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Preface  

The central nervous system (CNS) is the most attractive and important organ. During
fetal life; the brain and spinal cord are rapidly formed from their premature appearance
into a mature systematic organ. Various phenotypes of CNS abnormalities, including
congenital anomalies and brain injuries in utero, arise as a result of insults which can
occur in the early, middle or late stages of pregnancy. Advanced neuroimaging
technology such as transvaginal sonography, three-dimensional ultrasound and magnetic
resonance imaging have revealed these various CNS abnormalities and have provided a
natural history in vivo of the abnormalities, opening up a new era in prenatal diagnosis 
and management. This Atlas has been written for easy understanding of advanced
neuroimaging technologies, accurate CNS diagnosis in utero, and obstetric and postnatal 
neurosurgical management of fetal CNS diseases.  

Ritsuko Kimata Pooh
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1  
Background and role of fetal central nervous 

system: diagnosis and management  
R.K.Pooh 

BACKGROUND OF FETAL CENTRAL NERVOUS SYSTEM 
ASSESSMENT  

In utero neuroimaging of anomalies  

Recent advances in prenatal imaging technologies, such as transvaginal ultrasound, three-
dimensional ultrasound and magnetic resonance imaging (MRI), have been remarkable
and have contributed to the prenatal evaluation of fetal abnormalities in utero. Owing to 
these technologies, fetal malformations have been reliably diagnosed with increasing
accuracy and at an earlier gestation. As for the fetal central nervous system (CNS)
assessment; a new field of ‘neurosonography’ 1 has been established. Many congenital 
CNS anomalies, which were disclosed in late pregnancy or after birth, have been
demonstrated recently by use of high-frequency transvaginal sonography before viability.
More advances in technological development will clarify unknown neuropathological
facts during the fetal period. 

Neonatal encephalopathy  

In terms of encephalopathy or cerebral palsy, ‘timing of the brain insult, antepartum,
intrapartum or postpartum’ is one of the serious controversial issues including medico—
socio—legal—ethical problems. Although brain insults may relate to antepartum events 
in a substantial number of term infants with hypoxic-ischemic encephalopathy, the timing 
of the insult cannot always be clarified. It is a hard task to give antepartum evidence of
brain injury predictive of cerebral palsy. Fetal heart rate monitoring cannot reveal the
presence of encephalopathy, and neuroimaging by ultrasound and MRI is the most
reliable modality for disclosure of silent encephalopathy. Many cases of cerebral palsy
with acquired brain insults, especially in term infants with reactive fetal heart rate tracing
and good Apgar scores at delivery, are not suspected of having encephalopathy and are
often overlooked for months or years. Recent imaging technology has demonstrated cases
with brain insult in utero.  



Difficulties of fetal CNS assessment  

Diagnostics of the fetal CNS is one of the most difficult fields in perinatology. There are
several reasons why the prenatal CNS evaluation is difficult:  

(1) Lack of essential knowledge of CNS anatomy and pathology (see Chapter 2); 
(2) Rapid changes of normal CNS development during pregnancy (see Chapter 2); 
(3) Inexperience of CNS neuroimaging techniques (see Chapter 3). 

When beginners start prenatal CNS imaging, these three points may be the most frequent
reasons for difficulties in prenatal assessment. However, after overcoming those
problems, there still exist difficulties in assessment of fetal CNS diseases: 

(1) Difficulty in prediction of neurological prognosis; 
(2) Existence of a gray zone between normality and abnormality. 

It is extremely hard to make a neurological prognosis by abnormal morphology. Figure 
1.1 shows the comparison before and after treatment in cases with hydrocephalus or 
porencephaly. The prognosis is good in both cases despite abnormal morphology  

 

Figure 1.1 Abnormal morphology and neurological prognosis. Upper, a case of 
hydrocephalus. After treatment by a shunt operation, 
ventriculomegaly still exists. However, this infant has developed 
normally with an IQ of 113. Lower, a case of progressive 
ventriculomegaly with a porencephalic cyst. After treatment, 
ventriculomegaly and porencephaly resolved but the brain 
morphology is not complete. This case has had an almost normal 
postoperative course with very subtle motor disturbance. The 
morphology does not always correspond to the neurological 
prognosis 
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even after treatment. Morphology does not always correspond to the neurological
prognosis. One more cause which makes prenatal evaluation difficult is the existence of a
gray zone between normality and abnormality.  

ROLE OF FETAL CENTRAL NERVOUS SYSTEM DIAGNOSIS  

The initial purpose of prenatal neuroimaging is to confirm normal CNS development with
advancing gestation. Second, the role of neuroimaging is to detect abnormalities with
accuracy and objectivity for proper perinatal management and care. Once abnormal
findings of the fetal brain and/or spine are suspected, counselling the parents should be
carried out prudently. Ambiguous or uncertain diagnoses make parents overanxious and
may lead them to an overhasty decision since the ‘CNS’ may preside over important parts 
of fetal life and may also influence the lives of the rest of the family. In particular, a fetal
CNS diagnosis before viability should be performed precisely and prudently. The more
accurate and objective the diagnosis, the better the parents understand and carefully
consider the facts presented to them about their unborn fetus. Drotar and colleagues 2

analyzed interviews with parents of neonates with congenital malformations disclosed at
birth; and proposed five stages of parental reactions:  

• Shock 
• Denial 
• Sadness and anger 
• Adaptation 
• Reorganization 

We interviewed mothers of neonates with congenital malformations diagnosed in utero
who were repeatedly well-informed during pregnancy, and analyzed maternal
psychological changes. When fetal anomalies were disclosed, denial, sadness, guilt and
anxiety arose in the mothers’ minds. By the time of delivery; however, most of the 
mothers accepted the fact of having congenitally malformed babies (Figure 1.2). 
Moreover, when the mothers first faced their newborn babies, most of them were relieved
and decided to cherish their babies (Figure 1.3). These mothers had already reached 
Drotar’s last stage of ‘reorganization’ at birth. Thus; prenatal diagnosis and subsequent 
serial counselling during pregnancy play an important role in leading parents with unborn
malformed babies to the stages of adaptation and reorganization.  
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Figure 1.2 Comparison of the mental state in mothers who have fetal 
congenital malformations disclosed in utero between the time of 
disclosure of fetal anomalies and just before birth 

 

Figure 1.3 Mental state just after delivery in mothers who have fetal congenital 
malformations disclosed in utero  
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2  
Central nervous system development and 

anatomy  
R.K.Pooh 

CENTRAL NERVOUS SYSTEM DEVELOPMENT  

The brain is a three-dimensional structure and should be studied in the three orthogonal 
views of sagittal, coronal and axial section (Figure 2.1). During the fetal period, the 
embryonal premature CNS structure develops into the mature structure (Figures 2.2–2.9). 
Within this rapid change of development, various developmental disorders and/or insults
result in various phenotypes of fetal CNS abnormalities. For understanding fetal CNS
diseases, basic knowledge of the development of the nervous system is essential. The
developmental stages and their major disorders (see Chapter 6) are described in Table 
2.1.  

BASIC KNOWLEDGE OF BRAIN ANATOMY FOR NEUROIMAGING  

It may be believed by many that the anatomy of the brain must be complicated and
therefore there must be a large number of terms to remember. In this Chapter, essential
anatomical structures have been selected for neuroimaging and the comprehension of
fetal CNS diseases. Figures 2.10 and 2.11 show the sagittal and anterior coronal sections
of the brain. For understanding hydrocephalus, ventriculomegaly and/or other intracranial
lesions, the ventricular system (Figure 2.12) and cerebral spinal fluid (CSF) circulation
(Figure 2.13) should be understood.  

Table 2.1 Developmental stages and major disorders 

Developmental stage  Disorders  
Primary neurulation (3–4 weeks’ 
gestation) 

spina bifida aperta, cranium bifidum 

Caudal neural tube formation (secondary 
neurulation, from 4 weeks’ gestation) 

occult dysraphic states 



 

Figure 2.1 Basic three orthogonal sections of the brain. For easy understanding 
of brain anatomy and neuroimaging, these three sections are 
fundamental 

Prosencephalic development (2–3 
months’ gestation) 

holoprosencephaly, agenesis of the corpus callosum, 
agenesis of the septum pellucidum, septo-optic 
dysplasia 

Neuronal proliferation (3–4 months’ 
gestation) 

micrencephaly, macrencephaly 

Neuronal migration (3–5 months’ 
gestation) 

schizencephaly, lissencephaly, pachygyria, 
polymicrogyria 

Organization (5 months’ gestation to 
years postnatal) 

idiopathic mental retardation 

Myelination (birth to years postnatal) cerebral white matter hypoplasia 
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Figure 2.2 Developing brain and spinal cord during pregnancy. The fetal 
central nervous system changes in size and appearance from an early 
premature structure into a late mature structure with gyral formation. 
CH, cerebral hemisphere; C, cerebellum; D, diencephalon; M, 
medulla; SC, spinal cord; f, forebrain; mb, midbrain; IV, fourth 
ventricle; GA, gestational age 
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Figure 2.3 Serial magnetic resonance images (MRI) of early fetus (7 weeks of 
gestation). Upper; serial coronal MRI of the fetus at 7 weeks’ 
gestational age. Lower, serial sagittal MRI of the fetus at 7 weeks’ 
gestational age. Germinal matrix cannot be detected. Image 
contributed by Dr Kinoshita, from AJNR 2001;22:382 and Clinical 
Imagiology 2001;17:1392, with permission 
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Figure 2.4 Magnetic resonance sectional images and magnetic resonance 
surface-rendering images of a stillborn infant at 21 weeks of 
gestation. Note the germinal matrix (arrow) and migrating neuroblast 
(arrowhead). In the lower figures, the ventricular system is 
demonstrated in blue and the germinal matrix in orange. Image 
courtesy of Dr Kinoshita, from Jap J Clin Radiol 1999;44:1235, with 
permission 
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Figure 2.5 Photomicrograph of a lateral view of the brain of a stillborn fetus 
(20 weeks, crown-rump length 170 mm). From Moore KL, Persaud 
TVN and Shiota K. Color Atlas of Clinical Embryology. 2nd edn; 
Philadelphia: W.B. Saunders, 2000, with permission. Specimen was 
from Congenital Anomaly Research Center, Kyoto University 
Graduate School of Medicine 
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Figure 2.6 Photomicrograph of a lateral view of the brain of a stillborn fetus 
(25 weeks). From Moore KL, Persaud TVN, Shiota K. Color Atlas of 
Clinical Embryology. 2nd edn. Philadelphia: W.B. Saunders, 2000, 
with permission. Specimen was from the Congenital Anomaly 
Research Center, Kyoto University Graduate School of Medicine 
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Figure 2.7 Three-dimensional reconstruction magnetic resonance images 
(MRI) of the brain surface, germinal matrix and ventricular system. 
Successive MRIs of stillborn fetuses show developmental changes in 
the lateral configuration of the brain, germinal matrix and ventricular 
system. The brain surfaces (upper row), germinal matrix (middle row, 
orange) and ventricular system (lower row, blue) of human fetal brain 
were reconstructed by surface rendering. The volume of the germinal 
matrix increased until 23 weeks’ gestational age and decreased 
rapidly at 28 weeks’ gestational age. Note how the lateral ventricles 
change from fetal type, with vesicular aspect and bicornuate shape, to 
adult type with increasing gestational age. Image courtesy of Dr 
Kinoshita, from AJNR 2001;22:382, with permission 
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Figure 2.8 Serial axial magnetic resonance images (MRI) of postmortem 
stillborn fetuses between 15 and 28 weeks of gestation. Note the 
lateral ventricular change from fetal type, with vesicular aspect and 
bicornuate shape, to adult type. Image courtesy of Dr Kinoshita, from 
Clinical Imagiology 2001;17:1392, with permission 

 

Figure 2.9 Serial coronal magnetic resonance images of stillborn fetuses 
between 15 and 28 weeks of gestation. Note the lateral ventricular 
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change from fetal type, with vesicular aspect and bicornuate shape, to adult 
type. Image courtesy of Dr Kinoshita, from Clinical Imagiology 
2001;17:1392, with permission 

 

Figure 2.10 Basic anatomical structure of sagittal cutting section of the brain. 
CC, corpus callosum 
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Figure 2.11 Basic anatomical structure of coronal cutting section of the brain 

 

Figure 2.12 Basic anatomical structure of the ventricular system of the brain. 
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Cerebrospinal fluid (CSF), produced from the choroid plexus of the ventricles, 
runs from the lateral ventricles, through the third ventricle, aqueduct, 
fourth ventricle and goes to the surface of the brain and spinal cord 

 

Figure 2.13 Cerebrospinal fluid (CSF) circulation. Inside and outside views of 
the brain. CSF is produced from the choroid plexus of the ventricles. 
CSF runs through the third ventricle, aqueduct and fourth ventricle, to 
the surface of the brain and spinal cord, and is then absorbed by 
arachnoid granulation. From Handbook on Hydrocephalus for 
Patients, Research Committee of ‘lntractable Hydrocephalus’, 
Japanese Ministry of Health and Welfare, ©1993, with permission. 
Schema courtesy of Chairman of the Committee, Professor K.Mori 
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3  
Technologies and techniques of fetal 

neuroimaging diagnosis  
R.K.Pooh and K.Maeda 

TRANSABDOMINAL SONOGRAPHY  

The transabdominal sonographic technique (Figure 3.1), by which it is possible to 
observe the fetal internal organs through the maternal abdominal wall and uterine wall,
has been the most widely used for fetal imaging diagnosis. By using the transabdominal
approach, the fetal brain structure, mainly in the axial section, and fetal back structure
including the vertebrae and spinal cord in the sagittal section, can be well demonstrated.
However, when using the transabdominal approach to the fetal central nervous system,
there are several obstacles, such as the maternal abdominal wall, the placenta and the
fetal cranial bones.  

TRANSVAGINAL SONOGRAPHY  

The introduction of the high-frequency transvaginal transducer has contributed to
establishing ‘sonoembryology’ 1 and the recent general use of  



 

Figure 3.1 Transabdominal sonography for fetal central nervous system 
imaging 

 

Figure 3.2 Transvaginal approach to the fetal brain and the ultrasound 
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windows. Transvaginal sonography enables demonstration of the sagittal and 
coronal planes of the brain. The anterior fontanelle (AF), sagittal 
suture (S) and posterior fontanelle (PF) are ultrasound windows for 
approaching the brain 

transvaginal sonography in early pregnancy has enabled the early diagnosis of major fetal
anomalies 2 . In middle and late pregnancy, the fetal CNS is generally evaluated through 
the maternal abdominal wall. By using transabdominal sonography, the fetal brain is
mainly demonstrated in transcranial axial sections. The brain, however, is a three-
dimensional structure, and should be assessed in the basic three planes; sagittal, coronal
and axial sections (Figure 2.1). Sonographic assessment of the fetal brain in the sagittal 
and coronal sections, requires an approach from the fetal parietal direction (Figure 3.2). 
Transvaginal sonography of the fetal brain (Figures 3.3 and 3.4) opened up a new field in 
medicine, ‘neurosonography’ 3 . The transvaginal approach to the normal fetal brain
during the second and third trimester was introduced at the beginning of the 1990s. It was
the first practical application of three-dimensional central nervous system assessment by
two-dimensional ultrasound 4 . Transvaginal observation of the fetal brain offers sagittal 
and coronal views of the brain from the fetal parietal direction 5 – 8 through the 
fontanelles and/or the sagittal suture as ultrasound windows. Serial oblique sections 3 via 
the same ultrasound window reveal the intracranial morphology in detail. This method
has contributed to the prenatal assessment of congenital CNS anomalies and acquired
brain damage in utero.  

THREE-DIMENSIONAL ULTRASOUND  

Three-dimensional ultrasound is one of the most attractive modalities in the field of fetal 
ultrasound imaging. There are two scanning methods-the freehand scan and the automatic 
scan. The automatic scan by dedicated three-dimensional transducer produces motor-
driven automatic sweeping and is called a fan scan (Figure 3.5). With this method, a shift 
and/or angle change of the transducer is not required during scanning and scan duration is
only a few seconds. After acquisition of the target organ; multiplanar imaging analysis is
possible. The combination of both transvaginal sonography and three-dimensional 
ultrasound 9 – 12 may be a great diagnostic tool for evaluation of the three-dimensional 
structure of the fetal CNS. There are several useful functions in three-dimensional 
ultrasound as shown below: 

(1) Surface imaging of the fetal head; 
(2) Bony structural imaging of the calvaria and vertebrae; 
(3) Multiplanar imaging of the intracranial structure; 
(4) Three-dimensional sonoangiography of the brain circulation; 

An atlas of fetal central nervous system disease     22



 

Figure 3.3 Transvaginal sonography for fetal central nervous system imaging 
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Figure 3.4 Schema of transvaginal sonography. Left, lateral view of vertex-
presenting fetus and transvaginal transducer. Right, frontal view. 
Clear imaging is possible by rotating and angle changing of the 
transducer 

 

Figure 3.5 Device and transducers for three-dimensional and four-dimensional 
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ultrasound. Three-dimensional ultrasound provides not only surface imaging 
but also multiplanar inner structural analysis, vascular analysis and 
volumetric analysis. A recent advance in three-dimensional 
ultrasound has introduced four-dimensional ultrasound with volume 
contrast imaging. Picture and schemas courtesy of GE Medical 
Systems and Kretztechnik 

(5) Volume calculation of target organs such as the intracranial cavity, ventricle, choroid 
plexus and intracranial lesions; 

(6) Simultaneous volume contrast imaging by four-dimensional ultrasound. 

In multiplanar imaging of the brain structure; it is possible to demonstrate not only the
sagittal and coronal sections but also the axial section of the brain (Figure 3.6), which 
cannot be demonstrated from the parietal direction by conventional two-dimensional 
transvaginal sonography. Parallel slicing provides tomographic visualization of internal
morphology similar to MRI. Volume-extracted images and volume calculation of the 
fetal brain in early pregnancy were reported in the 1990s 13 , 14 . We used transvaginal 
three-dimensional ultrasound and the 3D View version 3.2 software (Kretztechnik AG;
Zipf, Austria) for volume extraction and volume estimation of the brain structure (Figure 
3.7). Furthermore, with the application of four-dimensional ultrasound, real-time images 
with increased contrast resolution can be obtained not only in the same plane as the two-
dimensional cutting section but also in a vertical plane to the two-dimensional image 15 .  

Fetal neuroimaging with advanced three- and four-dimensional technology is an easy; 
non-invasive and reproducible method. It produces not only comprehensible images but
also objective imaging data which can be graphed in volume calculation. Easy
storage/extraction of a raw volume dataset enables off-line analysis and consultation with 
neurologists and neurosurgeons 16 , 17 . 

ULTRASONIC TISSUE CHARACTERIZATION BY GRAY-LEVEL 
HISTOGRAM WIDTH  

Ultrasonic B-mode usually diagnoses the morphology of the tissue, organ or mass, while
for some diagnostic purposes, echogenicity plays an important role. For example;
periventricular echodensity (PVE), which is discussed later in this atlas; is defined by its
higher echogenicity than that of the choroid plexus. The diagnosis is usually made by
visual observation of the ultrasound image; but it is a  
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Figure 3.6 Three-dimensional multiplanar image analysis. Three orthogonal 
views are useful to obtain orientation of the brain structure. The raw 
three dimensional volume dataset can be saved quickly. Saved data 
can be reviewed on the ultrasound device, and extracted on CD-R(W) 
or MO disks and sent for consultation. Off-line image analysis can be 
carried out easily and repeatedly 

 

Figure 3.7 Three-dimensional volume extraction and volumetric analysis. On 
three orthogonal sections, the target organ can be traced 
automatically or manually by rotation of the volume imaging data. 
After tracing, a volume extraction image (upper right) can be 
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demonstrated and volume calculation data are shown. Three-dimensional 
volumetry adds objective graphed imaging data 

subjective decision. A more objective method is required for scientific analysis. Many
tissue characterization techniques have been reported for this purpose, but most of them
need particular algorithms; special software, and often sophisticated computers, which
are difficult to supply in many general hospitals. The gray-level histogram width 
(GLHW; Figure 3.8) for clinical tissue characterization; is based on the measurement of 
the width of the gray-level histogram. This can be is displayed on  

 

Figure 3.8 Examples of gray-level histogram width (GLHW). GLHW in a 
normal placenta every 2 weeks during pregnancy and a large GLHW 
in a Grannum III placenta 18 . There is no influence of the device and 
image depth on the GLHW in studies on ultrasound phantoms. Only 
its increase is calibrated in high image contrast 1 . The GLHW is high 
in a Grannum III placenta 18 , in fetal periventricular echodensity 21 , 
in meconium-stained fluid, in ovarian malignancy and endometrial 
cancer, while it is low in the immature fetal lung 19 , 20  
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Figure 3.9 Procedures for the detection of an ultrasound histogram using a 
common imaging device. 1. Usual scan using a common commercial 
machine, or with a two-dimensional histogram from a Kretz three-
dimensional machine. 2. Freeze the display of the subject image on 
the screen, press ‘USER’, select a region of interest (ROI) on the 
panel, and place it at the tissue image. Select ‘HISTO’ shape and size 
from the menu, if necessary. 3. Pixel gray levels in the ROI are 
processed for the histogram and data analysis. These are displayed on 
the screen as shown in the Figure 

the image of a common commercial ultrasound imaging device (Figure 3.9) and; also; on 
the screen of a three-dimensional machine and, in addition, it needs no particular
computer or software for its measurement. The GLHW is not influenced by the device
gain or by the image depth; and needs only easy calibration when the image contrast is
high. The manual technique is usual, while automated  
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Figure 3.10 Determination of gray-level histogram width (GLHW) on the 
ultrasonic image. GLHW=(W/F) x 100 (%). ROI, region of interest; 
histogram, frequency histogram of pixel gray levels in the ROI; W, 
base width of the histogram; F, full gray-scale length. The automated 
GLHW provided by Aloka (Tokyo, Japan) was identical to the 
manual determination 

 

Figure 3.11 An example of the gray-level histogram width (GLHW) 
application in the fetal central nervous system: objective detection of 
fetal periventricular echodensity (PVE). The histogram is wider and 
the GLHW is larger in a fetal PVE image than in that of a normal 
fetal brain. Twin peaks appear in some PVE histograms. Image 
courtesy of Dr N. Yamamoto 
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measurement is also provided as an option 1 8 , 19 (Figure 3.10). High Grannum-grade 
placenta, immature fetal lung, meconium-stained amniotic fluid, ovarian masses,
endometial cancer and other conditions have been diagnosed by GLHW, in addition to
fetal cerebral PVE 20 , 21 (Figure 3.11).  

MAGNETIC RESONANCE IMAGING  

Recently, MRI has frequently been used in the obstetric field for maternal and fetal
imaging diagnosis. In particular; fast MRI is being used increasingly as a correlative
imaging modality because it uses no  

 

Figure 3.12 Magnetic resonance imaging of the fetus 

ionizing radiation, provides excellent soft tissue contrast; has multiple planes for
reconstruction, and a large field of view 22 . Recent advances in fast MRI technology, 
such as half-Fourier and the 0.5-signal-acquired single-shot fast spin-echo (SE), half-
Fourier rapid acquisition with relaxation enhancement (RARE) sequences, has
remarkably improved the T2-weighted image resolution despite a short acquisition time, 
and has minimized fetal and/or maternal respiratory motion artifacts without need of fetal
sedation 23 . MRI has great potential especially for the evaluation of CNS and several 
reports have been published on normal and abnormal CNS anatomy by using fast MRI
techniques 24 – 28 . Inthisatlas; we have used a 1.5 T MR unit with two-dimensional half-
Fourier fast SE sequence (Figure 3.12) for assessment of fetal CNS abnormalities. Before
MRI, sonographic localization of the organ of interest is performed. The most suitable

An atlas of fetal central nervous system disease     30



coil is selected and set according to the maternal position and location of the target organ.
MRI demonstrates the brain structure in detail, including the brainstem which cannot be
clearly depicted even by transvaginal sonography. In cases with CNS abnormalities;
which should be operated on immediately after birth, detailed prenatal information is
quite helpful and does not require postnatal neuroimaging before an initial treatment.  
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4  
Imaging of the normal fetal central nervous 

system  
R.K.Pooh 

CRANIAL BONE  

The calvaria and its major sutures develop between 12 and 18 weeks of fetal life, with
dura as guiding tissue in the morphogenesis of the skull 1 . The cranial bones are 
detectable by sonography from 10 weeks of gestation onwards.Figure 4.1 and 4.2
demonstrate the early fetal skull structure by two- and three-dimensional ultrasound. At 
12 weeks, premature cranial bones and the sutures in between are detectable. The sagittal
suture, lamboid sutures and posterior fontanelle are recognizable from 13 weeks. The
diamond-shaped anterior fontanelle can be demonstrated after 15 weeks of gestation. As
the fetal parietal portion has the anterior/posterior fontanelles and sagittal suture which is
the widest suture among the fetal cranial sutures (Figure 4.3) 2 , the transvaginal approach 
to the fetal brain using these spaces as ultrasound windows, demonstrates the detailed
brain structure without the obstacle of the cranial bone, and is the most effective way for
brain assessment.  

 

Figure 4.1 The fetal skull in early pregnancy. Two-dimensional ultrasound can 
demon-strate the fetal skull formation from an early stage. The most 
remarkable morphological change during early pregnancy is the 
metopic suture change. The V-shaped metopic suture between the 



bilateral frontal bones at 12 weeks changes into a linear structure at around 17 
weeks 

 

Figure 4.2 The fetal cranial structure in early gestation (three-dimensional 
ultrasound images). Upper left, 12 weeks, from the oblique front. 
Upper middle, 13 weeks, from the back. Upper right, 15 weeks, from 
the top of the head. Lower left, 12 weeks, from the front. Lower right, 
17 weeks, oblique position. The premature shapes of the cranial 
bones; sutures and fontanelles at 12–13 weeks gradually change their 
appearance to the neonatal cranial shape. AF, anterior fontanelle; PF, 
posterior fontanelle; ALF, anterolateral fontanelle; F; frontal bone; P, 
parietal bone; O, occipital bone; C, coronal suture; M, metopic 
suture; S, sagittal suture; L, lamboid suture 
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Figure 4.3 Suture width change during normal pregnancy. The change of 
suture width between 12 and 28 weeks of gestation. Sagittal suture is 
the widest suture. This fact indicates that transvaginal sonography is 
a reasonable way to approach the fetal brain 

INTRACRANIAL STRUCTURE  

As described in Chapter 2, the brain should be understood as a three-dimensional 
structure. Figures 4.4–4.9 show normal fetal brain images in the same cutting section at
different gestational ages. By use of transvaginal three-dimensional sonography as des 
cribed in Chapter 3, serial tomographic images in the three orthogonal sections can be
demonstrated. Figures 4.10–4.17 show serial parallel sectional images of normal fetuses 
in the sagittal, coronal and axial planes at 8, 11, 15, 19, 24, 27, 31 and 36 weeks of
gestation. Gyral formation is observed from approximately 26–28 weeks of gestation by  
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Figure 4.4 Axial sections at 18 and 33 weeks of gestation 

 

Figure 4.5 Sagittal sections at 19, 26 and 35 weeks of gestation 
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Figure 4.6 Parasagittal sections at 15, 18, 27 and 34 weeks of gestation 
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Figure 4.7 Parasagittal sections at 28, 32 and 36 weeks of gestation 
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Figure 4.8 Anterior coronal sections at 18; 22, 21 and 38 weeks of gestation 
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Figure 4.9 Posterior coronal sections at 19, 26 and 32 weeks of gestation 

 

Figure 4.10 Normal intracranial structure at 8 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
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sections from above. The premature sonolucent ventricular system is visible 

 

Figure 4.11 Normal intracranial structure at 11 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above 

An atlas of fetal central nervous system disease     42



 

Figure 4.12 Normal intracranial structure at 15 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above 
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Figure 4.13 Normal intracranial structure at 19 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above 
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Figure 4.14 Normal intracranial structure at 24 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above 
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Figure 4.15 Normal intracranial structure at 27 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above 
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Figure 4.16 Normal intracranial structure at 31 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above 
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Figure 4.17 Normal intracranial structure at 36 weeks of gestation in parallel 
cutting slices of three orthogonal views; sagittal, coronal and axial 
sections from above. Note the gyral formation in the late pregnancy 

sonography. After 30 weeks, sulci and gyri are well demonstrated as shown in Figure 
4.18. Isolated lateral ventricular asymmetry is often detected as the area difference
between the left and right ventricles in fetuses during the latter half of pregnancy (Figure 
4.19) or in neonates. In most cases, an asymmetry resolves spontaneously during
pregnancy or after birth and generally has no clinical significance and may be a normal
variation. Ventricular asymmetry should be differentiated from the initial sign of
progressive unilateral hydrocephalus or a rare developmental malformation such as
unilateral megalencephaly.  
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Figure 4.18 Gyral formation in the late pregnancy by two-dimensional (left) 
and threedimensional (right) ultrasound 

 

Figure 4.19 Lateral ventricular asymmetry (normal variation). Asymmetry of 
lateral ventricles are often observed in normal fetuses 
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VERTEBRAE AND SPINE  

Vertebrae and spine should be observed carefully for the detection of back abnormalities
such as spina bifida or scoliosis. The fetal sagittal sectional screening method is
preferable (Figures 4.20 and 4.21). Three-dimensional ultrasound demonstrates the bony
structure as shown in Figure 4.22 and recent advanced three-dimensional ultrasound has 
been able to depict vertebral body; intervertebral disk space and vertebral lamina (Figure 
4.23).  

 

Figure 4.20 Vertebrae and spine in the sagittal section at 20 weeks of gestation 
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Figure 4.21 Vertebrae and spine in the sagittal section at 29 weeks of gestation. 
Upper, thoracic vertebrae; middle, lumbar vertebrae; lower, 
lumbosacral vertebrae 

 

Figure 4.22 Fetal bony structure at 17 weeks of gestation 
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Figure 4.23 Fetal vertebral structure by three-dimensional ultrasound at 21 
weeks of gestation 

BRAIN CIRCULATION  

Intracranial blood vessels can be visualized by color/power Doppler from early
pregnancy (Figure 4.24). Transvaginal power Doppler demonstrates clear anatomical 
vascular formation (Figure 4.25). Dural sinuses such as the superior sagittal sinus, vein of 
Galen and straight sinus are located in the median section. Therefore, the transvaginal
sagittal view demonstrates these dural sinuses (Figure 4.26). In normal cases, venous 
blood flow waveforms have pulsations as shown in Figure 4.26; while in cases with 
progressive hydrocephalus, the pulsatile pattern disappears (see Chapter 5). Intracranial 
circulatory structure can be well demonstrated by three-dimensional power Doppler 3

(Figure 4.27).  

An atlas of fetal central nervous system disease     52



 

Figure 4.24 Intercerebral circulation by color/power Doppler in early 
pregnancy. Upper left, sagittal image at 10 weeks of gestation. 
Premature arterial vessels toward the brain are visualized. Upper 
right; sagittal image at 12 weeks. Branches of the anterior cerebral 
artery (ACA) are demonstrated. Lower, coronal image at 13 weeks. 
Bilateral internal carotid arteries (ICA) and middle cerebral arteries 
(MCA) are demonstrated 

 

Figure 4.25 Brain circulation by two-dimensional power Doppler. Left, axial 
image. Circle of Willis (W) and middle cerebral arteries (MCA) are 
demonstrated. Middle, coronal image. Internal carotid arteries (ICA) 
and branches of the middle cerebral arteries are visible. Right, sagittal 
image. Anterior cerebral artery (ACA), pericallosal artery (PcA) and 
branches are demonstrated 
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Figure 4.26 Normal cerebral venous circulation. Left, sagittal image of color 
Doppler. SSS, superior, sagittal sinus; ICV, internal cerebral vein; G, 
vein of Galen; SS, straight sinus. Right, normal blood flow 
waveforms of dural sinuses. In normal fetuses, venous flow always 
has pulsations 
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Figure 4.27 Three-dimensional power Doppler image of fetal brain circulation. 
Left, view from the front. Bilateral internal carotid arteries (ICA) and 
middle cerebral arteries (MCA) and branches of MCA are 
demonstrated. Right, oblique view. Anterior cerebral artery (ACA) 
and pericallosal artery (PcA) are demonstrated 

VOLUME CALCULATION  

Volume analysis by three-dimensional ultrasound provides exceedingly informative 
imaging data. Volume analysis of the structure of interest provides an intelligible
evaluation of the brain structure in total, and longitudinal and objective assessment of
enlarged ventricles and intracranial occupying lesions. Any intracranial organ can be
chosen as a target for volumetry no matter how distorted its shape and appearance may be
4 , 5 . Figures 4.28–4.30 show the volume measurement of the intracranial cavity, the
lateral ventricle and the choroid plexus in normal fetuses and their normal development
during pregnancy. Figure 4.31 shows the changing appearance of the lateral ventricle and
choroid plexus during pregnancy. 

VOLUME CONTRAST IMAGES BY FOUR-DIMENSIONAL 
TECHNOLOGY  

Recent advances in three- and four-dimensional ultrasound technology has enabled us to
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demonstrate the thick-slice images, which have been utilized in MRI technology. Using 
this technology of volume contrast imaging, real-time images with increased contrast
resolution can be obtained as described in Chapter 3. Figure 4.32 shows a volume 
contrast image of cerebral sulci at 33 weeks. It is possible to demonstrate the thick-slice 
vertical to a two-dimensional image by the same technology (Figures 4.33 and 4.34). The 
novel unique technology of volume contrast imaging provides additional information
simultaneously with conventional two-dimensional imaging, without the process of off-
line three-dimensional reconstruction 6 .  

MAGNETIC RESONANCE IMAGING  

Recent advances in fast MRI technology have produced high-resolution images without 
fetal sedation or fetal/maternal motion artifact despite a short acquisition time. MRI
demonstrates the brain structure in detail (Figure 4.35), including the brainstem which 
cannot be clearly depicted even by transvaginal sonography. Surface anatomical MRI
demonstrates the outer surface of the brain. Figure 4.36 shows the surface gyral 
formation of the cerebrum.  

 

Figure 4.28 Intracranial cavity volume during pregnancy. Upper, three 
orthogonal views and volume extraction image of a 15-week-old 
fetus. Lower, nomogram of intracranial volume during pregnancy 
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Figure 4.29 Lateral ventricular volume during pregnancy. Upper, three 
orthogonal views and volume extraction image of a 17-week-old 
fetus. Lower, nomogram of lateral ventricular volume during 
pregnancy 
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Figure 4.30 Choroid plexus volume during pregnancy. Upper, three orthogonal 
views and volume extraction image of a 17-week-old fetus. Lower, 
nomogram of choroid plexus volume during pregnancy 
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Figure 4.31 Changing appearance of the lateral ventricle and choroid plexus 
between 12 and 34 weeks (three-dimensional ultrasound volume 
extraction image). Upper, lateral ventricle; lower, choroid plexus 

Imaging of the normal fetal central nervous system     59



 

Figure 4.32 Simultaneous volume contrast imaging by four-dimensional 
technology. Cerebral gyral formation at 33 weeks of gestation. 
Conventional two-dimensional imaging and volume contrast 
imaging, which means a thick slice image, are simultaneously 
demonstrated 
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Figure 4.33 Simultaneous volume contrast imaging of the vertical plane by 
four-dimensional technology. Fetal spinal cord and vertebrae at 19 
weeks of gestation. Left, conventional two-dimensional image. Right, 
thick slice of the vertical section plane of a two-dimensional image is 
simultaneously demonstrated 
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Figure 4.34 Simultaneous volume contrast imaging of the vertical plane by 
four-dimensional technology. Developing midbrain, cerebellum and 
medulla at 14 weeks of gestation. Left, volume contrast image; right, 
schema indicates the development of the premature brain at the same 
gestation 

 

Figure 4.35 Magnetic resonance coronal images of a normal fetal brain at 33 
weeks of gestation. Left, anterior coronal image; right, posterior 
coronal image. Note the subarachnoid space around the cerebral 
surface 
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Figure 4.36 Magnetic resonance surface anatomical imaging of a fetal brain at 
34 weeks of gestation. Left; bilateral hemispheres; right, lateral view 
of left hemisphere 
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5  
Hydrocephalus and ventriculomegaly  

R.K.Pooh and K.H.Pooh 

PRENATAL ASSESSMENT OF ENLARGED VENTRICLES  

Hydrocephalus and ventriculomegaly in utero  

The two terms, hydrocephalus and ventriculomegaly, are often used to describe dilatation
of the lateral ventricles. However, they should be distinguished from each other in order
to assess the enlargement of the ventricles. Hydrocephalus is a dilatation of the lateral
ventricles resulting from an increased amount of cerebrospinal fluid (CSF) and increased
intracranial pressure, while ventriculomegaly is a dilatation of the lateral ventricles
without increased intracranial pressure due to hypoplastic cerebrum or other intracerebral
abnormalities such as agenesis of the corpus callosum. Of course, ventriculomegaly can
sometimes change into the hydrocephalic state. In sonographic imaging, these two
intracranial conditions can be differentiated by visualization of the subarachnoid space
and the appearance of the choroid plexus. In normal conditions, the subarachnoid space;
visualized around both cerebral hemispheres (Figures 5.1 and 5.2), is preserved during 
pregnancy. The choroid plexus, which secretes CSF within the ventricles, is a soft tissue
and is easily affected by pressure (Figure 5.2). The transvaginal coronal and parasagittal 
(oblique) images demon- 



 

Figure 5.1 Normal structure outside the cerebral hemispheres. Outside the 
hemispheres, the subarachnoid space is normally observed. Outside 
the subarachnoid space, dura mater, cranial bone and the scalp cover 
the brain. SSS, superior sagittal sinus 

strate the obliterated subarachnoid space and the dangling choroid plexus in the case of
hydrocephalus (Figure 5.3). In contrast, the subarachnoid space and choroid plexus are 
well preserved in cases of ventriculomegaly 1 (Figure 5.4). It is difficult to evaluate 
obliterated subarachnoid space by the transabdominal approach which may not accurately
differentiate hydrocephalus with increased intracranial pressure from ventriculomegaly
without pressure. Therefore; it is suggested that the evaluation of fetuses with enlarged
ventricles should be evaluated in the parasagittal and coronal views by the transvaginal
way or three-dimensional multiplanar analysis. Figures 5.5–5.9 show sonographic images 
of hydrocephalus from early to late gestation. In early pregnancy, the subarachnoid space
is not depicted even in normal fetuses. However, the choroid plexus is dangling and
deviates toward the occipital portion  
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Figure 5.2 Subarachnoid space in a normal fetus. The subarachnoid space 
(SAS), which is demonstrated around the cerebral hemispheres is 
preserved during pregnancy. Right, graph shows the width change of 
subarachnoid space and the thickness of the cerebrum during a 
normal pregnancy 

 

Figure 5.3 Ultrasound images of fetal hydrocephalus at 34 weeks of gestation. 
Left, coronal image. The subarachnoid space is obliterated. Right, 
sagittal image. A dangling choroid plexus is demonstrated (arrow) 
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Figure 5.4 Ultrasound images of ventriculomegaly. Enlarged ventricles exist 
but the subarachnoid space (arrowheads) is well preserved and there 
is no dangling choroid plexus, which indicates normal intercranial 
pressure. This condition should be differentiated from hydrocephalus 

 

Figure 5.5 Early hydrocephalus at 10–12 weeks of gestation. Upper left and 
middle, axial images at 10 weeks. Choroid plexus is replaced 
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backwards in the ventricles and marked intraventricular fluid collection is 
demonstrated. Upper right, sagittal image at 12 weeks. The fetal head 
is enlarged and frontal bossing is conspicuous. Lower, external 
appearance of the head and face in an aborted fetus at 14 weeks. 
Images and photographs courtesy of Dr T.Murakoshi 

 

Figure 5.6 Three-dimensional orthogonal views of hydrocephalus at 16 weeks 
of gestation. Upper left; coronal image; upper right, sagittal image; 
lower; axial image. This case was complicated by myelomeningocele. 
The subarachnoid space is already obliterated and a dangling choroid 
plexus is seen 
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Figure 5.7 Three-dimensional orthogonal views of hydrocephalus at 18 weeks 
of gestation. Upper left, coronal image; upper right, sagittal image; 
lower, axial image. The subarachnoid space is already obliterated and 
a dangling choroid plexus is seen 

 

Figure 5.8 Hydrocephalus with third ventriculomegaly at 19 weeks of 
gestation. Upper left, sagittal ultrasound image; upper right, axial 
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image. Mild enlargement of the third ventricle is demonstrated (arrowheads). 
Lower left, anterior coronal image of hydrocephalus. The septum 
pellucidum is intact. Lower right, parasagittal image. Note the 
obliterated subarachnoid space and dangling choroid plexus 

 

Figure 5.9 Ultrasound images of hydrocephalus at 34 weeks of gestation. 
Upper, serial coronal images. The septum pellucidum was destroyed, 
perhaps due to enlargement of the bilateral ventricles, and both 
ventricles were fused. A dangling choroid plexus is seen. Lower, 
parasagittal and sagittal images. A dangling choroid plexus and 
obliterated subarachnoid space are seen 

of the lateral ventricles in a case of hydrocephalus as early as 10 weeks of gestation
(Figure 5.5). Under normal conditions from the beginning of the second trimester, the 
subarachnoid space may be visible. The obliterated subarachnoid space and dangling
choroid plexus are conspicuous (Figures 5.6–5.8). In some cases with hydrocephalus, the 
septum pellucidum is destroyed and both ventricles are fused together (Figure 5.9). This 
condition should be differentiated from the lobar type of holoprosencephaly.
Furthermore, intracranial venous blood flow may be related to increased intracranial
pressure. In normal fetuses, blood flow waveforms of dural sinuses, such as the superior
sagittal sinus, vein of Galen and straight sinus have a pulsatile pattern 2 (see Chapter 4, 
Figure 4.26). However, in cases with progressive hydrocephalus, normal pulsation
disappears and blood flow waveforms develop a flat pattern 2 (Figure 5.10). In cases with 
progressive hydrocephalus, there may be seven stages of progression (Figure 5.11):  

(1) Increased fluid collection in the lateral ventricles; 
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(2) Increased intracranial pressure; 
(3) Dangling choroid plexus; 
(4) Disappearance of subarachnoid space; 
(5) Excessive extension of the dura and superior sagittal sinus; 
(6) Disappearance of venous pulsation; 
(7) Enlarged skull. 

In general, both hydrocephalus and ventriculomegaly are still evaluated by the
measurement of biparietal diameter (BPD) and the lateral ventricular width/hemispheric
width (LVW/HW) ratio in the transabdominal axial section. As described above,
however, hydrocephalus and ventriculomegaly should be differentiated from each other
and the hydrocephalic state should be assessed by the changing appearance of the
intracranial structure. BPD and LVW/HW ratio may not exactly identify the intracranial
condition. To evaluate enlarged ventricles; examiners should carefully observe the
structures below and specify the causes of hydrocephalus: 

• Choroid plexus, dangling or not 
• Subarachnoid space, obliterated or not 
• Ventricles, symmetry or asymmetry 
• Visibility of third ventricle 
• Pulsation of dural sinuses 
• Ventricular size (three-dimensional volume calculation if possible) 
• Other abnormalities 

 

Figure 5.10 Disappearance of venous pulsation in cases with hydrocephalus. 
Normal dural sinuses have pulsatile patterns of flow waveform 
(Figure 4.26). In cases with progressive hydrocephalus, venous 
pulsation disappears (right) perhaps due to excessive extension of the 
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dura and dural sinuses 

 

Figure 5.11 Progressive stages of hydrocephalus. ICP, intracranial pressure; 
CP, choroid plexus; SAS, subarachnoid space; SSS, superior sagittal 
sinus 

Asymmetrical hydrocephalus  

Asymmetrical hydrocephalus occurs due to unilateral obstruction of the foramen of
Monro (Figures 5.12 and 5.13), an interhemispheric cyst (Figure 5.14), agenesis or 
dysgenesis of the corpus callosum (Figures 5.15 and 5.16), cerebral hemorrhage and/or 
encephalopathy in a single hemisphere. Outcome may be normal, but fetuses with
increasing unilateral ventriculomegaly and cases associated with other brain
abnormalities tend to have a poor neurological outcome 3 . 

X-linked hydrocephalus  

X-linked hydrocephalus (HSAS, hydrocephalus due to stenosis of the aqueduct of
Sylvius), mental retardation, aphasia, shuffling gait; adducted thumbs (MASA)
syndrome, X-linked complicated spastic paraparesis (SPl) and X-linked corpus callosum 
agenesis (ACC) are all due to mutations in the L1 gene 4 . The gene encoding L1 is 
located near the telomere of the long arm of the X chromosome in Xq28. Therefore, it
was suggested that this clinical syndrome be referred to by the acronym CRASH, for
corpus callosum hypoplasia, retardation; adducted thumbs, spastic paraplegia and hydro
cephalus 4 . It has been reported that mutations which produce truncations in the
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extracellular domain of the L1 protein are more likely to produce severe hydrocephalus,
grave mental retardation or early death than point mutations in the extracellular domain
or mutations affecting only the cytoplasmic domain of the protein 5 . For the families, 
prenatal CNS diagnosis in male infants is important. Prenatal images of CRASH
syndrome are shown in Figures 5.17–5.20. A morphology-based approach becomes 
feasible between postmenstrual weeks 15 and 20. Prior to this gestational age, the
diagnosis should rely on molecular biology tests 6 .  

Borderline (mild) ventriculomegaly  

Borderline ventriculomegaly (Figures 5.21 and 5.22) is defined as a width of the atrium 
of the lateral cerebral ventricles of 10–15 mm. The majority of cases with prenatally 
detected isolated mild ventriculomegaly are developmentally normal 7 . Pilu and his 
colleagues 8 reviewed 234 cases of borderline ventriculomegaly including an abnormal 
outcome in 22.8% and concluded that borderline ventriculomegaly carries an increased
risk of cerebral maldevelopment, delayed neurological development and, possibly,
chromosomal aberrations.  

 

Figure 5.12 Fetal ultrasound images of unilateral ventriculomegaly at 30 weeks 
of gestation. Upper and middle, anterior and posterior coronal 
images; upper right, parasagittal image; lower, three-dimensional 
volume extraction images and volume calculation of the enlarged 
ventricle. Postnatal treatment in this case is shown in Figure 5.34  
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Figure 5.13 Fetal magnetic resonance images of unilateral ventriculomegaly at 
29 weeks of gestation (same case as shown in Figure 5.12). Left, 
sagittal images; middle, coronal images; right, axial images. In this 
case; hemispheric asymmetry is very mild. The cause of unilateral 
ventriculomegaly may be unilateral obstruction or stenosis of the 
foramen of Monro. Ventriculomegaly gradually progressed into 
unilateral hydrocephalus in utero. Postnatal treatment in this case is 
shown in Figure 5.34. Postnatal prognosis has been good for 17 
months 
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Figure 5.14 Fetal ultrasound image of asymmetrical hydrocephalus and 
postnatal computer tomography images at 31 weeks of gestation. 
Upper, ultrasound sagittal and axial images. Agenesis of the corpus 
callosum, interhemispheric cyst (arrows) fused with lateral ventricles 
and asymmetrical hydrocephaly with third ventriculomegaly (III) are 
complications. This case was complicated by congenital muscular 
dystrophy and postnatal prognosis was poor 
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Figure 5.15 Fetal ultrasound images of hydrocephalus with hypogenesis of the 
corpus callosum at 34 weeks of gestation. Upper left and middle, 
coronal images; upper right, parasagittal images; lower left, axial 
image; lower middle and right, sagittal B-mode and power Doppler 
images. The corpus callosum is very thin but observable (arrows) 
with intact pericallosal arteries. Postnatal treatment in this case is 
shown in Figures 5.31–33 
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Figure 5.16 Fetal magnetic resonance images (MRI) of hydrocephalus with 
hypogenesis of the corpus callosum at 33 weeks of gestation (same 
case as shown in Figure 5.15). Upper, sagittal and axial MRIs; lower, 
serial axial images. Hypogenesis of the corpus callosum (arrows) is 
demonstrated. The bilateral ventricles and third ventricle (arrowhead) 
are fused because of destroyed septum pellucidum and dilated 
foramen of Monro. Mild asymmetry between the lateral ventricles 
may be due to posterior half agenesis of the corpus callosum. 
Postnatal treatment in this case is shown in Figures 5.31–33. The 
postnatal course has been good for 2 years 
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Figure 5.17 Ventriculomegaly at 20 weeks of gestation (X-linked 
hydrocephalus). Serial coronal (upper), sagittal (middle) and axial 
(lower) ultrasound images. This male fetus is a sibling of an 8-year-
old boy with congenital hydrocephalus, adducted thumbs, aphasia 
and severe disability. The transvaginal sonograms show moderate 
ventriculomegaly with intact subarachnoid space. Partial agenesis of 
the corpus callosum is also present (arrows) 
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Figure 5.18 Magnetic resonance images of ventriculomegaly at 20 weeks of 
gestation (X-linked hydrocephalus; same case as shown in Figure 
5.17). Upper left, parasagittal; upper right; axial; lower, coronal 
ultrasound images. Moderate ventriculomegaly and intact 
subarachnoid space are demonstrated. The subarachnoid space 
appears normal; therefore, this is ventriculomegaly not yet 
hydrocephalus 
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Figure 5.19 Lateral ventricular volume analysis in X-linked hydrocephalus 
(same case as shown in Figures 5.17 and 5.18). Volume calculation 
of the lateral ventricle was carried out. The result (right) shows rapid 
progression of lateral ventricular enlargement 

 

Figure 5.20 Adducted thumbs associated with ventriculomegaly at 21 weeks of 
gestation (X-linked hydrocephalus, same case as shown in Figures 
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5.17–5.19). Three-dimensional ultrasound images (upper left and middle) 
indicate adducted thumbs. Two-dimensional image (upper right) 
shows the thumb inside the four digits. Pregnancy was terminated at 
21 weeks. Lower, external appearance of the hands of the same 
aborted fetus. Lower photographs courtesy of Dr M.Tanemura 

 

Figure 5.21 Mild ventriculomegaly detected from early pregnancy. Upper left, 
axial image at 12 weeks; posterior deviation of the choroid plexus is 
seen. Upper middle, 14 weeks; more conspicuous deviation of the 
choroid plexus. Upper right, 19 weeks; mild ventriculomegaly with 
deviated choroid plexus is observed. Lower left, anterior coronal 
image at 29 weeks; enlargement of the anterior horns with third 
ventriculomegaly is demonstrated. Lower right, sagittal image at 31 
weeks; enlargement of the third ventricle; Dandy-Walker variant is 
also present in this case. The postnatal prognosis has been quite good 
for 3 years 
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Figure 5.22 Postnatal magnetic resonance images of mild ventriculomegaly 
(same case as shown in Figure 5.21). Mild ventriculomegaly was 
indicated from early pregnancy. However, no progression was seen 
and the prognosis was good 

NEUROSURGICAL MANAGEMENT OF HYDROCEPHALUS  

Classification of congenital hydrocephalus  

The term ‘hydrocephalus’ does not identify a specified disease, but is a generic term
which means a serial pathological condition due to abnormal circulation of CSF. The
method of treatment for hydrocephalus should be selected according to age of onset and
symptoms. Congenital hydrocephalus is classified by causes into three categories which
disturb the CSF circulation pathway (see Figure 2.13, normal CSF circulation); simple 
hydrocephalus; dysgenetic hydrocephalus and secondary hydrocephalus. 

(1) Simple hydrocephalus Simple hydrocephalus; caused by a developmental 
abnormality which is localized within the CSF circulation pathway, includes 
aqueductal stenosis, atresia of Monro’s foramen and maldevelopment of arachnoid 
granulation. Types of hydrocephalus due to various obstructive sites of CSF flow are 
shown in Figure 5.23. Hydrocephalus due to maldevelopment of arachnoid granulation 
is shown in Figure 5.24. 

(2) Dysgenetic hydrocephalus Dysgenetic hydrocephalus indicates hydrocephalus as a 
result of a cerebral developmental disorder at an early developmental stage and 
includes hydranencephaly, holoprosencephaly, porencephaly, schizencephaly, Dandy-
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Walker malformation, dysraphism and Chiari malformation (see Chapters 6 and 7). 
(3) Secondary hydrocephalus Secondary hydrocephalus is a generic term indicating 

hydrocephalus caused by an intracranial pathological condition, such as a brain tumor 
(Figure 5.25), intracranial infection and intracranial hemorrhage. 

Neurosurgical treatment of hydrocephalus  

Miniature Ommaya reservoir  

The main treatment of congenital hydrocephalus is the shunt procedure. It is preferable to
place the shunting tube immediately after birth. However, risk of shunt complications
exists in cases of posthemorrhagic hydrocephalus 9 with high concentrations of CSF
protein, in cases of myelomeningocele with a high risk of cerebrospinal infection, or in
premature neonates with thin and brittle skin. A miniature Ommaya reservoir 10 , 11

(Figure 5.26) can be placed as the first treatment until the shunt procedure and  

 

Figure 5.23 Types of hydrocephalus due to various obstructive sites of 
cerebrospinal fluid flow. From Handbook on Hydrocephalus for 
Patients, Research Committee of Intractable Hydrocephalus, Japanese 
Ministry of Health and Welfare, ©1993, with permission. Schema 
courtesy of chairman of the Committee, Professor K.Mori 
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Figure 5.24 Hydrocephalus due to maldevelopment of arachnoid granulation. 
Disturbance of absorption of cerebrospinal fluid due to 
maldevelopment of arachnoid granulation, results in an enlargement 
of all ventricles. Note the IVth ventriculomegaly (asterisk), which 
cannot be seen in cases with other types of hydrocephalus 

 

Figure 5.25 Secondary obstructive hydrocephalus. Left, magnetic resonance 
axial image. Symmetrical hydrocephalus is demonstrated. 
Hydrocephalus is secondarily caused by a brain tumor filling the 
fourth ventricle (right; arrows) 
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Figure 5.26 Miniature Ommaya reservoir. Left, photograph of miniature 
Ommaya reservoir. Middle, subcutaneous placement of a reservoir 
(white arrow) in a case of hydrocephalus. Reliable fluid reduction can 
be carried out by percutaneous puncture. Right, schema of Ommaya 
reservoir; intermittent drainage is possible from the reservoir (black 
arrow) 

it is possible to control the intracranial pressure (ICP) by percutaneous puncture and
intermittent drainage of CSF through a reservoir. In some cases of posthemorrhagic
hydrocephalus, intermittent drainage leads to normalization of the CSF flow pathway and
there is no need for the shunt procedure (Figure 5.27).  

Shunt procedure  

The shunt operation includes the ventriculoperitoneal shunt (VP shunt), the
ventriculoatrial shunt (VA shunt) and the lumboperitoneal shunt (Figure 5.28). The 
ventriculoperitoneal shunt is the most popular procedure. Effectiveness of the shunt  
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Figure 5.27 Treatment of ventriculomegaly due to intraventricular hemorrhage. 
Left, unilateral intraventricular hemorrhage in a neonate. Due to the 
gradual progression of hydrocephalus, an Ommaya reservoir was 
placed. Intermittent drainage of the cerebrospinal fluid resulted in 
remission of the hydrocephalus. Right, magnetic resonance image 
after treatment 

 

Figure 5.28 Shunt procedure. (a) Ventriculoperitoneal shunt. (b) 
Ventriculoatrial shunt. (c) Lumboperitoneal shunt. The 
ventriculoperitoneal shunt (a) is the most popular shunt procedure 
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procedure for congenital hydrocephalus (Figures 5.29–5.34) has been proven. However, 
it is known that there are various complications of shunting, such as shunt infection,
obstruction of the shunt tube; over-drainage; under-drainage and slit ventricle syndrome 
(Figure 5.35). To reduce these complications; various types of shunt devices, such as an
antisiphon device or pressure programmable valve shunt device have been developed.  

 

Figure 5.29 Congenital hydrocephalus (referral at 39th postnatal day, before 
treatment). Upper left, magnetic resonance (MR) sagittal image of 
severe hydrocephalus. Lower; MR axial images of symmetrical 
hydrocephalus. Upper right, the infant face and head 
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Figure 5.30 Postoperative magnetic resonance images (same case as shown in 
Figure 5.29, 2 years after the operation). After a ventriculoperitoneal 
shunt, the hydrocephalus was well controlled 

 

Figure 5.31 Hydrocephalus due to aqueductal stenosis (neonatal magnetic 
resonance image (MRI), before treatment). Prenatal ultrasound and 
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MRIs are shown in Figures 5.15 and 5.16. Upper, axial sections; bilateral 
hydrocephalus with mild asymmetry. Lower left, sagittal section; 
hypogenesis of the corpus callosum is a complication in this case. 
Lower right; coronal section; remarkable enlargement of the bilateral 
lateral ventricles and third ventricle (III) is demonstrated. The 
aqueduct is not depicted in the sagittal section 

 

Figure 5.32 Photograph of the head and face of an infant with hydrocephalus 
(same case as shown in Figure 5.31). Note the remarkable increase of 
the head circumference, engorgement of the scalp venous vessels and 
the bulge of the anterior fontanelle 
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Figure 5.33 Postoperative magnetic resonance images (same infant as shown in 
Figures 5.31 and 5.32) after a ventriculoperitoneal shunt. Left and 
middle, axial section. Artifact (white arrow) is seen due to the 
pressure programmable shunt valve. Right, sagittal section. 
Hypogenesis of the corpus callosum is demonstrated (black arrow). 
Postoperative prognosis has been good for 2 years 

 

Figure 5.34 Treatment of unilateral hydrocephalus. Prenatal ultrasound and 
magnetic resonance images (MRIs) are shown in Figures 5.12 and 
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5.13. Left; neonatal MRI before treatment. Unilateral hydrocephalus is 
demonstrated due to obstruction of the foramen of Monro 
unilaterally. Right, after a ventriculoperitoneal shunt. Unilateral 
ventriculomegaly still exists; however, postnatal development has 
been normal and no neurological deficiencies have been seen for 17 
months 

Neuroendoscopy  

Third ventriculostomy by neuroendoscopy (Figures 5.36–5.38) has recently been 
performed in children with obstructive hydrocephalus, and the number of shunt-
independent cases has increased. It has been controversial; however, as to whether infants
under than the age of 1 year have a higher risk of treatment failure after neuroendoscopic
procedures than older children. Some conclude that neuroendoscopy presents an effective
alternative for the treatment of hydrocephalus in cases under the age of 1 year 12 .  

 

Figure 5.35 Slit ventricle. Left, neuroendoscopic view of a slit lateral ventricle. 
Right, CT axial image. Continuation of overdrainage by the shunt 
procedure leads to these slit-like ventricles, which cause shunt tube 
obstruction. To avoid slit ventricles, an antisiphon device and/or a 
pressure programmable valve have been developed 
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Figure 5.36 Neuroendoscope and its instruments. (a) Rigid endoscopes for 
observation. (b) Rigid endoscope for operation. (c) Viewer side of 
endoscope (b). (d) Operational side of endoscope (b). (e) Forceps. (f) 
The head of forceps. (g) Balloon catheter 

 

Figure 5.37 Obstructive hydrocephalus by tumor of the aqueduct. Left, 
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magnetic resonance (MR) sagittal image. An aqueductal tumor (black arrow) 
causes enlargement of the third ventricle and bilateral lateral 
ventricles. Right, MR axial image. Symmetrical hydrocephalus and 
third ventriculomegaly (III) are demonstrated. This condition is an 
indication for third ventriculostomy by neuroendoscopy 

 

Figure 5.38 Neuroendoscopic views in third ventriculostomy. Upper left; view 
of the foramen of Monro through the lateral ventricle. Upper right, 
floor of the third ventricle. Lower left, dilatation of the stoma by 
ballooning. Lower right, view of the basilar artery through the dilated 
stoma 

However, third ventriculostomy does not seem to be effective in neonates and small
infants because of the prematurity of their CSF absorption ability. 
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6  
Congenital brain anomalies  

R.K.Pooh and K.H.Pooh 

DYSRAPHISM  

This includes disorders of neurulation and neural tube formation. 

Spina bifida (Figures 6.1–6.23) 

Prevalence 0.22/1000 births 1 ; overall neural tube defect (NTD), 0.58–1.17/1000 births 2
– 4 . Many authors have reported a remarkable reduction in prevalence of NTDs after 
using folic acid supplementation and fortification 1 – 5 .  

Definition  

(1) Spina bifida aperta, manifest form of spina bifida, has been classified into four types: 
meningocele, myelomeningocele, myelocystocele and myeloschisis as shown in 
Figure 6.1. A three-dimensional CT of spina bifida is shown in Figures 6.19 and 6.20. 

(2) Spina bifida occulta is a generic term for spinal bifida covered with normal skin 
tissue; and does not indicate spinal bifida which cannot be diagnosed by external 
appearance. Cutaneous  



 

Figure 6.1 Classification of spina bifida aperta. (a) Meningocele, (b) 
myelomeningocele, (c) myelocystocele, (d) myeloschisis. The spinal 
cord is shown in yellow 
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Figure 6.2 Myelomeningocele at 18 weeks of gestation. Upper left, sagittal 
ultrasound image. Note the spinal cord from spinal canal to the sac 
surface. Upper right, axial ultrasound image. Lower left; three-
dimensional surface reconstruction of myelomeningocele. Lower 
right, external appearance of the aborted fetus at 19 weeks of 
gestation 
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Figure 6.3 Myelomeningocele at 36 weeks of gestation. Sagittal image, axial 
image and three-dimensional surface reconstruction from the left side 

 

 

Figure 6.4 Prenatal ultrasound image of myelomeningocele and spina bifida at 
20 weeks of gestation. Upper left; sagittal ultrasound image. The 
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spinal cord protrudes into the sac surface from the spinal canal. Upper right, 
three-dimensional bony demonstration of lumbar spina bifida. Three-
dimensional ultrasound shows the exact level of spina bifida. Lower 
left, three-dimensional surface reconstruction of a large 
myelomeningocele (white arrows). Lower right, external appearance 
of the aborted fetus at 21 weeks of gestation. Note the central canal of 
the spinal cord (black arrow) in a large myelomeningocele 

 

Figure 6.5 Prenatal ultrasound image of spina bifida at 9 and 12 weeks of 
gestation. Upper left, sagittal ultrasound image at 9 weeks and 3 days 
of gestation. Note the lumbar cystic lesion (arrowhead). Lower left, 
three-dimensional bony demonstration of lumbar spina bifida 
(arrows) at the same gestational age. Right, three-dimensional surface 
reconstruction of myelocystocele (arrows) at 12 weeks of gestation in 
the same fetus. This fetus has bladder extrophy. Termination of the 
pregnancy was carried out at 13 weeks and final diagnosis was 
omphalocele, bladder extrophy, imperforate anus and spine defect 
(OEIS) 
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Figure 6.6 Three-dimensional ultrasound image of myelomeningocele with 
kyphosis at 16 weeks of gestation. Three orthogonal views and a 
surface reconstruction image. Upper left, sagittal ultrasound image. 
The spinal cord completely protrudes into the sac surface from the 
spinal canal and severe kyphosis is seen. Upper right; axial 
ultrasound view. Lower left, coronal ultrasound view of 
myelomeningocele. Lower right, surface reconstruction image of 
myelomeningocele 
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Figure 6.7 Bony structural images of kyphosis and spina bifida at 16 weeks of 
gestation (same case as shown in Figure 6.6). Upper left, middle, 
three-dimensional skeleton images of severe kyphosis and spina 
bifida. Upper right, inside view of kyphosis and myelomeningocele. 
Note the spinal cord and nerves inside the myelomeningocele. Lower 
left, external appearance of the aborted fetus at 17 weeks of gestation. 
Lower right, photograph of the myelomeningocele. Note the tortuous 
spinal cord inside the sac 
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Figure 6.8 Meningocele in late pregnancy. Upper left, sagittal ultrasound 
image at 37 weeks of gestation. The spinal cord is located inside the 
spinal canal. Lower left, fetal magnetic resonance sagittal image. 
Right, external appearance of the neonate delivered by Cesarean 
section. The meningocele is completely covered by skin 

 

Figure 6.9 Cervical meningomyelocele at 16 weeks of gestation. Left, sagittal 
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ultrasound image. A small cyst in the meningocele is demonstrated. The fetus 
has no nuchal translucency in the first trimester. Middle, three-
dimensional surface reconstruction image. Right, external appearance 
of the aborted fetus at 23 weeks of gestation. Meningocele at the 
level of C6 with abnormal vertebrae between C3–4 and T1 was 
confirmed. Images and photograph courtesy of Dr G.Malinger 

 

 

Figure 6.10 Myeloschisis with kyphosis. Upper left, sagittal ultrasound image 
of myeloschisis and kyphosis at 30 weeks of gestation; there is no 
cystic formation. The spinal cord (white arrows) is visible with a 
defect of the skin. Upper middle, fetal magnetic resonance sagittal 
image. Upper right, three-dimensional demonstration of the surface 
of myeloschisis. Lower left, external appearance of neonatal 
myeloschisis. The central canal of the spinal cord (black arrow) is 
visible. Lower middle and right, postnatal three-dimensional 
reconstruction CT images of spina bifida and kyphosis 
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Figure 6.11 Myelomeningocele. The spinal cord and nerves are prolapsed into 
the sac. The sac, covered with a thin membrane, did not rupture 

 

 

Figure 6.12 Myeloschisis. The black line on the center of the mass (arrow) 
indicates the central canal of the spinal cord 

Congenital brain anomalies     105



 

Figure 6.13 Thoracic meningocele. The wall of the cyst is thin but completely 
covered with skin 

 

 

Figure 6.14 Spinal lipoma (spina bifida occulta)—lumbosacral subcutaneous 
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lipoma. These spinal lipomas penetrate into the intradural space 

 

Figure 6.15 Spinal lipoma (spina bifida occulta) with a dermal sinus. In this 
case, the dermal sinus is complicated by spinal lipoma 
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Figure 6.16 Skin appendage; spinal bifida occulta (neonate). Left, middle; 
external appearance of a human tail after birth. This small cutaneous 
abnormality is a sign of spina bifida occulta. Right; magnetic 
resonance sagittal image of a tethered cord in the same neonate. Note 
abnormal location of the spinal cord in the spinal canal (yellow 
arrows) 
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Figure 6.17 External appearance of a dermal sinus. Through the thin skin, the 
funicular stalk penetrates into the intradural space 
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Figure 6.18 External appearance of sacrococcigeal teratoma. This disease 
should be differentiated from spinal lipoma 
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Figure 6.19 Three-dimensional reconstruction CT image of spina bifida. A 
defect of the lamina of the vertebrae is clearly demonstrated 
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Figure 6.20 Three-dimensional reconstruction CT image of spina bifida. A 
partial defect of the sacral bone is demonstrated in a case of spinal 
lipoma 
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Figure 6.21 Diastematomyelia (split cord). Left, three-dimensional CT and 
(right) magnetic resonance image. The spinal cord is divided into two 
parts (‘split cord’) by a chondro-osseous septum 
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Figure 6.22 Magnetic resonance image of spinal lipoma (before and after 
operation). Left, before operation. A subcutaneous lipoma penetrates 
into the intradural space and adheres to the terminus of the spinal 
cord (cornus). In this case, dilatation of the central canal of the spinal 
cord is a complication. Right, magnetic resonance image after 
resection of the spinal lipoma 
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Figure 6.23 Spinal lipoma; intraoperative photograph. Left; a spinal lipoma; 
penetrating into the intradural space, is exposed. Right, repair of the 
cornus after resection of lipoma. The spinal nerves of the cauda 
equina can be seen 

abnormalities near the spinal lesion are found: skin bulge (subcutaneous lipoma), 
dimple; hair tuft, pigmentation, skin appendageand hemangioma (Figures 6.13–
6.17). In cases with thickened film terminale, dermalsinus or diastematomyelia (split 
cord malformation, Figure 6.21); abnormal tethering and fixation of the spinal cord 
occur. 

Etiology Multifactorial inheritance, single mutant genes, autosomal recessive,
chromosomal abnormalities (trisomy 18; 13), specific teratogens (valproic acid), maternal
diabetes, environmental factors. Predominant in females. 

Pathogenesis Spina bifida aperta is an impairment of neural tube closure; spina bifida 
occulta is due to a caudal neural tube malformation by the processes of canalization and
retrogressive differentiation. 

Associated anomalies Chiari type II malformation, hydrocephalus, scoliosis (above 
L2), polyhydramnios, additional non-CNS anomalies. 

Prenatal diagnosis Figures 6.2–6.10; neonatal appearance; Figures 6.11–6.13. 
Differential diagnosis Sacrococcygeal teratoma, Figure 6.18. 
Prognosis Disturbance of motor, sensory and sphincter function. Depends on lesion
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levels. Below S1: able to walk unaided; above L2: wheelchair dependent; variable at
intermediate level. 

Recurrence risk Decreased; almost no recurrence rate 6 with use of folic acid 
supplementation and fortification. 

Obstetric management In cases of spina bifida aperta, especially with a defect of the 
skin, a Cesarean section is preferable to protect the spinal cord and nerves and prevent
infection.  

Neurosurgical management  

Spina bifida aperta In cases with a defect of normal skin tissue, immediate closure of
spina bifida after birth reduces spinal infection. Spinal cord reconstruction is the most
important part of the operation. Miniature Ommaya reservoir placement and a subsequent
ventriculoperitoneal shunt are required for hydrocephalus (see Chapter 5). For 
symptomatic Chiari malformation, posterior fossa decompressive craniectomy and/or
tonsillectomy is performed. 

Spina bifida occulta The aim of surgical treatment is for decompression of the spinal
cord and cutting off tethering to the spinal cord (Figures 6.22 and 6.23).  

Cranium bifidum (Figures 6.24–6.32) 

Prevalence Anencephaly, 0.29/1000 births 1 ; overall neural tube defect (NTD), 0.58–
1.17/1000 births 2 , 4 , 5 . Many authors have reported a remarkable reduction in
prevalence of NTDs after using folic acid supplementation and fortification 1 , 2 , 4 , 5 , 
although some have reported no decline of anencephaly rate 3 . 

Definition As in spina bifida; cranium bifidum has been classified into four types of 
encephaloschisis (including anencephaly and exencephaly), meningocele,
encephalomeningocele, encephalocystocele and cranium bifidum occultum.
Encephalocele occurs in the occipital region in 70–80% of cases. Acrania, exencephaly 
and anencephaly are not independent anomalies. It is considered that dysraphia (absent
cranial vault, acrania) occurs at a very early stage and disintegration of the exposed brain
(exencephaly) during the fetal period results in anencephaly 7 . 

Etiology Multifactorial inheritance; single mutant genes; specific teratogens (valproic 
acid); maternal diabetes and environmental factors. Predominant in females. 

Pathogenesis Failure of anterior neural tube closure or a restricted disorder of 
neurulation. 

Associated anomalies Open spina bifida (iniencephaly), Chiari type III malformation,
bilateral renal cystic dysplasia and postaxial polydactyly with occipital cephalocele
(Meckel-Gruber syndrome), hydrocephalus and polyhydramnios. 

Prenatal diagnosis Figures 6.24–6.26 and 6.29; neonatal appearance, Figures 6.30 and 
6.31. 

Differential diagnosis Amniotic band syndrome (Figures 6.27 and 6.28; cranial 
destruction secondary to an amniotic band, similar appearance but different pathogenesis
from acrania/excencephaly). 
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Prognosis Anencephaly is a uniformly lethal anomaly. Other types of cranium bifidum
and various neurological deficits may occur; depending on types and degree. 

Recurrence risk There used to be high recurrence risk of 5–13%; however; this has 
recently declined as described for spina bifida. 

Obstetric management Termination of pregnancy can be offered in cases with
anencephaly. 

Neurosurgical management For other types of cranium bifidum; surgery aims to 
achieve transposition of cerebral tissue into the intracranial cavity (Figure 6.32). 
Ventriculoperitoneal shunt for hydrocephalus.  

Figure 6.24 Acrania at 12 weeks of gestation. Upper; ultrasound sagittal and 
coronal images. The irregular surface of enlarged ventricles is 
demonstrated. Lower left, external appearance of the aborted fetus. 
Lower right, histology confirmed premature brain tissue 
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Figure 6.25 Acrania at 10 and 14 weeks of gestation. Left, ultrasound coronal 
image at 10 weeks. Note the normal appearance of the amniotic 
membrane, which indicates this condition is not amniotic band 
syndrome. Middle, three-dimensional ultrasound image of the same 
fetus as in the left image. Right, another case of acrania at 14 weeks 
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Figure 6.26 Anencephaly in middle gestation (same case as shown in Figure 
6.25, left and middle). Upper left, ultrasound sagittal image at 23 
weeks of gestation. Upper middle, ultrasound coronal image. Upper 
right, three-dimensional ultrasound image. Lower, external 
appearance of the stillborn fetus at 25 weeks of gestation. It is clear 
that excencephalic brain tissue is scattered in the amniotic space 
compared with this case at 10 weeks (Figure 6.25) 
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Figure 6.27 Amniotic band syndrome at 16 weeks of gestation. Upper left, 
exencephaly with an incomplete asymmetrical cranial defect. Upper 
right, amniotic band between placenta and exencephalic brain. Lower 
left, macroscopic appearance of the aborted fetus. Note the amniotic 
band between the placenta and brain. Lower right, magnified 
photograph of the head. This condition should be differentiated from 
encephaloschisis. Amniotic band syndrome has little risk of 
recurrence 
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Figure 6.28 Amniotic band syndrome in middle gestation. Upper left, 
exencephaly with an incomplete asymmetrical cranial defect at 23 
weeks of gestation. Upper middle, arm deformity. Lower left and 
middle, facial abnormality. The parents chose to continue the 
pregnancy. Right, photograph after birth at 33 weeks of gestation; the 
baby died one day postnatally. The exencephalic brain is covered 
with skin and amniotic membrane. Amniotic band syndrome should 
be differentiated from encephaloschisis 
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Figure 6.29 Encephalocele at 13 weeks of gestation. Left; brain tissue is 
protruding through the cranial defect (arrowheads). Right, 
photograph of the head of the same case after an artificial abortion 

Figure 6.30 Occipital encephalomeningocele 
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Figure 6.31 Parietal cephalocele. Left, photograph of head and huge parietal 
cephalocele. Right, a craniogram. The cyst, filled with a large amount 
of cerebrospinal fluid, was resected after birth. Image courtesy of Dr 
Y.Nakagawa 

Figure 6.32 Cranium bifidum occultum. Left, photograph of the head. An 
occipital protrusion (arrow) penetrated into the intracranial space. 
Right, intraoperative photograph 
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CEREBRAL ANOMALIES  

These include disorders of prosencephalic development and neuronal migration. 

Holoprosencephaly (Figures 6.33–6.38) 

Incidence 1 in 15000–20000 live births; however, initial incidence may be more than 
60-fold greater in aborted human embryos 8 , 9 . 

Classification Holoprosencephalies (Figure 6.33) are classified into three varieties 10 : 

(1) Alobar type A single-sphered cerebral structure with a single common ventricle, 
posterior large cyst of third ventricle (dorsal sac), absence of olfactory bulbs and tracts 
and a single optic nerve; 

(2) Semilobar type With formation of a posterior portion of the interhemispheric fissure; 
(3) Lobar type With formation of the interhemispheric fissure anteriorly and posteriorly 

but not in the mid-hemispheric region. The fusion of the fornices is seen 11 . 

Etiology 75% of cases of holoprosencephaly have a normal karyotype, but chromosomes
2, 3, 7, 13, 18 and 21 have been implicated in holoprosencephaly 10 . In particular; 
trisomy 13 has most commonly been observed. Autosomal dominant transmission is rare. 

Pathogenesis Failure of cleavage of the prosencephalon and diencephalon during early 
first trimester (5–6 weeks) results in holoprosencephaly. 

Associated anomalies Facial abnormalities such as cyclopia, ethmocephaly 
cebocephaly, flat nose, cleft lip and palate are invariably associated with
holoprosencephaly. Extracerebral abnormalities are also invariably associated, such as
renal cysts/dysplasia, omphalocele, cardiac disease and or myelomeningocele. 

Prenatal diagnosis Figures 6.34–6.36; a neonatal MRI and macroscopic appearance are
shown in Figures 6.37 and 6.38. 

Differential diagnosis Hydrocephalus, hydranencephaly. 
Prognosis Extremely poor in alobar holoprosencephaly. Uncertain in lobar type.

Various but poor in semilobar type. 
Recurrence risk 6% 12 ; but much lower in sporadic or trisomy cases; much higher in

genetic cases. 
Management Chromosomal evaluation is offered.  
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Figure 6.33 Normal and abnormal brain development leading to 
holoprosencephaly. Failure of sagittal cleavage of the telencephalon 
that results in the presence of a midline single ventricle with variable 
degrees of separation. Schema courtesy of Dr P.Jeanty, 
www.TheFetus.net, with permission 
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Figure 6.34 Alobar holoprosencephaly at 20 weeks of gestation. Three 
orthogonal images of intracranial structure show a complete single 
ventricle within a single-sphered cerebral structure. Lower right; 
three-dimensional ultrasound image of the fetal face and the face of 
the aborted fetus at 21 weeks of gestation. A flat nose with median 
cleft lip/palate can be seen. Normal karyotype 
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Figure 6.35 Fetal magnetic resonance (MR) images and macroscopic 
photograph of alobar holoprosencephaly. Upper, coronal and axial 
MR images. Lower left, sagittal MR image. Hydrocephalus is present 
in this case. Bilateral remnant of cerebral tissue is visible. Lower 
right; external appearance of the large head after birth. Normal 
karyotype 
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Figure 6.36 Fetal ultrasound image of semilobar holoprosencephaly at 28 
weeks of gestation 
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Figure 6.37 Postnatal magnetic resonance (MR) images of semilobar 
holoprosencephaly. Upper, MR axial images. A fused ventricle is 
demonstrated. Lower left, coronal image. Lower right, sagittal image. 
The white arrow indicates the dorsal sac. The cerebellum and 
brainstem are well developed. Hydrocephalus is also present 
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Figure 6.38 Macroscopic appearance of semilobar holoprosencephaly. 
Photograph courtesy of Dr Y.Nakagawa 

Agenesis, partial agenesis and hypogenesis of the corpus callosum (Figures 
6.39–6.46) 

Prevalence Uncertain, but 3–7/1000 in the general population is estimated. 
Definition Absence of the corpus callosum (Figures 6.39 and 6.40), which may be 

divided into (complete) agenesis, partial agenesis or hypogenesis of the corpus callosum.  

(1) Complete agenesis Complete absence of the corpus callosum; 
(2) Partial agenesis (hypogenesis) Absence of splenium or posterior portion in various 

degrees. 

Etiology Chromosomal aberration in 20% of affected cases, such as trisomy 18; 8 and 13.
Autosomal dominant, autosomal recessive, X-linked recessive, part of the Mendelian
syndrome such as Walker-Warburg syndrome, and X-linked dominant such as Aicardi’s 
syndrome. 

Pathogenesis Uncertain; but callosal formation may be associated with migration 
disorder. 

Associated anomalies Colpocephaly (ventriculomegaly with disproportionate
enlargement of trigones, occipital horns and temporal horns, not hydrocephaly), superior
elongation of the third ventricle, interhemispheric cyst, lipoma of the corpus callosum.  

Prenatal diagnosis Figures 6.41–6.45; neonatal MRI, Figure 6.46. 
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Diagnosis As the corpus callosum is depicted after 17 or 18 weeks of gestation by
ultrasound, it is impossible to diagnose agenesis of the corpus callosum prior to this age
13 . 

Prognosis Various. Depends on associated anomalies. Most cases with isolated
agenesis of the corpus callosum without other abnormalities are asymptomatic and
prognosis is good. Complete agenesis has a worse prognosis than partial agenesis 14 . 
Epilepsy, intellectual impairment or psychiatric disorder 15 may occur later on. 

Recurrence risk Depends on etiology. Chromosomal 1%; autosomal recessive 25%; X-
linked recessive male 50%. 

Management Standard obstetric care. Chromosomal evaluation should be offered. In 
cases with an interhemispheric cyst; postnatal fenestration or a shunt procedure may be
performed. 

Absent septum pellucidum and septo-optic dysplasia (Figure 6.47) 

Incidence Unknown, rare. 
Definition  

(1) Absent septum pellucidum Absence of the septum pellucidum with or without 
associated anomalies. The septum pellucidum can be destroyed by concomitant 
hydrocephalus or by contiguous ischemic lesions such as porencephaly. An isolated 
absent septum pellucidum 16 exists but is rare. 

(2) Septo-optic dysplasia Absence of the septum pellucidum and unilateral or bilateral 
hypoplasia of the optic nerve. 

Synonyms de Morsier syndrome (septo-optic dysplasia). 
Etiology Maternal drug (multidrug, valproic acid 17 , cocaine 18 ), autosomal recessive, 

HESX1 homeodomain gene mutation 19 . 
Pathogenesis May occur as a vascular disruption sequence, with other prosencephalic 

or neuronal migration disorders. 
Associated anomalies Schizencephaly gyral abnormalities, heterotopias, hypotelorism,

ventriculomegaly, communicating lateral ventricles, bilateral cleft lip and palate,
hypopituitarism. 

Prenatal diagnosis Figure 6.47.  
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Figure 6.39 Schematic representations of a normal brain (left) and agenesis of 
the corpus callosum (right). In the absence of the corpus callosum, 
the lateral ventricles are set apart, and the third ventricle is displaced 
upwards. Schema courtesy of Dr P.Jeanty; www.TheFetus.net, with 
permission 

 

Figure 6.40 Schematic diagram of agenesis of the corpus callosum without an 
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interhemispheric cyst. A coronal view (top left) shows that the lateral ventricles 
point superiorly. At the superior scan level (top right), both walls of 
the lateral ventricles are identified where only periventricular lines 
are normally present. The lower section (bottom right) shows 
dilatation of the occipital horns and separation of the frontal horns. 
The third ventricle may or may not be dilated. Diagram courtesy of 
Dr P.Jeanty, www.TheFetus.net, with permission 

 

Figure 6.41 Agenesis, partial agenesis and hypogenesis of the corpus callosum 
(CC). All images are transvaginal median (mid-sagittal) images. 
Right images are normal images of the corpus callosum at the same 
gestational age as each left image 
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Figure 6.42 Fetal magnetic resonance images of hypogenesis of the corpus 
callosum at 34 weeks of gestation. (same case as shown in Figure 
6.41, lower case). Sagittal and coronal images. In the sagittal image 
(left), the thin corpus callosum with obliterated cavum septum 
pellucidum is demonstrated. In the coronal section (right), the 
abnormal angle of the anterior horns of the lateral ventricles are 
depicted. No ventriculomegaly was present 
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Figure 6.43 Fetal ultrasound images of hypogenesis of the corpus callosum at 
37 weeks of gestation. The corpus callosum is thin and hypogenetic. 
Mild bilateral ventriculomegaly is present and typical colpocephaly is 
demonstrated in the lower left figure 

 

Figure 6.44 Fetal magnetic resonance images of hypogenesis of the corpus 
callosum with cerebellar hypoplasia (same case as shown in Figure 
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6.43). The corpus callosum is thin and hypogenetic. Cerebellar hypoplasia and 
an atrophic brainstem are demonstrated. Chromosomal abberation 
(partial trisomy/monosomy) was confirmed in this case. The baby 
died after several months in a vegetative state 

 

Figure 6.45 Colpocephaly associated with agenesis of the corpus callosum. 
Upper left, parasagittal section ultrasound image. Disproportionate 
enlargement of trigone and occipital horns of the lateral ventricle 
because of failure of development of the splenium of the corpus 
callosum and the calcarine fissure. Upper right, median section 
ultrasound image. No depiction of the corpus callosum and cingulate 
sulcus. Lower, three orthogonal views and a volume extraction image 
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Figure 6.47 Isolated absent septum pellucidum. An absent septum pellucidum 
is mostly complicated by other CNS abnormalities and an isolated 
absent septum pellucidum is rare. This case has been carefully 
checked after birth by a pediatric neurologist and no neurological 
deficit has been found for 1 year after birth 
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Figure 6.46 Agenesis of the corpus callosum (arrow); postnatal magnetic 
resonance images. Left, sagittal image. Note radiated sulci formation. 
Middle, coronal image. Note bull horn appearance of anterior horns 
of lateral ventricles. Right, axial image. Colpocephaly is seen. Images 
courtesy of Dr S.Endo 

Differential diagnosis Dysgenesis of the corpus callosum, lobar holoprosencephaly. 
Prognosis Depends on associated anomalies. Variable degree of mental deficiency and

multiple endocrine dysfunction. In cases with isolated absence of septum pellucidum,
prognosis may be good. 

Recurrence risk Unknown. 
Management Confirmation of diagnosis after birth is important for genetic counselling. 

Endocrine dysfunction should be looked for and corrected. Shunt procedure in cases with
progressive ventriculomegaly. 

Lissencephaly (Figures 6.48–6.51) 

Incidence Unknown; rare. 
Definition Characterized by a lack of gyral development (Figure 6.48) and divied into 
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two types: 

(1) Lissencephaly type I A smooth surface of the brain. The cerebral wall is similar to 
that of an approximately 12-week-old fetus 20 ; 

(a) Isolated lissencephaly; 
(b) Miller—Dieker syndrome with additional craniofacial abnormalities; cardiac 

anomalies, genital anomalies, sacral dimple, creases and/or clinodactyly; 

(2) Lissencephaly type II Cobblestone appearance; 

(a) Walker—Warburg syndrome with macrocephaly, congenital muscular dystrophy, 
cerebellar malformation and retinal malformation; 

(b) Fukuyama congenital muscular dystrophy with microcephaly and congenital 
muscular dystrophy. 

Synonyms Agyria, pachygyria; Walker—Warburg syndrome was known as HARD±E 
syndrome (hydrocephalus; agyria, retinal dysplasia; with or without encephalocele). 

Etiology Isolated lissencephaly is linked to chromosome 17p13.3 and chromosome 
Xq24–q24. Miller-Dieker syndrome is also linked to chromosome 17p13.3. Walker—
Warburg syndrome is of autosomal recessive inheritance. Fukuyama congenital muscular
dystrophy is linked to chromosome 9q31, fukutin 21 . 

Pathogenesis Defective neuronal migration with four; rather than six; layers in the 
cortex. 

Associated anomalies Polyhydramnios, less fetal movement, colpocephaly, agenesis of
the corpus callosum, Dandy—Walker malformation. In Miller—Dieker syndrome, 
micrognathia, flat nose, high forehead, low-set ears; cardiac anomalies and genital 
anomalies in the male are often observed. In Walker—Warburg syndrome, retinal and 
cerebellar malformation, and congenital muscular dystrophy are observed in all cases.  

Prenatal diagnosis Figure 6.49; neonatal MRI and macroscopic appearance are shown
in Figures 6.50 and 6.51. Prenatal diagnosis 22 – 25 oflissencephaly without previous 
history of an affected child probably cannot be reliably made until 26–28 weeks’ 
gestation 7 . 

Prognosis Type I: hypotonia, paucity of movements; feeding disturbance, seizures. The
prognosis is poor and death occurs. Type II: severe seizures, mental disorders, severe
muscle disease with hypotonia. Death in the first year is common. 

Recurrence risk Depends on etiology. 
Management Karyotyping is recommended to detect the chromosomal defect. Standard 

obstetric care. 
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Figure 6.48 Schema of lissencephaly. Lissencephaly is characterized by no 
gyri formation and smooth brain with a shallow Sylvian fissure 
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Figure 6.49 Fetal magnetic resonance image of type I lissencephaly at 30 
weeks and 6 days of gestation. The cerebral cortex is thin and no 
gyral formation is observed. The fetus is one of dichorionic twins. 
The gyration of the other twin fetus was completely normal. Image 
courtesy of Dr H.Utsunomiya 
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Figure 6.50 Magnetic resonance (MR) images of type I lissencephaly. Left, 
MR axial image. Neonatal lissencephaly. Smooth brain is 
demonstrated. There are a few gyral formations in the frontal area 
which indicates pachygyria in this part. Right, MR coronal image at 5 
months in the same case. An intracranial cyst arose in the right lateral 
portion 
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Figure 6.51 Microscopic photographs of type I lissencephaly. Left, smooth 
brain with a shallow Sylvian fissure is demonstrated. Note the 
cerebellar gyri and sulci are well formed. Photographs courtesy of Dr 
S.Endo 

Schizencephaly (Figures 6.52 and 6.53) 

Incidence Rare. 
Definition A disorder characterized by congenital clefts in the cerebral mantle, lined by 

pia-ependyma, with communication between the subarachnoid space laterally and the 
ventricular system medially (Figure 6.52); 63% is unilateral and 37% bilateral; frontal 
region in 44% and frontoparietal 30% 20 . 

Etiology Uncertain. In certain familial cases; a point mutation in the homeobox gene, 
EMX2 has been found 25 , 26 . Cytomegalovirus infection was also related in some cases
27 . 

Pathogenesis Neuronal migration disorder. 
Associated anomalies Ventriculomegaly, microcephaly, polymicrogyria, gray-matter 

heterotopias; dysgenesis of the corpus callosum, absence of the septum pellucidum and
optic nerve hypoplasia. 

Differential diagnosis Porencephaly, arachnoid cyst or other intracranial cystic masses. 
MRI is useful in diagnosis of schizencephaly 28 . Neonatal schizencephaly is shown in
Figure 6.53. 

Prognosis Variable. Generally suffer from mental retardation, seizures, developmental
delay and motor disturbances. 

Recurrence risk Unknown. 
Management Ventriculoperitoneal shunt for progressive hydrocephalus. 
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Figure 6.52 Schema of schizencephaly. Schizencephaly is characterized by 
clefts in the cerebral mantle, lined by piaependyma, with 
communication between the ventricles and the subarachnoid space; 
unilateral schizencephaly in 63% and bilateral in 37%. The cortical 
gray-matter lining of the cleft is important in differentiation from a 
destructive lesion such as porencephaly 
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Figure 6.53 Magnetic resonance (MR) images of neonatal schizencephaly with 
porencephaly. Schizencephaly is a migrational disorder, characterized 
by unilateral or bilateral clefts in the cerebral mantle, lined by pia-
ependyma, with communication between the ventricles and 
subarachnoid space. Gray matter of the cleft wall exhibits cortical 
dysplasia. MR axial images (upper) show bilateral schizencephaly 
and gray matter of the cleft wall is demonstrated. Lower, coronal and 
sagittal images. Porencephaly of the frontal lobe is also found in this 
case and a thin dysplastic corpus callosum is demonstrated. Posterior 
fossa development and the brainstem appear to be normal. No visits 
for check-ups were made during pregnancy; it was a home delivery. 
There was no growth retardation and no neonatal symptoms; 
however, a neonatal straight forehead and bilateral temple 
indentations (lower right, arrowheads) led to neonatal MR 
examination. Hydrocephaly was conspicuous 1 month after birth and 
a ventriculoperitoneal shunt was performed 

POSTERIOR FOSSA ANOMALIES  

Dandy—Walker malformation, Dandy—Walker variant and megacisterna 
magna (Figures 6.54–6.60) 

Incidence Dandy—Walker malformation has an estimated prevalence of about 1/30 000
births; and is found in 4–12% of all cases of infantile hydrocephalus 29 . Incidence of 
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Dandy—Walker variant and megacisterna magna is unknown. 
Definition At present, the term Dandy-Walker complex 30 is used to indicate a 

spectrum of anomalies of the posterior fossa that are classified by axial CT scans as
follows. Dandy—Walker malformation, Dandy—Walker variant and megacisterna 
magna seem to represent a continuum of developmental anomalies of the posterior fossa
29 :  

(1) (Classic) Dandy-Walker malformation Cystic dilatation of the fourth ventricle, 
enlarged posterior fossa; elevated tentorium and complete or partial agenesis of the 
cerebellar vermis; 

(2) Dandy-Walker variant Variable hypoplasia of the cerebellar vermis with or without 
enlargement of the posterior fossa; 

(3) Megacisterna magna Enlarged cisterna magna with integrity of both cerebellar 
vermis and fourth ventricle. 

Etiology Mendelian disorders such as Warburg’s, chromosomal aberration such as 45,X, 
partial monosomy/trisomy; viral infections and diabetes. 

Pathogenesis During the development of the fourth ventricular roof, a delay or total 
failure of the foramen of Magendie to open occurs, allowing a  

 

Figure 6.54 Dandy—Walker malformation (22 weeks of gestation) illustrated 
by a typical sagittal and axial image. A defect of the cerebellar 
vermis and an enlarged cisterna magna are demonstrated. Image 
courtesy of Dr V.D’Addario 

An atlas of fetal central nervous system disease     146



 

Figure 6.55 Postnatal magnetic resonance imaging of Dandy-Walker syndrome 
with hydrocephalus (1 day postnatally before treatment). Upper left, 
axial section. Agenesis of the cerebellar vermis is demonstrated. 
Lower left, sagittal section. Note the posterior fossa cyst 
communicating with the IVth ventricle. Hydrocephalus is often 
present (upper/lower right) 

build up of CSF and development of the cystic dilatation of the fourth ventricle. Despite
the subsequent opening of the foramina of Luschka (usually patent in Dandy—Walker 
malformations), cystic dilatation of the fourth ventricle persists and CSF flow is impaired
10 .  

Associated anomalies of Dandy-Walker malformation Hydrocephalus and other 
midline anomalies, such as agenesis of the corpus callosum and holoprosencephaly and
occipital encephalocele. Extracranial abnormalities such as congenital heart disease;
neural tube defects and cleft lip/palate. A frequency of additional anomalies ranges
between 50 and 70%. 

Prenatal diagnosis Dandy—Walker malformation is shown in Figure 6.54, a Dandy—
Walker variant in Figure 6.57 and megacisterna magna in Figures 6.58 and 6.59. To 
observe the agenesis of the cerebellar vermis, the axial cutting section is preferable. To
observe the elevated tentorium, the sagittal section is preferable. 
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Figure 6.56 Post-treatment magnetic resonance image (MRI) and X-ray images 
of a Dandy—Walker case (same case as shown in Figure 6.55). 
Because of no communication between the supra- and infratentorial 
spaces, a supratentorial ventricular catheter and infratentorial cystic 
catheter were placed, and both catheters were connected to the 
abdominal catheter by a Y-connector 
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Figure 6.57 Dandy—Walker variant (from 16 weeks of gestation till newborn). 
Upper ultrasound axial sections at 16; 19 and 28 weeks. The sizes of 
the cerebellar and cisterna magna are normal, but the cerebellar 
vermis is not demonstrated and communication between the IVth 
ventricle and the cisterna magna is seen. Lower left, tranvaginal 
ultrasound sagittal image at 19 weeks. The cerebellum is floating in 
the posterior fossa. Lower middle and right, postnatal magnetic 
resonance image. Hypogenesis of the cerebellar vermis was 
confirmed. Normal development was seen at the age of 3 years 
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Figure 6.58 Fetal ultrasound/magnetic resonance (MR) images of megacisterna 
magna—fetal ultrasound sagittal/coronal sections (upper) and MR 
sagittal/coronal sections (lower). Cisterna magna seems to be large 
but no tentorial disproportion is seen. Cerebellar development has 
been normal 

Differential diagnosis Infratentorial arachnoid cyst, other intracranial cystic tumors, 
hydrocephalus, cerebellar dysplasia (Figure 6.60). 

Prognosis Progressive hydrocephalus; not observed in neonates but often progressive
during the first month. In cases diagnosed in utero or in the neonatal period, outcome is 
generally unfavorable. Nearly 40% die, and 75% of survivors exhibit cognitive deficits
10 . Prognosis of the Dandy—Walker variant is good. Clinical significance of 
megacisterna magna is uncertain.  

Recurrence risk Depends on etiology; generally 1–5% (Dandy-Walker malformation). 
Management Cystoperitoneal shunt or cystoventriculoperitoneal shunt (Figures 6.55

and 6.56).  
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Figure 6.59 Neonatal magnetic resonance images (MRIs) of megacisterna 
magna (same case as shown in Figure 6.58). The large cisterna 
magna has spontaneously improved compared with the prenatal MRIs 
(Figure 6.58). Normal development was observed at the age of 2 
years 

 

Figure 6.60 Cerebellar dysplasia. Differentiated diagnosis of the Dandy-
Walker complex. Upper left, transvaginal median image of a small 
cerebellum within a normal-sized posterior fossa. Upper middle, 
transabdominal axial image. Lower left, fetal magnetic resonance 
sagittal image. Lower middle, magnetic resonance axial image. This 
case has the chromosomal aberration of trisomy 18. Upper right, 
macroscopic photograph of cerebellar dysplasia in another case of 
trisomy 18. Cerebellar dysplasia should be differentiated from the 
Dandy—Walker malformation, variant or megacisterna magna 
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Chiari malformation (Figures 6.61–6.69) 

Prevalence Depends on prevalence of spina bifida (Chiari type II malformation).
Following a recent remarkable reduction of prevalence of NTDs after using folic acid
supplementation and fortification, prevalence has declined (see ‘Spina bifida’ in this 
Chapter). Other types are rare. 

Definition Chiari anomalies with cerebellar herniation in the spinal canal were 
classified into three types according to the contents of the herniated tissue. The contents
of type I is a lip of cerebellum, of type II part of the cerebellum, fourth ventricle and
medulla oblongata, pons, and of type III a large herniation of the posterior fossa.
Thereafter, type IV with just cerebellar hypogenesis was added. However, this
classification occasionally leads to confusion in neuroimaging diagnosis. Therefore, at
present, the classification as below is advocated: 

(1) Type I Herniation of the cerebellar tonsil only, not associated with 
myelomeningocele; 

(2) Type II (Figures 6.61 and 6.62). Herniation of the cerebellar tonsil and brainstem. 
Medullary kink, tentorial dysplasia; associated wi ith myelomeningocele; 

(3) Type III Associated with cephalocele or craniocervical meningocele, in which the 
cerebellum and the brainstem are herniated; 

(4) Type IV Associated with marked cerebellar hypogenesis and posterior fossa 
shrinking. 

Synonyms Arnold-Chiari malformation. 
Etiology Depends on the type. (See ‘Spina bifida’ and ‘Cranium bifidum’ in this 

Chapter.) 

Pathogenesis  

(1) Inferior displacement of the medulla and the fourth ventricle into the upper cervical 
canal; 

(2) Elongation and thinning of the upper medulla and lower pons and persistence of the 
embryonic flexure of these structures; 

(3) Inferior displacement of the lower cerebellum through the foramen magnum into the 
upper cervical region; 

(4) A variety of bony defects of the foramen magnum, occiput and upper cervical 
vertebrae 10 . 
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Figure 6.61 Magnetic resonance image of Chiari type II malformation. 
Anatomical characteristics of Chiari type II malformation (beak of 
the tectum, low-positioned torcula, elongated IVth ventricle, tonsillar 
herniation, medullary kinking and elongated pons) are shown in this 
picture. A chiari type II malformation is caused by the downward 
herniation of the posterior fossa contents probably due to 
cerebrospinal fluid leakage from open spina bifida 
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Figure 6.62 Magnetic resonance images of aborted fetuses at 20–21 weeks of 
gestation. Left, 20 weeks of gestation. Sacral myelomeningocele 
(arrowheads) and Chiari type II malformation are demonstrated. 
Right, 21 weeks of gestation. Lumbosacral myelomeningocele with 
Chiari type II malformation is seen. In this case, myelomeningocele 
is complicated by holoprosencephaly. Normal karyotype. A severe 
medullary kink (arrow) can be seen 
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Figure 6.63 Chiari type II malformation at 19 weeks of gestation. Left, the 
ultrasound axial image shows a typical lemon sign (asterisks) and a 
typical banana sign (arrowheads). Right, comparative normal image 
in the same cutting section at the same gestation 
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Figure 6.64 Chiari type II malformation at 16 weeks of gestation. Upper left, 
typical lemon sign (arrows). Upper right, external lemon-shaped head 
appearance of the aborted fetus. Lower left, typical banana sign 
(arrows). Lower right, three-dimensional reconstruction internal 
image of a Chiari type II malformation (arrows) 

 

Figure 6.65 Medullary kink in a case of Chiari II malformation at 19 weeks of 
gestation. Left; medullary kink (arrowhead) associated with an 
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obliterated cisterna magna is demonstrated. Right, comparative normal image 
in the same cutting section at the same gestation. The cisterna magna, 
cerebellum and medullospinal portion are clearly demonstrated 

 

Figure 6.66 Clivus-supraocciput angle. Left, ultrasound sagittal image. Middle, 
macroscopic appearance. Right, magnetic resonance image. 
Measurement of the clivussupraocciput angle in a 21-week-old fetus 
affected by Chiari malformation. The angle (68°) between the lines is 
lower than normal. Images courtesy of Dr V.D’Addario 
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Figure 6.67 Features of a Chiari type II malformation. The evaluation of the 
posterior fossa and particularly the measurement of the clivus-
supraocciput angle is a useful parameter to differentiate the various 
causes of fetal ventriculomegaly and particularly to recognize Chiari 
II malformation. LS, lemon sign; EAW, enlarged atrial width (>12 
mm); SC, small cerebellum (<10°); SB, spina bifida; ECM, effaced 
cisterna magna; SCSA, small clivus-supraocciput angle (<72°). 
Image courtesy of Dr V.D’Addario 
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Figure 6.68 Chiari type I with syringohydromyelia in a 4-year-old female 
infant with onset of motor disturbance of the lower extremities. Left, 
tonsillar herniation and holocord syringohydromyelia (arrows) are 
demonstrated. Right, postoperative magnetic resonance image. The 
syrinx was markedly resolved and clinical symptoms disappeared 
after a syrinx-subarachnoid shunt 

 

Figure 6.69 Chiari type I with syringohydromyelia in a 6-year-old male infant 
with onset of headache and dizziness. Left, mild tonsillar herniation 
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and syringohydromyelia of the cervical spinal cord are demonstrated. Right, 
postoperative magnetic resonance image. The syrinx was resolved 
and clinical symptoms disappeared after foramen magnum 
decompression and C1 laminectomy 

Associated anomalies Hydrocephalus caused by obstruction of fourth ventricular outflow
or associated aqueductal stenosis. Myelomeningocele or myeloschisis (type II),
cephalocele or craniocervical meningocele (type III), cerebellar hypogenesis (type IV)
and syringohydromyelia (type I). 

Prenatal diagnosis Prenatal ultrasound diagnosis by features: lemon sign which 
indicates deformity of the frontal bone, banana sign which indicates abnormal shape of
the cerebellum without cisterna magna space (Figures 6.63 and 6.64), medullary kink 
(Figure 6.65) and small clivus-supraocciput angle (Figures 6.66 and 6.67) 31 . 

Differential diagnosis Craniosynostosis. 
Prognosis Nearly every case of myelomeningocele is accompanied by a morphological

Chiari II malformation. Many cases with Chiari II are asymptomatic. However, clinical
features due to Chiari malformation, such as feeding disturbances, laryngeal stridor or
apneic episode, are found in approximately 9–30% of cases. In cases with these clinical
features, vital prognosis is often poor. 

Recurrence risk Depends on type of Chiari malformation. Decreased according to
decline of NTD recurrence rate by use of folic acid supplementation and fortification.
(See ‘Spina bifida’ in this Chapter).  

Neurosurgical management Neurosurgical decompression of foramen magnum for any 
types of Chiari malformation; syringo-subarachnoid shunt for Chiari type I (Figures 6.68
and 6.69). 

Rhombencephalosynapsis (Figure 6.70) 

Incidence Extremely rare. 
Definition Characterized by dorsal fusion of the cerebellar hemispheres, an absence of 

the anterior vermis and a deficiency of the posterior vermis 32 , fusion of dentate nuclei 
and superior cerebellar peduncles. 

Etiology Molecular analysis of dorsalizing genes, such as Lmxla, which regulate early 
developmental events at the pontomesencephalic junction, may reveal a mutation or
mutations unique to rhombencephalosynapsis. 

Pathogenesis This spectrum of anomalies is consistent with rhombencephalosynapsis 
and could be explained by an embryological defect of dorsal pattering that affects the
‘isthmic organizer’ at the mesencephalic-metencephalic border 33 .  
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Figure 6.70 Fetal ultrasound and magnetic resonance images of 
rhombencephalosynapsis at 30 weeks of gestation. Upper, ultrasound 
images. Cerebellar fusion is seen in the axial section. Coronal 
sections show moderate ventriculomegaly and absent septum 
pellucidum. Lower, fetal magnetic resonance images 

Associated anomalies Hydrocephalus, ventriculomegaly, additional supratentorial 
abnormalities, craniosynostosis; trigeminal anesthesia, alopecia. 

Prenatal diagnosis Figure 6.70. 
Differential diagnosis Cerebellar dysplasia, megacisterna magna and Chiari 

malformation. 
Prognosis From mild truncal ataxia and normal cognitive abilities to severe cerebral

palsy and mental retardation 34 . 
Recurrence risk Unknown. 
Management Shunt procedure for infants with progressive hydrocephalus. 

CRANIAL BONE ANOMALIES  

Craniosynostosis (Figures 6.71–6.83) 

Incidence Unknown. 
Definition Premature closure of cranial suture, which may affect one or more cranial 

sutures. Simple sagittal synostosis is most common. Various cranial shapes depend on
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affected suture(s) (Figures 6.73–6.83).  

(1) Sagittal suture Scaphocephaly or dolichocephaly; 
(2) Bilateral coronal suture Brachycephaly; 
(3) Unilateral coronal suture Anterior plagiocephaly; 
(4) Metopic suture Trigonocephaly; 
(5) Lamboid suture Acrocephaly;  
(6) Unilateral lamboid suture Posterior plagiocephaly; 
(7) Coronal/lamboid/metopic or squamous/sagittal suture Cloverleaf skull; 
(8) Total cranial sutures Oxycephaly. 

Syndromes  

(1) rouzon syndrome Acrocephaly, synostosis of coronal, sagittal and lamboid sutures; 
with ocular proptosis maxillary hypoplasia. 

(2) Apert syndrome Brachycephaly, irregular synostosis, especially coronal suture; with 
midfacial hypoplasia, syndactyly, broad distal phalanx of thumb and big toe. 

 

Figure 6.71 Prenatal craniofacial appearance of Apert syndrome (see Figures 
6.74–6.76 for treatment of this case). Upper, longitudinal changing 
appearance of frontal bossing and low nasal bridge at 22, 27 and 34 
weeks of gestation in a case of Apert syndrome. Lower left, irregular 
cranial shape at 20 weeks. Lower middle, cranial shape at 34 weeks. 
Note the bilateral indentation. Lower right, intracranial sagittal 
ultrasound image at 34 weeks. Mild ventriculomegaly is present 
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Figure 6.72 Three-dimensional ultrasound images of craniosynostosis with 
frontal bossing and low nasal bridge. Although the coronal suture is 
demonstrated, frontal bossing and the low nasal bridge are clearly 
demonstrated 
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Figure 6.74 Plagiocephaly with synostosis of unilateral coronal suture. Upper, 
CT scan images. Skull deformity is seen. Lower, three-dimensional 
reconstruction CT images. Complete fusion of right coronal suture is 
demonstrated 
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Figure 6.73 Three-dimensional reconstruction CT images of acrocephaly with 
synostosis of lamboid sutures (same case as shown in Figure 6.72). 
Upper, external views of the cranium. Note the fusion of the lamboid 
sutures. Lower, internal views of the cranium 

 

 

Figure 6.75 Apert syndrome (same case as shown in Figure 6.71 of prenatal 
images). Upper; appearance of brachycephaly due to bilateral fused 
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coronal sutures. Tracheostomy was performed for respiratory tract stenosis due 
to severe deformed craniofacial bony dysplasia. Lower, syndactyly of 
hands and feet bilaterally, which is characteristic of Apert syndrome 

 

Figure 6.76 Three-dimensional reconstruction CT and magnetic resonance 
images of Apert syndrome (same case as shown in Figures 6.71 and 
6.75). Upper, three-dimensional reconstruction CT. Fusion of 
bilateral coronal suture and squamous suture, defect of frontoparietal 
cranial structure and craniofacial bony dysplasia are recognizable. 
Lower, magnetic resonance images. Marked shortening of anterior 
cranial fossa is seen. Mild ventriculomegaly and absent septum 
pellucidum are present 
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Figure 6.77 Cranioplasty of Apert syndrome (same case as shown in Figures 
6.71, 6.75 and 6.76). Upper left, conspicuous frontal bossing and low 
nasal bridge. Upper right, photograph during cranioplasty. Lower left, 
three-dimensional CT before operation showing position of bone seen 
in right photograph. Lower right, inside view of the resected part of 
cranial bone including synostosis of the coronal suture. Arrows 
indicate the fused coronal suture 
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Figure 6.78 Crouzon disease. Upper, facial appearance. Exophthalmos and 
deformed craniofacial shape are seen. Lower, roentgenogram. 
Oxycephaly is demonstrated by total sutural fusion 

 

 

Figure 6.79 Postnatal three-dimensional reconstruction CT in case of Crouzon 
disease (same case as shown in Figure 6.78). Radical reconstructive 
cranioplasty was performed 
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Figure 6.80 Treatment of scaphocephaly (synostosis of sagittal suture). Upper, 
preoperative CT axial images. Skull development toward temporal 
direction is prevented, especially in the occipital portion. Lower, 
postoperative magnetic resonance axial images. After cranioplasty, 
scaphocephalic shape and cerebral compression improved 
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Figure 6.81 Three-dimensional reconstruction CT images after cranioplasty in 
a case of scaphocephaly (same case as shown in Figure 6.80) 
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Figure 6.82 Trigonocephaly with synostosis of metopic suture. Upper, 
preoperative three-dimensional reconstruction CT images. Metopic 
suture is completely fused. Lower, CT scan images of 
trigonocephaly. Note the trianglular shape of the forehead 
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Figure 6.83 Treatment of trigonocephaly (same case as shown in Figure 6.82). 
Upper, photograph during cranioplastic operation. Lower, 
postoperative CT images. Skull deformity improved by cranioplasty 

(3) Pfeiffer syndrome Brachycephaly synostosis of coronal and/or sagittal sutures; with 
hypertelorism, broadthumbs and toes, partial syndactyly. 

(4) Antley-Bixler syndrome Brachycephaly, multiple synostosis, especially of coronal 
suture; with maxillary hypoplasia, radiohymeral synostosis, choanal atresia, 
arthrogryposis. 

Etiology Crouzon (autosomal dominant, variable), Apert (autosomal dominant, usually
new mutation); Pfeiffer (autosomal dominant), Antley-Bixler (autosomal recessive). Five 
autosomal dominant craniosynostosis syndromes (Apert, Crouzon, Pfeiffer, Jackson—
Weiss and Crouzon syndrome with acan thosis nigricans) result from mutations in FGFR 
genes 35 . 

Pathogenesis  

(1) Cranial vault bones with decreased growth potential; 
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(2) Asymmetrical bone deposition at perimeter sutures; 
(3) Sutures adjacent to the prematurely fused suture compensate in growth more than 

those sutures not contiguous with the closed suture; 
(4) Enhanced symmetrical bone deposition occurs along both sides of a non-perimeter 

suture continuing a prematurely closed suture. 

Associated anomalies Hypertelorism, syndactyly, polydactyly, exophthalmos.  
Prenatal diagnosis Figures 6.71 and 6.72. Abnormal craniofacial appearance by two-

and three-dimensional ultrasound 37 , 38 . 
Prognosis Various. In some trigonocephaly and syndromic types, prognosis is poor. 
Recurrence risk Depends on etiology. 
Management The operative aim of cranioplasty is the improvement of intracranial

pressure and cosmetic change (Figures 6.75–6.83). 

OTHERS  

Vein of Galen aneurysm (Figures 6.84 and 6.85) 

Incidence Rare. 
Definition Direct arteriovenous fistulas between choroidal and/or quadrigeminal

arteries and an overlying single median venous sac. 
Synonyms Vein of Galen malformation. 
Etiology Unknown. 
Pathogenesis Venous sac most probably represents persistence of the embryonic

median prosencephalic vein of Markowski, not the vein of Galen, per se 39 .  
Associated anomalies Cardiomegaly high cardiac output, secondary hydrocephalus,

macrocrania, cerebral ischemia (intracranial steal phenomenon),
subarachnoid/cerebral/intraventricular hemorrhages. 

Prenatal diagnosis Figures 6.84 and 6.85.  
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Figure 6.84 Vein of Galen aneurysm at 35 weeks of gestation. Left, large 
Galen aneurysm and straight sinus are demonstrated. Right, mosaic 
flow inside the aneurysm is demonstrated by a Color Doppler image. 
Image courtesy of Dr M.Utsu 

 

Figure 6.85 Galen aneurysm at 35 weeks of gestation. This is the third-
trimester fetus with a large vein of Galen aneurysm (VGA). The 
three-dimensional power angio reconstruction demonstrates well the 
chaotic appearance and connections of the feeder and draining 
vessels. Image courtesy of Dr X.Renato, www.TheFetus.net, with 
permission 

Differential diagnosis Arachnoid cyst, porencephalic cyst, intracranial teratoma. 
Color/power Doppler is helpful for differential diagnosis. 

Prognosis According to an earlier review, outcome did not differ between treated and
non-treated groups and over 80% of the cases died 40 . However, recent advances in 
treatment have improved outcome, such that 60–100% survive and over 60% have a good
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neurological outcome 41 , 42 . 
Recurrence risk Unknown. 
Management Evaluation of the fetal high-output cardiac state for proper obstetric 

management. Percutaneous embolization by microcoils is the recent main postnatal
treatment with remarkably improved outcome.  

Arachnoid cyst (Figures 6.86–6.101) 

Prevalence 1 % of intracranial masses in newborns. 
Definition Congenital or acquired cyst, lined by arachnoid membranes, and filled with 

fluid collection which is the same character as CSF. The number of cysts is mostly single;
but two or more cysts can occasionally be observed. Location of an arachnoid  

 

Figure 6.86 Transvaginal ultrasound images of an arachnoid cyst at 29 weeks 
of gestation. Upper, serial coronal sections. Lower, serial sagittal 
sections. A compressed adjacent cerebrum is demonstrated 
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Figure 6.87 Intrauterine spontaneous resolution of an arachnoid cyst (same 
case as shown in Figure 6.86). Spontaneous size reduction was 
observed during pregnancy. Upper left, fetal magnetic resonance 
image (MRI) at 30 weeks. Upper right, neonatal MRI at 4th postnatal 
day. Lower left, three-dimensional ultrasound volume calculation of 
the arachnoid cyst. Lower right, cyst/intracranial cavity ratio between 
29 and 37 weeks of gestation 
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Figure 6.88 Fetal arachnoid cyst at 31 weeks of gestation. Upper, transvaginal 
ultrasound image; sagittal (left) and coronal (middle, right) sections. 
Lower left; fetal magnetic resonance sagittal image. The cyst 
occupies supra- to infratentorial space. Not only the cerebrum but 
also the cerebellum are compressed by the cyst. Lower right, fetal 
magnetic resonance coronal image. Midline is conspicuously 
arcuated. Scalp and skull bone are extended due to the existence of 
the huge cyst. Note the difference between the right and left head size 

 

Figure 6.89 Fetal ultrasound images of an interhemispheric cyst associated 
with agenesis of the corpus callosum. Upper, serial sagittal images. 
Radiated sulci formation and colpocephaly are demonstrated. Middle, 
serial coronal images. Unilateral ventriculomegaly is clearly seen. 
Lower, serial axial images 
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Figure 6.90 Fetal ultrasound images of an interhemispheric cyst with 
hypogenesis of the corpus callosum at 24 weeks of gestation. All 
images are by the transvaginal approach. Upper left, sagittal section. 
The cyst is not a simple cyst but contains a thin septal membrane and 
several small cysts inside. Upper right, power Doppler imaging in the 
sagittal section. It is hard to observe the corpus callosum in a B-mode 
sonogram; however, the fact that a pericallosal artery is depicted may 
indicate hypogenesis of the corpus callosum not agenesis. Lower, 
serial transvaginal coronal images 
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Figure 6.91 Fetal magnetic resonance images and three-dimensional ultrasound 
volume calculation of an interhemispheric cyst with hypogenesis of 
the corpus callosum at 24 and 30 weeks of gestation (same case as 
shown in Figure 6.90). Upper; 24 weeks of gestation. The cyst 
occupying ratio is 5.87%. Lower, 30 weeks of gestation. The cyst 
occupying ratio is 12.78%; gradual progression of the cyst is 
demonstrated. In this case; spontaneous reduction in size of the cyst 
was seen after birth. GA, gestational age 

 

Figure 6.92 An arachnoid cyst in the posterior fossa. Upper left, fetal 
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ultrasound sagittal image. A megacisterna magna was the prenatal diagnosis. 
Upper middle and right, neonatal ultrasound sagittal and coronal 
images. Note the asymmetrical cisterna magna. Lower, neonatal 
magnetic resonance sagittal and axial images. The cystic formation in 
the cisterna magna affects the asymmetry of the cerebellar 
hemispheres 

 

Figure 6.93 Fenestration under craniotomy of a neonatal arachnoid cyst. 
Upper, magnetic resonance axial images of a sylvian fissure (middle 
fossa) arachnoid cyst, before operation. Lower, postoperative 
magnetic resonance image. Fenestration by craniotomy was selected 
in this case. Communication to the basal cistern by cyst fenestration 
resulted in regression of the cyst. The postoperative course has been 
uneventful for 1 year 
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Figure 6.94 Fenestration by neuroendoscopy of a suprasellar arachnoid cyst. 
Upper left, before operation, a magnetic resonance sagittal image 
shows that the suprasellar arachnoid cyst (arrowhead) compresses the 
mid-brain. Upper right, although hydrocephalus is often a 
complication, no ventriculomegaly is seen in this case. Lower, 
postoperative magnetic resonance sagittal image. After fenestration 
by neuroendoscopy the cyst size was reduced 

cyst is various; approximately 50% of cysts occur from the Sylvian fissure (middle
fossa), 20% from the posterior fossa and 10–20% each from the convexity, suprasellar, 
interhemisphere and quadrigeminal cistern. Interhemispheric cysts are often associated
with agenesis or hypogenesis of the corpus callosum. 

Etiology Unknown. 
Pathogenesis A congenital arachnoid cyst is formed by maldevelopment of the 

arachnoid membrane. CSF accumulation in the subarachnoid space or intra-arachnoid 
layers from a choroid plexus-like tissue within the cyst wall, leads to a progressive
distention of the lesion. 

Associated anomalies Unilateral or bilateral hydrocephalus, macrocrania. 
Prenatal diagnosis Figures 6.86–6.92. Detection in the first trimester has been reported

43 . 
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Differential diagnosis Porencephaly, schizencephaly, third ventriculomegaly, 
intracranial cystic type tumor, vein of Galen aneurysm, Dandy-Walker malformation, 
large cisterna magna and external hydrocephalus.  

 

Figure 6.95 Neuroendoscopic views (same case as shown in Figure 6.94). 
Upper left, most of the foramen of Monro was obstructed by the 
arachnoid cyst wall. Upper middle, coagulating the cyst wall by 
monopolar coagulator. Upper right, after fenestration of the cyst wall. 
Lower left, inside the cyst; observation of the basal cistern through 
the floor of the arachnoid cyst. The basilar artery (arrowhead) is seen. 
Lower middle, the left side of the lower left image. The oculomotor 
nerve [black arrow) is observed. Lower right, the blue arrow indicates 
slit-like tear of the cyst wall, adjacent to the basilar artery. The 
existence of this slit, as a one-way valve, may have led to cyst 
expansion before treatment 
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Figure 6.96 Intraventricular cyst (postnatal magnetic resonance image). 
Magnetic resonance sagittal, axial and coronal images from left side. 
The thin cyst wall is demonstrated inside the unilateral ventricle. 
Obstruction of the foramen of Monro by the cyst wall may cause 
unilateral ventriculomegaly 

 

Figure 6.97 Fenestration of an intraventricular cyst by neuroendoscopy (same 
case as shown in Figure 6.96). Left, postoperative CT image. Cyst 
fenestration under neuroendoscopy results in regression of 
ventriculomegaly. Middle, right, postoperative ventriculogram. 
Communication between the cyst and lateral ventricle is 
demonstrated 
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Figure 6.98 Interhemispheric cyst complicated with agenesis of the corpus 
callosum (neonatal magnetic resonance image). Obstruction of the 
foramen of Monro unilaterally by an interhemispheric cyst causes 
unilateral hydrocephalus. Upper left, magnetic resonance sagittal 
image. Upper right, magnetic resonance coronal image. Note the bull 
horn shape of the anterior horns of the lateral ventricles, which is one 
of the characteristics of agenesis of the corpus callosum. Lower left, 
magnetic resonance axial image. Unilateral hydrocephalus is 
demonstrated. Lower right; CT ventriculography indicates existence 
of communication between the right ventricle and the 
interhemispheric cyst 
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Figure 6.99 Treatment of an interhemispheric cyst (same case as shown in 
Figure 6.98). Upper; neuroendoscopic view. The cyst was 
communicated to the third ventricle by fenestration. The fenestration 
window is visible. In this case; a ventriculoperitoneal shunt was 
added because the fenestration window was occluded. Lower, 
magnetic resonance axial and coronal images after treatment. 
Regression of the interhemispheric cyst and unilateral hydrocephalus 
is demonstrated 
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Figure 6.100 Postnatal magnetic resonance images of an interhemispheric cyst 
associated with agenesis of the corpus callosum (same case as shown 
in Figure 6.89). Upper left; coronal image. Upper right, sagittal 
image. An interhemispheric cyst is clearly demonstrated. Lower left, 
axial image. Unilateral ventriculomegaly is demonstrated. Lower 
right; median image. The corpus callosum is absent 

 

Figure 6.101 Neuroendoscopy for a neonatal interhemispheric cyst (same case 
as shown in Figures 6.89 and 6.100). Upper left, neonatal magnetic 
resonance images. The neuroendoscopic procedure is done through 
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the parietal roof of the interhemispheric cyst. Right, neuroendoscopic view. 
The thin membranous cyst wall, falx cerebri and surface of the right 
cerebrum are visible. Total cyst resection was performed by using 
endoscopy. Lower, postoperative magnetic resonance image. The 
interhemispheric cyst was completely resected and the typical 
appearance of agenesis of the corpus callosum is demonstrated 

Prognosis Generally good. Postnatally, many are asymptomatic and remain quiescent 
for years, although others expand and cause neurological symptoms by compressing the
adjacent brain, ventriculomegaly and/or expanding the overlying skull. 

Recurrence risk Unknown. 
Obstetric management Arachnoid cysts may increase or decrease their size (Figures

6.87–6.91). Therefore, expectant management of antenatally diagnosed cases is suggested
44 . In cases with accompanying hydrocephalus, mode and timing of delivery may be
modified. 

Postnatal management Figures 6.93–6.101. In cases with these symptoms or with
prospects of neurological symptoms, treatment should be considered. Operation methods
include cyst fenestration by craniotomy, cyst fenestration by neuroendoscopy and cyst-
peritoneal shunt. Craniotomy, shuntingor the neuroendoscopic method are still
controversial 45 , 46 . 

Choroid plexus cysts (Figures 6.102 and 6.103) 

Incidence 0.95–2.8% of all fetuses scanned 47 – 49 .
 

Definition Cysts with fluid collection within the choroid plexus, which may exist 
unilaterally or bilaterally. They are depicted in the second trimester and usually resolve
by the 24th week.  
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Figure 6.102 Fetal ultrasound images of choroid plexus cysts. Upper, bilateral 
choroid plexus cysts in a fetus with trisomy 18. Cardiac ventricular 
septum defect and overlapping fingers were present. Lower, bilateral 
choroid plexus cysts in a normal fetus. It is impossible to differentiate 
between normal and abnormal karyotypes by location and appearance 
of a choroid plexus cyst. Detection of additional anomalies is 
important for a differential diagnosis 
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Figure 6.103 Macroscopic appearance of a choroid plexus cyst in an aborted 
fetus with trisomy 18 at 20 weeks of gestation 

Etiology Normal variant, chromosomal aberration such as trisomy 18 and others. 
Pathogenesis The choroid plexus is located within the ventricular system and produces 

cerebrospinal fluid. Within the choroidal villi, choroid plexus cysts exist, surrounded by
the loose stroma of the choroid plexus 50 . 

Associated anomalies In cases of trisomy 18, associated anomalies include growth
restriction, congenital heart diseases such as ventricular septum defect and double outlet
right ventricle, overlapping finger, facial anomaly, cerebellar dysplasia and others. 

Prenatal diagnosis Figure 6.102; macroscopic appearence is shown in Figure 6.103. 
Differential diagnosis Intraventricular hemorrhage. 
Prognosis Choroid plexus cysts, per se, are usually asymptomatic and benign, but

rarely, are symptomatic and disturb CSF flow 51 , 52 . Isolated choroid plexus cysts may 
be a normal variation. 

Recurrence risk Unknown. 
Management Fetal karyotyping examination should be offered if additional 

abnormalities are found. 
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7  
Acquired brain abnormalities in utero  

R.K.Pooh, K.Maeda and K.H.Pooh 

SUBEPENDYMAL PSEUDOCYSTS  

Prevalence 2.6–5% of all neonates, 1% of premature newborns, unknown in fetuses. 
Definition Cystic formation, which is located in the caudothalamic groove or in the 

caudate nucleus, lateral to the wall of the anterior horns of lateral ventricles. 
Synonyms Periventricular pseudocysts 1 , 2 . 
Etiology Infection (cytomegalovirus, rubella), subependymal hemorrhage, metabolic 

diseases; chromosomal deletions (delq6, delp4), cocaine exposureand others.  
Pathogenesis Cystic cavity is lined by a pseudocapsule, consisting of aggregates of 

germinal cells and glial tissue, but no epithelium can be found. Origin of pseudocysts is
uncertain. Maybe cystic matrix regression or germinolysis. 

Associated anomalies Congenital infection such as cytomegalovirus, congenital heart 
diseases and associated CNS abnormalities. 

Prenatal diagnosis Figures 7.1–7.4. 
Differential diagnosis Periventricular leukomalacia. 
Prognosis Good in cases with isolated subependymal pseudocysts. In cases with

accompanying abnormalities,  

 

Figure 7.1 Fetal and neonatal ultrasound images of subependymal cysts. 



Upper, fetal ultrasound images at 34 weeks of gestation. Cystic formation can 
be observed. Lower, neonatal ultrasound images. The cystic 
formation has progressed in the echogenic lesion observed in utero 
(arrow). Compare the sagittal section of the fetal and the neonatal 
images 

 

Figure 7.2 Fetal magnetic resonance images of subependymal cysts (same case 
as shown in Figure 7.1). Bilateral cystic formations (arrows) can be 
seen in coronal, axial and sagittal images from the left side 
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Figure 7.3 Subependymal cysts (fetal ultrasound images and neonatal magnetic 
resonance images). Upper, coronal and sagittal images. Middle left, 
axial image. Middle right, anterior coronal section. Note bilateral 
bead-like cyst formation. Lower, magnetic resonance sagittal, coronal 
and axial images at 3 days after birth. No neurological symptoms 
were present at the age of 1 year 
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Figure 7.4 Fetal subependymal hemorrhage and cystic formation. Upper left, 
coronal image at 36 weeks. Upper right, sagittal image at 36 weeks. 
Lower left, coronal image at day 5 after birth. Lower right, sagittal 
image at day 5 after birth. Inside bilateral echogenic areas which may 
indicate hemorrhage, small cysts gradually appeared for a few weeks 

such as cardiac disease; cytomegalovirus infection; other intracranial abnormalities, or
cases with atypical pseudocysts, prognosis may be poor 1 – 3 .  

Recurrence risk Unknown. 
Management In many cases, cysts regress during the months after birth. Normal 

obstetric/neonatal care. 

INTRACRANIAL HEMORRHAGE  

Incidence Unknown, rare in utero.  
Definition Hemorrhage, bleeding inside the cranium. Intracranial hemorrhage includes 

subdural hemorrhage (see Subdural hemorrhage), primary subarachnoid hemorrhage,
intracerebellar hemorrhage, intraventricular hemorrhage and intraparenchymal
hemorrhage other than cerebellar. 

Etiology Trauma, alloimmune and idiopathic thrombocytopenia, von Willebrand’s 
disease, specific medications (warfarin) or illicit drug (cocaine) abuse, seizure; fetal
conditions including congenital factor-X and factor-V deficiencies, intracranial tumor, 
twin-twin transfusion, demise of a co-twin; vascular diseases, or fetomaternal
hemorrhage or extracorporeal membrane oxygenation (ECMO) 4 , 5 . 

Associated anomalies Hydrocephalus, hydranencephaly, porencephaly or 
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microcephaly.  
Prenatal diagnosis Figures 7.5–7.8. 
Differential diagnosis Intracranial tumor. 
Prognosis Poor in premature infants. Apnea, seizures and other neurological

symptoms. 
Recurrence risk Depends on etiology. 
Management Ventriculoperitoneal shunt if hydrocephalus progresses. 

PORENCEPHALY  

Incidence Unknown. 
Definition Fluid-filled spaces replacing normal brain parenchyma and may or may not 

communicate with the lateral ventricles or subarachnoid space (Figure 7.9). 
Synonym Porencephalic cyst. 
Etiology Ischemic episode, trauma 6 , demise of one twin, intercerebral hemorrhage 

and infection. 
Pathogenesis Occurs when the immature cerebrum has some factors with propensity 

for dissolution and cavitation (e.g. high content of water, myelinated fiber bundles,
deficient astroglial response). The timing of ischemic injury (maybe as early as the
second trimester) is strongly related to porencephaly and hydranencephaly 7 .  

 

Figure 7.5 Intracerebral/intraventricular hemorrhage during pregnancy. Upper, 
ultrasound at 32 weeks; lower, fetal magnetic resonance image at 33 
weeks. No maternal traumatic and/or bleeding episode occurred. 
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Upper left, sagittal ultrasound image of ventriculomegaly and a high-echogenic 
periventricular hemorrhage (arrows). Echogenicity of the inside wall 
of the ventricle indicates an intraventricular hemorrhage. Upper right, 
the other ventricle. No periventricular hemorrhage, but an 
intraventricular hemorrhage can be seen. Lower, fetal magnetic 
resonance images. Images courtesy of Dr T.Murakoshi 

 

Figure 7.6 Postnatal magnetic resonance image (same case as shown in Figure 
7.5). Left, sagittal section. Middle; coronal section. Right, axial 
section. Porencephalic change in the hemorrhagic lesion is 
demonstrated. (See ‘Porencephaly’ in this Chapter). Images courtesy 
of Dr T.Murakoshi 
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Figure 7.7 A unilateral slit-like ventricle due to an intracranial hemorrhage (24 
weeks of gestation). Upper left, coronal anterior section. There is a 
conspicuous difference between the anterior horns of the ventricles. 
Upper right, coronal posterior section. Note the asymmetrical 
hemisphere and intracranial hemorrhage (arrowheads). Lower, 
parasagittal section of each lateral ventricle. A unilateral slit-like 
ventricle (no space inside the ventricle but in the choroid plexus) is 
clearly demonstrated. This is different from ventricular asymmetry of 
a normal variation. The hemorrhage and slit ventricle spontaneously 
resolved and the case had a normal postnatal course for 2 years. 
Postnatal magnetic resonance imaging shows mild ventricular 
asymmetry of normal variation 
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Figure 7.8 Intraventricular hemorrhage (24 weeks of gestation). A transvaginal 
scan from an early stage showing normal imaging until 20 weeks. 
From 22 weeks, mild ventriculomegaly and bilateral hemorrhage 
inside the choroid plexus (arrows) could be seen. The lesion is 
differentiated from a choroid plexus cyst by echogenicity. In this 
case, the hemorrhage spontaneously disappeared by 30 weeks, with a 
normal magnetic resonance image after birth and no neurological 
deficit seen at the age of 2 years 

An atlas of fetal central nervous system disease     200



 

Figure 7.9 Schematic representation of porencephaly. Porencephaly is a single 
unilateral cavity within the cerebral hemishpere that may or may not 
be communicated by the lateral ventricle. Causes of porencephaly 
include ischemia, intracerebral hemorrhage or infection. A 
porencephalic cyst never causes a mass effect, which is observed in 
cases with an arachnoid cyst or other cystic mass lesions. This 
condition is an acquired brain insult and is differentiated from 
schizencephaly of migration disorder 

Associated anomalies Intercerebral hemorrhage, interventricular hemorrhage and 
hydrocephalus. 

Prenatal diagnosis Figure 7.10. Some cases in utero have been reported 8 , 9 . 
Differential diagnosis Schizencephaly arachnoid cyst, intracranial cystic tumor and

other cysts. Porencephalic cysts never cause a mass effect, which is observed in cases
with an arachnoid cyst or other cystic mass lesions. This condition is an acquired brain
insult and is differentiated from schizencephaly of migration disorder. 

Prognosis Various, depends on timing and size of the lesion. Seizures, neurological
deficits and cerebral palsy often occur 10 . 

Recurrence risk Unknown. 
Management Ventriculoperitoneal shunt if hydrocephalus progresses (Figure 7.11). 
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HYDRANENCEPHALY  

Incidence 1–2.5/10000 births. 
Definition Absence of the cerebral hemispheres and a sac-like structure containing 

cerebral spinal fluid surrounding the brainstem and basal ganglia. 
Etiology Ischemic episode; trauma, demise of one twin, intercerebral hemorrhage and 

infection. There  

 

Figure 7.10 Fetal ultrasound and magnetic resonance images of porencephaly 
at 25 weeks of gestation. Upper left, transvaginal ultrasound coronal 
image. Defect of the parietolateral part of the unilateral cerebrum. 
This case also has an absent septum pellucidum. Upper middle, 
parasagittal ultrasound image. The porencephalic area connects to the 
unilateral ventricle. Echogenicity of the inside of the ventricular wall 
indicates an intraventricular hemorrhage. Upper right, transabdominal 
ultrasound axial image. Lower, fetal magnetic resonance images on 
the same day; coronal, parasagittal and axial sections from the left 
side 
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Figure 7.11 Treatment of porencephaly. Left, neonatal magnetic resonance 
images. Frontal porencephaly fused with moderately enlarged 
ventricle is demonstrated. Middle, magnetic resonance images 3 
months after birth. Enlargement of a porencephalic cyst and the 
ventricles is demonstrated. A ventriculo-peritoneal shunt was placed 
due to progressive hydrocephalus. Right, magnetic resonance images 
at the age of 6 years demonstrating disappeared porencephalic cyst 
and a developed cerebrum instead 

are several theories but bilateral occlusion of the supraclinoid segment of the internal
carotid arteries 11 or of the middle cerebral arteries is one of the causes of subtotal defects
of the cerebral hemisphere.  

Pathogenesis Occurs when the immature cerebrum has some factors with propensity 
for dissolution and cavitation (e.g. high content of water, myelinated fiber bundles,
deficient astroglial response). The timing of ischemic injury (maybe as early as the
second trimester) is strongly related to porencephaly and hydranencephaly. Recently,
hydranencephaly from 11 weeks of gestation has been reported 12 . 

Associated anomalies Large head (Figure 7.12). 
Differential diagnosis Massive hydrocephalus, alobar holoprosencephaly, 

porencephaly. 
Prognosis Extremely poor. 
Recurrence risk Unknown. 
Management No active treatment. Shunt procedure for progressive increase of infant’s 

head.  
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SUBDURAL HEMORRHAGE  

Incidence Rare (extremely rare in fetuses). 
Definition Blood or coagula collection between the dura mater and the arachnoid 

membrane (Figure 7.13).  
Synonyms Subdural hematoma. 
Etiology In utero trauma, maternal thrombocytopenia 13 (immune, alloimmune, 

idiopathic), traumatic deliveries and unknown causes. 
Pathogenesis Hemorrhage from subdural blood vessels by defective coagulation or 

trauma. 
Associated anomalies Fracture or decompression of the skull, porencephaly, 

hydrocepbalus, hydrops; tentorial laceration; falx laceration and cerebral convexity. 
Prenatal diagnosis Figure 7.14. 
Differential diagnosis Intracranial hemorrhage in another location or intracranial 

tumor. 
Prognosis Infants with a major tentorial/falx laceration with massive hemorrhage have

a very poor prognosis. Fetal demise, neonatal demise, or neurological deficits of seizures,
hypotonia and severe mental retardation 14 – 17 . However, cases with subdural 
hematomas in the posterior fossa have a favorable prognosis even without surgical
treatment. 

Recurrence risk Depends on the causes of the hemorrhage. There is a high recurrence
rate with alloim-mune thrombocytopenia. 

Management Timing of delivery and mode of delivery should be considered. 
Neurosurgical intervention is not always necessary when the infant is stable  

An atlas of fetal central nervous system disease     204



 

Figure 7.12 Hydranencephaly is characterized by the absence of the cerebral 
hemispheres with an incomplete or absent falx and a sac-like 
structure containing cerebral spinal fluid surrounding the brainstem 
and basal ganglia. In this case, tentorium and falx cerebri are 
recognized. The cerebral cortex is depicted in only a small part of the 
occipital lobe. The brainstem and cerebellum are preserved as 
normal. The cause of the hydranencephaly may be obstruction of the 
bilateral internal carotid arteries. Note the remarkable increase in the 
head circumference 
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Figure 7.13 Subdural hemorrhage (in red) assumes a lenticular shape between 
the hard skull and the depressed brain. Schema courtesy of Dr 
P.Jeanty www.TheFetus.net; with permission 

 

Figure 7.14 Fetal subdural hematoma. Upper left, antenatal sonographic image. 
The bright echogenic area indicates a hemorrhage. Middle left, fetal 
magnetic resonance (T1) image. Lower left, fetal magnetic resonance 
(T2) image. Right, photograph of stillborn infant. Images and 
photograph courtesy of Dr I.Kawabata 
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neurologically. When neurological deficits are manifest; subdural taps can be done.  

POLYMICROGYRIA (POSTMIGRATIONAL POLYMICROGYRIA)  

Incidence Unknown, very rare. 
Definition A great number of small placations in the cortical surface, rendering to the 

external aspect of the cerebrum the appearance of a wrinkled chestnut. There are two
basic varieties of polymicrogyria:  

(1) Layered Postmigrational and related to destructive process; 
(2) Unlayered Neuronal migrational disorder, accompanied by another migration 

disorder. 

In this Chapter, layered polymicrogyria due to postmigrational causes is considered. 
Etiology Ischemic encephaloclastic mechanism 18 , maldevelopment, cytomegalovirus 

infection 19 . 
Pathogenesis Laminar neuronal necrosis in the cortex after the apparent completion of 

migration. 
Associated anomalies Periventricular leukomalacia 18 . 
Prenatal diagnosis Figures 7.15–7.18. 
Prognosis Neurological development is often severely deranged.  
Recurrence risk Unknown. 
Management Standard obstetric and neonatal care. 

FETAL PERIVENTRICULAR LEUKOMALACIA  

Incidence 25–75% of premature infants at autopsy have complications of periventricular
white matter injury. However, clinically; incidence may be much lower. Five to 10% of
infants have a birth weight of less than 1500 g. In term infants, periventricular
leukomalacia (PVL) is very rare. 

Definition Multifocal areas of necrosis are found deep in the cortical white matter, 
which are often symmetrical and occur adjacent to the lateral ventricles. PVL represents a
major precursor for neurological and intellectual impairment, and cerebral palsy in later
life. 

Etiology Birth trauma, asphyxia and respiratory failure, cardiopulmonary defects, 
premature birth/low birth weight, associated immature cerebrovascular development and
lack of appropriate autoregulation of cerebral blood flow in response to hypoxic-ischemic 
insults 20 . 

Pathogenesis Distinctive and consists primarily of both focal periventricular necrosis 
and more diffuse  
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Figure 7.15 Atrophic brain with polymicrogyria at 26–29 weeks of gestation. 
The lower images are normal brain images at the same gestational 
age. Brain atrophy became conspicuous (arrows) from 25 weeks (3 
weeks after an ischemic episode). Left, posterior coronal section at 26 
weeks. Middle, parasagittal section at 27 weeks. Right, anterior 
coronal section at 29 weeks. Note the polymicrogyral formation in 
the parietofrontal area. This condition is referred to as 
postmigrational polymicrogyria 

 

Figure 7.16 Fetal akinetic phase after an ischemic episode (upper) and 
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hypertonic phase 3 weeks later (lower; same fetus as shown in Figure 7.15). A 
fetal ischemic-hypoxic episode associated with maternal shock state 
due to an unknown cause occurred at 22 weeks. No fetal movements 
except heart beats were observed for 5 days after the episode (upper). 
After 5 days of akinetic phase, the fetal extremities became 
hypertonic and contractural (lower). However, the fetus moved 
actively in utero with hypertonic hands and feet 

 

Figure 7.17 External appearance of a stillborn fetus at 31 weeks of gestation 
(same case as shown in Figures 7.15 and 7.16). Left; stillborn fetus. 
Sudden intrauterine fetal demise occurred at 31 weeks of gestation. 
Right, extremities. Hypertonic and contractural appearance of the 
extremities is quite similar to the fetal appearance in utero as shown 
in Figure 7.16  
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Figure 7.18 Polymicrogyria in the same case as shown in Figures 7.15–7.17. 
Polymicrogyria is demonstrated due to an ischemic and hypoxic 
episode at 22 weeks of gestation. Postmigrational polymicrogyria 

cerebral white matter injury. The two most common sites are at the level of the cerebral
white matter near the trigone of the lateral ventricles and around the foramen of Monro.
Volpe 21 describes three factors, strongly related to PVL: 

(1) Periventricular vascular anatomical and physiological factors; 
(2) Cerebral ischemia; 
(3) Intrinsic vulnerability of the cerebral wbite matter of premature newborns. 

Prenatal diagnosis Figures 7.19–7.21. 
Differential diagnosis Subarachnoid (periventricular) pseudocysts, porencephaly and 

other intracranial cystic formations. 
Prognosis A neurological feature of PVL in the neonatal period is probable lower limb

weakness and features such as long-term sequelae, spastic diplegia; intellectual deficits 
and visual deficits are observed 21 . 

Recurrence risk Unknown. 
Management Early rehabilitation.  
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Figure 7.19 Fetal periventricular leukomalacia (PVL). (a) Fetal ultrasound at 
27 weeks. Clear bilateral PVL is observed with mild 
ventriculomegaly and enlargement of the cavum septum pellucidum. 
(b) 29 weeks, PVL was progressive and became widespread 

 

Figure 7.20 Flow waveforms and fetal heart rate tracing at 27 weeks of 
gestation in a case of PVL (same case as shown in Figure 7.19). 
Upper left; umbilical arterial and venous flow—normal circulation. 
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Upper right; fetal heart rate tracing. Normal reactivity is demonstrated. Lower, 
intracranial arterial and venous flow waveforms. Blood flow 
waveforms of the middle cerebral artery (MCA), posterior cerebral 
artery (PCA), superior sagittal sinus (SSS), vein of Galen (Galen) and 
straight sinus (SS) are all normal 

 

Figure 7.21 Periventricular leukomalacia (PVL) (same case as shown in 
Figures 7.18 and 7.19). (a) Neonatal magnetic resonance image. 
Widespread type of PVL is clear. (b) Magnetic resonance image at 
the age of 3 years. The PVL lesion completely changed into a ‘defect 
of the cerebrum’. Early rehabilitation training started from the 
neonatal stage because of prenatal detection of PVL. Severe cerebral 
palsy was seen with spastic quadriplegia. Magnetic resonance images 
at age of 3 years, courtesy of Dr K.Fukuda 

FETAL PERIVENTRICULAR ECHODENSITY  

Incidence Infrequent but not rare in clinically high-risk fetuses. 
Definition Periventricular echodensity (PVE) is a highly echogenic periventricular 

image, of which echogenicity is higher than the choriod plexus in the visual analysis of
the ultrasonic brain image. 

Etiology It is thought to be caused by a hypoxic-ischemic lesion of the fetal brain, 
which may be the same as neonatal PVL, and is estimated to be at the lightest end of its
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spectrum. 
Pathogenesis Simple PVE does not result in fetal death. It can progress into neonatal 

PVL, if it persists until birth; particularly in a preterm infant. 
Prenatal diagnosis Figures 7.22–7.25. 
Prognosis Neonatal PVL followed by cerebral palsy (CP) can occur in fetal PVE which

persists until delivery, especially in preterm birth. The CP ratio is higher in the fetus
whose PVE persists until the birth, than in the fetus who has no PVE, or whose PVE
disappeared before birth, and is higher than the common CP incidence (Table 7.1).  

Management Prevention of preterm delivery particularly in high-risk fetuses who have 
suffered cord complications and preterm labor. Careful ultrasonic study of the brain is
needed in neonates who suffer PVE before birth, particularly when it persists until
delivery. 

BRAIN TUMORS  

Incidence Extremely rare. 
Definition Tumors located in the intracranial cavity. 
Histological types Brain tumors are divided into teratomas, most commonly reported, 

and nonteratomatous tumors. Non-teratomatous tumors include neuroepithelial tumors,
such as medulloblastoma, astrocytoma, choroid plexus papilloma, choroid plexus
carcinoma; ependymoma, ependymoblastoma; mesenchymal tumors such as
craniopharyngioma, sarcoma, fibroma, hemangioblastoma, hemangioma and meningoma; 
and other tumors such as lipoma of the corpus callosum, and subependymal giant-cell 
astrocytoma associated with tuberous sclerosis (often accompanied by cardiac
rhabdomyoma) 24 , 25 .  

Location of tumor Supratentorial predominance in neonatal tumors; infratentorial
predominance in medulloblastoma. Choroid plexus papilloma islocated within the lateral
ventricles. 

Associated abnormalities Macrocrania or local skull swelling, epignathus, secondary 
hydrocephalus, intracranial hemorrhage, intraventricular hemorrhage, polyhydramnios,
heart failure by high cardiac output 26 and hydrops.  
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Figure 7.22 A case of fetal periventricular echogenicity (PVE) with high 
echogenicity that is as bright as the choroid plexus, or more 
echogenic, and its gray-level histogram width (GLHW) value is 
higher than that for a normal brain (see Chapter 3) 23 . The case was a 
large baby of monochorionic twins, whose PVE (white arrow, left 
panel) was recorded in the posterior coronal section 22 with 
transvaginal sonography at 28 weeks of pregnancy. The PVE 
persisted until the birth at 30 weeks. The neonate developed PVL, 
and its typical change was recorded at 25 days (white arrow, right 

Table 7.1 Neonatal periventricular leukomalacia (PVL) and cerebral palsy (CP) are 
frequent in the cases of persistent fetal periventricular echogenicity (PVE) until 
the birth, particularly in preterm cases; whereas no PVL or CP appeared among 
the cases of no PVE or those of disappeared PVE before the birth [2]. The 
pathological nature of the fetal PVE is estimated from the results 

Outcome  No fetal 
PVE  

Disappeared PVE 
before birth  

Persistent PVE 
until birth  

Fetal PVE 
(b+c)  

Total 
(a+b+c)  

Normal 21 (a) 19 (b) 23 (c) 42 (b+c) 63 

Neonatal 
PVL 

0 0 5/23 (21.7%)* 5/42 (11.9%) 5 

CP 0 0 4/23 (17.4%)† 4/42 (9.5%)‡ 4 

Four preterm and one term births are included in five cases of PVL out of 23 persistent PVE 
cases. 
†Four CP are included in the five PVL; PVL (21.7%)* and CP (17.4%)† occur more frequently in 
the 23 persistent cases of PVE than both (0%) do in cases with no PVE and disappeared PVE; 
‡CP ratio (9.5%) is higher in the 42 cases of fetal PVE than the common CP ratio (0.2%) 
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panel). Cerebral palsy was confirmed at 2 years 23 . Image courtesy of Dr 
N.Yamamoto, Dr M.Utsu and Dr T.Murakoshi 

 

Figure 7.23 Fetal periventricular echogenicity (PVE) (arrow) was recorded in 
the posterior coronal section 22 with transvaginal sonography at 29 
weeks of pregnancy. Fetal pulmonary sequestration and 
polyhydramnios were also detected. The PVE persisted until birth at 
32 weeks. Cystic periventricular leukomalacia was found on day 14. 
Cerebral palsy was confirmed at 1 year 23 . Image courtesy of Dr 
N.Yamamoto, Dr M.Utsu and Dr T.Murakoshi 

Diagnosis Intracranial masses with solid, cystic or mixed pattern with or without 
visualization of hypervascularity by ultrasound and fetal MRI. A brain tumor should be
considered in cases with unexplained intracranial hemorrhage. 

Prenatal diagnosis Figures 7.26–7.31. 
Differential diagnosis Arachnoid cyst, vein of Galen aneurysm, porencephaly,

schizencephaly, periventricular leukomalacia and subdural hemorrhage. 
Prognosis Fetal demise; stillbirth may occur. Prognosis in neonates is generally poor;

but depends on timing of diagnosis and the histological type of tumor. Choroid plexus
papilloma has minimal mortality rate and a high likelihood of good neonatal outcome.
The mortality rate for teratomas is over 90% and for medulloblastoma over 80%. Other
tumors have various prognoses. 

Recurrence risk Unknown. 
Management Cesarean section may be considered. Neurosurgical tumor resection 

including subtotal hemispherectomy by craniotomy and chemotherapy are possible
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treatments for neonatal tumors. Radiation therapy is usually not indicated in neonates.  

 

Figure 7.24 The periventricular echogenicity (PVE) (arrow) was recorded in 
median coronal section 22 with transvaginal sonography at 27 weeks 
of pregnancy in a case of premature labor. The PVE persisted until 
the birth under tocolysis with β-mimetics due to the contractions. A 
premature female baby was born at 28 weeks without diminution of 
the PVE which was also found in the neonatal brain. Cystic 
periventricular leukomalacia and spastic paraplegia appeared 
afterwards 23 . Image courtesy of Dr N. Yamamoto, Dr M.Utsu and 
Dr T.Murakoshi 
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Figure 7.25 Fetal periventricular echogenicity (PVE) (arrow) was recorded in 
the posterior coronal section 22 with transvaginal sonography at 29 
weeks of pregnancy in a case of preterm labor and subependymal 
hemorrhage (SEH). The PVE persisted until birth at 37 weeks. 
Bilateral SEH and PVE were confirmed on day 2 and a small cystic 
periventricular leukomalacia on day 11. No neurological abnormality 
was found at 3 years 23 . Image courtesy of Dr N.Yamamoto, Dr 
M.Utsu and Dr T. Murakoshi 
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Figure 7.26 Immature teratoma. Left, high echogenic huge brain mass at 30 
weeks of gestation. Right, autopsy finding of huge tumor. Immature 
teratoma was confirmed histologically. Image and photograph 
courtesy of Dr M.Utsu 
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Figure 7.27 Mature teratoma. Upper, prenatal ultrasound at 28 weeks of 
gestation. A clear high echogenic lesion is demonstrated (arrowhead). 
Lower, postnatal CT axial image. Images courtesy of Dr M.Utsu 
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Figure 7.28 Fetal ultrasound and magnetic resonance imaging of a brain tumor 
with tumoral and interventricular hemorrhage (35 weeks and 5 days 
of gestation). Upper, sagittal, coronal and axial ultrasound images. A 
huge tumor (arrowheads) with a hemorrhage within the tumor in the 
frontoparietal lobe is complicated by unilateral hydrocephalus with 
an intraventricular hemorrhage (arrow). Lower, sagittal, coronal and 
axial magnetic resonance images 

 

Figure 7.29 Tumoral vascular visualization by three-dimensional power 
Doppler (same case as shown in Figure 7.28). Left; oblique sagittal 
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view from fetal left side. Right, oblique coronal view from fetal frontal side. 
The tumor is fed by numerous feeding arteries from the anterior 
cerebral artery. Feeder arteries have a low resistant flow waveform. 
One large vein which drains blood from the tumor is visible. The 
draining vein has flow pulsation 

 

Figure 7.30 Postnatal magnetic resonance image (MRI), angiography and 
drained fluid from ventricle (same case as shown in Figures 7.28 and 
7.29). A female 2950-g baby was delivered by Cesarean section with 
an Apgar score of 8. Upper, magnetic resonance T1-weighted images 
after birth. Note intensity of the enlarged left ventricle which 
indicates intraventricular blood collection. Lower left and middle, 
sagittal and coronal angiography. Arterial phase (left) shows feeding 
arteries from the anterior cerebral artery. Venous phase (middle) 
shows draining vein and tumor stain. Lower right, drainage of 
intraventricular hemorrhagic fluid through a miniature Ommaya 
reservoir. At the 10th postnatal day, a tumor resection by craniotomy 
was successfully performed and the postoperative course has been 
good 
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Figure 7.31 Lipoma of the corpus callosum. The pregnancy had been followed 
by serial ultrasound examination because of mild ventriculomegaly 
since the 23rd week of gestation. Upper; sagittal sections. Lower left, 
axial section. Lower right, coronal section. Note the pericallosal high 
echogenicity. Images courtesy of Dr G.Malinger, www.TheFetus.net, 
with permission 
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