,

which contradicts (4.1). Therefore, a complete matching exists.

a

v1

V

v2

v3

Figure 4.5 The proof of
Theorem 4.7 for n = 3. If
V ⊆ P , as shown the capacity of
the cut is n. Since we are
assuming that the capacity of the
cut is less than n, this case
cannot occur. Therefore, V ∩ P
is nonempty.

613

Network Models

Example 4.8 For the graph in Figure 4.1, if S = {A, B, D}, we have R(S) = {J2, J5} and

|S| = 3 > 2 = |R(S)|.

By Theorem 4.7, there is not a complete matching for the graph of Figure 4.1.

Example 4.9 There are n computers and n disk drives. Each computer is compatible with m > 0 disk
drives and each disk drive is compatible with m computers. Is it possible to match each
computer with a compatible disk drive?

Let V be the set of computers and W be the set of disk drives. An edge exists from
v ∈ V to w ∈ W if v and w are compatible. Notice that every vertex has degree m.
Let S = {v1, . . . , vk} be a subset of V . Then there are km edges from the set S. If
R(S) = {w1, . . . , wj}, then R(S) receives at most jm edges from S. Therefore,

km ≤ jm.

Now

|S| = k ≤ j = |R(S)|.
By Theorem 4.7 there is a complete matching. Thus it is possible to match each computer
with a compatible disk drive.

Section Review Exercises

1. What is a matching?

2. What is a maximal matching?

3. What is a complete matching?

4. What is the relation between flows and matchings?

5. State Hall’s Marriage Theorem.

Exercises

1. Show that the flow in Figure 4.3 is maximal by exhibiting a
minimal cut whose capacity is 3.

2. Find the flow that corresponds to the matching of Figure 4.2.
Show that this flow is maximal by exhibiting a minimal cut
whose capacity is 3.

Exercises 3–7 refer to Figure 4.1, where we reverse the direction
of the edges so that edges are directed from jobs to applicants.

3. What does a matching represent?

4. What does a maximal matching represent?

5. Show a maximal matching.

6. What does a complete matching represent?

7. Is there a complete matching? If there is a complete matching,
show one. If there is not a complete matching, explain why
none exists.

8. Applicant A is qualified for jobs J1 and J4;B is qualified for
jobs J2, J3, and J6;C is qualified for jobs J1, J3, J5, and J6;D
is qualified for jobs J1, J3, and J4; and E is qualified for jobs
J1, J3, and J6.

(a) Model this situation as a matching network.

(b) Use Algorithm 2.4 to find a maximal matching.

(c) Is there a complete matching?

9. Applicant A is qualified for jobs J1, J2, J4, and J5; B is quali-
fied for jobs J1, J4, and J5; C is qualified for jobs J1, J4, and
J5; D is qualified for jobs J1 and J5; E is qualified for jobs
J2, J3, and J5; and F is qualified for jobs J4 and J5. Answer
parts (a)–(c) of Exercise 8 for this situation.

10. Applicant A is qualified for jobs J1, J2, and J4; B is qualified
for jobs J3, J4, J5, and J6; C is qualified for jobs J1 and J5;D
is qualified for jobs J1, J3, J4, and J8;E is qualified for jobs
J1, J2, J4, J6, and J8;F is qualified for jobs J4 and J6; and
G is qualified for jobs J3, J5, and J7. Answer parts (a)–(c) of
Exercise 8 for this situation.

11. Five students, V, W, X, Y, and Z, are members of four com-
mittees, C1, C2, C3, and C4. The members of C1 are V, X, and
Y ; the members of C2 are X and Z; the members of C3 are
V, Y, and Z; and the members of C4 are V, W, X, and Z. Each
committee is to send a representative to the administration. No
student can represent two committees.

(a) Model this situation as a matching network.

614

Network Models

(b) What is the interpretation of a maximal matching?

(c) What is the interpretation of a complete matching?

(d) Use Algorithm 2.4 to find a maximal matching.

(e) Is there a complete matching?

12. Show that by a suitable ordering of the vertices, the adjacency
matrix of a bipartite graph can be written

(
0 A

AT 0

)
,

where 0 is a matrix consisting only of 0’s and AT is the trans-
pose of the matrix A.

In Exercises 13–15, G is a bipartite graph, A is the matrix of Exer-
cise 12, and F is a flow in the associated matching network. Label
each entry in A that represents an edge with flow 1.

13. What kind of labeling corresponds to a matching?

14. What kind of labeling corresponds to a complete matching?

15. What kind of labeling corresponds to a maximal matching?

16. RestateAlgorithm 2.4, applied to a matching network, in terms
of operations on the matrix A of Exercise 12.

Let G be a directed, bipartite graph with disjoint vertex sets V and
W in which the edges are directed from vertices in V to vertices in
W . (Any vertex in G is either in V or in W .) We define the deficiency
of G as

δ(G) = max{|S| − |R(S)| | S ⊆ V }.

17. Show that G has a complete matching if and only if δ(G) = 0.

†�18. Show that the maximum number of vertices in V that can be
matched with vertices in W is |V | − δ(G).

19. True or false? Any matching is contained in a maximal match-
ing. If true, prove it; if false, give a counterexample.

Problem-Solving Corner Matching

Problem
Let G be a directed, bipartite graph with disjoint vertex
sets V and W in which the edges are directed from ver-
tices in V to vertices in W . (Any vertex in G is either in
V or in W .) Let MW denote the maximum degree that
occurs among vertices in W , and let mV denote the min-
imum degree that occurs among vertices in V . Show
that if 0 <MW≤mV , then G has a complete matching.

Attacking the Problem
Hall’s Marriage Theorem (Theorem 4.7) says that a
directed, bipartite graph with disjoint vertex sets V and
W has a complete matching if and only if |S| ≤ |R(S)|
for all S ⊆ V . Thus a possible way to solve the problem
is to show that the given condition MW ≤ mV implies
that |S| ≤ |R(S)| for all S ⊆ V .

Finding a Solution
Our goal is to prove that if MW ≤ mV , then |S| ≤
|R(S)| for all S ⊆ V . Let’s start with an example graph
G for which MW ≤ mV ; in fact, let’s arrange to have
MW = 2 and mV = 3:

1

3

2

4
5
6
7
8
9

V W

Consider an example subset S = {1, 3} of V and
the edges incident on vertices in S:

4
5
6
7
8
9

1

3

S R(S)

The fact that the minimum degree of vertices in V is 3
means that for any subset S of V, at least three edges
are incident on each vertex in S. In general, there will
be at least 3|S| = mV |S| edges incident on vertices
in S. In our example, 3|S| = 6, but there are actually
seven edges incident on vertices in S. The expression
mV |S| is always a lower bound for the number of edges
incident on vertices in S.

The fact that the maximum degree of vertices in W

is 2 means that for any subset S of V, at most two edges
are incident on each vertex in R(S). In general, there
will be at most 2|R(S)| = MW |R(S)| edges incident
on vertices in R(S). In our example, 2|R(S)| = 12, but
there are actually 10 edges incident on vertices in R(S).
Since the edges incident on vertices in S are a subset of
the edges incident on vertices in R(S), the expression
MW |R(S)| is always an upper bound for the number of
edges incident on vertices in S.

†A starred exercise indicates a problem of above-average difficulty.

615

Network Models

We have two ways of estimating the number of
edges incident on vertices in S. The first way, using S,
gives us a lower bound mV |S| on the number of edges,
and the second way, using R(S), gives us an upper
bound MW |R(S)| on the number of edges. Comparing
these estimates gives us the inequality

mV |S| ≤ MW |R(S)|.

We can’t deduce |S| ≤ |R(S)|, but we haven’t used the
hypothesis

MW ≤ mV

yet! Combining the last two inequalities, we have

mV |S| ≤ MW |R(S)| ≤ mV |R(S)|.

If we now cancel mV from both ends of the inequality,
we obtain

|S| ≤ |R(S)|,

which is exactly the inequality we wanted to prove.

Formal Solution
Let S ⊆ V . Each vertex in S is incident on at least
mV |S| edges; thus there are at least mV |S| edges inci-
dent on vertices in S. Each vertex in R(S) is incident
on at most MW edges; thus there are at most MW |R(S)|
edges incident on vertices in R(S). It follows that
mV |S| ≤ MW |R(S)|. Since MW ≤ mV , |R(S)|MW ≤
|R(S)|mV . Therefore, mV |S| ≤ mV |R(S)|, and |S| ≤
|R(S)|. By Theorem 4.7, G has a complete
matching.

Summary of Problem-Solving Techniques
■ Look at example graphs.

■ When looking at examples, it’s a good idea to
assign distinct values to the parameters in the
problem so you can keep them straight. (In our
example we set MW = 2 and mV = 3.)

■ Try to reduce given conditions to those in a use-
ful theorem. (We reduced the conditions given
in this problem to the conditions given in Hall’s
Marriage Theorem.)

■ An inequality can sometimes be proved by esti-
mating the size of some set in two different ways.
If one estimate gives an upper bound M and
another gives a lower bound m, it follows that
m ≤ M.

Comments
The last summarized problem-solving technique pro-
vides a method of proving an inequality. In a similar
way, an equality can sometimes be proved by count-
ing the number of elements in some set in two different
ways. If one way of counting gives c1 and the other way
of counting gives c2, it follows that c1 = c2. These
techniques are widely used and their usefulness can-
not be overemphasized. For example, it is possible to
derive a formula for C(n, r) by counting the number
of r-permutations of an n-element set in two different
ways.

Exercise
1. Give an example of a bipartite graph G that has a

complete matching but does not satisfy the condi-
tion MW ≤ mV .

Notes

General references that contain sections on network models are [Berge; Deo; Liu, 1968,
1985; and Tucker]. The classic work on networks is [Ford]; many of the results on networks,
especially the early results, are due to Ford and Fulkerson, the authors of this book. [Tarjan]
discusses network flow algorithms and implementation details.

See [Bachelis] for a nice direct proof of Hall’s Marriage Theorem (Theorem 4.7) using
mathematical induction.

The problem of finding a maximal flow in a network G, with source a, sink z, and
capacities Cij , may be rephrased as follows:

maximize
∑

j

Faj

616

Network Models

subject to

0 ≤ Fij ≤ Cij for all i, j,

∑

i

Fij =
∑

i

Fji for all j.

Such a problem is an example of a linear programming problem. In a linear pro-
gramming problem, we want to maximize (or minimize) a linear expression, such as

∑
j Faj ,

subject to linear inequality and equality constraints, such as 0 ≤ Fij ≤ Cij and
∑

i Fij =∑
i Fji. Although the simplex algorithm is normally an efficient way to solve a

general linear programming problem, network transport problems are usually more effi-
ciently solved using Algorithm 2.4. See [Hillier] for an exposition of the simplex
algorithm.

Suppose that for each edge (i, j) in a network G, cij represents the cost of the flow of
one unit through edge (i, j). Suppose that we want a maximal flow, with minimal cost

∑

i

∑

j

cijFij.

This problem, called the transportation problem, is again a linear programming problem
and, as with the maximal flow problem, a specific algorithm can be used to obtain a solution
that is, in general, more efficient than the simplex algorithm (see [Hillier]).

Chapter Review
Section 1

1. (Transport) network
2. Source
3. Sink
4. Capacity
5. Flow in a network
6. Flow in an edge
7. Flow into a vertex
8. Flow out of a vertex
9. Conservation of flow

10. Given a flow F in a network, the flow out of the source
equals the flow into the sink. This common value is called
the value of the flow F .

11. Supersource
12. Supersink

Section 2
13. Maximal flow
14. Properly oriented edge with respect to a path
15. Improperly oriented edge with respect to a path
16. How to increase the flow in a path from the source to the

sink when:

(a) for each properly oriented edge the flow is less than the
capacity and

(b) each improperly oriented edge has positive flow (see
Theorem 2.3)

17. How to find a maximal flow in a network (Algorithm 2.4)

Section 3
18. Cut in a network
19. Capacity of a cut
20. The capacity of any cut is greater than or equal to the value

of any flow (Theorem 3.7).
21. Minimal cut
22. Max flow, min cut theorem (Theorem 3.9)
23. At the termination of the maximal flow algorithm, Algo-

rithm 2.4, the set of labeled vertices defines a minimal cut.

Section 4
24. Matching
25. Maximal matching
26. Complete matching
27. Matching network
28. Relationship between flows and matchings (Theorem 4.5)
29. Hall’s Marriage Theorem (Theorem 4.7)

617

Network Models

Chapter Self-Test

Section 1
Exercises 1–4 refer to the following network. The capacities are
shown on the edges.

a z

b 3 c 4 d

e 6 f 1 g

4 2 7

6 5

3 7

1. Explain why

Fa,e= 2, Fe,b= 2, Fb,c= 3,

Fc,d = 3, Fd,z= 3, Fa,b= 1,

with all other Fx,y = 0, is a flow.

2. What is the flow into b?

3. What is the flow out of c?

4. What is the value of the flow F?

Section 2
5. For the flow of Exercise 1, find a path from a to z satisfying

the following: (a) for each properly oriented edge the flow
is less than the capacity and (b) each improperly oriented
edge has positive flow.

6. By modifying only the flows in the edges of the path of
Exercise 5, find a flow with a larger value than F .

7. Use Algorithm 2.4 to find a maximal flow in the network
of Exercise 1 (beginning with the flow in which the flow in
each edge is equal to zero).

8. Use Algorithm 2.4 to find a maximal flow in the following
network (beginning with the flow in which the flow in each
edge is equal to zero).

a z

b 8 c 10 d

h 10 i 6 j

16 8

4 12

8

3

10
12 10

e

3
2

f
9

g

14

Section 3
9. In each of parts (a)–(d), answer true if the statement is true

for every network; otherwise, answer false.

(a) If the capacity of a cut in a network is equal to Ca, then
the value of any flow is less than or equal to Ca.

(b) If the capacity of a cut in a network is equal to Ca, then
the value of any flow is greater than or equal to Ca.

(c) If the capacity of a cut in a network is equal to Ca, then
the value of some flow is greater than or equal to Ca.

(d) If the capacity of a cut in a network is equal to Ca, then
the value of some flow is less than or equal to Ca.

10. Find the capacity of the cut (P, P) in the network of Exercise
1, where P = {a, b, e, f }.

11. Is the cut (P, P), P = {a, b, e, f }, in the network of Exer-
cise 1 minimal? Explain.

12. Find a minimal cut in the network of Exercise 8.

Section 4
Exercises 13–16 refer to the following situation. Applicant A is
qualified for jobs J2, J4, and J5; applicant B is qualified for jobs
J1 and J3; applicant C is qualified for jobs J1, J3, and J5; and
applicant D is qualified for jobs J3 and J5.

13. Model the situation as a matching network.

14. Use Algorithm 2.4 to find a maximal matching.

15. Is there a complete matching?

16. Find a minimal cut in the matching network.

Computer Exercises

1. Write a program that accepts as input a network with a given
flow and outputs all possible paths from the source to the sink
on which the flow can be increased.

2. Implement Algorithm 2.4 that finds a maximal flow in a net-
work as a program. Have the program output the minimal cut
as well as the maximal flow.

3. Write a program that computes the deficiency of a network.

618

Network Models

Hints/Solutions to Selected Exercises

Section 1 Review
1. A network is a simple, weighted, directed graph with a desig-

nated vertex having no incoming edges, a designated vertex
having no outgoing edges, and nonnegative weights.

2. A source is a vertex with no incoming edges.

3. A sink is a vertex with no outgoing edges.

4. The weight of an edge is called its capacity.

5. A flow assigns each edge a nonnegative number that does not
exceed the capacity of the edge such that for each vertex v,
which is neither the source nor the sink, the flow into v equals
the flow out of v.

6. The flow in an edge is the nonnegative number assigned to it
as in Exercise 5.

7. If Fij is the flow in edge (i, j), the flow into vertex j is
∑

i
Fij .

8. If Fij is the flow in edge (i, j), the flow out of vertex i is
∑

j
Fij .

9. Conservation of flow refers to the equality of the flow into and
out of a vertex.

10. They are equal.

11. If a network has multiple sources, they can be tied together
into a single vertex called the supersource.

12. If a network has multiple sinks, they can be tied together into
a single vertex called the supersink.

Section 1
1. (b, c) is 6, 3; (a, d) is 4, 2; (c, e) is 6, 1; (c, z) is 5, 2. The value

of the flow is 5.

4. Add edges (a, w1), (a, w2), (a, w3), (A, z), (B, z), and (C, z)

each having capacity∞.

7.

3w1 4b 4c A

8 4

2 6 6 3

4
5

a z4

2

7

5 e 6f C

3

3
dw2 d� B

4

w3 2

2

10.

1 1

1 1

1
a z

Section 2 Review
1. A maximal flow is a flow with maximum value.

2. Ignoring the direction of edges, let P = (v0, . . . , vn) be a path
from the source to the sink. If an edge in P is directed from
vi−1 to vi, we say that it is properly oriented with respect to P .

3. Ignoring the direction of edges, let P = (v0, . . . , vn) be a path
from the source to the sink. If an edge in P is directed from
vi to vi−1, we say that it is improperly oriented with respect
to P .

4. We can increase the flow in a path when every properly ori-
ented edge is under capacity and every improperly oriented
edge has positive flow.

5. Let � be the minimum of the numbers Cij − Fij , for properly
oriented edges (i, j) in the path, and Fij , for improperly ori-
ented edges (i, j) in the path. Then the flow can be increased by
� by adding � to the flow in each properly oriented edge and
by subtracting � from the flow in each improperly oriented
edge.

6. Start with a flow (e.g., assign each edge flow zero). Search for
a path as described in Exercise 4. Increase the flow in such a
path as described in Exercise 5.

Section 2
1. 1

4. (a, w1)−6, (a, w2)−0, (a, w3)−3, (w1, b)−6, (w2, b)−0,
(w3, d) − 3, (d, c) − 3, (b, c) − 2, (b, A) − 4, (c, A) − 2,
(c, B)− 3, (A, z)− 6, (B, z)− 3

7.
3, 2w1 4, 4b 4, 4c A

8, 0

2, 2 6, 6 �, 8

5, 5

a z
4, 4

2, 2

7, 7

5, 2 e 6, 0f C

3, 2

3, 2
d

w2 B

4, 0

w3 2, 2

2, 1

�, 4

�, 1

10. (a, A−7:00)−3000, (a, A−7:15)−3000, (a, A−7:30)−2000,
(A− 7:00, B− 7:30)− 1000, (A− 7:00, C − 7:15)− 2000,
(A− 7:15, B− 7:45)− 1000, (A− 7:15, C − 7:30)− 2000,
(A− 7:30, C − 7:45)− 2000, (B− 7:30, D− 7:45)− 1000,
(C− 7:15, D− 7:30)− 2000, (B− 7:45, D− 8:00)− 1000,
(C− 7:30, D− 7:45)− 2000, (C− 7:45, D− 8:00)− 2000,
(D− 7:45, z)− 3000, (D− 7:30, z)− 2000, (D− 8:00, z)−
3000. All other edges have flow equal to 0.

619

Network Models

13.

a

b c2, 2

3, 2 4, 4

5, 4 4, 2

2, 2

d e2, 2

z

16. The maximum flow is 9.

19. Suppose that the sum of the capacities of the edges incident on
a is U. Each iteration of Algorithm 2.5 increases the flow by
1. Since the flow cannot exceed U, eventually the algorithm
must terminate.

Section 3 Review
1. A cut in a network consists of a set P of vertices and the com-

plement P of P , where the source is in P and the sink is in P .

2. The capacity of a cut (P, P) is the number

∑

i∈P

∑

j∈P
Cij.

3. The capacity of any cut is greater than or equal to the value of
any flow.

4. A minimal cut is a cut having minimum capacity.

5. If the value of a flow equals the capacity of a cut, then the
flow is maximal and the cut is minimal. The value of a flow F

equals the capacity of a cut (P, P) if and only if Fij = Cij for
all i ∈ P , j ∈ P , and Fij = 0 for all i ∈ P , j ∈ P .

6. Let P be the set of labeled vertices, and let P be the set of
unlabeled vertices at the termination of Algorithm 2.4. It can
be shown that the conditions

■ Fij = Cij for all i ∈ P , j ∈ P

■ Fij = 0 for all i ∈ P , j ∈ P

of Exercise 5 hold. Thus the flow is maximal.

Section 3
1. 8; minimal

4. P = {a, b, d}
7. P = {a, d}

10. P = {a, w1, w2, w3, b, d, e}
13. P = {a, w1, w2, w3, b, c, d, d′, e, f, A, B, C}
16. P = {a, b, c, f, g, h, j, k, l, m}
17.

a b z

1, 1 2, 1

with Cab = 1, Cbz = 2, mab = 1, mbz = 2.

20. Alter Algorithm 2.4.

23. False. Consider the flow

a b z

1, 1 2, 1

and the cut P = {a, b}.

Section 4 Review
In the solutions to Exercises 1–5, G is a directed, bipartite graph
with disjoint vertex sets V and W in which the edges are directed
from V to W .

1. A matching for G is a set of edges with no vertices in common.

2. A maximal matching for G is a matching containing the max-
imum number of edges.

3. Acomplete matching for G is a matching E having the property
that if v ∈ V , then (v, w) ∈ E for some w ∈ W .

4. Add a supersource a and edges from a to each vertex in V . Add
a supersink z and edges from each vertex in W to z. Assign
all edges capacity 1. We call the resulting network a matching
network. Then, a flow in the matching network gives a match-
ing in G [v is matched with w if and only if the flow in edge
(v, w) is 1]; a maximal flow corresponds to a maximal match-
ing; and a flow whose value is |V | corresponds to a complete
matching.

5. If S ⊆ V , let

R(S) = {w ∈ W | v ∈ S and (v, w) is an edge in G}.

Hall’s Marriage Theorem states that there exists a complete
matching in G if and only if |S| ≤ |R(S)| for all S ⊆ V .

Section 4
1. P = {a, A, B, D, J2, J5}
3. Finding qualified persons for jobs

6. Finding qualified persons for all jobs

9. All unlabeled edges are 1, 0. There is no complete matching.

A

B

C

D

E

F

J1

1, 1

1, 1

1, 1

1, 1
1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

a z

J2

J3

J4

J5

13. Each row and column has at most one label.

620

Network Models

17. If δ(G) = 0, then |S| − |R(S)| ≤ 0, for all S ⊆ V . By Theo-
rem 4.7, G has a complete matching.

If G has a complete matching, then |S| − |R(S)| ≤ 0,
for all S ⊆ V , so δ(G) ≤ 0. If S = ∅, |S| − |R(S)| = 0, so
δ(G) = 0.

Chapter Self-Test
1. In each edge, the flow is less than or equal to the capacity and,

except for the source and sink, the flow into each vertex v is
equal to the flow out of v.

2. 3

3. 3

4. 3

5. (a, b, e, f, g, z)

6. Change the flows to Fa,b = 2, Fe,b = 1, Fe,f = 1, Ff,g = 1,
Fg,z = 1.

7. Fa,b = 3, Fb,c = 3, Fc,d = 4, Fd,z = 4, Fa,e = 2, Fe,f = 2,
Ff,c = 2, Ff,g = 1, Fg,z = 1, and all other edge flows zero.

8. Fa,b = 0, Fb,c = 5, Fc,d = 5, Fd,z = 8, Fe,b = 3, Fg,d = 3,
Fa,e = 8, Fe,f = 3, Ff,g = 3, Fa,h = 4, Fe,i = 2, Fj,z = 6,
Fh,i = 4, Fi,j = 6, and all other edge flows zero.

9. a—True, b—False, c—False, d—True

10. 6

11. No. The capacity of (P, P) is 6, but the capacity of
(P ′, P ′), P ′ = {a, b, c, e, f }, is 5.

12. P = {a, b, c, e, f, g, h, i}
13.

A

B

C

D

J1

a z

J2

J3

J4

J5

14. See the solution to Exercise 13.

15. A− J2, B − J1, C − J3, D− J5 is a complete matching.

16. P = {a}

621

622

Boolean
Algebras and
Combinatorial
Circuits

1 Combinatorial Circuits
2 Properties of

Combinatorial Circuits
3 Boolean Algebras

Problem-Solving Corner:
Boolean Algebras

4 Boolean Functions and
Synthesis of Circuits

5 Applications
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

He’s contemptible, dishonest, selfish, deceitful,
vicious—and yet he’s out there, and I’m in here. He’s called
normal, and I’m not. Well, if that’s normal, I don’t want it.

FROM MIRACLE ON 34TH STREET

Several definitions honor the nineteenth-century mathematician George Boole—Boolean
algebra, Boolean function, Boolean expression, and Boolean ring—to name a few. Boole
is one of the persons in a long historical chain who were concerned with formalizing
and mechanizing the process of logical thinking. In fact, in 1854 Boole wrote a book
entitled The Laws of Thought. Boole’s contribution was the development of a theory of
logic using symbols instead of words. For a discussion of Boole’s work, see [Hailperin].

Almost a century after Boole’s work, it was observed, especially by C. E. Shannon
in 1938 (see [Shannon]), that Boolean algebra could be used to analyze electrical cir-
cuits. Thus Boolean algebra became an indispensable tool for the analysis and design of
electronic computers in the succeeding decades. We explore the relationship of Boolean
algebra to circuits throughout this chapter.

1 ➜ Combinatorial Circuits

In a digital computer, there are only two possibilities, written 0 and 1, for the smallest,
indivisible object.All programs and data are ultimately reducible to combinations of bits.
A variety of devices have been used throughout the years in digital computers to store
bits. Electronic circuits allow these storage devices to communicate with each other. A
bit in one part of a circuit is transmitted to another part of the circuit as a voltage. Thus
two voltage levels are needed—for example, a high voltage can communicate 1 and a
low voltage can communicate 0.

In this section we discuss combinatorial circuits. The output of a combinatorial
circuit is uniquely defined for every combination of inputs. A combinatorial circuit has
no memory; previous inputs and the state of the system do not affect the output of a

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

623

Boolean Algebras and Combinatorial Circuits

combinatorial circuit. Circuits for which the output is a function, not only of the inputs,
but also of the state of the system, are called sequential circuits.

Combinatorial circuits can be constructed using solid-state devices, called gates,
which are capable of switching voltage levels (bits). We will begin by discussing AND,
OR, and NOT gates.

Definition 1.1 An AND gate receives inputs x1 and x2, where x1 and x2 are bits, and produces output
denoted x1 ∧ x2, where

x1 ∧ x2 =
{

1 if x1 = 1 and x2 = 1
0 otherwise.

An AND gate is drawn as shown in Figure 1.1.

x1

x2
x1 x2

x1

x2

x1

x2

Figure 1.1 AND gate.

Definition 1.2 An OR gate receives inputs x1 and x2, where x1 and x2 are bits, and produces output
denoted x1 ∨ x2, where

x1 ∨ x2 =
{

1 if x1 = 1 or x2 = 1
0 otherwise.

An OR gate is drawn as shown in Figure 1.2.

x1

x2
x1 x2

Figure 1.2 OR gate.

Definition 1.3 ANOT gate (or inverter) receives input x, where x is a bit, and produces output denoted x,
where

x =
{

1 if x = 0
0 if x = 1.

A NOT gate is drawn as shown in Figure 1.3.
x x

Figure 1.3 NOT
gate. The logic table of a combinatorial circuit lists all possible inputs together with the

resulting outputs.

Example 1.4 Following are the logic tables for the basic AND, OR, and NOT circuits (Fig-
ures 1.1–1.3).

x1 x2 x1 ∧ x2

1 1 1
1 0 0
0 1 0
0 0 0

x1 x2 x1 ∨ x2

1 1 1
1 0 1
0 1 1
0 0 0

x x

1 0
0 1

We note that performing the operation AND (OR) is the same as taking the minimum
(maximum) of the two bits x1 and x2.

624

Boolean Algebras and Combinatorial Circuits

Example 1.5 The circuit of Figure 1.4 is an example of a combinatorial circuit since the output y is
uniquely defined for each combination of inputs x1, x2, and x3.

x3

x1

x2
y

Figure 1.4 A combinatorial circuit.

The logic table for this combinatorial circuit follows.

x1 x2 x3 y

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

Notice that all possible combinations of values for the inputs x1, x2, and x3 are
listed. For a given set of inputs, we can compute the value of the output y by tracing the
flow through the circuit. For example, the fourth line of the table gives the value of the
output y for the input values

x1 = 1, x2 = 0, x3 = 0.

If x1 = 1 and x2 = 0, the output from the AND gate is 0 (see Figure 1.5). Since x3 = 0,
the inputs to the OR gate are both 0. Therefore, the output of the OR gate is 0. Since the
input to the NOT gate is 0, it produces output y = 1.

x3 = 0

x1 = 1

x2 = 0
y = 1

0
0

Figure 1.5 The circuit of Figure 1.4 when x1 = 1 and
x2 = x3 = 0.

Example 1.6 The circuit of Figure 1.6 is not a combinatorial circuit, because the output y is not
uniquely defined for each combination of inputs x1 and x2. For example, suppose that
x1 = 1 and x2 = 0. If the output of the AND gate is 0, then y = 0. On the other hand, if
the output of the AND gate is 1, then y = 1. Such a circuit might be used to store one bit.

x1

y
x2

Figure 1.6 A circuit that is not a
combinatorial circuit.

625

Boolean Algebras and Combinatorial Circuits

Example 1.7 Individual combinatorial circuits may be interconnected. The combinatorial circuits
C1, C2, and C3 of Figure 1.7 may be combined, as shown, to obtain the combinato-
rial circuit C.

x1

x2

y2

x5

x6

x1

x2

x3

x4

x3

x4

y1 C1

C2

y3 C3

y3 C

y1 x5

y2 x6

Figure 1.7 Combinatorial circuit C is obtained by interconnecting the
combinatorial circuits C1, C2, and C3.

Example 1.8 A combinatorial circuit with one output, such as that in Figure 1.4, can be represented
by an expression using the symbols ∧,∨, and . We follow the flow of the circuit
symbolically. First, x1 and x2 areANDed (see Figure 1.8), which produces output x1∧x2.
This output is then ORed with x3 to produce output (x1 ∧ x2) ∨ x3. This output is then
NOTed. Thus the output y may be

y = (x1 ∧ x2) ∨ x3. (1.1)

Expressions such as (1.1) are called Boolean expressions.

x1

x2

x3

x1 x2 (x1 x2) x3

y = (x1 x2) x3

Figure 1.8 Representation of a combinatorial circuit by a Boolean
expression.

Definition 1.9 Boolean expressions in the symbols x1, . . . , xn are defined recursively as follows.

0, 1, x1, . . . , xn (1.2)

are Boolean expressions. If X1 and X2 are Boolean expressions, then

(a) (X1), (b) X1, (c) X1 ∨X2, (d) X1 ∧X2 (1.3)

are Boolean expressions.

626

Boolean Algebras and Combinatorial Circuits

If X is a Boolean expression in the symbols x1, . . . , xn, we sometimes write

X = X(x1, . . . , xn).

Either symbol x or x is called a literal.

Example 1.10 Use Definition 1.9 to show that the right side of (1.1) is a Boolean expression in x1, x2,
and x3.

By (1.2), x1 and x2 are Boolean expressions. By (1.3d), x1 ∧ x2 is a Boolean
expression. By (1.3a), (x1 ∧ x2) is a Boolean expression. By (1.2), x3 is a Boolean
expression. Since (x1∧x2) and x3 are Boolean expressions, by (1.3c), so is (x1∧x2)∨x3.
Finally, we may apply (1.3b) to conclude that

(x1 ∧ x2) ∨ x3

is a Boolean expression.

If X = X(x1, . . . , xn) is a Boolean expression and x1, . . . , xn are assigned values
a1, . . . , an in {0, 1}, we may use Definitions 1.1–1.3 to compute a value for X. We denote
this value X(a1, . . . , an) or X(xi = ai).

Example 1.11 For x1 = 1, x2 = 0, and x3 = 0, the Boolean expression X(x1, x2, x3) = (x1 ∧ x2) ∨ x3

of (1.1) becomes

X(1, 0, 0) = (1 ∧ 0) ∨ 0

= 0 ∨ 0 since 1 ∧ 0 = 0

= 0 since 0 ∨ 0 = 0

= 1 since 0 = 1.

We have again computed the fourth row of the table in Example 1.5.

In a Boolean expression in which parentheses are not used to specify the order of
operations, we assume that ∧ is evaluated before ∨.

Example 1.12 For x1 = 0, x2 = 0, and x3 = 1, the value of the Boolean expression x1 ∧ x2 ∨ x3 is

x1 ∧ x2 ∨ x3 = 0 ∧ 0 ∨ 1 = 0 ∨ 1 = 1.

Example 1.8 showed how to represent a combinatorial circuit with one output as
a Boolean expression. The following example shows how to construct a combinatorial
circuit that represents a Boolean expression.

Example 1.13 Find the combinatorial circuit corresponding to the Boolean expression

(x1 ∧ (x2 ∨ x3)) ∨ x2

and write the logic table for the circuit obtained.
We begin with the expression x2∨x3 in the innermost parentheses. This expression

is converted to a combinatorial circuit, as shown in Figure 1.9.

627

Boolean Algebras and Combinatorial Circuits

x2

x3

x2

x2 x3

Figure 1.9 The combinatorial
circuit corresponding to the Boolean
expression x2 ∨ x3.

x1 (x2 x3)x2

x3 x2 x3

x1
x2

Figure 1.10 The combinatorial circuit corresponding to the
Boolean expression x1 ∧ (x2 ∨ x3).

The output of this circuit is ANDed with x1 to produce the circuit drawn in
Figure 1.10. Finally, the output of this circuit is ORed with x2 to give the desired circuit
drawn in Figure 1.11. The logic table follows

x1 x2 x3 (x1 ∧ (x2 ∨ x3)) ∨ x2

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0

x3 x2 x3

x2

x1

x2
x1 (x2 x3)

(x1 (x2 x3)) x2

Figure 1.11 The combinatorial circuit corresponding to the Boolean
expression (x1 ∧ (x2 ∨ x3)) ∨ x2.

Section Review Exercises

†1. What is a combinatorial circuit?

2. What is a sequential circuit?

3. What is an AND gate?

4. What is an OR gate?

5. What is a NOT gate?

6. What is an inverter?

7. What is a logic table of a combinatorial circuit?

8. What is a Boolean expression?

9. What is a literal?

Exercises

In Exercises 1–6, write the Boolean expression that represents the
combinatorial circuit, write the logic table, and write the output of
each gate symbolically as in Figure 1.8.

1. x1

x2

2.
x1

x2

3. x1

x2

x3

4.

x3

x1

x2

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

628

Boolean Algebras and Combinatorial Circuits

5.

x1
x2

x3

x4

6. The circuit at the bottom of Figure 1.7.

Exercises 7–9 refer to the circuit

x
y

7. Show that this circuit is not a combinatorial circuit.

8. Show that if x = 0, the output y is uniquely determined.

9. Show that if x = 1, the output y is undetermined.

In Exercises 10–14, find the value of the Boolean expressions for

x1 = 1, x2 = 1, x3 = 0, x4 = 1.

10. x1 ∧ x2

11. x1 ∨ (x2 ∧ x3)

12. (x1 ∧ x2) ∨ (x1 ∨ x3)

13. (x1 ∧ (x2 ∨ (x1 ∧ x2))) ∨ ((x1 ∧ x2) ∨ (x1 ∧ x3))

14. (((x1∧x2)∨ (x3∧x4))∨ ((x1 ∨ x3) ∧ (x2 ∨ x3)))∨ (x1∧x3)

15. Using Definition 1.9, show that each expression in Exer-
cises 10–14 is a Boolean expression.

In Exercises 16–20, tell whether the given expression is a Boolean
expression. If it is a Boolean expression, use Definition 1.9 to show
that it is.

16. x1 ∧ (x2 ∨ x3)

17. x1 ∧ x2 ∨ x3

18. (x1)

19. ((x1 ∧ x2) ∨ x3

20. ((x1))

21. Find the combinatorial circuit corresponding to each Boolean
expression in Exercises 10–14 and write the logic table.

A switching circuit is an electrical network consisting of switches
each of which is open or closed. An example is given in Figure 1.12.
If switch X is open (closed), we write X = 0 (X = 1). Switches
labeled with the same letter, such as B in Figure 1.12, are either
all open or all closed. Switch X, such as A in Figure 1.12, is open
if and only if switch X, such as A, is closed. If current can flow
between the extreme left and right ends of the circuit, we say that
the output of the circuit is 1; otherwise, we say that the output of
the circuit is 0. A switching table gives the output of the circuit for

all values of the switches. The switching table for Figure 1.12 is as
follows:

A B C Circuit Output

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

A B

B C

A

Figure 1.12 A switching circuit.

22. Draw a circuit with two switches A and B having the prop-
erty that the circuit output is 1 precisely when both A and B

are closed. This configuration is labeled A∧B and is called a
series circuit.

23. Draw a circuit with two switches A and B having the prop-
erty that the circuit output is 1 precisely when either A or B

is closed. This configuration is labeled A ∨ B and is called a
parallel circuit.

24. Show that the circuit of Figure 1.12 can be represented
symbolically as

(A ∧ B) ∨ A ∨ (B ∧ C).

Represent each circuit in Exercises 25–29 symbolically and give
its switching table.

25.

A B

C A

26.

B

C B

A

27.

A

D

B

C

629

Boolean Algebras and Combinatorial Circuits

28.

C D

C

A

D

B

A B

Represent the expressions in Exercises 29–33 as switching circuits
and write the switching tables.

29. (A ∨ B) ∧ A

30. A ∨ (B ∧ C)

31. (A ∧ B) ∨ (C ∧ A)

32. (A ∧ ((B ∧ C) ∨ (B ∧ C))) ∨ (A ∧ B ∧ C)

33. A∧ ((B∧C∧D)∨ ((B∧C)∨D)∨ (B∧C∧D))∧ (B∨D)

2 ➜ Properties of Combinatorial Circuits

In the preceding section we defined two binary operators ∧ and ∨ on Z2 = {0, 1} and
a unary operator on Z2. (Throughout the remainder of this chapter we let Z2 denote
the set {0, 1}.) We saw that these operators could be implemented in circuits as gates. In
this section we discuss some properties of the system consisting of Z2 and the operators
∧,∨, and .

Theorem 2.1 If ∧,∨, and are as in Definitions 1.1–1.3, then the following properties
hold.

(a) Associative laws:

(a ∨ b) ∨ c = a ∨ (b ∨ c)

(a ∧ b) ∧ c = a ∧ (b ∧ c) for all a, b, c ∈ Z2.

(b) Commutative laws:

a ∨ b = b ∨ a, a ∧ b = b ∧ a for all a, b ∈ Z2.

(c) Distributive laws:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ Z2.

(d) Identity laws:

a ∨ 0 = a, a ∧ 1 = a for all a ∈ Z2.

(e) Complement laws:

a ∨ a = 1, a ∧ a = 0 for all a ∈ Z2.

Proof The proofs are straightforward verifications. We shall prove the first
distributive law only and leave the other equations as exercises (see Exercises 16
and 17).

We must show that

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ Z2. (2.1)

630

Boolean Algebras and Combinatorial Circuits

We simply evaluate both sides of (2.1) for all possible values of a, b, and c in Z2 and
verify that in each case we obtain the same result. The table gives the details.

a b c a ∧ (b ∨ c) (a ∧ b) ∨ (a ∧ c)

1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

Example 2.2 By using Theorem 2.1, show that the combinatorial circuits of Figure 2.1 have identical
outputs for given identical inputs.

x2

x3

x1

(a)

x1

(b)

x2

x3

Figure 2.1 The combinatorial circuits (a) and (b) have identical outputs for
given identical inputs and are said to be equivalent.

The Boolean expressions representing the circuits are, respectively,

x1 ∨ (x2 ∧ x3), (x1 ∨ x2) ∧ (x1 ∨ x3).

By Theorem 2.1(c),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ Z2. (2.2)

But (2.2) says that the combinatorial circuits of Figure 2.1 have identical outputs for
given identical inputs.

Arbitrary Boolean expressions are defined to be equal if they have the same values
for all possible assignments of bits to the literals.

Definition 2.3 Let

X1 = X1(x1, . . . , xn) and X2 = X2(x1, . . . , xn)

be Boolean expressions. We define X1 to be equal to X2 and write

X1 = X2

if

X1(a1, . . . , an) = X2(a1, . . . , an) for all ai ∈ Z2.

631

Boolean Algebras and Combinatorial Circuits

Example 2.4 Show that

(x ∨ y) = x ∧ y. (2.3)

According to Definition 2.3, (2.3) holds if the equation is true for all choices of x

and y in Z2. Thus we may simply construct a table listing all possibilities to verify (2.3).

x y (x ∨ y) x ∧ y

1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 1

If we define a relation R on a set of Boolean expressions by the rule X1 R X2

if X1 = X2, R is an equivalence relation. Each equivalence class consists of a set of
Boolean expressions any one of which is equal to any other.

Because of the associative laws, Theorem 2.1(a), we can unambiguously write

a1 ∨ a2 ∨ · · · ∨ an (2.4)

or

a1 ∧ a2 ∧ · · · ∧ an (2.5)

for ai ∈Z2. The combinatorial circuit corresponding to (2.4) is drawn as in
Figure 2.2 and the combinatorial circuit corresponding to (2.5) is drawn as in Figure 2.3.

a1
a2

an

Figure 2.2 An n-input OR gate.

a1
a2

an

Figure 2.3 An n-input AND gate.

The properties listed in Theorem 2.1 hold for a variety of systems. Any system
satisfying these properties is called a Boolean algebra. Abstract Boolean algebras are
examined in Section 3.

Having defined equality of Boolean expressions, we define equivalence of com-
binatorial circuits.

Definition 2.5 We say that two combinatorial circuits, each having inputs x1, . . . , xn and a single output,
are equivalent if, whenever the circuits receive the same inputs, they produce the same
outputs.

Example 2.6 The combinatorial circuits of Figures 2.4 and 2.5 are equivalent since, as shown, they
have identical logic tables.

632

Boolean Algebras and Combinatorial Circuits

a

y1

b

1 1 0

a b

1 0 0

y1

0 1 0

0 10

Figure 2.4 A combinatorial
circuit and its logic table.

y1

a

b

y1

1 1 0

a b

1 0 0

0 1 0

0 10

Figure 2.5 A combinatorial
circuit and its logic table, which
is identical to the logic table of
Figure 2.4. The circuits of
Figures 2.4 and 2.5 are said to be
equivalent because they have
identical logic tables.

If we define a relation R on a set of combinatorial circuits by the rule C1 R C2 if
C1 and C2 are equivalent (in the sense of Definition 2.5), R is an equivalence relation.
Each equivalence class consists of a set of mutually equivalent combinatorial circuits.

Example 2.6 shows that equivalent circuits may not have the same number of
gates. In general, it is desirable to use as few gates as possible to minimize the cost of
the components.

It follows immediately from the definitions that combinatorial circuits are equiv-
alent if and only if the Boolean expressions that represent them are equal.

Theorem 2.7 Let C1 and C2 be combinatorial circuits represented, respectively, by the Boolean
expressions X1 = X1(x1, . . . , xn) and X2 = X2(x1, . . . , xn). Then C1 and C2 are
equivalent if and only if X1 = X2.

Proof The value X1(a1, . . . , an) [respectively, X2(a1, . . . , an)] for ai ∈ Z2 is the
output for circuit C1 (respectively, C2) for inputs a1, . . . , an.

According to Definition 2.5, circuits C1 and C2 are equivalent if and only if
they have the same outputs X1(a1, . . . , an) and X2(a1, . . . , an) for all possible inputs
a1, . . . , an. Thus circuits C1 and C2 are equivalent if and only if

X1(a1, . . . , an) = X2(a1, . . . , an) for all values ai ∈ Z2. (2.6)

But by Definition 2.3, (2.6) holds if and only if X1 = X2.

Example 2.8 In Example 2.4 we showed that

(x ∨ y) = x ∧ y.

By Theorem 2.7, the combinatorial circuits (Figures 2.4 and 2.5) corresponding to these
expressions are equivalent.

633

Boolean Algebras and Combinatorial Circuits

Section Review Exercises

1. State the associative laws for ∧ and ∨.

2. State the commutative laws for ∧ and ∨.

3. State the distributive laws for ∧ and ∨.

4. State the identity laws for ∧ and ∨.

5. State the complement laws for ∧, ∨, and .

6. When are two Boolean expressions equal?

7. What are equivalent combinatorial expressions?

8. What is the relation between combinatorial expressions and the
Boolean expressions that represent them?

Exercises

Show that the combinatorial circuits of Exercises 1–5 are equiva-
lent.

1.

y1

y1

x1

x2

x1

x2

(a)

(b)

2.

x1

y1
x2

x1

y1
x2

(a)

(b)

3.

x1

x2

y1

x3

(a)

x1

y1

x3

x2

(b)

4.

x1

x2

x3

x1

x2

y1

(b)

y1

x3

(a)

5.

x4

x1

x2

x2

x3

(a)

(b)

x4

x1

x3
y1

y1

Verify the equations in Exercises 6–10.

6. x1 ∨ x1 = x1

7. x1 ∨ (x1 ∧ x2) = x1

8. x1 ∧ x2 = (x1 ∨ x2)

9. x1 ∧ (x2 ∧ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3)

10. (x1 ∨ x2) ∧ (x3 ∨ x4) = (x3 ∧ x1) ∨ (x3 ∧ x2) ∨ (x4 ∧ x1)

∨ (x4 ∧ x2)

634

Boolean Algebras and Combinatorial Circuits

Prove or disprove the equations in Exercises 11–15.

11. x = x 12. x1 ∧ x2 = x1 ∨ x2

13. x1 ∧ ((x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)) = x2 ∧ x3

14. ((x1 ∧ x2) ∨ (x1 ∧ x3)) = (x1 ∨ x2) ∧ (x1 ∨ x3)

15. (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∧ x2) = 0

16. Prove the second statement of Theorem 2.1(c).

17. Prove Theorem 2.1, parts (a), (b), (d), and (e).

We say that two switching circuits are equivalent if the Boolean
expressions that represent them are equal.

18. Show that the switching circuits are equivalent.

B

A C

B

C

A

A

(a)

(b)

19. For each switching circuit in Exercises 25–28, Section 1, find
an equivalent switching circuit using parallel and series cir-
cuits having as few switches as you can.

20. For each Boolean expression in Exercises 29–33, Section 1,
find a switching circuit using parallel and series circuits having
as few switches as you can.

A bridge circuit is a switching circuit, such as the one shown here,
that uses nonparallel and nonseries circuits.

D

B E

A

C

For each switching circuit, find an equivalent switching circuit
using bridge circuits having as few switches as you can.

21.

A

C

B

F E

D

F

E

B

22.

C

A

A

D F

B

D

F

B

†�23.

A

B

D

E C

E D

C

F C

B

24. For each Boolean expression in Exercises 29–33, Section 1,
find a switching circuit using bridge circuits having as few
switches as you can.

3 ➜ Boolean Algebras

In this section we consider general systems that have properties like those given in
Theorem 2.1. We will see that apparently diverse systems obey these same laws. We call
such systems Boolean algebras.

Definition 3.1 A Boolean algebra B consists of a set S containing distinct elements 0 and 1, binary
operators + and · on S, and a unary operator ′ on S satisfying the following laws.

†A starred exercise indicates a problem of above-average difficulty.

635

Boolean Algebras and Combinatorial Circuits

(a) Associative laws:

(x+ y)+ z = x+ (y + z)

(x · y) · z = x · (y · z) for all x, y, z ∈ S.

(b) Commutative laws:

x+ y = y + x, x · y = y · x for all x, y ∈ S.

(c) Distributive laws:

x · (y + z) = (x · y)+ (x · z)

x+ (y · z) = (x+ y) · (x+ z) for all x, y, z ∈ S.

(d) Identity laws:

x+ 0 = x, x · 1 = x for all x ∈ S.

(e) Complement laws:

x+ x′ = 1, x · x′ = 0 for all x ∈ S.

If B is a Boolean algebra, we write B = (S,+, · , ′, 0, 1).

The associative laws can be omitted from Definition 3.1 since they follow from
the other laws (see Exercise 24).

Example 3.2 By Theorem 2.1, (Z2,∨,∧, , 0, 1) is a Boolean algebra. (We are letting Z2 denote the
set {0, 1}.) The operators +, · , ′ in Definition 3.1 are ∨,∧, , respectively.

As is the standard custom, we will usually abbreviate a · b as ab. We also assume
that · is evaluated before+. This allows us to eliminate some parentheses. For example,
we can write (xy)+ z more simply as xy + z.

Several comments are in order concerning Definition 3.1. In the first place, 0 and
1 are merely symbolic names and, in general, have nothing to do with the numbers 0
and 1. This same comment applies to + and · , which merely denote binary operators
and, in general, have nothing to do with ordinary addition and multiplication.

Example 3.3 Let U be a universal set and let S = P(U), the power set of U. If we define the following
operations

X+ Y = X ∪ Y, X · Y = X ∩ Y, X′ = X

on S, then (S,∪,∩, , ∅, U) is a Boolean algebra. The empty set ∅ plays the role of 0
and the universal set U plays the role of 1. If we let X, Y, and Z be subsets of S, properties
(a)–(e) of Definition 3.1 become the following properties of sets:

(a′) (X ∪ Y) ∪ Z = X ∪ (Y ∪ Z)

(X ∩ Y) ∩ Z = X ∩ (Y ∩ Z) for all X, Y, Z ∈ P(U).

(b′) X ∪ Y = Y ∪X, X ∩ Y = Y ∩X for all X, Y ∈ P(U).

636

Boolean Algebras and Combinatorial Circuits

(c′) X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z)

X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z) for all X, Y, Z ∈ P(U).

(d′) X ∪∅ = X, X ∩ U = X for every X ∈ P(U).

(e′) X ∪X = U, X ∩X = ∅ for every X ∈ P(U).

At this point we will deduce several other properties of Boolean algebras. We begin
by showing that the element x′ in Definition 3.1(e) is unique.

Theorem 3.4 In a Boolean algebra, the element x′ of Definition 3.1(e) is unique. Specifically, if
x+ y = 1 and xy = 0, then y = x′.

Proof
y = y1 Definition 3.1(d)
= y(x+ x′) Definition 3.1(e)
= yx+ yx′ Definition 3.1(c)
= xy + yx′ Definition 3.1(b)
= 0+ yx′ Given
= xx′ + yx′ Definition 3.1(e)
= x′x+ x′y Definition 3.1(b)
= x′(x+ y) Definition 3.1(c)
= x′1 Given
= x′ Definition 3.1(d)

Definition 3.5 In a Boolean algebra, we call the element x′ the complement of x.

We can now derive several additional properties of Boolean algebras.

Theorem 3.6 Let B = (S,+, · , ′, 0, 1) be a Boolean algebra. The following properties hold.

(a) Idempotent laws:

x+ x = x, xx = x for all x ∈ S.

(b) Bound laws:

x+ 1 = 1, x0 = 0 for all x ∈ S.

(c) Absorption laws:

x+ xy = x, x(x+ y) = x for all x, y ∈ S.

(d) Involution law:

(x′)′ = x for all x ∈ S.

(e) 0 and 1 laws:

0′ = 1, 1′ = 0.

(f) De Morgan’s laws for Boolean algebras:

(x+ y)′ = x′y′, (xy)′ = x′ + y′ for all x, y ∈ S.

637

Boolean Algebras and Combinatorial Circuits

Proof We will prove (b) and the first statement of parts (a), (c), and (f) and leave
the others as exercises (see Exercises 18–20).

(a) x = x+ 0 Definition 3.1(d)
= x+ (xx′) Definition 3.1(e)
= (x+ x)(x+ x′) Definition 3.1(c)
= (x+ x)1 Definition 3.1(e)
= x+ x Definition 3.1(d)

(b) x+ 1 = (x+ 1)1 Definition 3.1(d)
= (x+ 1)(x+ x′) Definition 3.1(e)
= x+ 1x′ Definition 3.1(c)
= x+ x′1 Definition 3.1(b)
= x+ x′ Definition 3.1(d)
= 1 Definition 3.1(e)

x0 = x0+ 0 Definition 3.1(d)
= x0+ xx′ Definition 3.1(e)
= x(0+ x′) Definition 3.1(c)
= x(x′ + 0) Definition 3.1(b)
= xx′ Definition 3.1(d)
= 0 Definition 3.1(e)

(c) x+ xy = x1+ xy Definition 3.1(d)
= x(1+ y) Definition 3.1(c)
= x(y + 1) Definition 3.1(b)
= x1 Part (b)
= x Definition 3.1(d)

(f) If we show that

(x+ y)(x′y′) = 0 (3.1)

and

(x+ y)+ x′y′ = 1, (3.2)

it will follow from Theorem 3.4 that x′y′ = (x+ y)′. Now

(x+ y)(x′y′) = (x′y′)(x+ y) Definition 3.1(b)
= (x′y′)x+ (x′y′)y Definition 3.1(c)
= x(x′y′)+ (x′y′)y Definition 3.1(b)
= (xx′)y′ + x′(y′y) Definition 3.1(a)
= (xx′)y′ + x′(yy′) Definition 3.1(b)
= 0y′ + x′0 Definition 3.1(e)
= y′0+ x′0 Definition 3.1(b)
= 0+ 0 Part (b)
= 0 Definition 3.1(d)

Therefore, (3.1) holds.
Next we verify (3.2).

(x+ y)+ x′y′ = ((x+ y)+ x′)((x+ y)+ y′) Definition 3.1(c)
= ((y + x)+ x′)((x+ y)+ y′) Definition 3.1(b)
= (y + (x+ x′))(x+ (y + y′)) Definition 3.1(a)
= (y + 1)(x+ 1) Definition 3.1(e)
= 1 · 1 Part (b)
= 1 Definition 3.1(d)

By Theorem 3.4, x′y′ = (x+ y)′.

638

Boolean Algebras and Combinatorial Circuits

Example 3.7 As explained in Example 3.3, if U is a set, P(U) can be considered a Boolean algebra.
Therefore, De Morgan’s laws, which for sets may be stated

(X ∪ Y) = X ∩ Y, (X ∩ Y) = X ∪ Y for all X, Y ∈ P(U),

hold. These equations may be verified directly, but Theorem 3.6 shows that they are a
consequence of other laws.

The reader has surely noticed that equations involving elements of a Boolean
algebra come in pairs. For example, the identity laws [Definition 3.1(d)] are

x+ 0 = x, x1 = x.

Such pairs are said to be dual.

Definition 3.8 The dual of a statement involving Boolean expressions is obtained by replacing 0 by 1,
1 by 0, + by · , and · by +.

Example 3.9 The dual of

(x+ y)′ = x′y′

is

(xy)′ = x′ + y′.

Each condition in the definition of a Boolean algebra (Definition 3.1) includes its
dual. Therefore, we have the following result.

Theorem 3.10 The dual of a theorem about Boolean algebras is also a theorem.

Proof Suppose that T is a theorem about Boolean algebras. Then there is a proof
P of T involving only the definitions of a Boolean algebra (Definition 3.1). Let P ′

be the sequence of statements obtained by replacing every statement in P by its dual.
Then P ′ is a proof of the dual of T .

Example 3.11 The dual of

x+ x = x (3.3)

is

xx = x. (3.4)

We proved (3.3) earlier [see the proof of Theorem 3.6(a)]. If we write the dual of
each statement in the proof of (3.3), we obtain the following proof of (3.4):

x = x1

= x(x+ x′)
= xx+ xx′

= xx+ 0

= xx.

Example 3.12 The proofs given in Theorem 3.6 of the two statements of part (b) are dual to each
other.

639

Boolean Algebras and Combinatorial Circuits

Section Review Exercises

1. Define Boolean algebra.

2. What are the idempotent laws for Boolean algebras?

3. What are the bound laws for Boolean algebras?

4. What are the absorption laws for Boolean algebras?

5. What is the involution law for Boolean algebras?

6. What are the 0/1 laws for Boolean algebras?

7. What are De Morgan’s laws for Boolean algebras?

8. How is the dual of a Boolean expression obtained?

9. What can we say about the dual of a theorem about Boolean
algebras?

Exercises

1. Verify properties (a′)–(e′) of Example 3.3.

2. Let S = {1, 2, 3, 6}. Define

x+ y = lcm(x, y), x · y = gcd(x, y), x′ = 6

x

for x, y ∈ S (lcm and gcd denote, respectively, the least com-
mon multiple and the greatest common divisor). Show that
(S,+, · , ′, 1, 6) is a Boolean algebra.

3. S = {1, 2, 4, 8}. Define + and · as in Exercise 2 and define
x′ = 8/x. Show that (S,+, · , ′, 1, 8) is not a Boolean algebra.

Let Sn = {1, 2, . . . , n}. Define

x+ y = max{x, y}, x · y = min{x, y}.

4. Show that parts (a)–(c) of Definition 3.1 hold for Sn.

5. Show that it is possible to define 0, 1 and ′ so that
(Sn,+, · , ′, 0, 1) is a Boolean algebra if and only if n = 2.

6. Rewrite the conditions of Theorem 3.6 for sets as in
Example 3.3.

7. Interpret Theorem 3.4 for sets as in Example 3.3.

Write the dual of each statement in Exercises 8–14.

8. (x+ y)(x+ 1) = x+ xy + y

9. (x′ + y′)′ = xy

10. If x+ y = x+ z and x′ + y = x′ + z, then y = z.

11. xy′ = 0 if and only if xy = x.

12. If x+ y = 0, then x = 0 = y.

13. x = 0 if and only if y = xy′ + x′y for all y.

14. x+ x(y + 1) = x

15. Prove the statements of Exercises 8–14.

16. Prove the duals of the statements of Exercises 8–14.

17. Write the dual of Theorem 3.4. How does the dual relate to
Theorem 3.4 itself?

18. Prove the second statements of parts (a), (c), and (f) of
Theorem 3.6.

19. Prove the second statements of parts (a), (c), and (f) of
Theorem 3.6 by dualizing the proofs of the first statements
given in the text.

20. Prove Theorem 3.6, parts (d) and (e).

�21. Deduce part (a) of Definition 3.1 from parts (b)–(e) of
Definition 3.1.

22. Let U be the set of positive integers. Let S be the collec-
tion of subsets X of U with either X or X finite. Show that
(S,∪,∩, , ∅, U) is a Boolean algebra.

�23. Let n be a positive integer. Let S be the set of all divisors
of n, including 1 and n. Define + and · as in Exercise 2
and define x′ = n/x. What conditions must n satisfy so that
(S,+, · , ′, 1, n) is a Boolean algebra?

�24. Show that the associative laws follow from the other laws of
Definition 3.1.

Problem-Solving Corner Boolean Algebras

Problem
Let (S,+, · , ′, 0, 1) be a Boolean algebra and let A be
a subset of S. Show that (A,+, · , ′, 0, 1) is a Boolean
algebra if and only if 1∈A and xy′ ∈A for all x, y∈A.

Attacking the Problem
Since the given statement is an “if and only if ” state-
ment, there are two statements to be proved:

If (A,+, · , ′, 0, 1) is a Boolean algebra,

then 1 ∈ A and xy′ ∈ A for all x, y ∈ A. (1)

If 1 ∈ A and xy′ ∈ A for all x, y ∈ A, then

(A,+, · , ′, 0, 1) is a Boolean algebra. (2)

To prove (1), we can use the laws as specified by the
definition of “Boolean algebra" (Definition 3.1) and the
laws derived in Theorem 3.6 that elements of a Boolean
algebra must obey. To prove that (A,+, · , ′, 0, 1) is a
Boolean algebra, we will verify that the laws specified
by Definition 3.1 are satisfied. Before reading on, you
should review Definition 3.1 and Theorem 3.6.

640

Boolean Algebras and Combinatorial Circuits

Finding a Solution
First let’s try to prove (1). We assume that (A,+, · , ′,
0, 1) is a Boolean algebra and prove that

■ 1 ∈ A

and
■ xy′ ∈ A for all x, y ∈ A.

Definition 3.1 says that a Boolean algebra contains
1. Since (A,+, · , ′, 0, 1) is a Boolean algebra, 1∈A.

Now suppose that x, y ∈ A. Definition 3.1 says
that ′ is a unary operator on A. This means that y′ ∈ A.
Definition 3.1 also says that · is a binary operator on
A. This means that xy′ ∈ A. This completes the proof
of (1).

Now let’s try to prove (2). This time we assume
that 1 ∈ A and xy′ ∈ A for all x, y ∈ A and try to prove
that (A,+, · , ′, 0, 1) is a Boolean algebra. According
to Definition 3.1, we must prove that

A contains distinct elements 0 and 1. (3)

+ and · are binary operators on A. (4)
′ is a unary operator on A. (5)

The associative laws hold. (6)

The commutative laws hold. (7)

The distributive laws hold. (8)

The identity laws hold. (9)

The complement laws hold. (10)

A contains 1 by assumption. To prove (3), we must
show that 0 ∈ A. We have only two assumptions about
A: 1 ∈ A and if x, y ∈ A, then xy′ ∈ A. All we can
do at this point is combine these assumptions; that is,
take x = y = 1 and examine the conclusion: 11′ ∈ A.
Now Theorem 3.6(e) [applied to the Boolean algebra
(S,+, · , ′, 0, 1)] says that 1′ = 0. Substituting for 1′,
we know now that 10 ∈ A. But Theorem 3.6(b) says
that for any x, x0 = 0. Thus 10 = 0 is in A. Success!
A contains 1 and 0. 0 and 1 are distinct because they
are elements of the Boolean algebra (S,+, · , ′, 0, 1).
Therefore, (3) is proved.

To prove (4), we must show that+ and · are binary
operators on A; that is, if x, y ∈ A, then x+y and xy are
in A. Consider proving that · is a binary operator on A.
What we know is that if x, y ∈ A, then xy′ ∈ A, which
is close to what we want to prove. If we could somehow
replace y′ by y in the expression xy′, we could conclude
that xy ∈ A. What we would like to do is assume that
x, y ∈ A, then deduce

x, y′ ∈ A, (11)

and then conclude that

xy = xy′′ ∈ A.

To deduce (11), we need to show if y ∈ A, then y′ ∈ A.
But this is (5). Detour! Let’s work on (5).

We will assume that y ∈ A and try to prove that
y′ ∈ A. If we could get rid of that pesky x (in the
hypothesis x, y ∈ A implies xy′ ∈ A), we would have
exactly what we want. We can effectively eliminate x

by taking x = 1 since 1y = y. Formally, we argue as
follows. Let y be in A. Since 1 ∈ A, y′ = 1y′ ∈ A.
[y′ = 1y′ by Definition 3.1(b) and 3.1(d).] We have
proved (5).

Now back to (4). Let x, y ∈ A. By the just proved
(5), y′ ∈ A. By the given condition, xy = xy′′ ∈ A.
[y = y′′ by Theorem 3.6(d).] We have proved that · is
a binary operator on A.

De Morgan’s laws [Theorem 3.6(f)], in effect,
allow us to interchange + and · , so we can use them
to prove that if x, y ∈ A, then x + y ∈ A. Formally
we argue as follows. Suppose that x, y ∈ A. By (5),
x′ and y′ are both in A. Since we have already proved
that · is a binary operator on A, x′y′ ∈ A. By (5),
(x′y′)′ ∈ A. By De Morgan’s laws [Theorem 3.6(f)] and
Theorem 3.6(d), x+y = x′′+y′′ = (x′y′)′ ∈ A. There-
fore, + is a binary operator on A. We have proved (4).

The next statement to prove is (6), which is to ver-
ify the associative laws

(x+ y)+ z = x+ (y + z),

(xy)z = x(yz) for all x, y, z ∈ A.

Now (S,+, · , ′, 0, 1) is a Boolean algebra and so the
associative laws hold in S. Since A is a subset of S,
the associative laws surely hold in A. Thus (6) holds.
For the same reason, properties (7) through (10) also
hold in A. Therefore, (A,+, · , ′, 0, 1) is a Boolean
algebra.

Formal Solution
Suppose that (A,+, · , ′, 0, 1) is a Boolean algebra.
Then 1 ∈ A. Suppose that x, y ∈ A. Then y′ ∈ A.

Thus xy′ ∈ A.
Now suppose that 1 ∈ A and xy′ ∈ A for all

x, y ∈ A. Taking x = y = 1, we obtain 0 = 11′ ∈ A.
Taking x = 1, we obtain y′ = 1y′ ∈ A. Thus ′ is
a unary operator on A. Replacing y by y′, we obtain
xy = xy′′ ∈ A. Thus · is a binary operator on A.
Now x + y = x′′ + y′′ = (x′y′)′ ∈ A. Thus + is
a binary operator on A. Parts a–e of Definition 3.1

641

Boolean Algebras and Combinatorial Circuits

automatically hold in A since they hold in S. Therefore
(A,+, · , ′, 0, 1) is a Boolean algebra.

Summary of Problem-Solving Techniques
■ When trying to construct a proof, write out care-

fully what is assumed and what is to be proved.

■ When trying to construct a proof, look at closely
related definitions and theorems.

■ To prove that something is a Boolean algebra, go
directly to the definition (Definition 3.1).

■ Consider proving statements in an order different
from that given. In this problem, it was easier to
prove statement (5) before proving statement (4).

■ Try various substitutions for the variables in
a universally quantified statement. (After all,
“universally quantified” means that the state-
ment holds true for all values.) By taking
x = y = 1 in the statement

xy′ ∈ A for all x, y ∈ A,

we were able to prove that 0 ∈ A.

4 ➜ Boolean Functions and Synthesis of Circuits

A circuit is constructed to carry out a specified task. If we want to construct a combi-
natorial circuit, the problem can be given in terms of inputs and outputs. For example,
suppose that we want to construct a combinatorial circuit to compute the exclusive-OR
of x1 and x2. We can state the problem by listing the inputs and outputs that define the
exclusive-OR. This is equivalent to giving the desired logic table.

TABLE 4.1 ■ The
exclusive-OR.

x1 x2 x1 ⊕ x2

1 1 0
1 0 1
0 1 1
0 0 0

Definition 4.1 The exclusive-OR of x1 and x2 written x1 ⊕ x2 is defined by Table 4.1.

A logic table, with one output, is a function, The domain is the set of inputs and the
range is the set of outputs. For the exclusive-OR function given in Table 4.1, the domain
is the set

{(1, 1), (1, 0), (0, 1), (0, 0)}

and the range is the set

Z2 = {0, 1}.

If we could develop a formula for the exclusive-OR function of the form

x1 ⊕ x2 = X(x1, x2),

where X is a Boolean expression, we could solve the problem of constructing the com-
binatorial circuit. We could merely construct the circuit corresponding to X.

Functions that can be represented by Boolean expressions are called Boolean
functions.

Definition 4.2 Let X(x1, . . . , xn) be a Boolean expression. A function f of the form

f(x1, . . . , xn) = X(x1, . . . , xn)

is called a Boolean function.

Example 4.3 The function f : Z3
2 → Z2 defined by

f(x1, x2, x3) = x1 ∧ (x2 ∨ x3)

642

Boolean Algebras and Combinatorial Circuits

is a Boolean function. The inputs and outputs are given in the following table.

x1 x2 x3 f(x1, x2, x3)

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

In the next example we show how an arbitrary function f : Zn
2 → Z2 can be realized

as a Boolean function.

Example 4.4 Show that the function f given by the following table is a Boolean function.

x1 x2 x3 f(x1, x2, x3)

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 0

Consider the first row of the table and the combination

x1 ∧ x2 ∧ x3. (4.1)

Notice that if x1 = x2 = x3 = 1, as indicated in the first row of the table, then (4.1) is
1. The values of xi given by any other row of the table give (4.1) the value 0. Similarly,
for the fourth row of the table we may construct the combination

x1 ∧ x2 ∧ x3. (4.2)

Expression (4.2) has the value 1 for the values of xi given by the fourth row of the table,
whereas the values of xi given by any other row of the table give (4.2) the value 0.

The procedure is clear. We consider a row R of the table where the output is 1. We
then form the combination x1 ∧ x2 ∧ x3 and place a bar over each xi whose value is 0 in
row R. The combination formed is 1 if and only if the xi have the values given in row
R. Thus, for row 6, we obtain the combination

x1 ∧ x2 ∧ x3. (4.3)

Next, we OR the terms (4.1)–(4.3) to obtain the Boolean expression

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3). (4.4)

We claim that f(x1, x2, x3) and (4.4) are equal. To verify this, first suppose that x1, x2,

and x3 have values given by a row of the table for which f(x1, x2, x3) = 1. Then one
of (4.1)–(4.3) is 1, so the value of (4.4) is 1. On the other hand, if x1, x2, x3 have values

643

Boolean Algebras and Combinatorial Circuits

given by a row of the table for which f(x1, x2, x3) = 0, all of (4.1)–(4.3) are 0, so the
value of (4.4) is 0. Thus f and the Boolean expression (4.4) agree on Z3

2; therefore,

f(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3),

as claimed.

After one more definition, we will show that the method of Example 4.4 can be
used to represent any function f : Zn

2 → Z2.

Definition 4.5 A minterm in the symbols x1, . . . , xn is a Boolean expression of the form

y1 ∧ y2 ∧ · · · ∧ yn,

where each yi is either xi or xi.

Theorem 4.6 If f : Zn
2 → Z2, then f is a Boolean function. If f is not identically zero, let A1, . . . , Ak

denote the elements Ai of Zn
2 for which f(Ai) = 1. For each Ai = (a1, . . . , an), set

mi = y1 ∧ · · · ∧ yn,

where

yj =
{

xj if aj = 1
xj if aj = 0.

Then

f(x1, . . . , xn) = m1 ∨m2 ∨ · · · ∨mk. (4.5)

Proof If f(x1, . . . , xn) = 0 for all xi, then f is a Boolean function, since 0 is a
Boolean expression.

Suppose that f is not identically zero. Let mi(a1, . . . , an) denote the value
obtained from mi by replacing each xj with aj . It follows from the definition of mi

that

mi(A) =
{

1 if A = Ai

0 if A
= Ai.

Let A ∈ Zn
2 . If A = Ai for some i ∈ {1, . . . , k}, then f(A) = 1, mi(A) = 1,

and

m1(A) ∨ · · · ∨mk(A) = 1.

On the other hand, if A
= Ai for any i ∈ {1, . . . , k}, then f(A) = 0, mi(A) = 0 for
i = 1, . . . , k, and

m1(A) ∨ · · · ∨mk(A) = 0.

Therefore, (4.5) holds.

Definition 4.7 The representation (4.5) of a Boolean function f : Zn
2 → Z2 is called the disjunctive

normal form of the function f .

644

Boolean Algebras and Combinatorial Circuits

Example 4.8 Design a combinatorial circuit that computes the exclusive-OR of x1 and x2.
The logic table for the exclusive-OR function x1 ⊕ x2 is given in Table 4.1. The

disjunctive normal form of this function is

x1 ⊕ x2 = (x1 ∧ x2) ∨ (x1 ∧ x2). (4.6)

The combinatorial circuit corresponding to (4.6) is given in Figure 4.1.

x1 x2

x2

x1

Figure 4.1 A combinatorial circuit for the exclusive-OR.

Suppose that a function is given by a Boolean expression such as

f(x1, x2, x3) = (x1 ∨ x2) ∧ x3

and we wish to find the disjunctive normal form of f . We could write the logic table for f

and then use Theorem 4.6.Alternatively, we can deal directly with the Boolean expression
by using the definitions and results of Sections 2 and 3. We begin by distributing the
term x3 as follows:

(x1 ∨ x2) ∧ x3 = (x1 ∧ x3) ∨ (x2 ∧ x3).

Although this represents the Boolean expression as a combination of terms of the form
y ∧ z, it is not in disjunctive normal form, since each term does not contain all of the
symbols x1, x2, and x3. However, this is easily remedied, as follows:

(x1 ∧ x3) ∨ (x2 ∧ x3) = (x1 ∧ x3 ∧ 1) ∨ (x2 ∧ x3 ∧ 1)

= (x1 ∧ x3 ∧ (x2 ∨ x2)) ∨ (x2 ∧ x3 ∧ (x1 ∨ x1))

= (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3).

This expression is the disjunctive normal form of f .
Theorem 4.6 has a dual. In this case the function f is expressed as

f(x1, . . . , xn) = M1 ∧M2 ∧ · · · ∧Mk. (4.7)

Each Mi is of the form

y1 ∨ · · · ∨ yn, (4.8)

where yj is either xj or xj . A term of the form (4.8) is called a maxterm and the
representation off (4.7) is called the conjunctive normal form. Exercises 24–28 explore
maxterms and the conjunctive normal form in more detail.

645

Boolean Algebras and Combinatorial Circuits

Section Review Exercises

1. Define exclusive-OR.

2. What is a Boolean function?

3. What is a minterm?

4. What is the disjunctive normal form of a Boolean function?

5. How can one obtain the disjunctive normal form of a Boolean
function?

6. What is a maxterm?

7. What is the conjunctive normal form of a Boolean function?

Exercises

In Exercises 1–10, find the disjunctive normal form of each function
and draw the combinatorial circuit corresponding to the disjunctive
normal form.

1.
x y f(x, y)

1 1 1
1 0 0
0 1 1
0 0 1

2.
x y f(x, y)

1 1 0
1 0 1
0 1 0
0 0 1

3.
x y z f(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

4.
x y z f(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0

5.
x y z f(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

6.
x y z f(x, y, z)

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

7.
x y z f(x, y, z)

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

8.
x y z f(x, y, z)

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

646

Boolean Algebras and Combinatorial Circuits

9.
w x y z f(w, x, y, z)

1 1 1 1 1
1 1 1 0 0
1 1 0 1 1
1 1 0 0 0
1 0 1 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 1 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 0
0 0 1 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

10.
w x y z f(w, x, y, z)

1 1 1 1 0
1 1 1 0 0
1 1 0 1 1
1 1 0 0 1
1 0 1 1 1
1 0 1 0 1
1 0 0 1 0
1 0 0 0 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

In Exercises 11–20, find the disjunctive normal form of each func-
tion using algebraic techniques. (We abbreviate a ∧ b as ab.)

11. f(x, y) = x ∨ xy 12. f(x, y) = (x ∨ y)(x ∨ y)

13. f(x, y, z) = x ∨ y(x ∨ z)

14. f(x, y, z) = (yz ∨ xz)(xy ∨ z)

15. f(x, y, z) = (xy ∨ xz)(x ∨ yz)

16. f(x, y, z) = x ∨ (y ∨ (xy ∨ xz))

17. f(x, y, z) = (x ∨ xy ∨ xyz)(xy ∨ xz)(y ∨ xyz)

18. f(x, y, z) = (xy ∨ xz)(xyz ∨ yz)(xyz ∨ xy ∨ xyz ∨ xyz)

19. f(w, x, y, z) = wy ∨ (wy ∨ z)(x ∨ wz)

20. f(w, x, y, z) = (wxyz ∨ xy z)(wyz ∨ xyz ∨ yxz)(wz ∨ xy ∨
w yz ∨ xyz ∨ xyz)

21. How many Boolean functions are there from Zn
2 into Z2?

Let F denote the set of all functions from Zn
2 into Z2. Define

(f ∨ g)(x) = f(x) ∨ g(x) x ∈ Zn
2

(f ∧ g)(x) = f(x) ∧ g(x) x ∈ Zn
2

f (x) = f(x) x ∈ Zn
2

0(x) = 0 x ∈ Zn
2

1(x) = 1 x ∈ Zn
2 .

22. How many elements does F have?

23. Show that (F,∨,∧, , 0, 1) is a Boolean algebra.

24. By dualizing the procedure of Example 4.4, explain how to
find the conjunctive normal form of a Boolean function from
Zn

2 into Z2.

25. Find the conjunctive normal form of each function in Exer-
cises 1–10.

26. By using algebraic methods, find the conjunctive normal form
of each function in Exercises 11–20.

27. Show that if m1 ∨ · · · ∨mk is the disjunctive normal form of
f(x1, . . . , xn), then m1 ∧ · · · ∧ mk is the conjunctive normal
form of f(x1, . . . , xn).

28. Using the method of Exercise 27, find the conjunctive normal
form of f for each function f of Exercises 1–10.

29. Show that the disjunctive normal form (4.5) is unique; that is,
show that if we have a Boolean function

f(x1, . . . , xn) = m1 ∨ · · · ∨mk = m′1 ∨ · · · ∨m′j,

where each mi, m
′
i is a minterm, then k = j and the subscripts

on the m′i may be permuted so that mi = m′i for i = 1, . . . , k.

5 ➜ Applications

In the preceding section we showed how to design a combinatorial circuit using AND,
OR, and NOT gates that would compute an arbitrary function from Zn

2 into Z2, where
Z2 = {0, 1}. In this section we consider using other kinds of gates to implement a circuit.
We also consider the problem of efficient design. We will conclude by looking at several
useful circuits having multiple outputs. Throughout this section, we write ab for a ∧ b.

Before considering alternatives to AND, OR, and NOT gates, we must give a
precise definition of “gate.”

647

Boolean Algebras and Combinatorial Circuits

Definition 5.1 A gate is a function from Zn
2 into Z2.

Example 5.2 The AND gate is the function ∧ from Z2
2 into Z2 defined as in Definition 1.1. The NOT

gate is the function from Z2 into Z2 defined as in Definition 1.3.

We are interested in gates that allow us to construct arbitrary combinatorial
circuits.

Definition 5.3 A set of gates {g1, . . . , gk} is said to be functionally complete if, given any positive
integer n and a function f from Zn

2 into Z2, it is possible to construct a combinatorial
circuit that computes f using only the gates g1, . . . , gk.

Example 5.4 Theorem 4.6 shows that the set of gates {AND, OR, NOT} is functionally complete.

It is an interesting fact that we can eliminate either AND or OR from the set {AND,
OR, NOT} and still obtain a functionally complete set of gates.

Theorem 5.5 The sets of gates

{AND, NOT} {OR, NOT}

are functionally complete.

Proof We will show that the set of gates {AND, NOT} is functionally complete
and leave the problem of showing that the other set is functionally complete for the
exercises (see Exercise 1).

We have

x ∨ y = x ∨ y involution law

= x y De Morgan’s law.

Therefore, an OR gate can be replaced by one AND gate and three NOT gates. (The
combinatorial circuit is shown in Figure 5.1.)

x y
x

y

Figure 5.1 A combinatorial circuit using only
AND and NOT gates that computes x ∨ y.

Given any function f : Zn
2 → Z2, by Theorem 4.6 we can construct a combi-

natorial circuit C using AND, OR, and NOT gates that computes f . But Figure 5.1
shows that each OR gate can be replaced by AND and NOT gates. Therefore, the
circuit C can be modified so that it consists only of AND and NOT gates. Thus the
set of gates {AND, NOT} is functionally complete.

648

Boolean Algebras and Combinatorial Circuits

Although none of AND, OR, or NOT singly forms a functionally complete set
(see Exercises 2–4), it is possible to define a new gate that by itself forms a functionally
complete set.

Definition 5.6 A NAND gate receives inputs x1 and x2, where x1 and x2 are bits, and produces output
denoted x1 ↑ x2, where

x1 ↑ x2 =
{

0 if x1 = 1 and x2 = 1

1 otherwise.

A NAND gate is drawn as shown in Figure 5.2.

x1

x2
x1 x2

Figure 5.2 NAND gate.

Many basic circuits used in digital computers today are built from NAND gates.

Theorem 5.7 The set {NAND} is a functionally complete set of gates.

Proof First we observe that

x ↑ y = xy.

Therefore,

x = xx = x ↑ x (5.1)

x ∨ y = x y = x ↑ y = (x ↑ x) ↑ (y ↑ y). (5.2)

Equations (5.1) and (5.2) show that both OR and NOT can be written in terms of
NAND. By Theorem 5.5, the set {OR, NOT} is functionally complete. It follows that
the set {NAND} is also functionally complete.

Example 5.8 Design combinatorial circuits using NAND gates to compute the functions f1(x) = x

and f2(x, y) = x ∨ y.

The combinatorial circuits, derived from equations (5.1) and (5.2), are shown in
Figure 5.3.

x
x

x y

x

y

Figure 5.3 Combinatorial circuits using
only NAND gates that compute x and
x ∨ y.

Consider the problem of designing a combinatorial circuit using AND, OR, and
NOT gates to compute the function f .

649

Boolean Algebras and Combinatorial Circuits

x y z f(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

The disjunctive normal form of f is

f(x, y, z) = xyz ∨ xyz ∨ xy z. (5.3)

The combinatorial circuit corresponding to (5.3) is shown in Figure 5.4.

x

y

z

Figure 5.4 A combinatorial circuit that computes f(x, y, z) = xyz∨ xyz∨ xy z.

The circuit in Figure 5.4 has nine gates. As we will show, it is possible to design
a circuit having fewer gates. The problem of finding the best circuit is called the mini-
mization problem. There are many definitions of “best.”

To find a simpler combinatorial circuit equivalent to that in Figure 5.4, we attempt
to simplify the Boolean expression (5.3) that represents it. The equations

Ea ∨ Ea = E (5.4)

E = E ∨ Ea, (5.5)

where E represents an arbitrary Boolean expression, are useful in simplifying Boolean
expressions.

Equation (5.4) may be derived as follows:

Ea ∨ Ea = E(a ∨ a) = E1 = E

using the properties of Boolean algebras. Equation (5.5) is essentially the absorption law
[Theorem 3.6(c)].

Using (5.4) and (5.5), we may simplify (5.3) as follows:

xyz ∨ xyz ∨ xy z = xy ∨ xy z by (5.4)

= xy ∨ xyz ∨ xy z by (5.5)

= xy ∨ xz. by (5.4).

650

Boolean Algebras and Combinatorial Circuits

A further simplification,

xy ∨ xz = x(y ∨ z), (5.6)

is possible using the distributive law [Definition 3.1(c)]. The combinatorial circuit cor-
responding to (5.6), which requires only three gates, is shown in Figure 5.5.

x

z

y

Figure 5.5 A three-gate combinatorial
circuit equivalent to that of Figure 5.4.

Example 5.9 The combinatorial circuit in Figure 4.1 uses five AND, OR, and NOT gates to compute
the exclusive-OR x ⊕ y of x and y. Design a circuit that computes x ⊕ y using fewer
AND, OR, and NOT gates.

Unfortunately, (5.4) and (5.5) do not help us simplify the disjunctive normal form
xy∨xy of x⊕y. Thus we must experiment with various Boolean rules until we produce an
expression that requires fewer than five gates. One solution is provided by the expression

(x ∨ y)xy

whose implementation requires only four gates. This combinatorial circuit is shown in
Figure 5.6.

x

y
x y

Figure 5.6 A four-gate combinatorial circuit that
computes the exclusive-OR x⊕ y of x and y.

The set of gates available determines the minimization problem. Since the state of
technology determines the available gates, the minimization problem changes through
time. In the 1950s, the typical problem was to minimize circuits consisting of AND,
OR, and NOT gates. Solutions such as the Quine–McCluskey method and the method
of Karnaugh maps were provided. The reader is referred to [Mendelson] for the details
of these methods.

Advances in solid-state technology have made it possible to manufacture very
small components, called integrated circuits, which are themselves entire circuits. Thus
circuit design today consists of combining basic gates such as AND, OR, NOT, and
NAND gates and integrated circuits to compute the desired functions. Boolean algebra
remains an essential tool, as a glance at a book on logic design such as [McCalla] will
show.

We conclude this section by considering several useful combinatorial circuits hav-
ing multiple outputs. A circuit with n outputs can be characterized by n Boolean expres-
sions, as the next example shows.

651

Boolean Algebras and Combinatorial Circuits

Example 5.10 Write two Boolean expressions to describe the combinatorial circuit of Figure 5.7.
The output y1 is described by the expression

y1 = ab,

and y2 is described by the expression

y2 = bc ∨ ab.

y2

y1
a

b

c

Figure 5.7 A combinatorial circuit with two
outputs.

Our first circuit is called a half adder.

Definition 5.11 A half adder accepts as input two bits x and y and produces as output the binary sum
cs of x and y. The term cs is a two-bit binary number. We call s the sum bit and c the
carry bit.

Example 5.12 Half-Adder Circuit

Design a half-adder combinatorial circuit.
The table for the half-adder circuit is as follows:

x y c s

1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 0

This function has two outputs, c and s. We observe that c = xy and s = x⊕ y. Thus we
obtain the half-adder circuit of Figure 5.8. We used the circuit of Figure 5.6 to realize
the exclusive-OR.

x

y

c

s

Figure 5.8 A half-adder circuit.

A full adder sums three bits and is useful for adding two bits and a third carry bit
from a previous addition.

Definition 5.13 A full adder accepts as input three bits x, y, and z and produces as output the binary sum
cs of x, y, and z. The term cs is a two-bit binary number.

652

Boolean Algebras and Combinatorial Circuits

Example 5.14 Full-Adder Circuit

Design a full-adder combinatorial circuit.
The table for the full-adder circuit is as follows:

x y z c s

1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

Checking the eight possibilities, we see that

s = x⊕ y ⊕ z;

hence we can use two exclusive-OR circuits to compute s.
To compute c, we first find the disjunctive normal form

c = xyz ∨ xyz ∨ xyz ∨ xyz (5.7)

of c. Next, we use (5.4) and (5.5) to simplify (5.7) as follows:

xyz ∨ xyz ∨ xyz ∨ xyz = xy ∨ xyz ∨ xyz

= xy ∨ xyz ∨ xyz ∨ xyz

= xy ∨ xz ∨ xyz

= xy ∨ xz ∨ xyz ∨ xyz

= xy ∨ xz ∨ yz.

Additional gates can be eliminated by writing

c = xy ∨ z(x ∨ y).

We obtain the full-adder circuit given in Figure 5.9.

x

z

y

c

s

Figure 5.9 A full-adder circuit.

Our last example shows how we may use half-adder and full-adder circuits to
construct a circuit to add binary numbers.

653

Boolean Algebras and Combinatorial Circuits

Example 5.15 A Circuit to Add Binary Numbers

Using half-adder and full-adder circuits, design a combinatorial circuit that computes
the sum of two three-bit numbers.

We will let M = x3x2x1 and N = y3y2y1 denote the numbers to be added and
let z4z3z2z1 denote the sum. The circuit that computes the sum of M and N is drawn in
Figure 5.10. It is an implementation of the standard algorithm for adding numbers since
the “carry bit” is indeed carried into the next binary addition.

x1 z1

y1

x2

z2

y2 z3

x3

y3 z4

s

c s

c s

c

Half
Adder

Full
Adder

Full
Adder

Figure 5.10 A combinatorial circuit that computes
the sum of two three-bit numbers.

If we were using three-bit registers for addition, so that the sum of two three-bit
numbers would have to be no more than three bits, we could use the z4 bit in Example 5.15
as an overflow flag. If z4 = 1, overflow occurred; if z4 = 0, there was no overflow.

Section Review Exercises

1. What is a gate?

2. What is a functionally complete set of gates?

3. Give examples of functionally complete sets of gates.

4. What is a NAND gate?

5. Is the set {NAND} functionally complete?

6. What is the minimization problem?

7. What is an integrated circuit?

8. Describe a half-adder circuit.

9. Describe a full-adder circuit.

Exercises

1. Show that the set of gates {OR, NOT} is functionally complete.

Show that each set of gates in Exercises 2–5 is not functionally
complete.

2. {AND} 3. {OR}
4. {NOT} 5. {AND, OR}
6. Draw a circuit using only NAND gates that computes xy.

7. Write xy using only ↑.

8. Prove or disprove: x ↑ (y ↑ z) = (x ↑ y) ↑ z, for all
x, y, z ∈ Z2.

Write Boolean expressions to describe the multiple output circuits
in Exercises 9–11.

9.

y1

y2

x1

x2

x3

654

Boolean Algebras and Combinatorial Circuits

10.
y1

y2

y3

x1

x2

x3

11.

y1

y2

y3

y4

x1

x2

x3

x4

12. Design circuits using only NAND gates to compute the func-
tions of Exercises 1–10, Section 4.

13. Can you reduce the number of NAND gates used in any of
your circuits for Exercise 12?

14. Design circuits using as few AND, OR, and NOT gates as you
can to compute the functions of Exercises 1–10, Section 4.

15. Design a half-adder circuit using only NAND gates.

�16. Design a half-adder circuit using five NAND gates.

A NOR gate receives inputs x1 and x2, where x1 and x2 are bits,
and produces output denoted x1 ↓ x2, where

x1 ↓ x2 =
{

0 if x1 = 1 or x2 = 1
1 otherwise.

17. Write xy, x ∨ y, x, and x ↑ y in terms of ↓.

18. Write x ↓ y in terms of ↑.

19. Write the logic table for the NOR function.

20. Show that the set of gates {NOR} is functionally complete.

21. Design circuits using only NOR gates to compute the functions
of Exercises 1–10, Section 4.

22. Can you reduce the number of NOR gates used in any of your
circuits for Exercise 21?

23. Design a half-adder circuit using only NOR gates.

�24. Design a half-adder circuit using five NOR gates.

25. Design a circuit with three inputs that outputs 1 precisely when
two or three inputs have value 1.

26. Design a circuit that multiplies the binary numbers x2x1 and
y2y1. The output will be of the form z4z3z2z1.

27. A 2’s module is a circuit that accepts as input two bits b and
FLAGIN and outputs bits c and FLAGOUT. If FLAGIN = 1,
then c = b and FLAGOUT = 1. If FLAGIN = 0 and b = 1,
then FLAGOUT = 1. If FLAGIN = 0 and b = 0, then
FLAGOUT= 0. If FLAGIN= 0, then c = b. Design a circuit
to implement a 2’s module.

The 2’s complement of a binary number can be computed by using
the following algorithm.

Algorithm 5.16
Finding the 2’s Complement
This algorithm computes the 2’s complement CNCN−1 · · ·
C2C1 of the binary number M = BNBN−1 · · ·B2B1. The num-
ber M is scanned from right to left and the bits are copied until 1
is found. Thereafter, if Bi = 0, we set Ci = 1 and if Bi = 1, we
set Ci = 0. The flag F indicates whether a 1 has been found (F =
true) or not (F = false).

Input: BNBN−1 · · ·B1

Output: CNCN−1 · · ·C1

twos complement(B) {
F = false
i = 1
while (¬F ∧ i ≤ N) {

Ci = Bi

if (Bi == 1)

F = true
i = i+ 1

}
while (i ≤ N) {

Ci = Bi ⊕ 1
i = i+ 1

}
return C

}

Find the 2’s complement of the numbers in Exercises 28–30 using
Algorithm 5.16.

28. 101100 29. 11011 30. 011010110

31. Using 2’s modules, design a circuit that computes the 2’s com-
plement y3y2y1 of the three-bit binary number x3x2x1.

�32. Let ∗ be a binary operator on a set S containing 0 and 1. Write
a set of axioms for ∗, modeled after rules that NAND satisfies,
so that if we define

x = x ∗ x

x ∨ y = (x ∗ x) ∗ (y ∗ y)

x ∧ y = (x ∗ y) ∗ (x ∗ y),

then (S,∨,∧, , 0, 1) is a Boolean algebra.

�33. Let ∗ be a binary operator on a set S containing 0 and 1. Write
a set of axioms for ∗, modeled after rules that NOR satisfies,
and definitions for ,∨, and ∧ so that (S,∨,∧, , 0, 1) is a
Boolean algebra.

�34. Show that {→} is functionally complete.

�35. Let B(x, y) be a Boolean expression in the variables x and y

that uses only the operator↔.

(a) Show that if B contains an even number of x’s, the values
of B(x, y) and B(x, y) are the same for all x and y.

(b) Show that if B contains an odd number of x’s, the values
of B(x, y) and B(x, y) are the same for all x and y.

(c) Use parts (a) and (b) to show that {↔} is not functionally
complete.

This exercise was contributed by Paul Pluznikov.

655

Boolean Algebras and Combinatorial Circuits

Notes

General references on Boolean algebras are [Hohn; and Mendelson]. [Mendelson] contains
over 150 references on Boolean algebras and combinatorial circuits. Books on logic design
include [Kohavi; McCalla; and Ward].

[Hailperin] gives a technical discussion of Boole’s mathematics. Additional references
are also provided. Boole’s book, The Laws of Thought, has been reprinted (see [Boole]).

Because of our interest in applications of Boolean algebra, most of our discussion was
limited to the Boolean algebra (Z2,∨,∧, , 0, 1). However, versions of most of our results
remain valid for arbitrary, finite Boolean algebras.

Boolean expressions in the symbols x1, . . . , xn over an arbitrary Boolean algebra
(S,+, · , ′, 0, 1) are defined recursively as

■ For each s ∈ S, s is a Boolean expression.
■ x1, . . . , xn are Boolean expressions.

If X1 and X2 are Boolean expressions, so are

(X1), X′1, X1 +X2, X1 · X2.

A Boolean function over S is defined as a function from Sn to S of the form

f(x1, . . . , xn) = X(x1, . . . , xn),

where X is a Boolean expression in the symbols x1, . . . , xn over S. A disjunctive normal form
can be defined for f . Another result is that if X and Y are Boolean expressions over S and

X(x1, . . . , xn) = Y(x1, . . . , xn)

for all xi ∈ S, then Y is derivable from X using the definition (Definition 3.1) of a Boolean
algebra. Other results are that any finite Boolean algebra has 2n elements and that if two
Boolean algebras both have 2n elements they are essentially the same. It follows that any
finite Boolean algebra is essentially Example 3.3, the Boolean algebra of subsets of a finite,
universal set U. The proofs of these results can be found in [Mendelson].

Chapter Review

Section 1
1. Combinatorial circuit
2. Sequential circuit
3. AND gate
4. OR gate
5. NOT gate (inverter)
6. Logic table of a combinatorial circuit
7. Boolean expression
8. Literal

Section 2
9. Properties of ∧,∨, and : associative laws; commutative

laws; distributive laws; identity laws; complement laws (see
Theorem 2.1)

10. Equal Boolean expressions
11. Equivalent combinatorial expressions

12. Combinatorial expressions are equivalent if and only if the
Boolean expressions that represent them are equal.

Section 3
13. Boolean algebra
14. x′: Complement of x

15. Properties of Boolean algebras: Idempotent laws; bound
laws; absorption laws; involution law; 0 and 1 laws;
De Morgan’s laws

16. Dual of statement involving Boolean expressions
17. The dual of a theorem about Boolean algebras is also a

theorem.

Section 4
18. Exclusive-OR
19. Boolean function

656

Boolean Algebras and Combinatorial Circuits

20. Minterm: y1 ∧ y2 ∧ · · · ∧ yn, where each yi is xi or xi

21. Disjunctive normal form
22. How to write a Boolean function in disjunctive normal form

(Theorem 4.6)
23. Maxterm: y1 ∨ y2 ∨ · · · ∨ yn, where each yi is xi or xi

24. Conjunctive normal form

Section 5
25. Gate
26. Functionally complete set of gates

27. The sets of gates {AND, NOT} and {OR, NOT} are func-
tionally complete.

28. NAND gate
29. The set {NAND} is a functionally complete set of gates.
30. Minimization problem
31. Integrated circuit
32. Half-adder circuit
33. Full-adder circuit

Chapter Self-Test

Section 1
1. Write a Boolean expression that represents the combinato-

rial circuit and write the logic table.

x

y

z

2. Find the value of the Boolean expression

(x1 ∧ x2) ∨ (x2 ∧ x3)

if x1 = x2 = 0 and x3 = 1.

3. Find a combinatorial circuit corresponding to the Boolean
expression of Exercise 2.

4. Show that the following circuit is not a combinatorial cir-
cuit.

y

x

Section 2

Are the combinatorial circuits in Exercises 5 and 6 equivalent?
Explain.

5.

x

y

(a) (b)

x

y

6.

(a)

x

z

y

x

y

z

(b)

Prove or disprove the equations in Exercises 7 and 8.

7. (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ y ∧ z) = y ∨ (x ∧ z)

8. (x ∧ y ∧ z) ∨ (x ∨ z) = (x ∧ z) ∨ (x ∧ z)

Section 3
9. If U is a universal set and S = P(U), the power set of U,

then

(S,∪,∩, , ∅, U)

is a Boolean algebra. State the bound and absorption laws
for this Boolean algebra.

10. Prove that in any Boolean algebra, (x · (x+y · 0))′ = x′ for
all x and y.

657

Boolean Algebras and Combinatorial Circuits

11. Write the dual of the statement of Exercise 10 and prove it.

12. Let U be the set of positive integers. Let S be the collection
of finite subsets of U. Why does (S,∪,∩, , ∅, U) fail to
be a Boolean algebra?

Section 4

In Exercises 13–16, find the disjunctive normal form of a Boolean
expression having a logic table the same as the given table and
draw the combinatorial circuit corresponding to the disjunctive
normal form.

13.
x1 x2 x3 y

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

14.
x1 x2 x3 y

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

15.
x1 x2 x3 y

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

16.
x1 x2 x3 y

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

Section 5
17. Write the logic table for the circuit

x

y

z

18. Find a Boolean expression in disjunctive normal form for
the circuit of part (a) of Exercise 6. Use algebraic methods
to simplify the disjunctive normal form. Draw the circuit
corresponding to the simplified expression.

19. Design a circuit using only NAND gates to compute x⊕ y.

20. Design a full-adder circuit that uses two half adders and one
OR gate.

Computer Exercises

1. Write a program that inputs a Boolean expression in x and y

and prints the logic table of the expression.

2. Write a program that inputs a Boolean expression in x, y, and
z and prints the logic table of the expression.

3. Write a program that outputs the disjunctive normal form of
a Boolean expression p(x, y).

4. Write a program that outputs the conjunctive normal form of
a Boolean expression p(x, y).

5. Write a program that outputs the disjunctive normal form of
a Boolean expression p(x, y, z).

6. Write a program that outputs the conjunctive normal form of
a Boolean expression p(x, y, z).

7. Write a program that computes the two’s complement of an
n-bit binary number.

658

Boolean Algebras and Combinatorial Circuits

Hints/Solutions to Selected Exercises

Section 1 Review
1. A combinatorial circuit is a circuit in which the output is

uniquely defined for every combination of inputs.

2. A sequential circuit is a circuit in which the output is a function
of the input and state of the system.

3. AnAND gate receives input x1 and x2, where x1 and x2 are bits,
and produces output 1 if x1 and x2 are both 1, and 0 otherwise.

4. An OR gate receives input x1 and x2, where x1 and x2 are bits,
and produces output 0 if x1 and x2 are both 0, and 1 otherwise.

5. A NOT gate receives input x, where x is a bit, and produces
output 1 if x is 0, and 0 if x is 1.

6. An inverter is a NOT gate.

7. A logic table of a combinatorial circuit lists all possible inputs
together with the resulting outputs.

8. Boolean expressions in the symbols x1, . . . , xn are defined
recursively as follows. 0, 1, x1, . . . , xn are Boolean expres-
sions. If X1 and X2 are Boolean expressions, then (X1), X1,
X1 ∨X2, and X1 ∧X2 are Boolean expressions.

9. A literal is the symbol x or x that appears in a Boolean
expression.

Section 1
1. x1 ∧ x2

x1 x2 x1 ∧ x2

1 1 0
1 0 1
0 1 1
0 0 1

x1

x2

x1 x2 x1 x2

4.

x1 x2 x3 ((x1 ∧ x2) ∨ (x1 ∧ x3)) ∧ x3

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

7. If x = 1, the output y is undetermined: Suppose that x = 1
and y = 0. Then the input to the AND gate is 1, 0. Thus the
output of the AND gate is 0. Since this is then NOTed, y = 1.
Contradiction. Similarly, if x = 1 and y = 1, we obtain a
contradiction.

10. 0

13. 1

16. Is a Boolean expression. x1, x2, and x3 are Boolean expressions
by (1.2). x2 ∨ x3 is a Boolean expression by (1.3c). (x2 ∨ x3)

is a Boolean expression by (1.3a). x1 ∧ (x2 ∨ x3) is a Boolean
expression by (1.3d).

19. Not a Boolean expression

22.

BA

25. (A ∧ B) ∨ (C ∧ A)

A B C (A ∧ B) ∨ (C ∧ A)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

27. (A ∧ (C ∨ (D ∧ C))) ∨ (B ∧ (D ∨ (C ∧ A) ∨ C))

29.

A B (A ∨ B) ∧ A

1 1 1
1 0 1
0 1 0
0 0 0

A

A

B

32.

A

A B C

B C

B C

Section 2 Review
1. (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c)

2. a ∨ b = b ∨ a, a ∧ b = b ∧ a

3. a∧ (b∨ c) = (a∧b)∨ (a∧ c), a∨ (b∧ c) = (a∨b)∧ (a∨ c)

659

Boolean Algebras and Combinatorial Circuits

4. a ∨ 0 = a, a ∧ 1 = a

5. a ∨ a = 1, a ∧ a = 0

6. Boolean expressions are equal if they have the same values for
all possible assignments of bits to the literals.

7. Combinatorial circuits are equivalent if, whenever the circuits
receive the same inputs, they produce the same outputs.

8. Let C1 and C2 be combinatorial circuits represented, respec-
tively, by the Boolean expressions X1 and X2. Then C1 and
C2 are equivalent if and only if X1 = X2.

Section 2
1.

x1 x2 x1 ∧ x2 x1 ∨ x2

1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 1

4.
x1 x2 x3 x1 ∨ (x2 ∨ x3) (x1 ∧ x2) ∨ x3

1 1 1 1 1
1 1 0 0 0
1 0 1 1 1
1 0 0 1 1
0 1 1 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 1 1

6.
x1 x1 ∨ x1

1 1
0 0

9.
x1 x2 x3 x1 ∧ (x2 ∧ x3) (x1 ∧ x2) ∨ (x1 ∧ x3)

1 1 1 0 0
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

11.
x x

1 1
0 0

14. False. Take x1 = 1, x2 = 1, x3 = 0.

16.
a b c a ∨ (b ∧ c) (a ∨ b) ∧ (a ∨ c)

1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

18. The Boolean expressions that represent the circuits are
(A ∧ B) ∨ (A ∧ C) and A ∧ (B ∨ C). The expressions are
equal by Theorem 2.1(c). Therefore, the switching circuits
are equivalent.

21.

A

C D E

B

F

Section 3 Review
1. A Boolean algebra consists of a set S containing distinct ele-

ments 0 and 1, binary operators+ and ·, and a unary operator′
on S satisfying the associative, commutative, distributive,
identity, and complement laws.

2. x+ x = x, xx = x 3. x+ 1 = 1, x0 = 0

4. x+ xy = x, x(x+ y) = x 5. (x′)′ = x

6. 0′ = 1, 1′ = 0

7. (x+ y)′ = x′y′, (xy)′ = x′ + y′

8. The dual of a Boolean expression is obtained by replacing 0
by 1, 1 by 0, + by · , and · by +.

9. The dual of a theorem about Boolean algebras is also a theo-
rem.

Section 3
2. One can show that the Associative and Distributive Laws hold

for lcm and gcd directly. The Commutative Law clearly holds.
To see that the Identity Laws hold, note that

lcm(x, 1) = x and gcd(x, 6) = x.

Since

lcm(x, 6/x) = 6 and gcd(x, 6/x) = 1,

the Complement Laws hold. Therefore, (S,+, ·,′ , 1, 6) is a
Boolean algebra.

4. We show only

x · (x+ z) = (x · y)+ (x · z) for all x, y, z ∈ Sn.

660

Boolean Algebras and Combinatorial Circuits

Now

x · (y + z) = min{x, max{y, z}}
(x · y)+ (x · z) = max{min{x, y}, min{x, z}}.

We assume that y ≤ z. (The argument is similar if y > z.)
There are three cases to consider: x < y; y ≤ x ≤ z; and
z < x.

If x < y, we obtain

x · (y + z) = min{x, max{y, z}}
= min{x, z} = x = max{x, x}
= max{min{x, y}, min{x, z}}
= (x · y)+ (x · z).

If y ≤ x ≤ z, we obtain

x · (y + z) = min{x, max{y, z}}
= min{x, z} = x = max{y, x}
= max{min{x, y}, min{x, z}}
= (x · y)+ (x · z).

If z < x, we obtain

x · (y + z) = min{x, max{y, z}}
= min{x, z} = z = max{y, z}
= max{min{x, y}, min{x, z}}
= (x · y)+ (x · z).

7. If X ∪ Y = U and X ∩ Y = ∅, then Y = X.

8. xy + x0 = x(x+ y)y

11. x+ y′ = 1 if and only if x+ y = x.

14. x(x+ y0) = x

15. (For Exercise 12)

0 = x+ y = (x+ x)+ y

= x+ (x+ y) = x+ 0 = x

Similarly, y = 0.

18. [For part (c)]

x(x+ y) = (x+ 0)(x+ y)

= x+ 0y = x+ y0 = x+ 0 = x

21. First, show that if ba = ca and ba′ = ca′, then b = c. Now
take a = x, b = x+ (y+ z), and c = (x+ y)+ z and use this
result.

23. If the prime p divides n, p2 does not divide n.

Section 4 Review
1. The exclusive-OR of x1 and x2 is 0 if x1 = x2, and 1 otherwise.

2. A Boolean function is a function of the form

f(x1, . . . , xn) = X(x1, . . . , xn),

where X is a Boolean expression.

3. A minterm is a Boolean expression of the form

y1 ∧ y2 ∧ · · · ∧ yn,

where each yi is either xi or xi.

4. The disjunctive normal form of a not identically zero Boolean
function f is

f(x1, . . . , xn) = m1 ∨m2 ∨ · · · ∨mk,

where each mi is a minterm.

5. Let A1, . . . , Ak denote the elements Ai of Zn
2 for which

f(Ai) = 1. For each Ai = (a1, . . . , an), set mi = y1∧· · ·∧yn,
where yj = xj if aj = 1, and yj = xj if aj = 0. Then

f(x1, . . . , xn) = m1 ∨m2 ∨ · · · ∨mk.

6. A maxterm is a Boolean expression of the form

y1 ∨ y2 ∨ · · · ∨ yn,

where each yi is either xi or xi.

7. The conjunctive normal form of a not identically one Boolean
function f is

f(x1, . . . , xn) = m1 ∧m2 ∧ · · · ∧mk,

where each mi is a maxterm.

Section 4
In these hints, a ∧ b is written ab.

1. xy ∨ xy ∨ x y

4. xyz ∨ xyz ∨ xy z ∨ xyz ∨ xyz

7. xyz ∨ xy z ∨ x y z

10. wxyz ∨ wxy z ∨ wxyz ∨ wxyz ∨ wx y z

∨ wxyz ∨ wxyz ∨ wxy z ∨ w xyz ∨ w x y z

11. xy ∨ xy 14. xyz

17. xyz ∨ xyz ∨ xyz ∨ xyz 20. 0

22. 22n

25. (For Exercise 3)

(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)

28. (For Exercise 3)

(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)

Section 5 Review
1. A gate is a function from Zn

2 into Z2.

2. A set of gates G is functionally complete if, given any positive
integer n and a function f from Zn

2 into Z2, it is possible to
construct a combinatorial circuit that computes f using only
the gates in G.

3. {AND, OR, NOT}
4. A NAND gate receives input x1 and x2, where x1 and x2 are

bits, and produces output 0 if x1 and x2 are both 1, and 1
otherwise.

661

Boolean Algebras and Combinatorial Circuits

5. Yes

6. The problem of finding the best circuit

7. Small components that are themselves entire circuits

8. See Figure 5.8.

9. See Figure 5.9.

Section 5
1. AND can be expressed in terms of OR and NOT: xy = x ∨ y.

2. A combinatorial circuit consisting only of AND gates would
always output 0 when all inputs are 0.

5. We use induction on n to show that there is no n-gate com-
binatorial circuit consisting of only AND and OR gates that
computes f(x) = x.

If n = 0, the input x equals the output x, and so it is
impossible for a 0-gate circuit to compute f . The Basis Step
is proved.

Suppose that there is no n-gate combinatorial circuit
consisting of only AND and OR gates that computes f . Con-
sider an (n+ 1)-gate combinatorial circuit consisting of only
AND and OR gates. The input x first arrives at either an AND
or an OR gate. Suppose that x first arrives at an AND gate.
(The argument is similar if x first arrives at an OR gate and
is omitted.) Because the circuit is a combinatorial circuit, the
other input to the AND gate is either x itself, the constant 1,
or the constant 0. If both inputs to the AND gate are x itself,
then the output of the AND gate is equal to the input. In this
case, the behavior of the circuit is unchanged if we remove
the AND gate and connect x to what was the output line of
the AND gate. But we now have an equivalent n-gate circuit,
which, by the inductive hypothesis, cannot compute f . Thus
the (n+ 1)-gate circuit cannot compute f .

If the other input to the AND gate is the constant 1, the
output of the AND gate is again equal to the input and we can
argue as in the previous case that the (n+1)-gate circuit cannot
compute f .

If the other input to the AND gate is the constant 0, the
AND gate always outputs 0 and, so, changing the value of x

does not affect the output of the circuit. In this case, the circuit
cannot compute f . The Inductive Step is complete. Therefore,
no n-gate combinatorial circuit consisting of only AND and
OR gates can compute f(x) = x. Thus {AND, OR} is not
functionally complete.

6.

x

y

9. y1 = x1x2 ∨ (x2 ∨ x3); y2 = x2 ∨ x3

12. (For Exercise 3) The dnf may be simplified to xy ∨ xz ∨ x y

and then rewritten as x(y ∨ z) ∨ x y = (xyz) ∨ x y = xyz x y,
which gives the circuit

x

y

z

15.
x

y

s

c

17. xy = (x ↓ x) ↓ (y ↓ y)

x ∨ y = (x ↓ y) ↓ (x ↓ y) x = x ↓ x

x ↑ y = [(x ↓ x) ↓ (y ↓ y)] ↓ [(x ↓ x) ↓ (y ↓ y)]

20. Since

x = x ↓ x, x ∨ y = (x ↓ y) ↓ (x ↓ y),

and {NOT, OR} is functionally complete, {NOR} is function-
ally complete.

23.

x

y

s

c

25. The logic table is

x y z Output

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

662

Boolean Algebras and Combinatorial Circuits

27. The logic table is

b FLAGIN c FLAGOUT

1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0

Thus c = b⊕ FLAGIN and FLAGOUT = b ∨ FLAGIN. We
obtain the circuit

b

c

FLAGIN

FLAGOUT

28. 010100

31.

2's
b

c

2's
b

c

2's
b

c

FLAGIN
FLAGOUT/FLAGIN

FLAGOUT/FLAGIN

0 y1

x1
y2

x2
y3

x3

module

module

module

34. Writing the truth tables shows that

x = x→ 0, x ∨ y = (x→ 0)→ y.

Therefore a NOT gate can be replaced by one→ gate, and an
OR gate can be replaced by two→ gates. Since the set {NOT,
OR} is functionally complete, it follows that the set {→} is
functionally complete.

Chapter Self-Test
1.

x y z (x ∧ y) ∨ z

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

2. 1

3.
x1

x2

x3

4. Suppose that x is 1. Then the upper input to the OR gate is 0.
If y is 1, then the lower input to the OR gate is 0. Since both
inputs to the OR gate are 0, the output y of the OR gate is 0,
which is impossible. If y is 0, then the lower input to the OR
gate is 1. Since an input to the OR gate is 1, the output y of
the OR gate is 1, which is impossible. Therefore, if the input
to the circuit is 1, the output is not uniquely determined. Thus
the circuit is not a combinatorial circuit.

5. The circuits are equivalent. The logic table for either circuit is

x y Output

1 1 0
1 0 1
0 1 0
0 0 0

6. The circuits are not equivalent. If x = 0, y = 1, and z = 0,
the output of circuit (a) is 1, but the output of circuit (b) is 0.

7. The equation is true. The logic table for either expression is

x y z Value

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

8. The equation is false. If x = 1, y = 0, and z = 1, then

(x ∧ y ∧ z) ∨ (x ∨ z) = 0,

but

(x ∧ z) ∨ (x ∧ z) = 1.

9. Bound laws:

X ∪ U = U, X ∩∅ = ∅ for all X ∈ S.

Absorption laws:

X ∪ (X ∩ Y) = X, X ∩ (X ∪ Y) = X for all X, Y ∈ S.

663

Boolean Algebras and Combinatorial Circuits

10. (x(x+ y · 0))′ = (x(x+ 0))′ (Bound law)

= (x · x)′ (Identity law)

= x′ (Idempotent law)

11. Dual: (x+ x(y + 1))′ = x′

(x+ x(y + 1))′ = (x+ x · 1)′ (Bound law)

= (x+ x)′ (Identity law)

= x′ (Idempotent law)

12. is not a unary operator on S. For example, {1, 2} /∈ S.

In Exercises 13–16, a ∧ b is written ab.

13. x1x2x3

x1

x2

x3

14. x1x2x3 ∨ x1x2x3

x1

x2

x3

15. x1x2x3 ∨ x1x2x3 ∨ x1x2x3

x1

x2

x3

16. x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3

17.

x y z Output

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

18. Disjunctive normal form: xyz ∨ xy z ∨ xyz ∨ x y z

(xyz ∨ xy z) ∨ xyz ∨ x y z = xy ∨ (xyz ∨ x y z)

= xy ∨ x z

x

y

z

19. x

y

x⊕ y

20.
x

y

z

Half
adder Half

adder

c�

s� c��

s��

c

s

664

Automata,
Grammars,
and Languages

1 Sequential Circuits and
Finite-State Machines

2 Finite-State Automata
3 Languages and Grammars
4 Nondeterministic

Finite-State Automata
5 Relationships Between

Languages and Automata
Notes
Chapter Review
Chapter Self-Test
Computer Exercises
Hints/Solutions to
Selected Exercises

Actually, I’ve always had a rather extensive vocabulary,
not to mention a phenomenal grasp of grammar and a
superlative command of syntax. I simply chose not to
employ them.

FROM THE LITTLE RASCALS

Consider combinatorial circuits in which the output depended only on the input. These
circuits have no memory. In this chapter we begin by discussing circuits in which the
output depends not only on the input but also on the state of the system at the time the
input is introduced. The state of the system is determined by previous processing. In this
sense, these circuits have memory. Such circuits are called sequential circuits and are
obviously important in computer design.

Finite-state machines are abstract models of machines with a primitive internal
memory. A finite-state automaton is a special kind of finite-state machine that is closely
linked to a particular type of language. In the latter part of this chapter, we will discuss
finite-state machines, finite-state automata, and languages in some detail.

1 ➜ Sequential Circuits and Finite-State Machines

Operations within a digital computer are carried out at discrete intervals of time. Output
depends on the state of the system as well as on the input. We will assume that the state
of the system changes only at time t = 0, 1, A simple way to introduce sequencing
in circuits is to introduce a unit time delay.

Definition 1.1 A unit time delay accepts as input a bit xt at time t and outputs xt−1, the bit received as
input at time t − 1. The unit time delay is drawn as shown in Figure 1.1.

Delayxt xt � 1

Figure 1.1 Unit time delay.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

665

Automata, Grammars, and Languages

As an example of the use of the unit time delay, we discuss the serial adder.

Definition 1.2 A serial adder accepts as input two binary numbers

x = 0xNxN−1 · · · x0 and y = 0yNyN−1 · · · y0

and outputs the sum zN+1zN · · · z0 of x and y. The numbers x and y are input sequentially
in pairs, x0, y0; . . . ; xN, yN; 0, 0. The sum is output z0, z1, . . . , zN+1.

yt

Delay

Full
xt zt

st

ct
adderct �1

i

Figure 1.2 A serial-adder
circuit.

Example 1.3 Serial-Adder Circuit

A circuit, using a unit time delay, that implements a serial adder is shown in Figure 1.2.
Let us show how the serial adder computes the sum of

x = 010 and y = 011.

We begin by setting x0 = 0 and y0 = 1. (We assume that at this instant i = 0. This can
be arranged by first setting x = y = 0.) The state of the system is shown in Figure 1.3(a).
Next, we set x1 = y1 = 1. The unit time delay sends i = 0 as the third bit to the full
adder. The state of the system is shown in Figure 1.3(b). Finally, we set x2 = y2 = 0.
This time the unit time delay sends i = 1 as the third bit to the full adder. The state of
the system is shown in Figure 1.3(c). We obtain the sum z = 101.

x0 = 0

Delay

Full

0adder
y0 = 1

i = 0

z0 = 1

(a)

x1 = 1

Delay

Full

1adder
y1 = 1

i = 0

z1 = 0

(b)

x2 = 0

Delay

Full

0adder
y2 = 0

i = 1

z2 = 1

(c)

Figure 1.3 Computing 010+ 011 with the serial-adder circuit.

A finite-state machine is an abstract model of a machine with a primitive internal
memory.

Definition 1.4 A finite-state machine M consists of

(a) A finite set I of input symbols.

(b) A finite set O of output symbols.

(c) A finite set S of states.

(d) A next-state function f from S × I into S.

(e) An output function g from S × I into O.

(f) An initial state σ ∈ S.

We write M = (I, O, S, f, g, σ).

Example 1.5 Let I = {a, b}, O = {0, 1}, and S = {σ0, σ1}. Define the pair of functions f : S×I → S
and g: S × I → O by the rules given in Table 1.1.

666

Automata, Grammars, and Languages

TABLE 1.1 ■

f g

I a b a b

S
σ0 σ0 σ1 0 1
σ1 σ1 σ1 1 0

Then M = (I, O, S, f, g, σ0) is a finite-state machine.
Table 1.1 is interpreted to mean

f(σ0, a) = σ0 g(σ0, a) = 0,

f(σ0, b) = σ1 g(σ0, b) = 1,

f(σ1, a) = σ1 g(σ1, a) = 1,

f(σ1, b) = σ1 g(σ1, b) = 0.

The next-state and output functions can also be defined by a transition diagram.
Before formally defining a transition diagram, we will illustrate how a transition diagram
is constructed.

Example 1.6 Draw the transition diagram for the finite-state machine of Example 1.5.
The transition diagram is a digraph. The vertices are the states (see Figure 1.4).

The initial state is indicated by an arrow as shown. If we are in state σ and inputting
i causes output o and moves us to state σ ′, we draw a directed edge from vertex σ to
vertex σ ′ and label it i/o. For example, if we are in state σ0, and we input a, Table 1.1
tells us that we output 0 and remain in state σ0. Thus we draw a directed loop on vertex
σ0 and label it a/0 (see Figure 1.4). On the other hand, if we are in state σ0 and we input
b, we output 1 and move to state σ1. Thus we draw a directed edge from σ0 to σ1 and
label it b/1. By considering all such possibilities, we obtain the transition diagram of
Figure 1.4.

a/0 a/1

b/0

b/1
0 1

Figure 1.4 A transition diagram.

Definition 1.7 Let M = (I, O, S, f, g, σ) be a finite-state machine. The transition diagram of M is a
digraph G whose vertices are the members of S. An arrow designates the initial state σ.
A directed edge (σ1, σ2) exists in G if there exists an input i with f(σ1, i) = σ2. In this
case, if g(σ1, i) = o, the edge (σ1, σ2) is labeled i/o.

We can regard the finite-state machine M = (I, O, S, f, g, σ) as a simple com-
puter. We begin in state σ, input a string over I, and produce a string of output.

Definition 1.8 Let M = (I, O, S, f, g, σ) be a finite-state machine. An input string for M is a string
over I. The string

y1 · · · yn

is the output string for M corresponding to the input string

α = x1 · · · xn

667

Automata, Grammars, and Languages

if there exist states σ0, . . . , σn ∈ S with

σ0 = σ

σi = f(σi−1, xi) for i = 1, . . . , n;
yi = g(σi−1, xi) for i = 1, . . . , n.

Example 1.9 Find the output string corresponding to the input string

aababba (1.1)

for the finite-state machine of Example 1.5.
Initially, we are in state σ0. The first symbol input is a. We locate the outgoing

edge in the transition diagram of M (Figure 1.4) from σ0 labeled a/x, which tells us that
if a is input, x is output. In our case, 0 is output. The edge points to the next state, σ0.
Next, a is input again. As before, we output 0 and remain in state σ0. Next, b is input.
In this case, we output 1 and change to state σ1. Continuing in this way, we find that the
output string is

0011001. (1.2)

Example 1.10 A Serial-Adder Finite-State Machine

Design a finite-state machine that performs serial addition.
We will represent the finite-state machine by its transition diagram.
Since the serial adder accepts pairs of bits, the input set will be

{00, 01, 10, 11}.

The output set is

{0, 1}.
Given an input xy, we take one of two actions: Either we add x and y, or we add x, y,
and 1, depending on whether the carry bit was 0 or 1. Thus there are two states, which we
will call C (carry) and NC (no carry). The initial state is NC. At this point, we can draw
the vertices and designate the initial state in our transition diagram (see Figure 1.5).

Next, we consider the possible inputs at each vertex. For example, if 00 is input
to NC, we should output 0 and remain in state NC. Thus NC has a loop labeled 00/0. As
another example, if 11 is input to C, we compute 1+ 1+ 1 = 11. In this case we output
1 and remain in state C. Thus C has a loop labeled 11/1. As a final example, if we are
in state NC and 11 is input, we should output 0 and move to state C. By considering all
possibilities, we arrive at the transition diagram of Figure 1.6.

NC C

Figure 1.5 Two states for the
serial-adder finite-state
machine.

00/0 01/1

10/1 11/1

10/0

01/0

11/0

00/1

CNC

Figure 1.6 A finite-state machine that
performs serial addition.

668

Automata, Grammars, and Languages

Example 1.11 The SR Flip-Flop

A flip-flop is a basic component of digital circuits since it serves as a one-bit memory
cell. The SR flip-flop (or set-reset flip-flop) can be defined by the table

S R Q

1 1 Not allowed
1 0 1
0 1 0

0 0
{

1 if S was last equal to 1
0 if R was last equal to 1

The SR flip-flop “remembers” whether S or R was last equal to 1. (If Q = 1, S was last
equal to 1; if Q = 0, R was last equal to 1.) We can model the SR flip-flop as a finite-state
machine by defining two states: “S was last equal to 1” and “R was last equal to 1” (see
Figure 1.7). We define the input to be the new values of S and R; the notation sr means
that S = s and R = r. We define Q to be the output. We have arbitrarily designated
the initial state as “S was last equal to 1.” A sequential circuit implementation of the SR
flip-flop is shown in Figure 1.8.

00/1

S was last equal to 1

10/1 00/0

R was last equal to 1

01/1

01/0

10/1

Figure 1.7 The SR flip-flop as a finite-state machine.

Q

S

R

Figure 1.8 A sequential circuit implementation of the
SR flip-flop.

Section Review Exercises

†1. What is a unit time delay?

2. What is a serial adder?

3. Define finite-state machine.

4. What is a transition diagram?

5. What is the SR flip-flop?

Exercises

In Exercises 1–5, draw the transition diagram of the finite-state
machine (I, O, S, f, g, σ0).

1. I = {a, b}, O = {0, 1}, S = {σ0, σ1}

f g

I a b a b

S
σ0 σ1 σ1 1 1
σ1 σ0 σ1 0 1

2. I = {a, b}, O = {0, 1}, S = {σ0, σ1}

f g

I a b a b

S
σ0 σ1 σ0 0 0
σ1 σ0 σ0 1 1

†Exercise numbers in color indicate that a hint or solution appears at the end of this chapter.

669

Automata, Grammars, and Languages

3. I = {a, b}, O = {0, 1}, S = {σ0, σ1, σ2}

f g

I a b a b

S
σ0 σ1 σ1 0 1
σ1 σ2 σ1 1 1
σ2 σ0 σ0 0 0

4. I = {a, b, c}, O = {0, 1}, S = {σ0, σ1, σ2}

f g

I a b c a b c

S
σ0 σ0 σ1 σ2 0 1 0
σ1 σ1 σ1 σ0 1 1 1
σ2 σ2 σ1 σ0 1 0 0

5. I = {a, b, c}, O = {0, 1, 2}, S = {σ0, σ1, σ2, σ3}

f g

I a b c a b c

S
σ0 σ1 σ0 σ2 1 1 2
σ1 σ0 σ2 σ2 2 0 0
σ2 σ3 σ3 σ0 1 0 1
σ3 σ1 σ1 σ0 2 0 2

In Exercises 6–10, find the sets I, O, and S, the initial state, and
the table defining the next-state and output functions for each finite-
state machine.

6. b/1 a/1

b/1a/0
0 1

7.

A

a/0

a/1

b/1

a/0

C

b/1b/0

B

8.

b/2

b/1

a/2

a/0

b/1

a/0

0 1

2

9.

b/1

a/0

a/1

b/0
a/0

b/0
b/0 a/0

0 1

2 3

10.

c/2

a/1

a/2

b/0

Cb/1

B

D

a/0 b/0 c/0

c/0

b/2

c/2

A

a/2

In Exercises 11–20, find the output string for the given input string
and finite-state machine.

11. abba; Exercise 1

12. abba; Exercise 2

13. aabbaba; Exercise 3

14. aabbcc; Exercise 4

15. aabaab; Exercise 5

16. aaa; Exercise 6

17. aabbabaab; Exercise 7

18. baaba; Exercise 8

19. bbababbabaaa; Exercise 9

20. cacbccbaabac; Exercise 10

670

Automata, Grammars, and Languages

In Exercises 21–26, design a finite-state machine having the given
properties. The input is always a bit string.

21. Outputs 1 if an even number of 1’s have been input; otherwise,
outputs 0

22. Outputs 1 if k 1’s have been input, where k is a multiple of 3;
otherwise, outputs 0

23. Outputs 1 if two or more 1’s are input; otherwise, outputs 0

24. Outputs 1 whenever it sees 101; otherwise, outputs 0

25. Outputs 1 when it sees 101 and thereafter; otherwise, outputs 0

26. Outputs 1 when it sees the first 0 and until it sees another 0;
thereafter, outputs 0; in all other cases, outputs 0

27. Let α = x1 · · · xn be a bit string. Let β = y1 · · · yn, where

yi =
{

a if xi = 0
b if xi = 1

for i = 1, . . . , n. Let γ = yn · · · y1.
Show that if γ is input to the finite-state machine of

Figure 1.4, the output is the 2’s complement of α.
†28. Show that there is no finite-state machine that receives a bit

string and outputs 1 whenever the number of 1’s input equals
the number of 0’s input and outputs 0 otherwise.

�29. Show that there is no finite-state machine that performs serial
multiplication. Specifically, show that there is no finite-state

machine that inputs binary numbers X = x1 · · · xn, Y =
y1 · · · yn, as the sequence of two-bit numbers

xnyn, xn−1yn−1, . . . , x1y1, 00, . . . , 00,

where there are n 00’s, and outputs z2n, . . . , z1, where Z =
z1 · · · z2n = XY .

Example: If there is such a machine, to multiply 101×
1001 we would input 11,00,10,01,00,00,00,00. The first pair
11 is the pair of rightmost bits (101, 1001); the second pair
00 is the next pair of bits (101, 1001); and so on. We pad the
input string with four pairs of 00’s—the length of the longest
number 1001 to be multiplied. Since 101 × 1001 = 101101,
it is alleged that we obtain the output shown in the adjacent
table.

Input Output

11 1
00 0
10 1
01 1
00 0
00 1
00 0
00 0

2 ➜ Finite-State Automata

A finite-state automaton is a special kind of finite-state machine. Finite-state automata
are of special interest because of their relationship to languages, as we shall see in
Section 5.

Definition 2.1 A finite-state automaton A = (I, O, S, f, g, σ) is a finite-state machine in which the set
of output symbols is {0, 1} and where the current state determines the last output. Those
states for which the last output was 1 are called accepting states.

Example 2.2 Draw the transition diagram of the finite-state machine A defined by the table. The initial
state is σ0. Show that A is a finite-state automaton, and determine the set of accepting
states.

f g

I a b a b

S
σ0 σ1 σ0 1 0
σ1 σ2 σ0 1 0
σ2 σ2 σ0 1 0

The transition diagram is shown in Figure 2.1. If we are in state σ0, the last output
was 0. If we are in either state σ1 or σ2, the last output was 1; thus A is a finite-state
automaton. The accepting states are σ1 and σ2.

†A starred exercise indicates a problem of above-average difficulty.

671

Automata, Grammars, and Languages

a/1

a/1
a/1

b/0

b/0

b/0

0 1 2

Figure 2.1 The transition diagram for Example 2.2.

Example 2.2 shows that the finite-state machine defined by a transition diagram
will be a finite-state automaton if the set of output symbols is {0, 1} and if, for each state
σ, all incoming edges to σ have the same output label.

The transition diagram of a finite-state automaton is usually drawn with the accept-
ing states in double circles and the output symbols omitted. When the transition diagram
of Figure 2.1 is redrawn in this way, we obtain the transition diagram of Figure 2.2.

a

a
a

b

b

b

0 1 2

Figure 2.2 The transition diagram of Figure 2.1
redrawn with accepting states in double circles and
output symbols omitted.

Example 2.3 Draw the transition diagram of the finite-state automaton of Figure 2.3 as a transition
diagram of a finite-state machine.

Since σ2 is an accepting state, we label all its incoming edges with output 1 (see
Figure 2.4). The states σ0 and σ1 are not accepting, so we label all their incoming edges
with output 0. We obtain the transition diagram of Figure 2.4.

a

b

a

a

b

b

0 1

2

Figure 2.3 A finite-state
automaton.

a/0

a/1
a/0

b/0

b/0
b/1

0 1

2

Figure 2.4 The finite-state
automaton of Figure 2.3 redrawn as a
transition diagram of a finite-state
machine.

As an alternative to Definition 2.1, we can regard a finite-state automaton A as
consisting of

1. A finite set I of input symbols

2. A finite set S of states

672

Automata, Grammars, and Languages

3. A next-state function f from S × I into S
4. A subset A of S of accepting states

5. An initial state σ ∈ S.

If we use this characterization, we write A = (I, S, f, A, σ).

Example 2.4 The transition diagram of the finite-state automaton A = (I, S, f, A, σ), where

I = {a, b}, S = {σ0, σ1, σ2}, A = {σ2}, σ = σ0,

and f is given by the following table

f

I a b

S
σ0 σ0 σ1

σ1 σ0 σ2

σ2 σ0 σ2

is shown in Figure 2.5.

b

b

a
b

a

a0 1 2

Figure 2.5 The transition diagram for Example 2.4.

If a string is input to a finite-state automaton, we will end at either an accepting
or a nonaccepting state. The status of this final state determines whether the string is
accepted by the finite-state automaton.

Definition 2.5 Let A = (I, S, f, A, σ) be a finite-state automaton. Let α = x1 · · · xn be a string over I.
If there exist states σ0, . . . , σn satisfying

(a) σ0 = σ

(b) f(σi−1, xi) = σi for i = 1, . . . , n

(c) σn ∈ A,

we say that α is accepted by A. The null string is accepted if and only if σ ∈ A. We let
Ac(A) denote the set of strings accepted by A and we say that A accepts Ac(A).

Let α = x1 · · · xn be a string over I. Define states σ0, . . . , σn by conditions (a) and
(b) above. We call the (directed) path (σ0, . . . , σn) the path representing α in A.

It follows from Definition 2.5 that if the path P represents the string α in a finite-
state automaton A, then A accepts α if and only if P ends at an accepting state.

673

Automata, Grammars, and Languages

Example 2.6 Is the string abaa accepted by the finite-state automaton of Figure 2.2?
We begin at state σ0. When a is input, we move to state σ1. When b is input, we

move to state σ0. When a is input, we move to state σ1. Finally, when the last symbol
a is input, we move to state σ2. The path (σ0, σ1, σ0, σ1, σ2) represents the string abaa.
Since the final state σ2 is an accepting state, the string abaa is accepted by the finite-state
automaton of Figure 2.2.

Example 2.7 Is the string α = abbabba accepted by the finite-state automaton of Figure 2.3?
The path representing α terminates at σ1. Since σ1 is not an accepting state, the

string α is not accepted by the finite-state automaton of Figure 2.3.

We next give two examples illustrating design problems.

Example 2.8 Design a finite-state automaton that accepts precisely those strings over {a, b} that contain
no a’s.

The idea is to use two states:

A: An a was found.

NA: No a’s were found.

The state NA is the initial state and the only accepting state. It is now a simple matter to
draw the edges (see Figure 2.6). Notice that the finite-state automaton correctly accepts
the null string.

NA
a

A

a

b

b

Figure 2.6 A finite-state
automaton that accepts precisely
those strings over {a, b} that
contain no a’s.

Example 2.9 Design a finite-state automaton that accepts precisely those strings over {a, b} that contain
an odd number of a’s.

This time the two states are

E: An even number of a’s was found.

O: An odd number of a’s was found.

The initial state is E and the accepting state is O. We obtain the transition diagram
shown in Figure 2.7.

b
a

a

E O

b

Figure 2.7 A finite-state
automaton that accepts precisely
those strings over {a, b} that
contain an odd number of a’s. Afinite-state automaton is essentially an algorithm to decide whether or not a given

string is accepted. As an example, we convert the transition diagram of Figure 2.7 to an
algorithm.

Algorithm 2.10 This algorithm determines whether a string over {a, b} is accepted by the finite-state
automaton whose transition diagram is given in Figure 2.7.

Input: n, the length of the string (n = 0 designates the null string); s1s2 · · · sn,
the string

Output: “Accept” if the string is accepted
“Reject” if the string is not accepted

674

Automata, Grammars, and Languages

fsa(s, n) {
state = ‘E’
for i = 1 to n {

if (state == ‘E’∧ si == ‘a’)
state = ‘O’

if (state == ‘O’∧ si == ‘a’)
state = ‘E’

}
if (state == ‘O’)

return “Accept”
else

return “Reject”
}

If two finite-state automata accept precisely the same strings, we say that the
automata are equivalent.

Definition 2.11 The finite-state automata A and A′ are equivalent if Ac(A) = Ac(A′).

Example 2.12 It can be verified that the finite-state automata of Figures 2.6 and 2.8 are equivalent (see
Exercise 33).

a

b

a

a

b

b

0 1 2

Figure 2.8 A finite-state automaton equivalent to that in
Figure 2.6.

If we define a relation R on a set of finite-state automata by the rule A R A′ if
A and A′ are equivalent (in the sense of Definition 2.11), R is an equivalence relation.
Each equivalence class consists of a set of mutually equivalent finite-state automata.

Section Review Exercises

1. Define finite-state automaton.

2. What does it mean for a string to be accepted by a finite-state
automaton?

3. What are equivalent finite-state automata?

Exercises

In Exercises 1–3, show that each finite-state machine is a finite-
state automaton and redraw the transition diagram as the diagram
of a finite-state automaton.

1. a/1

a/0

b/0

b/1

0 1

2.

a/1 b/0
b/0

b/0

a/1

a/0

0 1 2

675

Automata, Grammars, and Languages

3.

a/1

b/0

b/0 b/0 b/1

a/0

a/0a/0
0 1

2 3

In Exercises 4–6, redraw the transition diagram of the finite-state
automaton as the transition diagram of a finite-state machine.

4.

a
b

a

b

0 1

5.

a
b

a

a

b

b0 1 2

6.

a

a

a
b

ab

b

b

1

2 3

0

In Exercises 7–9, draw the transition diagram of the finite-state
automaton (I, S, f, A, σ0).

7. I = {a, b}, S = {σ0, σ1, σ2}, A = {σ0}

f

I a b

S
σ0 σ1 σ0

σ1 σ2 σ0

σ2 σ0 σ2

8. I = {a, b}, S = {σ0, σ1, σ2}, A = {σ0, σ2}

f

I a b

S
σ0 σ1 σ1

σ1 σ0 σ2

σ2 σ0 σ1

9. I = {a, b, c}, S = {σ0, σ1, σ2, σ3}, A = {σ0, σ2}

f

I a b c

S
σ0 σ1 σ0 σ2

σ1 σ0 σ3 σ0

σ2 σ3 σ2 σ0

σ3 σ1 σ0 σ1

10. For each finite-state automaton in Exercises 1–6, find the sets
I, S, and A, the initial state, and the table defining the next-
state function.

11. Which of the finite-state machines of Exercises 1–10, Sec-
tion 1, are finite-state automata?

12. What must the table of a finite-state machine M look like in
order for M to be a finite-state automaton?

In Exercises 13–17, determine whether the given string is accepted
by the given finite-state automaton.

13. abbaa; Figure 2.2 14. abbaa; Figure 2.3

15. aabaabb; Figure 2.5 16. aaabbbaab; Exercise 5

17. aaababbab; Exercise 6

18. Show that a string α over {a, b} is accepted by the finite-state
automaton of Figure 2.2 if and only if α ends with a.

19. Show that a string α over {a, b} is accepted by the finite-state
automaton of Figure 2.5 if and only if α ends with bb.

�20. Characterize the strings accepted by the finite-state automata
of Exercises 1–9.

In Exercises 21–31, draw the transition diagram of a finite-state
automaton that accepts the given set of strings over {a, b}.
21. Even number of a’s 22. Exactly one b

23. At least one b 24. Exactly two a’s

25. At least two a’s

26. Contains m a’s, where m is a multiple of 3

27. Starts with baa �28. Contains abba

29. Every b is followed by a �30. Ends with aba

�31. Starts with ab and ends with baa

676

Automata, Grammars, and Languages

32. Write algorithms, similar to Algorithm 2.10, that decide
whether or not a given string is accepted by the finite-state
automata of Exercises 1–9.

33. Give a formal argument to show that the finite-state automata
of Figures 2.6 and 2.8 are equivalent.

34. Let L be a finite set of strings over {a, b}. Show that there is a
finite-state automaton that accepts L.

35. Let L be the set of strings accepted by the finite-state automa-
ton of Exercise 6. Let S denote the set of all strings over {a, b}.
Design a finite-state automaton that accepts S − L.

36. Let Li be the set of strings accepted by the finite-state
automaton Ai = (I, Si, fi, Ai, σi), i = 1, 2. Let

A = (I, S1 × S2, f, A, σ),

where

f((S1, S2), x) = (f1(S1, x), f2(S2, x))

A = {(A1, A2) | A1 ∈ A1 and A2 ∈ A2}
σ = (σ1, σ2).

Show that Ac(A) = L1 ∩ L2.

37. Let Li be the set of strings accepted by the finite-state
automaton Ai = (I, Si, fi, Ai, σi), i = 1, 2. Let

A = (I, S1 × S2, f, A, σ),

where

f((S1, S2), x) = (f1(S1, x), f2(S2, x))

A = {(A1, A2) | A1 ∈ A1 or A2 ∈ A2}
σ = (σ1, σ2).

Show that Ac(A) = L1 ∪ L2.

In Exercises 38–42, let Li = Ac(Ai), i = 1, 2. Draw the transi-
tion diagrams of the finite-state automata that accept L1 ∩L2 and
L1 ∪ L2.

38. A1 given by Exercise 4; A2 given by Exercise 5

39. A1 given by Exercise 4; A2 given by Exercise 6

40. A1 given by Exercise 5; A2 given by Exercise 6

41. A1 given by Exercise 6; A2 given by Exercise 6

42. A1 given by Figure 5.7, Section 5; A2 given by Exercise 6

3 ➜ Languages and Grammars

According to Webster’s New Collegiate Dictionary, language is a “body of words and
methods of combining words used and understood by a considerable community.” Such
languages are often called natural languages to distinguish them from formal lan-
guages, which are used to model natural languages and to communicate with computers.
The rules of a natural language are very complex and difficult to characterize completely.
On the other hand, it is possible to specify completely the rules by which certain formal
languages are constructed. We begin with the definition of a formal language.

Definition 3.1 Let A be a finite set. A (formal) language L over A is a subset of A∗, the set of all strings
over A.

Example 3.2 Let A = {a, b}. The set L of all strings over A containing an odd number of a’s is a
language over A. As we saw in Example 2.9, L is precisely the set of strings over A

accepted by the finite-state automaton of Figure 2.7.

One way to define a language is to give a list of rules that the language is assumed
to obey.

Definition 3.3 A phrase-structure grammar (or, simply, grammar) G consists of

(a) A finite set N of nonterminal symbols

(b) A finite set T of terminal symbols where N ∩ T = ∅

(c) A finite subset P of [(N ∪ T)∗ − T ∗]× (N ∪ T)∗, called the set of productions

(d) A starting symbol σ ∈ N.

We write G = (N, T, P, σ).

677

Automata, Grammars, and Languages

A production (A, B) ∈ P is usually written

A→ B.

Definition 3.3(c) states that in the production A → B, A ∈ (N ∪ T)∗ − T ∗ and
B ∈ (N ∪ T)∗; thus A must include at least one nonterminal symbol, whereas B can
consist of any combination of nonterminal and terminal symbols.

Example 3.4 Let

N = {σ, S}
T = {a, b}
P = {σ → bσ, σ → aS, S → bS, S → b}.

Then G = (N, T, P, σ) is a grammar.

Given a grammar G, we can construct a language L(G) from G by using the
productions to derive the strings that make up L(G). The idea is to start with the starting
symbol and then repeatedly use productions until a string of terminal symbols is obtained.
The language L(G) is the set of all such strings obtained. Definition 3.5 gives the formal
details.

Definition 3.5 Let G = (N, T, P, σ) be a grammar.
If α→ β is a production and xαy ∈ (N ∪T)∗, we say that xβy is directly derivable

from xαy and write

xαy⇒ xβy.

If αi ∈ (N ∪ T)∗ for i = 1, . . . , n, and αi+1 is directly derivable from αi for i =
1, . . . , n− 1, we say that αn is derivable from α1 and write

α1 ⇒ αn.

We call

α1 ⇒ α2 ⇒ · · · ⇒ αn

the derivation of αn (from α1). By convention, any element of (N ∪T)∗ is derivable from
itself.

The language generated by G, written L(G), consists of all strings over T derivable
from σ.

Example 3.6 Let G be the grammar of Example 3.4.
The string abSbb is directly derivable from aSbb, written

aSbb⇒ abSbb,

by using the production S → bS.
The string bbab is derivable from σ, written

σ ⇒ bbab.

The derivation is

σ ⇒ bσ ⇒ bbσ ⇒ bbaS ⇒ bbab.

678

Automata, Grammars, and Languages

The only derivations from σ are

σ ⇒ bσ

...

⇒ bnσ n ≥ 0

⇒ bnaS

...

⇒ bnabm−1S

⇒ bnabm n ≥ 0, m ≥ 1.

Thus L(G) consists of the strings over {a, b} containing precisely one a that end with b.

An alternative way to state the productions of a grammar is by using Backus
normal form (or Backus–Naur form or BNF). In BNF the nonterminal symbols typ-
ically begin with “<” and end with “>.” The production S → T is written S : := T .
Productions of the form

S : := T1, S : := T2, . . . , S : := Tn

may be combined as

S : := T1 | T2 | · · · | Tn.

The bar “|” is read “or.”

Example 3.7 A Grammar for Integers

An integer is defined as a string consisting of an optional sign (+ or −) followed by a
string of digits (0 through 9). The following grammar generates all integers.

< digit > : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
< integer > : := < signed integer >|< unsigned integer >

< signed integer > : := + < unsigned integer >| − < unsigned integer >

< unsigned integer > : := < digit >|< digit >< unsigned integer >

The starting symbol is < integer >.
For example, the derivation of the integer −901 is

< integer >⇒ < signed integer >

⇒ − < unsigned integer >

⇒ − < digit >< unsigned integer >

⇒ − < digit >< digit >< unsigned integer >

⇒ − < digit >< digit >< digit >

⇒ −9 < digit >< digit >

⇒ −90 < digit >

⇒ −901.

In the notation of Definition 3.3, this language consists of

679

Automata, Grammars, and Languages

1. The set N ={< digit >, < integer >, < signed integer >, < unsigned integer >}
of nonterminal symbols

2. The set T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−} of terminal symbols

3. The productions

< digit >→ 0, . . . , < digit >→ 9

< integer >→ < signed integer >

< integer >→ < unsigned integer >

< signed integer >→ + < unsigned integer >

< signed integer >→ − < unsigned integer >

< unsigned integer >→ < digit >

< unsigned integer >→ < digit >< unsigned integer >

4. The starting symbol < integer >.

Computer languages, such as Java and C++, are typically specified in BNF.
Example 3.7 shows how an integer constant in a computer language might be speci-
fied in BNF.

Grammars are classified according to the types of productions that define the
grammars.

Definition 3.8 Let G be a grammar and let λ denote the null string.

(a) If every production is of the form

αAβ→ αδβ, where α, β ∈ (N ∪ T)∗, A ∈ N,

δ ∈ (N ∪ T)∗ − {λ}, (3.1)

we call G a context-sensitive (or type 1) grammar.

(b) If every production is of the form

A→ δ, where A ∈ N, δ ∈ (N ∪ T)∗, (3.2)

we call G a context-free (or type 2) grammar.

(c) If every production is of the form

A→ a or A→ aB or A→ λ, where A, B ∈ N, a ∈ T,

we call G a regular (or type 3) grammar.

According to (3.1), in a context-sensitive grammar, we may replace A by δ if
A is in the context of α and β. In a context-free grammar, (3.2) states that we may
replace A by δ anytime. A regular grammar has especially simple substitution rules: We
replace a nonterminal symbol by a terminal symbol, by a terminal symbol followed by
a nonterminal symbol, or by the null string.

Notice that a regular grammar is a context-free grammar and that a context-free
grammar with no productions of the form A→ λ is a context-sensitive grammar.

Some definitions allow a to be replaced by a string of terminals in Defini-
tion 3.8(c); however, it can be shown (see Exercise 32) that the two definitions pro-
duce the same languages.

680

Automata, Grammars, and Languages

Example 3.9 The grammar G defined by

T = {a, b, c}, N = {σ, A, B, C, D, E},
with productions

σ → aAB, σ → aB, A→ aAC, A→ aC, B→ Dc,

D→ b, CD→ CE, CE→ DE, DE→ DC, Cc→ Dcc

and starting symbol σ is context-sensitive. For example, the production CE→ DE says
that we can replace C by D if C is followed by E, and the production Cc→ Dcc says
that we can replace C by Dc if C is followed by c.

We can derive DC from CD since

CD⇒ CE⇒ DE⇒ DC.

The string a3b3c3 is in L(G), since we have

σ ⇒ aAB⇒ aaACB⇒ aaaCCDc⇒ aaaDCCc⇒ aaaDCDcc

⇒ aaaDDCcc⇒ aaaDDDccc⇒ aaabbbccc.

It can be shown (see Exercise 33) that

L(G) = {anbncn | n = 1, 2, . . .}.

It is natural to allow the language L(G) to inherit a property of a grammar G. The
next definition makes this concept precise.

Definition 3.10 Alanguage L is context-sensitive (respectively, context-free, regular) if there is a context-
sensitive (respectively, context-free, regular) grammar G with L = L(G).

Example 3.11 According to Example 3.9, the language

L = {anbncn | n = 1, 2, . . .}

is context-sensitive. It can be shown (see [Hopcroft]) that there is no context-free gram-
mar G with L = L(G); hence L is not a context-free language.

Example 3.12 The grammar G defined by

T = {a, b}, N = {σ},
with productions

σ → aσb, σ → ab

and starting symbol σ, is context-free. The only derivations of σ are

σ ⇒ aσb
...

⇒ an−1σbn−1

⇒ an−1abbn−1 = anbn.

681

Automata, Grammars, and Languages

Thus L(G) consists of the strings over {a, b} of the form anbn, n = 1, 2 This
language is context-free. In Section 5 (see Example 5.6), we will show that L(G) is not
regular.

It follows from Examples 3.11 and 3.12 that the set of context-free
languages that do not contain the null string is a proper subset of the set of context-
sensitive languages and that the set of regular languages is a proper subset of the set
of context-free languages. It can also be shown that there are languages that are not
context-sensitive.

Example 3.13 The grammar G defined in Example 3.4 is regular. Thus the language

L(G) = {bnabm | n = 0, 1, . . . ;m = 1, 2, . . .}

it generates is regular.

Example 3.14 The grammar of Example 3.7 is context-free but not regular. However, if we change the
productions to

< integer > : := + < unsigned integer >| − < unsigned integer >|
0 < digits >| 1 < digits >| · · · | 9 < digits >

< unsigned integer > : := 0 < digits >| 1 < digits >| · · · | 9 < digits >

< digits > : := 0 < digits >| 1 < digits >| · · · | 9 < digits >| λ,

the resulting grammar is regular. Since the language generated is unchanged, it follows
that the set of strings representing integers is a regular language.

Example 3.14 motivates the following definition.

Definition 3.15 Grammars G and G′ are equivalent if L(G) = L(G′).

Example 3.16 The grammars of Examples 3.7 and 3.14 are equivalent.

If we define a relation R on a set of grammars by the rule G R G′ if G and G′

are equivalent (in the sense of Definition 3.15), R is an equivalence relation. Each
equivalence class consists of a set of mutually equivalent grammars.

We close this section by briefly introducing another kind of grammar that can be
used to generate fractal curves.

Definition 3.17 A context-free interactive Lindenmayer grammar consists of

(a) A finite set N of nonterminal symbols

(b) A finite set T of terminal symbols where N ∩ T = ∅

(c) A finite set P of productions A→ B, where A ∈ N ∪ T and B ∈ (N ∪ T)∗

(d) A starting symbol σ ∈ N.

The difference between a context-free interactive Lindenmayer grammar and a
context-free grammar is that a context-free interactive Lindenmayer grammar allows

682

Automata, Grammars, and Languages

productions of the form A→ B, where A is a terminal or a nonterminal. (In a context-
free grammar, A must be a nonterminal.)

The rules for deriving strings in a context-free interactive Lindenmayer grammar
are different from the rules for deriving strings in a phrase-structure grammar (see Defini-
tion 3.5). In a context-free interactive Lindenmayer grammar, to derive the string β from
the string α, all symbols in α must be replaced simultaneously. The formal definition
follows.

Definition 3.18 Let G = (N, T, P, σ) be a context-free interactive Lindenmayer grammar. If

α = x1 · · · xn

and there are productions

xi→ βi

in P , for i = 1, . . . , n, we write

α⇒ β1 · · ·βn

and say that β1 · · ·βn is directly derivable from α. If αi+1 is directly derivable from αi

for i = 1, . . . , n− 1, we say that αn is derivable from α1 and write

α1 ⇒ αn.

We call

α1 ⇒ α2 ⇒ · · · ⇒ αn

the derivation of αn (from α1). The language generated by G, written L(G), consists of
all strings over T derivable from σ.

Example 3.19 The von Koch Snowflake

Let

N = {D}
T = {d,+,−}
P = {D→ D−D++D−D, D→ d,+→ +,−→ −}.

We regard G(N, T, P, D) as a context-free Lindenmayer grammar. As an example of a
derivation from D, we have

D⇒ D−D++D−D⇒ d − d++ d − d.

Thus d − d++ d − d ∈ L(G).
We now impose a meaning on the strings in L(G). We interpret the symbol d as a

command to draw a straight line of a fixed length in the current direction; we interpret
+ as a command to turn right by 60◦; and we interpret − as a command to turn left by
60◦. If we begin at the left and the first move is horizontal to the right, when the string
d − d++ d − d is interpreted, we obtain the curve shown in Figure 3.1(a).

683

Automata, Grammars, and Languages

(a) (b)

(c) (d)

(e)

Figure 3.1 von Koch snowflakes.

The next-longest string in L(G) is

d − d++ d − d − d − d++ d − d++ d − d++ d − d − d − d++ d − d,

whose derivation is

D⇒ D−D++D−D

⇒ D−D++D−D−D−D++D−D++D

−D++D−D−D−D++D−D

⇒ d − d++ d − d − d − d++ d − d ++ d

− d++ d − d − d − d++ d − d.

No shorter string is possible because all symbols must be replaced simultaneously
using productions (Definition 3.18). If we replace some D’s by d and other D’s by
D − D++D − D, we cannot derive any string from the resulting string, let alone a
terminal string, since d does not occur on the left side of any production.

When the string

d − d++ d − d − d − d++ d − d++ d − d++ d − d − d − d++ d − d

is interpreted, we obtain the curve shown in Figure 3.1(b).
The curves obtained by interpreting the next-longest strings in L(G) are shown in

Figure 3.1(c)–(e). These curves are known as von Koch snowflakes.

Curves such as the von Koch snowflake are called fractal curves (see [Peitgen]).
A characteristic of fractal curves is that a part of the whole resembles the whole. For
example, as shown in Figure 3.2, when the part of the von Koch snowflake indicated is
extracted and enlarged, it resembles the original.

Context-free and context-sensitive interactive Lindenmayer grammars were
invented in 1968 by A. Lindenmayer (see [Lindenmayer]) to model the growth of plants.
As Example 3.19 suggests, these grammars can be used in computer graphics to generate
images (see [Prusinkiewicz 1986, 1988; Smith]). It can be shown (see [Wood, p. 503])
that the class of languages generated by context-sensitive Lindenmayer grammars is
exactly the same as the class of languages generated by phrase-structure grammars.

684

Automata, Grammars, and Languages

Figure 3.2 The fractal nature of the von
Koch snowflake. When the top part of the
von Koch snowflake is extracted and
enlarged, it resembles the original.

Section Review Exercises

1. Contrast natural and formal languages.

2. Define phrase-structure grammar.

3. What is a directly derivable string?

4. What is a derivable string?

5. What is a derivation?

6. What is the language generated by a grammar?

7. What is Backus normal form?

8. Define context-sensitive grammar.

9. Define context-free grammar.

10. Define regular grammar.

11. Which grammar is equivalent to a type 1 grammar?

12. Which grammar is equivalent to a type 2 grammar?

13. Which grammar is equivalent to a type 3 grammar?

14. Define context-sensitive language.

15. Define context-free language.

16. Define regular language.

17. What is a context-free interactive Lindenmayer grammar?

18. How is the von Koch snowflake generated?

19. What is a fractal curve?

Exercises

In Exercises 1–6, determine whether the given grammar is context-
sensitive, context-free, regular, or none of these. Give all charac-
terizations that apply.

1. T = {a, b}, N = {σ, A}, with productions

σ → bσ, σ → aA, A→ aσ,

A → bA, A→ a, σ → b,

and starting symbol σ.

2. T = {a, b, c}, N = {σ, A, B}, with productions

σ → AB, AB→ BA, A→ aA,

B → Bb, A→ a, B→ b,

and starting symbol σ.

3. T = {a, b}, N = {σ, A, B}, with productions

σ → A, σ → AAB, Aa→ ABa,

A → aa, Bb→ ABb, AB→ ABB,

B → b,

and starting symbol σ.

4. T = {a, b, c}, N = {σ, A, B}, with productions

σ → BAB, σ → ABA, A→ AB,

B → BA, A→ aA, A→ ab,

B → b,

and starting symbol σ.

685

Automata, Grammars, and Languages

5. < S > : := b < S >| a < A >| a
< A > : := a < S >| b < B >

< B > : := b < A >| a < S >| b
with starting symbol <S>.

6. T = {a, b}, N = {σ, A, B}, with productions

σ → AAσ, AA→ B, B→ bB, A→ a

and starting symbol σ.

In Exercises 7–11, show that the given string α is in L(G) for the
given grammar G by giving a derivation of α.

7. bbabbab, Exercise 1

8. abab, Exercise 2

9. aabbaab, Exercise 3

10. abbbaabab, Exercise 4

11. abaabbabba, Exercise 5

12. Write the grammars of Examples 3.4 and 3.9 and Exercises 1–4
and 6 in BNF.

�13. Let G be the grammar of Exercise 1. Show that α ∈ L(G) if
and only if α is nonnull and contains an even number of a’s.

�14. Let G be the grammar of Exercise 5. Characterize L(G).

In Exercises 15–24, write a grammar that generates the strings
having the given property.

15. Strings over {a, b} starting with a

16. Strings over {a, b} ending with ba

17. Strings over {a, b} containing ba

�18. Strings over {a, b} not ending with ab

19. Integers with no leading 0’s

20. Floating-point numbers (numbers such as .294, 89., 67.284)

21. Exponential numbers (numbers including floating-point num-
bers and numbers such as 6.9E3, 8E12, 9.6E–4, 9E–10)

22. Boolean expressions in X1, . . . , Xn

23. All strings over {a, b}
24. Strings x1 · · · xn over {a, b} with x1 · · · xn = xn · · · x1

Each grammar in Exercises 25–31 is proposed as generating the
set L of strings over {a, b} that contain equal numbers of a’s and
b’s. If the grammar generates L, prove that it does so. If the gram-
mar does not generate L, give a counterexample and prove that
your counterexample is correct. In each grammar, S is the starting
symbol.

25. S → aSb | bSa | λ
26. S → aSb | bSa | SS | λ
27. S → aB | bA | λ, B→ b | bA, A→ a | aB

28. S → abS | baS | aSb | bSa | λ
29. S → aSb | bSa | abS | baS | Sab | Sba | λ
30. S → aB | bA, A→ a | SA, B→ b | SB

31. S → aSbS | bSaS | λ

�32. Let G be a grammar and let λ denote the null string. Show that
if every production is of the form

A→ α or A→ αB or A→ λ,

where A, B ∈ N, α ∈ T ∗ − {λ},
there is a regular grammar G′ with L(G) = L(G′).

�33. Let G be the grammar of Example 3.9. Show that

L(G) = {anbncn | n = 1, 2, . . .}.
34. Show that the language

{anbnck | n, k ∈ {1, 2, . . .}}
is a context-free language.

35. Let

N = {S, D}
T = {d,+,−}
P = {S → D+D+D+D,

D→ D+D−D−DD+D+D−D | d,

+→ +,−→ −}.
RegardG = (N, T, P, S) as a context-free Lindenmayer gram-
mar. Interpret the symbol d as a command to draw a straight
line of a fixed length in the current direction; interpret + as a
command to turn right by 90◦; and interpret − as a command
to turn left by 90◦. Generate the two smallest strings in L(G)

and draw the corresponding curves. These curves are known
as quadratic Koch islands.

�36. The following figure

shows the first three stages of the Hilbert curve. Define a
context-free Lindenmayer grammar that generates strings that
when appropriately interpreted generate the Hilbert curve.

37. This exercise assumes familiarity with musical notation.
Pictures such as those in Exercise 36 that consist of only

horizontal and vertical lines can be interpreted as music. An
arbitrary starting note is chosen. Thereafter, when we follow
the curve, the length of a horizontal segment determines the
duration of the note, and the length of a vertical segment tells
how to change the pitch. Following an n-unit vertical line up
is interpreted as changing the pitch by moving up n half-steps.
Following an n-unit vertical line down is interpreted as chang-
ing the pitch by moving down n half-steps.

Write out the music corresponding to the second figure
in Exercise 36. Assume that we start at the lower-left of the
figure and that C is the first note. Assume also that the first
horizontal segment is two units long, which is interpreted as a
quarter note.

For more on mathematics and music, see [Harkleroad].

686

Automata, Grammars, and Languages

4 ➜ Nondeterministic Finite-State Automata

In this section and the next, we show that regular grammars and finite-state automata
are essentially the same in that either is a specification of a regular language. We begin
with an example that illustrates how we can convert a finite-state automaton to a regular
grammar.

Example 4.1 Write the regular grammar given by the finite-state automaton of Figure 2.7.
The terminal symbols are the input symbols {a, b}. The states E and O become the

nonterminal symbols. The initial state E becomes the starting symbol. The productions
correspond to the directed edges. If there is an edge labeled x from S to S′, we write the
production

S → xS′.

In our case, we obtain the productions

E→ bE, E→ aO, O→ aE, O→ bO. (4.1)

In addition, if S is an accepting state, we include the production

S → λ.

In our case, we obtain the additional production

O→ λ. (4.2)

Then the grammar G = (N, T, P, E), with N = {O, E}, T = {a, b}, and P consisting of
the productions (4.1) and (4.2), generates the language L(G), which is the same as the
set of strings accepted by the finite-state automaton of Figure 2.7.

Theorem 4.2 Let A be a finite-state automaton given as a transition diagram. Let σ be the initial
state. Let T be the set of input symbols and let N be the set of states. Let P be the set
of productions

S → xS′

if there is an edge labeled x from S to S′ and

S → λ

if S is an accepting state. Let G be the regular grammar

G = (N, T, P, σ).

Then the set of strings accepted by A is equal to L(G).

Proof First we show that Ac(A) ⊆ L(G). Let α ∈ Ac(A). If α is the null string,
then σ is an accepting state. In this case, G contains the production

σ → λ.

The derivation

σ ⇒ λ (4.3)

shows that α ∈ L(G).

687

Automata, Grammars, and Languages

Now suppose α ∈ Ac(A) and α is not the null string. Then α = x1 · · · xn for
some xi ∈ T . Since α is accepted by A, there is a path (σ, S1, . . . , Sn), where Sn is an
accepting state, with edges successively labeled x1, . . . , xn. It follows that G contains
the productions

σ → x1S1

Si−1 → xiSi for i = 2, . . . , n.

Since Sn is an accepting state, G also contains the production

Sn→ λ.

The derivation

σ ⇒ x1S1

⇒ x1x2S2

...

⇒ x1 · · · xnSn

⇒ x1 · · · xn (4.4)

shows that α ∈ L(G).
We complete the proof by showing that L(G) ⊆ Ac(A). Suppose that α ∈

L(G). If α is the null string, α must result from the derivation (4.3) since a derivation
that starts with any other production would yield a nonnull string. Thus the production
σ → λ is in the grammar. Therefore, σ is an accepting state in A. It follows that
α ∈ Ac(A).

Now suppose α ∈ L(G) and α is not the null string. Then α = x1 · · · xn for
some xi ∈ T . It follows that there is a derivation of the form (4.4). If, in the transition
diagram, we begin at σ and trace the path (σ, S1, . . . , Sn), we can generate the string α.
The last production used in (4.4) is Sn→ λ; thus the last state reached is an accepting
state. Therefore, α is accepted by A, so L(G) ⊆ Ac(A). The proof is complete.

Next, we consider the reverse situation. Given a regular grammar G, we want to
construct a finite-state automaton A so that L(G) is precisely the set of strings accepted by
A. It might seem, at first glance, that we can simply reverse the procedure of Theorem 4.2.
However, the next example shows that the situation is a bit more complex.

Example 4.3 Consider the regular grammar defined by

T = {a, b}, N = {σ, C},

with productions

σ → bσ, σ → aC, C→ bC, C→ b

and starting symbol σ.

688

Automata, Grammars, and Languages

The nonterminals become states with σ as the initial state. For each production of
the form

S → xS′,

we draw an edge from state S to state S′ and label it x. The productions

σ → bσ, σ → aC, C→ bC

give the graph shown in Figure 4.1. The production C → b is equivalent to the two
productions

C→ bF, F → λ,

where F is an additional nonterminal symbol. The productions

σ → bσ, σ → aC, C→ bC, C→ bF

give the graph shown in Figure 4.2. The production

F → λ

tells us that F should be an accepting state (see Figure 4.2).

a
C

b b

Figure 4.1 The graph
corresponding to the productions
σ → bσ, σ → aC, C→ bC.

a
C

b

b
F

b

Figure 4.2 The nondeterministic
finite-state automaton
corresponding to the grammar
σ → bσ, σ → aC, C→ bC,
C→ b.

Unfortunately, the graph of Figure 4.2 is not a finite-state automaton. There are
several problems. Vertex C has no outgoing edge labeled a and vertex F has no outgoing
edges at all. Also, vertex C has two outgoing edges labeled b. A diagram such as that
of Figure 4.2 defines another kind of automaton called a nondeterministic finite-state
automaton. The reason for the word “nondeterministic” is that when we are in a state
where there are multiple outgoing edges all having the same label x, if x is input the situ-
ation is nondeterministic—we have a choice of next states. For example, if in Figure 4.2
we are in state C and b is input, we have a choice of next states—we can either remain
in state C or go to state F .

Definition 4.4 A nondeterministic finite-state automaton A consists of

(a) A finite set I of input symbols

(b) A finite set S of states

(c) A next-state function f from S × I into P(S)

(d) A subset A of S of accepting states

(e) An initial state σ ∈ S.

We write A = (I, S, f, A, σ).

The only difference between a nondeterministic finite-state automaton and a finite-
state automaton is that in a finite-state automaton the next-state function takes us to a
uniquely defined state, whereas in a nondeterministic finite-state automaton the next-state
function takes us to a set of states.

689

Automata, Grammars, and Languages

Example 4.5 For the nondeterministic finite-state automaton of Figure 4.2, we have

I = {a, b}, S = {σ, C, F }, A = {F }.
The initial state is σ and the next-state function f is given by

f

I a b

S
σ {C} {σ}
C ∅ {C, F }
F ∅ ∅

We draw the transition diagram of a nondeterministic finite-state automaton sim-
ilarly to that of a finite-state automaton. We draw an edge from state S to each state in
the set f(S, x) and label each x.

Example 4.6 The transition diagram of the nondeterministic finite-state automaton

I = {a, b}, S = {σ, C, D}, A = {C, D}
with initial state σ and next-state function

f

I a b

S
σ {σ, C} {D}
C ∅ {C}
D {C, D} ∅

is shown in Figure 4.3.

b

C

a

b

D
a a a

Figure 4.3 The transition diagram of the
nondeterministic finite-state automaton of Example 4.6.

A string α is accepted by a nondeterministic finite-state automaton A if there is
some path representing α in the transition diagram of A beginning at the initial state and
ending in an accepting state. The formal definition follows.

Definition 4.7 Let A = (I, S, f, A, σ) be a nondeterministic finite-state automaton. The null string is
accepted by A if and only if σ ∈ A. If α = x1 · · · xn is a nonnull string over I and there
exist states σ0, . . . , σn satisfying the following conditions:

(a) σ0 = σ

(b) σi ∈ f(σi−1, xi) for i = 1, . . . , n

(c) σn ∈ A,

690

Automata, Grammars, and Languages

we say that α is accepted by A. We let Ac(A) denote the set of strings accepted by A

and we say that A accepts Ac(A).
If A and A′ are nondeterministic finite-state automata and Ac(A) = Ac(A′), we

say that A and A′ are equivalent.
If α = x1 · · · xn is a string over I and there exist states σ0, . . . , σn satisfying

conditions (a) and (b), we call the path (σ0, . . . , σn) a path representing α in A.

Example 4.8 The string

α = bbabb

is accepted by the nondeterministic finite-state automaton of Figure 4.2, since the path
(σ, σ, σ, C, C, F), which ends at an accepting state, represents α. Notice that the path
P = (σ, σ, σ, C, C, C) also represents α but that P does not end at an accepting state.
Nevertheless, the string α is accepted because there is at least one path representing α

that ends at an accepting state. A string β will fail to be accepted if no path represents β

or every path representing β ends at a nonaccepting state.

Example 4.9 The string α = aabaabbb is accepted by the nondeterministic finite-state automaton
of Figure 4.3. The reader should locate the path representing α, which ends at state C.

Example 4.10 The string α = abba is not accepted by the nondeterministic finite-state automaton of
Figure 4.3. Starting at σ, when we input a, there are two choices: Go to C or remain at
σ. If we go to C, when we input two b’s, our moves are determined and we remain at C.
But now when we input the final a, there is no edge along which to move. On the other
hand, suppose that when we input the first a, we remain at σ. Then, when we input b, we
move to D. But now when we input the next b, there is no edge along which to move.
Since there is no path representing α in Figure 4.3, the string α is not accepted by the
nondeterministic finite-state automaton of Figure 4.3.

We formulate the construction of Example 4.3 as a theorem.

Theorem 4.11 Let G = (N, T, P, σ) be a regular grammar. Let

I = T

S = N ∪ {F }, where F /∈ N ∪ T

f(S, x) = {S′ | S → xS′ ∈ P} ∪ {F | S → x ∈ P}
A = {F } ∪ {S | S → λ ∈ P}.

Then the nondeterministic finite-state automaton A = (I, S, f, A, σ) accepts pre-
cisely the strings L(G).

Proof The proof is essentially the same as the proof of Theorem 4.2 and is therefore
omitted.

Example 4.12 Consider the regular grammar G defined by

T = {a, b}, N = {S}

691

Automata, Grammars, and Languages

with productions

S → λ, S → b, S → aS

and starting symbol S. We construct the nondeterministic finite-state automaton given
by Theorem 4.11 that accepts the strings L(G).

The set I of input symbols is the same as the set {a, b} of terminal symbols. The
set S of states is the set {S, F } of nonterminal symbols together with a new state F ,
which is also an accepting state. The initial state is S, the starting symbol.

a

b
S F

Figure 4.4 The transition
diagram corresponding to the
regular grammar of
Example 4.12.

The production S → λ means that S is an accepting state. Thus the set A of
accepting states is {S, F }. The production S → b yields a transition from state S to state
F on input symbol b. The production S → aS yields a transition from state S to state S

on input symbol a. We obtain the transition diagram shown in Figure 4.4.

It may seem that a nondeterministic finite-state automaton is a more general concept
than a finite-state automaton; however, in the next section we will show that given a
nondeterministic finite-state automaton A, we can construct a finite-state automaton that
is equivalent to A.

Section Review Exercises

1. Given a finite-state automaton A, how can we construct a regu-
lar grammar G so that the set of strings accepted by A is equal
to the language generated by G?

2. What is a nondeterministic finite-state automaton?

3. What does it mean for a string to be accepted by a nondetermin-
istic finite-state automaton?

4. What are equivalent nondeterministic finite-state automata?

5. Given a regular grammar G, how can we construct a nondeter-
ministic finite-state automaton A so that the language generated
by G is equal to the set of strings accepted by A?

Exercises

In Exercises 1–5, draw the transition diagram of the nondetermin-
istic finite-state automaton (I, S, f, A, σ0).

1. I = {a, b}, S = {σ0, σ1, σ2}, A = {σ0}

I a b

S
σ0 ∅ {σ1, σ2}
σ1 {σ2} {σ0, σ1}
σ2 {σ0} ∅

2. I = {a, b}, S = {σ0, σ1, σ2}, A = {σ0, σ1}

I a b

S
σ0 {σ1} {σ0, σ2}
σ1 ∅ {σ2}
σ2 {σ1} ∅

3. I = {a, b}, S = {σ0, σ1, σ2, σ3}, A = {σ1}

I a b

S
σ0 ∅ {σ3}
σ1 {σ1, σ2} {σ3}
σ2 ∅ {σ0, σ1, σ3}
σ3 ∅ ∅

692

Automata, Grammars, and Languages

4. I = {a, b, c}, S = {σ0, σ1, σ2}, A = {σ0}

I a b c

S
σ0 {σ1} ∅ ∅

σ1 {σ0} {σ2} {σ0, σ2}
σ2 {σ0, σ1, σ2} {σ0} {σ0}

5. I = {a, b, c}, S = {σ0, σ1, σ2, σ3}, A = {σ0, σ3}

I a b c

S
σ0 {σ1} {σ0, σ1, σ3} ∅

σ1 {σ2, σ3} ∅ ∅

σ2 ∅ {σ0, σ3} {σ1, σ2}
σ3 ∅ ∅ {σ0}

For each nondeterministic finite-state automaton in Exercises
6–10, find the sets I, S, and A, the initial state, and the table
defining the next-state function.

6. a

b

a

ba

0 1

2

7.
B

b

b

b

aa

A

a

C

8.

bab

a

b

0 1 2 3

9.

a

b

b

ab

a

b

0 1 2 3

10.
a

b

b

ab
0 1 2 3

11. Write the regular grammars given by the finite-state automata
of Exercises 4–9, Section 2.

12. Represent the grammars of Exercises 1 and 5, Sec-
tion 3, and Example 3.14 by nondeterministic finite-state
automata.

13. Is the string bbabbb accepted by the nondeterministic finite-
state automaton of Figure 4.2? Prove your answer.

14. Is the string bbabab accepted by the nondeterministic finite-
state automaton of Figure 4.2? Prove your answer.

15. Show that a string α over {a, b} is accepted by the nondeter-
ministic finite-state automaton of Figure 4.2 if and only if α

contains exactly one a and ends with b.

16. Is the string aaabba accepted by the nondeterministic finite-
state automaton of Figure 4.3? Prove your answer.

17. Is the string aaaab accepted by the nondeterministic finite-
state automaton of Figure 4.3? Prove your answer.

18. Characterize the strings accepted by the nondeterministic
finite-state automaton of Figure 4.3.

693

Automata, Grammars, and Languages

19. Show that the strings accepted by the nondeterministic finite-
state automaton of Exercise 8 are precisely those strings over
{a, b} that end bab.

�20. Characterize the strings accepted by the nondeterministic
finite-state automata of Exercises 1–7, 9, and 10.

Design nondeterministic finite-state automata that accept the
strings over {a, b} having the properties specified in Exercises
21–29.

21. Starting either abb or ba

22. Ending either abb or ba

23. Containing either abb or ba

�24. Containing bab and bb

25. Having each b preceded and followed by an a

26. Starting with abb and ending with ab

�27. Starting with ab but not ending with ab

28. Not containing ba or bbb

�29. Not containing abba or bbb

30. Write regular grammars that generate the strings of Exercises
21–29.

5 ➜ Relationships Between Languages and Automata

In the preceding section we showed (Theorem 4.2) that if A is a finite-state automaton,
there exists a regular grammar G, with L(G) = Ac(A).As a partial converse, we showed
(Theorem 4.11) that if G is a regular grammar, there exists a nondeterministic finite-state
automaton A with L(G) = Ac(A). In this section we show (Theorem 5.4) that if G is a
regular grammar, there exists a finite-state automaton A with L(G) = Ac(A). This result
will be deduced from Theorem 4.11 by showing that any nondeterministic finite-state
automaton can be converted to an equivalent finite-state automaton (Theorem 5.3). We
will first illustrate the method by an example.

Example 5.1 Find a finite-state automaton equivalent to the nondeterministic finite-state automaton
of Figure 4.2.

The set of input symbols is unchanged. The states consist of all subsets

∅, {σ}, {C}, {F }, {σ, C}, {σ, F }, {C, F }, {σ, C, F }

of the original set S = {σ, C, F } of states. The initial state is {σ}. The accepting states
are all subsets

{F }, {σ, F }, {C, F }, {σ, C, F }

of S that contain an accepting state of the original nondeterministic finite-state
automaton.

An edge is drawn from X to Y and labeled x if X = ∅ = Y or if

⋃

S∈X
f(S, x) = Y.

We obtain the finite-state automaton of Figure 5.1. The states

{σ, F }, {σ, C}, {σ, C, F }, {F },

which can never be reached, can be deleted. Thus we obtain the simplified, equivalent
finite-state automaton of Figure 5.2.

694

Automata, Grammars, and Languages

C ,C,F

a b

b

C,F b

F

b

b

b

b

b

a a

aa

a

a

a

 ,F ,C

Figure 5.1 A finite-state automaton equivalent to the nondeterministic
finite-state automaton of Figure 4.2.

C C, F
b

b

ba
b

a
b

a

Figure 5.2 A simplified version of Figure 5.1 (with unreachable states
deleted).

Example 5.2 The finite-state automaton equivalent to the nondeterministic finite-state automaton of
Example 4.6 is shown in Figure 5.3.

D

b

C

b a

 ,C,D ,D

b

a

b

a

 ,C

C, D

a

b

a

a
bb

b
a

a

Figure 5.3 A finite-state automaton equivalent to the nondeterministic
finite-state automaton of Example 4.6.

We now formally justify the method of Examples 5.1 and 5.2.

695

Automata, Grammars, and Languages

Theorem 5.3 Let A = (I, S, f, A, σ) be a nondeterministic finite-state automaton. Let

(a) S ′ = P(S)

(b) I ′ = I
(c) σ ′ = {σ}
(d) A′ = {X ⊆ S | X ∩A = ∅}
(e) f ′(X, x) =

{
∅ if X = ∅

⋃
S∈X f(S, x) if X = ∅.

Then the finite-state automaton A′ = (I ′, S ′, f ′, A′, σ ′) is equivalent to A.

Proof Suppose that the string α = x1 · · · xn is accepted by A. Then there exist states
σ0, . . . , σn ∈ S with

σ0 = σ

σi ∈ f(σi−1, xi) for i = 1, . . . , n

σn ∈ A.

Set Y0 = {σ0} and

Yi = f ′(Yi−1, xi) for i = 1, . . . , n.

Since

Y1 = f ′(Y0, x1) = f ′({σ0}, x1) = f(σ0, x1),

it follows that σ1 ∈ Y1. Now

σ2 ∈ f(σ1, x2) ⊆
⋃

S∈Y1

f(S, x2) = f ′(Y1, x2) = Y2.

Again,

σ3 ∈ f(σ2, x3) ⊆
⋃

S∈Y2

f(S, x3) = f ′(Y2, x3) = Y3.

The argument may be continued (formally, we would use induction) to show that
σn ∈ Yn. Since σn is an accepting state in A, Yn is an accepting state in A′. Thus, in
A′, we have

f ′(σ ′, x1) = f ′(Y0, x1) = Y1

f ′(Y1, x2) = Y2

...

f ′(Yn−1, xn) = Yn.

Therefore, α is accepted by A′.
Now suppose that the string α = x1 · · · xn is accepted by A′. Then there exist

subsets Y0, . . . , Yn of S such that

Y0 = σ ′ = {σ}
f ′(Yi−1, xi) = Yi for i = 1, . . . , n;

also, there exists a state σn ∈ Yn ∩A. Since

σn ∈ Yn = f ′(Yn−1, xn) =
⋃

S∈Yn−1

f(S, xn),

696

Automata, Grammars, and Languages

there exists σn−1 ∈ Yn−1 with σn ∈ f(σn−1, xn). Similarly, since

σn−1 ∈ Yn−1 = f ′(Yn−2, xn−1) =
⋃

S∈Yn−2

f(S, xn−1),

there exists σn−2 ∈ Yn−2 with σn−1 ∈ f(σn−2, xn−1). Continuing, we obtain

σi ∈ Yi for i = 0, . . . , n,

with

σi ∈ f(σi−1, xi) for i = 1, . . . , n.

In particular,

σ0 ∈ Y0 = {σ}.
Thus σ0 = σ, the initial state in A. Since σn is an accepting state in A, the string α is
accepted by A.

The next theorem summarizes these results and those of the preceding section.

Theorem 5.4 A language L is regular if and only if there exists a finite-state automaton that accepts
precisely the strings in L.

Proof This theorem restates Theorems 4.2, 4.11, and 5.3.

Example 5.5 Find a finite-state automaton A that accepts precisely the strings generated by the regular
grammar G having productions

σ → bσ, σ → aC, C→ bC, C→ b.

The starting symbol is σ, the set of terminal symbols is {a, b}, and the set of nonterminal
symbols is {σ, C}.

The nondeterministic finite-state automaton A′ that accepts L(G) is shown in
Figure 4.2. A finite-state automaton equivalent to A′ is shown in Figure 5.1, and an
equivalent simplified finite-state automaton A is shown in Figure 5.2. The finite-state
automaton A accepts precisely the strings generated by G.

We close this section by giving some applications of the methods and theory we
have developed.

Example 5.6 A Language That Is Not Regular

Show that the language

L = {anbn | n = 1, 2, . . .}
is not regular.

If L is regular, there exists a finite-state automaton A such that Ac(A) = L.
Suppose that A has k states. The string α = akbk is accepted by A. Consider the path P ,
which represents α. Since there are k states, some state σ is revisited on the part of the
path representing ak. Thus there is a cycle C, all of whose edges are labeled a, that
contains σ. We change the path P to obtain a path P ′ as follows. When we arrive at σ

in P , we follow C. After returning to σ on C, we continue on P to the end. If the length

697

Automata, Grammars, and Languages

of C is j, the path P ′ represents the string α′ = aj+kbk. Since P and P ′ end at the same
state σ ′ and σ ′ is an accepting state, α′ is accepted by A. This is a contradiction, since α′

is not of the form anbn. Therefore, L is not regular.

Example 5.7 LetLbe the set of strings accepted by the finite-state automatonAof Figure 5.4. Construct
a finite-state automaton that accepts the strings

LR = {xn · · · x1 | x1 · · · xn ∈ L}.

b

b
b

a

a

a

1 2 3

Figure 5.4 The finite-state automaton for Example 5.7
that accepts L.

We want to convert A to a finite-state automaton that accepts LR. The string
α = x1 · · · xn is accepted by A if there is a path P in A representing α that starts at σ1 and
ends at σ3. If we start at σ3 and trace P in reverse, we end at σ1 and process the edges in
the order xn, . . . , x1. Thus we need only reverse all arrows in Figure 5.4 and make σ3 the
starting state and σ1 the accepting state (see Figure 5.5). The result is a nondeterministic
finite-state automaton that accepts LR.

After finding an equivalent finite-state automaton and eliminating the unreachable
states, we obtain the equivalent finite-state automaton of Figure 5.6.

b
b

a

a

a

b

1 2 3

Figure 5.5 A nondeterministic finite-state automaton
that accepts LR.

a

b

a
a

b

a

b

b

Figure 5.6 A finite-state automaton that accepts LR.

Example 5.8 LetLbe the set of strings accepted by the finite-state automatonAof Figure 5.7. Construct
a nondeterministic finite-state automaton that accepts the strings

LR = {xn · · · x1 | x1 · · · xn ∈ L}.

If A had only one accepting state, we could use the procedure of Example 5.7 to
construct the desired nondeterministic finite-state automaton. Thus we first construct
a nondeterministic finite-state automaton equivalent to A with one accepting state. To do
this we introduce an additional state σ5. Then we arrange for paths terminating at σ3 or σ4

to optionally terminate at σ5 (see Figure 5.8). The desired nondeterministic finite-state
automaton is obtained from Figure 5.8 by the method of Example 5.7 (see Figure 5.9).
Of course, if desired, we could construct an equivalent finite-state automaton.

698

Automata, Grammars, and Languages

a

b

a

a

b

a

b

b

1 2

4 3

Figure 5.7 The finite-state automaton for
Example 5.8 that accepts L.

a

b

a a

a

a

a

b

b

b

b

b

1 2

4 3

5

Figure 5.8 A nondeterministic
finite-state automaton with one accepting
state equivalent to the finite-state
automaton of Figure 5.7.

a

b

a a

a

a

b

b

b

b

b a

1 2

4 3

5

Figure 5.9 A nondeterministic
finite-state automaton that accepts LR.

Section Review Exercises

1. Given a nondeterministic finite-state automaton, how can we
construct an equivalent deterministic finite-state automaton?

2. Give a condition in terms of finite-state automata for a language
to be regular.

Exercises

1. Find the finite-state automata equivalent to the nondetermin-
istic finite-state automata of Exercises 1–10, Section 4.

In Exercises 2–6, find finite-state automata that accept the strings
generated by the regular grammars.

2. Grammar of Exercise 1, Section 3

3. Grammar of Exercise 5, Section 3

4.
<S> : := a<A>| a

<A> : := a| b<S>| b
 : := b<S>| b

with starting symbol <S>

5.
<S> : := a<S>| a<A>| b<C>| a
<A> : := b<A>| a<C>

 : := a<S>| a
<C> : := a| a<C>

with starting symbol <S>

6.
<S> : := a<A>| a

<A> : := b<S>| b
 : := a| a<C>

<C> : := a<S>| b<A>| a<C>| a

with starting symbol <S>

699

Automata, Grammars, and Languages

7. Find finite-state automata that accept the strings of Exer-
cises 21–29, Section 4.

8. By eliminating unreachable states from the finite-state auto-
maton of Figure 5.3, find a simpler, equivalent finite-state
automaton.

9. Show that the nondeterministic finite-state automaton of Fig-
ure 5.5 accepts a string α over {a, b} if and only if α begins bb.

�10. Characterize the strings accepted by the nondeterministic
finite-state automata of Figures 5.7 and 5.9.

In Exercises 11–21, find a nondeterministic finite-state automaton
that accepts the given set of strings. If S1 and S2 are sets of strings,
we let

S+1 = {u1u2 · · · un | ui ∈ S1, n ∈ {1, 2, . . .}};
S1S2 = {uv | u ∈ S1, v ∈ S2}.

11. Ac(A)R, where A is the automaton of Exercise 4, Section 2

12. Ac(A)R, where A is the automaton of Exercise 5, Section 2

13. Ac(A)R, where A is the automaton of Exercise 6, Section 2

14. Ac(A)+, where A is the automaton of Exercise 4, Section 2

15. Ac(A)+, where A is the automaton of Exercise 5, Section 2

16. Ac(A)+, where A is the automaton of Exercise 6, Section 2

17. Ac(A)+, where A is the automaton of Figure 5.7

18. Ac(A1)Ac(A2), where A1 is the automaton of Exercise 4, Sec-
tion 2, and A2 is the automaton of Exercise 5, Section 2

19. Ac(A1)Ac(A2), where A1 is the automaton of Exercise 5, Sec-
tion 2, and A2 is the automaton of Exercise 6, Section 2

20. Ac(A1)Ac(A1), where A1 is the automaton of Exercise 6, Sec-
tion 2

21. Ac(A1)Ac(A2), where A1 is the automaton of Figure 5.7 and
A2 is the automaton of Exercise 5, Section 2

22. Find a regular grammar that generates the language LR, where
L is the language generated by the grammar of Exercise 5, Sec-
tion 3.

23. Find a regular grammar that generates the language L+, where
L is the language generated by the grammar of Exercise 5, Sec-
tion 3.

24. Let L1 (respectively, L2) be the language generated by the
grammar of Exercise 5, Section 3 (respectively, Example 5.5).
Find a regular grammar that generates the language L1L2.

�25. Show that the set

L = {x1 · · · xn | x1 · · · xn = xn · · · x1}
of strings over {a, b} is not a regular language.

26. Show that if L1 and L2 are regular languages over I and S

is the set of all strings over I, then each of S − L1, L1 ∪ L2,
L1 ∩ L2, L+1 , and L1L2 is a regular language.

�27. Show, by example, that there are context-free languages L1

and L2 such that L1 ∩ L2 is not context-free.

�28. Prove or disprove: If L is a regular language, so is

{un | u ∈ L, n ∈ {1, 2, . . .}}.

Notes

General references on automata, grammars, and languages are [Carroll; Cohen; Davis;
Hopcroft; Kelley; McNaughton; Sudkamp; and Wood].

The systematic development of fractal geometry was begun by Benoit B. Mandelbrot
(see [Mandelbrot, 1977, 1982]).

A finite-state machine has a primitive internal memory in the sense that it remembers
which state it is in. By permitting an external memory on which the machine can read and write
data, we can define more powerful machines. Other enhancements are achieved by allowing
the machine to scan the input string in either direction and by allowing the machine to alter
the input string. It is then possible to characterize the classes of machines that accept context-
free languages, context-sensitive languages, and languages generated by phrase-structure
grammars.

Turing machines form a particularly important class of machines. Like a finite-state
machine, a Turing machine is always in a particular state. The input string to a Turing machine
is assumed to reside on a tape that is infinite in both directions. A Turing machine scans one
character at a time and after scanning a character, the machine either halts or does some, none,
or all of the following: alter the character; move one position left or right; change states. In
particular, the input string can be changed. A Turing machine T accepts a string α if, when α

is input to T , T halts in an accepting state. It can be shown that a language L is generated by
a phrase-structure grammar if and only if there is a Turing machine that accepts L.

The real importance of Turing machines results from the widely held belief that any
function that can be computed by some, perhaps hypothetical, digital computer can be com-
puted by some Turing machine. This last assertion is known as Turing’s hypothesis or

700

Automata, Grammars, and Languages

Church’s thesis. Church’s thesis implies that a Turing machine is the correct abstract model
of a digital computer. These ideas also yield the following formal definition of algorithm. An
algorithm is a Turing machine that, given an input string, eventually stops.

Chapter Review

Section 1
1. Unit time delay
2. Serial adder
3. Finite-state machine
4. Input symbol
5. Output symbol
6. State
7. Next-state function
8. Output function
9. Initial state

10. Transition diagram
11. Input and output strings for a finite-state machine
12. SR flip-flop

Section 2
13. Finite-state automaton
14. Accepting state
15. String accepted by a finite-state automaton
16. Equivalent finite-state automata

Section 3
17. Natural language
18. Formal language
19. Phrase-structure grammar
20. Nonterminal symbol
21. Terminal symbol
22. Production
23. Starting symbol
24. Directly derivable string
25. Derivable string

26. Derivation
27. Language generated by a grammar
28. Backus normal form (= Backus–Naur form = BNF)
29. Context-sensitive grammar (= type 1 grammar)
30. Context-free grammar (= type 2 grammar)
31. Regular grammar (= type 3 grammar)
32. Context-sensitive language
33. Context-free language
34. Regular language
35. Context-free interactive Lindenmayer grammar
36. von Koch snowflake
37. Fractal curves

Section 4
38. Given a finite-state automaton A, how to construct a regu-

lar grammar G, such that the set of strings accepted by A is
equal to the language generated by G (see Theorem 4.2)

39. Nondeterministic finite-state automaton
40. String accepted by a nondeterministic finite-state automaton
41. Equivalent nondeterministic finite-state automata
42. Given a regular grammar G, how to construct a nondeter-

ministic finite-state automatonA such that the language gen-
erated by G is equal to the set of strings accepted by A (see
Theorem 4.11)

Section 5
43. Given a nondeterministic finite-state automaton, how to

construct an equivalent deterministic finite-state automaton
(see Theorem 5.3)

44. A language L is regular if and only if there exists a finite-
state automaton that accepts the strings in L.

Chapter Self-Test

Section 1
1. Draw the transition diagram of the finite-state machine

(I, O, S, f, g, σ0), where I = {a, b}, O = {0, 1}, and
S = {σ0, σ1}.

f g

I a b a b

S
σ0 σ1 σ0 0 1
σ1 σ0 σ1 1 0

2. Find the sets I, O, and S, the initial state, and the table
defining the next-state and output functions for the follow-
ing finite-state machine.

S A

b/1

B

a/0
b/0

a/1
a/1

b/0

3. For the finite-state machine of Exercise 1, find the output
string for the input string bbaa.

701

Automata, Grammars, and Languages

4. Design a finite-state machine whose input is a bit string
that outputs 0 when it sees 001 and thereafter; otherwise, it
outputs 1.

Section 2
5. Draw the transition diagram of the finite-state automaton

(I, S, f, A, S), where I = {0, 1}, S = {S, A, B}, and
A = {A}.

f

I 0 1
S
S A S

A S B

B A S

6. Is the string 11010 accepted by the finite-state automaton of
Exercise 5?

7. Draw the transition diagram of a finite-state automaton that
accepts the set of strings over {0, 1} that contain an even
number of 0’s and an odd number of 1’s.

8. Characterize the set of strings accepted by the following
finite-state automaton.

0

1

0

1

0

1

0 1 2

Section 3
9. Is the grammar

S → aSb, S → Ab, A→ aA, A→ b, A→ λ

context-sensitive, context-free, regular, or none of these?
Give all characterizations that apply.

10. Show that the string α = aaaabbbb is in the language gen-
erated by the grammar of Exercise 9 by giving a derivation
of α.

11. Characterize the language generated by the grammar of
Exercise 9.

12. Write a grammar that generates all nonnull strings over
{0, 1} having an equal number of 0’s and 1’s.

Section 4
13. Draw the transition diagram of the nondeterministic finite-

state automaton (I, S, f, A, σ0), where I = {a, b}, S =
{σ0, σ1, σ2}, and A = {σ2}.

I a b

S
σ0 {σ0} {σ2}
σ1 {σ0, σ1} ∅

σ2 {σ2} {σ0, σ1}

14. Find the sets I, S, and A, the initial state, and the table defin-
ing the next-state function for the nondeterministic finite-
state automaton shown below

b

a

a b

a

a

0 1 2

15. Is the string aabaaba accepted by the nondeterministic
finite-state automaton of Exercise 14? Explain.

16. Design a nondeterministic finite-state automaton that
accepts all strings over {0, 1} that begin 01 and contain 110.

Section 5
17. Find a finite-state automaton equivalent to the nondetermin-

istic finite-state automaton of Exercise 13.

18. Find a finite-state automaton equivalent to the nondetermin-
istic finite-state automaton of Exercise 14.

19. Explain how to construct a nondeterministic finite-state
automaton that accepts the language

L1L2 = {αβ | α ∈ L1, β ∈ L2},

given finite-state automata that accept regular languages L1

and L2.

20. Prove that any regular language that does not contain the null
string is accepted by a nondeterministic finite-state auto-
maton with exactly one accepting state. Give an example
to show that this statement is false for arbitrary regular lan-
guages (i.e., if we allow the null string as a member of the
regular language).

702

Automata, Grammars, and Languages

Computer Exercises
1. Write a program that simulates an arbitrary finite-state

machine. The program should initially receive as input the
next-state function, the output function, and the initial state.
The program should then accept strings, simulate the action
of the finite-state machine, and output the string produced by
the finite-state machine.

2. Write a program that simulates an arbitrary finite-state
automaton. The program should initially receive as input the
next-state function, the set of accepting states, and the ini-
tial state. The program should then accept strings, simulate

the action of the finite-state automaton, and print messages
indicating whether the strings are accepted.

3. Write a program to draw a fractal given the context-free
interactive Lindenmayer grammar that generates it (see
Section 3).

4. Report on the Knuth–Morris–Pratt algorithm (see [Johnson-
baugh]) that determines whether a string contains a partic-
ular substring. This algorithm makes use of a finite-state
automaton.

Hints/Solutions to Selected Exercises

Section 1 Review
1. A unit time delay accepts as input a bit xt at time t and outputs

xt−1, the bit received as input at time t − 1.

2. A serial adder inputs two binary numbers and outputs their
sum.

3. A finite-state machine consists of a finite set I of input sym-
bols, a finite set O of output symbols, a finite set S of states,
a next-state function f from S × I into S, an output function
g from S × I into O, and an initial state σ ∈ S.

4. Let M = (I, O, S, f, g, σ) be a finite-state machine. The tran-
sition diagram of M is a digraph G whose vertices are the
states. An arrow designates the initial state. A directed edge
(σ1, σ2) exists in G if there exists an input i with f(σ1, i) = σ2.
In this case, if g(σ1, i) = o, the edge (σ1, σ2) is labeled i/o.

5. The SR flip-flop is defined by the table

S R Q

1 1 Not allowed
1 0 1
0 1 0

0 0
{

1 if S was last equal to 1
0 if R was last equal to 1

Section 1
1.

a/0

a/1

b/1

b/10 1

4.
a/0 a/1

b/1

a/1
b/0

c/0

c/0

c/1

b/1

0 1 2

6. I = {a, b}; O = {0, 1}; S = {σ0, σ1}; initial state = σ0

I a b a b

S
σ0 σ1 σ0 0 1
σ1 σ1 σ1 1 1

9. I ={a, b}; O={0, 1}; S ={σ0, σ1, σ2, σ3}; initial state = σ0

I a b a b

S
σ0 σ1 σ2 0 0
σ1 σ0 σ2 1 0
σ2 σ3 σ0 0 1
σ3 σ1 σ3 0 0

11. 1110 14. 001110

17. 001110001 20. 020022201020

21.

E O

1/0

1/1

0/0

0/1

703

Automata, Grammars, and Languages

24.

0/0
1/0

1/1

1/0 0/0

0/0

0 1 2

27. Whenγ is input, the machine outputsxn, xn−1, . . .untilxi = 1.
Thereafter, it outputs xi. However, this is the 2’s complement
of α.

Section 2 Review
1. A finite-state automaton consists of a finite set I of input

symbols, a finite set S of states, a next-state function f from
S×I into S, a subset A of S of accepting states, and an initial
state σ ∈ S.

2. A string is accepted by a finite-state automaton A if, when the
string is input to A, the last state reached is an accepting state.

3. Finite-state automata are equivalent if they accept precisely
the same strings.

Section 2
1. All incoming edges to σ0 output 1 and all incoming edges

to σ1 output 0; hence the finite-state machine is a finite-state
automaton.

a

b

b

a0 1

4.

a/0

a/1

b/0

b/0

0 1

7.
b

a
b

a

a

b

0 1 2

10. (For Exercise 1) I = {a, b}; S = {σ0, σ1}; A = {σ0}; initial
state = σ0

I a b

S
σ0 σ0 σ1

σ1 σ1 σ0

13. Accepted

16. Accepted

18. No matter which state we are in, after an a we move to an
accepting state; however, after a b we move to a nonaccepting
state.

21.

b

Even odd b

a

a

24.
b b b a

a a a

b

0 1 2 3

27. a

b a a

b
a

ba

b
b

0 1 2 3

4

704

Automata, Grammars, and Languages

30.

a b

b
a

b

a

b

a

0 1 2 3

32. (For Exercise 1) This algorithm determines whether a string
over {a, b} is accepted by the finite-state automaton whose
transition diagram is given in Exercise 1.

Input: n, the length of the string (n = 0 designates the
null string); s1 · · · sn, the string

Output: “Accept” if the string is accepted
“Reject” if the string is not accepted

ex32(s, n) {
state = ‘σ0’
for i = 1 to n {

if (state == ‘σ0’∧ si == ‘b’)
state = ‘σ1’

if (state == ‘σ1’∧ si == ‘b’)
state = ‘σ0’

}
if (state == ‘σ0’)

return “Accept”
else

return “Reject”
}

35. Make each accepting state nonaccepting and each nonaccept-
ing state accepting.

38. Using the construction given in Exercises 36 and 37, we obtain
the following finite-state automaton that accepts L1∩L2. (We
designate the states in Exercise 5 with primes.)

b

a

a

a

a b

b

b

a

a

b b

� �0, 1� � �1, 1�

� �1, 2�

� �1, 0� � �0, 1� � �0, 2�

The finite-state automaton that accepts L1 ∪ L2 is the
same as the finite-state automaton that accepts L1 ∩L2 except
that the set of accepting states is

{(σ1, σ
′
0), (σ1, σ

′
1), (σ1, σ

′
2), (σ0, σ

′
2)}.

41. Use the construction of Exercises 36 and 37.

Section 3 Review
1. A “natural language” refers to ordinary written and spoken

words and combinations of words. A “formal language” is
an artificial language consisting of a specified set of strings.
Formal languages are used to model natural languages and to
communicate with computers.

2. A phrase-structure grammar consists of a finite set N of non-
terminal symbols, a finite set T of terminal symbols where
N ∩ T = ∅, a finite subset of [(N ∪ T)∗ − T ∗] × (N ∪ T)∗
called the set of productions, and a starting symbol in N.

3. If α→ β is a production and xαy ∈ (N ∪T)∗, we say that xβy

is directly derivable from xαy.

4. If αi ∈ (N∪T)∗ for i = 1, . . . , n, and αi+1 is directly derivable
from αi for i = 1, . . . , n− 1, we say that αn is derivable from
α1 and write α1 ⇒ αn.

5. We call α1 ⇒ α2 ⇒ · · · ⇒ αn a derivation of αn from α1.

6. The language generated by a grammar consists of all strings
in terminals derivable from the start symbol.

7. Backus normal form (BNF) is a way to write the productions
of a grammar. In BNF the nonterminal symbols typically begin
with “〈” and end with “〉”. Also the arrow→ is replaced with
::=. Productions with the same left-hand side are combined
using the bar “|”. An example is

〈signed integer〉 ::=
+〈unsigned integer〉 | − 〈unsigned integer〉

8. In a context-sensitive grammar, every production is of the
form αAβ → αδβ, where α, β ∈ (N ∪ T)∗, A ∈ N, and δ ∈
(N ∪ T)∗ − {λ}.

9. In a context-free grammar, every production is of the form
A→ δ, where A ∈ N and δ ∈ (N ∪ T)∗.

10. In a regular grammar, every production is of the form A→ a,
A→ aB, or A→ λ, where A, B ∈ N and a ∈ T .

11. A context-sensitive grammar

12. A context-free grammar

13. A regular grammar

14. A language is context-sensitive if there is a context-sensitive
grammar that generates it.

15. A language is context-free if there is a context-free grammar
that generates it.

16. A language is regular if there is a regular grammar that gener-
ates it.

17. A context-free, interactive Lindenmayer grammar consists of
a finite set N of nonterminal symbols; a finite set T of terminal

705

Automata, Grammars, and Languages

symbols where N∩T = ∅; a finite set of productions A→ B,
where A ∈ N ∪ T and B ∈ (N ∪ T)∗; and a starting symbol
in N.

18. The von Koch snowflake is generated by the context-free, inter-
active Lindenmayer grammar

N = {D}
T = {d,+,−}
P = {D→ D−D++D−D, D→ d,+→ +,

−→ −}.
d means “draw a straight line of a fixed length in the current
direction,” + means “turn right by 60◦,” and − means “turn
left by 60◦.”

19. Fractal curves are characterized by having a part of the whole
curve resemble the whole.

Section 3
1. Regular, context-free, context-sensitive

4. Context-free, context-sensitive

7. σ ⇒ bσ ⇒ bbσ ⇒ bbaA ⇒ bbabA ⇒ bbabbA ⇒
bbabbaσ ⇒ bbabbab

10. σ ⇒ ABA⇒ ABBA⇒ ABBAA
⇒ ABBaAA⇒ abBBaAA⇒ abbBaAA
⇒ abbbaAA⇒ abbbaabA⇒ abbbaabab

12. (For Exercise 1)

<σ > ::= b<σ > | a<A> | b
< A > ::= a<σ > | b<A> | a

15. S → aA, A→ aA, A→ bA, A→ a,
A→ b, S → a

18. S → aA, S → bS, S → λ, A→ aA,
A→ bB, A→ λ, B→ aA, B→ bS

21. <exp number> ::= < integer> E < integer> |
<float number> |
<float number> E < integer>

24. S → aSa, S → bSb, S → a, S → b, S → λ

25. If a derivation begins S ⇒ aSb, the resulting string begins with
a and ends with b. Similarly, if a derivation begins S ⇒ bSa,
the resulting string begins with b and ends with a. Therefore,
the grammar does not generate the string abba.

28. If a derivation begins S ⇒ abS, the resulting string begins
ab. If a derivation begins S ⇒ baS, the resulting string begins
ba. If a derivation begins S ⇒ aSb, the resulting string starts
with a and ends with b. If a derivation begins S ⇒ bSa, the
resulting string begins with b and ends with a. Therefore, the
grammar does not generate the string aabbabba.

31. The grammar does generate L, the set of all strings over {a, b}
with equal numbers of a’s and b’s.

Any string generated by the grammar has equal num-
bers of a’s and b’s since whenever any of the productions are

used in a derivation, equal numbers of a’s and b’s are added to
the string.

To prove the converse, we consider an arbitrary string
α in L, and we use induction on the length |α| of α to show
that α is generated by the grammar. The Basis Step is |α| = 0.
In this case, α is the null string, and S ⇒ λ is a derivation
of α.

Let α be a nonnull string, and suppose that any string in
L whose length is less than |α| is generated by the grammar.
We first consider the case that α starts with a. Then α can be
written α = aα1bα2, where α1 and α2 have equal numbers of
a’s and b’s. By the inductive hypothesis, there are derivations
S ⇒ α1 and S ⇒ α2 of α1 and α2. But now

S ⇒ aSbS ⇒ aα1bα2

is a derivation of α. Similarly, if α starts with b, there is a
derivation of α. The Inductive Step is finished, and the proof is
complete.

32. Replace each production

A→ x1 · · · xnB,

where n > 1, xi ∈ T , and B ∈ N, with the productions

A → x1A1

A1 → x2A2

...

An−1 → xnB,

where A1, . . . , An−1 are additional nonterminal symbols.

35. S ⇒ D+D+D+D⇒ d + d + d + d

S ⇒ D+D+D+D

⇒ D+D−D−DD+D+D−D

+D+D−D−DD+D+D−D

+D+D−D−DD+D+D−D

+D+D−D−DD+D+D−D

⇒ d + d − d − dd + d + d − d

+ d + d − d − dd + d + d − d

+ d + d − d − dd + d + d − d

+ d + d − d − dd + d + d − d

706

Automata, Grammars, and Languages

START

Section 4 Review
1. Let σ be the start state, let T be the set of input symbols, and let

N be the set of states. Let P be the set of productions S → xS′,
if there is an edge labeled x from S to S′, and S → λ if S is
an accepting state. Let G be the regular grammar (N, T, P, σ).
Then the set of strings accepted by A is equal to L(G).

2. A nondeterministic finite-state automaton consists of a finite
set I of input symbols, a finite set S of states, a next-state
function f from S×I into P(S), a subset A of S of accepting
states, and an initial state σ ∈ S.

3. A string α is accepted by a nondeterministic finite-state
automaton A if there is some path representing α in the tran-
sition diagram of A beginning at the initial state and ending
in an accepting state.

4. Nondeterministic finite-state automata are equivalent if they
accept precisely the same strings.

5. Let G = (N, T, P, σ) be a regular grammar. The finite-state
automaton A is constructed as follows. The set of input sym-
bols is T . The set of states is N together with an additional
state F /∈ N ∪ T . The next-state function f is defined as

f(S, x) = {S′ | S → xS′ ∈ P} ∪ {F | S → x ∈ P}.
The set of accepting states is F together with all S for which
S → λ is a production. Then A accepts precisely the strings
L(G).

Section 4
1.

a

a

b

b
b

b

0 1 2

4.

ab

a

c

a

c
b

c

a
a

0 1 2

6. I = {a, b}; S = {σ0, σ1, σ2}; A = {σ1, σ2};
initial state = σ0

I a b

S
σ0 {σ1, σ2} ∅

σ1 {σ1} {σ0, σ2}
σ2 ∅ ∅

9. I = {a, b}; S = {σ0, σ1, σ2, σ3}; A = {σ3};
initial state = σ0

I a b

S
σ0 {σ0} {σ0, σ1}
σ1 {σ2} ∅

σ2 ∅ {σ3}
σ3 {σ3} {σ3}

11. (For Exercise 5) N ={σ0, σ1, σ2}, T ={a, b},
σ0 → aσ1, σ0 → bσ0, σ1 → aσ0, σ1 → bσ2,

σ2 → bσ1, σ2 → aσ0, σ2 → λ

14. No. For the first three characters, bba, the moves are deter-
mined and we end at C. From C, no edge contains an a;
therefore, bbabab is not accepted.

17. Yes. The path (σ, σ, σ, σ, C, C), which represents the string
aaaab, ends at C, which is an accepting state.

21.
a

a b b

b
b a

0 1 2 3

4

707

Automata, Grammars, and Languages

24.

a

a b

b

b a

a b

b a

b

b

b

b

b

b

b

b

b

b

a

b

ab

ab

1

0

2 3

4 5 6

7 8 9 10

15

14131211

27.

a

a

a

b

bba
b

b

a

0 1 2 3 4 5

30. (For Exercise 21) σ0 → aσ1, σ0 → bσ4, σ1 → bσ2,
σ2 → bσ3, σ3 → aσ3, σ3 → bσ3, σ4 → aσ3, σ3 → λ

Section 5 Review
1. Let A = (I, S, f , A, σ) be a nondeterministic finite-state

automaton. An equivalent deterministic finite-state automaton
can be constructed as follows. The set of states is the power set
of S. The set of input symbols is I (unchanged). The start sym-

bol is {σ} (essentially unchanged). The set of accepting states
consists of all subsets of S that contain at least one accepting
state of A. The next state function is defined by the rule

f ′(X, x) =
{

∅ if X = ∅⋃
S∈X f(S, x) if X = ∅.

2. A language L is regular if and only if there exists a finite-state
automaton that accepts precisely the strings in L.

Section 5
1. (For Exercise 1)

a

a b

b

a

a

a

a

a

b

b
b

b

b

0

2

,0 2 ,0 1,1 2

,0 1, 2

708

Automata, Grammars, and Languages

2.

 , F

A
a

a
b

b

a

b

5.

SBCF BC

SAF SACF

SABCFAC

S

C

A

a

a

b

a

b

ba

b

b

b

b

a

a

a

b

b

b

a
a

a

7. (For Exercise 21)

a

a b b

b
b a

aa

b

ba

0 1 2 3

4

5

709

Automata, Grammars, and Languages

10. Figure 5.7 accepts the string ban, n ≥ 1, and strings that end
b2 or aban, n ≥ 1. Using Example 5.8, we see that Figure 5.9
accepts the string anb, n ≥ 1, and strings that start b2 or anba,
n ≥ 1.

11.
b

a

b

a

0 1

14.
a

a

b

a

b

0 1

17.

b

b

b

a

b

a b b a

a

a
a

1 2

4 3

20.

b

a

b

a

a a

b

b a

a

b

a

b
b

a

ab

b
b

a

0 1

2 3

0� 1�

2� 3�

22. σ0 → aσ1, σ0 → bσ2, σ0 → a, σ1 → aσ0,
σ1 → aσ2, σ1 → bσ1, σ1 → b, σ2 → bσ0

25. Suppose that L is regular. Then there exists a finite-state
automaton A with L = Ac(A). Suppose that A has k states.
Consider the string akbbak and argue as in Example 5.6.

28. The statement is false. Consider the regular language L =
{anb | n ≥ 0}, which is accepted by the finite-state automaton

A B

a

b
b

S

a

a

b

The language

L′ = {un | u ∈ L, n ∈ {1, 2, . . .}}

is not regular. Suppose that L′ is regular. Then there is a finite-
state automaton A that accepts L′. In particular, A accepts anb

for every n. It follows that for sufficiently large n, the path
representing anb contains a cycle of length k. Since A accepts
anbanb, A also accepts an+kbanb, which is a contradiction.

Chapter Self-Test
1.

a/0

a/1

b/0b/1

0 1

2. I = {a, b}; O = {0, 1}; S = {S, A, B}; initial state = S

f g

I a b a b

S
S A A 0 0
A S B 1 1
B A B 1 0

3. 1101

4.

S A

0/1

1/1

1/1

B C

0/00/1

1/0

0/1 1/0

710

Automata, Grammars, and Languages

5.

A B

1

0

S

0

0

1

1

6. Yes

7.

S A

B C

0

0

0

0

11 11

8. Every 0 is followed by a 1.

9. Context-free

10. S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaAbbbb ⇒
aaaaAbbbb⇒ aaaabbbb

11. aibj , j ≤ 2+ i, j ≥ 1, i ≥ 0

12. S → ASB, S → AB, AB → BA, BA → AB, A → a,
B→ b

13.

a

b

a

b

ba

a

0 1 2

14. I = {a, b}; S = {σ0, σ1, σ2}; A = {σ0}; initial state = σ0

I a b

S
σ0 {σ0, σ1} ∅

σ1 ∅ {σ2}
σ2 {σ0, σ2} {σ2}

15. Yes, since the path

(σ0, σ0, σ1, σ2, σ2, σ2, σ2, σ0)

represents aabaaba and σ0 is an accepting state.

16.

110 01

0

11

0 1

0 1 2 3 4 5

17.
a

b

a a

b

b� �0 � �2 � �0, 1

18.

a b

b
a

ba

b

a

ab

a

b� �0 � �2� �0, 1 � �0, 2 � �0, 1, 2

711

Automata, Grammars, and Languages

19. Combine the nondeterministic finite-state automata that accept
L1 and L2 in the following way. Let S be the start state of L2.
For each edge of the form (S1, S2) labeled a in L1 where S2

is an accepting state, add an edge (S1, S) labeled a. The start
state of the nondeterministic finite-state automaton is the start
state of L1. The accepting states of the nondeterministic finite-
state automaton are the accepting states of L2.

20. Let A′ be a nondeterministic finite-state automaton that accepts
a regular language that does not contain the null string. Add
a state F . For each edge, (σ, σ′) labeled a in A′ where σ′
is accepting, add the edge (σ, F) labeled a. Make F the
only accepting state. The resulting nondeterministic finite-
state automaton A has one accepting state. We claim that
Ac(A) = Ac(A′).

We show that Ac(A)⊆Ac(A′). [The argument that
Ac(A′)⊆Ac(A) is similar and omitted.] Suppose that
α∈Ac(A). There is a path

(σ0, σ1, . . . , σn−1, σn)

that represents α in A, with σn an accepting state. Since α = λ,
there is a last symbol a in α. Thus the edge (σn−1, σn) is labeled
a. Now the path

(σ0, σ1, . . . , σn−1, F)

represents α in A′ and terminates in an accepting state. There-
fore, α ∈ Ac(A′).

To see that the statement is false for an arbitrary regular
language, consider the regular language

L = {λ} ∪ {0i | i is odd }

and a nondeterministic finite-state automaton A with start state
S that accepts L. Since λ ∈ L, S is an accepting state. If S has a
loop labeled 0, then A accepts all strings of 0’s; therefore, there
is no loop at S labeled 0. Since 0 ∈ L and there is no loop at S,
there is an edge from S to an accepting state S′ = S, which is
a contradiction. Therefore, A has at least two accepting states.

712

Matrices
Appendix

It is a common practice to organize data into rows and columns. In mathematics, such
an array of data is called a matrix. In this appendix we summarize some definitions and
elementary properties of matrices. We begin with the definition of “matrix.”

Definition 1 A matrix

A =

⎛

⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

⎞

⎟⎟⎟⎠ (1)

is a rectangular array of data.
If A has m rows and n columns, we say that the size of A is m by n (written m×n).

We will often abbreviate equation (1) to A = (aij). In this equation, aij denotes
the element of A appearing in the ith row and jth column.

Example 2 The matrix

A =
(

2 1 0
−1 6 14

)

has two rows and three columns, so its size is 2 × 3. If we write A = (aij), we would
have, for example,

a11 = 2, a21 = −1, a13 = 0.

Definition 3 Two matrices A and B are equal, written A = B, if they are the same size and their
corresponding entries are equal.

Example 4 Determine w, x, y, and z so that

(
x+ y y

w+ z w− z

)
=
(

5 2
4 6

)
.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

713

Appendix: Matrices

According to Definition 3, since the matrices are the same size, they will be equal
provided that

x+ y = 5 y = 2
w+ z = 4 w− z = 6.

Solving these equations, we obtain

w = 5, x = 3, y = 2, z = −1.

We describe next some operations that can be performed on matrices. The sum
of two matrices is obtained by adding the corresponding entries. The scalar product is
obtained by multiplying each entry in the matrix by a fixed number.

Definition 5 Let A = (aij) and B = (bij) be two m× n matrices. The sum of A and B is defined as

A+ B = (aij + bij).

The scalar product of a number c and a matrix A = (aij) is defined as

cA = (caij).

If A and B are matrices, we define −A = (−1)A and A− B = A+ (−B).

Example 6 If

A =
⎛

⎝
4 2
−1 0

6 −2

⎞

⎠, B =
⎛

⎝
1 −3
4 4
−1 −3

⎞

⎠,

then

A+ B =
⎛

⎝
5 −1
3 4
5 −5

⎞

⎠, 2A =
⎛

⎝
8 4
−2 0
12 −4

⎞

⎠, −B =
⎛

⎝
−1 3
−4 −4

1 3

⎞

⎠.

Multiplication of matrices is another important matrix operation.

Definition 7 Let A = (aij) be an m × n matrix and let B = (bjk) be an n × l matrix. The matrix
product of A and B is defined as the m× l matrix

AB = (cik),

where

cik =
n∑

j=1

aijbjk.

To multiply the matrix A by the matrix B, Definition 7 requires that the number
of columns of A be equal to the number of rows of B.

714

Appendix: Matrices

Example 8 Let

A =
⎛

⎝
1 6
4 2
3 1

⎞

⎠ , B =
(

1 2 −1
4 7 0

)
.

The matrix product AB is defined since the number of columns of A is the same as the
number of rows of B; both are equal to 2. Entry cik in the product AB is obtained by using
the ith row of A and the kth column of B. For example, the entry c31 will be computed
using the third row

(3 1)

of A and the first column
(

1
4

)

of B. We then multiply, consecutively, each element in the third row of A by each element
in the first column of B and then sum to obtain

3 · 1+ 1 · 4 = 7.

Since the number of columns of A is the same as the number of rows of B, the elements
pair up correctly. Proceeding in this way, we obtain the product

AB =
⎛

⎝
25 44 −1
12 22 −4

7 13 −3

⎞

⎠ .

Example 9 The matrix product

(
a b

c d

)(
x

y

)
is

(
ax+ by

cx+ dy

)
.

Definition 10 Let A be an n× n matrix. If m is a positive integer, the mth power of A is defined as the
matrix product

Am = A · · ·A︸ ︷︷ ︸
m A′s

.

Example 11 If

A =
(

1 −3
−2 4

)
,

then

A2 = AA =
(

1 −3
−2 4

)(
1 −3
−2 4

)
=
(

7 −15
−10 22

)

A4 = AAAA = A2A2 =
(

7 −15
−10 22

)(
7 −15

−10 22

)
=
(

199 −435
−290 634

)
.

715

Appendix: Matrices

Exercises

†1. Compute the sum
(

2 4 1
6 9 3
1 −1 6

)
+
(

a b c

d e f

g h i

)
.

In Exercises 2–8, let

A =
(

1 6 9
0 4 −2

)
, B =

(
4 1 −2
−7 6 1

)

and compute each expression.

2. A+ B 3. B + A

4. −A 5. 3A

6. −2B 7. 2B + A

8. B − 6A

In Exercises 9–13, compute the products.

9.

(
1 2 3
−1 2 3

0 1 4

)(
2 8
−1 1

6 0

)

10.

(
1 6
−8 2

4 1

)(
4 1
7 −6

)

11. A2, where A =
(

1 −2
6 2

)

12.
(

2 −4 6 1 3
)

⎛

⎜⎜⎜⎝

1
3
−2

6
4

⎞

⎟⎟⎟⎠

13.

(
2 4 1
6 9 3
1 −1 6

)(
a b

c d

e f

)

14.

(a) Give the size of each matrix.

A =
(

1 4 6
0 1 7

)
, B =

(
1 4 7
8 2 1
0 1 6

)
,

C =
(

4 2
0 0
2 9

)

(b) Using the matrices of part (a), decide which of the products

A2, AB, BA, AC, CA, AB2,

BC, CB, C2

are defined and then compute these products.

15. Determine x, y, and z so that the equation
(

x+ y 3x+ y

x+ z x+ y − 2z

)
=
(
−1 1

9 −17

)

holds.

16. Determine w, x, y, and z so that the equation

(
2 1 −1 7
6 8 0 3

)
⎛

⎜⎝

x 2x

y −y + z

x+ w w− 2y + x

z z

⎞

⎟⎠ = −
(

45 46
3 87

)

holds.

17. Define the n× n matrix In = (aij) by

aij =
{

1 if i = j

0 if i �= j.

The matrix In is called the n× n identity matrix.
Show that if A is an n×n matrix (such a matrix is called

a square matrix), then

AIn = A = InA.

An n × n matrix A is said to be invertible if there exists an n × n

matrix B satisfying

AB = In = BA.

(The matrix In is defined in Exercise 17.)

18. Show that the matrix (
2 1
1 1

)

is invertible.
‡�19. Show that the matrix (

a b

c d

)

is invertible if and only if ad − bc �= 0.

20. Suppose that we want to solve the system

AX = C,

where

A =
(

a11 a12

a21 a22

)

X =
(

x

y

)

C =
(

c1

c2

)

for x and y.
Show that if A is invertible, the system has a solution.

21. The transpose of a matrix A = (aij) is the matrix AT = (a′ji),
where a′ji = aij. Example:

(
1 3
4 6

)T

=
(

1 4
3 6

)
.

If A and B are m × k and k × n matrices, respectively, show
that

(AB)T = BT AT .

†Exercise numbers in color indicate that a hint or solution appears at the end of this appendix.
‡A starred exercise indicates a problem of above-average difficulty.716

Appendix: Matrices

Hints/Solutions to Selected Exercises

1. (2+ a 4+ b 1+ c

6+ d 9+ e 3+ f

1+ g −1+ h 6+ i

)

2. (5 7 7
−7 10 −1

)

5. (3 18 27
0 12 −6

)

8. (−2 −35 −56
−7 −18 13

)

9. (18 10
14 −6
23 1

)

12. (−4)

14. (a) 2× 3, 3× 3, 3× 2

(b) AB =
(

33 18 47
8 9 43

)

AC =
(

16 56
14 63

)

CA =
(

4 18 38
0 0 0
2 17 75

)

AB2 =
(

177 215 531
80 93 323

)

BC =
(

18 65
34 25
12 54

)

17. Let A = (bij), In = (ajk), AIn = (cik). Then

cik =
n∑

j=1

bijajk = bikakk = bik.

Therefore, AIn = A. Similarly, InA = A.

20. The solution is X = A−1C.

717

718

Algebra Review
Appendix

In this appendix, we review basic algebra: rules for combining and simplifying expres-
sions; fractions; exponents; factoring; quadratic equations; inequalities; and logarithms.
For a more extensive treatment of basic algebra, see [Bleau; Lial; Sullivan].

Grouping
Terms with a common symbol can be combined:

ac + bc = (a+ b)c, ac − bc = (a− b)c.

Technically, these equations are known as distributive laws.

Example 1

2x+ 3x = (2+ 3)x = 5x

The distributive laws, rewritten as

a(b+ c) = ab+ ac, a(b− c) = ab− ac,

can be used to simplify expressions.

Example 2

2(x+ 1) = 2x+ 2 · 1 = 2x+ 2

Example 3

2(x+ 1)+ 2(x− 1) = 2x+ 2+ 2x− 2 = 4x

Fractions
Formulas useful for adding, subtracting, and multiplying fractions are given as Theo-
rem 4.

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

719

Appendix: Algebra Review

Theorem 4 Combining Fractions

(a)
a

c
+ b

c
= a+ b

c

(b)
a

c
− b

c
= a− b

c

(c)
a

c
+ b

d
= ad + bc

cd

(d)
a

c
− b

d
= ad − bc

cd

(e)
a

c
· b

d
= ab

cd

Example 5 Using Theorem 4(a), we obtain

x− 1

2
+ x+ 1

2
= (x− 1)+ (x+ 1)

2
= 2x

2
= x.

Example 6 Using Theorem 4(b), we obtain

x− 1

2
− x+ 1

2
= (x− 1)− (x+ 1)

2
= −2

2
= −1.

Example 7 Using Theorem 4(c), we obtain

x− 1

2
+ x+ 1

3
= 3(x− 1)+ 2(x+ 1)

2 · 3
= 5x− 1

6
.

Example 8 Using Theorem 4(d), we obtain

x− 1

2
− x+ 1

3
= 3(x− 1)− 2(x+ 1)

2 · 3
= x− 5

6
.

Example 9 Using Theorem 4(e), we obtain

2

x
· 4

y
= 8

xy
.

Exponents
If n is a positive integer and a is a real number, we define an as

an = a · a · · · a︸ ︷︷ ︸
n a’s

.

If a is a nonzero real number, we define a0 = 1. If n is a negative integer and a is a
nonzero real number, we define an as

an = 1

a−n
.

720

Appendix: Algebra Review

Example 10 If a is a real number,

a4 = a · a · a · a.

As a specific example,

24 = 2 · 2 · 2 · 2 = 16.

If a is a nonzero real number,

a−4 = 1

a4
.

As a specific example,

2−4 = 1

24
= 1

16
.

If a is a positive real number and n is a positive integer, we define a1/n to be the
positive number b satisfying

bn = a.

We call b the nth root of a.

Example 11 31/4 to nine significant digits is 1.316074013 because (1.316074013)4 is approximately 3.

If a is a positive real number, m is an integer, and n is a positive integer, we define

am/n = (a1/n)m.

The preceding equation defines aq for all positive real numbers a and rational numbers
q. (Recall that a rational number is a number that is the quotient of integers.)

Example 12 Since 31/4 to nine significant digits is 1.316074013,

39/4 = (1.316074013)9 = 11.84466612.

The decimal values are approximations.

If a is a positive real number, the definition of ax can be extended to include all
real numbers x (rational or irrational). The following theorem lists five important laws
of exponents.

721

Appendix: Algebra Review

Theorem 13 Laws of Exponents
Let a and b be positive real numbers, and let x and y be real numbers. Then

(a) ax+y = axay

(b) (ax)y = axy

(c)
ax

ay
= ax−y

(d) axbx = (ab)x

(e)
ax

bx
=
(a

b

)x

.

Example 14 Let a = 3, x = 2, and y = 4. Then ax = 9, ay = 81, and ax+y = 32+4 = 729. Now

ax+y = 729 = 9 · 81 = axay,

which illustrates Theorem 13(a).

Example 15 Let a = 3, x = 2, and y = 4. Then ax = 9 and axy = 38 = 6561. Now

(ax)y = 94 = 6561 = axy,

which illustrates Theorem 13(b).

Example 16 Let a = 3, x = 2, and y = 4. Then ax = 9, ay = 81, and ax−y = 3−2 = 1/9. Now

ax

ay
= 9

81
= 1

9
= ax−y,

which illustrates Theorem 13(c).

Example 17 Let a = 3, b = 4, and x = 2. Then ax = 9, bx = 16, and (ab)x = 122 = 144. Now

axbx = 9 · 16 = 144 = (ab)x,

which illustrates Theorem 13(d).

Example 18 Let a = 3, b = 4, and x = 2. Then ax = 9, bx = 16, and

(a

b

)x

=
(

3

4

)2

= 9

16
.

Now

ax

bx
= 9

16
=
(a

b

)x

,

which illustrates Theorem 13(e).

Example 19

2x2x = 2x+x = 22x = (22)x = 4x

722

Appendix: Algebra Review

Factoring
We may use the equation

(x+ b)(x+ d) = x2 + (b+ d)x+ bd

to factor an expression of the form x2 + c1x+ c2.

Example 20 Factor x2 + 3x+ 2.
We look for integer constants in the factorization. According to the previous equa-

tion, x2 + 3x + 2 factors as (x + b)(x + d), where b + d = 3 and bd = 2. If bd = 2
and b and d are integers, the only choices for b and d are 1, 2 and −1,−2. We find that
b = 1 and d = 2 satisfy both b+ d = 3 and bd = 2. Thus

x2 + 3x+ 2 = (x+ 1)(x+ 2).

Special cases of

(x+ b)(x+ d) = x2 + (b+ d)x+ bd

are

(x+ b)2 = x2 + 2bx+ b2

(x− b)2 = x2 − 2bx+ b2

(x+ b)(x− b) = x2 − b2.

Example 21 Using the equation (x+ b)2 = x2 + 2bx+ b2, we have

(x+ 9)2 = x2 + 18x+ 81.

Example 22 Factor x2 − 36.
Since 36 = 62, we have

x2 − 36 = (x+ 6)(x− 6).

We may use the equation

(ax+ b)(cx+ d) = (ac)x2 + (ad + bc)x+ bd

to factor an expression of the form c0x
2 + c1x+ c2.

Example 23 Factor 6x2 − x− 2.
We look for integer constants in the factorization. Using the preceding notation,

we must have

ac = 6, ad + bc = −1, bd = −2.

Since ac = 6, the possibilities for a and c are

1, 6 2, 3 − 1,−6 − 2,−3.

Since bd = −2, the only possibilities for b and d are 1,−2 and −1, 2. Since we must
also have ad + bc = −1, we find that a = 2, b = 1, c = 3, and d = −2 provide a

723

Appendix: Algebra Review

solution. Therefore, the factorization is

6x2 − x− 2 = (2x+ 1)(3x− 2).

Example 24 Show that

[
n(n+ 1)

2

]2

+ (n+ 1)3 =
[
(n+ 1)(n+ 2)

2

]2

.

We show how the left side of the equation can be rewritten as the right side of the
equation. By Theorem 13(d) and (e), we have

[
n(n+ 1)

2

]2

+ (n+ 1)3 = n2(n+ 1)2

4
+ (n+ 1)3.

Since (n+ 1)2 is a common factor of the right side of this equation, we may write

n2(n+ 1)2

4
+ (n+ 1)3 = (n+ 1)2

[
n2

4
+ (n+ 1)

]
.

Since

n2

4
+ (n+ 1) = n2 + 4n+ 4

4
= (n+ 2)2

4
,

it follows that

(n+ 1)2

[
n2

4
+ (n+ 1)

]
= (n+ 1)2

[
(n+ 2)2

4

]
=
[
(n+ 1)(n+ 2)

2

]2

.

Solving a Quadratic Equation
A quadratic equation is an equation of the form

ax2 + bx+ c = 0, a �= 0.

A solution is a value for x that satisfies the equation.

Example 25 The value x = −3 is a solution of the quadratic equation

2x2 + 2x− 12 = 0

because

2(−3)2 + 2(−3)− 12 = 2 · 9− 6− 12 = 18− 18 = 0.

If a quadratic equation can be easily factored, its solutions may be readily obtained.

Example 26 Solve the quadratic equation

3x2 − 10x+ 8 = 0.

We may factor 3x2 − 10x+ 8 as

3x2 − 10x+ 8 = (x− 2)(3x− 4).

724

Appendix: Algebra Review

For this expression to be equal to zero, either x−2 or 3x−4 must equal zero. If x−2 = 0,
we must have x = 2. If 3x − 4 = 0, we must have x = 4/3. Thus the solutions of the
given quadratic equation are

x = 2 and x = 4

3
.

The solutions of a quadratic equation can always be obtained from the quadratic
formula.

Theorem 27 Quadratic Formula
The solutions of

ax2 + bx+ c = 0, a �= 0,

are

x = −b±√b2 − 4ac

2a
.

Example 28 The quadratic formula gives the solutions of

x2 − x− 1 = 0

as

x = −(−1)±
√

(−1)2 − 4 · 1 · (−1)

2 · 1
= 1±√1+ 4

2
= 1±√5

2
.

Thus the solutions are

x = 1+√5

2
and x = 1−√5

2
.

Inequalities
If a is less than b, we write a < b. If a is less than or equal to b, we write a ≤ b. If a

is greater than b, we write a > b. If a is greater than or equal to b, we write a ≥ b.

Example 29 Suppose that a = 2, b = 8, c = 2. We have

a < b, b > a, a ≤ b, b ≥ a, a ≤ c, a ≥ c.

Important laws of inequalities are given as Theorem 30.

725

Appendix: Algebra Review

Theorem 30 Laws of Inequalities
(a) If a < b and c is any number whatsoever, then a+ c < b+ c.

(b) If a ≤ b and c is any number whatsoever, then a+ c ≤ b+ c.

(c) If a > b and c is any number whatsoever, then a+ c > b+ c.

(d) If a ≥ b and c is any number whatsoever, then a+ c ≥ b+ c.

(e) If a < b and c > 0, then ac < bc.

(f) If a ≤ b and c > 0, then ac ≤ bc.

(g) If a < b and c < 0, then ac > bc.

(h) If a ≤ b and c < 0, then ac ≥ bc.

(i) If a > b and c > 0, then ac > bc.

(j) If a ≥ b and c > 0, then ac ≥ bc.

(k) If a > b and c < 0, then ac < bc.

(l) If a ≥ b and c < 0, then ac ≤ bc.

(m) If a < b and b < c, then a < c.

(n) If a < b and b ≤ c, then a < c.

(o) If a ≤ b and b < c, then a < c.

(p) If a ≤ b and b ≤ c, then a ≤ c.

(q) If a > b and b > c, then a > c.

(r) If a > b and b ≥ c, then a > c.

(s) If a ≥ b and b > c, then a > c.

(t) If a ≥ b and b ≥ c, then a ≥ c.

Example 31 Solve the inequality

x− 5 < 6.

By Theorem 30(a), we may add 5 to both sides of the inequality to obtain the
solution

x < 11.

Example 32 Solve the inequality

3x+ 4 < x+ 10.

By Theorem 30(a), we may add −x to both sides of the inequality to obtain

2x+ 4 < 10.

Again, by Theorem 30(a), we may add −4 to both sides of the inequality to obtain

2x < 6.

Finally, we may use Theorem 30(e) to multiply both sides of the inequality by 1/2 and
obtain the solution

x < 3.

726

Appendix: Algebra Review

Example 33 Show that if n > 2m and m > 2p, then n > 4p.
We may use Theorem 30(i) to multiply both sides of m > 2p by 2 to obtain

2m > 4p.

Since

n > 2m,

we may use Theorem 30(q) to obtain

n > 4p.

Example 34 Show that

n+ 2

n+ 1
<

4(n+ 1)2

(2n+ 1)2

for every positive integer n.
Since (n+ 1)(2n+ 1)2 is positive, by Theorem 30(e),

(n+ 1)(2n+ 1)2 · n+ 2

n+ 1
< (n+ 1)(2n+ 1)2 · 4(n+ 1)2

(2n+ 1)2
,

which can be rewritten as

(2n+ 1)2(n+ 2) < (n+ 1)4(n+ 1)2.

Expanding each side of the inequality, we obtain

4n3 + 12n2 + 9n+ 2 < 4n3 + 12n2 + 12n+ 4.

By Theorem 30(a), we may add −4n3 − 12n2 − 9n − 2 to both sides of the inequality
to obtain

0 < 3n+ 2.

This last inequality is true for all positive integers n because the right side is always at
least 5. Since the steps are reversible (i.e., beginning with 0 < 3n+ 2 we can obtain the
original inequality using Theorem 30), we have proved the given inequality.

Logarithms
Throughout this subsection, b is a positive real number not equal to 1. If x is a positive
real number, the logarithm to the base b of x is the exponent to which b must be raised
to obtain x. We denote the logarithm to the base b of x as logb x. Thus if we let y = logb x,
the definition states that by = x.

Example 35 We have log2 8 = 3 because 23 = 8.

Example 36 Given

22x = n,

where n is a positive integer, solve for x.

727

Appendix: Algebra Review

Let lg denote the logarithm to the base 2. Then from the definition of logarithm,

2x = lg n.

Again, from the definition of logarithm,

x = lg(lg n).

The following theorem lists important laws of logarithms.

Theorem 37 Laws of Logarithms
Suppose that b > 0 and b �= 1. Then

(a) blogb x = x

(b) logb(xy) = logb x+ logb y

(c) logb

(
x

y

)
= logb x− logb y

(d) logb (xy) = y logb x

(e) If a > 0 and a �= 1, we have loga x = logb x

logb a

(f) If b > 1 and x > y > 0, then logb x > logb y.

Theorem 37(e) is known as the change-of-base formula for logarithms. If we
know how to compute logarithms to the base b, we can perform the computation on the
right side of the equation to obtain the logarithm to the base a. Theorem 37(f) says that
if b > 1, logb(x) is an increasing function.

Example 38 Let b = 2 and x = 8. Then logb x = 3. Now

blogb x = 23 = 8 = x,

which illustrates Theorem 37(a).

Example 39 Let b = 2, x = 8, and y = 16. Then logb x = 3, logb y = 4, and logb(xy) =
log2 128 = 7. Now

logb(xy) = 7 = 3+ 4 = logb x+ logb y,

which illustrates Theorem 37(b).

Example 40 Let b = 2, x = 8, and y = 16. Then logb x = 3, logb y = 4, and

logb

(
x

y

)
= log2

1

2
= −1.

Now

logb

(
x

y

)
= −1 = logb x− logb y,

which illustrates Theorem 37(c).

728

Appendix: Algebra Review

Example 41 Let b = 2, x = 4, and y = 3. Then logb x = 2 and

logb

(
xy
) = log2 64 = 6.

Now

logb

(
xy
) = 6 = 3 · 2 = y logb x,

which illustrates Theorem 37(d).

Example 42 Suppose that we have a calculator with a logarithm key that computes logarithms to
the base 10 but does not have a key that computes logarithms to the base 2. We use
Theorem 37(e) to compute log2 40.

Using our calculator, we compute

log10 40 = 1.602060, log10 2 = 0.301030.

Theorem 37(e) now gives

log2 40 = log10 40

log10 2
= 1.602060

0.301030
= 5.321928.

Example 43 Show that if k and n are positive integers satisfying

2k−1 < n < 2k,

then

k − 1 < lg n < k,

where lg denotes the logarithm to the base 2.
By Theorem 37(f), the logarithm function is increasing. Therefore,

lg(2k−1) < lg n < lg(2k).

By Theorem 37(d),

lg(2k−1) = (k − 1) lg 2.

Since

lg 2 = log2 2 = 1,

we have

lg(2k−1) = (k − 1) lg 2 = k − 1.

Similarly,

lg(2k) = k.

The given inequality now follows.

729

Appendix: Algebra Review

Exercises

In Exercises 1–3, simplify the given expression by combining like
terms.

†1. 8x− 12x

2. 8y + 3a− 4y − 9a

3. 6(a+ b)− 8(a− b)

In Exercises 4–6, combine the given fractions.

4.
8x− 4b

3
+ 7x+ b

3
5.

8x− 4b

2
− 7x+ b

4

6.
8x− 4b

3
· 7x+ b

3
7. Show that

1

n
− 1

n+ 1
= 1

n(n+ 1)
.

Use this fact to show that
n∑

i=1

1

i(i+ 1)
= n

n+ 1
.

Find the value of each expression in Exercises 8–13 without using
a calculator.

8. 34 9. 3−4 10. (−3)4

11. (−3)−4 12. 110 13. 10000

14. Which expressions are equal?

(a) 34310 (b) (34)10 (c) 314

(d) 43103 (e) 23203 (f) 340

(g) 21872

15. Show that 5n + 4 · 5n = 5n+1 for every positive integer n.

In Exercises 16–24, expand the given expression.

16. (x+ 3)(x+ 5) 17. (x− 3)(x+ 4)

18. (2x+ 3)(3x− 4) 19. (x+ 4)2

20. (x− 4)2 21. (3x+ 4)2

22. (x− 2)(x+ 2) 23. (x+ a)(x− a)

24. (2x− 3)(2x+ 3)

In Exercises 25–36, factor the given expression.

25. x2 + 6x+ 5 26. x2 − 3x− 10

27. x2 + 6x+ 9 28. x2 − 8x+ 16

29. x2 − 81 30. x2 − 4b2

31. 2x2 + 11x+ 5 32. 6x2 + x− 15

33. 4x2 − 12x+ 9 34. 4x2 − 9

35. 9a2 − 4b2 36. 12x2 − 50x+ 50

37. Show that

(n+ 1)!+ (n+ 1)(n+ 1)! = (n+ 2)!

for every positive integer n.

38. Show that

n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 = (n+ 1)(n+ 2)(2n+ 3)

6

for every positive integer n.

39. Show that

n

2n+ 1
+ 1

(2n+ 1)(2n+ 3)
= n+ 1

2n+ 3

for every positive integer n.

40. Show that

7(3 · 2n−1−4 · 5n−1)−10(3 · 2n−2−4 · 5n−2) = 3 · 2n−4 · 5n

for every positive integer n.

41. Simplify 2r(n− 1)rn−1 − r2(n− 2)rn−2.

In Exercises 42–44, solve the quadratic equation.

42. x2 − 6x+ 8 = 0

43. 6x2 − 7x+ 2 = 0

44. 2x2 − 4x+ 1 = 0

In Exercises 45–47, solve the given inequality.

45. 2x+ 3 ≤ 9

46. 2x− 8 > 3x+ 1

47.
x− 3

6
<

4x+ 3

2

48. Show that
∑n

i=1 i ≤ n2.

49. Show that

(1+ ax)(1+ x) ≥ 1+ (a+ 1)x

for any x and a ≥ 0.

50. Show that
(

3

2

)n−2(
5

2

)
>

(
3

2

)n

for every integer n ≥ 2.

51. Show that
2n+ 1

(n+ 2)n2
>

2

(n+ 1)2

for every positive integer n.

52. Show that 6n2 < 6n2 + 4n+ 1 for every positive integer n.

53. Show that 6n2 + 4n+ 1 ≤ 11n2 for every positive integer n.

Find the value of each expression in Exercises 54–58 without using
a calculator (lg means log2).

54. lg 64 55. lg 1
128

56. lg 2 57. 2lg 10

58. lg 21000

†Exercise numbers in color indicate that a hint or solution appears at the end of this appendix.

730

Appendix: Algebra Review

Given that lg 3 = 1.584962501 and lg 5 = 2.321928095, find the
value of each expression in Exercises 59–63 (lg means log2).

59. lg 6 60. lg 30

61. lg 59049 62. lg 0.6

63. lg 0.0375

Use a calculator with a logarithm key to find the value of each
expression in Exercises 64–67.

64. log5 47 65. log7 0.30881

66. log9 8.888100 67. log10(log10 1054)

In Exercises 68–70, use a calculator with a logarithm key to solve
for x.

68. 5x = 11

69. 52x6x = 811

70. 511x = 10100

71. Show that xlogb y = ylogb x.

Hints/Solutions to Selected Exercises

1. −4x

4.
15x− 3b

3
= 5x− b

7.
1

n
− 1

n+ 1
= n+ 1− n

n(n+ 1)
= 1

n(n+ 1)

We may use this equation to compute
∑n

i=1
1

i(i+1)
as follows:

n∑

i=1

1

i(i+ 1)

=
n∑

i=1

1

i
− 1

i+ 1

=
(

1− 1

2

)
+
(

1

2
− 1

3

)
+ · · · +

(
1

n− 1
− 1

n

)

+
(

1

n
− 1

n+ 1

)

= 1− 1

n+ 1
= n+ 1− 1

n+ 1
= n

n+ 1
.

8. 81

11. 1/81

14. (a), (c), and (g) are equal. (b) and (f) are equal. (d) and (e) are
equal.

16. x2 + 8x+ 15

19. x2 + 8x+ 16

22. x2 − 4

25. (x+ 5)(x+ 1)

28. (x− 4)2

31. (2x+ 1)(x+ 5)

34. (2x+ 3)(2x− 3)

37. (n + 1)! + (n + 1)(n + 1)! = (n + 1)![1 + (n + 1)]
= (n+ 1)!(n+ 2) = (n+ 2)!

40.

7(3 · 2n−1 − 4 · 5n−1)− 10(3 · 2n−2 − 4 · 5n−2)

= 2n−2(7 · 3 · 2− 10 · 3)+ 5n−2(−7 · 4 · 5+ 10 · 4)

= 2n−2 · 12+ 5n−2(−100)

= 2n−2(22 · 3)− 5n−2(52 · 4)

= 3 · 2n − 4 · 5n

42. Factoring gives (x − 4)(x − 2) = 0, which has solutions
x = 4, 2.

45. 2x ≤ 6, x ≤ 3

48. i ≤ n for i = 1, . . . , n. Summing these inequalities, we obtain
n∑

i=1

i ≤ n · n = n2.

51. Multiply by (n+ 2)n2(n+ 1)2 to get

(2n+ 1)(n+ 1)2 > 2(n+ 2)n2

or

2n3 + 5n2 + 4n+ 1 > 2n3 + 4n2

or

n2 + 4n+ 1 > 0,

which is true if n ≥ 1.

54. 6 57. 10

59. 2.584962501 62. −0.736965594

64. 2.392231208 67. 0.480415248

68. 1.489896102

71. Let u = logb y and v = logb x. By definition, bu = y and
bv = x. Now

xlogb y = xu = (bv)u = bvu = (bu)v = yv = ylogb x.

731

732

Pseudocode

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

733

Pseudocode
Appendix

In this appendix, we describe the pseudocode used in this text.
We let = denote the assignment operator. In pseudocode, x = y means “copy

the value of y into x” or, equivalently, “replace the current value of x by the value of y.”
When x = y is executed, the value of y is unchanged.

Example 1 Suppose that the value of x is 5 and the value of y is 10. After

x = y

the value of x is 10 and the value of y, which is unchanged, is also 10.

In the if statement

if (condition)
action

if condition is true, action is executed and control passes to the statement following
action. If condition is false, action is not executed and control passes immediately to the
statement following action. As shown, we use indentation to identify the statements that
make up action.

Example 2 Suppose that the value of x is 5, the value of y is 10, and the value of z is 15. Consider
the segment

if (y > x)

z = x

y = z

Since y > x is true,

z = x

executes, and the value of z is set to 5. Next

y = z

executes and the value of y is set to 5. Now each of the variables x, y and z has
value 5.

We show reserved words (e.g., if) in the regular typeface and user-chosen words
(e.g., variables such as x) in italics.

734

Appendix: Pseudocode

We use the usual arithmetic operators +,−, ∗ (for multiplication), and / as well
as the relational operators== (equals),¬ = (not equal), <, >,≤, and≥ and the logical
operators ∧ (and), ∨ (or), and ¬ (not). We will use == to denote the equality operator
and= to denote the assignment operator. We will sometimes use less formal statements
when to do otherwise would obscure the meaning. (Example: Choose an element x in S.)

Example 3 Suppose that the value of x is 5, the value of y is 10, and the value of z is 15. Consider
the segment

if (y == x)

z = x

y = z

Since y == x is false,

z = x

does not execute. Next

y = z

executes, and the value of y is set to 15. Now the value of x is 5, and each of the variables
y and z has value 15.

In an if statement, if action consists of multiple statements, we enclose them in
braces. An example of a multiple-statement action in an if statement is

if (x ≥ 0) {
x = x+ 1
a = b+ c

}
An alternative form of the if statement is the if else statement. In the if else

statement

if (condition)
action1

else
action2

if condition is true, action1 (but not action2) is executed and control passes to the
statement following action2. If condition is false, action2 (but not action1) is executed
and control passes to the statement following action2. If action1 or action2 consists of
multiple statements, they are enclosed in braces.

Example 4 Suppose that the value of x is 5, the value of y is 10, and the value of z is 15. Consider
the segment

if (y¬ = x)

y = x

else
z = x

a = z

Since y¬ = x is true,

y = x

735

Appendix: Pseudocode

executes and y is set to 5. The statement

z = x

does not execute. Next

a = z

executes and a is set to 15. Now the value of each of x and y is equal to 5, and the value
of each of a and z is equal to 15.

Example 5 Suppose that the value of x is 5, the value of y is 10, and the value of z is 15. Consider
the segment

if (y < x)

y = x

else
z = x

a = z

Since y < x is false,

y = x

does not execute. Rather,

z = x

executes and z is set to 5. Next

a = z

executes and a is set to 5. Now the value of each of x, z, and a is equal to 5, and the
value of y is equal to 10.

Two slash marks // signal the beginning of a comment, which then extends to the
end of the line. Comments help the reader understand the code but are not executed.

Example 6 In the segment

if (x ≥ 0) { // if x is nonnegative, update x and a

x = x+ 1
a = b+ c

}
the part

// if x is nonnegative, update x and a

is a comment. The segment executes as if it were written

if (x ≥ 0) {
x = x+ 1
a = b+ c

}

736

Appendix: Pseudocode

The while loop is written

while (condition)
action

If condition is true, action is executed and this sequence is repeated; that is, if condition
is true, action is executed again. This sequence is repeated until condition becomes false.
Then control passes immediately to the statement following action. If action consists of
multiple statements, we enclose them in braces.

Example 7 Let s1, . . . , sn be a sequence. After the segment

large = s1

i = 2
while (i ≤ n) {

if (si > large)
large = si

i = i+ 1
}

executes, large is equal to the largest element in the sequence. The idea is to step through
the sequence and save the largest value seen so far in large.

In Example 7 we stepped through a sequence by using the variable i that took on
the integer values 2 through n. This kind of loop is so common that a special loop, called
the for loop, is often used instead of the while loop. The form of the for loop is

for var = init to limit
action

As in the previous if statement and while loop, if action consists of multiple statements,
we enclose them in braces. When the for loop is executed, action is executed for values
of var from init to limit. More precisely, init and limit are expressions that have integer
values. The variable var is first set to the value init. If var≤ limit, we execute action and
then add 1 to var. The process is then repeated. Repetition continues until var > limit.
Notice that if init > limit, action will not be executed at all.

Example 8 The segment of Example 7 may be rewritten using a for loop as

large = s1

for i = 2 to n

if (si > large)
large = si

A function is a unit of code that can receive input, perform computations, and
produce output. The parameters describe the data, variables, and so on that are input to
and output from the function. The syntax is

function name(parameters separated by commas) {
code for performing computations

}

737

Appendix: Pseudocode

Example 9 The following function, named max1, finds the largest of the numbers a, b, and c. The
parameters a, b, and c are input parameters (i.e., they are assigned values before the
function executes), and the parameter x is an output parameter (i.e., the function will
assign x a value—namely, the largest of the numbers a, b, and c).

max1(a, b, c, x) {
x = a

if (b > x) // if b is larger than x, update x

x = b

if (c > x) // if c is larger than x, update x

x = c

}

The return statement

return x

terminates a function and returns the value of x to the invoker of the function. The return
statement

return

(without the x) simply terminates a function. If there is no return statement, the function
terminates just before the closing brace.

Example 10 The function of Example 9 can be rewritten using the return statement as

max2(a, b, c) {
x = a

if (b > x) // if b is larger than x, update x

x = b

if (c > x) // if c is larger than x, update x

x = c

return x

}
Rather than using a parameter for the largest of a, b, and c, max2 returns the largest
value.

We use the functions print and println for output. The function println adds a
newline after printing its argument(s) (which causes the next output to occur flush left
on the next line); otherwise, the functions are the same. The operator + concatenates
strings. Strings are delimited by double quotation marks (i.e., “and”). If exactly one of
+’s operands is a string, the other argument is converted to a string, after which the
concatenation occurs. The concatenation operator is useful in the print functions.

Example 11 The segment

for i = 1 to n

println(si)

prints the values in the sequence s1, . . . , sn, one per line.

738

Appendix: Pseudocode

Example 12 The segment

for i = 1 to n

print(si + “ ”)
println()

prints the values in the sequence s1, . . . , sn, separated by space, on one line. The sequence
values are followed by a newline.

Exercises

†1. Show how the segment in Example 7 finds the largest element
in the sequence

s1 = 2, s2 = 3, s3 = 8, s4 = 6.

2. Show how the segment in Example 7 finds the largest element
in the sequence

s1 = 8, s2 = 8, s3 = 4, s4 = 1.

3. Show how the segment in Example 7 finds the largest element
in the sequence

s1 = 1, s2 = 1, s3 = 1, s4 = 1.

4. Show how the function max1 of Example 9 finds the largest
of the numbers a = 4, b = −3, and c = 5.

5. Show how the function max1 of Example 9 finds the largest
of the numbers a = b = 4 and c = 2.

6. Show how the function max1 of Example 9 finds the largest
of the numbers a = b = c = 8.

7. Write a function that returns the minimum of a and b.

8. Write a function that returns the maximum of a and b.

9. Write a function that swaps the values a and b. (Here a and b

will be both input and output parameters.)

10. Write a function that prints all odd numbers between 1 and n,
inclusive.

11. Write a function that prints all negative numbers, one per line,
that occur in the sequence of numbers s1, . . . , sn.

12. Write a function that prints all indexes of values in the sequence
s1, . . . , sn that are equal to the value val.

13. Write a function that returns the product of the sequence of
numbers s1, s2, . . . , sn.

14. Write a function that prints every other value in the sequence
s1, s2, . . . , sn (i.e., s1, s3, s5, . . .) one value per line.

Hints/Solutions to Selected Exercises

1. First large is set to 2 and i is set to 2. Since i ≤ n is true, the
body of the while loop executes. Since si > large is true, large
is set to 3. i is set to 3 and the while loop executes again.

Since i ≤ n is true, the body of the while loop executes.
Since si > large is true, large is set to 8. i is set to 4 and the
while loop executes again.

Since i ≤ n is true, the body of the while loop executes.
Since si > large is false, the value of large does not change. i

is set to 5 and the while loop executes again.
Since i ≤ n is false, the while loop terminates. The

value of large is 8, the largest element in the sequence.

4. First x is set to 4. Since b > x is false, x = b is not executed.
Since c > x is true, x = c executes, and x is set to 5. Thus x is
the largest of the numbers a, b, and c.

7. min(a, b) {
if (a < b)

return a

else
return b

}

10. odds(n) {
i = 1
while (i ≤ n) {

println(i)

i = i+ 2
}

}
13. product(s, n) {

partial product = 1
for i = 1 to n

partial product = partial product ∗ si
return partial product

}

†Exercise numbers in color indicate that a hint or solution appears at the end of this appendix.

739

740

References

From Discrete Mathematics, Seventh Edition, Richard Johnsonbaugh. Copyright c© 2009 by
Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

741

REFERENCES

Agarwal, M., N. Saxena, and N. Kayal, “PRIMES is in P,” http://www.cse.iitk.ac.in/
news/primality.html

Aho,A., J. Hopcroft, and J. Ullman, Data Structures and Algorithms,Addison-Wesley, Reading,
Mass., 1983.

Ainslie, T., Ainslie’s Complete Hoyle, Simon and Schuster, 1975.
Akl, S. G., The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs,

N.J., 1989.
Appel, K. and W. Haken, “Every planar map is four-colorable,” Illinois J. Math., 21 (1977),

429–567.
Applegate, D. L., R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem:

A Computational Study, Princeton University Press, Princeton, N.J., 2006.
Baase, S. and A. Van Gelder, Computer Algorithms: Introduction to Design and Analysis,

3rd ed., Addison-Wesley, Reading, Mass., 2000.
Babai, L. and T. Kucera, “Canonical labelling of graphs in linear average time,” Proc. 20th

Symposium on the Foundations of Computer Science, 1979, 39–46.
Bachelis, G. F., “A short proof of Hall’s theorem on SDRs,” Amer. Math. Monthly, 109 (2002),

473–474.
Bain, V., “An algorithm for drawing the n-cube,” College Math. J., 29 (1998), 320–322.
Barker, S. F., The Elements of Logic, 5th ed., McGraw-Hill, New York, 1989.
Bell, R. C., Board and Table Games from Many Civilizations, rev. ed., Dover, New York, 1979.
Benjamin, A. T. and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof ,

Mathematical Association of America, Washington, D.C., 2003.
Bentley, J., Programming Pearls, 2nd ed., Addison-Wesley, Reading, Mass., 2000.
Berge, C., Graphs and Hypergraphs, North-Holland, Amsterdam, 1979.
Berlekamp, E. R., J. H. Conway, and R. K. Guy, Winning Ways, Vol. 1, 2nd ed., A. K. Peters,

New York, 2001.
Berlekamp, E. R., J. H. Conway, and R. K. Guy, Winning Ways, Vol. 2, 2nd ed., A. K. Peters,

New York, 2003.
Billingsley, P., Probability and Measure, 3rd ed., Wiley, New York, 1995.
Bleau, B. L., Forgotten Algebra, 3rd ed., Barron’s, Hauppauge, N.Y., 2003.
Bondy, J. A. and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New

York, 1976.
Boole, G., The Laws of Thought, reprinted by Dover, New York, 1951.
Brassard, G. and P. Bratley, Fundamentals of Algorithms, Prentice Hall, Upper Saddle River,

N.J., 1996.
Brualdi, R. A., Introductory Combinatorics, 4th ed., Prentice Hall, Upper Saddle River,

N.J., 2004.
Carmony, L., “Odd pie fights,” Math. Teacher, 72 (1979), 61–64.
Carroll, J. and D. Long, Theory of Finite Automata, Prentice Hall, Englewood Cliffs, N.J., 1989.
Chartrand, G. and L. Lesniak, Graphs and Digraphs, 2nd ed., Wadsworth, Belmont, Calif.,

1986.

742

References

Chrystal, G., Textbook of Algebra, Vol. II, 7th ed., Chelsea, New York, 1964.
Chu, I. P. and R. Johnsonbaugh, “Tiling deficient boards with trominoes,” Math. Mag., 59

(1986), 34–40.
Codd, E. F., “A relational model of data for large shared databanks,” Comm. ACM, 13 (1970),

377–387.
Cohen, D. I. A., Introduction to Computer Theory, 2nd ed., Wiley, New York, 1997.
Copi, I. M. and C. Cohen, Introduction to Logic, 12th ed., Prentice Hall, Upper Saddle River,

N.J., 2005.
Coppersmith, D. and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Sym-

bolic Comput., 9 (1990), 251–280.
Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed.,

MIT Press, Cambridge, Mass., 2001.
Cull, P. and E. F. Ecklund, Jr., “Towers of Hanoi and analysis of algorithms,” Amer. Math.

Monthly, 92 (1985), 407–420.
D’Angelo, J. P. and D. B. West, Mathematical Thinking: Problem Solving and Proofs, 2nd ed.,

Prentice Hall, Upper Saddle River, N.J., 2000.
Date, C. J., An Introduction to Database Systems, 8th ed., Addison-Wesley, Reading, Mass., 2004.
Davis, M. D., R. Sigal, and E. J. Weyuker, Computability, Complexity, and Languages, 2nd ed.,

Academic Press, San Diego, 1994.
de Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry,

2nd rev. ed., Springer, Berlin, 2000.
Deo, N., Graph Theory and Applications to Engineering and Computer Science, Prentice Hall,

Englewood Cliffs, N.J., 1974.
Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numer. Math., 1 (1959),

260–271.
Dijkstra, E. W., “Cooperating sequential processes,” in Programming Languages, F. Genuys,

ed., Academic Press, New York, 1968.
Edelsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
Edgar, W. J., The Elements of Logic, SRA, Chicago, 1989.
English, E. and S. Hamilton, “Network security under siege, the timing attack,” Computer

(March 1996), 95–97.
Even, S., Algorithmic Combinatorics, Macmillan, New York, 1973.
Even, S., Graph Algorithms, Computer Science Press, Rockville, Md., 1979.
Ezekiel, M., “The cobweb theorem,” Quart. J. Econom., 52 (1938), 255–280.
Ford, L. R., Jr., and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,

N.J., 1962.
Fowler, P. A., “The Königsberg bridges—250 years later,” Amer. Math. Monthly, 95 (1988),

42–43.
Frey, P., “Machine-problem solving—Part 3: The alpha-beta procedure,” BYTE, 5 (November

1980), 244–264.
Fukunaga, K., Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press,

New York, 1990.
Gallier, J. H., Logic for Computer Science, Harper & Row, New York, 1986.
Gardner, M., Mathematical Puzzles and Diversions, Simon and Schuster, 1959.
Gardner, M., “A new kind of cipher that would take millions of years to break,” Sci. Amer.

(February 1977), 120–124.
Gardner, M., Mathematical Circus, Mathematical Association of America, Washington, 1992.
Genesereth, M. R. and N. J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan

Kaufmann, Los Altos, Calif., 1987.
Ghahramani, S., Fundamentals of Probability, 3rd ed., Prentice Hall, Upper Saddle River,

N.J., 2005.
Gibbons, A., Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1985.
Goldberg, S., Introduction to Difference Equations, Wiley, New York, 1958.
Golomb, S. W., “Checker boards and polyominoes,” Amer. Math. Monthly, 61 (1954),

675–682.
Golomb, S. and L. Baumert, “Backtrack programming,” J. ACM, 12 (1965), 516–524.

743

References

Gose, E., R. Johnsonbaugh, and S. Jost, Pattern Recognition and Image Analysis, Prentice Hall,
Upper Saddle River, N.J., 1996.

Graham, R. L., “An efficient algorithm for determining the convex hull of a finite planar set,”
Info. Proc. Lett., 1 (1972), 132–133.

Graham, R. L., D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, 2nd ed., Addison-Wesley, Reading, Mass., 1994.

Gries, D., The Science of Programming, Springer-Verlag, New York, 1981.
Hailperin, T., “Boole’s algebra isn’t Boolean algebra,” Math. Mag., 54 (1981), 137–184.
Halmos, P. R., Naive Set Theory, Springer-Verlag, New York, 1974.
Harary, F., Graph Theory, Addison-Wesley, Reading, Mass., 1969.
Harkleroad, L., The Math Behind the Music, Cambridge University Press, New York, and Math-

ematical Association of America, Washington, D.C., 2006.
Hell, P., “Absolute retracts in graphs,” in Graphs and Combinatorics, R. A. Bari and F. Harary,

eds., Lecture Notes in Mathematics, Vol. 406, Springer-Verlag, New York, 1974.
Hillier, F. S. and G. J. Lieberman, Introduction to Operations Research, 8th ed., McGraw-Hill,

New York, 2005.
Hinz, A. M., “The Tower of Hanoi,” Enseignement Math., 35 (1989), 289–321.
Hohn, F., Applied Boolean Algebra, 2nd ed., Macmillan, New York, 1966.
Holton, D. A. and J. Sheehan, The Petersen Graph, Cambridge University Press, 1993.
Hopcroft, J. E., R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages,

and Computation, 3rd ed., Addison-Wesley, Boston, 2007.
Hu, T. C., Combinatorial Algorithms, Addison-Wesley, Reading, Mass., 1982.
Jacobs, H. R., Geometry, 2nd ed., W. H. Freeman, San Francisco, 1987.
Jarvis, R. A., “On the identification of the convex hull of a finite set of points in the plane,” Info.

Proc. Lett., 2 (1973), 18–21.
Johnsonbaugh, R. and M. Schaefer, Algorithms, Prentice Hall, Upper Saddle River, N.J., 2004.
Jones, R. H. and N. C. Steele, Mathematics in Communication Theory, Ellis Horwood, Chich-

ester, England, 1989.
Kelley, D., Automata and Formal Languages, Prentice Hall, Upper Saddle River, N.J., 1995.
Kelly, D. G., Introduction to Probability, Prentice Hall, Upper Saddle River, N.J., 1994.
Kleinrock, L., Queueing Systems, Vol. 2: Computer Applications, Wiley, New York, 1976.
Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press,

New York, 1972.
Knuth, D. E., “Algorithms,” Sci. Amer. (April 1977), 63–80.
Knuth, D. E., “Algorithmic thinking and mathematical thinking,” Amer. Math. Monthly, 92

(1985), 170–181.
Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed.,

Addison-Wesley, Reading, Mass., 1997.
Knuth, D. E., The Art of Computer Programming, Vol. 2: Seminumeric Algorithms, 3rd ed.,

Addison-Wesley, Reading, Mass., 1998a.
Knuth, D. E., The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed.,Addison-

Wesley, Reading, Mass., 1998b.
Köbler, J., U. Schöning, and J. Torán, The Graph Isomorphism Problem: Its Structural Com-

plexity, Birkhäuser Verlag, Basel, Switzerland, 1993.
Kohavi, Z., Switching and Finite Automata Theory, 2nd ed., McGraw-Hill, New York, 1978.
König, D., Theorie der endlichen und unendlichen Graphen, Akademische Verlags-gesellschaft,

Leipzig, 1936. (Reprinted in 1950 by Chelsea, New York.) (English translation: Theory of
Finite and Infinite Graphs, Birkhäuser Boston, Cambridge, Mass., 1990.)

Krantz, S. G., Techniques of Problem Solving, American Mathematical Society, Providence,
R.I., 1997.

Kroenke, D. M., Database Processing: Fundamentals, Design and Implementation, 10th ed.,
Prentice Hall, Upper Saddle River, N.J., 2006.

Kruse, R. L. and A. Ryba, Data Structures and Program Design in C++, Prentice Hall, Upper
Saddle River, N.J., 1999.

Kurosaka, R. T., “A ternary state of affairs,” BYTE, 12 (February 1987), 319–328.

744

References

Leighton, F. T., Introduction to Parallel Algorithms and Architectures, Morgan Kaufmann,
San Mateo, Calif., 1992.

Lester, B. P., The Art of Parallel Programming, Prentice Hall, Upper Saddle River, N.J., 1993.
Lewis, T. G. and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall, Upper Saddle

River, N.J., 1992.
Lial, M. L., E. J. Hornsby, and D. I. Schneider, College Algebra, 9th ed., Addison-Wesley,

New York, 2005.
Lindenmayer, A., “Mathematical models for cellular interaction in development,” Parts I and II,

J. Theoret. Biol., 18 (1968), 280–315.
Lipschutz, S., Schaum’s Outline of Theory and Problems of Set Theory and Related Topics,

2nd ed., McGraw-Hill, New York, 1998.
Liu, C. L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
Liu, C. L., Elements of Discrete Mathematics, 2nd ed., McGraw-Hill, New York, 1985.
Manber, U., Introduction to Algorithms, Addison-Wesley, Reading, Mass., 1989.
Mandelbrot, B. B., Fractals: Form, Chance, and Dimension, W. H. Freeman, San Francisco,

1977.
Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.
Martin, G. E., Polyominoes: A Guide to Puzzles and Problems in Tiling, MathematicalAssociation

of America, Washington, D.C., 1991.
McCalla, T. R., Digital Logic and Computer Design, Merrill, New York, 1992.
McNaughton, R., Elementary Computability, Formal Languages, and Automata, Prentice Hall,

Englewood Cliffs, N.J., 1982.
Mendelson, E., Boolean Algebra and Switching Circuits, Schaum, New York, 1970.
Miller, R. and L. Boxer, A Unified Approach to Sequential and Parallel Algorithms, Prentice

Hall, Upper Saddle River, N.J., 2000.
Mitchison, G. J., “Phyllotaxis and the Fibonacci series,” Science, 196 (1977), 270–275.
Nadler, M. and E. P. Smith, Pattern Recognition Engineering, Wiley, New York, 1993.
Naylor, M., “Golden,

√
2, and π flowers: A spiral story,” Math. Mag., 75 (2002), 163–172.

Newman, J. R., “Leonhard Euler and the Koenigsberg bridges,” Sci. Amer. (July 1953), 66–70.
Nievergelt, J., J. C. Farrar, and E. M. Reingold, Computer Approaches to Mathematical

Problems, Prentice Hall, Englewood Cliffs, N.J., 1974.
Nilsson, N. J., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New York,

1971.
Niven, I., Mathematics of Choice, MathematicalAssociation ofAmerica, Washington, D.C., 1965.
Niven, I., and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th ed., Wiley,

New York, 1980.
Nyhoff, L. R., C++: An Introduction to Data Structures, Prentice Hall, Upper Saddle River,

N.J., 1999.
Ore, O., Graphs and Their Uses, Mathematical Association of America, Washington, D.C., 1963.
Pearl, J., “The solution for the branching factor of the alpha-beta pruning algorithm and its

optimality,” Comm. ACM, 25 (1982), 559–564.
Peitgen, H. and D. Saupe, eds., The Science of Fractal Images, Springer-Verlag, New York, 1988.
Pfleeger, C. P. and S. L. Pfleeger, Security in Computing, 4th ed., Prentice Hall, Upper Saddle

River, N.J., 2007.
Preparata, F. P. and S. J. Hong, “Convex hulls of finite sets of points in two and three dimensions,”

Comm. ACM, 20 (1977), 87–93.
Preparata, F. P. and M. I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985.
Problem 1186, Math. Mag., 58 (1985), 112–114.
Prodinger, H. and R. Tichy, “Fibonacci numbers of graphs,” Fibonacci Quarterly, 20 (1982),

16–21.
Prusinkiewicz, P., “Graphical applications of L-systems,” Proc. of Graphics Interface 1986—

Vision Interface (1986), 247–253.
Prusinkiewicz, P. and J. Hanan, “Applications of L-systems to computer imagery,” in Graph

Grammars and Their Application to Computer Science; Third International Workshop,
H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, eds., Springer-Verlag, New York, 1988.

745

References

Quinn, M. J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New York,
1987.

Read, R. C. and D. G. Corneil, “The graph isomorphism disease,” J. Graph Theory, 1 (1977),
339–363.

Reingold, E., J. Nievergelt, and N. Deo, Combinatorial Algorithms, Prentice Hall, Englewood
Cliffs, N.J., 1977.

Riordan, J., An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
Roberts, F. S. and B. Tesman, Applied Combinatorics, 2nd ed., Prentice Hall, Upper Saddle

River, N.J., 2005.
Robinson, J. A., “A machine-oriented logic based on the resolution principle,” J. ACM, 12

(1965), 23–41.
Ross, S. M., A First Course in Probability, 7th ed., Prentice Hall, Upper Saddle River, N.J., 2006.
Rozanov, Y. A., Probability Theory: A Concise Course, Dover, New York, 1969.
Saad, Y. and M. H. Schultz, “Topological properties of hypercubes,” IEEE Trans. Computers,

37 (1988), 867–872.
Schumer, P., “The Josephus problem: Once more around,” Math. Mag., 75 (2002), 12–17.
Schwenk, A. J., “Which rectangular chessboards have a knight’s tour?” Math. Mag., 64 (1991),

325–332.
Seidel, R., “A convex hull algorithm optimal for points in even dimensions,” M.S. thesis, Tech.

Rep. 81-14, Dept. of Comp. Sci., Univ. of British Columbia, Vancouver, Canada, 1981.
Shannon, C. E., “A symbolic analysis of relay and switching circuits,” Trans. Amer. Inst. Electr.

Engrs., 47 (1938), 713–723.
Sigler, L., Fibonacci’s Liber Abaci, Springer-Verlag, New York, 2003.
Slagle, J. R., Artificial Intelligence: The Heuristic Programming Approach, McGraw-Hill,

New York, 1971.
Smith, A. R., “Plants, fractals, and formal languages,” Computer Graphics, 18 (1984), 1–10.
Solow, D., How to Read and Do Proofs, 4th ed., Wiley, New York, 2004.
Standish, T. A., Data Structures in Java, Addison-Wesley, Reading, Mass., 1998.
Stoll, R. R., Set Theory and Logic, Dover, New York, 1979.
Sudkamp, T. A., Languages and Machines: An Introduction to the Theory of Computer Science,

3rd ed., Addison-Wesley, Reading, Mass., 2006.
Sullivan, M., College Algebra, 8th ed., Prentice Hall, Upper Saddle River, N.J., 2008.
Tarjan, R. E., Data Structures and Network Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia, 1983.
Taubes, G., “Small army of code-breakers conquers a 129-digit giant,” Science, 264 (1994),

776–777.
Tucker, A., Applied Combinatorics, 5th ed., Wiley, New York, 2006.
Ullman, J. D. and J. D. Widom, A First Course in Database Systems, 2nd ed., Prentice Hall,

Upper Saddle River, N.J., 2002.
Vilenkin, N. Y., Combinatorics, Academic Press, New York, 1971.
Wagon, S., “Fourteen proofs of a result about tiling a rectangle,” Amer. Math. Monthly, 94

(1987), 601–617. (Reprinted in R. K. Guy and R. E. Woodrow, eds., The Lighter Side of
Mathematics, Mathematical Association of America, Washington, D.C., 1994, 113–128.)

Ward, S. A. and R. H. Halstead, Jr., Computation Structures, MIT Press, Cambridge, Mass.,
1990.

West, D., Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 2000.
Wilson, R. J., Introduction to Graph Theory, 4th ed., Addison-Wesley, Reading, Mass., 1996.
Wong, D. F. and C. L. Liu, “A new algorithm for floorplan design,” 23rd Design Automation

Conference, (1986), 101–107.
Wood, D., Theory of Computation, Harper & Row, New York, 1987.
Wos, L., R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning, Prentice Hall, Englewood

Cliffs, N.J., 1984.

746

Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

A
Absolute value, 75, 88, 93

defined, 75, 93
real numbers, 75

Addition, 33, 35-36, 62, 69, 72, 192, 199, 205, 229,
234, 243, 277-279, 301, 309-314, 333, 336,
370, 386-387, 468, 514, 545, 558, 597, 609,
636, 652, 654, 668, 687

Addition Principle, 309-314, 333, 370, 386-387, 558
Addition rule, 35
Adjacency matrix of graph, 478
Adjacent vertices, 436, 443, 494
Algebra, 14, 18, 45, 77, 110, 157, 326, 458, 623, 632,

635-637, 639-642, 647, 651, 655-658, 660,
719-731, 742-746

Algorithms, 30, 68, 135, 207-257, 259, 270, 296, 305,
339-340, 370, 372, 383, 385, 391, 409, 411,
413-414, 423, 425, 430, 439-440, 460, 478,
485, 493, 526, 547, 549, 551, 572, 616, 677,
742-746

definition of, 209, 220, 226, 231, 244, 259, 391,
440, 677

efficient, 231-232, 241, 439, 744, 746
graph, 425, 439-440, 460, 478, 485, 493, 526, 572,

616, 742-746
optimal, 212, 414, 549, 551, 572, 746

Allocation, 592
Angles, 38, 75-76, 390, 426

congruent, 75
corresponding, 75
right, 75-76
sides of, 76
supplementary, 75

Annuity, 392
Approximately equal to, 427
Approximation, 137
Arcs, 436
Area, 13, 66, 108, 252, 571
Areas, 252
Argument, 1, 10, 32-36, 40, 48-49, 51, 62, 64, 68-69,

72, 75, 77, 81, 100, 107, 112, 124-126,
129-130, 165, 173, 177, 179, 188, 200-201,
224-225, 234-235, 243, 310, 318, 320,
326-327, 330, 339, 360, 362-365, 369, 403,
409, 428, 436, 459, 463-464, 477, 483,
492-493, 499, 505, 517, 552, 554, 574, 579,
600, 612, 661-662, 677, 696, 712, 738

Arithmetic, 233, 259, 263, 269, 299, 544, 735, 743
Arithmetic expressions, 544
Array, 64-65, 112, 198, 414, 419-421, 425, 430, 476,

502, 524, 574, 578, 713
Average, 14, 84, 92, 94, 151, 220, 226, 229-230, 233,

235, 247, 251, 294, 315, 348, 368, 392, 411,
418, 445, 478, 514, 596-597, 615, 635, 671,
716, 742

Axis, 137, 252, 329, 375, 445

B
Ballots, 318-319
Base, 146, 219, 222-224, 228, 236, 241-242, 245,

247, 252-254, 270, 272-276, 282-284, 288,
295-296, 299, 344, 411, 416, 427-428, 456,
536, 540, 580, 727-729

Binomial theorem, 305, 361-365, 370-371, 379, 382
Bipartite graphs, 444
Bits, 184-185, 270-271, 275-277, 280, 283, 299,

309-310, 316, 324, 372, 456, 460-461, 500,
511, 575-576, 596, 623-624, 631, 649, 652,
654-655, 659-661, 668, 671

Bonds, 37

C
Calculators, 137, 545
Calculus, 7-8, 23-24, 51, 60, 94, 113, 115, 148, 159,

164-165, 236, 246, 411, 456
defined, 148, 159, 164-165, 236, 456
limits, 159

Candidates, 318-319
Capacity, 593-596, 598-600, 606-609, 611-614,

617-621
Carrying, 360
Categories, 313
Center, 14, 66, 108, 241, 253, 257, 369, 514, 566,

570-571, 575, 577, 596
Chaos, 140
Circles, 7, 65, 672

defined, 65, 672
Circuits, 483, 623-664, 665, 669, 745-746

definition of, 639-640, 644, 647
Circumference, 14
Coefficient, 283, 362, 364, 371, 399, 407

binomial, 362, 364, 371
Coefficients, 221-222, 305, 360-362, 379, 395,

398-400, 403-404, 406-407, 410, 423-424,
428

coloring, 488, 575
Combinations, 15-16, 67, 297, 305, 315, 318,

322-323, 328, 330-331, 333, 337, 339-342,
344-346, 360, 370-373, 376, 623, 625, 705

Combining like terms, 730
Common multiples, 259
Complement, 6-8, 12, 62, 65, 80, 84, 350, 482, 488,

606, 620, 630, 634, 636-637, 641, 655-656,
658, 660, 671, 704

Components of a graph, 448, 575
Composition of functions, 148-149, 173, 196
Compound interest, 385, 391, 423, 425

formula, 385, 391
Conditional probability, 353-354, 370, 377
Constant, 105, 135, 220-221, 232-233, 235-236,

251-252, 272, 395, 398-400, 403-404,
406-407, 410, 423-424, 428, 551, 662, 680

Constraints, 108, 617
Continuity, 305, 345, 349
Continuous function, 94
Coordinates, 13, 372, 382, 476
Corresponding angles, 75
Costs, 440, 445, 528

average, 445
fixed, 440

Counting, 141, 233, 251, 305-382, 383, 412, 459, 504,
517, 616

combinations, 305, 315, 318, 322-323, 328,
330-331, 333, 337, 339-342, 344-346,
360, 370-373, 376

permutations, 305, 318-321, 323, 327-328,
333-335, 337, 339-340, 342-345, 370,
372-373, 616

sample spaces, 346, 349
Cubes, 440-441, 445, 489-490, 493, 504
Cups, 514

D
Data, 21, 139, 142, 151, 160, 192, 194, 196-197, 199,

205, 214, 219-220, 246, 248-249, 270, 365,
418, 423, 445, 507, 509-511, 533, 537,
539-540, 544, 579-580, 592, 596, 623, 700,
713, 737, 742-746

collection, 192, 510
definition of, 220, 713

Days, 138, 219, 351
Degree, 51, 222, 232, 450-460, 463, 471-472, 474,

479, 481, 484-486, 488-491, 494, 496,
499-500, 503-505, 514, 517, 519, 553-557,
584, 589, 614-615

Degree of vertex, 454, 499
Degrees, 452-454, 472, 488, 494, 499, 519

Demand curve, 390
Demand functions, 390
Denominator, 333
Denominators, 114
Diagrams, 7-8, 149, 199, 677
Difference, 6, 12-13, 20, 24, 28, 60, 62, 64-65, 78-80,

84, 95, 110, 113-114, 124, 152, 184, 196,
225, 282, 313, 322, 369, 407, 423, 461, 682,
689, 743

function, 62, 64, 152, 184, 196, 225, 369, 423, 689
real numbers, 6, 64-65, 79, 95, 113, 124, 152, 423

Digits, 18, 92, 151, 270, 276, 281, 284, 297-298,
314-315, 338, 343, 369, 540, 679, 682, 721

Digraphs, 169, 742
definition of, 169

Distance, 113, 135, 211, 242, 456, 466
formula, 113, 242, 456

Distribution, 243, 334, 347-348, 371, 409-410,
563-564

Distributions, 410
Distributive law, 80, 126, 630, 651
Division, 119, 275, 282

long, 119
Divisor, 259-266, 268-269, 284-286, 288-289,

291-294, 296, 299-301, 303, 640
Divisors, 259-261, 264-266, 268-269, 284-285, 300,

640
Domain, 36-46, 48-64, 69-71, 76, 80-82, 91-93,

103-105, 116, 121, 125-126, 128, 131,
136-138, 149-150, 155, 157, 162, 166, 184,
192, 196, 199, 201, 206, 221, 252, 366-367,
369, 642

defined, 46, 59, 69, 93, 103-104, 121, 136-137,
150, 184, 192, 199, 201, 252, 642

relations, 136-138, 149-150, 155, 157, 162, 166,
184, 192, 196, 199, 201, 206

E
Eccentricity, 514, 575, 577
Edge set, 442, 497-498, 515, 529, 531, 582
Efficient algorithms, 439, 746
Empty set, 5, 11, 62, 107, 125, 153, 248, 442, 636
Endpoints, 14
Equality, 25, 65, 78, 81, 83, 110, 114, 131, 162, 232,

244, 271, 303, 350, 389, 536, 580, 608,
616-617, 619, 632, 735

Equations, 77, 79-80, 102-103, 114, 117-118, 120-122,
124, 150, 234, 243, 248, 260, 263, 287, 293,
296, 302, 304, 312, 356, 386, 389, 391, 400,
402, 404, 423, 630, 634-635, 639, 649-650,
657, 714, 719, 743

exponential, 402
rational, 124

Equivalence, 1, 21, 27, 29-30, 62, 84, 88, 94, 99, 126,
135, 177-186, 191, 197-198, 204-206, 235,
327, 331, 334-335, 445, 448, 456, 476, 484,
500, 558, 632-633, 675, 682

defined, 1, 84, 177, 179-182, 184, 186, 197-198,
235, 327, 456, 476, 632, 682

matrices, 135, 186, 191
Error, 31, 34, 82-83, 91, 143, 165, 235, 326, 378, 408,

440, 459, 463, 485, 489
Estimate, 216, 218, 224, 233, 236, 250, 305, 369, 394,

414, 425, 540, 549, 567, 572, 613, 616
Euler Leonhard, 449, 745
Euler, Leonhard, 449, 745
Events, 346, 351-355, 358-360, 370-371, 377-378,

382
certain, 360

Experiment, 105, 165, 345, 347, 349, 370, 376, 651
Experiments, 345-346
Explicit formula, 220, 383, 385-386, 391-392, 395-397,

402, 424, 427, 456, 563
Exponents, 719-722

irrational, 721

F

747

Factorials, 240, 322
Factoring, 66, 298-299, 303, 719, 723, 731
Factors, 214, 220-221, 263, 266, 308-309, 361, 379,

418, 514, 723
Feet, 58, 315
Fibonacci Leonardo, 243
Fibonacci numbers, 244-246, 255, 326, 745

formula, 246, 255, 326
large, 255
phyllotaxis and, 745

Fibonacci sequence, 243, 245-248, 287, 294, 299,
384-385, 389, 392, 394, 398, 402, 407, 424,
432, 457, 541

Finite sequence, 109, 155-156, 160, 196, 201, 220,
245

First quadrant, 329
Formulas, 29, 105-106, 114-115, 157, 245-246, 268,

278, 337, 350, 364, 385, 414, 558, 563, 719
defined, 114, 245, 350, 414

Fractals, 745-746
Fractions, 122, 719-720, 730

like, 730
multiplying, 719
simplifying, 719

Frequency, 511-514, 546, 573, 575
Frequency table, 575
Function notation, 155
Functions, 37, 51, 57, 70, 135-206, 209, 211, 221,

223, 232, 235-236, 248, 252, 294, 316,
330-331, 370, 390-391, 394-395, 427,
475-476, 478, 494, 623, 642, 647, 649, 651,
655, 666-667, 670, 701, 738

algebraic, 647
constant, 135, 221, 232, 235-236, 252, 395
cube, 476, 494
defined, 136-137, 144, 148, 150-152, 156,

158-159, 163-165, 167-173, 175-177,
179-182, 184, 186-187, 192, 197-199,
201, 235-236, 248, 252, 294, 391, 394,
427, 476, 623, 642, 667

difference, 152, 184, 196
domain and range, 137, 150
even, 145, 160, 165, 199-200, 211, 232, 248, 252,

294, 316, 370, 394, 475, 494, 655
exponential, 146, 232, 478
function notation, 155
graphs of, 141, 150
greatest integer, 140, 196, 199
identity, 205
inverse, 146, 149-151, 173, 175-176, 190, 196-199,

203, 294
linear, 140, 149, 232, 395, 478
notation, 137, 141, 149, 155, 159, 172, 196, 204,

223, 232, 248
odd, 37, 145, 152, 160, 165, 200-201, 252, 394,

427, 494, 655
one-to-one, 142-146, 149-152, 161-162, 165, 184,

191, 196-202, 205-206, 294, 331,
475-476, 478, 494

polynomial, 232
product, 136, 151, 159-160, 166, 188, 190-191,

196-199, 202
quadratic, 232
quotient, 141-142
rational, 51
square, 144, 183, 187, 189, 248
sum, 51, 139, 151, 159-160, 164-165, 196-197,

202, 211, 248, 252, 316, 394, 494, 666
trigonometric, 51, 70

Fundamental cycle, 527, 575

G
Games, 64, 72, 124, 133, 140, 345, 443, 563, 565,

568, 572, 576, 580, 742
General solution, 404, 428
Geometry, 62, 75-76, 83, 326, 426, 700, 743-745
Grade point average, 348
Graph algorithms, 493, 526, 743
Graph theory, 433-506, 508, 592, 742-744, 746
Graphing calculator, 51, 70
Graphs, 1, 141, 150, 434-435, 437-440, 443-445, 454,

457-458, 464-465, 470, 474-491, 493-494,
496, 502-506, 507, 513, 523, 526, 533, 553,
558, 575, 592, 616, 742-745

Greater than, 14, 16-18, 20, 52, 96, 114-116, 131, 140,
196, 199, 201, 209, 211, 214-215, 224, 240,
248, 250, 252, 254, 257, 260-261, 263, 295,
299-301, 304, 315, 351, 360, 374-375, 394,
427, 429, 459, 463, 529, 533, 537, 539-540,

554, 556-557, 565, 567-568, 579-580, 583,
585, 588, 599-600, 607-608, 617-618, 620,
725

Growth, 220, 223, 232, 391, 396, 401-402, 414, 423,
684

exponential, 232, 396, 402

H
Horizontal axis, 137
Horizontal lines, 66
Hours, 30, 59, 135

I
Identity, 8, 12, 80, 84, 205, 362, 482, 630, 634, 636,

639, 641, 656, 660, 664, 716
defined, 84, 630, 656, 716
property, 482

Identity matrix, 716
defined, 716
using, 716

Image, 151, 325, 445, 584, 744
Inches, 21, 58, 67
Inclusion-Exclusion Principle, 312-314, 316, 370,

372-373
Increasing function, 225, 728
Independence, 360
Independent events, 355, 359-360
Inequalities, 86, 92, 106, 127, 229, 271, 288, 389, 616,

719, 725-726, 731
linear, 389
quadratic, 719, 725
rational, 86

Inference, 1, 31-36, 47-51, 62-64, 70, 76, 79, 84
Infinite, 2, 14, 109, 155-156, 248, 255, 263-264, 269,

314, 365, 596, 700, 744
sequences, 155-156

Infinite sequence, 109, 155-156
Initial condition, 385-388, 391-397, 401, 405-406,

412-414, 423-425, 428, 432, 558
Inputs, 208, 216, 219-220, 227, 231-232, 248,

250-251, 429, 623-625, 631-633, 642-643,
649, 655, 658-660, 662-663, 668, 671, 703

Integers, 2-3, 5, 7, 14, 51, 65, 69-70, 72, 77, 82-83,
86-88, 95, 102-104, 111-112, 116, 119-120,
122-128, 131-132, 134, 139-141, 143, 145,
149-150, 152, 155, 160, 162, 165, 171-172,
176, 192, 196-199, 201, 211, 216, 221, 226,
232, 235-236, 247, 251-252, 259-260,
264-267, 269-271, 273, 281-285, 288-300,
303-304, 315-316, 326, 336-341, 368-369,
371, 373, 379, 382, 391, 465, 478, 496, 528,
534, 551, 640, 658, 679, 682, 686, 721, 723,
727, 729

comparing, 269
dividing, 127, 141, 143, 252, 373
graphs of, 141, 150
multiplying, 86, 112, 126, 131, 282-284
subtracting, 120, 143

Integration, 108, 164, 246
Integration-by-Parts Formula, 164
Intercepts, 298
Interest, 21, 262, 384-385, 391-392, 423-425, 427,

434, 656, 671
compound, 385, 391, 423, 425

Interest rate, 385, 427
Intervals, 113, 389, 665
Inverse, 146, 149-151, 173, 175-176, 190, 196-199,

203, 292-295, 299-300, 302-303
functions, 146, 149-151, 173, 175-176, 190,

196-199, 203, 294
Irrational number, 94, 97, 402
Irrational numbers, 6, 94
Isolated vertices, 444, 495, 498

K
Koch snowflake, 683-685, 701

L
Least common multiple, 266-269, 299-300, 640
Length, 152, 161-162, 165, 176, 192, 196-197,

201-202, 213, 216, 254, 308-309, 315-316,
326-327, 329, 341, 369, 372, 411, 422,
424-425, 429-430, 432, 438-439, 443-444,
446, 449, 456, 459-460, 462-463, 465-473,
479, 481, 494-495, 497-498, 500-502, 505,
508, 511, 514, 517, 519, 523, 527, 538, 540,
576-577, 580, 584, 671, 674, 683, 686, 697,
705-706, 710

Length of path, 443
Like terms, 730

combining, 730
Limits, 159
Line, 2-3, 5, 14, 20, 22, 66, 75, 97, 113, 129-130, 138,

187, 199, 208-209, 227-230, 238, 240-241,
247-248, 253-255, 257, 285-287, 322, 325,
328, 333, 337, 342, 344, 372, 376, 386, 393,
412-413, 416-417, 420-422, 429-431, 451,
466-469, 471, 524, 530-531, 541-543, 560,
600-607, 625, 662, 683, 686, 706, 736,
738-739

horizontal, 66, 683, 686
Linear equations, 389
Lines, 66, 83, 111, 129, 209, 234, 248, 253, 257,

285-286, 294, 318, 342, 344, 376, 386, 390,
393-394, 412, 417, 421, 426, 430, 435, 439,
466-470, 483, 491, 528, 530-531, 542-543,
560, 584, 602-604, 609-611, 686

defined, 248, 294, 393-394
parallel, 66, 111

Location, 139, 199, 241, 334, 449, 511
Logarithms, 223, 225, 228, 236, 253, 719, 727-729

defined, 236
Long division, 119
Loops, 53, 231, 233, 237-238, 305, 375, 437, 444,

469, 471, 474, 488, 495-497, 501, 504-505,
517

Lower bound, 97, 221, 224, 231, 549, 551-552, 567,
585, 615-616

Lowest terms, 86, 126, 264

M
Magnitude, 282
Mass, 742-746
Mathematical induction, 74-75, 101-110, 112, 114,

116-117, 121-124, 129, 132, 165, 234, 238,
240-241, 243, 245-246, 248, 251, 295, 308,
316, 360, 385, 388, 394, 409, 422, 430-431,
450, 467, 473, 487, 560, 616

proof by, 101, 109-110, 114, 122-124, 241, 251,
385, 450

Mathematical models, 745
Matrices, 135, 186, 188, 190-191, 211, 231-232, 248,

256, 309, 372-373, 474-475, 477, 480, 482,
494, 502, 505, 713-717

column, 186, 231, 373, 474, 477, 713, 715
defined, 186, 231, 248, 714-716
diagonal of, 309
equations, 248, 714
equivalence, 135, 186, 191
identity, 482, 716
multiplying, 714
notation, 231-232, 248, 502
row, 186, 231, 373, 474-475, 477, 713, 715
square, 248, 716
zero, 475

Matrix, 186-191, 197-198, 205, 211, 231-232, 239,
249, 309, 470-475, 477-478, 494-496, 501,
527, 575, 612, 615, 713-716, 743

Maximum, 83, 208-210, 216, 220, 236-239, 245, 251,
254-255, 341-342, 344, 364, 375-376, 394,
420, 445, 456-457, 499, 508, 514, 517, 533,
539-540, 551-552, 554, 565, 567, 576,
585-586, 592, 595-598, 605, 610-611, 615,
619-620, 624, 739

Mean, 14, 20, 25, 29-30, 47, 96, 103, 107, 177, 180,
183, 204, 218, 298, 317, 409, 443, 561, 667,
675, 692

defined, 25, 103, 177, 180, 667
finding, 96, 409

Means, 14, 22, 24, 26, 38, 41, 51-52, 56, 61, 78, 96,
101, 136, 178, 181, 184, 186, 188, 200, 206,
226, 235, 249, 252, 294, 298, 345-346,
358-360, 372, 375, 379, 427, 431, 446, 473,
480, 543, 547, 553, 555, 563, 565, 578, 593,
608, 615, 641-642, 669, 692, 706, 730-731,
734

Measures, 75, 220, 497
Median, 165
Meters, 242, 245-246, 248, 254
Midpoint, 372, 382
Minimum, 79-80, 108, 220, 231, 245, 343, 393, 397,

407, 420, 423, 438, 444, 460, 465-466,
468-470, 500-501, 505, 507, 523, 527-533,
541, 546-547, 565, 567, 579, 585, 588, 606,
608, 615, 619-620, 624, 739

Minutes, 220, 489, 596-597
Models, 435, 439-440, 591-621, 665, 745

748

defined, 600
traffic flow, 596

Modulus, 138, 140, 286-288, 293-294, 299-300,
302-304

Multiples, 259, 316, 373
common, 259
least common, 259

Multiplication, 75, 119, 187, 231-232, 279-281,
306-311, 313-314, 318-324, 333-334, 346,
370, 372, 375, 387, 425, 544, 558, 636, 671,
714, 735, 743

Multiplication Principle, 306-311, 313-314, 318-324,
333-334, 346, 370, 372, 375, 387, 558

Multiplicity, 404, 407
Mutually exclusive events, 353, 358

N
n factorial, 103, 123, 233, 239-240
Negative numbers, 2, 739

rational numbers, 2
Networks, 309, 316, 596, 606, 611, 616, 743

definition of, 606
nonlinear, 398
Notation, 1, 11, 14, 22, 62, 82, 127, 130, 137, 141,

149, 155, 159, 172, 196, 204, 223, 225, 227,
229, 231-234, 237, 247-249, 251, 265, 267,
278, 295-296, 340-341, 346, 358, 397,
409-410, 414, 422, 502, 506, 545, 573, 581,
594, 608, 669, 679, 686, 723

exponential, 232, 686
limit, 159
set, 1, 11, 14, 62, 127, 137, 149, 155, 172, 196,

227, 229, 231-232, 247-248, 251, 340,
346, 397, 410, 573, 594, 669, 686

sigma, 159, 196
nth power, 472
nth root, 298, 721
nth term, 155, 383, 386, 395, 424-425, 427

defined, 424-425, 427
Number line, 3, 5, 97
Numbers, 2-3, 5-7, 11, 14, 22, 50-52, 64-65, 70, 74-76,

79, 83, 85-86, 89, 91-92, 94-97, 111,
113-115, 118, 124-126, 132, 136-140, 142,
144, 146, 149-150, 152, 160, 162, 165, 174,
177, 191, 195-199, 202, 208-212, 216, 218,
234, 237, 239, 244-248, 255, 262, 265-269,
277-280, 282-284, 292, 294, 297, 299-301,
306-307, 310, 314-315, 326-328, 330-333,
341, 346-349, 359, 361-362, 367, 369,
371-372, 379, 381-382, 386, 391-395, 399,
409, 412, 417, 423, 427, 430, 438-439,
443-445, 451-452, 462, 465, 479, 497, 513,
528, 536-537, 558, 560, 563, 565, 578, 583,
585, 596, 600-601, 619, 628, 636, 653-655,
666, 669, 671, 686, 703, 706, 716, 721-722,
730, 738-739, 745

composite, 91, 262, 269, 299-301
irrational, 6, 86, 94, 97, 126, 721
positive, 2-3, 14, 51-52, 65, 70, 75-76, 89, 94-95,

97, 111, 124-125, 138, 144, 146,
149-150, 165, 197, 211, 255, 265-269,
283-284, 294, 299-300, 326, 341, 361,
369, 371, 379, 391, 394, 423, 445, 465,
479, 528, 619, 721-722, 730

prime, 14, 64, 91-92, 160, 211, 248, 262, 265-269,
294, 297, 299-300, 392

rational, 2, 5-6, 51, 65, 83, 86, 94, 97, 124-126,
132, 601, 721

real, 2-3, 5-6, 22, 50-52, 64-65, 74-76, 79, 83,
85-86, 89, 91-92, 94-95, 97, 113,
124-125, 136-137, 140, 144, 146, 150,
152, 165, 177, 197-199, 212, 218, 234,
239, 361, 379, 423, 443, 601, 721-722

whole, 369, 706
Numerators, 122

O
Odds, 140, 739
One-to-one functions, 331
Open interval, 113
Open intervals, 113
Optimal, 212, 388-389, 407, 414, 418, 438, 470, 507,

511-514, 531-532, 534, 546, 548-551, 565,
568-569, 572-576, 579, 589, 746

Order of operations, 545, 627
Ordered pair, 10, 62, 95, 135, 148, 166, 173, 308-309,

436-437, 497
Ordered pairs, 10-11, 66, 135-136, 150-151, 166,

175-176, 178, 183-184, 190, 196, 198,
308-309, 318, 365, 369

Ordered triple, 317-318
Origin, 66, 329, 338, 445

coordinate system, 338
Ounces, 141
Outputs, 198, 211, 496, 528, 546, 618, 624, 631-633,

642-643, 647, 651-652, 655, 658-660, 662,
665-666, 671, 702-704

P
Parameters, 220, 291-292, 389, 425, 616, 737-739
Paths, 74, 329, 331, 375, 434, 438-439, 446, 448,

454-456, 467, 470-473, 494, 499-502, 505,
517-519, 528, 540, 598, 600, 618, 698

definition of, 446, 448, 518
length of, 438-439, 456, 467, 470, 494

Patterns, 317-318, 333, 374
Percent chance, 379
Permutations, 305, 318-321, 323, 327-328, 333-335,

337, 339-340, 342-345, 370, 372-373, 393,
395, 410-411, 425, 427, 465, 526, 528, 546,
578, 582, 616

defined, 327, 340, 393, 425, 427
Plane, 66, 111, 113, 125, 137-138, 149, 199, 329, 360,

372, 394, 445, 483, 503, 506, 744
Plotting, 137
Plotting points, 137
Point, 5, 8, 44, 75, 79, 82, 86, 91, 106, 109, 111, 113,

130, 138, 141, 199, 208, 210, 213, 216, 277,
285, 308, 328, 332, 338, 342, 344, 348, 375,
382, 386, 388, 394, 399-400, 412, 424, 436,
440, 443, 445, 456, 466-467, 469, 488, 490,
500, 511, 519, 524, 539, 552, 565, 567,
570-571, 577, 583, 598, 602-603, 637, 641,
668, 686

Points, 2, 75, 113, 125, 130, 137-138, 149, 183, 199,
216, 250, 327, 338, 372, 382, 387, 393, 434,
456, 571, 668, 744-746

Polygons, 426
Polynomial, 222, 225, 232-233, 262, 269, 272, 298,

300, 424, 460, 558
Population, 396, 401, 406, 423, 428
Population growth, 396, 401, 423
Positive integers, 14, 65, 72, 87-88, 95, 102-103,

111-112, 122-123, 127-128, 143, 145,
149-150, 165, 172, 176, 192, 197, 221, 226,
232, 235-236, 251-252, 260, 266-267, 269,
281, 294-295, 326, 338, 341, 369, 371, 391,
496, 528, 534, 640, 658, 727, 729

Positive numbers, 2, 70, 111, 465
Pounds, 360, 378
Power, 5-6, 12, 62, 65, 106-108, 113, 130, 140, 176,

184, 227-228, 235, 241, 245, 272-273, 279,
284, 302, 362, 414, 417, 419-423, 429, 431,
472, 535, 553, 636, 657, 708, 715

logarithms, 228
Powers, 228, 233, 274, 279, 326, 414, 418, 429, 431,

471
Price, 328, 389-391, 393, 397-398, 425-426

total, 426
Prime factorization, 265-269, 299
Prime numbers, 14, 160, 211, 248
Principal, 220
Probabilities, 345, 349-350, 353, 359, 371
Probability, 305, 326, 345-356, 358-360, 370-371, 377,

379, 406, 410-411, 540, 742-744, 746
mutually exclusive events, 353, 358

Probability function, 349, 358, 370
Probability of an event, 346-347, 350, 358, 370
Problem solving, 743-744
Problem-solving, 1, 11, 19, 29, 35, 49, 57, 60-61, 74,

81, 93, 95, 97, 101, 106, 109, 114-115, 121,
131, 135, 148, 152-154, 162, 174, 181,
184-185, 189, 194, 207, 210, 217, 232,
237-238, 245, 259, 268, 282, 289, 293,
295-296, 305, 313, 317-318, 327, 331-332,
337, 383, 391, 404, 408, 410, 434, 442,
457-458, 463, 507, 518, 520, 526, 592,
615-616, 623, 640, 642, 745

Processors, 366-368, 380-381, 440, 460
Product, 10-12, 59, 62, 64, 66, 95, 104, 118-119, 127,

136, 151, 159-160, 166, 188, 190-191,
196-199, 202, 231, 239, 249, 263, 265, 267,
279-280, 298-299, 303, 306, 313, 323, 329,
361, 389, 392, 472, 714-715, 739

Q

Quadrants, 108
Quadratic, 232, 401-402, 686, 719, 724-725, 730
Quadratic equations, 719
Quadratic formula, 402, 725

defined, 402
using, 402

Quaternions, 458
Quotient, 2, 5, 14, 87, 119, 121-124, 131-132,

141-142, 259-260, 269, 275-277, 279-282,
284, 289, 291, 300-302, 304, 345, 369, 721

functions, 141-142
real numbers, 2, 5, 124, 721

Quotients, 2

R
Random numbers, 140
Range, 136-137, 144, 150, 196, 199, 288, 293-294,

299-300, 304, 366-367, 369, 381-382, 394,
427, 642

defined, 136-137, 144, 150, 199, 294, 394, 427,
642

Ratio, 105
Rational numbers, 2, 5, 65, 83, 94, 97, 124-126, 132,

601, 721
Ratios, 108
Ray, 445
Real numbers, 2, 5-6, 22, 50-52, 64-65, 74-76, 79, 83,

85-86, 89, 91-92, 94-95, 97, 113, 124,
136-137, 144, 146, 150, 152, 165, 177,
197-199, 212, 218, 234, 239, 361, 379, 423,
721-722

absolute value, 75
defined, 2, 22, 65, 75, 89, 95, 124, 136-137, 144,

150, 152, 165, 177, 197-199
in calculus, 165
inequalities, 86, 92
integers, 2, 5, 51, 65, 83, 86, 95, 124, 150, 152,

165, 197-199, 379, 721
irrational, 6, 86, 94, 97, 721
ordered pair, 95
properties of, 74, 95
rational, 2, 5-6, 51, 65, 83, 86, 94, 97, 124, 721
real, 2, 5-6, 22, 50-52, 64-65, 74-76, 79, 83, 85-86,

89, 91-92, 94-95, 97, 113, 124, 136-137,
144, 146, 150, 152, 165, 177, 197-199,
212, 218, 234, 239, 361, 379, 423,
721-722

Reciprocals, 137
Rectangle, 7, 65, 108, 339, 369, 381, 451, 746
Rectangles, 108, 252

similar, 108
Reflection, 61
Relations, 135-206, 211, 231, 309, 316, 331, 334,

372-373, 383-432
defined, 136-137, 144, 148, 150-152, 156,

158-159, 163-165, 167-173, 175-177,
179-182, 184, 186-187, 192, 197-199,
201, 231, 384, 391, 393-394, 400-404,
414, 424-425, 427

domain and range of, 150
functions as, 150
graphs of, 141, 150

Remainder, 1, 74, 119-124, 131, 138, 141-142, 180,
196, 199, 242, 251, 260, 262, 264, 275-277,
279-281, 283-284, 290, 292, 297, 301-302,
304, 325, 330, 341, 415, 500, 516, 544, 630

Remainder theorem, 119, 121, 141, 260, 281, 284
defined, 121, 284

Rise, 182-183, 395, 425, 427
Roots, 298, 400-401, 403, 405, 407, 428, 508, 556,

559-560, 568
nth root, 298
of the equation, 407

Rotations, 320, 330
Rounding, 117
Run, 20-21, 30-31, 33, 53, 219, 229, 232, 235-236,

248, 250, 300, 305, 340, 378, 381, 414,
469-470, 561

S
Sample, 345-347, 349, 351, 353-354, 370, 376-377,

575
Sample space, 345-347, 349, 351, 353-354, 370,

376-377
Sampling, 575

random, 575
Scheduling, 172
Seconds, 220, 339

749

Sequences, 135-206, 214, 216, 250, 333, 415-416,
420, 423, 425, 429-430, 500, 563

defined, 136-137, 144, 148, 150-152, 156,
158-159, 163-165, 167-173, 175-177,
179-182, 184, 186-187, 192, 197-199,
201, 216, 250, 425

finite, 137, 145, 152, 155-156, 160, 162, 181-182,
184, 196, 201, 216, 500

geometric, 159, 196
infinite, 155-156
nth term, 155, 425

Series, 23-24, 115, 484-485, 487-488, 494, 503, 527,
629, 635, 745

Set notation, 11
Sets, 1-72, 77-78, 80-81, 83-84, 91, 94-95, 97, 111,

113, 124, 127-128, 136-137, 145, 151-152,
160, 177, 179-181, 184, 199, 204, 232, 252,
263, 269, 273, 276, 289, 309-310, 312-314,
316-318, 331, 333, 372, 378, 386, 436,
442-444, 457, 462, 465, 496-497, 547, 579,
586, 607, 610-613, 615, 620, 636, 639-640,
648, 654, 657, 670, 676, 693, 700-702, 745

empty, 3, 5, 11, 62, 151, 317, 442, 497, 636
intersection, 6, 9, 12, 62, 65, 78, 91, 113, 317
solution, 11, 32-33, 61, 83, 95, 127, 232, 269, 314,

318, 331, 333, 443, 457, 465, 496, 547,
579, 615, 745

union, 6, 9, 12, 62, 65, 91, 310, 312, 317
Sides, 42, 75-76, 85, 110, 143, 153, 200, 253, 312,

345, 406-407, 413, 425-427, 490, 536, 547,
631, 726-727

Sigma notation, 196
Signal, 736
Significant digits, 721
Signs, 435
Simplification, 33, 35-36, 62, 375, 651
Simplify, 317, 397, 650-651, 653, 658, 719, 730
Simulation, 208, 248
Solutions, 1, 65, 74, 124, 135, 157, 172, 199-200, 207,

239, 248, 253, 259, 300, 305, 336, 338-339,
371-372, 379, 383, 393, 399-400, 402-404,
407, 423, 425, 434, 492, 494, 496-497, 504,
506, 507, 526-527, 576, 592, 619-620, 623,
651, 659, 665, 703, 717, 724-725, 731, 739

checking, 157
Spanning trees, 507, 521, 527-528, 533, 562, 579
Speed, 572
Spirals, 243-244

Fibonacci, 243-244
Spreadsheet, 408
Square, 38, 82, 85, 107-108, 111, 129-130, 132, 144,

183, 187, 189, 241, 245, 248, 257, 280,
324-325, 339, 381, 386, 451, 462, 471, 563,
566, 570, 716

matrix, 187, 189, 471, 716
Squares, 106-108, 111-112, 129-130, 241, 253, 339,

369, 381, 424, 451-452, 462-463, 474, 528
Squaring, 86, 231, 279-280, 282-283, 299-301
Statements, 1, 22-23, 29, 31, 36, 38, 41, 46-48, 60-61,

63, 75, 87, 90, 93-94, 97-98, 102, 104, 109,
116, 123-124, 126, 128, 132, 154, 173, 216,
314, 439, 520-521, 539, 639-640, 642,
734-735, 737

defined, 1, 22, 46, 75, 93, 104, 124, 173, 216, 642
Subgraphs, 180, 447-448, 454-455, 490, 492-493,

495-496, 499
Subset, 4-5, 7, 11-13, 62, 65-66, 75, 84, 95, 97, 107,

125, 129, 133, 136, 148, 166, 181, 196, 199,
202, 269, 308, 310, 320, 322-323, 327,
339-340, 363, 366-367, 369-370, 373, 431,
457, 528, 546, 614-615, 640-641, 673, 677,
682, 689, 704-705, 707

Substitution, 406, 408, 410, 680
Subtraction, 294

of integers, 294
Sum, 20, 38-39, 51-53, 75, 77, 87, 102, 105-106,

109-111, 113-115, 122-123, 127-129, 131,
139, 151, 159-160, 164-165, 196-197, 202,
211, 224, 229, 233, 237-239, 246-249,
252-255, 271, 277-278, 295, 314-316, 327,
332, 338-340, 346-347, 349-350, 352-354,
359, 361-364, 368-369, 371, 375, 377-379,
386, 394, 397, 412, 416-417, 429, 438, 452,
454, 465, 472, 474, 494, 497, 499, 512, 528,
540, 560, 589, 593-594, 606, 608, 620, 652,
654, 666, 703, 714-716

Sums, 106, 212, 237-238, 247, 255, 346, 652
Supply curve, 390
Survey, 348

Symbols, 48, 57-58, 70-71, 77, 79, 81-82, 143-144,
168-169, 171, 263, 270, 273, 283, 301, 335,
340, 375, 545-546, 623, 626-627, 644-645,
656, 659, 666, 671-672, 677-680, 682-684,
687, 689, 692, 694, 697, 703-708

Symmetry, 129, 177, 204, 502, 577

T
Tables, 15, 26-27, 29, 33, 193-196, 198, 205, 294,

316, 330, 373, 427, 624, 630, 632-633, 663
Terminal, 515, 519, 526, 535-536, 539-540, 544,

546-552, 563, 565, 567-570, 572-575, 577,
580, 582-585, 588, 677-678, 680, 682-684,
687, 692, 697, 701, 705

Tiling, 107-108, 110-112, 123, 129-130, 241, 245, 248,
257, 743, 746

Trees, 507-589
definition of, 514, 518, 520

Triangles, 75, 393, 426
congruent, 75
right, 75, 393
theorem, 75

Trigonometric functions, 51, 70

U
Unit circle, 445, 465
Universal set, 7-8, 12, 62, 65, 80, 84, 95, 125, 148,

152-153, 636, 656-657
Upper bound, 95-97, 124, 134, 165, 221, 224, 294,

300, 304, 417, 469, 560, 567, 585, 615-616

V
Variables, 14, 36, 39, 51, 56-57, 70-71, 98-99, 109,

115, 186, 216, 219, 247, 250, 285, 393, 544,
642, 655, 734-735, 737

functions, 51, 57, 70, 186, 642, 655
Variation, 332
Venn diagram, 7, 11-13, 62, 65
Vertex, 167-168, 174, 178, 180, 435-459, 461-472,

474, 476-480, 482, 484-486, 488-491,
494-505, 508-509, 512-520, 522-541, 544,
546-550, 552-556, 558, 561-563, 565-570,
572-582, 584-586, 588-589, 593-594,
596-598, 602-604, 610-612, 614-617,
619-621, 667-668, 689

degree of, 450-452, 454, 457, 471-472, 474, 494,
496, 499, 615

even, 436, 438-439, 445, 450-457, 462-463, 465,
470, 484-485, 494, 496, 499-501, 505,
519, 561, 563, 566, 572, 576, 584-585

odd, 449, 452-458, 462-463, 494, 498-501, 505,
561, 576, 584-585

of a network, 597
Vertex sets, 444, 465, 497, 610-612, 615, 620
Vertical, 2, 137-138, 199, 314, 329, 333, 339, 375,

476, 686
Vertical axis, 137
Vertical line, 138, 199, 333, 686

graph of, 138, 199
Vertical lines, 686

W
Weight, 141, 151, 437-438, 465-466, 494, 501, 505,

527-533, 552, 579, 588, 593, 619
Weighted graphs, 465, 523
Whole numbers, 369

X
x-axis, 252, 329, 375, 445
x-coordinate, 382
xy-plane, 66, 329, 445

Y
y-coordinate, 382
Years, 16-17, 21, 138, 198, 231, 298, 326, 384-385,

391-392, 424-425, 427, 439, 462, 489, 540,
580, 623, 743

Z
Zero, 38, 53, 121, 151, 189, 239, 260, 262, 264, 269,

282, 285, 288-294, 299-300, 303, 398, 412,
431-432, 467, 475, 516, 535, 547, 580, 598,
600, 604, 618-619, 621, 644, 661, 725

matrix, 189, 239, 475

750

	Cover
	Table of Contents
	1. Sets and Logic
	2. Proofs
	3. Functions, Sequences, and Relations
	4. Algorithms
	5. Introduction to Number Theory
	6. Counting Methods and the Pigeonhole Principle
	7. Recurrence Relations
	8. Graph Theory
	9. Trees
	10. Network Models
	11. Boolean Algebras and Combinatorial Circuits
	12. Automata, Grammars, and Languages
	Appendix: Matrices
	Appendix: Algebra Review
	Appendix: Pseudocode
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

