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Preface

It is an everyday fact of life that Nature comes to us with a variety of scales:
from quarks, nuclei and atoms through planets, stars and galaxies up to the overall
Universal large-scale structure. Science progresses because we can understand each
of these on its own terms, and need not understand all scales at once. This is possible
because of a basic fact of Nature: most of the details of small distance physics are
irrelevant for the description of longer-distance phenomena.

Our description of Nature’s laws use quantum field theories, which share this
property that short distances mostly decouple from larger ones. Effective Field
Theories (EFTs) are the tools developed over the years to show why they do. These
tools have immense practical value: knowing which scales are important and why
the rest decouple allows hierarchies of scale to be used to simplify the description of
many systems. This book provides an introduction to these tools, and to emphasize
their great generality illustrates them using applications from many parts of physics:
relativistic and nonrelativistic; few-body and many-body.

The book is broadly appropriate for an introductory graduate course, though some
topics could be done in an upper-level course for advanced undergraduates. It should
appeal to physicists interested in learning these techniques for practical purposes as
well as those who enjoy the beauty of the unified picture of physics that emerges.

It is to emphasize this unity that a broad selection of applications is examined,
although this also means no one topic is explored in as much depth as it deserves. The
book’s goal is to engage the reader’s interest, but then to redirect to the appropriate
literature for more details. To this end references in the main text are provided mostly
just for the earliest papers (that I could find) on a given topic, with a broader –
probably more useful – list of textbooks, reviews and other sources provided in
the bibliography. There will be inevitable gems about which I am unaware or have
forgotten to mention, and I apologize in advance to both their authors and to you the
reader for their omission.

An introductory understanding of quantum and classical field theory is assumed,
for which an appendix provides a basic summary of the main features. To reconcile
the needs of readers with differing backgrounds – from complete newbies through to
experts seeking applications outside their own areas – sections are included requiring
differing amounts of sophistication. The background material in the appendices
is also meant to help smooth out the transitions between these different levels of
difficulty.

The various gradations of sophistication are flagged using the suits of playing
cards: ♦, ♥, ♠ and ♣ in the titles of the chapter sections. The flag ♦ indicates good
value and labels sections that carry key ideas that should not be missed by any student
of effective theories. ♥ flags sections containing material common to most quantum
field theory classes, whose familiarity may warm a reader’s heart but can be skippedxix
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by aficianados in a hurry. The symbol ♠ indicates a section which may require a bit
more digging for new students to digest, but which is reasonably self-contained and
worth a bit of spadework. Finally, readers wishing to beat their heads against sections
containing more challenging topics should seek out those marked with ♣.

The lion’s share of the book is aimed at applications, since this most effectively
brings out both the utility and the unity of the approach. The examples also provide
a pedagogical framework for introducing some specific techniques. Since many
of these applications are independent of one another, a course can be built by
starting with Part I’s introductory material and picking and choosing amongst the
later sections that are of most interest.
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About Part I

This first part of the book sets up the basic framework of effective field theories
(EFTs), developing along the way the main tools and formalism that is used
throughout the remainder of the text. An effort is made to discuss topics that are
sometimes left out in reviews of EFT methods, such as how to work with time-
dependent backgrounds or in the presence of boundaries. This part of the book
is meant to be relatively self-contained, and so can be studied on its own given
limited time.

Discussions of formalism can easily descend into obscurity if not done with
concrete questions in mind. To keep things focussed, the first chapter here introduces
a toy model in which most of the conceptual issues arise in a simple way. As
each subsequent chapter in Part I introduces a new concept, its formal treatment is
accompanied by a short illustrative discussion about how that particular issue arises
within the toy model. Hopefully, by the end of Part I the reader will be familiar with
the main EFT tools, and will know the toy model inside and out.

The book’s remaining major parts then work through practical examples of EFT
reasoning throughout physics. Because the formalism is largely handled in Part I, the
focus of the rest of the book is both on illustrating some of the techniques introduced
in Part I, and on physical insights that emerge when these tools are used to study
specific problems.

The later parts are grouped into three categories that share similar features:

• Part II studies relativistic applications, studying first examples where both the low-
and high-energy parts of the theory are well-understood and then switching to
problems for which the high-energy sector is either unknown or is known but
difficult to use precisely (such as if it involves strong interactions).

• Part III switches to nonrelativistic applications, such as to slowly moving systems
of a small number of particles, like atoms, or systems involving lots of particles
for which only gross features like the centre-of-mass motion are of interest, like
for planetary orbits in the solar system.

• Part IV then examines many-body and open systems, for which many particles are
involved and more degrees of freedom appear in the coarse-grained theory. Part IV
starts with calculations for which dissipative effects are chosen to be negligible, but
closes with a discussion of open systems for which dissipation and decoherence
can be important.





1 Decoupling and Hierarchies of Scale

The world around us contains a cornucopia of length scales, ranging (at the time of
writing) down to quarks and leptons at the smallest and up to the universe as a whole
at the largest, with qualitatively new kinds of structures – nuclei, atoms, molecules,
cells, organisms, mountains, asteroids, planets, stars, galaxies, voids, and so on –
seemingly arising at every few decades of scales in between. So it is remarkable
that all of this diversity seems to be described in all of its complexity by a few
simple laws.

How can this be possible? Even given that the simple laws exist, why should it be
possible to winkle out an understanding of what goes on at one scale without having
to understand everything all at once? The answer seems to be a very deep property
of nature called decoupling, which states that most (but not all) of the details of
very small-distance phenomena tend to be largely irrelevant for the description of
much larger systems. For example, not much needs to be known about the detailed
properties of nuclei (apart from their mass and electrical charge, and perhaps a few of
their multipole moments) in order to understand in detail the properties of electronic
energy levels in atoms.

Decoupling is a very good thing, since it means that the onion of knowledge can
be peeled one layer at a time: our initial ignorance of nuclei need not impede the
unravelling of atomic physics, just as ignorance about atoms does not stop working
out the laws describing the motion of larger things, like the behaviour of fluids or
motion of the moon.

It so happens that this property of decoupling is also shared by the mathematics
used to describe the laws of nature [1]. Since nowadays this description involves
quantum field theories, it is gratifying that these theories as a group tend to predict
that short distances generically decouple from long distances, in much the same way
as happens in nature.

This book describes the way this happens in detail, with two main purposes in
mind. One purpose is to display decoupling for its own sake since this is satisfying
in its own right, and leads to deep insights into what precisely is being accomplished
when writing down physical laws. But the second purpose is very practical; the
simplicity offered by a timely exploitation of decoupling can often be the difference
between being able to solve a problem or not. When exploring the consequences
of a particular theory for short distance physics it is obviously useful to be able to
identify efficiently those observables that are most sensitive to the theory’s details
and those from which they decouple. As a consequence the mathematical tools –
effective field theories – for exploiting decoupling have become ubiquitous in some
areas of theoretical physics, and are likely to become more common in many more.

The purpose of the rest of Chapter 1 is twofold. One goal is to sketch the broad
outlines of decoupling, effective lagrangians and the physical reason why they work,5
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all in one place. The second aim is to provide a toy model that can be used as a
concrete example as the formalism built on decoupling is fleshed out in more detail
in subsequent chapters.

1.1 An Illustrative Toy Model ♦

The first step is to set up a simple concrete model to illustrate the main ideas. To
be of interest this model must possess two kinds of particles, one of which is much
heavier than the other, and these particles must interact in a simple yet nontrivial way.
Our focus is on the interactions of the two particles, with a view towards showing
precisely how the heavy particle decouples from the interactions of the light particle
at low energies.

To this end consider a complex scalar field, φ, with action1

S := −
∫

d4x
[
∂μφ

∗∂μφ + V (φ∗φ)
]
, (1.1)

whose self-interactions are described by a simple quartic potential,

V (φ∗φ) =
λ
4

(
φ∗φ − v2

)2
, (1.2)

where λ and v2 are positive real constants. The shape of this potential is shown in
Fig. 1.1.

1.1.1 Semiclassical Spectrum

The simplest regime in which to explore the model’s predictions is when λ � 1 and
both v and |φ | are O

(
λ−1/2

)
. This regime is simple because it is one for which the

semiclassical approximation provides an accurate description. (The relevance of
the semiclassical limit in this regime can be seen by writing φ := ϕ/λ1/2 and
v := μ/λ1/2 with ϕ and μ held fixed as λ → 0. In this case the action depends
on λ only through an overall factor: S[φ, v, λ] = (1/λ)S[ϕ, μ]. This is significant
because the action appears in observables only in the combination S/�, and so the
small-λ limit is equivalent to the small-� (classical) limit.)2

In the classical limit the ground state of this system is the field configuration that
minimizes the classical energy,

E =
∫

d3x
[
∂tφ

∗∂tφ + ∇φ∗ · ∇φ + V (φ∗φ)
]
. (1.3)

Since this is the sum of positive terms it is minimized by setting each to zero; the
classical ground state is any constant configuration (so ∂tφ = ∇φ = 0), with |φ | = v

(so V = 0).

1 Although this book presupposes some familiarity with quantum field theory, see Appendix C for a
compressed summary of some of the relevant ideas and notation used throughout. Unless specifically
stated otherwise, units are adopted for which � = c = 1, so that time ∼ length and energy ∼ mass ∼
1/length, as described in more detail in Appendix A.

2 The connection between small coupling and the semi-classical limit is explored more fully once power-
counting techniques are discussed in §3.
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Fig. 1.1 The potential V(φR,φI), showing its sombrero shape and the circular line of minima at |φ | = v.

In the semi-classical regime, particle states are obtained by expanding the action
about the classical vacuum, φ = v + φ̃,

S = −
∫

d4x

{
∂μφ̃

∗∂μφ̃ +
λ

4
[
v(φ̃ + φ̃∗) + φ̃∗φ̃

]2}
, (1.4)

and keeping the leading (quadratic) order in the quantum fluctuation φ̃. In terms
of the field’s real and imaginary parts, φ̃ = 1√

2
(φ̃R + iφ̃I), the leading term in the

expansion of S is

S0 = −
1
2

∫
d4x
[
∂μφ̃R ∂

μφ̃R + ∂μφ̃I ∂
μφ̃I + λv

2 φ̃2
R

]
. (1.5)

The standard form (see §C.3.1) for the action of a free, real scalar field of mass
m is proportional to ∂μψ ∂μψ + m2ψ2, and so comparing with Eq. (1.5) shows φ̃R

represents a particle with mass m2
R = λv

2 while φ̃I represents a particle with mass
m2

I = 0. These are the heavy and light particles whose masses provide a hierarchy of
scales.

1.1.2 Scattering

For small λ the interactions amongst these particles are well-described in perturba-
tion theory, by writing S = S0 + Sint and perturbing in the interactions

Sint = −
∫

d4x

[
λv

2
√

2
φ̃R

(
φ̃2

R + φ̃
2
I

)
+
λ
16

(
φ̃2

R + φ̃
2
I

)2
]

. (1.6)

Using this interaction, a straightforward calculation – for a summary of the steps
involved see Appendix B – gives any desired scattering amplitude order-by-order in
λ. Since small λ describes a semiclassical limit (because it appears systematically
together with � in S/�, as argued above), the leading contribution turns out to come
from evaluating Feynman graphs with no loops3 (i.e. tree graphs).

3 A connected graph with no loops (or a ‘tree’ graph) is one which can be broken into two disconnected
parts by cutting any internal line. Precisely how to count the number of loops and why this is related to
powers of the small coupling λ is the topic of §3.
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Fig. 1.2 The tree graphs that dominate φ̃R φ̃I scattering. Solid (dotted) lines represent φ̃R (φ̃I), and ‘crossed’
graphs are those with external lines interchanged relative to those displayed.

Consider the reaction φ̃R(p) + φ̃I(q) → φ̃R(p′) + φ̃I(q′), where pμ = {p0, p} and
qμ = {q0, q} respectively denote the 4-momenta of the initial φ̃R and φ̃I particle,
while p′μ and q′μ are 4-momenta of the final φ̃R and φ̃I states. The Feynman graphs
of Fig. 1.2 give a scattering amplitude proportional to4 ARI→RIδ4(p + q − p′ − q′),
where the Dirac delta function, δ4(p + q − p′ − q′), expresses energy–momentum
conservation, and

ARI→RI = 4i

(
−λ

8

)
+

(
i2

2

) (
− λv

2
√

2

)2 [ 24(−i)

(p − p′)2 + m2
R

+
8(−i)

(p + q)2 +
8(−i)

(p − q′)2

]
= − iλ

2
+

i(λv)2

2m2
R

[
3

1 − 2q · q′/m2
R

− 1
1 − 2p · q/m2

R

− 1
1 + 2p · q′/m2

R

]
.

(1.7)

Here the factors like 4, 24 and 8 in front of various terms count the combinatorics of
how many ways each particular graph can contribute to the amplitude. The second
line uses energy–momentum conservation, (p − p′)μ = (q′ − q)μ, as well as the
kinematic conditions p2 = −(p0)2 + p2 = −m2

R and (q′)2 = q2 = −(q0)2 + q2 = 0,
as appropriate for relativistic particles whose energy and momenta are related by
E = p0 =

√
p2 + m2.

Notice that the terms involving the square bracket arise at the same order in λ
as the first term, despite nominally involving two powers of Sint rather than one
(provided that the square bracket itself is order unity). To see this, keep in mind
m2

R = λv
2 so that (λv/mR)2 = λ.

For future purposes it is useful also to have the corresponding result for the
reaction φ̃I(p) + φ̃I(q) → φ̃I(p′) + φ̃I(q′). A similar calculation, using instead the
Feynman graphs of Fig. 1.3, gives the scattering amplitude

AII→ II = 24i

(
− λ

16

)
+ 8

(
i2

2

) (
− λv

2
√

2

)2

×
[

−i

(p + q)2 + m2
R

+
−i

(p − p′)2 + m2
R

+
−i

(p − q′)2 + m2
R

]
= − 3iλ

2
+

i(λv)2

2m2
R

[
1

1 + 2p · q/m2
R

+
1

1 − 2q · q′/m2
R

+
1

1 − 2p · q′/m2
R

]
.

(1.8)

4 See Exercise 1.1 and Appendix B for the proportionality factors.
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Fig. 1.3 The tree graphs that dominate the φ̃I φ̃I scattering amplitude. Solid (dotted) lines represent φ̃R and φ̃I

particles.

1.1.3 The Low-Energy Limit

For the present purposes it is the low-energy regime that is of most interest: when
the centre-of-mass kinetic energy and momentum transfers during scattering are very
small compared with the mass of the heavy particle. This limit is obtained from the
above expressions by taking |p·q |, |p·q′ | and |q ·q′ | all to be small compared with m2

R .
Taylor expanding the above expressions shows that both ARI→RI and AII→ II are

suppressed in this limit by powers of (q or q′)/mR, in addition to the generic small
perturbative factor λ:

ARI→RI � 2iλ

(
q · q′

m2
R

)
+ O

(
m−4

R

)
, (1.9)

while

AII→ II � 2iλ

[
(p · q)2 + (p · q′)2 + (q · q′)2

m4
R

]
+ O

(
m−6

R

)
. (1.10)

Both of these expressions use 4-momentum conservation, and kinematic conditions
like q2 = 0 etc. to simplify the result, and both expressions end up being suppressed
by powers of q/mR and/or q′/mR once this is done.

The basic simplicity of physics at low energies arises because physical quantities
typically simplify when Taylor expanded in powers of any small energy ratios (like
scattering energy/mR in the example above). It is this simplicity that ultimately under-
lies the phenomenon of decoupling: in the toy model the low-energy implications of
the very energetic φ̃R states ultimately can be organized into a sequence in powers of
m−2

R , with only the first few terms relevant at very low energies.

1.2 The Simplicity of the Low-Energy Limit ♦

Now imagine that your task is to build an experiment to test the above theory by
measuring the cross section for scattering φ̃I particles from various targets, using
only accelerators whose energies, E, do not reach anywhere near as high as the mass
mR. Since the experiment is more difficult if the scattering is rare, the suppression of
the order-λ cross sections by powers of q/mR and/or q′/mR at low energies presents
a potential problem. But maybe this suppression is an accident of the leading, O(λ),
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prediction? If the O(λ2) result is not similarly suppressed, then it might happen that
A � λ2 is measurable even if A � λ(E/mR)2 is not.

It turns out that the suppression of φ̃I scattering at low energies persists order-by-
order in the λ expansion, so any hope of evading it by working to higher orders would
be in vain. But the hard way to see this is to directly compute the O(λn) amplitude as
a complete function of energy, and then take the low-energy limit. It would be much
more efficient if it were possible to zero in directly on the low-energy part of the result
before investing great effort into calculating the complete answer. Any simplicity that
might emerge in the low-energy limit then would be much easier to see.

Indeed, a formalism exists precisely for efficiently identifying the nature of
physical quantities in the low-energy limit – effective field theories – and it is this
formalism that is the topic of this book. This formalism exists and is so useful
because one is often in the situation of being faced with a comparatively simple
low-energy limit of some, often poorly understood, more complicated system.

The main idea behind this formalism is to take advantage of the low-energy
approximation as early as possible in a calculation, and the best way to do so is
directly, once and for all, in the action (or Hamiltonian or Lagrangian), rather than
doing it separately for each independent observable. But how can the low-energy
expansion be performed directly in the action?

1.2.1 Low-Energy Effective Actions

To make this concrete for the toy model discussed above, a starting point is the
recognition that the low-energy limit, Eq. (1.10), of AII→ II has precisely the form
that would be expected (at leading order of perturbation theory) if the φ̃I particles
scattered only through an effective interaction of the form Seff = Seff 0 + Seff int, with

Seff 0 = −
1
2

∫
d4x ∂μφ̃I ∂

μφ̃I, (1.11)

and

Seff int =
λ

4m4
R

∫
d4x (∂μφ̃I ∂

μφ̃I)(∂ν φ̃I ∂
ν φ̃I), (1.12)

up to terms of order λ2 and/or m−6
R .

What is less obvious at this point, but nonetheless true (and argued in detail
in the chapters that follow), is that this same effective interaction, Eqs. (1.11)
and (1.12), also correctly captures the leading low-energy limit of other scattering
processes, such as for φ̃Iφ̃I → φ̃Iφ̃Iφ̃Iφ̃I and reactions involving still more φ̃I

particles. That is, all amplitudes obtained from the full action, Eqs. (1.5) and (1.6),
precisely agree with those obtained from the effective action, Eqs. (1.11) and (1.12),
provided that the predictions of both theories are expanded only to leading order in λ
and m−2

R [2].
Given that a low-energy action like Seff exists, it is clear that it is much easier to

study the system’s low-energy limit by first computing Seff and then using Seff to work
out any observable of interest, than it is to calculate all observables using S0 + Sint of
Eqs. (1.5) and (1.6), and only then expanding them to find their low-energy form.

As an example of this relative simplicity, because each factor of φ̃I appears
differentiated in Eq. (1.12), it is obvious that the amplitudes for more complicated
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scattering processes computed with it are also suppressed by high powers of the low-
energy scattering scale. For instance, the amplitude for φ̃Iφ̃I → N φ̃I (into N final
particles) computed using tree graphs built using just the quartic interaction Seff int

would be expected to give an amplitude proportional to at least

AII→ I· · ·I ∝ λN/2
(

scattering energy
mR

)N+2

(1.13)

in the low-energy limit. Needless to say, this type of low-energy suppression is much
harder to see when using the full action, Eqs. (1.5) and (1.6).

It may seem remarkable that an interaction like Seff exists that completely captures
the leading low-energy limit of the full theory in this way. But what is even more
remarkable is that a similar effective action also exists that reproduces the predictions
of the full theory to any fixed higher order in λ and m−2

R . This more general effective
action replaces Eq. (1.12) by

Seff int =

∫
d4x Leff int, (1.14)

where

Leff int = a (∂μφ̃I∂
μφ̃I)(∂ν φ̃I∂

ν φ̃I)

+ b (∂μφ̃I∂
μφ̃I)(∂ν φ̃I∂

ν φ̃I)(∂ρφ̃I∂
ρφ̃I) + · · · , (1.15)

where the ellipses represent terms involving additional powers of ∂μφ̂I and/or its
derivatives, though only a finite number of such terms is required in order to
reproduce the full theory to a fixed order in λ and m−2

R .
In principle, the coefficients a and b in Eq. (1.15) are given as a series in λ once

the appropriate power of mR is extracted on dimensional grounds,

a =
1

m4
R

[
λ
4
+ a2λ

2 + O(λ3)

]
and b =

1
m8

R

[
b1λ + b2λ

2 + b3λ
3 + O(λ4)

]
,

(1.16)

which displays explicitly the order-λ value for a found above that reproduces low-
energy scattering in the full theory. Explicit calculations in later sections also show
b1 = 0. More generally, to the extent that the leading (classical, or tree-level) part of
the action should be proportional to 1/λ once mR is eliminated for v using m2

R = λv
2

(as is argued above, and in more detail in Eq. (2.24) and §3), it must also be true that
b2 vanishes.

1.2.2 Why It Works

Why is it possible to find an effective action capturing the low-energy limit of a
theory, along the lines described above? The basic idea goes as follows.

It is not in itself surprising that there is some sort of Hamiltonian describing the
time evolution of low-energy states. After all, in the full theory time evolution is
given by a unitary operation

|ψ f (t)〉 = U (t, t ′) |ψi (t
′)〉, (1.17)
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where U (t, t ′) = exp[−iH (t − t ′)] with a Hamiltonian5 H = H (φ̂R, φ̂I) depending on
both the heavy and light fields. But if the initial state has an energy Ei < mR it cannot
contain any φ̂R particles, and energy conservation then precludes φ̂R particles from
ever being produced by subsequent time evolution.

This means that time evolution remains a linear and unitary transformation even
when it is restricted to low-energy states. That is, suppose we define

Ueff(t, t ′) := PΛU (t, t ′) PΛ := exp [−iHeff(t − t ′)] , (1.18)

with P2
Λ
= PΛ being the projection operator onto states with low energy E < Λ �

mR. PΛ commutes with H and so also with time evolution. Because Heff = PΛHPΛ
if H is hermitian then so must be Heff and so if U (t, t ′) is unitary then so must be
Ueff(t, t ′) when acting on low-energy states.

Furthermore, because the action of Heff is well-defined for states having energy
E < Λ, it can be written as a linear combination of products of creation and
annihilation operators for the φ̂I field only (since these form a basis for operators that
transform among only low-energy states).6 As a consequence, it must be possible to
write Heff = Heff[φ̂I], without making any reference to the heavy field φ̂R at all.

But there is no guarantee that the expression for Heff[φ̂I] obtained in this way is
anywhere as simple as is H[φ̂R, φ̂I]. So the real puzzle is why the effective interaction
found above is so simple. In particular, why is it local,

Heff[φ̂I] =
∫

d3x Heff(x), (1.19)

with Heff(x) a simple polynomial in φ̂I(x) and its derivatives, all evaluated at the
same spacetime point?

Ultimately, the simplicity of this local form can be traced to the uncertainty
principle. Interactions, like Eq. (1.12), in Heff not already present in H describe
the influence on low-energy φ̂I particles of virtual processes involving heavy φ̂R

particles. These virtual processes are not ruled out by energy conservation even
though the production of real φ̂R particles is forbidden. One way to understand
why they are possible is because the uncertainty principle effectively allows energy
conservation to be violated,7 E f = Ei + ΔE, but only over time intervals that are
sufficiently short, Δt <∼ �/ΔE. The effects of virtual φ̂R particles are necessarily
localized in time over intervals that are of order 1/mR, which are unobservably short
for observers restricted to energies E � mR. Consequently, they are described at
these energies by operators all evaluated at effectively the same time.

In relativistic theories, large momenta necessarily involve large energies and since
the uncertainty principle relates large momenta to short spatial distances, a similar
argument can be made that the effect of large virtual momentum transfers on the

5 The convention here is to use φ̃ to denote the fluctuation when this is a non-operator field (appearing

within a path integral, say) and instead use φ̂ for the quantum operator fluctuation field.
6 See the discussion around Eq. (C.9) of Appendix C for details.
7 More precisely, energy need not be conserved at each vertex when organized in old-fashioned

Rayleigh–Schrödinger perturbation theory from undergraduate quantum mechanics classes. Once
reorganized into manifestly relativistic Feynman–Schwinger–Dyson perturbation theory energy

actually is preserved at each vertex, but internal particles are not on-shell: E �
√

p2 +m2. Either way
the locality consequences are the same.
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low-energy theory can also be captured by effective interactions localized at a single
spatial point. Together with the localization in time just described, this shows that the
effects of very massive particles are local in both space and time, as found in the toy
model above.

Locality arises explicitly in relativistic calculations when expanding the propaga-
tors of massive particles in inverse powers of mR, after which they become local in
spacetime since

G(x, y) := 〈0|T φ̂R(x)φ̂R(y) |0〉 = −i
∫

d4p

(2π)4
eip(x−y)

p2 + m2
R

(1.20)

� − i

m2
R

∞∑
k=0

∫
d4p

(2π)4

(
− p2

m2
R

)k
eip(x−y) = − i

m2
R

∞∑
k=0

(
m2

R

)k
δ4(x − y),

where the ‘T’ denotes time ordering, p(x − y) := p · (x − y) = pμ (x − y)μ and
= ∂μ∂

μ = −∂2
t + ∇2 is the covariant d’Alembertian operator.

The upshot is this: to any fixed order in 1/mR the full theory usually can be
described by a local effective lagrangian.8 The next sections develop tools for its
efficient calculation and use.

1.2.3 Symmetries: Linear vs Nonlinear Realization

Before turning to the nitty gritty of how the effective action is calculated and used, it
is worth first pausing to extract one more useful lesson from the toy model considered
above. The lesson is about symmetries and their low-energy realization, and starts by
asking why it is that the self-interactions among the light φ̂I particles – such as the
amplitudes of Eqs. (1.9) and (1.10) – are so strongly suppressed at low energies by
powers of 1/m2

R .
That is, although it is natural to expect some generic suppression of low-energy

interactions by powers of 1/m2
R , as argued above, why does nothing at all arise at

zeroeth order in 1/mR despite the appearance of terms like λφ̂4
I in the full toy-model

potential? And why are there so very many powers of 1/mR in the case of 2φ̂I → N φ̂I

scattering in the toy model? (Specifically, why is the amplitude for two φ̂I particles
scattering to N φ̂I particles suppressed by (1/mR)N+2?)

This suppression has a very general origin, and can be traced to a symmetry of
the underlying theory [3–5]. The symmetry in question is invariance under the U (1)
phase rotation, φ → eiωφ, of Eqs. (1.1) and (1.2). In terms of the real and imaginary
parts this acts as (

φR

φI

)
→

(
cosω − sinω
sinω cosω

) (
φR

φI

)
. (1.21)

A symmetry such as this that acts linearly on the fields is said to be linearly
realized. As summarized in Appendix C.4, if the symmetry is also linearly realized
on particle states then these states come in multiplets of the symmetry, all elements
of which share the same couplings and masses. However (as is also argued in

8 For nonrelativistic systems locality sometimes breaks down in space (e.g. when large momenta coexist
with low energy). It can also happen that the very existence of a Hamiltonian (without expanding the
number of degrees of freedom) breaks down for open systems – the topic of §16.
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Appendix C.4) linear transformations of the fields – such as (1.21) – are insufficient
to infer that the symmetry also acts linearly for particle states, |p〉 = a∗p |0〉, unless
the ground-state, |0〉, is also invariant. If a symmetry of the action does not leave the
ground state invariant it is said to be spontaneously broken.

For instance, in the toy model the ground state satisfies 〈0|φ(x) |0〉 = v, and so
the ground state is only invariant under φ → eiωφ when v = 0. Indeed, for the toy
model if v = 0 both particle masses are indeed equal: mR = mI = 0, as are all of
their self-couplings. By contrast, when v � 0 the masses of the two types of particles
differ, as does the strength of their cubic self-couplings. Although φ → eiωφ always
transforms linearly, the symmetry acts inhomogeneously on the deviation φ̂ = φ −
v = 1√

2
(φ̂R + iφ̂I) that creates and destroys the particle states. It is because the

deviation does not transform linearly (and homogeneously) that the arguments in
Appendix C.4 no longer imply that particle states need have the same couplings and
masses when v � 0.

To see why this symmetry should suppress low-energy φ̂I interactions, consider
how it acts within the low-energy theory. Even though φ transforms linearly in the
full theory, because the low-energy theory involves only the single real field φ̂I, the
symmetry cannot act on it in a linear and homogeneous way. To see what the action
of the symmetry becomes purely within the low-energy theory, it is useful to change
variables to a more convenient set of fields than φ̂R and φ̂I.

To this end, define the two real fields χ and ξ by9

φ =

(
v +

χ
√

2

)
eiξ/

√
2 v . (1.22)

These have the advantage that the action of the U (1) symmetry, φ → eiωφ takes a
particularly simple form,

ξ → ξ +
√

2 v ω, (1.23)

with χ unchanged, so ξ carries the complete burden of symmetry transformation.
In terms of these fields the action, Eq. (1.1), becomes

S = −
∫

d4x
⎡⎢⎢⎢⎢⎣12 ∂μχ∂μχ + 1

2

(
1 +

χ
√

2 v

)2

∂μξ∂
μξ + V (χ)

⎤⎥⎥⎥⎥⎦ , (1.24)

with

V (χ) =
λ
4

(√
2 v χ +

χ2

2

)2

. (1.25)

Expanding this action in powers of χ and ξ gives the perturbative action S = S0+Sint,
with unperturbed contribution

S0 = −
1
2

∫
d4x
[
∂μχ∂

μχ + ∂μξ∂
μξ + λv2 χ2

]
. (1.26)

This shows that χ is an alternative field representation for the heavy particle, with
m2
χ = m2

R = λv
2. ξ similarly represents the massless field.

It also shows the symmetry is purely realized on the massless state, as an
inhomogeneous shift (1.23) rather than a linear, homogeneous transformation.

9 Numerical factors are chosen here to ensure fields are canonically normalized.
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Such a transformation – often called a nonlinear realization of the symmetry
(both to distinguish it from the linear realization discussed above, and because the
transformations turn out in general to be nonlinear when applied to non-abelian
symmetries) – is a characteristic symmetry realization in the low-energy limit of
a system which spontaneously breaks a symmetry.

The interactions in this representation are given by

Sint = −
∫

d4x

[(
χ
√

2 v
+
χ2

4 v2

)
∂μξ∂

μξ +
λv

2
√

2
χ3 +

λ
16
χ4
]

. (1.27)

For the present purposes, what is important about these expressions is that ξ always
appears differentiated. This is a direct consequence of the symmetry transformation,
Eq. (1.23), which requires invariance under constant shifts: ξ → ξ + constant. Since
this symmetry forbids a ξ mass term, which would be ∝ m2

I ξ
2, it ensures ξ remains

exactly massless to all orders in the small expansion parameters. ξ is what is called a
Goldstone boson for the spontaneously broken U (1) symmetry: it is the massless
scalar that is guaranteed to exist for spontaneously broken (global) symmetries.
Because ξ appears always differentiated it is immediately obvious that an amplitude
describing Ni ξ particles scattering into Nf ξ particles must be proportional to at
least Ni + Nf powers of their energy, explaining the low-energy suppression of light-
particle scattering amplitudes in this toy model.

For instance, explicitly re-evaluating the Feynman graphs of Fig. 1.3, using the
interactions of Eq. (1.27) instead of (1.6), gives the case Ni = Nf = 2 as

Aξξ→ ξξ

= 0 + 8
(

i2

2

) (
− 1
√

2 v

)2 [−i(p · q)(p′ · q′)

(p + q)2 + m2
R

+
−i(p · p′)(q · q′)

(p − p′)2 + m2
R

+
−i(p · q′)(q · p′)

(p − q′)2 + m2
R

]
=

2iλ

m4
R

[
(p · q)2

1 + 2p · q/m2
R

+
(q · q′)2

1 − 2q · q′/m2
R

+
(p · q′)2

1 − 2p · q′/m2
R

]
,

(1.28)

in precise agreement with Eq. (1.8) – as may be seen explicitly using the identity
(1 + x)−1 = 1 − x + x2/(1 + x) – but with the leading low-energy limit much more
explicit.

This representation of the toy model teaches several things. First, it shows that
scattering amplitudes (and, more generally, arbitrary physical observables) do not
depend on which choice of field variables are used to describe a calculation [8–10].
Some kinds of calculations (like loops and renormalization) are more convenient
using the variables φ̂R and φ̂I, while others (like extracting consequences of
symmetries) are easier using χ and ξ.

Second, this example shows that it is worthwhile to use the freedom to perform
field redefinitions to choose those fields that make life as simple as possible. In
particular, it is often very useful to make symmetries of the high-energy theory as
explicit as possible in the low-energy theory as well.

Third, this example shows that once restricted to the low-energy theory it need
not be true that a symmetry remains linearly realized by the fields [11–13], even
if this were true for the full underlying theory including the heavy particles. The
necessity of realizing symmetries nonlinearly arises once the scales defining the
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low-energy theory (e.g. E � mR) are smaller than the mass difference (e.g. mR)
between particles that are related by the symmetry in the full theory, since in this
case some of the states required to fill out a linear multiplet are removed as part of
the high-energy theory.

1.3 Summary

This first chapter defines a toy model, in which a complex scalar field, φ, self-interacts via a potential
V = λ

4 (φ∗φ − v2)2 that preserves a U (1) symmetry:φ → eiωφ. Predictions for particle masses and
scattering amplitudes are made as a function of the model’s two parameters,λ and v, in the semiclassical
regimeλ � 1. This model is used throughout the remaining chapters of Part I as a vehicle for illustrating
how the formalism of effective field theories works in a concrete particular case.

The semiclassical spectrum of the model has two phases. If v = 0 the U (1) symmetry is preserved
by the semiclassical ground state and there are two particles whose couplings and masses are the same
because of the symmetry. When v � 0 the symmetry is spontaneously broken, and one particle is massless
while the other gets a nonzero mass m =

√
λ v.

The model’s symmetry-breaking phase has a low-energy regime, E � m, that provides a useful
illustration of low-energy methods. In particular, the massive particle decouples at low energies in
the precise sense that its virtual effects only play a limited role for the low-energy interactions of the
massless particles. In particular, explicit calculation shows the scattering of massless particles at low
energies in the full theory to be well-described to leading order in λ and E/m in terms of a simple
local ‘effective’ interaction with lagrangian density Leff = aeff(∂μξ ∂μξ)2, with effective coupling:
aeff = λ/(4m 4). The U (1) symmetry of the full theory appears in the low-energy theory as a shift
symmetry ξ → ξ + constant.

Exercises

Exercise 1.1 Use the Feynman rules coming from the action S = S0 + Sint given in
Eqs. (1.5) and (1.6) to evaluate the graphs of Fig. 1.2. Show from your result
that the corresponding S-matrix element is given by

〈φ̂R(p′), φ̂I(q
′) |S | φ̂R(p), φ̂I(q)〉 = −i(2π)4ARI→RI δ

4(p + q − p′ − q′),

with ARI→RI given by Eq. (1.7). Taylor expand your result for small q, q′ to
verify the low-energy limit given in Eq. (1.9). [Besides showing the low-energy
decoupling of Goldstone particles, getting right the cancellation that provides
this suppression in these variables is a good test of – and a way to develop faith
in – your understanding of Feynman rules.]

Exercise 1.2 Using the Feynman rules coming from the action S = S0 + Sint given in
Eqs. (1.5) and (1.6) evaluate the graphs of Fig. 1.3 to show

〈φ̂I(p′), φ̂I(q
′) |S | φ̂I(p), φ̂I(q)〉 = −i(2π)4AII→II δ

4(p + q − p′ − q′),
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with AII→II given by Eq. (1.8). Taylor expand your result for small q, q′ to
verify the low-energy limit given in Eq. (1.10).

Exercise 1.3 Using the toy model’s leading effective interaction S = Seff 0 + Seff int,
with Feynman rules drawn from (1.11) (1.12), draw the graphs that produce
the dominant contributions – i.e. carry the fewest factors of λ and (external
energy)/mR – to the scattering process φ̂I + φ̂I → 4φ̂I. Show that these agree
with the estimate (1.13) in their prediction for the leading power of λ and of
external energy.

Exercise 1.4 Using the Feynman rules coming from the action S = S0 + Sint given in
Eqs. (1.26) and (1.27) evaluate the graphs of Fig. 1.3 to show

〈ξ(p′), ξ(q′) |S | ξ(p), ξ(q)〉 = −i(2π)4Aξξ→ξξ δ
4(p + q − p′ − q′),

with Aξξ→ξξ given by Eq. (1.28). [Comparing this result to the result in
Exercise 1.2 provides an illustration of Borcher’s theorem [8–10], which states
that scattering amplitudes remain unchanged by a broad class of local field
redefinitions.]
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Having seen in the previous chapter how the low-energy limit works in a specific
example, this chapter gets down to the business of defining the low-energy effective
theory more explicitly. The next chapter is then devoted to calculational issues of
how to use and compute with an effective theory. The first two sections start with a
brief review of the formalism of generating functionals, introducing in particular the
generator of one-particle irreducible correlation functions. These can be skipped by
field theory aficionados interested in cutting immediately to the low-energy chase.

2.1 Generating Functionals – A Review ♥

The starting point is a formalism convenient for describing the properties of generic
observables in a general quantum field theory. Consider a field theory involving
N quantum fields φ̂a (x), a = 1, . . . , N , governed by a classical action S[φ ], and
imagine computing the theory’s ‘in-out’ correlation functions,1

Ga1 · · ·an (x1, · · · , xn) := o〈Ω|T[φ̂a1 (x1) · · · φ̂an (xn)]|Ω〉i , (2.1)

where |Ω〉i (or |Ω〉o) denotes the system’s ground state in the remote past (or future)
and T denotes time ordering.2 These correlation functions are useful to consider
because general observables including (but not limited to) scattering amplitudes can
be extracted from them using standard procedures.

All such correlation functions can be dealt with at once by working with the
generating functional, Z[J], defined by

Z[J] :=
∞∑
n=0

in

n!

∫
d4x1 · · · d4xn Ga1 · · ·an (x1, · · · , xn)Ja1 (x1) · · · Jan (xn), (2.2)

from which each correlation function can be obtained by functional differentiation

Ga1 · · ·an (x1, · · · , xn) = (−i)n
(

δnZ[J]
δJa1 (x1) · · · δJan (xn)

)
J=0

. (2.3)

A useful property of Z[J] is that it has a straightforward expression in terms of path
integrals, which in principle could be imagined to be computed numerically, but in
practice usually means that it is relatively simple to calculate perturbatively in terms
of Feynman graphs.

1 In what follows these are assumed to be bosonic fields, though a similar treatment goes through for
fermions.

2 Strictly speaking, for relativistic theories T denotes the T ∗ ordering, which includes certain additional
equal-time ‘seagull’ contributions required to maintain Lorentz covariance [14].18
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The basic connection between operator correlation functions and path integrals is
the expression

Ga1 · · ·an (x1, · · · , xn) =
∫
Dφ
[
φa1 (x1) · · · φan (xn)

]
exp
{
iS[φ ]

}
, (2.4)

where Dφ = Dφa1 · · · Dφan denotes the functional measure for the sum over
all field configurations, φa (x), with initial and final times weighted by the wave
functional, Ψi[φ] and Ψ∗o[φ], appropriate for the initial and final states, o〈Ω| and
|Ω〉i . The special case n = 0 is the example most frequently encountered in
elementary treatments, for which

o〈Ω|Ω〉i =
∫
Dφ exp

{
iS[φ]

}
. (2.5)

Direct use of the definitions then leads to the following expression for Z[J]:

Z[J] =
∫
Dφ exp

{
iS[φ ] + i

∫
d4x φa (x)Ja (x)

}
, (2.6)

and so Z[J = 0] = o〈Ω|Ω〉i .

Semiclassical Evaluation

Semiclassical perturbation theory can be formulated by expanding the action within
the path integral about a classical background:3 φa (x) = ϕa

cl(x) + φ̃a (x), where ϕa
cl

satisfies (
δS
δφa

)
φ=ϕcl

+ Ja = 0. (2.7)

The idea is to write the action, SJ[φ ] := S[φ ] +
∫

d4x (φa Ja), as

SJ[ϕcl + φ̃ ] = SJ[ϕcl] + S2[ϕcl, φ̃ ] + Sint[ϕcl, φ̃ ], (2.8)

with

S2 = −
∫

d4x φ̃a Δab (ϕcl)φ̃
b , (2.9)

being the quadratic part in the expansion (for some differential operator Δab). The
‘interaction’ term, Sint, contains all terms cubic and higher order in φ̃a; no linear
terms appear because the background field satisfies Eq. (2.7).

The relevant path integrals can then be evaluated by expanding

exp
{
iS[φ ] + i

∫
d4x φa Ja

}
= exp

{
iSJ[ϕcl] + iS2[ϕcl, φ̃ ]

} ∞∑
r=0

1
r!

(
iSint[ϕcl, φ̃ ]

)r
,

(2.10)

in the path integral (2.6) and explicitly computing the resulting gaussian functional
integrals.

3 It is sometimes useful to make a more complicated, nonlinear, split φ = φ(ϕcl, φ̃) in order to make
explicit convenient properties (such as symmetries) of the action.
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Z[J] = N (det−1/2
Δ) 1 +
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Fig. 2.1 A sampling of some leading perturbative contributions to the generating functional Z [J] expressed
using Eq. (2.11) as Feynman graphs. Solid lines are propagators (Δ−1) and solid circles represent
interactions that appear in Sint. 1-Particle reducible and 1PI graphs are both shown as examples at two
loops and a disconnected graph is shown at four loops. The graphs shown use only quartic and cubic
interactions in Sint.

This process leads in the usual way to the graphical representation of any
correlation function. Gaussian integrals ultimately involve integrands that are powers
of fields, leading to integrals of the schematic form4∫

Dφ̃ eiφ̃aΔab φ̃
b
φ̃c1 (x1) · · · φ̃cn (xn) ∝

(
det−1/2

Δ
)

×
[
(Δ−1)c1c2 · · · (Δ−1)cn−1cn + (perms)

]
,

(2.11)

if n is even, while the integral vanishes if n is odd. Here, the evaluation ignores a
proportionality constant that is background-field independent (and so isn’t important
in what follows). The interpretation in terms of Feynman graphs comes because the
combinatorics of such an integral correspond to the combinatorics of all possible
ways of drawing graphs whose internal lines represent factors of Δ−1 and whose
vertices correspond to interactions within Sint.

Within this type of graphical expression Z[J] is given as the sum over all vacuum
graphs, with no external lines. All of the dependence on J appears through the
dependence of the result on ϕcl, which depends on J because of (2.7). The graphs
involving the fewest interactions (vertices) first arise with two loops, a sampling of
which are shown in Fig. 2.1 that can be built using cubic and quartic interactions
within Sint.

As mentioned earlier, this includes all graphs, including those that are discon-
nected, like the right-most four-loop graph involving four cubic vertices in Fig. 2.1.
Graphs like this are disconnected in the sense that it is not possible to get between
any pair of vertices along some sequence of contiguous internal lines.

Although simple to state, the perturbation expansion outlined above in terms of
vacuum graphs is not yet completely practical for explicit calculations. The problem
is the appearance of the background field ϕ in the propagator (Δ−1)ab. Although
Δab (x, y) = −δ2S/δφa (x)δφb (y) itself is easy to compute, it is often difficult to
invert explicitly for generic background fields. For instance, for a single scalar field
interacting through a scalar potential U (φ) one has Δ(x, y) = [− +U ′′(ϕ)] δ4(x−y)
and although this is easily inverted in momentum space when ϕ is constant, it is more
difficult to invert for arbitrary ϕ(x).

This problem is usually addressed by expanding in powers of Ja (x), so that the
path integral is evaluated as a semiclassical expansion about a simple background

4 This expression assumes a bosonic field, but a similar expression holds for fermions.
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���
��

Fig. 2.2 The Feynman rule for the vertex coming from the linear term, Slin, in the expansion of the action. The cross
represents the sum δS/δϕa + Ja.

configuration, ϕa
cl, that satisfies (δS/δφa)(φ = ϕcl) = 0 instead of Eq. (2.7). The

Feynman graphs for this modified expansion differ in two ways from the expansion
described above: (i) the propagators Δ−1 now are evaluated at a J-independent
configuration, ϕa

cl, which can be explicitly evaluated if this configuration is simple
enough (such as, for instance, if ϕa

cl = 0); and (ii) the term φa Ja in the exponent of
the integrand in (2.6) is now treated as an interaction. Since this interaction is linear
in φa it corresponds graphically to a ‘tadpole’ contribution (as in Fig. 2.2), with the
line ending in a cross whose Feynman rule is Ja (x).

Within this framework, the Feynman graphs giving Z[J] are obtained from those
given in Fig. 2.1 by inserting external lines in all possible ways (both to propagators
and vertices), with the understanding that the end of each external line represents a
factor of Ja (x). This kind of modified expansion gives Z[J] explicitly as a Taylor
expansion in powers of J.

2.1.1 Connected Correlations

As Fig. 2.1 shows, the graphical expansion for Z[J] in perturbation theory includes
both connected and disconnected Feynman graphs. It is often useful to work
instead with a generating functional, W [J], whose graphical expansion contains only
connected graphs. As shown in Exercise 2.4, this is accomplished simply by defining
Z[J] := exp

{
iW [J]

}
[5, 15], since taking the logarithm has the effect of subtracting

out the disconnected graphs. This implies the path integral representation

exp
{
iW [J]

}
=

∫
Dφ exp

{
iS[φ ] + i

∫
d4x φa Ja

}
. (2.12)

The connected, time-ordered correlation functions are then given by functional
differentiation:

〈T[φa1 (x1) · · · φan (xn)]〉c := (−i)n−1
(

δnW [J]
δJa1 (x1) · · · δJan (xn)

)
J=0

. (2.13)

For example,

〈φa (x)〉c =
(
δW [J]
δJa (x)

)
J=0
= −i

(
1

Z[J]
δZ[J]
δJb (y)

)
J=0
=

o〈Ω|φa (x) |Ω〉i
o〈Ω|Ω〉i

, (2.14)

while,

〈T[φa (x) φb (y)]〉c = −i

(
δ2W [J]

δJa (x)δJb (y)

)
J=0

=
o〈Ω|T[φa (x) φb (y)]|Ω〉i

o〈Ω|Ω〉i
(2.15)

−
(
o〈Ω|φa (x) |Ω〉i

o〈Ω|Ω〉i

) (
o〈Ω|φb (y) |Ω〉i

o〈Ω|Ω〉i

)
,
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and so on. As is easily verified, the graphical expansion of the factor o〈Ω|T[φa (x)
φb (y)]|Ω〉i in this last expression corresponds to the sum over all Feynman graphs
with precisely two external lines, corresponding to the fields φa (x) and φb (y). The
graphical representation of a term like o〈Ω|φa (x) |Ω〉i is similarly given by the sum
over all Feynman graphs (called tadpole graphs) with precisely one external line,
corresponding to φa (x).

Dividing all terms by the factors of o〈Ω|Ω〉i in the denominator is precisely
what is needed to cancel disconnected vacuum graphs (i.e. those disconnected
subgraphs having no external lines). But this does not remove graphs in

o〈Ω|T[φa (x) φb (y)]|Ω〉i corresponding to a pair of disconnected ‘tadpole’
graphs, each of which has a single external line. These disconnected graphs
precisely correspond to the product o〈Ω|φa (x) |Ω〉i o〈Ω|φb (y) |Ω〉i in (2.15),
whose subtraction therefore cancels the remaining disconnected component from
〈T[φa (x) φb (y)]〉c .

A similar story goes through for the higher functional derivatives, and
shows how correlations obtained by differentiating W have their disconnected
parts systematically subtracted off. Indeed Eqs. (2.13) and (2.12) can be used as
non-perturbative definitions of what is meant by connected correlations functions
and their generators [15].

2.1.2 The 1PI (or Quantum) Action ♠

As Eqs. (2.12) and (2.4) show, the functional Z[J] = exp
{
iW [J]

}
can be physically

interpreted as the ‘in-out’ vacuum amplitude in the presence of an applied current
Ja (x). Furthermore, the applied current can be regarded as being responsible for
changing the expectation value of the field, since not evaluating Eq. (2.14) at Ja = 0
gives

ϕa (x) := 〈φa (x)〉J =
δW
δJa (x)

, (2.16)

as a functional of the current Ja (x). However, it is often more useful to have the
vacuum-to-vacuum amplitude expressed directly as a functional of the expectation
value, ϕa (x), itself, rather than Ja (x). This is accomplished by performing a
Legendre transform, as follows.

Legendre Transform

To perform a Legendre transform, define [15]

Γ[ϕ ] := W [J] −
∫

d4x ϕa Ja, (2.17)

with Ja (x) regarded as a functional of ϕa (x), implicitly obtained by solving
Eq. (2.16). Once Γ[ϕ ] is known, the current required to obtain the given ϕa (x)
is found by directly differentiating the definition, Eq. (2.17), using the chain rule
together with Eq. (2.16) to evaluate the functional derivative of W [J]:

δΓ
δϕa (x)

=

∫
d4y

δJb (y)
δϕa (x)

δW
δJb (y)

− Ja (x) −
∫

d4y ϕb (y)
δJa (y)
δϕa (x)

= −Ja (x).

(2.18)
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In particular, this last equation shows that the expectation value for the ‘real’
system with Ja = 0 is a stationary point of Γ[ϕ ]. In this sense Γ[ϕ ] is related to 〈φa〉
in the same way that the classical action, S[φ ], is related to a classical background
configuration, ϕa

cl. For this reason Γ[ϕ ] is sometimes thought of as the quantum
generalization of the classical action, and known as the theory’s quantum action.

This similarity between Γ[ϕ ] and the classical action is also reinforced by other
considerations. For instance, because the classical action is usually the difference,
S = K − V , between kinetic and potential energies, for time-independent configu-
rations (for which the kinetic energy is K = 0) the classical ground state actually
minimizes V = −S. It can be shown that for time-independent systems – i.e. those
where the ground state |Ω〉 is well-described in the adiabatic approximation – the
configuration ϕa = 〈φa〉 similarly minimizes the quantity −Γ. In particular, for
configurations ϕa independent of spacetime position the configuration minimizes
the quantum ‘effective potential’ Vq(ϕ) = −Γ[ϕ]/(Vol), where ‘Vol’ is the overall
volume of spacetime.

One way to prove this [16, 17] is to show that, for any static configuration, ϕa, the
quantity −Γ[ϕ ] can be interpreted as the minimum value of the energy, 〈Ψ|H |Ψ〉,
extremized over all normalized states, |Ψ〉, that satisfy the condition 〈Ψ|φa (x) |Ψ〉 =
ϕa (x). The global minimum to −Γ[ϕ ] then comes once ϕa is itself varied over all
possible values.

Semiclassical Expansion

How is Γ[ϕ ] computed within perturbation theory? To find out, multiply the path
integral representation for W [J], Eq. (2.12), on both sides by exp

{
−i

∫
d4x (ϕa Ja)

}
.

Since neither ϕa nor Ja are integration variables, this factor may be taken inside the
path integral, giving

exp
{
iΓ[ϕ ]

}
= exp

{
iW [J] − i

∫
d4x ϕa Ja

}
=

∫
Dφ exp

{
iS[φ ] + i

∫
d4x (φa − ϕa)Ja

}
(2.19)

=

∫
Dφ̃ exp

{
iS[ϕ + φ̃ ] + i

∫
d4x φ̃a Ja

}
.

The last line uses the change of integration variable φa → φ̃a := φa − ϕa.
At face value, Eq. (2.19) doesn’t seem so useful in practice, since the dependence

on Ja inside the integral is to be regarded as a functional of ϕa, using Eq. (2.18). This
means that Γ[ϕ ] is only given implicitly, since it appears on both sides. But on closer
inspection, the situation is much better than this, because the implicit appearance of
Γ through Ja on the right-hand side is actually very easy to implement in perturbation
theory.

To see how this works, imagine evaluating Eq. (2.19) perturbatively by expanding
the action inside the path integral about the configuration φa = ϕa, using

S[ϕ + φ̃ ] = S[ϕ ] + S2[ϕ, φ̃ ] + Slin[ϕ, φ̃ ] + Sint[ϕ, φ̃ ]. (2.20)

This is very similar to the expansion in Eq. (2.10), apart from the term linear in φ̃a,
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Slin[ϕ, φ̃ ] =
∫

d4x
⎡⎢⎢⎢⎢⎣
(

δS
δφa (x)

)
φ=ϕ

+ Ja (x)
⎤⎥⎥⎥⎥⎦ φ̃a (x), (2.21)

which does not vanish as it did before because δϕa := ϕa − ϕa
cl � 0. However,

because the difference δϕa is perturbatively small, it may be grouped with the terms
in Sint and expanded within the integrand, and not kept in the exponential.

The resulting expansion for Γ[ϕ ] then becomes

eiΓ[ϕ ] = eiS[ϕ ]
∫
Dφ̃ eiS2[ϕ,φ̃ ]

∞∑
r=0

1
r!

(
iSint + iSlin

)r
, (2.22)

and so

Γ[ϕ ] = S[ϕ ] +
i
2

ln detΔ + (2-loops and higher), (2.23)

where Δ(ϕ) is the operator appearing in S2 = −
∫

d4x φ̃aΔab φ̃b , and the contribu-
tion called ‘2-loops and higher’ denotes the sum of all Feynman graphs involving
two or more loops (and no external lines) built with internal lines representing the
propagator Δ−1, and vertices built using Sint + Slin.

Expression (2.23) shows why the perturbative expansion of Γ[φ] is often related
to the semiclassical approximation and loop expansion. As argued above Eq. (1.3),
whenever a large dimensionless parameter pre-multiplies the classical action – such
as if S = S̃/λ for λ � 1 – then each additional loop costs a factor of λ. In detail
this is true because each vertex in a Feynman graph carries a factor 1/λ, while each
propagator is proportional to Δ−1 ∝ λ. Consequently, a graph with I internal lines
and V vertices is proportional to λx with

x = I −V = L − 1, (2.24)

where L is the total number of loops5 in the graph (more about which below).
The first two contributions to (2.23) are the classical and one-loop results, while

the last term turns out to consist of the sum over all Feynman graphs with two or more
loops. This can be seen because the first two terms of (2.23) are proportional to λ−1

and λ0, respectively, while all terms built using Sint start at order λ, with two loop
graphs being order λ; 3-loop graphs are order λ2 and so on. The connection between
the loop and semiclassical expansions comes because the semiclassical expansion is
normally regarded as a series in powers of �. In ordinary units it is S/� that appears
in the path integral, so the argument just given shows that powers of � also count
loops. Counting powers of small dimensionless quantities is more informative than
counting powers of � because the semiclassical expansion is really an expansion in
powers of the dimensionless ratio �/S, and this ultimately is small because of its
proportionality to small dimensionless parameters.

5 When restricted to graphs that can be drawn on a plane, this identity agrees with an intuitive definition
of what the number of loops in a graph should be (because the combination L − I + V = 1 is a
topological invariant for all such graphs). For graphs that cannot be drawn on a plane this expression
defines the number of loops.
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Now comes the main point. Because Slin is linear in φ̃a, its Feynman rule is as
given in Fig. 2.2, which inserts a ‘tadpole’ contribution proportional to (δS/δϕa) +
Ja. But something wonderful happens once this is evaluated at Ja = −δΓ/δϕa, since
Eq. (2.23) implies that

δS
δϕa (x)

+ Ja (x) =
δ

δϕa (x)

(
S[ϕ ] − Γ[ϕ ]

)
= − δ

δϕa (x)

[
i
2

ln detΔ + (2-loops and higher)

]
= −(sum of tadpole graphs), (2.25)

where ‘tadpole graphs’ mean all those graphs involving one or more loops having
one dangling unconnected internal propagator that ends at the point x.

What is wonderful about this condition is it is easy to implement without having a
detailed expression for Γ[ϕ ]. The condition Ja = −δΓ/δϕa simply ensures that all
graphs involving explicit dependence on Ja precisely cancel all graphs without Ja
that are 1-particle reducible: that is, all graphs that can be cut into two disconnected
pieces by breaking a single internal line. (A graph that cannot be broken into two in
this way is called 1-particle irreducible, or 1PI.)

The upshot is very simple: Γ[ϕ ] is computed by calculating graphs that do not
involve the vertex Slin at all, but evaluating only those graphs that are 1-particle
irreducible. For this reason Γ[ϕ ] is often called the generator of 1-particle irreducible
correlations, or the 1PI action for short. In the semiclassical expansion about an
arbitrary configuration ϕa

J Eq. (2.23) is evaluated as a sum of 1PI connected vacuum
graphs (i.e. connected graphs having no external lines), obtained by dropping all
disconnected and one-particle reducible graphs from the sum sketched in Fig. 2.1.

Recognizing that Γ[ϕ ] involves only 1PI graphs gives another way in which the
quantity Γ[ϕ ] generalizes the classical action [17]. In a perturbative expansion the
leading, classical, approximation corresponds to using the leading term of Eq. (2.23):
Γ[ϕ ] � S[ϕ ]. As discussed in Appendix C, when applied to scattering amplitudes
this amounts to just summing the tree graphs built from vertices coming from the
classical interactions in Sint. By contrast, imagine instead computing Feynman graphs
using the expansion of Γ[ϕ + φ̃ ], rather than S[ϕ + φ̃ ], to generate the propagators
and vertices. In this case, the all-loops result for any correlation function constructed
with Feynman rules built from S[ϕ ] is precisely the same as the quantity obtained
by summing just tree graphs constructed from the Feynman rules built from Γ[ϕ ].
In this sense, the full quantum amplitude is obtained by calculating using Γ[ϕ ] but
working within the classical approximation. (It is this property that makes Γ[ϕ ]
useful for discussing ultraviolet (UV) divergences, since the absence of new UV
divergences in tree graphs makes it sufficient to renormalize divergences in Γ[ϕ ] in
order to ensure all amplitudes are finite.)

Similar to the discussion for Z[J], an important practical issue arises when
ϕ is too complicated to allow an explicit calculation of the propagators Δ−1

ab
=

−(δ2S/δφaδφb)φ=ϕ used in the Feynman rules. This is often dealt with by
expanding the result in powers of ϕa (x) (or, more generally, in powers of the
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displacement of ϕa away from a sufficiently simple background for which Δ−1
ab

can be evaluated).
In this case, using(

δ2S

δφa (x) δφb (y)

)
ϕ

=

(
δ2S

δφa (x) δφb (y)

)
0
+

∫
d4z

(
δ3S

δφa (x) δφb (y) δφc (z)

)
0
ϕc (z) + · · · ,

(2.26)

and (Δ0 − δΔ)−1 = Δ−1
0

∑∞
n=0(δΔΔ−1

0 )n shows that the required Feynman graphs are
obtained by inserting external lines in all possible ways (both to the internal lines and
the vertices) in the 1PI vacuum graphs of Fig. 2.1, with the external lines representing
the Feynman rule ϕa (x).

2.2 The High-Energy/Low-Energy Split ♦

So far, so good, but how can the above formalism be used to compute and use low-
energy effective actions? The rest of this chapter specializes to theories having two
very different intrinsic mass scales – like mI � mR of the toy model in Chapter 1 – in
order to address this question. After formalizing the split into low- and high-energy
theory in this section, the following two sections identify two useful ways of defining
a low-energy effective action.

2.2.1 Projecting onto Low-Energy States

The starting point, in this section, is to define more explicitly the split between low-
and high-energy degrees of freedom. There are a variety of ways to achieve this split.
Most directly, imagine dividing the quantum field φa into a low-energy and high-
energy part: φa (x) = la (x) + ha (x), with

la (x) := PΛφ
a (x)PΛ, (2.27)

where PΛ = P2
Λ

denotes the projector onto states having energy E < Λ. To be of
practical use, the scale Λ should lie somewhere between the two scales (such as mI

and mR) that define the underlying hierarchy (mI � mR) in terms of which the low-
energy limit is defined for the theory of interest.

This can be made more explicit in semiclassical perturbation theory, where φa =

ϕa
cl + φ̂

a. Since in the interaction representation the quantum field satisfies the

linearized field equation, Δab φ̂b = 0, one can decompose φ̂a (x) in terms of a basis
of eigenmodes, up (x),

φ̂a (x) =
∑
p

[
apua

p (x) + a∗pua∗
p (x)

]
. (2.28)

For time-independent backgrounds these eigenmodes can be chosen to simultane-
ously diagonalize the energy, i∂tup = εp up, and so the low-energy part of the field
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is that part of the sum for which the mode energies are smaller than the reference
scale Λ. That is,

l̂a (x) :=
∑
εp<Λ

[
apua

p (x) + a∗pua∗
p (x)

]
, (2.29)

and so

ĥa := φ̂a − l̂a =
∑
εp>Λ

[
apua

p (x) + a∗pua∗
p (x)

]
. (2.30)

Of course, one might also implement a cutoff more smoothly, by weighting high-
energy states in amplitudes by some suitably decreasing function of energy rather
than completely cutting them off above Λ.

It is natural at this point to worry that a division into high- and low-energy modes
introduces an explicit frame-dependence into the problem. After all, a collision that
appears to involve only low energies to one observer would appear to involve very
high energies to another observer who moves very rapidly relative to the first one.
Although this is true in principle, in practice frame-independent physical quantities
(like the scattering amplitudes examined for the toy model in Chapter 1) only depend
on invariant quantities like centre-of-mass energies, and all observers agree when
these are large or small. For scattering calculations the natural split between low-
and high-energies is therefore made in the centre-of-mass frame. The point is that in
order to profit from the simplification of physics at low energies, it suffices that there
exist some observers who see a process to be at low energies; it is not required that
all observers do so.

Notice that correlation functions of low-energy states necessarily do not vary very
quickly with time. This may be seen by inserting a complete set of intermediate
energy eigenstates between any two pairs of low-energy fields, such as

o〈Ω| l̂a (x) l̂b (y) |Ω〉i = o〈Ω|PΛφ̂a (x)P2
Λφ̂

b (y)PΛ |Ω〉i
=

∑
εp<Λ

o〈Ω|φ̂a (x) |p〉〈p |φ̂b (y) |Ω〉i , (2.31)

which uses PΛ |Ω〉 = |Ω〉 and PΛ |p〉 = |p〉 for low-energy states, while PΛ |p〉 = 0 for
high-energy states. This result clearly has support only for frequencies ω = εp < Λ.
In relativistic and translation-invariant theories, for which low energy also means
low momentum, the same argument shows that correlations also have slow spatial
variation.

Example: The Toy Model

To make this concrete, consider the toy model of Chapter 1. In this case, there are
two quantum fields, φ̂I and φ̂R (or equivalently, ξ̂ and χ̂), and the two intrinsic
mass scales are mI = 0 � mR. The energy eigenmodes for these are labeled by
4-momentum, up (x) ∝ eipx , and the linearized field equation (− + m2) φ̂ = 0,

relates the energy to the momentum by q0 = εq = q for φ̂I and p0 = εp =
√

p2 + m2
R

for φ̂R.
In this case, the useful choice is mI � Λ � mR, which is possible because of

the hierarchy mI � mR. With this choice, the light fields consist only of the long-
wavelength modes of φ̂I,
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l̂ (x) =
∑
εq<Λ

[
cq eiqx + c∗q e−iqx

]
, (2.32)

while the heavy fields contain all of the φ̂R modes together with the short-wavelength
modes of φ̂I:

ĥI(x) =
∑
εq>Λ

[
cq eiqx + c∗q e−iqx

]
and ĥR(x) =

∑
p

[
bp eipx + b∗p e−ipx

]
. (2.33)

2.2.2 Generators of Low-Energy Correlations ♠

The next step is to seek generating functionals specifically for low-energy correlation
functions, and to investigate their properties. The key tool for this purpose is the
observation made above that the correlation functions themselves can vary only over
time and length scales larger than Λ−1.

Imagine now defining the generating functional, Zle[J], for the time-ordered in-
out correlations of only the low-energy fields, l̂a (x). This can be done simply by
restricting the definition, Eq. (2.2), of Z[J], to include only correlation functions
that vary slowly in space and time (i.e. only over scales larger than Λ−1), leading to
the result

Zle[J] :=
∞∑
n=0

in

n!

∫
d4x1 · · · d4xnGa1 · · ·an

le (x1, · · · , xn)Ja1 (x1) · · · Jan (xn). (2.34)

Because the low-energy correlation functions only vary slowly in space and time, the
same is true of any currents, Ja (x), appearing in Zle[J]. That is, if the current is split
into long- and short-wavelength Fourier modes, Ja (x) = ja (x) + Ja (x), with

ja (x) =
∑

slowly varying

ja (p) eipx , (2.35)

then the generating functional for low-energy correlations, Zle[J], is simply the
restriction of the full generating functional to slowly varying currents:

Zle[ j] = Z[ j,J = 0]. (2.36)

Here, the precise definition of ‘slowly varying’ in Eq. (2.35) depends on the details
of the particle masses and the way the cutoff Λ is implemented – c.f. Eq. (2.29) for
example – for the quantum states.

It might seem bothersome that the generating functionals for low-energy correla-
tion functions depend explicitly on the value of Λ, as well as on all of the details of
precisely how the high-energy modes are cut off. One of the tasks of later chapters
is to show how this dependence can be absorbed into appropriate renormalizations
of effective couplings, so that predictions for physical processes (like scattering
amplitudes) only depend on physical mass scales like mR (rather than Λ or other
definitional details).

For relativistic, translationally invariant theories a slightly more convenient way
to break Fourier modes into slowly and quickly varying parts is to Wick rotate [18]
to euclidean signature, {x0, x} → {ix4, x}. In this case, the time-components of any
4-vector must be similarly rotated, so the invariant inner product of two 4-vectors
becomes
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p · q = pμqμ = −p0q0 + p · q → +p4q4 + p · q = (p · q)E. (2.37)

This ensures that the invariant condition pμpμ = (p4)2 + p2 < Λ2 excludes large
values of both |p| and p4 (unlike for Minkowski signature, where pμpμ = −(p0)2 +

p2 < Λ2 allows both |p| and p0 to be arbitrarily large but close to the light cone).
The generator, Wle[ j], of low-energy connected correlations can be defined as

before, by taking the logarithm of Zle[ j], leading to the path integral representation

exp
{
iWle[ j]

}
=

∫
Dφ exp

{
iS[φ] + i

∫
d4x φa ja

}
. (2.38)

The main difference between this and the expression for W [J] is the absence of
currents coupled to the high-frequency components of φa. That is, if φa = la + ha

is split into slowly varying (‘light’, la) and rapidly varying (‘heavy’, ha) parts, along
the same lines as Eq. (2.35) for Ja, then Eq. (2.38) becomes

exp
{
iWle[ j]

}
=

∫
DlDh exp

{
iS[l + h] + i

∫
d4x la ja

}
. (2.39)

Physically, this states that a restriction to low-energy correlations can be obtained
simply by restricting oneself only to probing the system with slowly varying currents.

2.2.3 The 1LPI Action

At this point, it is hard to stop from performing a Legendre transformation to
obtain the generating functional, Γle[�], directly in terms of the low-energy field
configurations, �a, rather than ja. To this end, define

Γle[�] := Wle[ j] −
∫

d4x �a ja, (2.40)

with ja = ja[�] regarded as a functional of �a found by inverting the relation �a =
�a[ j] obtained from

�a :=
δWle

δ ja
, (2.41)

with the result — c.f. Eq. (2.18)

ja = −
δΓle

δ�a
. (2.42)

It is important to realize that although Γle[�] obtained in this way only has support
on slowly varying field configurations, �a (x), it is not simply the restriction of
Γ[ϕ ] = Γ[�, h] to long-wavelength configurations: ha := δW/δJa = 0. To see
why not, consider its path integral representation:

exp
{
iΓle[�]

}
=

∫
Dl Dh exp

{
iS[l, h] + i

∫
d4x (la − �a) ja

}
=

∫
D l̃ Dh exp

{
iS[� + l̃, h] + i

∫
d4x l̃ a ja

}
. (2.43)

For comparison, the earlier result, Eq. (2.4), for Γ[ϕ ] = Γ[�, h] is

exp
{
iΓle[�, h]

}
=

∫
D l̃ Dh̃ exp

{
iS[� + l̃, h + h̃] + i

∫
d4x (l̃ a ja + h̃

aJa)

}
.

(2.44)
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The key point is that the condition h = 0 is not generically equivalent to the condition
Ja (x) = 0 that relates Γle[�] to Γ[�, h]. Instead, the condition Ja = 0 states that the
short-wavelength part of the field should be chosen as that configuration, ha = ha

le(�),
that satisfies (

δΓ
δha

)
h=hle (�)

= 0. (2.45)

In particular, the vanishing of Ja means that the short-wavelength components
of the current are not available to take the values Ja = −δΓ/δha they would have
taken in the Legendre transform of W [J] = W [ j,J ]. They are therefore not able
to cancel the one-particle-reducible graphs that can be broken in two by cutting a
single ĥa line. The quantity Γle[ϕ] is therefore given as the sum of one-light -particle
irreducible (or 1LPI) graphs, which are only irreducible in the sense that they cannot
be broken into two disconnected pieces by cutting a light -particle, l̂a, line.

Example: The Toy Model

How does all this look in the toy model of Chapter 1? In this case, with Λ chosen
to satisfy mI � Λ � mR, the ‘light’ fields consist only of the low-energy modes of
the massless field, ξ (or φ̂I), and the ‘heavy’ fields consist of both the high-energy
modes of ξ together with all of the modes of the massive field χ (or φ̂R). The 1LPI
generator of low-energy connected correlation functions then is

exp
{
iΓle[ξ]

}
=

∫
D ξ̃Dχ̃ exp

{
iS[ξ + ξ̃, χ̃] + i

∫
d4x ξ̃a ja

}
, (2.46)

with ξa and ja = −δΓle/δξa only varying over times and distances longer than Λ−1.
Recall that small λ controls a semiclassical expansion, and imagine computing
Γle[ξ] in the leading, classical approximation. As argued earlier (and elaborated in
§3 below), in this limit the full 1PI generator reduces to the classical action: Γ[ξ, χ] �
S[ξ, χ], explicitly given in Eq. (1.24),

S[ξ, χ] = −
∫

d4x
⎡⎢⎢⎢⎢⎣12 ∂μχ∂μχ + 1

2

(
1 +

χ
√

2 v

)2

∂μξ∂
μξ + V (χ)

⎤⎥⎥⎥⎥⎦ , (2.47)

with

V (χ) =
m2

R

2
χ2 +

λ v

2
√

2
χ3 +

λ
16
χ4. (2.48)

In general, the above arguments say that Γle[ξ] = Γle[ξ, χle(ξ)], where χle(ξ)
is obtained by solving δΓ[ξ, χ]/δχ = 0 (c.f. Eq. (2.45)). So in the classical
approximation Γle[ξ] � S[ξ, χle(ξ)], where Eq. (2.45) in the classical approximation
says χle(ξ) is found by solving the classical field equation(

− + m2
R +

1
2v2 ∂μξ∂

μξ

)
χle = −

1
√

2 v
∂μξ∂

μξ − 3λv
2
√

2
χ2

le −
λ
4
χ3

le. (2.49)

Using this in the classical action leads (after an integration by parts) to

S[ξ, χle(ξ)] =
∫

d4x

[
−1

2

(
1 +

χle√
2 v

)
∂μξ∂

μξ +
λv

4
√

2
χ3

le +
λ
16
χ4

le

]
, (2.50)

where χle(ξ) is to be interpreted as the function of ξ obtained by solving (2.49).
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To proceed further, expand the solution χle in powers of ∂μξ∂μξ and , using

(− + m2
R + X )−1 � 1

m2
R

− (− + X )

m4
R

+ · · · , (2.51)

and so on. This gives

χle � −
1

√
2 vm2

R

��1 + m2
R

+

2

m4
R

+ · · · �� (∂μξ∂
μξ)

− 1
4
√

2 v3m4
R

(
1 +

m2
R

+ · · ·
)

(∂μξ∂
μξ)2 + · · · , (2.52)

where the ellipses involve terms with more powers of and/or more powers of
(∂μξ∂μξ).

Combining results then gives

Γle[ξ] �
∫

d4x

[
−1

2
∂μξ∂

μξ + a
(
∂μξ∂

μξ
) (

1 +
m2

R

) (
∂μξ∂

μξ
)

+b (∂μξ∂
μξ)3 + · · ·

]
, (2.53)

where again ellipses include terms with more powers of and/or ∂μξ∂μξ than those
shown. In the classical approximation used here, the coefficients a and b evaluate to

a =
λ

4m4
R

=
1

4λv4 and b =

(
1
16
− 1

16

)
λ2

m8
R

= 0. (2.54)

In particular, b vanishes due to a cancelation between the χle(∂μξ∂μξ) and χ3
le terms,

while a = λ/4m4
R precisely agrees with Eq. (1.12) (and is proportional to λ−1 when

expressed in terms of v, as expected for a classical contribution). As shown earlier,
when used in the classical – no loop – approximation, this value ensures that the
interactions quadratic in ∂μξ∂μξ accurately reproduce the first two terms of the low-
energy limit for ξξ → ξξ scattering found earlier.

Of course, Feynman graphs greatly simplify calculations such as these, particu-
larly once one progresses beyond the leading classical approximation, and it is useful
to see how these reproduce the above calculation. To this end, imagine working with
the Feynman rules described around Eq. (2.26), in which one perturbs in powers of
the background field (in this case ξ). As shown in the next chapter, at the classical
level one seeks tree (i.e. no loops) graphs whose external lines correspond to the
fields appearing in the appropriate effective interaction. Since Γle[ξ] is 1LPI at tree
level, only heavy states can appear as internal lines.

For instance, for the calculation performed above the term quadratic in ∂μξ ∂μξ
arises from the Feynman graph shown in panel (a) of Fig. 2.3,6 once the heavy-
particle propagator is expanded in powers of /m2

R . The result found in this way
for the parameter a is

iagraph (a) =

[(
i2

2!

)] (
− 1
√

2 v

)2 (
−i

m2
R

)
=

i

4v2m2
R

, (2.55)

where the square bracket contains the numerical factors from the expansion of
exp[iSint], the next factor is the coupling constant Feynman rule for the vertices and

6 Note that no combinatorial factors are in this case necessary for external lines – in contrast to the
scattering evaluation of Fig. 1.3 – because external lines here represent factors of ∂μξ all evaluated at
the same position, rather than scattering states with distinguishable momenta.
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Fig. 2.3 The tree graphs that dominate the (∂μξ ∂μξ)2 (panel a) and the (∂μξ ∂μξ)3 (panels b and c)
effective interactions. Solid lines represent χ propagators, while dotted lines denote external ξ fields.

the final factor is the leading contribution from the propagator. The left-hand side is
obtained by expanding exp

{
iΓ[ξ]

}
using (2.53) and identifying the coefficient of the

(∂μξ ∂μξ)2 term. This result for a agrees with the one found in (2.54) by eliminating
χle(ξ) from the action, and in (1.16) by demanding the correct result for low-energy
ξ-particle scattering.

The contribution cubic in ∂μξ ∂μξ is similarly obtained from the graphs in panels
(b) and (c) of Fig. 2.3, which contribute the following to the effective coupling b:

ibgraph (b) = 6
[
4
(

i4

4!

)] (
− 1
√

2 v

)3 (
− λv

2
√

2

) (
−i

m2
R

)3

=
iλ

8v2m6
R

ibgraph (c) = 2
[
3
(

i3

3!

)] (
− 1
√

2 v

)2 (
− 1

4v2

) (
−i

m2
R

)2

= − i

8v4m4
R

. (2.56)

Starting with the square bracket, each factor here has the same origin as its
counterpart in Eq. (2.55) for panel (a), and the first number arises as the number
of ways of connecting the relevant external lines and vertices into the given graph.
These again cancel once the relation m2

R = λv2 is used, giving the tree-level
prediction b = 0.

The above arguments make clearer why – if low-energy observables are the only
things of interest – the physics of the two fields in the toy model can be traded for
a collection of effective interactions involving only the light particle: it suffices to
know Γle[�] to capture all low-energy physical applications. What remains is to find
a way to do so more efficiently than by first computing the full generating functional
Γ[�, h ], and then eliminating h = hle(�) to obtain Γle[�] = Γ[�, hle(�)].

2.3 The Wilson action ♦

Although the low-energy 1LPI generator captures all of a theory’s low-energy
observables, what remains elusive is an efficient means for capturing, as early in
a calculation as possible, how high-energy physics appears in low-energy processes.
The main tool for doing this – the Wilson action7 – is topic of this section.

7 Named for Ken Wilson, a pioneer in the development of renormalization techniques (see the brief
historical notes in the Bibliography).
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2.3.1 Definitions

A good starting point for describing the Wilson action is the path integral expression
for the 1LPI generator, Eq. (2.43):

exp
{
iΓle[�]

}
=

∫
D l̃ Dh exp

{
iS[� + l̃ + h] + i

∫
d4x l̃ a ja

}
. (2.57)

What is noteworthy about this expression is that – because the currents are chosen
to explore only low-energy quantities – the heavy field, ha, appears only in the
classical action and not in the current term. As a consequence, all possible low-
energy influences of the heavy field must be captured in the quantity

exp
{
iSW[l]

}
:=

∫
Dh exp

{
iS[l + h]

}
, (2.58)

in terms of which the full 1LPI action is given by

exp
{
iΓle[�]

}
=

∫
D l̃ exp

{
iSW[� + l̃] + i

∫
d4x l̃ a ja

}
. (2.59)

Eq. (2.58) defines the Wilson action, obtained by integrating out all heavy degrees
of freedom having energies above the scale Λ. It has several noteworthy features,
which are explored in detail throughout the rest of the book.

• As the definition shows, the Wilson action provides the earliest place in a
calculation to systematically identify, once and for all, the low-energy influence
of the heavy degrees of freedom h. Best of all, this can be done in one fell swoop,
before choosing precisely which observable or correlation function is of interest in
a particular application.

• For practical applications, most real interest is in obtaining the Wilson action as
a series expansion in inverse powers of the heavy mass scales in the problem of
interest. As shall be seen in some detail, at any fixed order in this expansion the
Wilson action is a local functional, SW =

∫
d4x LW(x), with LW(x) being a function

of the light fields and their derivatives all evaluated at the same spacetime point.
• What is striking about Eq. (2.59) is that the Wilson action, SW, appears in the

expression for the generator, Γle, of low-energy correlators, in precisely the way
that the classical action, S, appears in the expression, Eq. (2.19), for the generator,
Γ, of generic correlators. This suggests that the classical action of the full theory
might itself be better regarded as the Wilson action from some even higher-energy
theory.

• Eq. (2.58) shows that SW depends in detail on things like Λ and precisely how
the split is made between the high- and low-energy sectors, since these are buried
in the definitions of the split between ha and la. So it is misleading to speak about
‘the’ Wilson action, rather than ‘a’ Wilson action. Yet we know that Λ cannot
appear in any physical observables, because it is just an arbitrary artificial scale
that is introduced for calculational convenience. Part of the story to follow must
therefore be why all these calculational details in SW drop out of observables. The
outlines of this argument are already clear in Eq. (2.59), which shows that the Λ
dependence introduced by performing the integration over Dh is later canceled
when integrating over the rest of the fields, Dl, since the total measure Dφ =
Dl Dh is Λ-independent.
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In semiclassical perturbation theory, the arguments of earlier sections show that
Eq. (2.58) gives SW as the sum over all connected vacuum graphs – not just 1PI
graphs, say – using Feynman rules computed for the ‘high-energy’ fields with
the ‘low-energy’ fields regarded as fixed background values. (Recall in this split
that high-energy fields can include the high-energy modes of particles with small
masses.) Eq. (2.59) then says to construct Feynman graphs using propagators and
vertices for the light fields defined from SW, with Γle then obtained by computing all
1PI graphs in this low-energy theory. This combination reproduces the set of 1LPI
graphs using the Feynman rules of the full theory.

In particular, since any tree graph with an internal line is one-particle reducible,
this means that Γle[�] � SW[�] within the classical approximation (no loops).
Furthermore, in the same approximation both are related to the classical action of
the full theory by

Γle[�] � SW[�] � S[�, hle(�)] (classical approximation), (2.60)

where ha = ha
le(�) is obtained (in the classical approximation) by solving

(δS/δha)h=hle (�) = 0. But – as is seen more explicitly below – Γle[�] and SW[�]
need no longer agree once loops are included.

It is the Wilson action that is the main tool used in the rest of this book. But why
bother with SW, given that Γle also captures all of the information relevant for low-
energy predictions? As later examples show in more detail, in real applications it is
often the Wilson action that is the easier to use, since it exploits the simplicity of the
low-energy limit as early as possible. It plays such a central role because it has two
very attractive properties.

First, it contains enough information to be useful. That is, any low-energy
observable can be constructed from low-energy correlation functions (and so also
from Γle), and because Γle can be computed from SW using only low-energy degrees
of freedom, it follows that SW carries all of the information necessary to extract the
predictions for any low-energy observable.

But it is the second property that makes it such a practical tool: it doesn’t contain
too much information. That is, the Wilson action is the bare-bones quantity that
contains all of the information about the system’s high-energy degrees of freedom
without polluting it with any low-energy details. Unlike Γle, the Wilson action is
constructed by integrating only over the high-energy degrees of freedom. This means
that there is a maximal labour saving in exploiting any simplicity in SW, since
this simplicity is present before performing the rest of the low-energy part of the
calculation.

Example: The Toy Model
To better understand how the Wilson action is defined, and how it is related to the
low-energy 1LPI generator, it is useful to have a concrete example to examine in
detail. Once again the toy model of Chapter 1 provides a useful place to start.

Since Γle and SW only begin to differ beyond the classical approximation, imagine
computing both Γle and SW at one loop. According to its definition, the Feynman
graphs contributing to SW can involve only the high-energy degrees of freedom in the
internal lines, while those contributing to Γle also involve virtual low-energy states.
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Fig. 2.4 One-loop graphs that contribute to the (∂μξ∂μξ)2 interaction in the Wilson and 1LPI actions using the
interactions of Eqs. (1.24) and (1.25). Solid (dotted) lines represent χ (and ξ) fields. Graphs involving
wave-function renormalizations of ξ are not included in this list.

For both SW and Γle the graphs can be one-particle reducible when cutting heavy-
particle lines, but for Γle the graphs must be one-particle irreducible when light-
particle lines are cut.

For concreteness’ sake, for the toy model consider the one-loop contributions to
the effective interaction

a
∫

d4x (∂μξ∂
μξ)2, (2.61)

in both Γle and SW. The relevant Feynman graphs are shown in Fig. 2.4, using
Feynman rules appropriate for the χ and ξ fields using the interactions given in
Eqs. (1.24) and (1.25). (An equivalent set of graphs could also be written for the
variables φ̂R and φ̂I. Although both ultimately give the same physical results, they
can differ in intermediate steps, and which is more useful depends on the application
one has in mind.)

Since all of the internal lines for Feynman graphs (a) through (e) involve only the
field χ, and since all modes of this field are classified as ‘high-energy’ – c.f. the
discussion in §2.2.1 – all five of these graphs contribute to both SW and Γle. In order
of magnitude, each contributes to the effective interaction an amount, as follows
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agraph(a) ∝
(
− 1

4v2

)2

L1 =
L1

16 v4 , (2.62)

agraph(b) ∝
(
− 1

4v2

) (
− λv

2
√

2

) (
− 1
√

2 v

)
L1

m2
R

= − L1

16 v4 , (2.63)

agraph(c) ∝
(
− λv
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√

2

)2 (
− 1
√

2 v

)2 L1

m4
R

=
L1

16 v4 , (2.64)

agraph(d) ∝
(
− λ

16

) (
− 1
√

2 v

)2 L2

m4
R

= − L2

32λv6 , (2.65)

and

agraph(e) ∝
(
− λv

2
√

2

)2 (
− 1
√

2 v

)2 L2

m6
R

=
L2

16λv6 , (2.66)

where the powers of 1/m2
R come from the internal lines that do not appear within a

loop, since these are evaluated at momenta much smaller than mR. The contribution
of the loop integrals themselves are of order

L1 =

∫ Ω d4p

(2π)4

(
1

p2 + m2
R

)2

∝ 1
16π2 ln

(
Ω

mR

)
and L2 =

∫ Ω d4p

(2π)4

(
1

p2 + m2
R

)
∝ Ω2

16π2 . (2.67)

Here Ω � mR is a cutoff that is introduced because the loop in the full theory is UV
divergent. This divergence is ultimately dealt with by renormalizing the couplings of
the microscopic theory; a point to be returned to in more detail shortly.

For the present purposes – keeping in mind that m2
R = λ v2 – what is important

is that graphs (a) through (c) clearly contribute to the coupling a (in both SW and
Γle) an amount of order a1−loop ∝ L1/v

4 ∝ (1/4πv2)2 ln
(
Ω2/m2

R

)
. Graphs (d) and

(e) instead contribute an amount of order a1−loop ∝ (1/4πv2)2
(
Ω2/m2

R

)
. Once the

UV divergent function of Ω/mR is renormalized into an appropriate coupling, the
remaining coefficient for each of these loop contributions is suppressed by a factor
of λ/16π2 relative to the tree-level result, atree = 1/(4λ v4), in agreement with the
discussion surrounding Eq. (2.24). As such, they all contribute to the coefficient a2

of Eq. (1.16).
The difference between SW and Γle arises in graphs (f) through (k), with SW only

receiving contributions where the momentum in the internal ξ propagators is larger
than Λ, whereas there is no such a restriction for Γle. The contribution from graphs
(i) through (k) when all loop momenta are large is of order

agraph(i) ∝
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√
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)4

L1 =
L1

4v4

agraph(j) ∝
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=
L1

8v4 (2.68)

agraph(k) ∝
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)
L1 = −

L1

8v4 ,
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where the new loop integrals are also logarithmically divergent in the UV, and so up
to numerical factors are again or order L1 in size. These contribute to a an amount
comparable to the size of graphs (a) through (c). By contrast, graphs (f) through (h)
give the results,

agraph(f) ∝
(
− 1
√

2 v

)4 L3

m4
R

=
L3

4v4m4
R

agraph(g) ∝
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)2 (
− 1

4v2

)
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m4
R

= − L3

8v4m4
R

(2.69)

agraph(h) ∝
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8v4m4
R

,

and so are of order (1/v4)(L3/m4
R ), where the ξ loop has the ultraviolet behaviour

L3 =

∫ Ω d4p

(2π)4

(
p2

p2

)k
∝ Ω4

16π2 , (2.70)

where k = 2 for graph (f) and k = 1 for graphs (g) and (h).
All of these graphs are dominated by large momenta (small wavelengths), which

is why they diverge for large Ω. Although a more systematic treatment of these
UV divergences (in particular how to treat them using dimensional regularization)
is given in Chapter 3, there is a conceptual point to be made concerning their lower
limit of integration. The point is that for graphs (f) through (k) this lower limit differs
when computing Γle and SW. For Γle the contributions to the effective interaction

ale

∫
d4x (∂μξ∂

μξ)2 ⊂ Γle (2.71)

integrate over all momenta. But for SW, in the contribution to

aW

∫
d4x (∂μξ∂

μξ)2 ⊂ SW, (2.72)

the integrations exclude momenta smaller than Λ (for which the internal ξ propaga-
tors are then ‘light’ degrees of freedom) that are not integrated out in the path integral
representation of SW.

Take, for instance, graphs (i) through (k) of Fig. 2.4. Since Λ � mR, the predicted
coefficient for Γle differs from the coefficient in SW by an amount of order

ale − aW(Λ) � 1
v4

∫ Λ

0

d4p

(2π)4

(
1

p2 + m2
R

)2 (
p2

p2

)k
∝ 1

16π2v4

(
Λ4

m4
R

)
. (2.73)

The suppression by powers of Λ/mR ensures this difference is numerically small,
although that turns out to be an artefact of this particular example. It is nonetheless
conceptually important. In particular, the Λ-dependence of the right-hand side is
associated with the Wilsonian coupling aW(Λ) because the scale Λ does not appear
at all in the definition of ale (which, after all, is defined in terms of integrations over
modes at all scales).

How can these different values, ale � aW, lead to the same physical predictions
for observables? The answer lies in Eq. (2.59), which states that Γle is obtained
from SW by integrating over the light degrees of freedom, using SW rather than S
as the action. It is this that fills in those parts of Γle not produced through loops
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Fig. 2.5 The tree and one-loop graphs that contribute to the (∂μξ ∂μξ)2 interaction in the 1LPI action, using
Feynman rules built from the Wilson action. All dotted lines represent ξ particles, and the ‘crossed’
versions of (b) are not drawn explicitly.

involving heavy degrees of freedom. The relevant one-particle-irreducible one-loop
graphs for generating the 4-point interaction in Γle using the interactions of SW are
shown in Fig. 2.5.

To see how things work in detail, consider each of the graphs in Fig. 2.5 in turn.
Graph (a) just contributes an amount

agraph(a) = aW(Λ), (2.74)

where aW is computed up to one loop order (using only short-distance scales in
the loop). This is the way that the high-energy parts of graphs (a) through (k) of
Fig. 2.4 contribute when using the Wilson action. The dependence on the scale Λ is
emphasized, since (as described above) this appears once aW is computed at the loop
level.

Next, consider the contribution of the one-loop graph (b) of Fig. 2.5. This
corresponds to the low-energy contribution to ale from graphs (f) and (i) of Fig. 2.4,
as can be seen if the χ internal lines in these graphs are shrunk down to a point,
since the position-space version of the χ propagator is G(x, y) ∝ m−2

R δ
4(x − y). The

vertex appearing at both ends in graph (b) is again the effective 4-point interaction,
Leff = aW (∂μξ∂μξ)2, but because it is used in a loop, its effective coupling should
only be kept to tree-level accuracy: atree = λ/(4m4

R ). Evaluating graph (b) of Fig. 2.5
gives a contribution to ale of order

agraph(b) ∝ a2
tree

∫ Λ

0

d4p

(2π)4
p4

p4 ∝
(
λ

m4
R

)2
Λ4

16π2 =
1

16π2v4

(
Λ4

m4
R

)
. (2.75)

Schematically, graph (b) of Fig. 2.5 is obtained from the low-frequency part of
graphs (f) and (i) of Fig. 2.4 by contracting the heavy internal χ lines down into
the effective point-like quartic self-interaction in the Wilson action. Notice that Eq.
(2.75) depends on the parameters Λ, mR and v in precisely the way that is required to
capture the low-energy part of graph (i), as estimated in Eq. (2.73). It also captures
the low-energy part of graph (f), since in this case the contribution of the lower limit
of integration in L3, Eq. (2.70), is also quartic in Λ.

Similarly, graph (c) of Fig. 2.5, using the tree-level 6-point ξ interaction of SW as
the vertex, captures the low-energy contributions to ale of graphs (g), (h), (j) and (k)
of Fig. 2.4. The relevant 6-point coupling, b, arises (in principle) at tree level due to
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the graphs of Fig. 2.3, and so the result for graph (c) scales with the parameters v,
mR and Λ in precisely the way required,

agraph(c) ∝ b tree

∫ Λ

0

d4p

(2π)4
p2

p2 ∝
(

1
v4m4

R

)
Λ4

16π2 =
1

16π2v4

(
Λ4

m4
R

)
, (2.76)

to reproduce the missing low-energy contributions of graphs (g), (h), (j) and (k).
When calculated earlier – c.f. §2.2.3 – it transpired that the two tree graphs
contributing to b cancel, so b tree = 0. This corresponds to a similar cancelation
in the low-energy limits of graphs (g), (h), (j) and (k) of Fig. 2.4.

When the dust settles, graphs (b) and (c) of Fig. 2.5 fill in those low-frequency
parts of ale that are missing from the contribution, aW, of graph (a). The final result
obtained for ale using the Wilson action in Fig. 2.5 agrees with the one obtained
directly from the full theory using Fig. 2.4.

In this particular example the difference ale − aW vanishes as Λ → 0, because
the quantity being computed is largely insensitive to long-wavelength modes. As a
result, the explicit Λ-dependence appearing in aW cancels with the Λ-dependence
implicit as cutoffs to the loop momenta in graphs (b) and (c) of Fig. 2.5. As shall be
seen, in less simple examples loop contributions from long-wavelength modes can be
important, and this cancellation of Λ in physical quantities is more subtle (involving
renormalizations of low-energy effective couplings).

2.4 Dimensional Analysis and Scaling ♦

Although the discussion and examples described to this point contain the basic
definitions of the Wilson action, many details remain to be filled in about its
systematic use. Before developing the tools required for more systematic heavy
lifting in the next chapter, this section first highlights some useful general properties
of effective interactions, illustrated along the way using the toy model of Chapter 1.

2.4.1 Dimensional Analysis

Dimensional analysis plays an important role in what follows, since it can be used
to track the appearance of large mass scales in physical predictions. This section
reviews the dimensions of the various ingredients from which the Wilson action is
built.

To this end, imagine writing down the Wilson action, SW =
∫

d4x LW, for some
theory, describing physics below some high-energy mass scale: E < M . Suppose
also this low-energy action comes as a functional of some field, φ, and its derivatives.
As discussed in previous chapters, once organized into powers of the inverse of the
heavy scale, 1/M , the effective interactions in LW must be local. These conditions
require the action to have the general form

SW[φ] =
∫

d4x LW, (2.77)
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with

LW =
∑
n

cn On(φ, ∂φ, · · · ), (2.78)

a sum of powers of φ and its derivatives all evaluated at the same point, and (for
relativistic systems) built to transform like a Lorentz scalar. If the low-energy theory
is unitary then LW should also be real. The goal is to use dimensional analysis to
identify the power of M appearing in each effective coupling, cn.

This book uses ‘fundamental’ units for which8
� = c = 1, and so the (engineering)

dimension of any quantity can be regarded as a power of energy or mass (see
Appendix A for conversions between these and more conventional units). In these
units the action, SW, itself is dimensionless – i.e. has dimension (energy)0 – or, more
precisely, SW/� is dimensionless. Similarly, time and space coordinates, t and x,
have dimension (energy)−1, while derivatives like ∂μ have dimension of energy. It
is common to use the notation [A] = p as a short form for the statement ‘quantity A
has dimension (energy)p in units where � = c = 1’, and in this notation [SW] = 0,
[xμ] = −1 and [∂μ] = 1.

Because the action is related to the lagrangian density by Eq. (2.77), in four
spacetime dimensions it follows that LW has dimension (energy)4 – i.e. [LW] = 4 –
because the measure, d4x, satisfies

[
d4x
]
= −4. If M is the only relevant mass scale

in the problem and if a particular interaction, On, has dimension [On] = Δn, then
because [cnOn] = 4 it follows that [cn] = 4 − Δn, and so one expects

[On] = Δn ⇒ cn =
an

Mpn
with pn = Δn − 4, (2.79)

where an is dimensionless. To the extent that it is M that sets the scale of cn in this
way (and much of the next chapter is devoted to showing that the low-energy theory
often can be set up so that it is), higher-dimensional interactions in SW should be
expected to be more suppressed at low energies by higher powers of M .

Further progress requires a way to compute the dimension, Δn, of a given operator,
On. For weakly interacting systems dimensions can be computed in perturbation
theory. To see how this works, consider a real scalar field, φ, and suppose the regime
of interest is one where it is relativistic and very weakly interacting. This means the
action SW = S0 + Sint is dominated by its kinetic term

S0 = −
1
2

∫
d4x ∂μφ ∂

μφ, (2.80)

while all remaining terms, lumped together into Sint =
∫

d4x Lint with

Lint = −
m2

2
φ2 + c4,0 φ

4 +
c6,0

Λ2 φ
6 +

c4,2

Λ2 φ
2 ∂μφ ∂

μφ +
c4,4

Λ4 (∂μφ ∂
μφ)2 + · · · ,

(2.81)

are assumed to be small. In this expression a symmetry of the form φ → −φ is
imposed (for simplicity) so that only terms involving an even power of φ need to be
considered. Furthermore, appropriate powers of the cutoff, Λ, for the Wilsonian EFT

8 When temperatures are considered, units are also chosen with Boltzmann’s constant satisfying kB = 1,
so temperature can also be measured in units of energy.
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are included explicitly in the coefficients for each effective interaction for reasons
now to be explained.

Any effective coupling premultiplying S0 is imagined to be removed by appro-
priately rescaling φ, with the choice of 1

2 in Eq. (2.80) called canonical normal-
ization. (The reasons for using this normalization are elaborated below, and in
Appendix C.3.) Given this normalization, the dimension, [φ ], of the (scalar) field
φ is then determined by demanding that [L0] = 4, and so

4 = [∂μφ ∂
μφ ] = 2 + 2[φ ], (2.82)

which implies that [φ ] = 1 (or φ has dimensions of energy). With this choice, an
identical argument shows

[
m2
]
= 2, and so m also has dimensions of energy (as

expected, since m is interpreted as the φ-particle’s mass).
A similar story applies to all of the other terms in Sint, and shows that the factors of

Λ in (2.81) are extracted so that the remaining effective couplings are dimensionless:
[cn,d] = 0. For later purposes notice that a term in Sint involving n powers of φ and d
derivatives comes premultiplied by Λp with p = 4− n− d, and so the infinite number
of local interactions that are not written explicitly in (2.81) have effective couplings
with only negative powers of Λ.

The goal is to identify the domain of validity of the assumed perturbative hierarchy
between S0 and Sint. The next few paragraphs argue that perturbative arguments are
appropriate when the dimensionless couplings are assumed to be small: |cn,d | � 1,
following arguments made in [19]. To this end, consider evaluating SW[φk] at a wave-
packet configuration φk (x) = fk (x) eikx , where fk (x) is a smooth envelope that
is order unity for a spacetime region of linear size 2π/k in all four rectangular
spacetime directions. For such a configuration spacetime derivatives are of order
∂μφk ∼ kμφk and the spacetime volume integral is of order

∫
d4x ∼ (2π/k)4,

and so

SW[φk] ∼
(

2π
k

)4 [
k2 φ2

k + m2φ2
k + c4,0 φ

4
k +

c6,0

Λ2 φ
6
k

+ c4,2

(
k2

Λ2

)
φ4
k + c4,4

(
k4

Λ4

)
φ4
k + · · ·

⎤⎥⎥⎥⎥⎦
∼ (2π)4

[
ϕ2

k +
m2

k2 ϕ
2
k + c4,0 ϕ

4
k + c6,0

(
k2

Λ2

)
ϕ6

k

+c4,2

(
k2

Λ2

)
ϕ4

k + c4,4

(
k4

Λ4

)
ϕ4

k + · · ·
]

,

(2.83)

where ϕk := φk/k is a new dimensionless variable. What is key about ϕk is that
the path integral over ϕk would be dominated by ϕk <∼ O(1) in the absence of
interactions9 (i.e. when SW = S0). This conclusion that dominant configurations for
ϕk are order unity is contingent on the coefficient of (∂φ)2 in S0 being order unity
due to the choice of canonical normalization.

Perturbation theory in Sint requires |Sint | � |S0 | throughout the regime from
which the path integral receives significant contributions, which from the above

9 This is clearest if the problem is Wick-rotated to euclidean signature by going to imaginary time, so
that eiS → e−S . This estimate also ignores factors of 2π, though their inclusion somewhat broadens
the domain of validity of perturbative methods.
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considerations is the regime ϕk <∼ O(1). Consider first choosing k as large as
possible: near the UV cutoff |k2 | ∼ Λ2. Since Λ � m, it follows that |k2 | � m2, and
so perturbation theory in this regime requires |cn,d | � 1.

How does this conclusion change if k is now dialled down to smaller values? Since
all interactions except the φ2 and φ4 interactions come pre-multiplied by positive
powers of k2/Λ2, they become less and less important for smaller k. Interactions
like this, which are less important at lower energies, are called irrelevant. Irrelevant
interactions are also often called ‘non-renormalizable’.10

By contrast, the φ4 interaction is k-independent and so has strength controlled by
c4,0 for all k. Interactions like this, whose strength does not vary with k, are called
marginal.

Finally, the mass (or φ2) term is the only interaction that grows in importance
for smaller k, the defining property of a relevant interaction. Once |k2 | <∼ m2, the
mass term competes with S0 and so changes the nature of the dominant path
integral configurations. This nonrelativistic regime is, of course, important to many
applications, and so is returned to in some detail as the topic of Part III. Relevant
interactions are sometimes also called ‘super-renormalizable’, while marginal and
relevant interactions taken together are called ‘renormalizable’.

A similar story goes through for fields representing other spins at weak coupling.
For instance, a field, ψ, describing a free relativistic spin-half particle with lagrangian
density

S1/2 = −
∫

d4x ψ
/
∂ ψ, (2.84)

with
/
∂ = γμ∂μ for dimensionless Dirac matrices, γμ (see Appendices A.2.3 and

C.3.2), must have dimension [ψ] = 3/2. The kinetic term for an electromagnetic
potential, Aμ, is

S1 = −
1
4

∫
d4x FμνFμν = −1

2

∫
d4x ∂μAν (∂μAν − ∂νAμ), (2.85)

and so the potential has dimension [Aμ] = 1, while the field-strength satisfies
[Fμν] = 2.

It is an important fact that all of the weakly interacting fields most commonly
dealt with – such as φ, ψ and Aμ, as well as the derivative ∂μ – have positive
dimension, so more complicated interactions involving more powers of fields and/or
derivatives always have higher and higher dimension. The corresponding effective
couplings must therefore be proportional to more and more powers of 1/Λ (and so
be less and less important at low energies). This is what ensures that all but a handful
of effective interactions are irrelevant at low energies, in the sense defined above.
Precisely how irrelevant they are for any given k depends on the power of k2/Λ2

involved, so it makes sense to organize any list of potential interactions in order of
increasing operator dimension, since the leading terms on the list are likely to be the
most important at low energies.

10 The recognition that it is useful to classify interactions according to their dimension came early [6], as
did the connection to renormalizable and non-renormalizable interactions [7].



43 2.4 Dimensional Analysis and Scaling

From this point of view it is clear that the limited number of renormalizable
(marginal and relevant) interactions with dimension [On] ≤ 4 are special, since their
importance is not diminished (and can be enhanced) at low energies.

For concreteness’ sake the introductory discussion given above is phrased in
perturbation theory, so it is worth mentioning in passing that this is not, in principle,
necessary. That is, although EFT methods always exploit expansions in ratios of
energy scales (like E/mR for the toy model), it is not a requirement of principle that
the dimensionless couplings of the underlying UV theory (like λ for the toy model)
are perturbatively small.11 Although it goes beyond the scope of this chapter to show
in detail, strong underlying couplings can change some of the detailed statements
used above, such as by changing the dimension of the field to be [φ ] = 1 + δ, with
|δ | → 0 as these couplings are taken to zero. (Examples along these lines where δ
is perturbatively small are considered in later sections.) Differences like δ are called
‘anomalous dimensions’ for the quantities involved. What counts in the dimensional
arguments to follow is that the full scaling dimensions (including these anomalous
contributions) are used, rather than the lowest-order ‘naive’ scaling dimension.

Example: The Toy Model

As applied to the toy model, because the kinetic terms for the two fields ξ and χ have
the form of Eq. (2.80), the dimensions of both are [χ] = [ξ] = 1. Using this with the
full classical action, Eqs. (1.24) and (1.25), shows that [λ ] = 0 and [v] = [mR] = 1,
as expected.

Applied to the Wilson action, the effective coupling a appearing in the interaction
LW ⊃ a (∂μξ∂μξ)2 must have dimension (energy)−4, consistent with its computed
tree-level value atree = λ/4m4

R . This shows that at leading order it is explicitly
the heavy scale mR that plays the role of the dimensional parameter of the general
discussion. Powers of Λ � mR also arise once loops are included, and subsequent
sections are devoted to identifying which scale is important in any particular
application.

2.4.2 Scaling

It is worth rephrasing the above discussion more formally in terms of a scaling
transformation. This is useful for several reasons: because it sets up the use of
renormalization-group methods; and because it provides a framework that is more
easy to generalize in more complicated settings, such as in the nonrelativistic limit
considered in Part III.

To this end, consider again the scalar-field Wilson action of Eqs. (2.80) and (2.81):

SW[φ(x); m, c4,0, c6,0, · · · ] = S0[φ(x)] + Sint[φ(x); m, c4,0, · · · ], (2.86)

11 In an unfortunate use of language the breakdown of the low-energy (e.g. E/mR) expansion has in
some quarters come to be called ‘strong coupling’. This is misleading because it can happen that the
physics appropriate to these energies is weakly coupled, in the sense that it involves dimensionless
couplings that are small. For this reason in this book ‘strong coupling’ never means ‘breakdown of the
low-energy limit’, and it is reserved for situations where underlying dimensionless couplings (like λ
in the toy model) are not small.
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where the notation explicitly highlights the dependence on the effective couplings
as well as on the field φ. Now perform the scale transformation, x μ → sx μ and
φ(x) → φ(sx), where s is a real parameter. For a configuration like φk (x) ∝ eikx

this becomes φk (sx) ∝ eiskx ∝ φsk (x) and so taking s → 0 corresponds to taking
the infrared limit where k → 0.

Inserting these definitions into S0 gives

S0[φ(sx)] = −1
2

∫
d4x ∂μφ(sx) ∂μφ(sx)

= −1
2

∫
d4x ′

s4

[
s2∂μ′φ(x ′)∂μ

′
φ(x ′)

]
, (2.87)

in which the spacetime integration variable is changed from x μ to x ′μ = sx μ. This
shows that S0 remains unchanged if the scalar field variable is also rescaled according
to φ(x) → φs (x) := φ(x)/s. Requiring S0[φ(sx)] = S0[φs (x)] is natural in the
weak-coupling limit, since this keeps fixed the configurations that dominate in the
path integral over φ and φs .

With these choices, the effects of rescaling on the interaction terms can be read
off, giving

Sint[φ(sx); m, c4,0, c6,0, c4,2, · · · ] =
∫

d4x ′
[
− m2

2s2 φ
2
s + c4,0φ

4
s +

s2c6,0

Λ2 φ6
s

+
s2c4,2

Λ2 φ2
s (∂μ′φs∂

μ′φs) + · · ·
]

= Sint

[
φs (x);

m
s

, c4,0, s2c6,0, s2c4,2 · · ·
]

. (2.88)

This shows that changes of scale can be compensated by appropriately rescaling all
effective couplings. For instance, for an interaction Sn[φ; an] =

∫
d4x anOn[φ] ∈

Sint, where On has engineering dimension [On] = Δn, the required scaling is

Sn[φ(sx); an] = Sn[φs (x); spn an], (2.89)

where pn = −[an] = Δn − 4 = (so that an = cn/Λpn for dimensionless cn).
Rescalings can be regarded as motions within the space of coupling constants. This

provides an alternative way to define relevant, marginal and irrelevant interactions.
Since low energies correspond to s → 0, an effective interaction is irrelevant if
pn > 0, it is marginal if pn = 0 and it is relevant if pn < 0. This definition clearly
agrees with the one presented earlier.

2.5 Redundant Interactions ♦

It is generally useful to have in mind what are the most general possible kinds of
effective interactions that can arise in a Wilson action at any given dimension, and
it is tempting to think that this means simply listing all possible combinations of
local interactions involving the given fields and their derivatives. In practice, such
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a list over-counts the number of possible interactions because there is considerable
freedom to rewrite the effective action in superficially different, but equivalent, ways.

Because of this freedom, some combinations of interactions can turn out not to
influence observables at all (or only do so in special situations), and it is important
to identify these to avoid over-counting the couplings that are possible. Ignorable
interactions like this that have no physical effects are called redundant interactions,
and this section describes two generic kinds of redundancy that commonly arise.

Total Derivatives

The first category of often-ignorable interactions are total derivatives – such as, for
the generic low-energy field φ of the last section

Sint = −g
∫

d4x ∂μ
(
φ2∂μφ

)
. (2.90)

Stokes’ theorem allows this kind of interaction to be written as a function only of
boundary data ∫

M

d4x ∂μ
(
φ2∂μφ

)
=

∫
∂M

d3x nμ
(
φ2∂μφ

)
, (2.91)

where nμ denotes the outward-directed unit normal to the boundary ∂M of the initial
integration region M . To the extent that the physics of interest does not depend on
this boundary data (such as if there are no boundaries, or if spatial infinity is the
‘boundary’ and all fields fall off sufficiently quickly at infinity), such total derivatives
can be dropped.

Of course, no mistakes are actually made by keeping redundant interactions in a
calculation; one just works unnecessarily hard. This is because couplings like g in
the example above do not in any case appear in physical observables. To see how this
can happen in detail, consider the example of the momentum–space Feynman rule
computed for the 3-point vertex described by Eq. (2.90):

g(p1 + p2 + p3) · p3
[
i(2π)4δ4(p1 + p2 + p3)

]
. (2.92)

Here, pi · pj = ημνp
μ
i pνj where p

μ
i denote the inward-pointing 4-momenta for each

of the lines attached to the vertex. Due to the presence of the energy–momentum
conserving delta function, this has the form x δ(x) = 0, and so identically vanishes.
Consequently, this kind of interaction cannot contribute to any order in a perturbative
expansion organized in terms of Feynman graphs.

The neglect of total-derivative terms must be re-examined in situations with
boundaries or where the asymptotic behaviour of fields cannot be ignored. This can
happen either when there really are physical boundaries or when there are fields
that are sensitive to nontrivial topology.12 When boundaries are present the above
discussion continues to apply provided that the appropriate boundary interactions
are also included (see §5 and §7.4 and §15.3 for examples along these lines).

12 Topology enters if there are terms in the lagrangian that are locally total derivatives, but cannot be
globally written this way throughout all of space.
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Field Redefinitions

A second type of ignorable interaction is one that can be removed by performing
a local field redefinition. Since physical quantities cannot depend on the particular
choice of variables used by specific physicists for their description,13 anything that
can be removed by a nonsingular change of variables cannot contribute to any
physical observables.

But how does one decide if a particular interaction can be removed in this way? It
turns out there is a very simple criterion that works for any situation where the action
is given as a series in a small quantity, ε:

S[φ ] = S0[φ ] + ε S1[φ ] + ε2 S2[φ ] + · · · . (2.93)

This form always applies for the Wilson action in particular, where the corresponding
expansion would be the low-energy approximation.

Imagine performing a generic infinitesimal field redefinition of the form

δφ = ε f1[φ ] + ε2 f2[φ ] + · · · , (2.94)

for some arbitrary local functions, f i = f i (φ, ∂φ, · · · ), of the fields and their
derivatives. The change in Eq. (2.93) is

δ S =
∫

d4x

{
δS0

δφ(x)
+ ε

δS1

δφ(x)
+ ε2 δS2

δφ(x)
+ · · ·

}
δφ (2.95)

=

∫
d4x

{
ε

[
δS0

δφ(x)
f1

]
+ ε2

[
δS0

δφ(x)
f2 +

δS1

δφ(x)
f1

]
+ · · ·

}
.

This shows that the function f1 can be used to remove any interaction in S1

that is proportional to δS0/δφ – and so vanishes when its lowest-order equations
of motion are used14 – up to terms that are O

(
ε2

)
. For instance, a term in Si of

the form

Si ⊃
∫

d4x
δS0

δφ(x)
B[φ ], (2.96)

(for some local function B[φ]) is removed using the choice f i = −B. That is, the
quantities f1 through fn+1 can be used to remove any interaction in S − S0 that
vanishes when δS0/δφ = 0, order-by-order in ε. Notice also that (2.95) also shows
that the redefinition that removes terms from Si can do so at the expense of also
introducing new terms into Sj for j > i.

Example: The Toy Model

As usual, it is useful to make things concrete with an explicit example, for which
the toy model of Chapter 1 is again pressed into service. To apply these ideas to the
toy model, recall what has been found for its Wilson action so far. The calculations
performed in the previous sections show it to have the form

13 This is a theorem for scattering amplitudes [8], but it also applies to more general observables.
14 This observation seems to have been general knowledge back into the mists of time, but the earliest

explicit mention of it in the literature I have found is [20] (see also footnote 9 of [2]).
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SW[ξ] = −
∫

d4x

[
1
2
∂μξ∂

μξ − a(∂μξ∂
μξ)2 − a′(∂μξ∂

μξ) (∂μξ∂
μξ)

− b (∂μξ∂
μξ)3 − b′(∂μξ∂

μξ) (∂μξ∂
μξ)3 + · · ·

]
, (2.97)

where

a =
1

m4
R

[
λ
4
+ O(λ2)

]
, a′ =

1
m6

R

[
λ
4
+ O(λ2)

]
, b =

1
m8

R

[
0 + O(λ3)

]
(2.98)

and so on. The question is: are these the most general kinds of interactions possible?
In particular, are there terms suppressed by only two powers of 1/mR? If not, why
not?

Of course, symmetries restrict the form of SW, and for the toy model symmetry
under the shift ξ → ξ+

√
2 v ω requires ξ always to appear in SW differentiated, so all

interactions must involve at least as many derivatives as powers of ξ. Furthermore,
to be a Lorentz scalar it must involve an even number of derivatives, so that all
Lorentz indices can be contracted. But these conditions allow interactions that do
not appear in Eq. (2.97). For instance, they allow the following effective interactions
with dimension (energy)6,

L6 =
a1

m2
R

(∂μξ ∂
μξ) +

a2

m2
R

(∂μ∂νξ ∂
μ∂νξ)

=
(a1 − a2)

m2
R

(∂μξ ∂
μξ) +

a2

m2
R

∂ν (∂μξ ∂
μ∂νξ), (2.99)

where (given the explicit dimensional factor of m−2
R ) a1 and a2 are dimensionless

effective couplings.
The point is that both of these interactions are redundant, in the sense outlined

above. The second line shows that one combination can be regarded as a total
derivative, and so it is redundant to the extent that boundaries (or topology) do
not play an important role in the physics of interest. The remaining term, involving
the combination ∂μξ ∂μξ, vanishes once evaluated using the equations of motion,
ξ = 0, for the lowest-order action. It can therefore be removed using the field

redefinition

ξ → ξ +
a2 − a1

m2
R

ξ, (2.100)

since in this case

−1
2
∂μξ∂

μξ → −1
2
∂μξ∂

μξ +
a2 − a1

m2
R

(∂μξ ∂
μξ), (2.101)

up to terms of order 1/m4
R . This shows that (in the absence of boundaries) the first

low-energy effects of virtual heavy particles arise at order 1/m4
R rather than 1/m2

R .
What about interactions with dimension (energy)8: is (∂μξ ∂μξ)2 the only allowed

dimension-8 interaction? Since total derivatives are dropped, integration by parts
can be used freely to simplify any candidate interactions. The most general possible
Lorentz-scalar interactions invariant under constant shifts of ξ then are

L8 = −a(∂μξ∂
μξ)2 − a3

m4
R

(∂μξ
2
∂μξ), (2.102)
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where a3 is a new dimensionless coupling and the freedom to integrate by parts is
used (for the terms quadratic in ξ) to ensure all of the derivatives but one act on
only one of the fields. The second term in (2.102) can be removed using the field
redefinition

ξ → ξ +
a3

m4
R

2 ξ, (2.103)

without changing the coefficient a (or coefficients of any lower-dimension interac-
tions), showing that a captures all of the effects that can arise at order 1/m4

R .

2.6 Summary

This chapter lays one of the cornerstones for the rest of the book; laying out how effective lagrangians fit
into the broader context of generating functionals and the quantum (1PI) action.15 By doing so, it provides
a constructive framework for defining and explicitly building effective actions for a broad class of physical
systems.

The 1PI action is a useful starting point for this purpose because it already plays a central role in quantum
field theory. It does so partly because it is related to the full correlation functions and the energetics of field
expectation values in the same way that the classical action is related to the classical correlation functions
and the energetics that fixes the values of classical background fields. The low-energy 1LPI action is the
natural generalization of the 1PI action because it is constructed in precisely the same way, but with the
proviso that it only samples slowly varying field configurations. As such, it contains all the information
needed to construct any observable that involves only low-energy degrees of freedom.

In this chapter, the Wilson action, SW, emerges as the minimal object for capturing the implications of
high-energy degrees of freedom for the low-energy theory. The Wilson action is related to the 1LPI action
in the low-energy theory in precisely the same way that the classical action is related to the 1PI generator in
the full theory. Because SW is obtained by integrating out only high-energy states, its interactions efficiently
encode their low-energy implications. And because knowledge of SW allows the calculation of the 1LPI
action it contains all of the information required to compute any low-energy observable.

The chapter concludes with a few tools that will prove useful in later chapters when computing and
using the Wilson action. The first tool is simply dimensional analysis, which classifies effective interactions
based on their operator dimension (in powers of energy). More and more interactions exist with larger
operator dimension, but it is the relatively few lower-dimension interactions in this classification that are
more important at low energies. This chapter also describes the related renormalization-group scaling
satisfied by the effective couplings. These express how the effective couplings differentially adjust as more
and more modes are integrated out, lowering the energy scaleΛ that differentiates low energies from
high. (The next chapter also has more to say about this dimensional scaling and its utility for identifying
which interactions are important at low energies.)

The second tool described in this chapter identifies classes of effective interactions that are redundant
in the sense that they do not contribute at all to physical processes. They do not contribute for one of two

15 In some of the earlier literature the quantum action is also called the effective action, unlike the modern
usage, where effective action usually means the Wilson action.
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reasons: either they are total derivatives and so are only sensitive to physics that depends in detail on the
information at the system’s boundaries; or because a change of variables exists that allows them to be
completely removed.

Exercises

Exercise 2.1 Prove Eq. (2.6) starting from Eqs. (2.2) and (2.4).
Exercise 2.2 Draw all possible two-loop vacuum diagrams that contribute to Z[J] in a

theory involving both cubic and quartic interactions (such as a scalar potential
V (φ) = gφ3+λφ4 for scalar-field self-interactions). Which of these diagrams
contribute to W [J] and to Γ[ϕ]?

Exercise 2.3 For a scalar field self-interacting through the potential V = gφ3 + λφ4

express Eq. (2.15) as a sum of Feynman graphs with two external lines. Draw
all graphs that contribute out to two-loop order. Show how the disconnected
graphs cancel in the result.

Exercise 2.4 Prove that the graphical expansion of W [J], defined by Z[J] =
exp
{
iW [J]

}
, is obtained by simply omitting any disconnected graphs that

contribute to Z[J]. Do so by showing that the exponential of the sum of all
connected graphs reproduces all of the combinatorial factors in the sum over
all (connected and disconnected) graphs. For this argument it is not necessary
to assume that only cubic or quartic interactions arise in Sint.

Exercise 2.5 Consider a single scalar field, ϕ, self-interacting through a scalar poten-
tial U (ϕ). Evaluate Eq. (2.23) in one-loop approximation for ϕ specialized
to a constant spacetime-independent configuration. To do so, use the identity
ln detΔ = Tr lnΔ and work in momentum space, for which Δ(p, p′) =
(p2 + m2 − iε) δ4(p − p′), where m2 := U ′′ := ∂2U/∂ϕ2. Evaluate the trace
explicitly and Wick rotate to Euclidean signature (p0 = ip4

E ) to derive the
following expression

Vq(ϕ) = U (ϕ) +
1
2

∫
d4pE

(2π)4 ln(p2
E + m2) = U∞(ϕ) +

1
64π2 m4 ln

(
m2

μ2

)
,

for the quantum effective potential. Regulate the UV divergences using dimen-
sional regularization (for which μ is the arbitrary scale: see Appendix A.2.4),
and show that U∞(ϕ) = U (ϕ) + A + B m2(ϕ) + Cm4(ϕ), where A, B and
C are divergent constants in four spacetime dimensions. Show that if U (ϕ) =
U0 +U2ϕ2 +U4ϕ4 is quartic (and so renormalizable) then all divergences can
be absorbed into the constants U0, U2 and U4.

Exercise 2.6 Prove that the quantum effective potential is always convex [16, 21]
when constructed about a stable vacuum. That is, show that for 0 ≤ s ≤ 1

Vq[sϕ1 + (1 − s)ϕ2] ≤ sVq(ϕ1) + (1 − s)Vq(ϕ2).

Exercise 2.7 Suppose the action S[φ] for a field theory is invariant under a symmetry
transformation of the form δφa = ω ζa (φ), where ζa (φ) is a possibly
nonlinear function and ω is an infinitesimal symmetry parameter. Show that
the 1PI generator, Γ[ϕ], is invariant under the symmetry δϕa = ω 〈ζa〉J,
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where the matrix element is taken in the adiabatic vacuum in the presence
of the current Ja (ϕ) defined by Eq. (2.16). In the special case of a linear
transformation, with ζa (φ) = Ma

b φb the condition 〈φa〉J = ϕa implies that
both Γ[ϕ] and S[φ] share a symmetry with the same functional form.

The invariance condition δΓ = 0 for this transformation can be expressed as∫
d4x 〈ζa (x)〉J

δΓ
δϕa (x)

= 0.

Since this is true for all ϕa (x) repeated functional differentiation leads to a
sequence of relations – called Taylor–Slavnov identities [22, 23] – amongst the
1PI correlation functions obtained by differentiating Γ[ϕ].

Exercise 2.8 For the toy model of §1 draw all tree-level (no loops) Feynman graphs
that can contribute to the effective interaction LW ⊃ c (∂μ ξ ∂μξ)4 within the
Wilson action. Evaluate these graphs and compute the effective coupling c at
tree level.

Exercise 2.9 Construct the most general possible renormalizable relativistic interac-
tions for a single real scalar field φ in D = 4 spacetime dimensions. Repeat
this exercise for D = 6 spacetime dimensions. For D = 4 find the most general
possible renormalizable relativistic interactions for a real scalar field coupled
to a spin-half Dirac field ψ.

Exercise 2.10 For a real scalar field, ξ, subject to a shift symmetry, ξ → ξ + constant,
every appearance of ξ in the Wilson action must be differentiated at least
once. Show that the most general effective interactions possible for such a field
involving six or fewer derivatives is

LW = −
1
2

(∂μξ ∂
μξ) + a (∂μξ ∂

μξ)2 + b (∂μξ ∂
μξ)3

+ c (∂μξ ∂
μξ)(∂λ∂ρξ) (∂λ∂ρξ),

up to redundant interactions, for effective couplings a, b and c.
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The previous chapter argues that the Wilson action captures the influence of virtual
high-energy states on all low-energy observables, but a good number of questions
remain to be addressed before it becomes a tool of practical utility. In particular,
the Wilson action in principle contains an infinite number of interactions of various
types, and although these are local (once expanded in inverse powers of the heavy
scale) they ultimately involve arbitrarily many powers of the low-energy fields and
their derivatives. What is missing is a simple way to identify systematically which
interactions are required to calculate any given observable to a given order in the
low-energy (and any other) expansions.

In principle, as argued in §2.4, what makes the Wilson action useful is dimensional
analysis, which shows that more complicated interactions (with more derivatives or
powers of fields) have coupling constants more suppressed by inverse powers of
the physical heavy mass scale, M (like mR in the toy model). This suggests that a
dimension-Δ interaction can be ignored at low energies, E, provided effects of order
(E/M)p , with p = Δ − 4, are negligible.

Sounds simple. Unfortunately, there is a confounding factor that complicates the
simple dimensional argument. Although each use of an effective interaction within
a Feynman graph costs inverse powers of a heavy scale like M , it is also true that
the 4-momenta of virtual particles circulating within loops can include energies that
are not small. This means that heavy scales can appear in numerators of calculations
as well as in denominators, making it trickier to quantify the size of higher-order
effects. Power counting – the main subject of this chapter – makes this argument
more precise, and is the tool with which to identify which effective interactions are
relevant to any particular order in the low-energy expansion.

To see how scales appear in calculations, for some purposes it is useful to explicitly
track cutoffs, like Λ, that label the highest energies allowed to circulate within loops.
Depending on the relative size of scales like M and Λ, it can happen that loop effects
can cause effective couplings to acquire coefficients cn ∝ Λ−p rather than cn ∝
M−p. For p > 0 these naively dominate because Λ � M . Estimates of the size of
such corrections are discussed in this chapter in the section devoted to the ‘exact
renormalization group’ (or ‘exact RG’).

But it is also true that Λ ultimately drops out of physical quantities, making its
presence an unnecessary complication when formulating dimensional arguments.
(Λ drops out of physical quantities because the precise split between low- and
high-energy quantities is ultimately a book-keeping device for making calculations
convenient, so Λ is not a physical scale. As this chapter shows, the disappearance of
Λ in physical predictions happens in detail because the explicit Λ-dependence of the
effective couplings in SW cancels the Λ-dependence implicit in the definition of the
low-energy path integral in which SW is used.)51
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These observations suggest it is likely to be more efficient to formulate low-
energy quantities in a cutoff-independent way. In particular, power counting is most
efficiently formulated when dimensional regularization is used to define the Wilson
action, rather than a floating cutoff like Λ. Ultimately, power counting turns the
Wilson action from a chain-saw into a scalpel, making it a tool for making precision
calculations. Along the way, it shows why UV divergences are only nuisances that
are not fatal complications to the formulation of the low-energy theory, and provides
deep conceptual insights into the physical meaning of renormalizability.

3.1 Loops, Cutoffs and the Exact RG ♠

The goal of this section is to explicitly track how the scales appearing in the Wilson
action propagate into low-energy observables.1 To this end, suppose the Wilson
action computed from a specific underlying theory has the form

SW = SW, 0 + SW, int, (3.1)

with

SW, 0 = −
f4

M2v2

∫
d4x
[
∂μφ ∂

μφ + m2φ2
]

SW, int = −f4
∑
n

ĉn
Mdnv fn

∫
d4x On(φ), (3.2)

where φ denotes a generic low-energy field which the form for S0 assumes to
be bosonic, with [φ ] = 1. For simplicity only one field is kept here, though
the dimensional arguments to follow remain unchanged if φ instead represents a
collection of fields. The index n runs over a complete set of labels for all possible
interactions, for each of which there are two non-negative integers, dn and fn, that
respectively count the number of powers of derivatives and fields that appear in the
interaction On. For example, for an effective interaction like O = φ2∂μφ ∂μφ these
constants are dn = 2 and fn = 4.

The three dimensionful quantities f, v and M are all energy scales much larger than
the light-particle mass, m, that can be (but need not be) independent of one another
or of Λ. Roughly speaking, this writes the action as an expansion in powers of fields,
φ/v, and derivatives, ∂/M , with no a-priori requirement that the two comparison
scales v and M be similar. The scale f4 gives the rough energy density associated
with φ ∼ v and ∂ ∼ M . The goal is to track how these scales appear in physical
quantities once SW is used to compute them.

The kinetic term coming from SW, 0 carries the factor f4/M2v2 so that it scales
with these parameters in the same way as do the interaction terms. Although this
means φ is not canonically normalized (unless f4 = 1

2 M2v2), the discussion
is nonetheless kept general by working with Feynman rules that do not assume
canonical normalization.

1 This and later sections broadly follow the logic of [2], though details and notation used follow that of
[24].
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With these definitions, to leading order the total dimension of an interaction having
dn derivatives and fn powers of φ is therefore

Δn := [On] = dn + fn, (3.3)

so the powers of f, M and v ensure that the coefficients ĉn are dimensionless to
leading order (assuming [φ ] = 1).

3.1.1 Low-Energy Amplitudes

Imagine now using these effective interactions in a path integral to compute a low-
energy observable. Working perturbatively in SW, int amounts to evaluating various
Feynman graphs using SW, 0 to define the internal lines and SW, int to define the effective
interaction vertices.

Suppose AE (q) denotes the result of evaluating an amplitude involving E external
lines, regarded as a function of a collection of external kinetic variables, q, sharing
a common low-energy scale E � f, M , v,Λ. AE could be a scattering amplitude
among low-energy particles, or might be a contribution to the generating functional2

Γle. The goal is to determine the systematics of how AE (q) depends on the various
energy scales as a function of E and q. But, in general, different Feynman graphs
involving different numbers of internal lines and vertices can depend on these
variables differently, so it is also worth tracking the dependence on other quantities
like the number, I, of internal lines and the number, Vn, of vertices coming from
the interaction On. Since On involves fn fields, there are fn lines that converge at
the corresponding vertex, while dn counts the number of derivatives appearing in the
corresponding Feynman rule.

Some Useful Identities

The first observation is that the positive integers, I, E and Vn, that characterize any
particular graph are not all independent. Rather, they are related by the rules for
constructing graphs from lines and vertices.

One such relation is obtained by equating the two equivalent ways of counting the
number of ends of internal and external lines in a graph:

• On one hand, since all lines end at a vertex, the number of ends is given by
summing over all of the ends appearing in all of the vertices:

∑
n fnVn;

• On the other hand, there are two ends for each internal line, and one end for each
external line in the graph: making a total of 2I + E ends.

Equating these two ways of counting gives the identity expressing the ‘conservation
of ends’:

2I + E =
∑
n

fnVn, (conservation of ends). (3.4)

2 For applications to scattering amplitudes and generating functionals external lines are amputated from
Feynman graphs, which matters when applying dimensional analysis to the result. For this reason a
minor modification is required to apply the power-counting results here to correlation functions – see
e.g. the discussion of §10.2.1.
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A second useful identity defines the number of loops, L, for each (connected)
graph:

L = 1 + I −
∑
n

Vn, (definition of L). (3.5)

As mentioned around Eq. (2.24), this definition is motivated by the topological
identity that applies to any graph that can be drawn on a plane, that states that
L − I + ∑

nVn = 1 (which is the Euler number of a disc). In what follows, Eqs.
(3.4) and (3.5) are used to eliminate I and

∑
n fnVn.

Feynman Rules

The next step is to use the action of Eqs. (3.2) and (3.55) to construct the Feynman
rules for the graph of interest. This is done here in momentum space, but since the
argument to be made is in essence a dimensional one, it could equally well be made
in position space.

Schematically, in momentum space the product of all of the vertices contributes
the following factor to the amplitude:

(Vertices) =
∏
n

⎡⎢⎢⎢⎢⎣i(2π)4δ4(p) f4
( p

M

)dn (
1
v

) fn ⎤⎥⎥⎥⎥⎦
Vn

, (3.6)

where p generically denotes the various momenta running through the vertex. The
product of all of the internal line factors gives the additional contribution:

(Internal Lines) =

[
−i

∫
d4p

(2π)4

(
M2v2

f4

)
1

p2 + m2

]I
, (3.7)

where p again denotes the generic momentum flowing through the lines. m is the
mass of the light particle (or their generic order of magnitude – for simplicity taken
to be similar in size – should there be more than one light field) coming from
the unperturbed term, Eq. (3.2). For the ‘amputated’ Feynman graphs relevant to
scattering amplitudes and contributions to effective couplings in Γle the external lines
are removed, and so no similar factors are included for external lines.

The momentum-conserving delta functions appearing in (3.6) can be used to
perform many of the integrals appearing in (3.7) in the usual way. Once this is done,
one delta function remains that depends only on external momenta, δ4(q), and so
cannot be used to perform additional integrals. This is the delta function that enforces
the overall conservation of energy and momentum for the amplitude. It is useful to
extract this factor once and for all, by defining the reduced amplitude, AE , by

AE (q) = i(2π)4δ4(q) AE (q). (3.8)

The total number of integrations that survive after having used all of the momentum-
conserving delta functions is then I − ∑

nVn + 1 = L. This last equality uses the
definition, Eq. (3.5), of the number of loops, L.

3.1.2 Power Counting Using Cutoffs

The hard part in computing AE (q) is to evaluate the remaining multi-dimensional
integrals. Things are not so bad if the only goal is to track how the result depends on
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the scales f, M and v, however, since then it suffices to use dimensional arguments to
estimate the size of the result. Since the integrals typically diverge in the ultraviolet,
they are most sensitive to the largest momenta in the loop, and according to Eq. (2.59)
this is set by the cutoff Λ. (The contributions of loops having momenta higher than
Λ are the ones used when computing SW itself from the underlying theory.)

This leads to the following dimensional estimate for the result of the integration∫
· · ·

∫ [
d4p

(2π)4

] A
pB

(p2 + m2)C
∼

(
1

4π

)2A

Λ4A+B−2C . (3.9)

For the purposes of counting 2π’s, a factor of π2 is included for each d4p integration
corresponding to the result of performing the three angular integrations.3

The idea is to Taylor expand the amplitude AE (q) in powers of external
momentum, q, using Eq. (3.9) to estimate the size of the coefficients. Schematically,

AE (q) �
∑
D
AED qD , (3.10)

where the coefficients require an estimate for the following integral

AED qD ∝
∫
· · ·

∫ [
d4p

(2π)4

]L 1
(p2 + m2)I

(
q
p

)D ∏
n

pdnVn

∼
(

1
4π

)2L ( q
Λ

)D
Λ4L−2I+∑n dnVn . (3.11)

Combining this with the powers of f, M and v given by the Feynman rules then gives,
after using identities (3.4) and (3.5),

AED qD ∼ f4
(

1
v

) E ( q
Λ

)D (
MΛ

4π f2

)2L (
Λ

M

)2+
∑

n (dn−2)Vn

. (3.12)

This is the main result of this section, whose properties are now explored.
A reality check for this formula comes if it is applied to the simplest graph of all

(see Fig. 3.1): one including no internal lines (so L = 0) and only a single vertex,
n = n0, with fn0 = E external lines and dn0 = D derivatives (so

∑
nVn = 1

and
∑

n dnVn = D). In this case, (3.12) implies that the amplitude depends on the
scales M , Λ and f in precisely the same way as does the starting lagrangian (3.2):
AED qD ∼ f4(1/v)E (q/M)D .

�
�

�
�

�
� � ���

Fig. 3.1 The graph describing the insertion of a single effective vertex withE external lines and no internal lines.

3 The factor of π2 is clearest to see if momenta are Wick rotated to euclidean signature, since it there
represents the volume of the unit 3-sphere corresponding to the integration over the three directions
taken by a 4-vector.
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A second reality check applies (3.12) to the special case where all scales are set by
Λ (i.e. f = M = v = Λ) since this corresponds to the choices made in the dimensional
arguments of §2.4.1. In this limit (3.12) becomes

AED qD ∼ Λ4
(

1
Λ

) E ( q
Λ

)D (
1

4π

)2L
. (3.13)

Since E and D are fixed by external characteristics (the total number of external
legs and power of q in the final answer), the last factor is the only part of (3.13)
that changes for more and more complicated diagrams that share these external
properties. This factor simply says that 1/(4π)2 is the price for each additional loop;
that is to say, all graphs with a fixed number of loops are similar in size assuming the
(unwritten) dimensionless couplings – i.e. the ĉn of (3.2) – are also similar in size.
Furthermore, perturbation theory in this regime is ultimately controlled by the ratio
of the dimensionless ĉn compared with 16π2. The statement that perturbation theory
applies for small enough ĉn agrees with (and refines) the simple estimate of §2.4.1.

Validity of the Perturbative Expansion

More broadly, Eq. (3.12) outlines the domain of validity of the perturbative expansion
itself. If the contribution estimated in Eq. (3.12) is small for all choices of D, E, L
and Vn, then this ensures that the perturbative expansion used in its derivation is
a good approximation, particularly if more complicated graphs (higher L and Vn)
are more suppressed than less complicated ones. Conversely, if there is a choice for
D, E, L and Vn for which Eq. (3.12) is not small, then the perturbative expansion
fails unless some other small parameter – such as the dimensionless couplings
ĉn of (3.2) – can be found that can systematically suppress more complicated
graphs. Furthermore, since the semiclassical expansion is an expansion in loops,4

the perturbative expansion becomes a semiclassical expansion when it is the
L-dependent factor that controls perturbation theory.

Eq. (3.12) shows that there are three small quantities whose size can help control
perturbative corrections: q/Λ, Λ/M and ΛM/4πf2. Some remarks are in order for
each of these.

Derivative Expansion

Consider first the factor q/Λ, which controls the suppression of higher powers of
external momenta. There is no question that q/Λ � 1 since the entire construction
of the low-energy theory presupposesΛ can be chosen much smaller than the scale of
the heavy physics that is being integrated out, but much larger than the low energies,
q � E of applications. But when Λ � M the ratio q/Λ is much bigger than q/M ,
even if both are separately very small. Eq. (3.12) therefore shows that it could happen
that the derivative expansion in physical quantities (like scattering amplitudes) and in
quantities like SW ends up being controlled by powers of q/Λ rather than the powers
of q/M assumed for the original action, (3.2). This point is returned to in §3.1, but
it means that (all other things being equal) derivatives like to be suppressed by the

4 The connection between loops and the semiclassical expansion is established in the discussion
surrounding (2.24). In essence, the semiclassical expansion counts loops because it is an expansion
in powers of �, which appears as an overall factor in the quantity S/� within the path integral.
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lowest possible UV scale available: in this caseΛ. The case M � Λ is one that should
be taken seriously in what follows.

Field Expansion

Notice that the same thing does not happen for the expansion in powers of φ/v, since
the factor (1/v)E assumed to appear in SW does not get converted into a power like
(1/Λ)E or (1/M)E in AE . This means that it is consistent to have the scale v that
controls the field expansion be systematically different from the scales Λ or M that
control the derivative expansion. These scales are logically independent because, in
general, large fields need not imply large energies, so small-field expansions are not
necessarily required in a low-energy limit.

Loop Expansion

Next consider the suppressions coming from loops and vertices. Notice first that
if M � Λ then the only systematic perturbative suppression in (3.12) comes from
loops, due to the factor (Λ2/4πf2)2L . If all dimensionless couplings are order unity
then perturbation theory in this limit is revealed to be a semiclassical expansion
(i.e. controlled purely by the number of loops) whose validity rests on the assumption
4πf2 � Λ2.

This condition is automatically satisfied in the regime Λ � M provided that
f >∼ M is also true. It is a much stronger condition on Λ, however, if f should
be much smaller than M . In the particularly interesting case where f2 � Mv

(corresponding to canonical normalization in (3.2)) the loop-suppression factor
becomes (MΛ/4πf2)2L � (Λ/4πv)2L .

Dangerous Non-Derivative Interactions

Finally, consider the final factor in (3.12). If Λ <∼ M the power of (Λ/M)P appearing
in Eq. (3.12) represents a suppression rather than an enhancement, provided the
power

P := 2 +
∑
n

(dn − 2)Vn, (3.14)

is non-negative. It is this factor that expresses the suppression of the effects of
interactions involving three or more derivatives.

Lorentz invariance often requires dn to be even (e.g. for scalar fields), and in this
case it is only interactions with no derivatives at all (dn = 0) for which P can be
negative. These interactions are potentially dangerous in that they can in principle
allow an enhancement in AE when Λ � M . When such interactions exist a more
detailed estimate is required to see whether higher-order effects really are suppressed.

As an example of non-derivative interactions, imagine the low-energy field, φ,
self-interacts through a scalar potential,

SW ⊃ −
∫

d4x V (φ), (3.15)

where

V (φ) := f4V
∑
r

gr

(
φ

v

)r
. (3.16)
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Here, gr are dimensionless couplings and f4V is the typical potential energy density
associated with fields of order φ � v. If fV � f then repeating the above power
counting argument shows that each appearance of a vertex drawn from V (φ)
contributes an additional factor gr (fV/f)4, modifying Eq. (3.12) to

AED qD ∼ Λ
2f4

M2

(
1
v

) E ( q
Λ

)D (
MΛ

4π f2

)2L
(3.17)

×
⎧⎪⎨⎪⎩
∏
r

[
gr

(
f4V M2

f4Λ2

)]V0,r ⎫⎪⎬⎪⎭
⎧⎪⎪⎨⎪⎪⎩
∏
d≥2

∏
id

(
Λ

M

) (d−2)Vd,id ⎫⎪⎪⎬⎪⎪⎭ ,

where the product over vertex labels is now subdivided into groups involving
precisely d derivatives: {n} = {d, id }, with i0 = r .

This last expression shows that the potentially hazardous enhancement factor,
(M/Λ)2V0,r , need not be dangerous if the potential energy density in the low-energy
theory is sufficiently small relative to the generic energy density, f4V /f

4 <∼ Λ2/M2. But
if this is not so, generic non-derivative interactions can be legitimate obstructions to
having a well-behaved low-energy limit, a point that must be checked on a case-by-
case basis.

Example: The Toy Model

The Wilson action for the toy model, Eq. (2.97), is a special case of the general form
assumed in Eqs. (3.2), with M = mR and f2 = mRv and no zero-derivative interactions
for the low-energy field ξ. For this special case the estimate Eq. (3.12) becomes

AED qD ∼ v2Λ2
(

1
v

) E ( q
Λ

)D (
Λ

4π v

)2L (
Λ

mR

)∑
n (dn−2)Vn

, (3.18)

which neglects dimensionless factors that come as a series in powers of the
coupling λ.

Notice that Eq. (3.18) agrees with the calculations of the previous chapter for the
size of tree and loop contributions to the effective vertex, ale(∂μξ ∂μξ)2 appearing in
Γle, for which E = D = 4. For instance, consider the three contributions of Fig. 2.5.
Figure (a) has L = 0 and V4,4 = 1, and so Eq. (3.18) gives

δ ale ∼ v2Λ2(1/v)4(1/Λ)4(Λ/mR)2

∼ 1/(v2m2
R ) = λ/m4

R ; (3.19)

Figure (b) has L = 1 and V4,4 = 2, and so Eq. (3.18) gives

δ ale ∼ v2Λ2(1/v)4(1/Λ)4(Λ/4πv)2(Λ/mR)4

∼ [1/(16π2v4)](Λ/mR)4 ; (3.20)

Figure (c) has L = 1 and V6,6 = 1, and so Eq. (3.18) gives

δ ale ∼ v2Λ2(1/v)4(1/Λ)4(Λ/4πv)2(Λ/mR)4

∼ [1/(16π2v4)](Λ/mR)4. (3.21)

These all agree with the estimates performed in §2.3.
But Eq. (3.18) contains much more information than just this. Most importantly,

since the symmetry ξ → ξ + constant implies that there are no interactions with
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d < 4, it follows that higher-order graphs are always suppressed by positive powers of
the small ratios Λ/4πv or Λ/mR. The small size of these ratios is what is responsible
for weak coupling in the low-energy theory, showing that it is the derivative coupling
of Goldstone bosons at low energies that allows SW to be treated perturbatively (and
not the size of the coupling λ in the underlying theory).

The toy model also provides insight into the relationship between the scales M and
v that respectively control the derivative and field expansions in the Wilson action.
To see why, recall that m2

R = λv
2, so the perturbative semiclassical regime λ � 1

is where the scales M = mR and v are very different from one another. Yet even so,
Eq. (3.18) demonstrates that each external line (which, for calculations of Γle, counts
the power of φ) is accompanied by at least one power of 1/v. Quantum corrections do
not change the fact that it is always the size of φ/v that controls the field expansion,
regardless of the scale appearing in the low-energy expansion.

3.1.3 The Exact Renormalization Group

Another instructive use of (3.12) is to estimate how the couplings in SW themselves
evolve as Λ changes. At first sight, this might seem surprising, since the evolution of
couplings in SW are obtained by starting from the underlying high-energy theory and
integrating out all physics at energy scales above Λ. For this calculation, however,
Λ is the lowest scale in the integration rather than the highest scale, so naively the
dimensional arguments leading to (3.12) (which take Λ to be the largest scale in all
integrals) might seem not to apply.

The estimate (3.12) is nevertheless useful because any Λ-dependence acquired
by SW when integrating out modes with energies larger than Λ must ultimately be
cancelled when SW is used to integrate out the remaining modes with energies smaller
than Λ – to which (3.12) does apply.

This can be formalized by comparing the result obtained when computing
something like the 1LPI generator, Γle[φ;Λ], using the Wilson action defined at a
cutoff scale Λ with that obtained with the Wilson action defined at a slightly lower
cutoff SW[φ,Λ′], with Λ′ = Λ − dΛ. Either of these is an equally good starting
point for computing Γle, since this is Λ-independent. (It could, after all, have been
computed for the full theory without ever dividing the problem into a contribution
from above and below the scale Λ).

For example, for scalar fields when used with (2.59) this implies that

0 = Λ
d

dΛ
eiΓle[ϕ] = Λ

d
dΛ

∫
Dφ eiSW[ϕ+φ;Λ]+

∫
d4x jaφa

, (3.22)

where ja = −δΓle[ϕ]/δϕa has support only for modes well below Λ. In detail,
the full result is independent of Λ because the Λ-dependence of SW cancels the Λ-
dependence implicit in the measure Dφ, since this includes a functional integration
only over modes with energies below Λ.

In practice, it is useful to implement the cutoff excluding modes larger than Λ
from the path integral by suitably modifying the Wilson action.5 For instance, in
perturbation theory high-energy modes can be suppressed in internal lines by Wick

5 If cutoffs are instead implemented directly for the integrations in Feynman graphs the results can depend
on the way virtual momentum is routed through the graph.
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Fig. 3.2 Graphs illustrating the two effects that occur when an internal line is contracted to a point, depending on
whether or not the propagator connects distinct vertices (left two figures) or ties off a loop on a single
vertex (right two figures). In both cases, a double line represents the differentiated propagator. The two
options respectively correspond to the terms [δSW, int/δφ(p)][δSW, int/δφ( − p)] and
δ2SW, int/δφ(p)δφ( − p) appearing in the Wilson–Polchinski relation, Eq. (3.25) of the text.

rotating to imaginary time and introducing a cutoff function into the unperturbed
action. Writing SW = SW0 + SW, int one takes

SW0 = −
1
2

∫
d4x d4x ′ KΛ(x − x ′)

[
∂μφ(x) ∂ ′μφ(x ′) + m2φ(x) φ(x ′)

]
= −1

2

∫
d4p

(2π)4 φ(p)φ(−p)(p2 + m2)K−1(p2/Λ2), (3.23)

where the kernel KΛ(x − x ′) is defined by its Fourier transform

KΛ(x − x ′) =
∫

d4p

(2π)4 K−1(p2/Λ2) eip ·(x−x′) . (3.24)

K (p2/Λ2) is a smooth step-like cutoff function that satisfies K (u) = 1 for u � 1 and
K (u) → 0 for u � 1.

Once this is done, Eq. (3.22) can be read as a differential equation governing
how SW[φ;Λ] depends on Λ, called the ‘exact renormalization group’. When the
derivative hits the factor K (p2/Λ2) in a propagator K (p2/Λ2)/(p2 + m2), the result
has support only for p2 � Λ2, effectively removing the corresponding internal line
from the given Feynman graph.

The change wrought by this in the path integral must be compensated by
appropriately modifying the interactions, and this is what defines the flow of effective
couplings with Λ (along the lines illustrated in Fig. 3.2). This turns out to imply an
evolution equation for the interaction lagrangian density, SW, int, of the form [25–27]

Λ
dSW, int

dΛ
= −1

2

∫
d4p

[
(2π)4

p2 + m2

]
Λ
∂K
∂Λ

[
δSW, int

δφ(p)

δSW, int

∂φ(−p)
+

δ2SW, int

δφ(p) δφ(−p)

]
.

(3.25)

The size of the resulting changes to the effective couplings in SW, int can be
estimated using (3.12). To this end, suppose the interaction terms can be written as

SW, int = −Λ2v2
∑
n

ĉn
Λdnv fn

∫
d4x O (dn , fn )

n (φ) (3.26)

= −
∫

d4x

[
ĉ4,0Λ

2

v2 φ4 +
ĉ4,2

v2 φ2(∂φ)2 + · · ·
]

,
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where the O (dn , fn )
n describe all possible local interactions involving fn powers of

the fields and dn derivatives, and the last line specializes to a single scalar field for
concreteness’ sake.

The power counting result, (3.12), provides an estimate of the size of amputated
Feynman graphs built using these interactions, involving fields defined below the
cutoff Λ. But this also determines the Λ-dependence of perturbative corrections
to the couplings in SWint because the direct contribution of interactions represented
by graphs like Fig. 3.1 must precisely cancel the Λ-dependence coming from loop
graphs, as estimated by Eq. (3.12).

For the action of (3.26) the estimate (3.12) gives the contribution to the effective
coupling of a term in SW involving E powers of φ and D derivatives to be

δ
⎡⎢⎢⎢⎢⎣ĉnv2Λ2

(
1
v

) E (
1
Λ

)D⎤⎥⎥⎥⎥⎦ ∼ v2Λ2
(

1
v

) E (
1
Λ

)D (
Λ

4π v

)2L
, (3.27)

and so δĉn acquires corrections from L-loop graphs that are of order

δ ĉn ∼
(
Λ

4π v

)2L
× (combinations of other ĉn’s). (3.28)

If v >∼ Λ, this shows that it is consistent to have the ĉn’s all be generically <∼ 1 for all
Λ. Some couplings can be much smaller than this if v � Λ (or other hierarchies like
powers of Λ/M or small dimensionless couplings are buried in the ĉn’s), provided
these additional suppressions preserve any initially small values.

Log Running vs Power-Law Running

The exact cutoff-dependent renormalization group is not pursued further in this book,
since the focus here is instead on more practical methods of approximate calculation.
Before leaving the subject, though, it is useful to address a conceptual question
and by so doing contrast the implications of logarithmic and power-law running of
effective couplings, ĉn(Λ), as Λ is varied.

The conceptual question is this: why does one care how couplings run with Λ if
Λ itself ultimately does not appear in any physical results? It is emphasized many
times in this book that Λ enters calculations purely as a convenient book-keeping
device: it is useful to organize calculations by scales and integrate out physics one
scale at a time. But in the end, physical quantities are obtained only after all scales are
integrated out, after which the arbitrary separations between these scales disappear.

This section follows [28] to argue that understanding the running of couplings in
SW is useful to the extent that it helps track the dependence of physical quantities on
large physical ratios of scale, M/m. In particular, there is often a precise connection
between logarithmic dependence of low-energy quantities on the cutoff Λ and
a logarithmic dependence on physical scales. The analogous connection is only
qualitative for power-law dependence, however, and so is usually less useful.

To see why this is so, imagine a system characterized by two very different scales,
m � M , such as the masses of two different particles. Further imagine that there is
a physical quantity, A, whose dependence on M/m happens to be logarithmic, so
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A = a0 ln

(
M
m

)
+ a1, (3.29)

for some calculable constants a0 and a1. If both of these constants are similar in size,
then the value of a0 can be important in practice since the large logarithm can make
it dominate numerically in the total result.

Next, suppose a Wilsonian calculation is performed that divides the contributions
to A coming from physics above and below the scale Λ, with m � Λ � M .
How does the large logarithm get into the low-energy part of the theory, given
that it depends on scales that lie on opposite sides of Λ? Typically, this happens as
follows:

Ale = a0 le ln

(
Λ

m

)
+ a1 le

Ahe = a0 he ln

(
M
Λ

)
+ a1 he (3.30)

so that A = Ale + Ahe = a0 ln

(
M
m

)
+ a1.

The requirement that Λ cancels implies that a0 le = a0 he and then having the results
agree with the full theory implies that a0 le = a0 he = a0 and a1 = a1 le + a1 he. What is
significant is that the coefficient, a0, of the logarithm in the full answer is calculable
purely within the low-energy theory because Λ-cancellation dictates that a0 le = a0.

The same is not so for power-law dependence. Suppose, for example, that another
observable, B, is computed that depends quadratically on masses, so

B = b0 M2 + b1 m2. (3.31)

Again the coefficient b0 is of practical interest since the large size of M can make
this term dominate numerically. In this case, the low- and high-energy parts of the
calculations instead are

Ble = b0 le Λ
2 + b1 le m2 + · · · (3.32)

Bhe = b0 he M2 + b1 he Λ
2 + · · ·

so that B = Ble + Bhe = b0 M2 + b1 m2,

with b0 = b0 he and b1 = b1 le, while Λ-cancellation requires b0 le + b1 he = 0.
Evidently, the b0 term cannot be computed purely within the low-energy part of

a Wilsonian calculation simply by tracking the dependence on Λ2, unlike the way
in which the lnΛ terms reproduce the value for a0. This is a fairly generic result:
quantitative predictions for quantities like b0 really require detailed knowledge of
the UV theory and cannot be computed using the low-energy Wilsonian theory alone.
But logarithms can often be inferred purely from within the low-energy Wilsonian
perspective. For this reason considerable attention is given to renormalization-group
methods that allow efficient extraction of large logarithms using Wilsonian EFTs.

Method of Regions I

The cancellations of powers of cutoff and the utility of logarithms can be promoted
to a useful tool – sometimes called the method of regions [29] – for estimating
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Feynman integrals in situations where different integration regions compete in their
contributions to the final result.

To illustrate the method, follow [30] and consider the integral∫ ∞

0

k dk

(k2 + m2)(k2 + M2)
=

ln(M/m)
M2 − m2 �

ln(M/m)
M2

[
1 +

m2

M2 + · · ·
]

, (3.33)

and imagine trying to extract the dominant small-m/M expansion without first
evaluating the full integral. Naively, one simply Taylor expands the integrand in
powers of m and integrates term-by-term, but this has the problem that each term
involves an integral that diverges in the infrared∫ ∞

0

k dk

k2(k2 + M2)

[
1 − m2

k2 + · · ·
]

, (3.34)

as might be expected given that the full result (3.33) is not analytic at m = 0.
A better procedure instead separates the integral into two regions, an IR region

0 < k < Λ and a UV region k > Λ, and expands the integrand differently in each.
For the IR the integrand is expanded with k2 ∼ m2 � M2, while in the UV one
takes instead m � k ∼ M . This leads to the result I(m, M) = I IR(m, M ,Λ) +
IUV(m, M ,Λ), with

I IR =

∫ Λ

0

k dk

(k2 + m2)M2

[
1 − k2

M2 + · · ·
]
� ln(1 + Λ2/m2)

2M2 − Λ
2

2M4 + · · · , (3.35)

and

IUV =

∫ ∞

Λ

k dk

k2(k2 + M2)

[
1 − m2

k2 + · · ·
]
� ln(1 + M2/Λ2)

2M2 + O(m2). (3.36)

Once these last two formulae are summed, all Λ-dependence cancels (as it must),
leaving residual logarithms of M/m as outlined above that reproduce the expansion
of (3.33). Large logarithms like ln(M/m) are ultimately leftovers from the cancella-
tion between the IR divergence of IUV and the UV divergence of I IR.

3.1.4 Rationale behind Renormalization ♦

The above discussion about integrating out high-energies also provides physical
insight into the entire framework of renormalization. This is because a central
message is that the scale Λ is ultimately a calculational convenience that drops out
of all physical quantities. In detail, Λ drops out because of a cancellation between:
(i) the explicit Λ-dependence of the cutoff on the limits of integration for virtual
low-energy states in loops, and (ii) the cutoff-dependence that is implicitly contained
within the effective couplings of LW.

But this cancellation is eerily reminiscent of how UV divergences are traditionally
handled within any renormalizable theory, and in particular for the underlying UV
theory from which SW is calculated. The entire renormalization program relies on any
UV-divergent cutoff-dependence arising from regulated loop integrals being can-
celled by the regularization dependence of the counterterms of the renormalized
lagrangian. There are, however, the following important differences.
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1. The cancellations in the effective theory occur even thoughΛ is not sent to infinity,
and even though LW contains arbitrarily many terms that are not renormalizable in
the traditional sense.

2. The cancellation of regularization dependence in the traditional picture of renor-
malization appears completely ad-hoc and implausible, while the cancellation of
Λ from observables within the effective theory is essentially obvious. It is obvious
due to the fact that Λ was only introduced as an intermediate step in a calculation,
and so cannot survive uncancelled in the answer.

This resemblance is likely not accidental. It suggests that rather than consid-
ering a model’s classical lagrangian as something pristine or fundamental, it is
better regarded as an effective lagrangian obtained by integrating out still-more-
microscopic degrees of freedom. The cancellation of ultraviolet divergences within
the renormalization program is, within this interpretation, simply the usual removal
of an intermediate step in a calculation to whose microscopic part we are not privy.

This is the modern picture of what renormalization really means. When discover-
ing successful theories, what is found is not a ‘classical’ action, to be quantized and
compared with experiment. What is found is really a Wilsonian action describing
the low-energy limit obtained by integrating out high-energy degrees of freedom in
some more fundamental theory that describes what is really going on at much, much
higher energies.

It is this Wilsonian theory, itself potentially already containing many high-
energy quantum effects, whose low-energy states are quantized and compared with
observations. Physics progresses by successively peeling back layer after layer of
structure in nature, and our mathematics describes this through a succession of
Wilsonian descriptions with ever-increasing accuracy.

This is how real progress often happens in science. Efforts to solve concrete
practical questions – in this case, a desire to exploit hierarchies of scale as
efficiently as possible – can ultimately provide deep insights about foundational
issues – in this case, about what it is that is really achieved when new fundamental
theories (be it Maxwell’s equations, General Relativity or the Standard Model) are
discovered.

3.2 Power Counting and Dimensional Regularization ♦

As previous sections make clear, there is a lot of freedom of definition when setting
up a Wilson action: besides the freedom to make field redefinitions, there are also
all the details of precisely how to differentiate between scales above and below Λ.
Physical results do not depend on any of these choices at all since observables are
independent of field redefinitions and are blind to the details of a regularization
scheme. This freedom should be exploited to make the Wilson action as useful as
possible for practical calculations. In particular, it should be used to optimize the
efficiency with which effective interactions and Feynman graphs can be identified
that completely capture the contributions to low-energy processes at any fixed order
in low-energy expansion parameters like q/M .
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Though instructive, the power counting analysis of the previous section does
not yet do this, due to the appearance in all estimates of the cutoff Λ. Since Λ
ultimately cancels in all physical quantities, it is inconvenient to have to rely on
it when estimating the size of contributions from different interactions in the low-
energy Wilson action. For this reason most practical applications (and most of the
rest of this book) define the Wilson action using dimensional regularization rather
than cutoffs [31, 32]. Dimensional regularization is useful because it is both simple
to use and preserves more symmetries than do other regularization schemes. This
section explores how this can be done.

3.2.1 EFTs in Dimensional Regularization

At first sight, it seems impossible to define a Wilson action in terms of dimensional
regularization at all. After all, the entire purpose of the Wilson action is to efficiently
encapsulate the high-energy part of a calculation, for later use in a variety of low-
energy applications. This seems to require something like Λ to distinguish high
energies from low energies. By contrast, although dimensional regularization is
designed to regulate UV-divergent integrals, it does not do so by cutting them off
at large momenta and energies. The regularization is instead provided by defining
the integral (including contributions from arbitrarily large momenta) for complex
dimension, D, taking advantage of the fact that the integral converges in the
ultraviolet if D is sufficiently small or negative. The result still diverges in the limit
D → 4, but usually as a pole or other type of isolated singularity when D is a positive
integer. The limit D → 4 is taken at the end of a calculation, after any singularities
are absorbed into the renormalization of the appropriate couplings.

This section describes how dimensional regularization can nonetheless be used to
define a Wilson action, despite it not seeming to explicitly separate high from low
energies. This is done first by briefly describing dimensional regularization itself,
followed by a presentation of the logic of constructing an effective theory using it.
(See also Appendix §A.2.4 for more details about dimensional regularization.)

What is Dimensional Regularization?

Consider the following integral over D-dimensional Euclidean momentum pμ, where
p2 = δμνpμpν (and similarly for q2),6 [33, 34]

I (A,B)
D (q) :=

∫
dDpE

(2π)D

[
p2A

(p2 + q2)B

]
=

1
(4π)D/2

⎡⎢⎢⎢⎢⎢⎣
Γ
(
A + D

2

)
Γ
(
B − A − D

2

)
Γ(B) Γ

(
D
2

) ⎤⎥⎥⎥⎥⎥⎦
(
q2

)A−B+D/2
, (3.37)

where Γ(z) is Euler’s Gamma function, defined to satisfy z Γ(z) = Γ(z + 1) with
Γ(n + 1) = n! when restricted to positive integers, n. This integral converges in the

6 Such Euclidean expressions are given in Euclidean signature, obtained by Wick rotating with d4p =
id4pE, meaning that the Minkowski-signature result has an additional factor of i. Notice that there are
no additional explicit signs in continuing positive q2 from Euclidean to Minkowski signature because
of the wisdom of using conventions with a (− + ++) metric.
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UV if the real part of 2(B − A) is bigger than D, and the right-hand side is the result
of explicit evaluation.

Dimensional regularization uses the right-hand side to define this integral for
values of A, B and D for which it does not converge, even when D is not an integer.
In dimensional regularization D is regarded as complex during intermediate steps,
with D → 4 taken at the end of the calculation. It happens that Γ(z) is analytic for
all complex z apart from poles at the non-positive integers, and so when A and B are
positive integers, Eq. (3.37) provides a definition of ID(q) that is finite for all complex
D apart from possible poles when D is a positive even integer.

In particular, integrals defined in this way typically have divergences that arise as
poles at D = 4. For instance, a useful example encountered earlier is the case A = 0
and B = 2,∫

dDp
(2πμ)D

[
μ4

(p2 + q2)2

]
=
Γ
(
2 − D

2

)
(4π)D/2

(
q2

μ2

) (D−4)/2

=
1

16π2

[
2

4 − D
− γ + 1

2
ln

(
q2

4πμ2

)
+ · · ·

]
,

(3.38)

where the ellipses represent terms that vanish when D → 4; μ is an arbitrary scale
included on dimensional grounds and γ � 0.577215664901532 . . . is the Euler–
Mascheroni constant. The pole as D → 4 reflects the logarithmic divergence that
would have been present if the integral were to be defined with D = 4 from the
get-go.

Similarly, the integral with A = B = k gives∫
dDp

(2πμ)D

[
p2k

(p2 + q2)k

]
=
Γ
(
k + D

2

)
Γ
(
−D

2

)
Γ(k) Γ

(
D
2

) (
q2

4πμ2

)D/2

(3.39)

=

(
q2

4πμ2

)2 [ 2
4 − D

− γk +
1
2

ln

(
q2

μ2

)
+ · · ·

]
,

where γk is a k-dependent pure number, whose precise value is not important for
later purposes. This is an example of an integral that would diverge like a power of
the cutoff if directly evaluated at D = 4. Notice that the dimensionally regularized
version vanishes as q2 → 0, because the integrand has no other scale to which the
result can be proportional.7

Because momenta get integrated from −∞ to ∞ in dimensional regularization,
both high and low energies are explicitly included. This makes its use seem contrary
to the entire philosophy of defining a low-energy effective theory. But the utility of
effective field theories is founded on the observation that any contribution of generic
high-energy dynamics to low-energy amplitudes can be captured within the low-
energy sector by an appropriate collection of local effective interactions. Since the
error made in dimensional regularization by keeping all modes up to infinite energies
is itself a particular choice of high-energy physics, any damage done can also be
undone using an appropriate choice of effective couplings in the low-energy theory.

7 The result cannot be proportional to μ when D = 4 since this scale is introduced in such a way as to
ensure that the integral is proportional to μD−4.
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To see how the Wilson action is defined in dimensional regularization, consider a
theory containing a light field, φ, of mass m, and a heavy field, ψ, of mass M � m.
For the purposes of argument the full theory can be imagined to be a renormalizable
theory coupling φ to ψ, S = S[φ,ψ], regularized using dimensional regularization
and then renormalized in any convenient way (such as with the modified minimal
subtraction – or MS – scheme).8

The low-energy applications of interest in this model are to E � M . The effective
Wilsonian action in this regime contains only the light field, SW = SW[φ]. Just like the
full theory this effective theory is also dimensionally regularized (and renormalized
in a way specified below). In practice, this means that the dimensionally regularized
effective theory is not obtained by explicitly integrating out successively higher-
energy modes of all the fields in the underlying theory. Instead, the dimensionally
regularized effective theory simply omits the heavy field ψ.

A convenient renormalization choice for the effective couplings in SW demands
that the predictions of SW[φ] agree with the low-energy predictions of S[φ,ψ] order-
by-order in 1/M . That is, the renormalized effective couplings of the low-energy
theory are obtained by performing a matching calculation, whereby the couplings
of the low-energy effective theory are chosen to reproduce scattering amplitudes or
Greens functions of the underlying theory order-by-order in powers of the inverse
heavy scale, 1/M . Once the couplings of the effective theory are determined in this
way in terms of those of the underlying fundamental theory, they may be used to
compute any other purely low-energy observable.

Method of Regions II

Before seeing how this all works in detail, it is worth first pausing here to see
how dimensional regularization works when exploring how integrals depend on
large hierarchies of parameters. To this end, consider again the sample integral,
(3.33), examined above when discussing the method of regions. In dimensional
regularization this integral would have the form

Iε (m, M) :=
∫ ∞

0

(μ
k

) ε k dk

(k2 + m2)(k2 + M2)

= Γ

(
1 − ε

2

)
Γ

( ε
2

) (m/μ)−ε − (M/μ)−ε

M2 − m2 , (3.40)

where ε ∝ D − 4 is a parameter that is taken to zero at the end. The limit ε → 0 is
nonsingular in this case because the integral of (3.33) converges when D = 4, with
Iε = ln(M/m)/(M2 − m2) + O(ε) near ε = 0.

In the spirit of the method of regions consider regarding Iε again as the sum of an
IR contribution, for which k2 ∼ m2 � M2, plus a UV contribution with m � k ∼ M:

I IR
ε :=

∫ ∞

0

(μ
k

) ε k dk

(k2 + m2)M2

[
1 − k2

M2 + · · ·
]

(3.41)

�
(m/μ)−ε

M2

[
1
ε
+ O(ε)

]
=

1
M2

[
1
ε
− ln

(
m
μ

)
+ O(ε)

]
,

8 As described in Appendix A.2.4, ‘minimal subtraction’ simply drops the (4 − D)−1 term in divergent
quantities, while ‘modified minimal subtraction’ drops both the (4 − D)−1 and the constants γ and
ln(4π) [35–37].



68 Power Counting and Matching

and

IUV
ε :=

∫ ∞

0

(μ
k

) ε k dk

k2(k2 + M2)

[
1 − m2

k2 + · · ·
]

(3.42)

�
(M/μ)−ε

M2

[
−1
ε
+ O(ε)

]
=

1
M2

[
−1
ε
+ ln

(
M
μ

)
+ O(ε)

]
.

The approximate equality starting the second line for both of these formulae drops
all subdominant terms in powers of m/M . Notice that the pole 1/ε arises due to a
UV divergence in I IR as ε → 0, while it corresponds to the IR divergence in IUV as
ε → 0. Notice also that these poles cancel in the sum I = IUV + I IR, after which the
limit ε → 0 can be taken, revealing agreement with (3.40).

The surprise in this exercise was that it was not important to explicitly separate
out the region with k < Λ and k > Λ when defining IUV and I IR, which nevertheless
reproduce the correct dependence on m/M once summed to give the full integral.
This works because any cutoff-dependence in the definition of these integrals is
guaranteed to cancel in any case, and so although including the cutoff-dependence
could be done, it is wasted effort.

Several concrete examples of the use of dimensional regularization when matching
between underlying and effective theories are examined in more detail (for relativistic
theories) in Chapter 7, which also explores a modification to minimal subtraction
called ‘decoupling subtraction’ that proves useful when matching is done at or above
one-loop accuracy. Nonrelativistic examples of beyond-leading-order matching are
similarly studied in §12 and §15.

3.2.2 Matching vs Integrating Out

Matching – the fixing of low-energy couplings by comparing the predictions of the
full theory with the predictions of its low-energy Wilsonian approximation – is often
much easier to carry out than is the process of explicitly integrating out a heavy
state using a cut-off path integral. This is partly because the comparison can be made
for any physical quantity, and, in particular, this quantity can be chosen to make the
comparison as simple as possible. Furthermore, because the comparison is made at
the level of renormalized interactions, for both the full and low-energy theories, there
are no UV divergences to worry about.

Example: The Toy Model

As usual, the toy model helps make the above statements more concrete. For the toy
model the heavy mass scale is mR and the full theory describing the physics of the
two fields χ and ξ above this scale is given by the action S[χ, ξ] of Eq. (1.24) and
(1.25) (repeated for convenience here):

S = −
∫

d4x
⎡⎢⎢⎢⎢⎣12 ∂μχ∂μχ + 1

2

(
1 +

χ
√

2 v

)2

∂μξ∂
μξ + V (χ)

⎤⎥⎥⎥⎥⎦ , (3.43)

with

V (χ) =
λ v2

2
χ2 +

λ v

2
√

2
χ3 +

λ
16
χ4. (3.44)
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Fig. 3.3 One-loop graphs that contribute to the ∂μξ∂μξ kinetic term in the Wilson and 1LPI actions using the
interactions of Eqs. (3.43) and (3.44). Solid (dotted) lines represent χ (and ξ) fields.

One could equivalently use the fields φ̂R and φ̂I with the action S[φ̂R, φ̂I] of
Eqs. (1.1) and (1.2), and renormalization is actually easier using these variables.
This chapter sticks to χ and ξ to keep the symmetries of the problem more manifest.
UV divergences in this theory are handled using dimensional regularization, and
where necessary divergences are renormalized using modified minimal subtraction
(see Appendix A.2.4 for details).

The low-energy Wilson action in this case is SW[ξ] (or SW[φ̂I]), depending only on
the single light field, with UV divergent integrals again defined using dimensional
regularization. Renormalization is again based on minimal subtraction, though with
the difference that the finite part of the coupling is fixed by matching to predictions
of the full theory (rather than again using modified minimal subtraction).

For present purposes the first step when matching is to write down all possible
interactions in SW up to some order in 1/mR, since this identifies the effective
couplings whose value matching is meant to determine. For the toy model we know
from §2.5 that all 1/m2

R interactions are redundant, and the most general interactions
(consistent with Lorentz invariance and the symmetry under constant shifts in ξ) are
given to order 1/m4

R by:

SW = −
∫

d4x
[ zW

2
∂μξ ∂

μξ − aW (∂μξ ∂
μξ)2 + · · ·

]
, (3.45)

where on dimensional grounds zW is dimensionless while aW ∝ 1/m4
R and terms not

explicitly written are suppressed by at least 1/m6
R (see §2.5).

Whereas earlier sections use the freedom to rescale ξ to set zW = 1 (i.e. to
canonically normalize ξ), writing (3.45) recognizes this has only been done at the
classical level and not exactly, so at one loop zW = 1 + z(1)

W with z(1)
W � O(λ/16π2)

due to graphs like those of Fig. 3.3.
The contributions to z(1)

W found by Wick rotating these graphs, evaluating them in
dimensional regularization and matching them to the contribution of (3.45) are

iz(1)
W 3.3(a) = i

(
− 1

4v2

) ∫
i d4pE

(2π)4
−i

p2 + m2
R

= − i

4v2 I (0,1)
D (mR) (3.46)

and

iz(1)
W 3.3(b) � 3

[
2 × i2

2!

] (
− 1
√

2 v

) (
− λv

2
√

2

) (
− i

m2
R

)

×
∫

i d4pE

(2π)4
−i

p2 + m2
R

=
3iλ

4m2
R

I (0,1)
D (mR) (3.47)
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while z(1)
W 3.3(c) = 0 because its dimensionally regularized loop evaluates to I (1,1)

D (0)

and so vanishes. Here the integrals I (0,1)
D (m) and I (1,1)

D (m) are defined in (3.37), and
the nonzero result evaluates to

I (0,1)
D (m) =

m2

(4π)D/2 Γ

(
1 − D

2

) (
m2

μ2

) (D−4)/2

=
m2

16π2

[
1

(D/2) − 2
+ γ − 1 + ln

(
m2

4πμ2

)
+ O(D − 4)

]
. (3.48)

Summing these contributions (using m2
R = λv

2) gives the one-loop prediction

z(1)
W =

I (0,1)
D (mR)

2v2 =
λ

16π2

[
1

D − 4
+

1
2

(γ − 1) +
1
2

ln

(
m2

R

4πμ2

)
+ O(D − 4)

]
.

(3.49)

These corrections to zW can again be absorbed into a rescaling of ξ – i.e. ξ is
‘re-normalized’ by defining ξ → z−1/2

W ξ – leading to the following rescaled version
of (3.45):

SW = −
∫

d4x

[
1
2
∂μξ ∂

μξ − aW

z2
W

(∂μξ ∂
μξ)2 + · · ·

]
. (3.50)

The remainder of the matching calculation computes another observable using
(3.50) and (3.49) and compares the result to the calculation of the same quantity in
the full theory to read off the coefficient aW. It is relatively simple to do this with the
same quantity as used at lowest order in §1.2.1: the amplitude for ξ(p) + ξ(q) →
ξ(p′) + ξ(q′) scattering, keeping only terms up to order 1/m4

R . Since this calculation
is already performed in chapter 1 at leading order in λ, it suffices here to sketch how
things change once subdominant contributions are included.

To this end, write the coefficients in SW as a series in λ,

aW = a(0)
W + a(1)

W + · · · and zW = 1 + z(1)
W + · · · , (3.51)

for which z(1)
W is given in (3.49). Starting on the Wilson side of the calculation,

for ξ − ξ scattering the required graphs up to one loop order are given by (a), (b)
and (c) of Fig. 2.5. Of these, graphs (b) and (c) and their crossed counterparts both
evaluate to give a contribution to ξξ → ξξ scattering that is suppressed by more than
just four powers of 1/mR. This is easy to see in dimensional regularization because
the coefficients of the interactions are suppressed by more than 1/m4

R and the loop
integrals only involve massless states and so cannot introduce compensating factors
of mR into the numerator. If one wishes to work only to lowest order in 1/mR but to
higher order in λ, it suffices to work with the tree contribution, graph (a), within the
Wilsonian theory, but with λ-corrected effective coefficients a(1)

W and z(1)
W .

Evaluating graph (a) using the Wilsonian coupling aW/z2
W expanded out to

subdominant order in λ, a(1)
W − 2a(0)

W z(1)
W , then gives:

AW(a)
ξξ→ ξξ = 8i

(
a(0)

W + a(1)
W − 2a(0)

W z(1)
W

)
×
[
(p · q)(p′ · q′) + (q · q′)(p · p′) + (p · q′)(p′ · q)

]
+ · · · . (3.52)
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Field-theory aficionados will recognize the z(1)
W term as the wave-function renormal-

ization counter-term that cancels UV divergences due to the loops of Fig. 3.3 inserted
into the external lines of the tree-level scattering graphs. (These graphs are not drawn
explicitly in Fig. 2.4.)

This is to be compared with the one-loop contributions computed within the UV
theory, working out to subdominant order in λ. The leading contribution comes from
the tree graphs of Fig. 1.3, which evaluate to the result given in Eq. (1.28):

Afull,tree
ξξ→ ξξ =

2iλ

m4
R

[
(p · q)(p′ · q′) + (q · q′)(p · p′) + (p · q′)(p′ · q)

]
+ · · · , (3.53)

where the ellipses contain terms of higher order than 1/m4
R . Equating this to the

lowest-order part of (3.52) then gives the previously obtained tree-level result: a(0)
W =

λ/(4m4
R ) = 1/(4λv4).

Repeating this procedure including one-loop O(λ/16π2) corrections in the UV
theory is less trivial, but in principle proceeds in precisely the same manner. This
involves evaluating the graphs of Fig. 2.4, plus the ‘wave-function renormalization’
graphs obtained by inserting Fig. 3.3 into the external lines of the tree-level scattering
graphs of Fig. 1.3. The z(1)

W contributions of (3.52) are important for reproducing the
effects of these latter graphs in the full theory. The final result is a prediction for a(1)

W

that is of order λ2/(16π2m4
R ) = 1/(4πv2)2 in size.

This example shows how loops in the Wilsonian theory are not counted in the same
way as are loops in the UV theory. Loops in the Wilsonian theory necessarily involve
higher powers of E/mR (more about this below), while loops in the UV theory are
suppressed by factors of λ/(16π2) only, with all powers of E/mR appearing at each
loop order.

3.2.3 Power Counting Using Dimensional Regularization

The previous section made assertions about the size of the contributions of loop
graphs – like graphs (b) and (c) of Fig. 2.5 in the toy model – which this section
explores more systematically. More generally, this section’s goal is to track how a
generic Feynman graph computed using the Wilsonian action depends on a heavy
scale like 1/mR, given that this scale does not appear in the same way for all
interactions within LW.

The logic here is much as used in §3.1.1, where dimensional analysis was
employed to track how the cutoff Λ appears in amplitudes. The only difference now
is to regulate the UV divergences in these graphs with dimensional regularization,
since the size of a dimensionally regulated integral is set by the physical scales (light
masses or external momenta) that appear in the integrand (rather than Λ). The power
counting rules obtained in this way are much more useful since they directly track
how amplitudes depend on physical variables, rather than unphysical quantities like
Λ that in any case cancel from physical quantities.

The basic observation is that dimensional analysis applied to a dimensionally
regulated integral estimates its size as
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∫
· · ·

∫ (
dDp

(2π)D

) A pB

(p2 + q2)C
∼

(
1

4π

)DA

qDA+B−2C , (3.54)

with a dimensionless prefactor that depends on the dimension, D, of spacetime, and
which may well be singular in the limit that D → 4. Here, q represents the dominant
scale appearing in the integrand of the momentum integrations. If the light particles
appearing as external states in AE(q) should be massless, or highly relativistic, then
the typical external momenta are much larger than their masses and q in the above
expression represents these momenta.9 If all masses and momenta are comparable,
then q is their common value. The important assumption is that there is only one low-
energy scale (the more complicated case of multiple hierarchies is examined in later
chapters, in particular in the nonrelativistic applications of Part III for which small
speed, v ∼ Ekin/p, can be regarded as a ratio of two separate low-energy scales).

With this in mind, the idea is to repeat the steps of §3.1.1 and use the effective
action, SW = SW, 0 + SW, int, of (3.2) – repeated here for ease of reference:

SW, 0 = −
f4

M2v2

∫
d4x
[
∂μφ ∂

μφ + m2φ2
]

SW, int = −f4
∑
n

ĉn
Mdnv fn

∫
d4x On(φ), (3.55)

to compute amputated Feynman amplitudes, AE (q), having E external lines, I
internal lines, L loops and Vn vertices coming from the effective interaction with
label ‘n’. Respectively denoting (as before) the number of derivatives and fields
appearing in this interaction as dn and fn, the amplitude becomes proportional to
the following multiple integral:∫

· · ·
∫ (

dDp
(2π)D

)L pR

(p2 + q2)I
∼

(
1

4π

)2L
q4L−2I+R , (3.56)

where R = ∑
n dnVn and the final estimate takes D → 4. Liberally using the

identities (3.4) and (3.5) then gives the following order of magnitude for AE (q):

AE (q) ∼ f4
(

1
v

) E (
Mq

4πf2

)2L ( q
M

)2+
∑

n (dn−2)Vn

. (3.57)

This last formula is the main result, used extensively in many applications
considered later. Its utility lies in the fact that it links the contributions of the various
effective interactions in the effective lagrangian, (3.55), with the dependence of
observables on small ratios of physical scales such as q/M . Notice in particular
that more and more complicated graphs – for which L and Vn become larger and
larger – are generically suppressed in their contributions to the graphical expansion if
q is much smaller than the other scales M and f2/M . This suppression assumes only
that the powers appearing in (3.57) are all non-negative, and this is true so long as
dn ≥ 2. The special cases where dn = 0, 1 are potentially dangerous in this context,
and require examination on a case-by-case basis.

9 Any logarithmic dependence on q and infrared mass singularities that might arise in this limit are
ignored here (for now), since the main interest is in following powers of ratios of the light and heavy
mass scales.
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Example: The Toy Model

The toy model Wilsonian action has the form of (3.55) provided we take M = mR

and f2 = mRv, in which case (3.57) becomes

AE (q) ∼ q2v2
(

1
v

) E ( q
4πv

)2L (
q

mR

)∑
n (dn−2)Vn

, (3.58)

underlining that low-energy amplitudes come as a double expansion, in powers of
both q/mR and q/4πv. Furthermore, the symmetry ξ → ξ + constant implies that all
interactions in SW, int have dn ≥ 4 and so interactions involving larger powers of L
and Vn are always suppressed by one or both of these small parameters.

Recalling that the validity of the UV theory’s loop expansion — λ/(16π2) � 1 —
implies that mR =

√
λ v � 4πv, it follows that the expansion in q/mR converges

more slowly in this regime than does the expansion in q/4πv. Both expansion
parameters in the low-energy theory become similar in size just at the border of the
domain of perturbative validity in the UV theory. In no way does the effective theory
require small λ in order to be predictive, and the diagnostic for weak coupling in the
underlying UV theory is the existence of two separate scales, mR and 4πv, against
which q becomes compared.

Applying the estimate of (3.58) to the graphs of Fig. 2.5 requires specializing to
E = 4, with graph (a) having L = 0 and

∑
n(dn − 2)Vn = 2 and so

A (a)
4 (q) ∼ q2

v2

(
q

mR

)2

, (3.59)

in agreement with the explicit tree-level formulae found earlier.
The one-loop contributions coming from graphs (b) and (c) similarly have L = 1

and
∑

n(dn − 2)Vn = 4 and so both satisfy

A (b)
4 (q) ∼ A (c)

4 (q) ∼ q2

v2

( q
4πv

)2 (
q

mR

)4

. (3.60)

Both are similar in size and are suppressed relative to the tree-level result by the
small factor q4/(4πv mR)2.

Notice that the above power counting estimates apply equally well for any theory
of an abelian Goldstone boson subject to the shift symmetry ξ → ξ + constant,
provided that scales like v and M are regarded as both being large compared with q
and that dimensionless parameters â and b̂ in effective couplings like a = â f4/(Mv)4

and b = b̂ f4/(Mv)6 in Eq. (2.97) are regarded as being independent and not
systematically large. The low-energy limit for the specific toy model of §1.1 is
more predictive than is the generic low-energy Goldstone-boson theory, because it
predicts all of these parameters in terms of two fundamental ones: λ and v, say.
The predictiveness enters both because of the relationship implied amongst the
generic scales – e.g. f2 = Mv and M2/v2 = λ – and the inferences it allows for
the values of coefficients like â and b̂, given as a series in powers of λ. What is
usually informative in any application of EFT methods is therefore the comparison
between the generic expectations for the assumed low-energy field content and the
more detailed predictions allowed by specific UV theories that can give rise to this
field content.
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3.2.4 Power Counting with Fermions

It is straightforward to extend these results to include light fermions in the effective
theory. The complication here is not really the statistics of the fields; it is the different
momentum dependence of the propagators and the related canonical dimension of the
fields.

To sort this out, first generalize the starting form assumed for the lagrangian to
include fermion fields, ψ, in addition to boson fields, φ:

Leff = f
4
∑
n

cn
Mdn

On

(
φ

vB

,
ψ

v3/2
F

)
. (3.61)

Fermions and bosons come with different powers of the scales vB and vF because their
kinetic terms (that dominate the unperturbed action in a weak-coupling perturbative
analysis) involve different numbers of derivatives: only one for fermions but two for
bosons. This also implies that fermion and boson propagators fall off differently for
large momenta, with bosonic propagators varying like 1/p2 for large p and fermion
propagators only falling like 1/p. The resulting differences in contributions to the
power counting of Feynman graphs makes it important to keep separate track of the
number of fermion and boson lines.

To this end, it is useful to choose to label vertices using three indices: dn, bn and
fn. As before, dn labels the numbers of derivatives in the interaction, but now bn and
fn separately count the number of bose and fermi lines terminating at the vertex of
interest. The number of vertices in a graph carrying a given value for dn, bn and fn
is, as before, labeled by Vn.

Consider now computing an amplitude with EB external bosonic lines, EF external
fermion lines and IB and IF internal bose and fermi lines. The constraints of graph-
making relate these in three ways. First, the definition of the number of loops
generalizes (3.5) to

L = 1 + IB + IF −
∑
n

Vn. (3.62)

Similarly, ‘conservation of ends’ now holds separately for both bosonic and for
fermionic lines and so implies that (3.4) is replaced by the two separate conditions

2IB + EB =
∑
n

bnVn and 2IF + EF =
∑
n

fnVn. (3.63)

Repeating, with the lagrangian of Eq. (3.61), the power counting argument which
led (using dimensional regularization) to Eq. (3.57) now gives the following result
instead:

AEBEF (q) ∼ f4
(

1
vB

) EB
(

1
vF

)3EF/2 (
Mq

4π f2

)2L ( q
M

)P
, (3.64)

where the power P can be written

P = 2 + IF +
∑
n

(dn − 2)Vn = 2 − 1
2
EF +

∑
n

(
dn +

1
2

fn − 2
)
Vn. (3.65)

Since IF ≥ 0, the first equality shows (3.64) is suppressed relative to the correspond-
ing term in the purely bosonic result (3.57), as makes sense since each fermionic
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propagator is order 1/q, and so is suppressed by q relative to the bosonic propagator
1/q2. The second equality trades the dependence on IF for EF using (3.63).

The factor (q/M)−EF/2 in (3.64) might also seem problematic at low energies,
indicating as it does that more external lines necessarily imply more factors of the
large ratio M/q. However, because such factors are fixed for all graphs contributing
to any explicit process with a given number of external legs they usually do not in
themselves undermine the validity of a perturbative expansion.

Furthermore, for the specific case where AEBEF (q) represents a scattering ampli-
tude each external fermion line corresponds to an initial-state or final-state spinor –
uq σ or uq σ – or the corresponding antiparticle spinor – vq σ or vq σ – labelled by the
corresponding state’s momentum and spin. But each of these is itself proportional
to an external particle – and so low-energy, O(q) – scale, as can be seen from
their appearance in spin-averaged expressions like

∑
σ uq σ uq σ = m − i

/
q and∑

σ vq σ vq σ = −m−i
/
q. This q1/2 scaling of each external fermion line systematically

cancels the factor q−EF/2 in the amplitude AEBEF (q), leading to non-singular
predictions for scattering process at low energies. The same is true for effective
couplings in SW if these are obtained by matching to scattering processes.

Dangerous Interactions

As usual, interactions with the same number of fields and derivatives as the kinetic
terms – either fn = 0 and dn = 2 (for bosons) or fn = 2 and dn = 1 (for fermions) –
are unsuppressed by powers of q/M , beyond the usual loop factor. Interactions with
more fields or derivatives than the kinetic terms additionally suppress a graph each
time they are used. But interactions with no derivatives and two or fewer fermions
can be potentially dangerous at low energies, introducing as they do negative powers
of the small ratio q/M .

The kinds of interactions that are dangerous in this way are terms in a scalar
potential (dn = fn = 0) and Yukawa couplings (dn = 0 and fn = 2). In principle,
these kinds of interactions can be genuine threats to the consistency of the low-energy
expansion, and whether such interactions are consistent with low-energy physics
depends on the details.

What can make these interactions benign at low energies is if they do not carry
too much energy for generic field configurations, φ ∼ vB and ψ ∼ v3/2

F . For instance,
suppose, following the discussion around Eq. (3.17), that the scalar potential only
carries energy density f4V � f4 when fields are order φ ∼ vB in size, such as if

V (φ) ∼ f4V
∑
r

gr

(
φ

vB

)r
. (3.66)

In particular, the r = 2 term represents a mass for the field φ of order m2
B ∼ f4V /v2

B , so
a natural criterion for φ to survive into the low-energy theory might be that f4V ∼ m2

Bv
2
B

with mB
<∼ q for q a typical (possibly relativistic) momentum in the low-energy sector.

If this is the case then – assuming the couplings gr are order unity – all the
dimensionless couplings cn of Eq. (3.61) for these particular interactions are secretly
suppressed, with cn(dn = 0) ∼ gr (f4V /f

4) ∼ gr (m2
Bv

2
B /f

4). The contributions of these
particular dn = fn = 0 interactions to (3.64) then become
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∏
dn= fn=0

[
cn

( q
M

)−2]Vn

∼
∏
r

[
gr

(
f4V M2

f4q2

)]Vr

∼
∏
r

[
gr

(
m2

B

q2

) (
v2

B M2

f4

)]Vr

,

(3.67)

which is no longer enhanced because mB
<∼ q.

A similar story goes through for Yukawa interactions for which an interaction like

Lyuk ∼ f4Y
∑
r

hr

(
φ

vB

)r ��
ψψ

v3
F

�� , (3.68)

would contribute a fermion mass of order mF ∼ f4Y /v3
F for fields φ ∼ vB and couplings

hr ∼ O(1). This can remain a genuine low-energy mass satisfying mF
<∼ q if f4Y ∼

mFv
3
F is systematically small relative to f4. In this case, the contribution of these

dn = 0 but fn = 2 terms to (3.64) (assuming the hr are order unity) then become∏
dn=0, fn=2

[
cn

( q
M

)−1]Vn

∼
∏
r

[
hr

(
f4Y M

f4q

)]Vr

∼
∏
r

[
hr

(
mF

q

) (
v3

F M

f4

)]Vr

,

(3.69)

which again would not be enhanced.

3.3 The Big Picture ♦

So far, this chapter has examined a variety of types of effective actions, 1PI,
1LPI and Wilsonian, and explored how dimensional analysis constrains how their
effective couplings contribute to low-energy observables (both using a cutoff and
in dimensional regularization). It is easy at this point to lose sight of the forest for
the trees, so this section aims to reiterate some broader features of the overall EFT
program.

3.3.1 Low-Energy Theorems

Given the huge number of effective couplings available in the Wilson action, it is
tempting to conclude that there is nothing robust that can be said about the low-
energy world. But this is misleading, because there are some predictions that can
be made very robustly without running into renormalization ambiguities. These
predictions are generally known as an EFT’s ‘low-energy theorems’, and consist
of those predictions that depend only on the low-energy theory’s leading non-
renormalizable interaction and the number and type of low-energy states present.
In particular, they are insensitive to the values of the long list of higher-dimension
effective couplings in the Wilsonian EFT.

The main observation underlying the construction of these theorems is that
locality implies that the higher-dimensional effective interactions all depend only
on polynomials of momenta. They do so because they are built using only powers
of fields and their derivatives. As a result, they do not in themselves give rise to
non-analytic contributions to scattering amplitudes at vanishing external momenta.
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This observation may not seem so remarkable given that the power counting
arguments of the previous sections also only involve powers of the external energy
scale q. But (as remarked in footnote 9) these power counting arguments focus
exclusively on powers of q and explicitly ignore quantities like ln(q2/μ2) that could
make the full result non-analytic at q = 0. Indeed, such non-analytic contributions
do arise in scattering amplitudes, with their presence being guaranteed by general
principles [38, 39].

In fact, direct evaluation of the scattering amplitude for ξξ → ξξ scattering
at one-loop order in the Toy Model (in particular graph (b) of Fig. 2.5) gives
precisely this kind of contribution, behaving as q8 ln(q2/m2

R ). The coefficient of
this dependence is proportional to a2

eff/(4π)2 (consistent with (3.60)), with aeff =

λ/(4m4
R ) = 1/(4v2m2

R ) the lowest-order effective coupling found from tree-level
scattering in Eqs. (1.15) and (1.16).

Here is the point: although loop graphs like this arise potentially at the same order
as tree graphs built from higher-derivative terms (whose coefficients renormalize
the UV divergences in the loops), the higher-derivative interactions only contribute to
the analytic part of the amplitude at q = 0 and so cannot contribute to the coefficient
of the non-analytic q8 ln q2 term. The leading coefficients of such non-analytic terms
are therefore absolute predictions, given only the lowest-order non-renormalizable
effective coupling (in the Toy Model case the coupling aeff). These predictions,
collectively with the other predictions depending only on aeff, are called the EFT’s
low-energy theorems. (The applications of EFT methods in later chapters give
practical examples of these theorems for the strong interactions §8 and for General
Relativity §10.)

High-energy physics cannot contribute to non-analytic behaviour for q in a low-
energy regime because the general arguments of [38, 39] imply this non-analytic
behaviour arises only at the threshold for the particle whose circulation within loops
generates the non-analytic behaviour. Non-analytic behaviour at q2 = 0 comes from
massless particles and so does not arise when heavy particles are integrated out. (This
is also why such non-analytic dependence on derivatives does not arise in the Wilson
action itself, for which the light states responsible for singularities at q2 = 0 are not
yet integrated out.)

3.3.2 The Effective-Action Logic ♦

Historically, what made theories with non-renormalizable interactions daunting was
the seeming necessity to include an infinite number of interactions. This is partly
because there are only a finite number of renormalizable (and super-renormalizable)
interactions, but an infinite number of non-renormalizable ones. But it is also
true that one usually cannot cherry-pick amongst non-renormalizable interactions
because they are all needed to absorb the UV divergences appearing at higher
loop orders.10

The utility of power counting formulae like (3.57) lies in their ability to cut through
the conundrum of how to deal with so many interactions, and so to organize how

10 It is this need for a nominally infinite number of couplings to renormalize UV divergences that
underlies the name ‘non-renormalizable’.
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to calculate predictively (including quantum effects). The key observation is that
non-renormalizable theories always implicitly involve a low-energy expansion, so
predictivity must be assessed order-by-order in this expansion. The logic for doing
so unfolds with the following steps:

[1] Choose the accuracy desired in the answer. (For instance an accuracy of 1% might
be required for a particular scattering amplitude.)

[2] Determine the order in the small ratio of scales q/M (e.g. q/mR in the toy model)
required to achieve the desired accuracy. (For instance, if q/M = 0.1, then order
(q/M)2 would be required to achieve 1% accuracy.)

[3] Use the power counting results to identify which terms in LW can contribute to
the observable of interest to the desired order in q/M . At any fixed order only a finite
number (say, N) of terms in LW can contribute.

[4a] If the underlying theory is known and is calculable, then compute the coeffi-
cients of the N required effective interactions to the needed accuracy.

[4b] If the underlying theory is unknown, or is too complicated to permit explicit
ab initio calculation of LW, then treat the N required coefficients as free parameters.
This is nonetheless predictive if more than N observables can be identified whose
predictions depend only on these parameters.

It is in the spirit of step [4a] that EFT methods are developed for the toy model
in previous sections: the full theory is explicitly known and parameters are within
a calculable regime. (For the toy model this corresponds to using the full theory
within the perturbative small-λ regime.) In this case, EFT methods simply provide
an efficient means to identify and calculate the combination of parameters on which
low-energy observables depend.

It is option [4b], however, that is responsible for the great versatility of EFT
methods, because it completely divorces the utility of the low-energy theory from the
issue of whether or not the underlying theory is understood. It allows EFT methods
to be used for any low-energy situation, regardless of whether the underlying theory
is completely unknown or is known but too complicated to allow reliable predictions.
(Examples of both of these cases are considered in subsequent sections.)

From this point of view, the conundrum of dealing with an infinite number of
interactions is really only a problem in the limit where infinite precision is required
of the answer, since it is only then that one must work to all orders in the low-energy
expansion.

Within this point of view, traditional renormalizable theories are simply the special
case where the above logic is invoked, but with accuracy that only requires working
at zeroth order in q/M . This is equivalent to renormalizability because in this case
all interactions suppressed by 1/M can be dropped, which amounts to dropping all
interactions whose couplings have dimensions of negative power of mass (i.e. all
non-renormalizable interactions).

Renormalizable theories are revealed in this way to be the ones that should always
dominate in the limit that the light scales q and the heavy scales M are so widely
separated as to allow the complete neglect of heavy-particle effects. This is the begin-
nings of an explanation of why renormalizable interactions turn out to play such
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ubiquitous roles throughout physics: the message behind their success is that any
‘new’ physics not included in them involves scales too high to be relevant in practice.

3.4 Summary

The main topic of this chapter is power counting: the tool that makes the Wilson action a precise
instrument. The purpose of this tool is to identify the effective interactions and Feynman graphs that are
required to make physical predictions to any given order in the low-energy expansion, E/M.

At face value, this counting seems like it should be easy: the power of 1/M for any graph is found simply
by collecting all such factors from the coefficients of a graph’s effective interactions. What complicates
this argument is the extreme sensitivity of some loop integrals to short wavelengths, which leads to the
appearance of large scales like M in numerators rather than denominators. Successful tracking of high-
energy scales in loops therefore requires handling their ultraviolet divergences.

This chapter provides two kinds of power-counting estimates. One of these regulates UV divergences
with explicit cutoffs, and because short wavelengths often dominate in loops, what is mostly learned is
how a graph depends on this cutoff regulator. This can be useful, particularly when asking how effective
couplings flow as successive scales are integrated out. This flow is described by exact renormalization-
group methods, culminating with Wilson–Polchinski type evolution equations.

The second kind of power-counting estimate this chapter provides regulates divergences using
dimensional regularization. This is usually more convenient for practical applications, partly because
dimensional regularization allows useful symmetries to be kept explicit. For EFTs, dimensional
regularization also proves useful because the absence of an explicit cutoff scale simplifies dimensional
power-counting arguments revealing how graphs depend on low- and high-energy scales. These
arguments culminate in the very useful expressions (3.64) and (3.65), appropriate for low-energy theories
dominated by a single low-energy scale.

Power counting has all of the utility and glamour of accounting: it is both crucial and not that exciting
to do. The payoff for understanding it in detail is the power of the overall perspective it provides. One such
insight is about what the cancellation of divergences during renormalization really means. In this new
picture renormalization stops being a miraculous cancellation between divergences and counterterms and
starts being an obvious cancellation of a scale,Λ, that is not really in the original problem.

A second insight concerns the utility of both renormalizable theories and non-renormalizable theories.
Non-renormalizable theories are not daunting in themselves once it is recognized that they can be
predictive to the extent that they only hope to capture low orders in a low-energy expansion. The enormous
predictive success of renormalizable theories similarly emerges as a special case of this general low-energy
predictiveness when the UV scale M is so high that it suffices to work to zeroth order in the ratio E/M.

Exercises

Exercise 3.1 Derive the cut-off dependent power-counting result of Eq. (3.12), starting
from the effective lagrangian of Eq. (3.2).
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Exercise 3.2 Extend the result of Exercise 3.1 to see how Eq. (3.12) changes when
graphs are built using fermions as well as bosons.

Exercise 3.3 For Quantum Electrodynamics there is only a single type of interaction,
Lint = ieAμψγμψ, for which d = 0 (no derivatives), f = 2 (two fermion fields)
and b = 1 (one bosonic field). Show that any Feynman graph built with only
this vertex (and the Dirac and electromagnetic propagators) satisfies

IB =
EF

2
+ L − 1 , IF =

EF

2
+ EB + 2(L − 1) and

V = EF + EB + 2(L − 1),

for the number of internal fermionic lines, bosonic lines and vertices. Here, EF

and EB are the number of external fermionic and bosonic lines and L is the
number of loops, defined by (3.62).

Apply the power counting arguments leading to (3.12) to QED and show
that they predict that a generic amputated Feynman graph evaluated at zero
external momentum varies as AEFEB ∝ ΛS where S = 4 − 3

2 EF − EB is called
the graph’s superficial degree of divergence. Show that S is only non-negative
for configurations for which tree-level vertices exist in the action.

Show that the power of electromagnetic coupling appearing in any graph is

AEFEB ∝ eEF+EB−2
(

e2

16π2

)L
.

and thereby that it is α/4π, where α = e2/4π is the fine-structure constant,
that controls the loop expansion.

Exercise 3.4 The Fermi theory of weak interactions involves only fermions and has
only a single interaction, for which d = 0 (no derivatives) and f = 4 (four
fermion fields). Show that any Feynman graph built using only this vertex (and
the Dirac propagators) satisfies I = 2(L − 1) + 1

2 E and V = (L − 1) +
1
2 E, where E denotes the number of external lines and L is the number of
loops, defined by (3.5). Show that power counting predicts a generic amputated
Feynman graph evaluated at zero external momentum varies as AE ∝ ΛS
where S = 2(L + 1) − 1

2 E. Unlike for QED (see Exercise 3.3), this eventually
becomes positive (and so the graph becomes UV divergent) for large enough
L, regardless of the number of external lines involved.

Exercise 3.5 Complete the calculation of this chapter and use the toy model of §1.1
to compute the order λ2/m4

R contribution to the effective coupling a appearing
in the interaction a (∂μξ ∂μξ)2 ∈ LW.

Exercise 3.6 Derive the central power counting result, Eqs. (3.64) and (3.65), starting
from the lagrangian (3.61) and regulating UV divergences using dimensional
regularization.

Exercise 3.7 Consider a Goldstone boson (or axion) with shift symmetry ξ →
ξ + constant coupled to a fermion ψ at low energies. What are the lowest-
dimension couplings possible involving these fields within the Wilsonian
effective lagrangian? Assume the couplings are such that the lagrangian has
the form (3.61) with two independent scales, M and v, with vB = v, vF = M
and f2 = Mv. Use the power counting result of (3.64) to derive the leading
dependence on these scales of the reduced amplitudeA4(q) for 2 → 2 fermion



81 Exercises

scattering in this theory. Draw the Feynman graphs that provide this leading
contribution. Identify and draw the Feynman graphs that provide the next-to-
leading contribution, both in the case where M ∼ 4πv and when M � 4πv.
How suppressed are these subleading contributions relative to the leading order
contribution? Repeat these leading and subleading power counting estimates
for 2 → 2 axion-fermion scattering rather than fermion-fermion scattering.

Exercise 3.8 Compute the graphs of Fig. 2.5 using the Toy Model’s low-energy
Wilsonian action to evaluate the one-loop contribution to the ξ(q1)ξ(q2) →
ξ(q3)ξ(q4) scattering amplitude, A4, as a function of the Mandelstam vari-
ables s = −(q1 + q2)2, t = (q1 − q3)2 and u = (q1 − q4)2. Use dimensional
regularization to evaluate any UV divergences you encounter. Perform the
same calculation for φIφI → φIφI using the renormalizable Feynman rules
of the underlying full theory, also to one-loop order using dimensional
regularization. Show that these calculations agree on the leading low-energy
limit of the amplitude, and in particular on the form and coefficient of the
logarithmic term (which in the full theory requires a cancellation of the first
few powers of q2). Which Feynman graphs are responsible for the cancellations
in the full theory?

Exercise 3.9 For the discussion of the ‘method of regions’ introduce a cutoff into the
integrals I IR

ε and IUV
ε by defining

I IR
ε :=

∫ Λ

0

(μ
k

) ε
f (k, M , m) and IUV

ε :=
∫ ∞

Λ

(μ
k

) ε
f (k, M , m),

with integrands as given in (3.41) and (3.42). Evaluate the first few terms in
the 1/M expansions explicitly as functions of m, M and Λ. Show that the sum
Iε = I IR

ε + IUV
ε is given by the same result as in (3.40). This shows that there is

no loss in removing the cutoff when defining I IR
ε and IUV

ε , as done in the main
text.



4 Symmetries

The previous sections involving the toy model show that the low-energy implications
of an EFT – such as the suppression of scattering amplitudes by powers of energy –
can be much more transparent when some fields (e.g. the field ξ in the toy model)
are used to represent the light particles in the Wilsonian theory than they are when
expressed in terms of others (such as φI in the toy model). Why should this be?

Notice that the issue here is not that different variables imply different predictions,
since the calculations of §1 reveal the low-energy suppression of scattering ampli-
tudes to be precisely the same when computed using either ξ or φI. The issue instead
is why this suppression is manifest at every step when using ξ, whereas with φI

the suppression emerges quite mysteriously only at the end of the calculation due to
cancellations amongst the contributing Feynman graphs.

This section argues that the main difference between these variables is the way
they realize the symmetries of the system. How they are realized is relevant because
symmetries (by way of Goldstone’s theorem – see below) are ultimately the origin
of the low-energy suppression seen in scattering amplitudes. As is so often the case,
the lesson is: although predictions for physical quantities can be made using any
variables you like, if you use the wrong ones you will be sorry.1

To make this point it is first good to step back and summarize some implications
of symmetries more generally. In particular, from an EFT perspective the discussion
divides into two cases, depending on whether or not particles related to one
another by a symmetry all lie within the low-energy effective theory or if some
symmetries relate low-energy states to high-energy states. This latter situation can
happen in particular when the relevant symmetry is spontaneously broken. From the
point of view of EFTs, the main observation is that the nature of the description
necessarily changes if the energy scale, v, associated with symmetry breaking
becomes much larger than the scale, M , associated with any heavy states that have
been integrated out.

4.1 Symmetries in Field Theory ♥

The first step is to review how symmetries act within quantum field theory, and more
generally within quantum mechanics.

1 This paraphrases one of Steven Weinberg’s three laws of theoretical physics [40].

82
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As reviewed in Appendix C.4, a symmetry is described in quantum mechanics by
a unitary transformation,2 |ψ〉 → |ψ′〉 = U |ψ〉 with U∗U = UU∗ = I, within Hilbert
space, that leaves the system’s Hamiltonian unchanged:

H → H ′ = UHU∗ = H . (4.1)

Such transformations are important for (at least) two reasons:3

• Spectral degeneracy: Because (4.1) implies that HU = UH , a symmetry can
only relate distinct energy eigenstates to one another if they share exactly the
same energy eigenvalue. That is, if H |ψi〉 = Ei |ψi〉 and H |ψ j〉 = Ej |ψ j〉 and
|ψ j〉 = U |ψi〉 are all true for some i and j, then Ei = Ej . This ensures that
energy eigenspaces can all be organized into linear representations of the symmetry
group: U |ψi〉 = U j

i |ψ j〉 for some coefficientsU j
i , where U1U2 = U3 implies that

(U1)i j (U2) j k = (U3)ik .
• Conservation laws: If a symmetry is labelled by a continuous parameter, θ (such

as is true for rotations in space, or the symmetry (1.21) of the toy model), then
it can be written U (θ) = exp[iθQ], for some hermitian operator Q (unitarity of
U implies that Q is hermitian). Because Q is hermitian, it is an observable, and
because [U , H] = 0 implies that [Q, H] = 0, the quantity Q is conserved. That
is, if Q |ψ(t = 0)〉 = q |ψ(t = 0)〉 for some real eigenvalue q at a particular time,
then Q |ψ(t)〉 = q |ψ(t)〉 for all t. This follows because [Q, H] = 0 implies that
Q |ψ(t)〉 = Q exp[−iHt]|ψ(0)〉 = exp[−iHt] Q |ψ(0)〉.

Similar implications also apply in quantum field theory, though with important
qualifications. The difference arises because in essence field theory makes quantum
mechanics local by assigning different operators at different spacetime points.
As a result, symmetries in field theory are usually defined in terms of local
transformations amongst fields that leave the action invariant – such as, for the toy
model, the transformation (1.21), whose action leaves the lagrangian density L of
(1.1) unchanged.

This difference in starting point sometimes leads to symmetries being realized
differently in field theory than in ordinary quantum mechanics, as this and the
following sections describe. In particular, for reasons explained below, it turns out
that having a symmetry act linearly on fields need not imply that particles fall into
linear representations of the symmetry with identical energies.

A second issue raised by the local framework of field theory is the possibility
that continuous symmetries might have position-dependent symmetry parameters:
θ = θ(x). Spacetime dependent symmetry transformation rules are called local
or gauge symmetries, in contrast with global symmetries – for which θ and U (θ)
do not depend on spacetime position. The focus of this chapter is mostly on
global symmetries, though some of the issues arising for gauge symmetries are also
discussed (both here and in Appendices C.3.3 and C.5).

2 Except for time-reversal, which is described by an anti-unitary transformation. The discussion of
symmetries in quantum mechanics goes back to [41].

3 Here and throughout, the Einstein summation convention is used, for which repeated indices are
implicitly summed over their entire range: U j

i |ψ j 〉 :=
∑

j U j
i |ψ j 〉.
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A further distinction amongst symmetries is between internal symmetries and
spacetime symmetries. These differ by whether or not they act on spacetime position,
with, for example,

φa (x) → Uφa (x)U∗ = Ub
a φb (x), (4.2)

being an example of an internal symmetry (because the spacetime coordinate x is
unchanged), while a Lorentz transformation like

V μ (x) → UV μ (x)U∗ = Λν
μV ν (x ′) with x ′μ = Λν

μxν , (4.3)

is a representative spacetime symmetry. Both internal and spacetime symmetries can
arise in global or gauged varieties, with the local spacetime symmetries leading to
the diffeomorphism invariance of general-covariant theories like General Relativity.
Unless otherwise stated, most of this chapter restricts to internal symmetries, which
is not too restrictive in practice because it includes the majority of the symmetries of
practical interest in later applications.

4.1.1 Unbroken Continuous Symmetries

Suppose, then, that a field theory enjoys a symmetry defined as some action-
preserving infinitesimal continuous global transformation of the fields of the form
φi → φi + δφi with

δφi := ωaΣia (φ), (4.4)

where φi denote a generic collection of fields and ωa denote a set of independent
and spacetime-independent symmetry parameters, while Σia (φ) are a given (possibly
nonlinear) collection of functions of the fields at a specific spacetime point.

What makes this a symmetry is the requirement that it leaves invariant the system’s
action: δS =

∫
d4x δL = 0. For internal symmetries the transformation satisfies the

stronger condition δL = 0 separately at each point in spacetime, while for spacetime
transformations the invariance of the action only requires the weaker condition

δL = ∂μ
(
ωa V

μ
a

)
= ωa∂μV

μ
a , (4.5)

for some quantities V
μ
a (φ), since in this case δS =

∫
d4x δL can still vanish.

Noether’s Theorem

In field theory, the existence of a continuous class of action-preserving field
transformations guarantees the existence of a conserved current, j μ; with there
typically being one current for every global continuous symmetry of the action [42].
To low orders in the derivative expansion it is usually enough to work with actions
that depend only on the fields and their first derivatives, so for simplicity the rest of
the argument deriving these currents is restricted to this case.

Consider therefore an action S =
∫

d4x L(φ, ∂μφ), that by assumption is
invariant under the transformations (4.4). Including global spacetime symmetries in
the discussion, this invariance implies that Lmust vary at most into a total derivative,
so (4.5) is satisfied with δL on the left-hand side found by directly varying the fields
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and their derivatives. Equating to zero the coefficient of the arbitrary constant ωa in
the result then gives:

∂μV
μ
a =

∂L

∂φi
Σia +

∂L

∂(∂μφi)
∂μΣ

i
a

=

[
∂L

∂φi
− ∂μ

(
∂L

∂(∂μφi)

)]
Σia + ∂μ

(
∂L

∂(∂μφi)
Σia

)
. (4.6)

This equation holds as an identity, both for arbitrary field configurations, φi , and for
arbitrary (though spacetime-independent) symmetry parameters, ωa.

The theorem follows from this last equation, which says that the definitions

j
μ
a :=

∂L

∂(∂μφi)
Σia − V

μ
a , (4.7)

automatically satisfy the property

∂μ j
μ
a = 0, (4.8)

whenever they are evaluated at any solution to the equations of motion for φi – i.e.
on fields satisfying δS = 0, which is equivalent to the field equation

∂L

∂φi
− ∂μ

(
∂L

∂(∂μφi)

)
= 0. (4.9)

The conclusion, Eq. (4.8), is more general than the relativistic notation being
used here seems to suggest, since it holds also for nonrelativistic systems. For
these systems write ρa = j0

a for the time component of j
μ
a , and denote its spatial

components by the three-vector ja. Then current conservation – Eq. (4.8) – becomes
the continuity equation

∂ρa

∂t
+ ∇ · ja = 0. (4.10)

Eqs. (4.8) and (4.10) are conservation laws because they guarantee that the
charges, Qa, defined by

Qa (t) =
∫

fixed t

d3x ρa (r, t) =
∫

fixed t

d3x j0
a (x), (4.11)

are conserved in the sense that they are independent of t. This t-independence may
be seen by using Stokes’ theorem to infer

∂tQa =

∫
d3x ∂tρa = −

∫
d3x ∇ · ja = −

∮
r→∞

d2
Ω er · ja = 0, (4.12)

where er = r/r is the unit vector in the radial direction, and the last equality assumes
boundary conditions are such that the net flux of the current ja through a sphere at
spatial infinity vanishes.

Representation on Particle States

The charges Qa provide the link back to the usual description of symmetries in
quantum mechanics because their commutator with the fields gives the symmetry
transformation itself
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iωa
[
Qa,φi (x)

]
= iωa

∫
y0=x0

d3y
[
ρa (y),φi (x)

]
= ωa Σia[φ(x)] = δφi (x).

(4.13)

The first equality here uses conservation of Qa to choose the time at which j0
a (x) is

evaluated to agree with the time appearing in φi (x). The second equality then uses
the definition (4.7), written as

ρa = j0
a =

∂L

∂φ̇i
Σia − V 0

a = Πj Σ
i
a + V 0

a , (4.14)

where overdots denote differentiation with respect to time and Πj (x) = δS/δφ̇ j (x)
is the canonical momentum for the field φi (x). The second equality of (4.13) then
follows from these definitions, together with the equal-time canonical commutation
relations[
Πj (x, t),φi (y, t)

]
x0=y0 = −i δ3(x − y)δij and

[
φi (x, t),φ j (y, t)

]
= 0. (4.15)

This derivation also assumes both Σia (φ) and V 0
a depend only on φ j and not also on

the canonical momenta.
Eq. (4.13) makes a connection to the usual story of symmetries in quantum

mechanics because it ensures that U = exp[iωaQa] (if well-defined – see below
for when it is not) would be the unitary operator that implements the action of a
finite symmetry transformation within the Hilbert space:

φi → φ̃i = Uφi U∗. (4.16)

To see how this works, consider a weakly coupled system of particles, for which
interactions can be treated perturbatively. Working within the interaction picture
means that the fields satisfy the free-field equations and so can be expanded in a
complete set of free single-particle modes, ui

n(x) (see Appendix C for details)

φi (x) =
∑
n

[
ui
n(x)an + c.c.

]
, (4.17)

where an is the destruction operator of a particle with label ‘n,’ an |m〉 = δmn |0〉,
whose adjoint is the particle creation operator: |n〉 = a∗n |0〉. Here |0〉 denotes the
usual no-particle ground state defined by an |0〉 = 0.

If the no-particle state is invariant under the symmetry (as would be automatic
if it were non-degenerate and separated from all other energy eigenstates by an
energy gap – as is often true for simple systems – then U |0〉 = |0〉 = U∗ |0〉,
and so single-particle states are related to one another by the symmetry just like
in ordinary quantum mechanics. That is, because (4.16) implies that ãn = UanU∗

(and its adjoint) it follows that

|ñ〉 = ã∗n |0〉 = (Ua∗nU∗) |0〉 = U an
∗ |0〉 = U |n〉. (4.18)

In particular, this ensures all the usual consequences of symmetries within quantum
mechanics; in particular, that the single-particle states |ñ〉 and |n〉must have the same
energy, and so on. Since internal symmetries commute with spacetime translations,
they do not change particle momenta and so particles related by a symmetry must
also have the same rest mass.
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The above arguments show that when the ground state is invariant under a
symmetry then all of the usual implications of the symmetry in quantum mechanics
go through as usual. In particular, there is no loss of generality in representing the
symmetry linearly on single-particle states and so also using linear transformations
amongst the creation and annihilation operators and fields: Σia (φ) = Sj

i φ j with Sj
i

field-independent. Such a symmetry is said to be linearly realized.
The toy model provides an explicit example of this type of symmetry, but only in

the special case that v = 0 since this choice makes the classical ground state φ = v

invariant under the symmetry φ → eiωφ – or (1.21). As expected, in this case both
fields φR and φI represent particles with exactly the same mass (both are massless in
this limit). More generally, if the toy model were instead to have a scalar potential
with the sign of the φ∗φ term reversed, as in V = V0 + m2φ∗φ + 1

4 λ (φ∗φ)2, then
the invariant configuration φ = 0 remains the ground state also for nonzero masses,
and in this case both φR and φI share the common nonzero mass m.

4.1.2 Spontaneous Symmetry Breaking

The key assumption in the previous section is that the ground state is invariant, and
this is absolutely crucial for the above arguments to go through. Furthermore, this is
not an empty exception: for field theories the ground state can fail to be invariant.4

When the ground state of a system is not invariant under a symmetry of its action the
symmetry is said to be spontaneously broken.

If a symmetry is spontaneously broken, then (by assumption) another state is
produced once a transformation is applied to the ground state. Since the transfor-
mation is a symmetry, this new state must have the same energy and so also be a
candidate ground state. For a continuous symmetry one expects a continuous family
of vacua, all sharing the same energy. This is indeed what happens for the toy model,
for which the semiclassical vacuum corresponds to any spacetime-independent
configuration satisfying φ∗φ = v2. The one-parameter family of ground states
is parameterized by φ = v eiξ for any constant ξ. From here on a ground state
of such a system is denoted by |Ω〉 rather than |0〉, to emphasize the fact that it
can be more complicated than the single no-particle state of a simple harmonic
Fock space.

Whenever U |Ω〉 � |Ω〉 the line of argument given above that says single-particle
states, |n〉 = a∗n |Ω〉, must be linearly related by the symmetry, |ñ〉 = U |n〉, also fails.5

It fails because the symmetry changes the ground state, |Ω〉 → |Ω̃〉, in addition to
acting on the single-particle states that are built from them. As a result, fields related
by the symmetry (like φR and φI of the toy model) need no longer correspond to
particles with equal masses, unlike what happens when the vacuum is invariant. This
is seen explicitly in the toy model spectrum when v � 0, since in this case the fields
φR and φI represent particles with masses mR =

√
λ v and mI = 0, respectively,

despite being linearly related by the symmetry (1.21).

4 This is unlike what happens for the quantum mechanics of a small number of degrees of freedom,
for which the ground state tends to be unique (and so therefore is also invariant under a symmetry
transformation).

5 For field theories there can be problems even defining operators like U for spontaneously broken
symmetries [43] (see also Appendix C.5.1).
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Although traditional implications (like equality of particle masses) can break down
for spontaneously broken symmetries, these symmetries nonetheless do come with
consequences, as is now described [3–5].

Goldstone’s Theorem

Whenever the ground state of a system does not respect one of the system’s global
continuous symmetries, there are very general implications for the low-energy theory
that are summarized by Goldstone’s theorem [4].

Goldstone’s theorem states that any system for which a continuous, global
symmetry is spontaneously broken must contain a state, |G〉 – called a Goldstone
mode, or Nambu-Goldstone boson 6 – with the defining property that it is created
from the ground state by a spacetime-dependent symmetry transformation.

In equations, |G〉 is defined by the condition that the following matrix element
cannot vanish:

〈G | ρ(r, t) |Ω〉 � 0, (4.19)

where |Ω〉 represents the ground state and7 ρ = j0 is the density for the symmetry’s
conserved charge, as is guaranteed to exist by Noether’s theorem.

All of the properties of a Goldstone state follow from the definition (4.19), but
before turning to them it is worth first sketching why this equation is true. The
starting point is the assumption of the existence of a local order parameter. This
is a field, φ(x), in the problem satisfying two defining conditions:

1. φmust transform nontrivially under the symmetry in question: i.e. there is another
field, ψ(x), for which:

δψ ≡ i[Q,ψ(x)] = φ(x), (4.20)

where Q is the conserved charge defined by integrating the current density, ρ(r, t),
throughout all of space.

2. The field φ must have a nonzero expectation in the ground state:〈
φ(x)

〉
:= 〈Ω|φ(x) |Ω〉 = v � 0. (4.21)

This last condition would be inconsistent with Eq. (4.20) if the ground state were
invariant under the symmetry of interest, since invariance means Q |Ω〉 = 0, and
this would mean the expectation value of Eq. (4.20) must vanish.

To see why (4.19) follows from (4.20) and (4.21) use the following steps. First
substitute (4.20) into Eq. (4.21). Second, use Q =

∫
ρ d3x in the result, as is

guaranteed to be possible by Noether’s theorem. Third, insert a partition of unity,
1 =

∑
n |n〉〈n|, between the operators ρ and ψ. The resulting expression shows that if

no state exists satisfying the defining condition, Eq. (4.19), then the right-hand side
of Eq. (4.21) must vanish, in contradiction with the starting assumptions.

6 For internal symmetries this state must be a boson, but for graded symmetries like supersymmetry
spontaneous breakdown ensures the existence of a Goldstone fermion, the goldstino.

7 The nonrelativistic notation ρ = j0 is used to emphasize that the conclusions presented are not specific
to relativistic systems.



89 4.1 Symmetries in Field Theory

Goldstone’s theorem states that the consistency of the matrix element, Eq. (4.19),
with the conservation law, Eq. (4.10), requires the state |G〉 to have a number of
important properties. Two of these are the state’s spin and statistics. Because ρ(x)
transforms under rotations as a scalar and because |Ω〉 is rotationally invariant, it
follows that |G〉 must have spin zero and so (from the spin-statistics theorem) must
also be a boson.

Furthermore, the state |G〉 must also be gapless, in that its energy must vanish in
the limit that its (three-) momentum vanishes:

lim
p→0

E(p) = 0. (4.22)

In relativistic systems, for which E(p) =
√

p2 + m2 with m being the particle’s
rest mass, the gapless condition is equivalent to the masslessness of the Goldstone
particle. This gaplessness follows by using the fact that |G〉 and |Ω〉 are both energy
and momentum eigenstates (with EΩ = pΩ = 0) to write (see e.g. Appendix C.5.1)

〈G |ρ(r, t) |Ω〉 = eiEGt−ipG ·r〈G |ρ(0) |Ω〉. (4.23)

Using this (and a similar expression for 〈G |j(r, t) |Ω〉) when taking the matrix element
of the conservation equation, (4.10), between 〈G | and |Ω〉, leads to

0 = 〈G |
(
∂tρ + ∇ · j

)
|Ω〉 = i

[
EG〈G |ρ(r, t) |Ω〉 − pG · 〈G |j(r, t) |Ω〉

]
. (4.24)

Since the last term vanishes as pG → 0 and we know 〈G |ρ(r, t) |Ω〉 � 0, it follows
that EG also vanishes in this limit.

More generally, the Goldstone boson must completely decouple from all of its
interactions in the limit that its momentum vanishes. This is because Eq. (4.19)
states that in the zero-momentum limit the Goldstone state literally is a symmetry
transformation of the ground state. As a result, it is completely indistinguishable
from the vacuum in this limit.

These properties say a lot about the low-energy behaviour of any system that
satisfies the assumptions of the theorem. Gaplessness guarantees that the Goldstone
boson must itself be one of the light states of the theory, and so it must be included
in any effective lagrangian analysis of this low-energy behaviour. Low-energy
decoupling ensures that the Goldstone mode must be very weakly coupled in the
low-energy limit, and strongly limits the possible form its interactions can take.

The toy model again provides a simple example of all of these consequences.
The symmetry of this model is spontaneously broken whenever v � 0, and there is
certainly a gapless state in the spectrum whenever this is true: the state represented
by the field φI or ξ. To see that this state satisfies (4.19) requires constructing the
Noether current for the symmetry (1.21). For the toy model this is

jμ = i(φ ∂μφ
∗ − φ∗∂μφ) =

√
2 ��v +

φ̂R√
2
�� ∂μφ̂I − φ̂I ∂μφ̂R

=
√

2
(
v +

χ
√

2

)2 ∂μξ

v
(4.25)

and so its single-particle matrix element is 〈ξ(p) | j μ (x) |Ω〉 ∝
√

2 vpμ e−ip ·x , which
is nonzero whenever v � 0. Furthermore, conservation of the Noether current also
implies that this particle is massless because
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0 = 〈ξ(p) |∂μ j μ (x) |Ω〉 ∝ ∂μ
(√

2 vpμ e−ip ·x
)
= −i

√
2 v pμpμe−ip ·x = i

√
2 v m2e−ip ·x .

(4.26)

The more general statement that interactions for the Goldstone particle must turn
off at zero momentum is also clear for the toy model, since this is the property
(much discussed in §1) that the scattering amplitudes for toy-model massless states
approach zero as the scattering energy goes to zero.

4.2 Linear vs Nonlinear Realizations ♦

With the above discussion in mind, we are in a position to formalize more explicitly
how symmetries are realized within a Wilsonian low-energy effective theory. The
most basic statement is that the low-energy theory must share the symmetry
properties of the full UV theory, both for the symmetries of the action and the
symmetries of the ground state. That is, it should be possible to read off the symmetry
properties of the system directly from the EFT at any scale one chooses.8

The discussion of the previous section shows that how this is done depends on
whether or not the symmetry of interest is spontaneously broken. If the symmetry
is unbroken, then it can without loss of generality be realized to act linearly on the
fields. Since in this case all particles related by the symmetry share the same mass, if
any of them is light enough to be in the low-energy theory then all of them are. But
the same need not be true if the symmetry is spontaneously broken.

Whether a linear realization is possible for a spontaneously broken symmetry
depends on the relative size of two important scales: the scale M of the UV physics
whose integrating out led to the EFT in question, and the scale v of the expectation
value responsible for the symmetry’s spontaneous breaking (see Fig. 4.1). This
section argues that a linear realization can continue to be useful when v � M , but

                                                      

(a)

M

(b) (c)

Fig. 4.1 A sketch of energy levels in the low-energy theory relative to the high-energy scale, M, and the relative
splitting, v, within a global ‘symmetry’ multiplet. Three cases are pictured: panel (a) unbroken symmetry
(with unsplit multiplets); panel (b) low-energy breaking (v � M) and panel (c) high-energy breaking
(with v>∼M). Symmetries are linearly realized in cases (a) and (b) but not (c). If spontaneously broken,
symmetries in case (c) are nonlinearly realized in the EFT below M. (If explicitly broken in case (c) there is
little sense in which the effective theory has approximate symmetry at all.)

8 Anomalies – the failure of a classical symmetry to survive quantization – can complicate this statement
slightly, inasmuch as what can look like an anomalous symmetry at some scales can look like a classical
breaking of the symmetry at other scales. More about this in §4.3.
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necessarily breaks down if M is too small relative to v. If the symmetry cannot be
realized linearly, there turns out to be an alternative standard realization that is always
possible for a broad class of symmetry-breaking patterns.

The toy model provides an example where linear realization remains useful even
though a symmetry spontaneously breaks. That is, suppose the entire toy model were
itself regarded as being the low-energy limit of some larger UV completion; being
obtained by integrating out some new states, ψi , with masses Mψ � v >∼ mR =

√
λ v.

In this case, the toy model (plus all possible higher-dimensional interactions built
from φ) is the EFT for energies in the regime v � E � Mψ, and includes both
fields φR and φI, with the U (1) toy model symmetry realized linearly as in (1.21).

But this linear realization is no longer possible for an EFT aimed at the regime
E � mR. Linear realization is not possible in this regime because one of the two
fields required for its existence is now integrated out. Notice that the possibility
of integrating out part of a symmetry multiplet only arises if the symmetry is
spontaneously broken because only then can some particles within a symmetry
multiplet differ in mass. In the toy model what is required in this regime is a
way to realize the symmetry using the EFT’s only low-energy field. The required
realization is provided by the symmetry under which the field ξ shifts, as in (1.23).
The inhomogeneous nature of this symmetry is characteristic of a Goldstone boson,
since the symmetry is necessarily inconsistent with choosing a specific vacuum value
for the field ξ.

4.2.1 Linearly Realized Symmetries

The simplest situation is when v � M , which includes the case v = 0, where the
symmetry is not broken at all. In this case, the low-energy theory contains the right
number of particles to fill out linear representations of the symmetry, and so fields
can be chosen in such a way as to represent the symmetry linearly. For an internal
symmetry this means we can take:9

φi (x) → φ̃i (x) =Mi
j φ

j (x), (4.27)

for some choice of matrices Mi
j .

Not much need be said in this case, which is the one most commonly used in
practice. Because all of the fields needed for a linear realization are present, the
potential order parameters are also present as fields within the low-energy theory. The
only difference between unbroken symmetry and spontaneous breaking therefore lies
in the choice of action and the energy it assigns to a nonzero value for the order
parameters.

Explicit Symmetry Breaking

An important variation on this chapter’s theme is the situation where symmetries are
only approximate rather than exact. In this case, the action for the system at any scale
is assumed to have the form

9 The attentive reader may notice a difference in the index ordering between this equation and (4.2).
These representations are conjugates of one another, with the choice of (4.2) designed to ensure that if
U3 =U1U2 then (U3)i j = (U1)i k (U2)k

j .
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(a) The shape of the potential
V(φR,φI), in the limit of no explicit
symmetry breaking, showing its
sombrero shape and the circular line of
minima.

(b) The potential V(φR,φI), with an
explicit symmetry-breaking term added
that is linear inφR, showing how the
degeneracy of the minimum gets
lifted.

S = Sinv + ε S1 + ε
2S2 + · · · , (4.28)

where Sinv is invariant under some group of symmetries while the Si are not. Some
small dimensionless parameter ε is assumed to be present to quantify the notion
that the symmetry breaking is ‘small’. In particular, if an expansion like (4.28)
is possible in the full high-energy theory, it must also be possible in the low-
energy theory (which can be a useful observation when explicit ab-initio calculations
are not possible in the high-energy theory – an important example of which is
described in §8).

An explicit example helps make things concrete. The toy model’s U (1) symmetry
φ → eiθφ is responsible for many of its predictions, such as the equality of the two
particle masses when v = 0 and the elimination of the Goldstone boson from the
scalar potential when v � 0. Both of these properties are easily seen to fail once
interactions breaking the U (1) symmetry are included. Approximate symmetries
remain useful, however, because any failure of symmetry relations tends to zero as
the symmetry breaking turns off (i.e. as ε → 0), allowing predictions to be given
perturbatively, in powers of ε.

The simplest example of explicit symmetry breaking in this model is to add a term
linear in φ that tilts the potential, such as by adding to (1.1) the symmetry-breaking
term

Lsb = μ
3 (φ + φ∗), (4.29)

where μ is a symmetry-breaking parameter with dimensions of mass. Writing φ =
1√
2

(φR + iφI), the modified potential becomes

V (φR,φI) =
λ
16

(
φ2

R + φ
2
I − 2v2

)2
−
√

2 μ3φR, (4.30)

which has extrema that are given to leading order in 0 ≤ μ3/(λv3) � 1 by

φ0 � −
2μ3

λv2 and φ± � ±v +
μ3

λv2 . (4.31)

The degenerate circular minimum present for the sombrero-shaped potential when
μ = 0 is now tilted, leaving a unique real minimum at φ+ (assuming μ > 0) with a
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saddle point on the opposite side of the circle at φ−. φ0 turns out to be the shifted
local maximum at the centre of the Mexican hat. The mass eigenvalues for the two
fields, found as before by evaluating the potential’s second derivatives at φ±, then
become

m2
R± = λv

2 ±
3μ3

v
and m2

I± = ±
μ3

v
. (4.32)

In particular, this shows how explicit symmetry breaking gives the would-be
Goldstone boson state – commonly called a ‘pseudo-Goldstone’ boson [44] – a
nonzero mass m2

G = m2
I+ � μ3/v, that vanishes (as it must) when μ → 0.

Explicit symmetry breaking also interferes with the other low-energy Goldstone
properties, as can be seen by expressing the toy model in terms of the fields χ and ξ
using (1.22). With these variables, the symmetry-breaking term (4.29) modifies the
potential from (1.25) to

V (χ, ξ) =
λ
4

(√
2 v χ +

χ2

2

)2

− 2μ3
(
v +

χ
√

2

)
cos

(
ξ
√

2 v

)
. (4.33)

The would-be Goldstone particle, ξ, no longer drops out of the potential, and as a
result its scattering amplitudes no longer need vanish at low energies, by a calculable
amount in powers of μ3. The low-energy Wilson action for ξ then also acquires a
scalar potential whose leading contribution is proportional to μ3, in order to capture
the low-energy limit of the full theory’s symmetry-breaking behaviour,

VW(ξ) � −2μ3v cos

(
ξ
√

2 v

)
+ · · · . (4.34)

Here, the ellipses represent terms suppressed by additional powers of 1/mR and/or μ3.
The toy model illustrates what is also true in the general case: what were

exact symmetry implications survive in an approximate form in the limit that the
symmetry-breaking physics is small. Deviations from these predictions are then
obtained by expanding systematically in powers of the small symmetry-breaking
parameter ε. In particular, although the light particle ξ is no longer massless, it
remains much lighter than the heavy χ particle provided the symmetry-breaking
physics is small: m2

G/m
2
R = μ

3/(λv3). Although nonzero, its low-energy couplings
at zero momentum are similarly suppressed. Chapter 8 includes a very practical
example along these lines that was very influential for the development of effective
field theories.

4.2.2 Nonlinearly Realized Symmetries

An important constraint on any low-energy EFT is the requirement that it shares, all
the symmetry properties of its underlying UV completion. This is fairly straightfor-
ward to do when the symmetry is linearly realized since the symmetry then groups
particles into multiplets with similar masses and couplings, both at high and low
energies.

How spontaneously broken symmetries get expressed in the low-energy theory is
more subtle, particularly when the symmetry-breaking scale, v, is bigger than the
UV scalex M – i.e. panel (c) of Fig. 4.1. In the regime E � M � v the low-
energy field content can be inconsistent with realizing the symmetry linearly, since
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some members of multiplets in the UV theory might be heavy enough to have been
integrated out while others remain light enough to appear in the effective theory.

This section explores how the symmetries of the underlying UV theory manifest
themselves at low energies in this case.

Abelian Case

Once again, the toy model is informative, since it enjoys an abelian U (1) global
symmetry and its best-understood parameter regime (that of small λ) satisfies
mR
<∼ v. The low-energy theory described in earlier sections for E � mR therefore

falls precisely into the regime of interest. With only one low-energy field present at
these energies it is impossible to realize the U (1) linearly, and it is instead realized
as an inhomogeneous shift symmetry on the one low-energy field: ξ → ξ +

√
2 ω v

(where ω is the symmetry parameter).
In §1 this formulation was found by redefining the fields φ = F (χ) eiξ/ f –

with the specific form F (χ) = v + (χ/
√

2) not important and f =
√

2 v if ξ is
to be canonically normalized. The significance of this choice is that ξ appears as
would the parameter of a symmetry transformation, φ → φ eiθ, with θ replaced by
ξ(x)/(

√
2 v). Because ξ, when spacetime-independent, appears as does a symmetry

parameter, constant configurations of ξ must drop out of the action (which is, after
all, invariant under the symmetry). Consequently, the action can only depend on ξ
through its derivative, ∂μξ. The heavy field χ is then found by identifying that part
of φ that is in some sense orthogonal to this symmetry direction.

Two things are instructive about this construction. First, as the next section shows,
it can be extended to more general (and in particular non-abelian) symmetries.
Second, the rules for constructing the most general U (1)-invariant lagrangian in the
EFT for the toy model are fairly simple, and also generalize to more complicated
groups.

If written out pedantically, the instructions for building a general interaction for a
U (1) Goldstone boson (such as ξ in the toy model) go as follows. First build a generic
local action using a vector field Vμ and its derivatives, plus any other fields ψm

that happen to be in the low-energy theory, constrained only by Lorentz-invariance
(or whatever other spacetime and unbroken internal symmetries are relevant). In
particular, do so without making any reference at all to a global U (1) symmetry.
The terms involving the fewest Vμ fields and the fewest derivatives then have the
general form

L(ψ, Vμ) = L0(ψ) − j μ (ψ)Vμ −
1
2

mμν (ψ) VμVν − nμν (ψ) ∂μVν + · · · , (4.35)

where L0, j μ, mμν and nμν are functions of the ψm and their derivatives. Then
any such lagrangian is automatically promoted to a U (1)-invariant one simply by
replacing everywhere Vμ → ∂μξ.

The lesson is this: whereas a linearly realized symmetry restricts the kinds of
terms that are allowed in a lagrangian (such as by forbidding interactions with
unequal powers of φ and φ∗ in the toy model lagrangian), the spontaneously broken
U (1) symmetry does not directly restrict the kinds of terms that can be written in
(4.35). What the spontaneously broken U (1) symmetry instead does is dictate how
the Goldstone boson must couple to other fields at low energies, given a generic
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lagrangian, like (4.35), constrained only by the unbroken symmetries. It is only
through the couplings of the Goldstone field that the low-energy EFT ‘learns’ about
the existence of the broken U (1) theory in its UV completion.

In particular, it is ultimately the shift-symmetry realization of the U (1) symmetry
in the low-energy EFT (with v � M) that forces the Goldstone boson to couple
to other fields only through derivatives. In this way the implications of Goldstone’s
theorem emerge as automatic symmetry consequences when constructing the Wilson
action. Properly realizing symmetries in low-energy effective actions means not
having to be clever in order to extract their low-energy consequences, with no need
for fancy ‘current algebra’ operator arguments (e.g. compare [11] with [45, 180, 181]
or [48] to [49]).

Non-abelian Case ♠

This section sketches how nonlinear realizations work for more general patterns of
spontaneous symmetry breaking, for which the action has a symmetry group G but
the ground state is invariant only under a subgroup H ⊂ G. The treatment here is
meant mainly to summarize the main results, but since this is an important EFT topic,
more details are presented in Appendix C.6 about the motivation for and derivation
of the results given here – the so-called standard realization, as well as a lightning
review of the main properties of Lie groups and Lie algebras that are needed to do so.

There are many ways to represent the Goldstone bosons for a generic symmetry-
breaking pattern, G → H , but these are all related by field redefinitions to (and so are
equivalent to) a standard one, whose properties are summarized here. (Geometrically,
the Goldstone boson fields can be regarded as being coordinates on the coset space
G/H; see Appendix C.6.) Before describing this, though, there are a few group-
theoretical facts worth collecting.

Group-Theoretic Aside

As described in Appendix C.6, it is useful to work with the Lie algebra of G rather
than in terms of the group itself. Any group element connected to the identity
element, g = 1, can be written as a matrix exponential:

g = exp [iωaTa] , (4.36)

where for a p-parameter group the p generators, Ta, a = 1, . . . , p, form a basis of
the Lie algebra of G. As is often the case in physics, in the first instance the interest
is often in a specific matrix representation of the group elements for g ∈ G, perhaps
acting on the fields of interest in the UV theory for which the symmetries are linearly
realized, rather than something more abstract. For N fields the matrices g would be
N×N . As discussed earlier, these specific matrix representations are unitary and they
can be also chosen to be real. (Complex fields, like φ in the toy model, can always
be broken into their real and imaginary parts, like φR and φI.) When this is done the
matrices Ta are hermitian and imaginary:

Ta = T†a = −T∗a = −T T
a, (4.37)

where the superscript ‘T’ denotes transpose.
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The properties of the group G are encoded in its group multiplication law, and
this also has implications for the matrices Ta. In particular, the closure property of
the group multiplication law for G implies that the generators satisfy commutation
relations

Ta Tb − Tb Ta = i cabd Td , (4.38)

with an implied sum on the index ‘d’. Like the group multiplication law, the constant
coefficients, cabd , are characteristic of the group involved.

When describing a symmetry-breaking pattern where G breaks to H it is conve-
nient to choose the basis of generators to include the generators of H as a subset:

{Ta} = {ti , Xα}, (4.39)

where the ti’s generate the Lie algebra of H and the Xα’s constitute the rest. The
broken generators Xα typically do not also generate a group, since the commutator
of two Xα’s need not involve only Xα’s with no ti’s. They instead can be regarded as
generating10 the space of ‘cosets’, G/H .

The closure of H under multiplication ensures that

ti t j − t j ti = i ci j k tk , (4.40)

with no Xα’s on the right-hand side, so ci j α = 0. Under broad assumptions it is also
possible to choose a basis of generators so that ciα j = 0, so

ti Xα − Xα ti = i ciαβXβ, (4.41)

with no t j’s on the right-hand side. This implies that the Xα’s fall into a (possibly
reducible) representation of H , which when exponentiated to a finite transformation
implies that

h Xα h−1 = Lα
βXβ (4.42)

for some coefficients, Lαβ, and for any h = exp[iωiti] ∈ H .

The Realization

For internal symmetries, with the symmetry-breaking pattern G → H , the low-
energy theory contains a Goldstone boson, ξα, for each broken generator, Xα (the
counting can be different for other situations, like spacetime symmetries – see §14.3).
The low-energy theory might also contain a collection of other non-Goldstone low-
energy fields, χn, depending on the particular system of interest. The rest of this
section provides an explicit nonlinear realization of the symmetry group G on the
collection {ξα} and separately on the collection {χn}.

As motivated in Appendix C.6, it is always possible to perform a field redefinition
so that the fields ξα and χn transform according to [12, 13]

ξα → ξ̃α (ξ, g) and χn → χ̃n(ξ, g, χ), (4.43)

10 Formally, a coset G/H is an equivalence class wherein two elements g1, g2 ∈ G are regarded as
equivalent if g1 can be obtained from g2 by multiplying by some h ∈ H .
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where ξ̃α and χ̃n are defined by the relations

g eiξαXα = eiξ̃αXα eiui ti and X̃ = eiui ti X. (4.44)

Here, X (or X̃) denotes a column vector whose entries are the fields χn (or χ̃n).
The first of Eqs. (4.44) should be read as defining the nonlinear functions ξ̃α (ξ, g)

and ui (ξ, g). Starting with eiξ ·X one multiplies through on the left by g ∈ G to
construct a new element of G: g eiξ ·X . The functions ξ̃α and ui are then defined by
decomposing this new matrix into the product of a factor, eiξ̃ ·X , lying in G/H times
an element, eiu ·t , in H . The second of Eqs. (4.44) then defines the transformation
rule for the non-Goldstone fields, χn.

These transformations simplify in the special case where g = h lies in H , in which
case both χn and ξα turn out to transform linearly under the unbroken symmetry
transformations of H . The simplification happens because the above definitions in
this case reduce to:

ξαXα → ξ̃αXα = h(ξαXα)h−1 = ξαLα
βXβ,

X → X̃ = hX, (4.45)

where the last equality in the first line uses (4.42).
More generally, the transformation laws are both inhomogeneous and nonlinear

in the Goldstone fields, ξα. Explicit closed-form expressions can be found for
infinitesimal transformations – c.f Eqs. (C.124) and (C.125) – which when expanded
in powers of fields give11

ui ≈ −ciαβω
αξβ + O(ωξ2) and δξα = ωα − cαβγω

βξγ + O(ωξ2).
(4.46)

Because these transformations are nonlinear, they are effectively spacetime-
dependent due to their dependence on the field ξα (x). This complicates the algorithm
for finding the general form for invariant lagrangians, as is now briefly described.

Invariant Actions

The field-dependent matrix-valued quantity U (ξ) := exp[iξα (x)Xα] provides the
starting point for constructing actions that are invariant under transformations (4.43)
and (4.44). To see why, notice that U transforms under the above rules as U (ξ) →
U (ξ̃), where gU (ξ) = U (ξ̃) h, with

h := exp
[
iui (ξ, g)ti

]
∈ H , (4.47)

being the matrix appearing in (4.44). The key observation is that this implies that
the combination12 U−1∂μU transforms like a gauge-potential (compare this with Eq.
(C.72), keeping in mind the footnote immediately after (C.130))

U−1∂μU → Ũ−1∂μŨ = h (U−1∂μU) h−1 − ∂μh h−1. (4.48)

11 Indices on structure constants are raised and lowered using the Killing metric defined in
Appendix C.4.1.

12 This useful combination is called a Maurer-Cartan form [50].
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Separating U−1∂μU into a piece proportional to Xα plus one proportional to ti
defines two important quantities, Ai

μ (ξ) and eαμ (ξ), according to

U−1∂μU = −iAi
μti + ieαμXα. (4.49)

Extracting an overall factor of ∂μξα, so that Ai
μ = Ai

α (ξ) ∂μξα and eαμ =
eαβ (ξ) ∂μξβ, then the explicit expressions for the small-ξ expansion of these
quantities become (see Appendix C.6.3)

Ai
α (ξ) = −

∫ 1

0
ds Tr

[
tie−is ξ ·X Xα eis ξ ·X

]
� 1

2
ciαβξ

β +O(ξ2), (4.50)

and

eαβ (ξ) =
∫ 1

0
ds Tr

[
Xαe−is ξ ·X Xβ eis ξ ·X

]
� δαβ −

1
2

cαβγξ
γ +O(ξ2). (4.51)

Their infinitesimal transformation rules similarly are

δAi
μ (ξ) = ∂μui (ξ,ω) − ci jk u j (ξ,ω)Ak

μ (ξ), (4.52)

and

δeαμ (ξ) = −cα iβ ui (ξ,ω) e
β
μ (ξ). (4.53)

In this last expression, the structure constants themselves define representation
matrices, (Ti)αβ = cα iβ, of the Lie algebra of H , whose exponentials appear in (4.42).

To build self-interactions for the Goldstone bosons using these tools one combines
the covariant quantity, eαμ = eαβ ∂μξβ in all possible H-invariant ways. This is simple
to do since this quantity transforms very simply under G: eμ · X → h (eμ · X ) h−1.
Derivatives of eαμ are then included by using the covariant derivative constructed
from Ai

μti:

(Dμeν)α = ∂μeαν + cα iβAi
μ e

β
ν , (4.54)

which transforms in the same way as does eαμ: δ(Dμeν)α = −cα iβui (Dμeν)β.
The invariant lagrangian then is L(eμ, Dμeν , . . . ), where the ellipses denote terms

involving higher covariant derivatives and the lagrangian is constrained to be globally
H invariant:

L(heμh−1, hDμeνh−1, . . . ) ≡ L(eμ, Dμeν , . . . ). (4.55)

Whenever L satisfies (4.55) for constant h, the definitions of eαβ and Ai
α ensure it is

also automatically invariant under global G transformations.
For a Poincaré-invariant system, this leads to the following terms involving the

fewest derivatives

LGB = −
1
2
gαβ (ξ) ∂μξα∂μξ

β + (higher-derivative terms), (4.56)

with gαβ (ξ) = fγδ eγα eδβ where fαβ is a constant positive-definite matrix that must
satisfy

fλβcλ iα + fαλcλ iβ = 0, (4.57)

in order for the lagrangian of (4.56) to be G-invariant. In many situations the
representation matrices (Ti)αβ form an irreducible representation, in which case



99 4.2 Linear vs Nonlinear Realizations

Schur’s lemma implies that fαβ must be proportional to the unit matrix fαβ = F2δαβ
where F is a constant parameter.

The action for the other matter fields is similarly constructed by using Ai
μ (ξ) to

build covariant derivatives for the χn: DμX = ∂μX− iAiti X. Because the symmetry
H is unbroken, these fields must all transform linearly under H: X → hX, for
some representation matrices, h, of H . This gets promoted to a nonlinearly realized
G-transformation because the transformation law for the χn is X → hX, with
h = h (ξ, g) ∈ H , as defined in (4.47). The covariant derivative DμX is defined
so that it also transforms in the same way as does X itself, DμX → h(ξ, g) DμX,
under the nonlinearly realized G-transformations.

With these rules, any old globally H-invariant lagrangian for X automatically
becomes promoted to a G invariant lagrangian once all derivatives are replaced by
the ξ-dependent covariant derivatives. This works because global H-invariance of
the original lagrangian means it satisfies

L(heμh−1, hX, h∂μeνh−1, h ∂μX, . . . ) ≡ L(eμ,X, ∂μeν , ∂μX, . . . ), (4.58)

for any h ∈ H . But the above constructions are designed to ensure that each covariant
quantity transforms under G as eμ → h eμ h−1, X → hX, DμX → hDμX and so
on, so the condition for G invariance

L(heμh
−1,hX,h Dμeνh

−1,h DμX, . . . ) ≡ L(eμ,X, Dμeν , DμX, . . . ), (4.59)

becomes an automatic consequence of (4.58). As shown in Appendix C.6, this con-
struction of the invariant lagrangian is also unique, given the assumed transformation
rules for the fields.

4.2.3 Gauge Symmetries

Up to this point, the discussion has been completely aimed at global symmetries, for
which the symmetry parameter is (by definition) independent of spacetime position.
At this point, a brief aside is warranted on how local (or gauge) symmetries are
nonlinearly realized within the low-energy Wilsonian EFT, where the parameters ωa

are no longer required to be constants.
The motivation for doing so is because this situation is not hypothetical. The twin

constraints of Lorentz invariance and unitarity in quantum mechanics dictate that
the couplings of any massless spin-one particle must be gauge invariant [51, 54] (see
Appendix C.3.3), to the extent that their coupling to other matter at very low energies
(i.e. their renormalizable interactions) is only possible if this other matter enjoys
some sort of gauge symmetries. By extension, low-energy couplings of massive spin-
one particles (whose masses are nonzero but very small compared with other scales)
are only possible to matter that enjoys a spontaneously broken gauge symmetry
[55–60]. This framework includes, in particular, all presently known fundamental13

massive spin-one particles in nature [61].

13 As this book makes clear, fundamental here simply means point-like in the best effective description
known to date, and does not exclude the possibility of their being found to have substructure as
knowledge improves.
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Just like for global symmetries, the discussion naturally breaks up into linearly
realized and nonlinearly realized symmetries, so each is considered in turn. For sim-
plicity this section restricts itself to abelian symmetries, though the conclusions
drawn apply more generally (see Appendix C.5).

At face value, it is simple to construct lagrangians invariant under linearly realized
gauge symmetries along standard lines. One starts with a lagrangian that is invariant
under a global symmetry and promotes the global symmetry to a gauge symmetry
by combining all derivatives of the fields (like ∂μψm) with a gauge potential,
Aμ, to make gauge-covariant derivatives (denoted Dμψm). For abelian symmetries
the gauge potential transforms as Aμ → Aμ + ∂μω. These covariant derivatives
are designed so that Dμψm transforms under the position-dependent symmetry in
precisely the same way as ∂μψm did when the symmetry parameter was constant.

For example, in the UV version of the toy model, the symmetry transformation
is φ → eiωφ, and so if ω were not a constant then ∂μφ → eiω (∂μφ + i∂μω φ).
The corresponding covariant derivative then is Dμφ = ∂μφ − iAμφ since this
transforms like Dμφ → eiωDμφ even for spacetime-dependent ω. No additional
symmetry restrictions are placed on the lagrangian itself beyond the requirements
already imposed by global invariance.

The gauge-invariant version of the theory is then found by replacing ∂μψm →
Dμψm everywhere, and supplementing the result with a dependence on derivatives
of Aμ, which appear through the gauge-invariant field strength Fμν = ∂μAν − ∂μAν .
For instance, the gauge-invariant version of the toy model replaces (1.1) by

S := −
∫

d4x

[
1

4g2 FμνFμν + Dμφ
∗Dμφ + V (φ∗φ)

]
, (4.60)

where Dμφ = ∂μφ − iAμφ as before, and only renormalizable interactions are kept
(i.e. those with couplings having non-negative dimension in powers of mass).

This describes the particles of the toy model interacting with a spin-one particle
described by the field Aμ. The field Aμ can be canonically normalized (see
Appendix C.3.3) by rescaling Aμ → gAμ. When this is done the covariant derivative
becomes Dμφ = ∂μφ − igAμφ, revealing g to be the gauge coupling whose value
controls how strongly Aμ couples to φ. If the scalar potential is minimized at
φ∗φ = v2, expanding about φ = v shows that the quadratic terms in Aμ become

−1
4

FμνFμν − Dμφ
∗Dμφ ⊃ −1

4
FμνFμν − g2v2 AμAμ, (4.61)

and so spontaneous symmetry breaking gives the spin-one particle a mass
M2

A = 2g2v2.
So far, so standard. The next step is to ask how a gauge symmetry is manifest in

a low-energy EFT in the limit v � M and so for which the symmetry is nonlinearly
realized.

Explicit vs Spontaneous Breaking for Gauge Symmetries

In principle, the procedure for gauging a nonlinearly realized symmetry remains
the same as before: combine the derivatives of the Goldstone field, ∂μξ, (which
is the only one that transforms in the EFT under the spontaneously broken global
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abelian symmetry) with the gauge potential Aμ to build a covariant derivative. The

only difference is that ξ transforms as a shift under the symmetry, ξ → ξ +
√

2 v ω,
rather than being multiplied by a phase or a matrix. (A field that shifts as ξ
does under a gauge transformation is often called a ‘Stueckelberg’ field [63].)
Consequently, the required covariant derivative this time is Dμξ = ∂μξ −

√
2 v Aμ,

if Aμ → Aμ +∂μω. For canonically normalized Aμ the covariant derivative is instead

Dμ = ∂μ −
√

2 gv Aμ.
Notice in particular that because ω is an arbitrary function it can be used to

completely remove ξ by setting it to zero everywhere. This choice is called ‘unitary
gauge’ [64, 65] and in this gauge Dμξ = −

√
2 gvAμ, revealing how ξ can be

completely absorbed into the spin-one field Aμ. In this gauge the canonically
normalized kinetic terms for ξ and Aμ become

−1
4

FμνFμν − 1
2

DμξDμξ = −1
4

FμνFμν − g2v2 AμAμ, (4.62)

revealing the spin-one particle to have mass M2
A = 2g2v2, in agreement with the UV

theory (c.f. Appendix C.3.3). This absorption of ξ to give the spin-one field a mass
is the usual Higgs mechanism in action, with ξ providing the missing degrees of
freedom required to convert the two spin states of a massless spin-one particle to the
three spin states of massive spin one.

What is interesting is that there are two ways to regard the resulting low-energy
EFT. The first way is to think of it in the way just described: it is a massless spin-one
field coupled to a nonlinearly realized abelian symmetry. The other way to think of it
is simply as a generic theory of a massive spin-one vector field, Vμ, coupled to other
particles in an arbitrary way with no reference made to gauge invariance at all; that
is to say, the gauge symmetry is explicitly broken.

These two ways of thinking lead to precisely the same lagrangian, since the
discussion surrounding Eq. (4.35) shows that the most general nonlinearly realized
lagrangian is built using arbitrary combinations of a vector field Vμ – with no
constraints on the lagrangian coming from the abelian symmetry – followed by the
replacement Vμ → ∂μξ. In the gauge-invariant construction this vector is simply

Vμ = Dμξ/(
√

2 v), and so is simply Aμ written in unitary gauge.
The upshot is this: from a low-energy perspective there is operationally no

difference between a nonlinearly realized gauge symmetry and the complete absence
of a gauge symmetry (or an explicitly broken gauge symmetry).14 There is no royal
road that allows an observer to learn about broken high-energy gauge symmetries
using only low-energy methods. The same is not true for global symmetries because
for these the physical Goldstone mode is always present at low energies to bring the
news about the UV theory’s broken symmetries.

Of course, this doesn’t mean that there is no utility in sometimes using unitary
gauge (and thereby ignoring the symmetries) and sometimes using a more general
covariant gauge (for which the Stueckelberg field is kept and the gauge symmetry
is nonlinearly realized). Unitary gauge is usually more useful at tree level, since it
makes the physical particle spectrum more transparent. Covariant gauges are more

14 A similar statement applies for non-abelian symmetries [28].
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convenient when computing loops (or power counting in general), for reasons that
become clear once the massive spin-one propagator is written.

For a one-parameter family of covariant gauges [66] the massive spin-one
propagator has the form

Gμν (x − y) = −i
∫

d4p

(2π)4
1

p2 + m2 − iε

[
ημν + (ζ − 1)

pμpν
p2 + ζm2

]
eip ·(x−y) ,

(4.63)

where the real parameter ζ labels the gauge choice. Popular gauge choices within this
class are Feynman gauge (ζ = 1), Landau gauge (ζ = 0) and unitary gauge, which
corresponds to the limit ζ → ∞. What is inconvenient about loops in unitary gauge is
the propagator’s large-momentum limit, since it does not fall off quadratically with
momentum as the components of pμ get large. Naive use of unitary gauge in the
power-counting estimates of §3 leads to completely misleading results.15

Unitarity Bound: The Gauged Toy Model

How can describing a spin-one particle without using gauge invariance be consistent
with the statement made at the beginning of this section that relativity and unitarity
in quantum mechanics require a massless spin-one particle to be associated with
a gauge symmetry? To explore this it is again instructive to ask the question for
the toy model of §1; or rather for the gauged version of the toy model for which
a gauge potential Aμ ‘gauges’ the toy model’s U (1) symmetry (i.e promotes it
from a global symmetry to a local one). The renormalizable lagrangian for the UV
version of this model is given by (4.60) instead of (1.1), though with scalar potential
still given by (1.2).

For nonzero v both the scalar φR (or χ) and the spin-one field Aμ acquire a mass,
with m2

R = λv
2 and m2

A = 2g2v2. In the regime where the gauge coupling, g, and
the scalar self-coupling, λ, are both small (to justify semiclassical methods) but with
g2 � λ these satisfy m2

A � m2
R . In this case, the low-energy spectrum for energies

below mR consists only of the massive spin-one particle, whose lagrangian is not
constrained by gauge invariance apart from the observation that it can be built using
arbitrary powers of the invariant field Vμ = ∂μξ −

√
2 gvAμ.

With these choices (and in a covariant gauge16), the power-counting arguments
of §3 go through in the Wilsonian theory of Vμ interactions with only minor
modifications due to the presence of the gauge field Aμ. Writing the basic action
in the form

LW = f
4
∑
n

cn O
(
∂

M
,
ξ

v
,

A
vA

)
, (4.64)

for dimensionless couplings cn, and repeating the dimensional power-counting
arguments of §3.2.3 leads to the following minor generalization of (3.57),

15 This is another example where if you use the wrong variables you will be sorry. In principle, once
everything is included all gauges give the same answer to physical (and so gauge-invariant) quantities.
But results that are manifest at every step in covariant gauges emerge in unitary gauge only after
obscure cancellations.

16 For aficianados: including ‘ghosts’, though these do not play an important role for the present purposes.
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AEξEA (q) ∼ q2f4

M2

(
1
v

) Eξ (
1
vA

) EA
(

Mq

4π f2

)2L ∏
n

[
cn

( q
M

)dn−2]Vn

, (4.65)

as an estimate for a graph with Eξ and EA external ξ and Aμ legs, L loops and Vn

vertices involving dn derivatives each. As usual, q denotes here the generic size of
the external energies flowing through the graph and assumes this is the only scale
relevant when making a dimensional estimate of the result’s size.

From §3.2.3 it is known that using the choices f2 = mRv and M = mR in (4.64)
correctly captures the dependence of LW on v and mR, at least for the ξ-dependent
terms. With these choices choosing vA = M/g = mR/g in (4.64) also ensures that both
∂μ and gAμ enter with the same dimensional factor of 1/M in LW, thereby ensuring
that all appearances of the covariant derivative appearing in the combination

Dμξ

vM
=
∂μξ −

√
2 gvAμ

vM
=
∂μξ

vM
−
√

2
Aμ
vA

(4.66)

appear consistent with the assumption made in (4.64).
What remains is to track the remaining factors of the gauge coupling, g, and to

see whether or not there are any systematic powers of mR and v hidden within the
dimensionless coefficients, cn. The above choices ensure there are none in any terms
that explicitly involve the field ξ. What they do not get right are the terms that involve
Aμ without ξ, such as terms built using the covariant field strength Fμν = ∂μAν −
∂νAμ.

In particular, using the above rules in (4.64) would predict such terms appear in
LW proportional to

cn f
4 On

(
∂

M
,

Fμν
MvA

)
= cn m2

Rv
2 On

(
∂

mR

,
gFμν

m2
R

)
. (4.67)

This gets two things wrong when compared with what is obtained by integrating
out the heavy χ scalar from the UV theory using (4.60). First, it predicts a kinetic
Maxwell action for the gauge field of size

f4

M2v2
A

FμνFμν =
g2v2

M2 FμνFμν , (4.68)

rather than the standard Maxwell action inherited from (4.60). This shows that the
estimate (4.65) misses a factor of g2v2/M2 from each internal gauge field line,
requiring it to be corrected by the factor

Correction factor =

(
g2v2

M2

)IA

=

(
gv

M

)−EA+
∑

n f A
n Vn

, (4.69)

where IA is the number of internal gauge-field lines in the graph, and f A
n is the number

of gauge lines that meet at the vertex labelled by interaction ‘n’. This expression uses
‘conservation of ends’ for gauge field lines, EA + 2IA =

∑
n f A

nVn. This correction
factor says that each internal gauge-boson line brings an additional suppression by a
power of g2v2/M2 � m2

A/m
2
R = g2/λ, which is small because of the assumption that

the spin-one particle is light enough to be in the low-energy theory.
Similarly, integrating out the χ field in the full theory also gives higher powers

of Fμν (and its derivatives) that come with a factor of g for each Fμν and with
dimensions set by powers of mR, as in
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hn m4
R O

(
∂

mR

,
gF

m2
R

)
, (4.70)

where hn is a pure number (that contains a factor of 1/(16π2) for each loop in the
full theory required to generate the operator in question). Comparing this with (4.67)
shows that the dimensionless couplings cn and hn are related by

cn = hn

(
m4

R

f4

)
= hn

(
m2

R

v2

)
= λhn, (4.71)

(where the last equality uses m2
R = λv

2), but only for those interactions that involve
only Fμν and not ξ.

Physically, interactions inLW that are gauge-invariant and independent of ξ involve
only the transverse polarizations of the spin-one particle, while ξ itself plays the role
of the massive spin-one particle’s longitudinal spin state. The above estimates show
that (when m2

R � v2) the interactions of the transverse states are over-estimated at
low-energies when using (4.64) and (4.65), though these estimates do get the size of
the contribution of the longitudinal state right.

Now comes the main point: concentrating exclusively on the interactions of the
longitudinal state, the dominant size of an E-point amplitude is obtained from the
estimate (4.65) using only ξ external and internal lines, leading to the estimate (3.58)
(or, equivalently, the estimate (3.57)) for a graph with E external legs, L loops and
Vn vertices, each of which involves dn derivatives:

AE (q) ∼ q2v2
(

1
v

) E ( q
4πv

)2L ∏
n

⎡⎢⎢⎢⎢⎣
(

q
mR

) (dn−2)⎤⎥⎥⎥⎥⎦
Vn

. (4.72)

Not surprisingly, this says that the low-energy expansion is the key to the validity
of the loop expansion in the Wilsonian theory. For q � mR � 4πv all graphs are
suppressed and the expansion is controlled. When q ∼ mR � 4πv multiple insertions
of vertices at fixed loop order can become unsuppressed, but need not represent loss
of control provided there are fixed numbers of graphs possible at any loop order. But
the low-energy expansion underlying the Wilsonian lagrangian necessarily requires

q � 4πv ∼ 4πmA

g
. (4.73)

This kind of restriction for an EFT is often called a ‘unitarity bound’ [67], because
it is often identified by asking when a cross section computed within the low-energy
theory becomes inconsistent with the energy dependence required at high energy by
unitarity [68]. It would, of course, be misleading to regard inconsistency as a bona
fide loss of unitarity in the low-energy theory (which nobody does), since it is hard
to see how unitarity can be lost if the Hamiltonian remains hermitian (as is typically
the case). What is really failing is the validity of the low-energy expansion used to
infer the perturbative cross-section in the low-energy regime, and this failure is even
more systematically revealed through power-counting estimates like (4.72).

It is now possible to circle back to the question that started this section: how can
the necessity for gauge invariance for massless spin-one particles be consistent with
the observation that nonlinearly realized gauge symmetry is operationally the same
as explicit breaking of the gauge symmetry in the EFT for massive spin-one states?



105 4.3 Anomaly Matching

As is seen above, the low-energy description of a massive spin-one particle (either
without gauge invariance or with a nonlinearly realized gauge symmetry) always
breaks down at energies of order q ∼ 4πmA/g, by which point some new UV descrip-
tion must necessarily intervene. (Usually what intervenes is a description involving
linearly realized gauge invariance.) Although a non-gauge invariant description of
a massive spin-one particle can make sense within an EFT, this description cannot
work up to energies that are hierarchically large compared to its mass, and cannot
work at all for nonzero g if the particle is massless.17 Similar restrictions do not
apply for linearly realized gauge symmetries, since these can be renormalizable and
so be valid up to energies much higher than any of those that appear explicitly in the
low-energy theory itself (indeed this is one way that they can be derived [69]).

4.3 Anomaly Matching ♠

The previous sections discuss symmetries as if their existence is established by
showing the invariance of the classical action and so ignore the possibility that
classical symmetries might not survive quantization. Traditionally, when a classical
symmetry fails to survive quantization it is known as an ‘anomalous’ symmetry
[70–73, 75].

This kind of separate treatment of the classical action and its quantum corrections
is a bit too old-school within an EFT framework, because what one naively calls
the ‘classical’ action is really better understood as the Wilsonian action obtained by
integrating out higher-energy degrees of freedom. As this section now argues, it is
more useful to organize one’s thinking in terms of the scales involved than to divide
the world artificially into a quantum and classical part. From this point of view, an
anomalous symmetry is a particular instance of a transformation that is simply not a
symmetry, but under which the action transforms in a specific way.

4.3.1 Anomalies♥

One way to characterize the failure of a classical symmetry at the quantum level is
if the system’s 1PI action is not invariant under the transformations in question, even
though the classical (or Wilson) action is. To see how this might happen recall the
relation between the 1PI and classical actions, given by (2.19), reproduced here for
convenience of reference:

exp
{
iΓ[ϕ ]

}
=

∫
Dφ̂ exp

{
iS[ϕ + φ̂ ] + i

∫
d4x φ̂a Ja (ϕ)

}
, (4.74)

where Ja (ϕ) = −δΓ/δϕa.

17 A loophole in this argument arises for massive abelian gauge bosons, since for these interactions for the
would-be Goldstone field ξ need not exist at all (in which case, the massive Stueckelberg description
can be renormalizable). (This is only an option for abelian bosons because – as §4.2.2 shows – non-
renormalizable self-interactions are compulsory for non-abelian Goldstone bosons.) As the toy model
example shows, the absence of interactions for ξ is a strong condition even for abelian theories, and is
not generic in any particular UV completion.
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In this expression, consider transforming the argument of Γ[ϕ] under a symmetry
transformation, which for simplicity’s sake18 is taken to act linearly on the fields:
ϕa → (Uϕ)a = Ua

b ϕb. This gives

exp
{
iΓ[Uϕ ]

}
=

∫
Dφ̂ exp

{
iS[Uϕ + φ̂ ] + i

∫
d4x φ̂a Ja

}
(4.75)

=

∫
Dφ̂u J(ϕ, φ̂u) exp

{
iS[ϕ + φ̂u ] + i

∫
d4x φ̂a

uJa

}
,

where the second line performs the change of integration variable φ̂ → φ̂u where
φ̂ = U φ̂u (for which J(ϕ, ϕ̂u) is the Jacobian – more about which below) and
uses the invariance of the classical action to write S[U (ϕ + φ̂u)] = S[ϕ + φ̂u].
Also used is the definition of the current, Ja (ϕ) = −δΓ[ϕ]/δϕa, which implies that
Ja (Uϕ) = −(δΓ[ψ]/δψa)ψ=Uϕ, while Ja := −δΓ[Uϕ]/δϕa = Ub

a Jb (Uϕ).
This manipulation shows that it is consistent to have Γ[Uϕ] = Γ[ϕ] if both

the classical action is invariant and the path integral measure is invariant – i.e. the
Jacobian is trivial: J = 1. One way to think about anomalies is that they are
the situation where there is an obstruction to constructing this type of invariant
measure for the path integral [76]. Although it goes beyond the scope of this book
to derive the conditions for anomalies in great detail (see the bibliography, §D.2, for
further reading), suffice it to say that obstructions arise when a system is ‘chiral’ in
the sense that its interactions treat left- and right-handed particles differently. In four
dimensions this boils down to systems with chiral fermions.

A concrete way to identify when there is an anomaly is to evaluate the matrix
elements of the conserved Noether current, regarded as a quantum operator. Recall
that for each classical symmetry Noether’s theorem ensures the existence of a current,
Jμ, that is locally conserved inasmuch as the field equations imply ∂μ Jμ = 0.
Explicit calculations of matrix elements like 〈 f |Jμ |Ω〉, where |Ω〉 is the ground state
and | f 〉 = |A(k), A(q)〉 is a state involving two spin-one particles, show that the
matrix element 〈 f |∂μ Jμ |Ω〉 cannot be zero, so local conservation fails as an operator
statement.

Evaluating the graph of Fig. 4.2 gives the following result for the conservation of
the operator current [70–73]19

∂λ Jλa = Aabc
gbgc

64π2 ε
μναβFb

μνFc
αβ (4.76)

with Fb
μν the field strength corresponding to a gauge symmetry generator Tb , and gb

its associated gauge coupling. The quantities Aabc are called anomaly coefficients,
and they are given in terms of the symmetry generators (acting on left-handed spin-
half fields) by

18 A similar argument for nonlinearly realized symmetries couples the current to a combination σa (ϕ, φ̂)
that transforms more covariantly under field redefinitions. The functional form of the transformation
rule can also evolve with scale, and so differ between the microscopic fields φa and ϕa = 〈φa〉 (see
also Exercise 2.7).

19 Non-invariance of Γ[φ] is related to the failure of the Noether current to be conserved, as can be seen
by performing a local symmetry transformation, under which (for a global symmetry) the classical
action (4.81) is not invariant. Evaluating explicitly how it transforms shows: δΓ = −

∫
d4x ∂μωa J

μ
a ,

which after integration by parts gives δΓ =
∫

d4x ωa ∂μJ
μ
a .
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Fig. 4.2 The triangle graph that is responsible for anomalous symmetries (in four spacetime dimensions). The dot
represents the operator Jμ and the external lines represent gauge bosons in the matrix element
〈gg|Jμ |Ω〉, where |Ω〉 is the ground state.

Aabc = tr
(
Ta

{
Tb , Tc

})
(4.77)

where the curly brackets denote the anticommutator,
{
Tb, Tc

}
:= TbTc + TcTb . As

defined, Aabc is completely symmetric under the interchange of any pair of indices,
and it is real because the generators Ta are hermitian. The trace is over the reducible
representation of the symmetry acting on the complete set of left-handed fermions.

A classical gauge symmetry survives quantization – and is said to be ‘anomaly
free’ – if Aabc = 0 for all Ta, Tb and Tc in the symmetry’s Lie algebra. Because
gauge invariance ultimately is required by the interplay between Lorentz invariance
and unitarity, gauge symmetries must be anomaly-free to be consistent. (In §9.1.2 it is
shown that anomalies cancel in an interesting way for the symmetry group SUc (3) ×
SUL(2) × UY(1) using a single ‘generation’ of fermion content from the Standard
Model.)

An important sufficient condition for the absence of anomalies is simple to state.
Any symmetry group must be anomaly-free if its representation on left-handed
fermions is real (or pseudoreal). A representation is real if its group-representation
matrices exp(iωaTa) are real and so the matrices Ta are imaginary. It is pseudo-real
if the matrices Ta are imaginary up to a similarity transformation: T∗a = −S TaS−1 for
some invertible matrix S.

To see why pseudo-reality ensures freedom from anomalies, notice that because
the generators Ta are in general hermitian, it follows that T T

a = T∗a . Because the trace
of a matrix equals the trace of its transpose it follows that

Aabc = tr [(Ta{Tb, Tc })T] = tr ({T T
c , T T

b }T
T
a)

= tr ({T∗c , T∗b }T
∗
a ) = − tr (S{Tc , Tb }TaS−1) (4.78)

= −tr ({Tc , Tb }Ta) = −Aabc ,

and so Aabc = 0.
A special case of this last result shows why only chiral symmetries are anomalous.

To see why, imagine that fermion number is conserved (so that fermions and
antifermions are distinguishable) and further assume the symmetry is not chiral, in
that left- and right-handed fermions (as opposed to antifermions) transform in the
same representation, ta say, of the group. In this case, the group generators acting on
all the left-handed fermions – for fermions and antifermions – can be written in the
block-diagonal form

Ta =

(
ta 0
0 −t∗a

)
(4.79)
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where the upper-left block gives the action on fermions and the lower-right block
on antifermions. This representation is manifestly pseudoreal since T∗a = −S TaS−1,
where S = τ1 ⊗ I – with τ1 the first Pauli matrix – is the matrix that swaps the upper-
left and lower-right blocks. It follows that any symmetry that is left–right symmetric
in this way must also be anomaly-free. This is, in particular, why anomalies are not
an issue for either Quantum Electrodynamics or Quantum Chromodynamics.

An important property of the definition of an anomaly is the inability to remove it
(and so to restore the symmetry) simply by appropriately adding non-invariant local
counter-terms to the lagrangian density. This in itself means that anomalies must have
their origins in the low-energy part of the theory, rather than the high-energy part.
(After all, the EFT program argues that any high-energy physics can be described by
some choice for local interactions within an effective theory.) It is for this reason that
anomalies are relevant when setting up the Wilsonian description of the low-energy
sector [74].

The observation that anomalies cannot (by definition) be canceled by local
counter-terms also reveals the difference between an honest-to-God anomaly and just
regularizing in a silly way. Any damage done by using an ill-conceived regularization
procedure – such as one that does not preserve a system’s symmetries – can be
undone by renormalizing parameters appropriately, but this is not possible if a
symmetry is anomalous. Many simple regularization schemes (like explicit cut-offs
in momentum integrals or point-splitting techniques) break symmetries (like Lorentz
invariance or gauge invariance), but their use does not mean that the physics being
described must break these symmetries. This is why it can make sense (though is
not normally convenient) to define effective Wilson actions with cutoffs, even for
Lorentz-invariant systems or systems with gauge symmetries. The implicit choice
made in such cases is to undo any regulatory damage by appropriately renormalizing
the theory to restore these symmetries.

A sufficient condition for a renormalization scheme to exist that preserves a
symmetry is the existence of a regularization scheme that explicitly preserves it (such
as is often true with dimensional regularization, for example). Since the difference
between any two regularization schemes lies purely at high energies, it must be
captured by some choice of effective local couplings. But while this shows that
invariant regularizations are not possible for anomalous symmetries,20 the absence
of a known invariant regularization does not necessarily imply the existence of an
anomaly.

4.3.2 Anomalies and EFTs

This path integral way of formulating things shows how the classical/quantum split
is more subtle when phrased in terms of the Wilsonian effective action. Given a
hierarchy of scales with light, l, and heavy, h, degrees of freedom, the definition
(2.58) of the Wilsonian action (reproduced here)

20 Sometimes regularizations superficially appear to preserve an anomalous symmetry (such as the
anomaly in Weyl invariance when regularized in D � 4 dimensions), but when this happens the
regularization scheme introduces new light degrees of freedom (such as the D − 4 components of
D-dimensional tensor fields) [75].
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exp
{
iSW[l]

}
:=

∫
Dh exp

{
iS[l + h]

}
, (4.80)

shows that a nontrivial Jacobian potentially moves the high-energy part of the
anomaly from the measure into the (Wilsonian) action itself.

As ever, the basic symmetry statement is – at any scale – that the transformation
properties of the Wilsonian action are whatever they must be to reproduce the correct
transformation properties of quantities like the 1PI action for the full microscopic
theory. This means invariance at all scales for honest-to-God symmetries, and it
means reproducing the nontrivial transformation properties of δΓ[ϕ] for broken
symmetries. (For anomalous symmetries, this condition that the Wilsonian action
reproduce the anomalies of the full theory is called ‘anomaly matching’, and its
power lies in the fact that for anomalies δΓ[ϕ] takes a restricted form [78, 80].)

Gauge Symmetries

For these purposes it is important to distinguish between local (or gauge) symmetries
and global symmetries. Linearly realized gauge symmetries are central to the
consistency of the coupling of light spin-one particles, since their interactions are
only Lorentz invariant and unitary if they are also invariant under local gauge trans-
formations. Consequently, gauge symmetries cannot be anomalous, and this must be
true for the Wilsonian theory at any energy for which one cares to ask the question.

Absence of anomalies usually means invariance for both SW and the Jacobian J,
and this is how things turn out to transpire for the Standard Model (see §9.1.2).
This need not necessarily be so, however, since in principle both δSW and J − 1
can be nonzero, so long as the total combination Dφ̂ eiSW[ϕ+φ̂] is invariant. This
is not just an academic observation because this is the way gauge symmetries in
many string theories (see §10.3) turn out to be anomaly free. In this context, the
cancellation between the variation of the action and the Jacobian is called ‘Green-
Schwarz’ anomaly cancellation [77].

What makes a cancellation between the variation of Dφ̂ and eiSW tricky is the
fact that SW =

∫
d4x LW is local. In fact, the locality of the Wilson action means

the idea that terms in SW can cancel an anomaly (regarded as the variation of Dφ̂)
needs some clarification. This is because – as stated explicitly above – an anomaly is
defined as a nontrivial transformation of Dφ̂ that cannot be removed by adding local
counter-terms to the action.

The main issue here is semantic. Strictly speaking, an ‘anomalous’ symmetry is
not really anomalous if it can be cancelled by terms in SW, as in Green–Schwarz
anomaly cancellation. It is not anomalous precisely because anomalies are defined
modulo the variation of local terms in the action. When one speaks of Green–
Schwarz cancellations the anomalies in question arise from a particular sector of
the theory, usually chiral fermions. The corresponding symmetries are anomalous
in the sense that they cannot be cancelled by local counter-terms purely within this
sector. Green–Schwarz anomaly cancellation becomes possible once the rest of the
fields from other sectors are also included.

An example might be helpful here. Consider, therefore, Quantum Electrodynamics
(QED) in the limit of vanishing fermion mass. In this case, the fields involved are the
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electromagnetic potential, Aμ, and the fermion’s spinor field, ψ, and the leading,
renormalizable, terms in the (Wilsonian) lagrangian are

LW = −
1
4

FμνFμν − ψ /
Dψ. (4.81)

Here,
/
Dψ = γμDμψ = γμ (∂μ − iqAμ)ψ, where q is the fermion’s charge (q = −e

for an electron, say) and Fμν = ∂μAν − ∂νAμ.
This lagrangian enjoys a classical UV(1) × UA(1) symmetry where UV(1) is the

electromagnetic gauge symmetry: δAμ = ∂μζ with δψ = iqζ ψ, where ζ(x) is an
arbitrary infinitesimal real local symmetry parameter. Unlike the gauge symmetry,
the global UA(1) symmetry – δψ = iω γ5ψ for constant, real infinitesimal symme-
try parameter ω – is only present due to the absence of a mass term.

The axial symmetry, UA(1), in this theory proves to have an anomaly21 under which
the 1PI action transforms as

δΓ =
ω q2

16π2

∫
d4x εμνλρFμνFλρ, (4.82)

where indeed the right-hand side cannot be written as the variation, δS, of some
local functional of Aμ and ψ. This is not inconsistent with (4.82) because – unlike
the Wilson action – the Γ that satisfies (4.82) is not local.

But this anomaly can be the variation of a local action (and so amenable to Green–
Schwarz anomaly cancellation) once other fields are added. In particular, adding a
real scalar field, φ, transforming inhomogeneously under UA(1) as a Goldstone field,
δφ = ω, allows (4.82) to be cancelled by a contribution to the Wilson action of
the form

LGS = −
q2

16π2

∫
d4x φ εμνλρFμνFλρ. (4.83)

Global Symmetries and Anomaly Matching

Anomaly matching enters for global symmetries, since these can be anomalous
within a consistent theory. The presence of anomalies for global symmetries can
make the difference between having a theory agree with experiment or not.

A famous practical example of this arises in Quantum Chromodynamics (QCD)
(discussed in more detail in §8), wherein anomalies prove to be crucial for describing
the decay rate for π0 mesons. Unlike most mesons, π0 mesons are seen to decay
electromagnetically through the decay into two photons, π0 → γγ. Its decays are
well-described by an interaction term involving pions and photons of the form

Ldecay =
e2

32π2Fπ
π0 εμνλρFμνFλρ, (4.84)

where e is the electromagnetic coupling and Fπ = 92 MeV is a parameter discussed
in some detail in §8.

21 Strictly speaking, there is an anomaly in the full UV (1) ×UA (1) symmetry, but precisely which factor
is anomalous can be chosen by adding appropriate counterterms. Requiring Lorentz invariance and
unitarity precludes letting the UV (1) factor be anomalous and so forces the anomaly onto the axial
transformation, UA (1).
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The interaction (4.84) was a puzzle in QCD before the role played by anomalies
was appreciated [81–86]. This is because in QCD the π0 is understood to be a
bound state consisting of a quark–antiquark combination, where quarks (and their
antiparticles) are bound together by the strong interactions. The quarks involved in
the π0 are the up and down quarks, each of which comes in Nc = 3 copies (or
colours) and whose charges are, respectively, qu = 2

3 e and qd = − 1
3 e. The strong

force in QCD couples to colour in much the way that electromagnetism couples to
electric charge in QED, and this binds the quarks together into mesons with binding
energies of order 4πFπ ∼ 1 GeV or so. In a Wilsonian picture the EFT appropriate
at energies higher than this is built using the quarks, while at energies well below
4πFπ ∼ 1 GeV the effective action instead directly involves bound-states like π0

(for more details see §8).
The puzzle arises because the π0 proves to be a Goldstone boson for a global

symmetry, δπ0 = ωFπ, of the strong and electromagnetic interactions, but this seems
at first sight to be inconsistent with its appearing undifferentiated in the sub-GeV
EFT in a term like (4.84). Instead of being invariant, Eq. (4.84) predicts

δLdecay =
ω e2

32π2 ε
μνλρFμνFλρ. (4.85)

The resolution of the puzzle lies in the observation that QCD predicts there is an
anomaly in the underlying symmetry for which π0 is a Goldstone boson. It is the
anomaly that allows terms like (4.84), and it is anomaly matching that predicts the
size of its coefficient.

To see how this works, it is convenient to write the action on the u and d quarks of
the symmetry for which π0 is the Goldstone boson action as

δ

(
u
d

)
= iTAγ5

(
u
d

)
with TA =

( 1
2

− 1
2

)
. (4.86)

In this same notation the electric charge of these quarks has the form

Qem =

( 2
3 e

− 1
3 e

)
. (4.87)

Since (4.86) is an axial symmetry, it has an anomaly of the form given in (4.82),
which when summed over all the colours of the two types of quarks gives

δΓ =
ωA
16π2

∫
d4x εμνλρFμνFλρ, (4.88)

with anomaly coefficient that counts the number of quarks, weighted by their electric
charges

A = tr
[
TAQ2

em

]
=

Nc

2

⎡⎢⎢⎢⎢⎣
(

2
3

)2
−

(
−1

3

)2⎤⎥⎥⎥⎥⎦ = Nc

6
. (4.89)

The success of (4.84) in describing π0 decays provides one of the experimental
confirmations that Nc = 3 is the number of colours in QCD.

This success is a special case of anomaly matching for a larger group of approxi-
mate global symmetries in low-energy QCD, which includes an entire UL(3) ×UR(3)
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invariance, associated with separate unitary rotations amongst the left- and right-
handed parts of the three lightest quarks: u, d and s. Some of the broader implications
of these symmetries are described in §8.

In particular, all evidence indicates that the QCD vacuum spontaneously breaks
the axial combination of these symmetries, giving rise to eight pseudo-Goldstone
bosons.22 These symmetries experience several anomalies when combined with
various Standard Model gauge symmetries, and their existence implies that the
existence in the low-energy meson EFT of a specific kind of self-interaction amongst
the eight would-be Goldstone particles. It goes beyond the scope of the book to work
out this anomaly-matching lagrangian – called a Wess-Zumino action – for the entire
anomalous action, but the leading term it generates once it is expanded in powers of
the 3 × 3 hermitian, traceless meson field, M, has the form

LWZW =
Nc

240π2F5
π

εμνλρ tr
[
M ∂μM ∂νM ∂λM ∂ρM

]
+ · · · (4.90)

where the ellipses represent terms involving more powers of M and Nc = 3 here
denotes the number of quark colours.

As above, the coefficient is fixed by demanding that its transformation under
SUL(3)×SUR(3) reproduces the anomalies of the underlying quarks, and the resulting
value is successful in describing low-energy meson properties.

Anomaly matching can also provide a powerful constraint for theories where
it is different species of chiral fermions that contribute to the anomalies at high
energies and in the low-energy theory. Particularly interesting models of this form
are those where chiral elementary fermions get bound into composite fermions that
are also chiral. Such theories arise when contemplating whether or not quarks or
leptons might be built from smaller constituents, much as protons and neutrons (once
considered to be fundamental) are built from up and down quarks.

The physics involved in such models is often chiral because the puzzle such
theories raise is why the bound-state masses (i.e. the mass of the ordinary quark
or lepton) should be so much smaller than the typical energy E ∼ 1/� associated
with the size of the bound object. Experimental searches for compositeness already
tell us that if quarks or leptons are composite then the size of the associated bound
state must be extremely small, m � 1/�. Chiral theories can help with this because
chiral symmetries can allow such theories to have states whose binding energies are
much smaller than their size.

For any such model the total pattern of anomalies carried by the constituent
fermions at high energies must also be reflected in the spectrum of particles at lower
energies, either by having the composite fermions produce the same anomalies or
by having composite Goldstone bosons arise (much like the π0 meson in the QCD
example described above). See Exercise 4.6 for a more explicit example of anomaly
matching with composite fermions.

22 There are only eight rather than the nine Goldstone bosons expected for UA (3) because the overall
rotation of all three quarks by a common axial phase is also anomalous and so is broken by the strong
interactions.
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4.4 Summary

Symmetries play a central role in modern physics, and effective theories are no different in this regard. This
chapter opens with a section that recaps the various roles that symmetries play in quantum mechanics
and in quantum field theory. The main new ingredient that the locality of quantum field theory introduces
is the possibility that symmetries can be spontaneously broken: the ground state might not be invariant
under some of the symmetries of the action (or equations of motion).

If the symmetry that breaks spontaneously is both a continuous symmetry and a global symmetry then
spontaneous breaking requires the existence of gapless (or, in a relativistic context, massless) Goldstone
states. This makes them card-carrying members of the low-energy sector, whose properties are largely
dictated on symmetry grounds.

The main message of this chapter is that any symmetry properties of the full UV theory must also
be reflected in any Wilsonian description of its low-energy sector. Much of the discussion is devoted to
identifying Goldstone boson properties as a function of the assumed symmetry breaking pattern. This is
done by identifying the general nonlinear realization of the broken global symmetries that the Goldstone
bosons carry since that is how the news of these symmetries gets brought to the low-energy theory. Many
examples of the structures found here arise in later chapters on applications, such as §8, §13 and §14.

Finally, the latter sections of this chapter examine related issues, such as how a nonlinear realization
goes through when the spontaneously broken symmetry is local rather than global (i.e. is a gauge
symmetry). The main new feature is that spontaneously broken gauge symmetries have no gap, inasmuch
as the would-be Goldstone bosons get ‘eaten’ (through the Higgs mechanism) to provide the longitudinal
spin state required for a massive spin-one particle.

As a result, the low-energy theory loses the information about the existence of the symmetry in the
high-energy sector. For the Wilson action there is operationally no difference at all between a nonlinearly
realized gauge symmetry and no gauge symmetry at all. The consistency of this observation with the
requirement of gauge symmetries for massless spin-one particles is explored, including the associated
breakdown of the low-energy EFT at scales not higher than of order 4πmA/g, if mA and g are the spin-one
particle’s mass and coupling constant.

The final section provides a superficial description of anomalies – the failure of a classical symmetry
to survive quantization – as a lead-in to a discussion of anomaly matching. From an EFT perspective
anomalous symmetries are not symmetries at all, since for them the 1PI and 1LPI actions are not invariant,
δΓ[ϕ] � 0, even if the classical action might be. What is special about anomalies is that δΓ[ϕ]
is quite constrained in form, so there can be content in requiring the Wilsonian action to reproduce the
transformation properties of the underlying theory.

Exercises

Exercise 4.1 Consider the Goldstone bosons for the symmetry-breaking pattern where
the group G = SU (2) breaks down to H = U (1). Take the generators of G to
be the 2 × 2 Pauli matrices Ta =

1
2τa, with (as usual)
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τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
and τ3 =

(
1 0
0 −1

)
,

and take the generator of H to be T3. Using the standard realization compute
explicit formulae for the two Goldstone fields, ξ1 and ξ2, under arbitrary
infinitesimal G transformations. Compute the Maurer–Cartan form and the
associated quantities Aα (ξ) and eαβ (ξ), and their transformation properties
under G. Write down the most general lagrangian up to two derivatives
describing the self-couplings of these Goldstone fields, ξα, and compute the
Noether currents implied by this action for the symmetry group G.

Show that a change of variables (ξ1, ξ2) → (ϑ,ϕ) exists that turns your
result into the Goldstone fields for a target space that is a 2-sphere:

LW = −
F2

2
[
(∂μϑ ∂

μϑ) + sin2 ϑ (∂μϕ ∂
μϕ)
]
, (4.91)

with F2 an arbitrary positive real constant.
Exercise 4.2 Consider the Goldstone bosons for the symmetry-breaking pattern

where the group G = SU (2) × SU (2) breaks down to H = SU (2)
corresponding to the diagonal subgroup (for which both SU (2) factors rotate
in the same way rather than independently). How many Goldstone bosons are
there for this pattern?

Using the standard realization compute explicit formulae for the Goldstone
fields under arbitrary infinitesimal G transformations. Compute the Maurer–
Cartan form and the associated quantities Aα (ξ) and eαβ (ξ), and their
transformation properties under G. Write down the most general two-derivative
self-couplings for the Goldstone fields ξα, and compute its Noether currents
for the symmetry group G. This action describes the low-energy interactions
of pions.

Show that there is a change of variables that allows your result to be rewritten
in the ‘nonlinear σ-model’ form

LW = −
1
2

∂μ�π · ∂μ�π
(1 + �π · �π/F2)2 . (4.92)

Exercise 4.3 Derive the useful identity, Eq. (C.133), that is used when proving
formulae (4.50) and (4.51) of the main text.

Exercise 4.4 For the symmetry breaking pattern of Exercise 4.1 suppose that the
group G is gauged. Show that the low-energy nonlinear realization is equiv-
alent to the theory of a massive charged complex vector field Wμ coupled to a
single unbroken U (1) gauge boson, subject only to the constraints of the U (1)
invariance. Compute the most general interactions for this theory involving up
to four fields and at most two derivatives.

Exercise 4.5 Explicitly evaluate the Feynman graph of Fig. 4.2 and derive the
anomaly equation, Eq. (4.76).

Exercise 4.6 The strong interactions have a gauge group SU (3)c (where ‘c’ stands for
‘colour’ – for more details see §8). Suppose there are three types of left-handed
massless spin-half quarks, q, that each transform under SU (3)c as a triplet
(3) as well as three types of left-handed spin-half anti-quarks, q̄, that each
transform as an anti-triplet (3̄). It happens that the strong dynamics preserves a
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global ‘flavour’ symmetry group G f := SU (3)L×SU (3)R×U (1) that commutes
with SU (3)c , under which the q’s transform as (3, 1)1 while the q̄ transform as
(1, 3̄)−1, where the subscript gives the charge of the field for the U (1) generator.
Evaluate the anomaly coefficients Aabc for the generators of G f using the
generators Ta acting on the left-handed quarks and anti-quarks.

It is believed that the strong interactions form bound states that are singlets
under SU (3)c . For this quark content these include fermionic bound states
(or ‘baryons’) in the completely antisymmetric colour combination: B =

εabcqaqbqc as well as its conjugate (or ‘anti-baryon’) B = εabc q̄a q̄b q̄c . What
are the possible representations that B and B can transform in under the flavour
group G f ?

Evaluate the anomaly coefficients Aabc for the generators of G f acting
on the baryons in each of these representations allowed for the bound-state
baryons. Prove that it is impossible to choose the number of types of these
representations in the bound-state spectrum in such a way that the Aabc for the
baryons agree with those obtained from the quarks. The impossibility of doing
so provides an argument that for these choices of quantum numbers the strong
interactions must spontaneously break the flavour group G f .
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The presence of boundaries modifies the previous discussion in several ways, such
as by removing the freedom to drop total derivative effective interactions in the low-
energy action when identifying redundant terms. This short chapter sketches in some
of the details of the new features that boundaries bring to low-energy theories. It is
short because this is an area for which Wilsonian methods remain relatively poorly
developed. It is nonetheless included because it provides a useful starting point for
later sections, such as §7.4 and §13, of this book.

In general, spacetime is regarded to be a manifoldM with boundary ∂M, and the
action must be specified on both of these regions to completely specify the problem:

S = SB(φ) + Sb (φ,ψ) =
∫
M

d4x LB +

∫
∂M

d3x Lb, (5.1)

where SB (or the ‘bulk’ action) describes the dynamics of a collection of fields,
φ(x), in the interior of M while Sb (or the ‘boundary’ action) describes how these
bulk fields couple to the boundary, possibly including to any boundary-localized
dynamical degrees of freedom (such as the boundary position, yμ (t), itself, if it is free
to move). Unless stated otherwise, the boundary of interest is timelike, consisting of
a boundary to space at a given time (in some preferred frame) whose world-volume
sweeps out the spacetime boundary as time evolves.

The division of interactions between the bulk and boundary is somewhat fluid
since Stokes’ theorem can be used to rewrite total derivatives in LB as a contribution
to Lb . That is, if LB ⊃ Ltot deriv = ∂μV μ for some V μ, then the corresponding
contribution to the action is∫

M
d4x Ltot deriv =

∫
M

d4x ∂μV μ =

∫
∂M

d3x nμV μ, (5.2)

where nν = {0, n} is a normal vector on the surface, conventionally chosen to point
out of the bulk. In the absence of boundaries total derivatives are redundant because
they can be simply dropped from the action with no physical consequences. With
boundaries these same effective couplings carry consequences, but remain redundant
in as much as their consequences are not distinct from those of interactions within
the boundary action.

5.1 ‘Induced’ Boundary Conditions

What boundary conditions should be imposed at the boundary ∂M? Since quantum
field theory is the business of evaluating path integrals over fields, one way to
approach boundary conditions is to imagine formulating the path integral itself to116
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be over a space of fields all of which satisfy some condition on the boundary –
perhaps the fields or their derivatives or some combination of these vanish. The
classical limit of such a problem then involves expanding about a saddle point
defined by solving the classical field equations subject to the assumed boundary
conditions on ∂M. What is unsatisfying about such problems is the arbitrariness of
the boundary conditions, which are simply handed down by God when formulating
the problem.

Less arbitrary are systems for which the boundary conditions on ∂M are ‘induced’
inasmuch as they can be derived from the form of the action, with the action itself
acquiring a new contribution specifically associated with the boundary. These kinds
of boundary conditions typically arise when the path integral runs over arbitrary field
configurations, both within the interior of M and on its boundary, as is very often
the case in real systems.

Induced boundary conditions are of physical interest because in real applications
the boundary is usually not a physical ending of spacetime on which fields (and/or
their derivatives) are specified once and for all. Instead, the boundary usually arises
as an approximate description of a place where there is a very rapid change of
background properties; for electromagnetic applications perhaps it is the edge of a
conducting region or a dielectric object beyond which one chooses not to track field
behaviour (see, for example, Exercise 5.4). Deep down, boundary physics is in such
cases no different from bulk physics, and one should imagine integrating over all
possible values of both bulk and boundary fields when performing the path integral.

At the classical level this means that saddle points are chosen by demanding
that the action is stationary against variations of the fields both in the bulk and
on the boundary. It is stationarity against variation of fields on the boundary that
dynamically dictates the classical boundary conditions that hold on ∂M. Most
importantly, tying boundary conditions to an action in this way ultimately allows
all of the EFT reasoning described in this book to be brought to bear when deciding
which boundary conditions should arise in any given situation.

The Toy Model

To make the issues concrete, return to the toy model of §1.1: the self-interactions of
a complex field to which is now added a boundary term:

S = −
∫
M

d4x
[
∂μφ

∗∂μφ + V (φ∗φ)
]
+

∫
∂M

d3x μ φ∗φ. (5.3)

Here μ is a new parameter with dimensions of mass, and the above choice for Sb
is the lowest-dimension possibility involving φ that is local and invariant under the
symmetry φ → eiθφ. The path integral over φ is unconstrained both throughout the
interior and boundary of M.

In the classical approximation the path integral is computed as an expansion about
a saddle point, φc (x), defined as the configuration where δS(φ = φc) vanishes.
Writing φ → φ + δφ and linearizing the action in δφ then leads to the expression

δS =
∫
M

d4x

[(
φ − ∂V
∂φ∗

)
δφ∗ + c.c.

]
+

∫
∂M

d3x
[(
−∂nφ + μφ

)
δφ∗ + c.c.

]
,

(5.4)



118 Boundaries

where the first term in the second integral comes from an integration by parts in the
bulk, with ∂n := nμ∂μ denoting the normal derivative at the boundary.

Because the path integral is over arbitrary fields the saddle point must be stationary
against arbitrary variations δφ everywhere within M and ∂M. Restricting first to
those variations that vanish on the boundary shows that φc (x) must satisfy the usual
classical field equations throughout M:(

φ − ∂V
∂φ∗

)
φ=φc

= 0. (5.5)

Stationarity of the action against arbitrary variations on the boundary then shows the
saddle point must satisfy the induced boundary condition

∂nφc = μ φc on ∂M. (5.6)

Several things about this boundary-value problem are noteworthy. First, the
boundary condition (5.6) is linear. Because the boundary condition is derived from
the action, this is not automatic, and in this particular example it is a consequence
of using only the lowest-dimension term (which is quadratic in φ) for the boundary
action, Sb, in (5.3). As for any Wilsonian action, ultimately the justification for using
low-dimension terms in Sb will rely on the low-energy approximation, and in this
lies the seeds of an explanation as to why linear boundary conditions so often play a
role throughout physics.

Second, notice that the boundary condition (5.6) forbids the vanilla vacuum
solution of constant field, φ = v, which minimizes V . In general, the coupling
to the boundary causes a trade-off between trying to minimize the scalar potential
throughout the bulk and paying some gradient energy to satisfy (5.6) on the boundary.

For instance, suppose the boundary is the x − y plane (at z = 0) and the bulk is
the region z > 0. Then, neglecting the interactions of the potential that are cubic
and quartic in ψ = φ − v implies that a bulk solution of the form φc = v + ψc (z)
satisfies ψ′′c − m2

R ψc � 0, where primes denote d/dz and (as before) m2
R = λv2.

Requiring φ → v as z → ∞ and satisfying the boundary condition (5.6) implies the
approximate saddle point solution

φc (z) � v

(
1 −

μ

μ + mR

e−mRz

)
. (5.7)

Eq. (5.7) is consistent with the neglect of ψ3 and ψ4 in V for the regime μ � mR

since in this case |φc − v | ∼ O(μv/mR) � v.
The bulk energy cost of interacting with the boundary can be estimated by

evaluating the classical energy at the solution (5.7). Dropping subdominant powers
of μ/mR, the resulting classical bulk energy-per-unit-area is

EB

A
�

∫ ∞

0
dz
[
|φ′ |2 + V (φ∗φ)

]
�
μ2v2

mR

=
μ2v
√
λ

. (5.8)

This expression drops the cubic and quartic terms of V , since these are also down
relative to (5.8) by at least one power of μ/mR. This bulk energy cost is more than
compensated by the boundary contribution to the energy-per-unit-area, which is

Eb

A
= −μ|φ(0) |2 � −μv2 +

2μ2v2

mR

+ · · · ]. (5.9)
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Semiclassical quantum corrections to this classical result are computed using the
same steps as used without a boundary: expand all fields about the background
φ = φc (z) + φ̂ and quantize the fluctuations φ̂. The main difference is that any
expansion in terms of modes φ̂(x) =

∑
n[un(x) an + c.c.] involves modes defined in

the presence of the background. In the present instance this means that they are not
eigenstates of the z-component of momentum, due to the breaking of translation
invariance in this direction by the background φc (z). See §13.1 for more about
semiclassical expansions about position-dependent classical background fields.

5.2 The Low-Energy Perspective

Any boundary physics of the full theory that persists to low energies should be
directly describable in terms of a low-energy EFT. For induced boundary conditions
derivable from a boundary action this means the Wilsonian action should also have a
boundary component from which the low-energy boundary physics can be inferred.
As always with a Wilsonian action the form of the low-energy boundary action is
obtained by matching, inasmuch as it is defined by the requirement that it reproduces
the boundary physics of the full theory order by order in the low-energy expansion.

This is all made more concrete using the toy model example just described.
For fields varying slowly compared with the length scale m−1

R the effects of the
boundary should also be calculable within the low-energy EFT appropriate below the
mass scale mR, for which only the Goldstone field ξ survives. This EFT is the one
encountered in earlier sections, with a shift symmetry ξ → ξ + c, but now including
boundary interactions that also respect this symmetry (because the boundary term in
(5.3) respects the U (1) symmetry under rephasings of φ).

At the classical level, the physics of the UV system that the boundary part of
the Wilson action captures is the boundary condition satisfied at ∂M by ξ. In the
example above, the UV boundary condition is ∂nφ = μφ, and the implications
of this condition for the light fields can be found in the full theory by using
φ = � exp

[
iξ/

√
2 v
]
, with � := v + χ/

√
2. For real μ the real and imaginary parts

of the boundary condition for φ give the two separate real boundary conditions for
χ and ξ (or, equivalently, for � and ξ)

∂n� = μ� and � ∂nξ = 0 on ∂M. (5.10)

Assuming � � 0 at ∂M, at leading (classical) order in λ the low-energy boundary
action at ∂M should imply ∂nξ = 0 there. More generally, Sb in the effective theory
captures the dependence of the ξ boundary physics order by order in the low-energy
expansion.

What does this imply explicitly for Sb in the toy model? Consider first the self-
interactions of ξ involving the smallest mass dimension. The most general possible
local bulk and boundary interactions consistent with the symmetries1 are

1 In this example, ∂M is chosen to be flat and Poincaré invariant along the directions parallel to the
boundaries, although dependence on the boundary’s local geometry – such as its curvature – is in general
present if the physics of the boundary is more complicated.
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LB = −
Z1

2
∂μξ ∂

μξ +
Z2

2
ξ ξ − mB ξ + · · ·

Lb = −w3 − mb ∂nξ −
Z2

2
ξ ∂nξ − c1 ∂

2
nξ − c2 ∂

a∂aξ −
h1

2
(∂nξ)2 + · · · , (5.11)

where the effective couplings w, mB and mb have dimension mass, the couplings,
Z1, Z2, c1, c2 and c3 are dimensionless and h1 has dimension (mass)−1. (This list
does not exhaust the possibilities for the dimensions shown.) Here, ∂n denotes the
normal derivative nμ∂μ, while ∂a denotes derivatives only along directions parallel
to ∂M (as opposed to ∂n, which is in the direction perpendicular to ∂M, and ∂μ,
which indicates differentiation in all of the directions withinM). The coefficients of
the ξ ξ term in LB and the ξ∂nξ term in Lb must be related in the way indicated
in order to preserve the invariance of the total action, S = SB + Sb, under the shift
symmetry.

Some of these interactions are redundant, for both of the reasons discussed in
§2.5. An important difference from this earlier discussion is that total derivatives in
LB can no longer simply be dropped. Instead, Stokes’ theorem relates such terms to
terms in the boundary action. For example, the ξ term in LB can be converted in
this way to the ∂nξ term on Lb, showing that physical quantities can only depend
on the combination m̃ := mb + mB rather than either mb or mB separately. Similarly,
integrating by parts either the Z1 or Z2 terms in LB shows that these parameters can
only contribute as the sum Z := Z1 + Z2. Furthermore, the combination ∂a∂aξ is a
total derivative within ∂M, and can always be dropped given that the boundary itself
has no boundary.

Using this freedom allows the above action to be rewritten as

LB = −
Z
2
∂μξ ∂

μξ and Lb = −w3 − m̃ ∂nξ − c1 ∂
2
nξ −

h1

2
(∂nξ)2, (5.12)

and rescaling the field, ξ → ξ/
√

Z , shows the four parameters Z , m̃, c1 and h1

only enter physical quantities through the three combinations m̃/
√

Z , c1/
√

Z and
h1/Z . This freedom is now used to set Z = 1 (i.e. to ‘canonically normalize’ the
field), leaving only three potentially independent parameters m̃, c1 and h1 of the
terms considered in (5.11).

But even these parameters need not be independent (or present at all). To see why,
recall this effective theory arises from UV physics where all fields are integrated
freely both within the bulk and on the boundary. Consequently, the functional integral
over ξ in the low-energy theory is also unconstrained in both the bulk and on the
boundary. The classical limit for such a free integration is then found by evaluating
the path integral at a classical path chosen to make the action stationary against
arbitrary variations of ξ both in the interior of M and throughout ∂M, and this
should be consistent with what is found for the UV completion.

To see what this requires write ξ → ξ + δξ and linearize the action in δξ, to find

δS = −
∫
M

d4x ∂μξ ∂
μδξ −

∫
∂M

d3x
[
m̃ ∂nδξ + c1 ∂

2
nδξ + h1∂nξ ∂nδξ

]
(5.13)

=

∫
M

d4x ( ξ) δξ −
∫
∂M

d3x
[
∂nξ δξ + (m̃ + h1∂nξ)∂nδξ + c1 ∂

2
nδξ
]
.

Since the action must be stationary against arbitrary δξ, first choose δξ and its
derivatives to be only nonzero away from the boundary. As usual, this implies
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that the saddle point ξc (x) must satisfy the classical field equations ξc = 0
everywhere in M.

Next, demand also δS = 0 for arbitrary variations of ξ on ∂M. First, do so by
choosing the variations so that ∂nδξ = ∂2

nδξ = 0 but with δξ � 0 on ∂M. Requiring
δS = 0 for all such δξ implies that the saddle point must satisfy Neumann boundary
conditions: ∂nξc (x) = 0 on ∂M. But now requiring δS = 0 for variations with
∂2
nδξ = 0 but ∂nδξ � 0 requires m̃ + h1∂nξc = 0 on ∂M; a result inconsistent with

Neumann boundary conditions unless m̃ = 0. Similarly, variations with ∂2
nξ � 0

imply further conditions (c1 = 0 if only the displayed terms are kept).
The very presence of nonzero couplings m̃ and c1 presents an obstruction to being

able to find a consistent boundary condition at ∂M, and thereby also obstructs there
being a saddle point for which δS = 0 when ξ varies arbitrarily on the boundary.
Since this obstruction did not arise in the UV theory, the appropriate matching
condition must be that m̃ = c1 = 0. The resulting boundary condition at this order
is then ∂nξc = 0 on ∂M, agreeing with the result found in the full theory in (5.10).
Nontrivial effective coupling can arise in Sb at higher orders in the semiclassical
expansion to the extent that they are required in order to reproduce modifications to
the UV physics there.

This example shows that terms in Lb involving normal derivatives of the fields
can (in general) over-determine the boundary conditions obtained by varying the
action freely on the boundary. Normal derivatives are special in this way because
they cannot be integrated by parts on the boundary, making it impossible to rewrite
their variation in terms only of δξ (as opposed to its derivatives). Because of this, it
is generic that the effective couplings for interactions involving normal derivatives in
the boundary action are completely determined by the effective couplings for terms
in LB. (For example, in the example above the coefficient of ξ ∂nξ ∈ Lb is not
independent of the coefficient of ξ ξ ∈ LB.) It is only the couplings for the rest
of the effective interactions that represent independent parameters describing low-
energy properties of the boundary.

The other way that interactions can be redundant is if they can be removed using a
local field redefinition, again following the arguments of §2.5. To see how this works
for terms on the boundary suppose the bulk action is dominated by the kinetic term,
LB0 = − 1

2 (∂μξ ∂μξ), in the regime of semiclassical perturbation theory (as it is for
the toy model example). Performing a change of variables ξ → ξ + εζ(ξ) – with ε
a small perturbation parameter – then use of Stoke’s theorem leads to the following
change in the bulk action

δSB0 = −ε
∫
M

d4x ∂μξ ∂
μζ = −ε

∫
∂M

d3x ∂nξ ζ + ε
∫
M

d4x ζ ξ. (5.14)

For generic ζ(ξ) it is the last term of (5.14) that was used in §2.5 to argue that
terms proportional to ξ can be removed in an order-ε term of the bulk action.
Eq. (5.14) then shows that the change of variables also removes the order-ε terms
in Sb whose effective coupling is tied to the removed bulk term. For example, a
transformation with ζ = ceff∂μξ ∂μξ that removes a term −εceff(∂μξ ∂μξ) ξ in LB

also adds a term −εceff(∂μξ ∂μξ)∂nξ to Lb .
A coupling in (5.11) not determined by boundary conditions in this way is the

parameter w3. At first sight, this coupling might be thought to be redundant inasmuch
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as the corresponding term in the effective action does not depend on the low-energy
field ξ. This parameter nonetheless carries physical content since it contributes to the
low-energy stress energy2 and so also to the energy-per-unit-area of the boundary.
Matching this to the result, (5.8), obtained in the UV theory for the toy model with a
boundary at z = 0 then implies that

w3 � −μv2 +
3μ2v2

mR

= −μv2 +
3μ2v
√
λ

. (5.15)

5.3 Dynamical Boundary Degrees of Freedom

One thing not yet captured by this chapter’s discussion is the possible existence of
fields, ψ, that appear only in the boundary action, Sb , and not at all in the bulk, SB,
so S[φ,ψ] = SB[φ] + Sb[φ,ψ]. Such fields capture the low-energy physics of states
in the UV theory whose mode-functions have support only in the immediate vicinity
of the boundary, and so are said to be ‘localized’ at the boundary. These could be
anything from surface charges on a conductor or boundary states at the interface
between materials to the motion of p-branes [87] in supergravity and open strings
attached to D-branes [88] in string theory.

Boundary-localized fields depend only on the three coordinates, σα, that label
position on ∂M. For example, for a boundary consisting of the x − y plane at z = 0
in a flat cartesian space these three coordinates might be {σα} = {t, x, y}.

Perhaps the simplest such localized field describes the position of the boundary
itself, yμ (σ), where the boundary’s position in spacetime is denoted xμ = yμ (σ).
This is a dynamical field if this boundary position is free to move at low energies.3

In the presence of such fields the boundary action, Sb , does double duty: it both
determines the dynamics of yμ given the presence of any bulk ‘background’ fields,
φ(x), and it determines how boundaries source these same bulk fields.

For example, consider an ordinary real scalar field, φ, coupled to a dynamical but
slowly moving boundary yμ (σ) = {t, x, y, z(x, y, t)}, located at z = z(x, y, t) with
z(x, y, t) a single-valued function whose derivatives are small: e.g. |ż | � 1 with
over-dots representing d/dt. Then, an expansion of the boundary action in powers of
ż might take the form

Sb[φ, y] = −
∫

dt dx dy

[
W [φ(z = z)] +

1
2

K[φ(z = z)] ż2 + · · ·
]

, (5.16)

where W (φ) and K (φ) are specified functions that are characteristic of the surface.
(Spatial derivatives of z can also be considered but are dropped here for simplicity.)
The evolution of the bulk field, φ, is for simplicity imagined to have a bulk lagrangian
dominated by

SB[φ] = −
∫

d4x

[
1
2
∂μφ ∂

μφ +
1
2

m2
φ φ

2 + · · ·
]

. (5.17)

2 That is to say, it does couple to a low-energy field: the spacetime metric.
3 §6.3.1, §13.1.2 and §14.3.1 argue why these fields often behave like Goldstone modes for spacetime

symmetries, and as such naturally appear in the low-energy sector relevant for EFT methods.
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With these choices the motion of the boundary in the presence of a given bulk field
configuration, φ(x), is found at the classical level by varying Sb with respect to z,
and gives [

K z̈ +

(
1
2
∂K
∂φ
ż2 − ∂W

∂φ

)
∂φ

∂z

]
z=z(x,y,t)

= 0, (5.18)

as the equation of motion governing the time-dependence of z(x, y, t). The classical
field equations for φ obtained by varying SB + Sb in the bulk similarly give

( − m2
φ)φ = 0 for z > z(x, y, t), (5.19)

while variations on the boundary give the condition

∂nφ +

(
∂W
∂φ
+

1
2
∂K
∂φ
ż2 + · · ·

)
= 0 for z = z(x, y, t). (5.20)

A slightly different but related picture can arise if the boundary is instead regarded
as a thin surface (i.e. membrane – or in its relativistic incarnations ‘brane’ [87])
with two sides, rather than effectively being the edge of spacetime. In this case, the
boundary action (5.16) can instead be written more usefully as the two-sided brane
action

Sb[φ, y] = −
∫

d4x

[
W [φ(x)] +

1
2

K[φ(x)] ż2 + · · ·
]
δ[z − z(x, y, t)], (5.21)

leading to a φ equation of the form

( − m2
φ)φ −

[
∂W
∂φ
+

1
2
∂K
∂φ
ż2 + · · ·

]
δ[z − z(x, y, t)] = 0. (5.22)

Here, the boundary condition becomes a ‘jump’ condition obtained by integrating
(5.22) over an infinitesimal region z − ε < z < z + ε that includes the delta function:[

∂nφ
]
z
+

(
∂W
∂φ
+

1
2
∂K
∂φ
ż2 + · · ·

)
z=z(x,y,t)

= 0, (5.23)

where the square bracket denotes the jump in a quantity across z = z, as in
[
∂nφ
]
z
=

∂nφ(z = z + ε) − ∂nφ(z = z − ε) with ε → 0 at the end.

5.4 Summary

Boundaries do not change the EFT story in a dramatic way. This chapter maps out the various small ways
that boundaries do change low-energy dynamics focussing on ‘induced’ boundary conditions, defined
as those that are obtained by extremizing an action with respect to field variations on the boundary.
Such boundary conditions arise naturally in situations where the path integral is over all fields in an
unconstrained way, both in the bulk and on the boundary.

Like the devil, the main differences associated with boundaries are in the details. The central new
feature is the addition of a local boundary component to the Wilsonian action. Its effective couplings are (as
usual) obtained by demanding that the low-energy theory reproduces the full theory’s boundary physics
order-by-order in the low-energy expansion. The precise ways that redundant interactions are identified in



124 Boundaries

the Wilsonian action are slightly modified due to the ability to swap terms between the bulk and boundary
actions by integrating by parts.

Terms in the boundary action involving normal derivatives play a special role because their presence
can over-determine the boundary conditions when extremizing against arbitrary field variations. Con-
sequently, the matching process often ends up fixing their effective couplings in terms of the values of
couplings appearing in the bulk lagrangian (or makes them vanish). When this happens they do not
represent independent parameters associated with the physics of the boundary.

An attractive feature about tying boundary conditions to boundary components of a low-energy
Wilsonian action is the context it provides for understanding why some boundary conditions arise more
often in physical situations than do others. The leading low-energy contributions to boundary terms in the
Wilson action are usually not complicated for the same reasons that terms in the bulk are not: low energy
often puts a premium on having few fields and derivatives and not many terms are possible involving the
fewest of each. This suggests an underlying reason why relatively simple boundary conditions (like those
linear in the fields) arise so frequently in practice.

A final qualitatively new feature that boundaries can introduce are localized degrees of freedom that live
only at the boundary. When these exist, their interactions with bulk fields are governed by the boundary
action, and their semiclassical treatment goes through much the same as for bulk fields alone.

Exercises

Exercise 5.1 Derive the approximate classical solution Eq. (5.7) in the bulk for a field
satisfying the field equation (5.5) in the regime z ≥ 0 subject to the boundary
condition φ → v as z → ∞ and Eq. (5.6) at z = 0.

Evaluate the classical energy per unit area, E/A, and verify (5.8) holds when
the cubic and quartic terms in (φ − v) are neglected in the potential V . Include
the cubic and quartic terms in the energy when evaluating E/A at the solution
of (5.7), and thereby quantify how suppressed they are as a function of the
small dimensionless parameters μ/mR and

√
λ = mR/v.

Exercise 5.2 For the same bulk and boundary action as in Exercise 5.1 write the full
quantum field as φ = φc + φ̂ where φc is the classical solution (5.7). What are
the boundary conditions for the quantum fluctuation field φ̂ at the boundary
at z = 0? Using this boundary condition compute the mode functions,
un(z)ei(kx x+kyy−ωt) , appearing in the expansion of φ̂ in terms of creation and
annihilation operators. (Neglect the cubic and quartic interaction terms in the
bulk scalar potential when doing so.) Are any of these modes bound states
localized near the boundary? (Bound states have energies ω2 < k2

x + k2
y + m2

R

and so have wave-functions that are normalizable in the z-direction.) If so,
what is the mode profile un(z) and energy ωn?

Exercise 5.3 Repeat Exercise 5.1, but with a flat mobile brane held stationary at
z = zb with zb > 0. Compute the approximate field profile for φ(z) (as a
function of z, zb, μ and mR) on both sides of the mobile brane (i.e. for both
0 ≤ z < zb and zb < z < ∞), using the same boundary conditions as before
at z = 0 and z → ∞. Neglect the cubic and quartic interactions in the bulk
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potential when doing so, and suppose the action for the mobile brane is given
by (5.21) with K = 1 and W = gφ∗φ. Use the jump condition (5.23) (as well
as continuity of φ itself) to evaluate the boundary conditions at z = zb.

Use Eq. (5.18) to evaluate the acceleration of the mobile brane, z̈b, if it were
free to move. Which direction does the mobile brane go once it is released from
rest at z = zb?

Exercise 5.4 Consider two bulk regions, R1 and R2, on either side of an interface, F,
with the interface regarded as a common boundary shared by the two regions.
Suppose the bulk action for the electromagnetic field in each region is that of
a dielectric with differing dielectric constants, corresponding to

SRi =
1
2

∫
Ri

d4x

[
εi E · E − B · B

μi

]
,

where εi is the dielectric constant and μi the magnetic permeability for each
bulk region. Take the boundary action for the common interface to be

SF = −
∫
F

d3x Aμ Jμ

where A0 = Φ is the electrostatic potential and A is the vector potential, while
J0 = ρ is the interface’s surface charge density and J is its surface current
(satisfying ∂tρ+∇ ·J = 0). By varying the electromagnetic potentials Φ and A
derive the dielectric Maxwell equations in each of the bulk regions Ri as well as
the boundary conditions obtained by demanding that the action SR1 + SR2 + SF
is stationary under arbitrary variations δAμ on the interface. Show that your
results reproduce the standard ones: the jump across of the interface of the
normal component of D = εE is given by the charge density; the jump in
the tangential component of H = B/μ is given by the surface current; while
the other components of E and B are continuous at F.



6 Time-Dependent Systems

Up to this point in the discussion, many of the EFT applications have been to
scattering problems for low-energy states arising as fluctuations about a stationary
ground state. This really only scratches the surface of the utility of effective field
theories, as this chapter hopes to convey. This chapter asks how to apply EFT
methods to systems involving background fields that evolve in time. This kind of
problem arises throughout physics, including (but not limited to) atomic interactions
with time-dependent electromagnetic fields, particle motion through inhomogeneous
media and the time-varying fields of early-universe cosmology.

For the purposes of argument in this chapter the time-varying background field
is taken to be a scalar, in order to make better contact with the toy model. But
examples could equally well be considered using background electromagnetic or
gravitational fields, some of which are considered amongst the examples examined
in later sections.

A number of new conceptual issues arise when setting up an effective description
of systems with time-dependent backgrounds. One such asks why ‘low-energy’ and
‘high-energy’ remain useful as criteria for splitting up the space of states given that
the breaking of time-translation invariance means fluctuation energy is not strictly
conserved. Another asks whether all solutions to the full theory’s field equations
have counterpart solutions in the effective theory, and vice versa. A third asks what
the correct number of initial conditions should be in an effective theory, given that
the low-energy field equations can involve more than two time derivatives.

These issues do not arise in simpler static settings, and although none of them
need preclude using low-energy techniques, the validity of EFT methods sometimes
involves additional criteria that must be checked explicitly for any particular
application. Most notable among these new conditions is the requirement that any
background evolution be slow enough to be adiabatic (in a sense that is further
elaborated below).

6.1 Sample Time-Dependent Backgrounds ♦

Just like in earlier sections it is useful to ground a general discussion of issues by
having a concrete example in mind. To this end, this chapter starts with an example
of time-dependent backgrounds within the toy model introduced in §1.1, using it
to illustrate how EFT methods work for time-dependent settings and why they can
sometimes fail.

126
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First, we present a brief reminder of the main features of the toy model, for ease
of reference. Its lagrangian density is given by

L = −∂μφ∗∂μφ − V (φ∗φ), (6.1)

where the complex field φ is written in terms of two real fields using either φ =
1√
2

(φR + iφI) or φ = � eiϑ, where these are related to the variables used in previous

sections by φR =
√

2 v + φ̃R, φI = φ̃I, ξ =
√

2 v ϑ and χ =
√

2(� − v). Furthermore,
the potential has the explicit ‘Mexican hat’ or ‘wine-bottle’ form

V (φ∗φ) =
λ
4

(
φ∗φ − v2

)2
, (6.2)

which at low energies has a level, circular trough with a bottom at V = 0 along the

curve
√

2 � =
√
φ2

R + φ
2
I =

√
2 |φ | =

√
2 v.

The model’s Noether current for the U (1) symmetry is given by (4.25),

jμ = i(φ ∂μφ
∗ − φ∗∂μφ) = φR∂μφI − φI ∂μφR = 2�2∂μϑ, (6.3)

and Noether’s theorem implies that this satisfies ∂μ j μ = 0 whenever the field
equations,

φ = −∂2
t φ + ∇2φ =

λ
2

(
φ∗φ − v2

)
φ, (6.4)

are satisfied.

Slow-Roll Backgrounds

Until now the only background solution to (6.4) to be considered has been the
static vacuum solution φ = v. Consider instead the time-dependent background
corresponding to the scalar field homogeneously rolling around the bottom of its
potential [89]:

� = �0 and ϑ(t) = ϑ0 + ωt, (6.5)

for constants �0, ϑ0 and ω. Eq. (6.4) implies that these constants must satisfy[
λ
2

(
�2

0 − v2
)
− ω2

]
�0 = 0, (6.6)

so the only solution with �0 > 0 is

�0 =

√
v2 +

2ω2

λ
. (6.7)

This shows how the force due to the scalar potential’s gradient competes with the
centripetal acceleration due to the circular motion to drive the radial field � slightly
away from the trough’s bottom.

The density of the conserved Noether charge evaluated at this solution is

j μ = −2ω�2
0 δ

μ
0 = −2ω

(
v2 +

2ω2

λ

)
δ
μ
0 , (6.8)
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and its energy density is

ε = φ̇∗φ̇ + ∇φ∗ · ∇φ + λ
4

(φ∗φ − v2)2 = ω2�2
0 +

λ
4

(�2
0 − v2)2

= ω2
(
v2 +

3ω2

λ

)
, (6.9)

where over-dots denote differentiation with respect to t. For later purposes notice
that the appearance of a 3 (instead of a 2) in the last term of the last line of this last
equation can be traced to the contribution of the scalar potential to ε in the second-
last line. The potential contributes because the motion displaces the field away from
the potential’s minimum by the amount given in (6.7).

6.1.1 View from the EFT

This section now asks how the above rolling solution looks from the point of view
of the low-energy EFT appropriate at energies well below mR, which should be a
valid regime for a sufficiently slowly moving background. In particular, how does
the EFT know about the energy increase of (6.9) due to the field � climbing part
way up the potential if there is no field � left in the effective theory to adjust to
balance centrifugal forces, and no scalar potential (or indeed notion of centripetal
acceleration) within the EFT.

Previous sections show that the leading approximation to the low-energy EFT
for this model is given by (2.97), which in the classical approximation (using
m2

R = λv
2) is

SW[ξ] = −
∫

d4x

[
1
2
∂μξ∂

μξ − λ

4m4
R

(∂μξ ∂
μξ)2 + · · ·

]
= −

∫
d4x

[
v2∂μϑ∂

μϑ − v2

m2
R

(∂μϑ ∂
μϑ)2 + · · ·

]
. (6.10)

The field equations for ϑ predicted by this action are

∂μ

{
∂μϑ

[
1 − 2

m2
R

(∂νϑ ∂
νϑ) + · · ·

]}
= 0, (6.11)

which admits the solution ϑ = ϑ0 + ωt for which ∂μϑ = ω δ0
μ is constant.

Applying Noether’s theorem to this action with the low-energy shift symmetry
ϑ → ϑ + c ensures the existence of the conserved current,

j
μ

eff = 2v2∂μϑ

[
1 − 2

m2
R

(∂νϑ ∂
νϑ) + · · ·

]
, (6.12)

for which the equations of motion (6.11) clearly imply ∂μ j
μ

eff = 0. Evaluating this at
the rolling solution, ϑ = ωt then gives

j
μ

eff = −2v2ω

(
1 +

2ω2

m2
R

+ · · ·
)
δ
μ
0 = −2ω

(
v2 +

2ω2

λ
+ · · ·

)
δ
μ
0 , (6.13)

in agreement with (6.8).
To calculate the energy density of this solution in the effective theory compute the

effective Hamiltonian density,

Heff = πeff ϑ̇ − Leff, (6.14)
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where the canonical momentum is defined by

πeff :=
δSeff

δϑ̇
= 2v2

(
ϑ̇ +

2ϑ̇3

m2
R

+ · · ·
)

. (6.15)

Using this, the Hamiltonian density becomes

Heff = v2ϑ̇2 + v2∇ϑ · ∇ϑ + 3λv4 ϑ̇4

m4
R

+ · · · , (6.16)

and so the energy density obtained by evaluating this at ϑ̇ = ω is

εeff = v2ω2 +
3λv4 ω4

m4
R

+ · · · = v2ω2 +
3ω4

λ
+ · · · , (6.17)

in agreement with (6.9), including the last term’s factor of 3.
These calculations reveal that it is the first subleading term, (∂μξ ∂μξ)2, in LW that

brings the news to the EFT about the adjustment of �0 and the centripetal acceleration
in the UV theory. Furthermore, the matching performed in previous sections gives
precisely the value for the effective coupling needed to get the answer right. This
despite the fact that these earlier matching calculations obtain the coupling’s value
using scattering amplitudes, rather than classical background evolution.

Because it is the higher-derivative terms that carry the information about the ω-
dependent response of the system in the EFT, it is also clear that a purely EFT
description of this response assumes ω � mR if it is to neglect the contributions
of higher-dimension interactions.

6.2 EFTs and Background Solutions ♦

The toy model example just considered shows that the field equations of the
Wilsonian effective theory properly capture the time-dependence of slowly evolving
classical background solutions of the full UV theory (see §6.3 for the analogous
story about fluctuations about such backgrounds). This section asks more generally
when the background solutions within an EFT should (and shouldn’t) be expected to
reproduce the solutions of the underlying UV theory.

The main message is that the space of solutions solving the field equations of
an EFT overlaps with (but neither contains nor is contained within) the space of
solutions for the UV theory. Not surprisingly, solutions to the EFT’s field equations
do include those of the full theory that evolve adiabatically but not those that evolve
too quickly. But the EFT field equations also have solutions that are not related to
those of the full theory (and are typically singular in the limit that the UV scale goes
to infinity). To justify these statements (and make them more precise), and to see how
to identify which EFT solutions are relevant to the full theory’s low-energy limit (and
which are not), it is worth recalling some features of the discussion in §2.1 and §2.2.

6.2.1 Adiabatic Equivalence of EFT and Full Evolution

Why should background solutions for the full theory and low-energy theories agree
with one another, and precisely which equations do backgrounds solve?
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For the full theory the relation between the field expectation value and the action
is given by (2.14) and (2.18), which (in the absence of an external current) state that

ϕi (x) = 〈φi (x)〉 =
〈out|φi (x) |in〉
〈out|in〉 (6.18)

satisfies (
δΓ[φ]

δφi (x)

)
φ=ϕ

= 0, (6.19)

where Γ[φ] is the generator of 1PI graphs, |in〉 is the vacuum state in the remote
past and |out〉 is the vacuum state in the remote future (which need not be the
same in the presence of time-dependent fields in between). Crucially, the derivation
of this statement assumes |in〉 evolves adiabatically1 as a function of the evolving
background quantities as it eventually turns into |out〉 [17].

For a system whose fields divide into heavy and light degrees of freedom,
{φi (x)} = {ha (x), �α (x)}, Eq. (6.19) holds both for 〈ha (x)〉 and 〈�α (x)〉,(

δΓ[h, �]
δha (x)

)
〈h〉,〈�〉

=

(
δΓ[h, �]
δ�α (x)

)
〈h〉,〈�〉

= 0. (6.20)

The closest analogue of Γ[h, �] for the low-energy part of this theory is the 1LPI
generator, Γle[�], introduced in §2.2.3, for which external currents are only turned on
for the light fields. Chasing through the definitions implies that the relation between
Γ[h, �] and Γle[�] is given by (2.45), which states

Γle[�] = Γ[hle(�), �] where

(
δΓ
δha

)
h=hle (�)

= 0, (6.21)

and so hle(�) = 〈h〉 is regarded as a function of the specified value for the light field.
Varying this expression with respect to �α (x) – keeping in mind (6.20) – then

shows that 〈�α (x)〉 satisfies the purely low-energy condition(
δΓle[�]
δ�α (x)

)
〈�〉
=

(
δΓ[h, �]
δ�α (x)

)
〈h〉,〈�〉

= 0. (6.22)

This shows that 〈�α (x)〉 can equally well be computed by extremizing Γ[h, �] in the
full theory or by extremizing Γle[�] of the low-energy sector alone. But a central part
of this argument is the adiabatic assumption that underpins the starting point, (6.19).

Classical Limit

Time-dependent backgrounds are commonly encountered within a semiclassical
approximation, wherein the time-dependent background is the dominant, classical,
configuration: 〈φi (x)〉 � φi

c (x). In this case, the above argument goes through order-
by-order in the semiclassical expansion, with the leading (classical) contribution
being given by

Γ[h, �] � S[h, �] and Γle[�] � SW[�]. (6.23)

1 Adiabatic evolution here means the solutions are solved as if they are static functions of external
parameters, like the currents J , but these external parameters are themselves allowed to evolve very
slowly with time. This is as opposed, for instance, to having levels cross or some other drama between
t = ±∞.
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Here, S is the classical action for the full theory and SW is the Wilson action defined
in §2.3 and given in the classical approximation by SW[�] � S[hc (�), �], where
hc (�) is found by solving δS[h, �]/δh = 0 as a function of a specified light field
� (c.f. Eq. (6.21)). Then (6.22) becomes a statement relating the classical solutions
for these two actions: (

δSW[�]
δ�α (x)

)
�c

=

(
δS[h, �]
δ�α (x)

)
hc ,�c

= 0, (6.24)

Again it seems clear that solutions to the equations of motion for the classical
Wilson action reproduce the light-field part of the solutions to the classical equations
of the full theory. But how does the adiabatic requirement arise in this purely classical
argument? To understand this it helps to consider an example, and our stalwart toy
model once more comes in useful.

Example: The Toy Model

To this end, revisit the derivation given in §2.2.3, starting with Eq. (2.47) (reproduced
here),

S[ξ, χ] = −
∫

d4x
⎡⎢⎢⎢⎢⎣12 ∂μχ∂μχ + 1

2

(
1 +

χ
√

2 v

)2

∂μξ∂
μξ + V (χ)

⎤⎥⎥⎥⎥⎦ , (6.25)

in which the heavy field χ is explicitly integrated out within the classical approxima-
tion, using the classical potential

V (χ) =
m2

R

2
χ2 +

λ v

2
√

2
χ3 +

λ
16
χ4. (6.26)

To compute SW[ξ] � S[ξ, χc (ξ)] classically requires solving for χc (ξ) using Eq.
(2.49), which to leading nontrivial order is approximately(

− + m2
R

)
χc � −

1
√

2 v
∂μξ∂

μξ + · · · , (6.27)

where the higher-order terms are not required to make the point soon to follow. The
solution to this equation used in §2.2.3 is

χc � −
1

√
2 vm2

R

(∂μξ∂
μξ) + · · · , (6.28)

and substituting this into S[χ, ξ] leads to the (∂μξ ∂μξ)2 interaction found earlier
for SW.

Now comes the main point: the transition from (6.27) to (6.28) given in §2.2.3
proceeds as if the solution to (6.27) were unique. But we know the general solution
to (6.27) is really given by the sum of (6.28) and an arbitrary solution, χh, to the
homogenous equation (− + m2

R )χh = 0.
It is the adiabatic approximation that dictates choosing the solution χh = 0,

and it does so because χh is generally a sum of modes whose time-dependence is
given by e−iEt where E ≥ mR. Such modes could be excited if the time evolution
of the background were sufficiently rapid, but are not directly excited for slow
adiabatic evolution. Of course, interactions can also introduce modes with higher
mode energies starting only from those at lower energies, because once interactions
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are included, only the total energy (including interactions) is strictly conserved, and
not just the energy of isolated linearized modes (more about this later).

6.2.2 Initial Data and Higher-Derivative Instabilities ♣

The previous section’s observation that classical solutions to the Wilsonian equations
of motion do not precisely overlap with those of the underlying UV theory is actually
an EFT feature rather than a bug. It is, of course, reasonable that the UV theory
should contain solutions not in the low-energy theory, since the latter cannot capture
those solutions of the full theory that evolve rapidly (and so do not exclusively
involve low-energy modes). This section argues that there are also solutions to the
low-energy equations that do not correspond to solutions of the full UV theory, and
that this is also a good thing.

Extra unwanted solutions arise in the low-energy theory because the Wilson action
generically contains all possible interactions allowed by the low-energy field content
and symmetries. As a result, it usually contains terms for which the fields appear
multiply differentiated. For instance, at the six-derivative level for the toy model one
can have

Lhd = −c61 X3 − c62 X ϑμν ϑ
μν , (6.29)

where

X := −∂λϑ ∂λϑ and ϑμν := ∂μ∂νϑ, (6.30)

while c6n denotes the relevant effective coupling.
What is important for the purposes of counting solutions is that the last term of

(6.29) involves more than two time derivatives, as is most easily seen by temporarily
ignoring all spatial derivatives. In this case, (6.29) contains the term L62 = c62 ϑ̈2ϑ̇2,
whose variation is

δL62

2c62
=
[
ϑ̈ϑ̇2
]
δϑ̈ +

[
ϑ̇ϑ̈2
]
δϑ̇ =

[....
ϑ ϑ̇2 + 4

...
ϑϑ̈ ϑ̇ + ϑ̈3

]
δϑ, (6.31)

and the last equality drops surface terms coming from several integrations by parts.
Because the field equation obtained from δS/δϑ = 0 involves fourth derivatives of
ϑ its integration requires more initial data than usual (it requires initial values for ϑ̈
and

...
ϑ in addition to the usual initial values for ϑ and ϑ̇).

Related to the requirement for more initial data is the observation that the general
solutions to higher-derivative field equations involve more integration constants and
so involve more than the usual two-parameter class of solutions appropriate to
second-order field equations.

What is more troubling is that these new solutions almost always include unstable
runaway solutions. The generic appearance of instability is most easily seen from
the canonical formulation [90–92], for which all field equations are written in terms
of single time derivatives by introducing new canonical ‘momenta’. The argument
is made here for lagrangians of the form L = L(φ, φ̇, φ̈), but generalizes to the
inclusion in L of still higher derivatives as well.
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The lagrangian L = L(φ, φ̇, φ̈) has higher-order equations of motion given by

d2

dt2

⎡⎢⎢⎢⎢⎣ ∂L∂φ̈
⎤⎥⎥⎥⎥⎦ − d

dt

⎡⎢⎢⎢⎢⎣ ∂L∂φ̇
⎤⎥⎥⎥⎥⎦ + ∂L∂φ = 0. (6.32)

To set up a canonical formulation for these equations define the new variable
ψ = φ̇ so that L = L(φ,ψ, ψ̇) and define the standard (π) and new (ζ) canonical
momenta by

π(φ,ψ, ψ̇) :=
∂L

∂φ̇
=
∂L

∂ψ
and ζ(φ,ψ, ψ̇) :=

∂L

∂φ̈
=
∂L

∂ψ̇
, (6.33)

of which it is assumed the defining equation for ζ can be solved for ψ̇ to give an
expression of the form ψ̇ = ψ̇(φ,ψ, ζ).

With these choices the Hamiltonian density

H (φ,ψ;π, ζ) := π φ̇ + ζ ψ̇ − L(φ,ψ, ψ̇)

= π ψ + ζ ψ̇(φ,ψ, ζ) − L[φ,ψ, ψ̇(φ,ψ, ζ)], (6.34)

generates the equations of motion (6.32) through the first-order system

φ̇ =
∂H
∂π

, ψ̇ =
∂H
∂ζ

, π̇ = −∂H
∂φ

and ζ̇ = −∂H
∂ψ

. (6.35)

For stability arguments it is crucial that H also be conserved and bounded from
below, since when these are both true the configuration minimizingH must be stable.
In the present case, conservation goes through as usual (provided L does not itself
depend explicitly on t) because

Ḣ = ∂H
∂φ

φ̇ +
∂H
∂ψ

ψ̇ +
∂H
∂π

π̇ +
∂H
∂ζ

ζ̇ = 0 (6.36)

with the last equality using (6.35). The generic problem with higher-derivative
theories is that H is not bounded from below, as is seen because (6.34) shows H
is linear in the variable π.

To obtain an intuition for how such an instability arises more concretely, consider
the following quadratic (but higher-order) toy lagrangian [93]:

L =
1
2
ϑ̇2 +

1
2M2 ϑ̈

2, (6.37)

whose variation δL = 0 gives the linear equation of motion

−ϑ̈ +
....
ϑ

M2 = 0. (6.38)

The general solution to this equation is

ϑ = A + Bt + CeMt + De−Mt , (6.39)

where A, B, C and D are integration constants. This has an unstable runaway form
apart from the special initial condition that chooses C = 0. The generic unstable
mode encountered for higher-derivative theories is often called the Ostrogradsky
ghost.

The question of why this issue is not a problem for the low-energy EFT is
addressed below, after first a brief detour.



134 Time-Dependent Systems

A Galileon Aside

Although the above arguments show that the introduction of higher-derivative
interactions generically leads to instability, it is also true that not all higher-
derivative effective interactions need do so. There are two kinds of relatively benign
interactions of this type.

The first type of benign higher-derivative interaction consists of those that are
redundant, in the sense made more precise in §2.5. As described there, interactions
are redundant if they arise as a total derivative or if they can be removed through a
local field redefinition. An example of these types of redundancy for the toy model
would be a term like ϑμνϑμν – with ϑμν defined in (6.30) – since this can be rewritten
using

ϑμνϑμν = ∂μ
(
ϑμν∂νϑ

)
− (∂ν ϑ)∂νϑ = ∂μ

(
ϑμν∂νϑ − ϑ ∂μϑ

)
+ ( ϑ)2.

(6.40)

The first term on the right-hand side is a total derivative and the second term vanishes
when the lowest-order field equations, ϑ = 0, are used, showing that it can be
removed to this order in the derivative expansion by performing a field redefinition
of the form δϑ ∝ ϑ.

But there is also a second way that nominally higher-derivative interactions
can avoid introducing new solutions and instabilities. This is because there are a
handful of higher-derivative lagrangian interactions for which the corresponding
higher-derivative terms in the field equations happen to cancel. In four spacetime
dimensions, using one scalar field φ, the most general such an interaction (up to
total derivatives) turns out to be a linear combination of the following Galileon
interactions [94–96]

LG2 := G2(φ, X )

LG3 := G3(φ, X ) φ (6.41)

LG4 := G4(φ, X )
[
( φ)2 − φμνφμν

]
LG5 := G5(φ, X )

[
( φ)3 − 3φμνφμν φ + 2φμνφνλφλμ

]
,

where, following earlier notation, these use the definitions X := −∂λφ ∂λφ and
φμν := ∂μ∂νφ. Here, Gi (φ, X ) with i = 2, . . . 5 are four arbitrary functions of
two arguments. For generic Gi none of these is a total derivative and for all Gi

they contribute only terms involving at most two time derivatives to the scalar field
equations.

For low enough derivative order it sometimes happens that the most general form
for the Wilsonian action is a special case of (6.41) [97]. For instance, for the toy
model the most general terms arising out to four-derivative level can be written (up
to a total derivative) as a linear combination of X2, X ϑ and ( ϑ)2. The last two
of these vanish when ϑ = 0, and so can be removed by performing the field
redefinition δϑ = a ϑ + b X for appropriate choices for the constants a and b.
The remaining term is a special case of the first of (6.41), with G2 =

1
2 X + c4 X2

with c4 the constant given in Eq. (1.12).
Similarly, the most general terms involving six derivatives are given by (6.29),

once total derivatives and redundant interactions involving ϑ are removed. Because
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these differ from the term in (6.41) just by ϑ terms, at six-derivative level the shift-
symmetric lagrangian also has the form of (6.41), up to field redefinitions. Up to
six-derivative level the corresponding terms have G2 =

1
2 X + c4 X2 − c61 X3 and

G4 = c62 X .
Of course, the terms in (6.41) involve at most six derivatives not involved in

a factor of X , and so eventually terms should arise with sufficient numbers of
derivatives to preclude their being put into the Galileon form. And for theories with
more general field content more structures are possible at each order, so there is
no broad expectation that a generic system can always be written, at all orders in
the derivative expansion, like (6.41) or its generalizations. How are the instabilities
associated with higher-derivative interactions dealt with then?

A More General Argument

If EFTs generically involve higher-derivative effective interactions and if these
interactions generically produce unstable solutions, how can a generic Wilson action
hope to describe the time-evolution of a UV theory that is known to be stable (such
as the toy model)?

A key step in the development of the Wilson action was the expansion in powers
of 1/M; in particular, it is only after this expansion that the EFT is described by a
local lagrangian density. Because of this, a local Wilsonian action should only be
expected to capture the properties of the underlying UV-completion order-by-order
in powers of 1/M . This is true in particular when seeking time-dependent solutions,
which should only be trusted to the extent that they fall within the regime of the 1/M
expansion.2

So a crucial feature of the ‘new’ solutions (including in particular the runaways)
associated with the new higher-derivative terms is that they do not arise as a series
in powers of 1/M . They do not do so because they are singular perturbations of
the zeroth-order differential equation (because it is the highest-derivative terms
of the field equations that are multiplied with nonzero powers of 1/M).

This is seen explicitly in the solution (6.39) and field equation (6.38) of the simple
higher-derivative action given in (6.37). Only the two-parameter family of these
solution obtained using C = D = 0 goes over to the solutions to the lowest-order
field equation, obtained from the M → ∞ lagrangian, L0 =

1
2 ϑ̇

2; the other solutions
are not captured at any finite order of 1/M because for them the ϑ̇2 and ϑ̈2 terms
are comparably large. This is manifest in exponential solutions like exp(±Mt) of
Eq. (6.39), which have an essential singularity as M → ∞ and are not described at
any order by a series in 1/M .

The lesson is this: a local Wilsonian EFT only aspires to capture the full theory
order-by-order in 1/M , and so any predictions it makes that fall outside of a 1/M
expansion should be regarded as spurious. Such predictions should not be expected
to capture properties of the underlying UV theory.

2 This is one of those arguments that has been ‘in the air’ and widely known by those who know for
decades, and because of that it has not been written down anywhere (almost; ref. [93] was written to
record the argument, which at the time had not percolated into relatively new communities for EFT
arguments).
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Well-Posed Evolution

Just having equations of motion that are second-order in time does not mean one
can relax, however, since in some circumstances time evolution can nonetheless be
difficult to evaluate. This could be because an evolution equation’s caustics begin to
intersect or because short-wavelength modes grow too quickly even if not initially
present. When this happens an initial configuration with small gradients can be
driven into a regime of large derivatives, and so beyond the reach of EFT methods.

Sometimes this kind of behaviour is the right answer. The collection and focussing
of light by lenses is an example where this is true, as is the phenomenon of
gravitational collapse (for which an initially diffuse and low-energy cloud of dust
becomes gravitationally compressed, possibly into a singularity with arbitrarily large
derivatives). But there are also many other examples of this phenomenon throughout
physics, such as the turbulent cascade of fluid energies down to small distances, or the
development of caustics for the propagation of light in a medium, or the development
of shock fronts within hot materials.3

In these situations energy conservation in itself does not prevent moving from
long-wavelength initial conditions towards those with larger gradients, and so
towards a breakdown of the low-energy description. This need not be a problem
of principle for EFT methods (depending on how fast it happens) since nothing says
that a system that starts in a long-wavelength regime must remain there. Indeed, if
the underlying system moves from smooth configurations towards variations over
microscopic scales then the EFT should be able to track the early part of this
evolution before showing signs of breaking down.

Two features that lend themselves to this kind of breakdown are nonlinear field
equations and the breaking of Lorentz invariance, features that are generic in
real applications with time-dependent backgrounds. Both of these undermine the
protection energy conservation naively gives against generating short-wavelength
modes from long-wavelength initial data. Nonlinearities do so by allowing many
low-energy modes to combine into a higher-energy one. Breaking Lorentz invariance
can allow large mode momenta to coexist with low mode energies even without
nonlinearities, and so can also interfere with the ability to discriminate against short-
wavelength modes using only low energy as a criterion.

Studies of nonlinear classical field equations often frame the issue of the growth of
small-wavelength modes in terms of the well-posedness of the initial-value problem
[100]. An initial-value problem is said to be locally well-posed if, given suitable
initial data, a unique solution of the equation of motion exists, and that the space of
solutions depends continuously on the initial data. Well-posedness is local inasmuch
as the solution is only required to exist for some nonzero, though possibly very
small, time.

An example of the kind of thing that would make an initial-value problem ill-posed
would be if modes of wave-number k were to grow in time as quickly as exp(+|k|t),
say. If the limit |k| → ∞were allowed, this would represent an arbitrarily fast growth,
undermining the continuity of the solutions regarded as functions of their initial data.
From an EFT perspective things are never quite this bad, however, since within an

3 See e.g. [98] and [99] for discussions of this issue with applications to gravity and fluids, respectively.
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effective theory |k| is bounded to be smaller than some UV scale M . So, whereas
mode growth can happen, the timeframe for catastrophic growth in an EFT is usually
not arbitrarily short. But this might be cold comfort if it were instead to occur on a
UV time-scale like M . As previous sections make clear, evolution over time-scales
as short as M−1 lies beyond what an EFT can capture.

Well-posedness can also be an important issue even when only asking pragmatic
questions well within the EFT regime (for which physical quantities do not evolve
on microscopic time scales). This is because, in practice, evolution is calculated
only approximately, perhaps numerically by breaking space and time into a discrete
lattice. Such approximations necessarily introduce short-distance errors into the
initial conditions and evolution equations, which for all intents and purposes play the
role of unknown UV physics at the regulator scale Λ. If these regulation errors were
to grow over time-scales as short as Λ−1 then this spurious growth could quickly
swamp the much slower evolution of the physical system being modelled by the
EFT description. It is the desire to integrate effective-field equations in nonlinear
settings that makes discussions of well-posedness more than a purely mathematical
exercise.

Although not a problem for well-posed evolution, these issues mean that approx-
imate methods typically require some sort of smoothing procedure for ill-posed
problems [102] to suppress spurious regulator-scale variations (for a discussion of
these issues for the toy model considered here see [103]). Whether such smoothing
is necessary requires a diagnosis of the well-posedness of EFT field equations.

Well-posedness for a nonlinear theory is ensured if its field equations are
strongly hyperbolic.4 Sadly, the field equations for many EFTs are known not to
be strongly hyperbolic even if the underlying UV theory is. EFTs can run into trouble
in this way – even those lying in the Galileon class discussed earlier [101] – because
the derivatives appearing within effective interactions modify the character of the
second-derivative terms on which hyperbolicity is based, perhaps as a function of the
size of (or variation in) a background field.

Since any spurious regulator dependence is a special case of UV physics, in
principle it can be absorbed into the values of an EFT’s effective couplings. The
problem is how to do this in practice, numerically and on the fly. As of this writing
(2018), the issue of how to optimally simulate the time-evolution predicted order-
by-order in an EFT’s low-energy expansion is not yet settled, though is under
active study.

6.3 Fluctuations about Evolving Backgrounds ♠

Earlier sections in this chapter mostly focus on how the background evolves and
how this is captured by an effective Wilsonian description. But there can also be
interest in the properties of fluctuations about non-static background configurations,

4 A hyperbolic system is strongly hyperbolic if there is a norm for solutions whose behaviour at time t is
bounded by the initial value of the same norm multiplied by a function of time that is independent of
the initial data.
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and this section explores some of the ways that fluctuations about time-evolving
backgrounds differ from those about static vacua. The fluctuations of interest could
either describe nearby solutions within a purely classical problem, or be full-on
quantum fluctuations. Which one is relevant in any particular application can be
determined using a power-counting analysis such as that given in §3.

Part of the practical interest in studying EFTs for fluctuations about evolving
backgrounds (for relativistic systems) comes from cosmology [104]. As described
in more detail in §10.2, quantitative predictions for fluctuations are pressing in
cosmology because in the modern understanding the large-scale distribution of
matter and radiation throughout the universe arises as the gravitational amplification
of small primordial field fluctuations occurring within an expanding spacetime. This
allows precise predictions of the properties of these fluctuations to be compared in
detail with the wealth of modern cosmological observations.

6.3.1 Symmetries in an Evolving Background

Time-dependent backgrounds typically preserve fewer symmetries than do static
vacua. For instance, for the toy model with a homogeneous time-dependent back-
ground, ϑ(t), the background breaks both time-translation invariance and Lorentz
invariance, while preserving rotational symmetry and invariance under spatial trans-
lations. Since the symmetries are broken by a field configuration, the breaking can be
considered to be spontaneous, though of spacetime symmetries rather than internal
ones (for a recent systematic discussion of the issues see, for example, [105]).

The consequences of this symmetry-breaking pattern for fluctuations follow the
general rules outlined earlier for spontaneous symmetry breaking. In particular, fluc-
tuations fall into linear representations only of the unbroken subgroup of symmetries
that leave the background invariant. For homogeneous time-dependent backgrounds
this means that fluctuations can be labelled by their spin (i.e. representation of the
field under rotations) and linear momentum (representation under translations). Total
momentum and angular momentum are conserved by virtue of the background’s
invariance under spatial translations and rotations.

Other consequences of Poincaré invariance for static Lorentz-invariant vacua do
not carry over to fluctuations about homogeneous time-dependent backgrounds. In
principle, the breaking of time-translations by the background means that energy is
not strictly conserved for the fluctuations. (That is to say: even if energy is conserved
for the whole system – background plus fluctuations – in general there can be energy
transfer between the two for time-dependent backgrounds, making the energy of
fluctuations themselves not strictly conserved.)

Because Wilsonian actions only capture the time-dependence of adiabatic evo-
lution in the UV theory, when EFT methods are useful it is possible to define a
time-dependent energy satisfying

H (t) |k, σ〉 = E(k, t) |k, σ〉, (6.42)

acting on fluctuation states, where H might parametrically depend on time. Alterna-
tively, the time-evolution of field mode functions can be approximately written as

u(t, x) = v(x) exp

[
−i

∫ t

t0

dτE(k, τ)

]
. (6.43)



139 6.3 Fluctuations about Evolving Backgrounds

As described earlier, it is this energy that implicitly is used to distinguish low-energy
from high-energy states for EFT applications with time-dependent backgrounds.
These expressions use rotation invariance, which ensures a mode’s energy eigenvalue
(or dispersion relation) depends only on the magnitude k = |k|.

Finally, for fluctuations about time-dependent backgrounds the dispersion relation
E(k) can differ from the Lorentz-invariant result

√
k2 + m2. For instance, the explicit

calculations to follow for the time-dependent toy model example considered above
show the Goldstone mode propagates with dispersion relation E(k) = kcs + O(k2),
with 1 − cs = δc being a calculable positive function of system parameters (like ω,
λ and v in the toy model).

Fluctuations in the Toy Model

To make the story concrete, this section examines how fluctuations around a time-
dependent background behave in the toy model of §1.1, both in the full theory and in
its low-energy Wilsonian incarnation.

To this end, in the full theory expand φ = ϕ(t) + φ̃ where ϕ(t) = �0 eiωt is the
background solution considered above, with (6.7) implying �2

0 = v2 + 2ω2/λ. With
this choice the lagrangian can be expanded in powers of φ̃, so L = L(0) +L(1) +L(2) +

L(3) + L(4) , where

L(0) = ω2�2
0 −

ω4

λ
= ω2v2 +

ω4

λ

L(1) =
√

2 �0 ω
d
dt

[
−φ̃Rst + φ̃Ict

]
(6.44)

L(2) = −1
2
(
∂μφ̃R ∂

μφ̃R + ∂μφ̃I ∂
μφ̃I

)
− 1

2

(
φ̃R

φ̃I

)T (
ω2 + λ�2

0 c2
t λ�2

0 ct st
λ�2

0 ct st ω2 + λ�2
0 s2

t

) (
φ̃R

φ̃I

)
,

and so on for higher powers of φ̃, where φ̃ = 1√
2

(φ̃R + iφ̃I) while ct := cosωt and

st := sinωt. The term linear in φ̃ can be dropped for most purposes because it is a
total derivative – as is always true when expanding about a classical solution.

Although the quadratic term seems to involve a standard kinetic piece plus lots
of oscillatory time-dependence in the mass term, this is actually deceptive since the
eigenvalues of the mass matrix are not time-dependent at all:

m2
+ := ω2 + λ�2

0 = 3ω2 + λv2 and m2
− := ω2. (6.45)

The oscillatory time-dependence seen in (6.44) and the tempting interpretation of
(6.45) as nonzero masses can be misleading if they are used too naively when drawing
physical consequences (such as the existence of an energy gap for fluctuations
at zero momentum). They are misleading because the shorthand that allows a
straightforward inference of physical quantities like masses from quadratic terms
in an action breaks down in this particular choice of basis fields, φ̃R and φ̃I. The
problem arises because these basis fields are fixed in time while the physical basis of
mass eigenstates rotates in field space with angular frequency ω.

Drawing inferences using the fields φ̃R and φ̃I might be warranted if there were a
physical reason for choosing this basis – e.g. if other sectors of the theory were to
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break the U (1) symmetry, such as if perhaps only φI were to couple to observable
particles. Otherwise, performing the time-dependent rotation required to reach
the mass basis transfers the effects of the time-dependent background into the
kinetic part of the fluctuation fields, suggesting very different kinds of observable
consequences.

Simpler than performing this time-dependent rotation is to directly use the
fluctuation fields χ̃ and ξ̃ defined by

φ =

(
�0 +

χ̃
√

2

)
exp
⎡⎢⎢⎢⎢⎣ iξ
√

2�0

⎤⎥⎥⎥⎥⎦ , (6.46)

with ξ =
√

2 �0 ωt + ξ̃, since in this case the lagrangian expansion becomes (c.f.
Eqs. (1.24) and (1.25))

L = −1
2
∂μχ̃∂

μχ̃ − 1
2
��1 + χ̃

√
2 �0

��
2

∂μξ∂
μξ − V (χ̃), (6.47)

with

−∂μξ ∂μξ = 2ω2�2
0 + 2

√
2ω �0 ∂t ξ̃ − ∂μξ̃ ∂μξ̃, (6.48)

and

V (χ̃) =
λ
4

(
2ω2

λ
+
√

2 �0 χ̃ +
χ̃2

2

)2

. (6.49)

Expanding this lagrangian in powers of χ̃ and ξ̃ then gives the same expression as
before for L(0); a total derivative for the linear terms; and the following quadratic
term

L(2) = −1
2
∂μχ̃∂

μχ̃ − 1
2
∂μξ̃ ∂

μξ̃ + 2ω χ̃ ∂t ξ̃ −
1
2
λ�2

0 χ̃
2. (6.50)

Although not diagonal, this form does not have explicitly time-dependent coeffi-
cients.

To identify the dispersion relations of the propagating modes it is convenient to
Fourier transform by switching to energy and momentum eigenstates, ∝ ei(−Et+k·x) ,
leading to a quadratic action proportional to(

χ̃
ξ̃

)† (
E2 − k2 − λ�2

0 −2iωE
2iωE E2 − k2

) (
χ̃
ξ̃

)
, (6.51)

where E and k = |k| are the energy and the magnitude of momentum for the
corresponding mode. The dispersion relations, E(k), for the propagating modes
correspond to those choices that make the eigenvalues,

Δ± = E2 − k2 − 1
2
λ�2

0

⎡⎢⎢⎢⎢⎣1 ±
√

1 +
16E2ω2

λ2�4
0

⎤⎥⎥⎥⎥⎦ , (6.52)

of this matrix vanish.
For ωE � 1

2λ�
2
0 the corresponding dispersion relations, E±(k), therefore satisfy

E2
−
��1 + 4ω2

λ�2
0

�� − k2 � E2
+
��1 − 4ω2

λ�2
0

�� − k2 − λ�2
0 � 0. (6.53)
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These show that nonzero ω does not introduce an energy gap at zero momentum for
the Goldstone boson, though such a gap does, of course, exist for the massive particle
(though with v replaced with �0 when compared with the mass found in §1.1).

The main effect of nonzero ω for the Goldstone boson is to change its ‘sound
speed’, cs , defined by writing the small-k dispersion relation as E2 = k2c2

s .
Comparing with the Goldstone mode relation, E−(k), implies that

cs− � ��1 + 4ω2

λ�2
0

��
−1/2

� 1 − 2ω2

λv2 , (6.54)

to leading order in ω2/m2
R .

As mentioned earlier, the result cs � 1 never arises when expanding about a static
background like φ = v because anything except cs = 1 is in that case forbidden by
Lorentz invariance. Nontrivial speed of sound arises for time-dependent backgrounds
because these break the underlying Lorentz invariance of the action.

The Wilsonian Point of View

This same conclusion about the ω-dependence of the Goldstone-boson dispersion
relation also follows directly from the toy model’s Wilsonian EFT, given by (6.10)
and repeated here:

LW = −v2∂μϑ∂
μϑ +

v2

m2
R

(∂μϑ ∂
μϑ)2 + · · · , (6.55)

where φ = � eiϑ. Expanding ϑ about the slowly rolling classical solution, ϑ = ωt+ ϑ̃
then implies that −∂μϑ ∂μϑ = ω2 + 2ω ∂t ϑ̃ + (∂t ϑ̃)2 − ∇ϑ̃ · ∇ϑ̃, so the quadratic
part of the expanded action becomes

L
(2)
W = v2

[
(∂t ϑ̃)2 − ∇ϑ̃ · ∇ϑ̃

]
+
ω2

λ

[
6(∂t ϑ̃)2 − 2∇ϑ̃ · ∇ϑ̃

]
+ · · · , (6.56)

where ellipses denote terms involving higher powers of ω/mR.
The field equations for ϑ predicted by this action therefore are

−
(
1 +

6ω2

λv2

)
∂2
t ϑ̃ +

(
1 +

2ω2

λv2

)
∇2ϑ̃ � 0, (6.57)

which when compared to the wave equation (−∂2
t + c2

s∇2)ϑ̃ = 0 leads to a prediction

cs �

√
1 + 2ω2/(λv2)
1 + 6ω2/(λv2)

� 1 − 2ω2

λv2 , (6.58)

that agrees to leading nontrivial order in ω2/m2
R with (6.54). Notice that this ω-

dependent Goldstone sound speed is less than the speed of light (i.e. cs < c = 1) by
virtue of the sign of the (∂μϑ ∂μϑ)2 term.

6.3.2 Counting Goldstone States and Currents ♣

Since time-dependent backgrounds spontaneously break spacetime symmetries,
one might expect Goldstone’s theorem to ensure the existence of new low-energy
Goldstone degrees of freedom. Although it is sometimes true that each new broken



142 Time-Dependent Systems

symmetry generator implies a new Goldstone particle, the toy model shows that this
naive counting of Goldstone states can be misleading, particularly for spacetime
symmetries [230]. The discussion given here follows [107] (see also [108]), and is
generalized to more general background fields in §14.3.1.

For example, for the toy model expanded about the time-dependent classical
background ϑc = ωt, the background breaks both the internal U (1) symmetry –
for which ϑ → ϑ + c for constant c – and time-translation invariance: t → t + τ for
constant τ. Breaking two symmetries naively suggests there should be two Goldstone
particles, yet the effective theory only contains the one low-energy state.

For these specific symmetries the real lesson of the toy model is this: with
multiple symmetries one must be careful when counting how many symmetries
are broken. That is, it is always possible to undo the action of time translation,
t → t + τ, on the background by simultaneously performing a compensating U (1)
transformation, ϑ → ϑ−ωτ, leaving ϑc invariant. Only one Goldstone particle arises
because the background ϑc = ωt really breaks only one combination of these two
symmetries.

More generally, time-dependent backgrounds also break the six-dimensional
group of Lorentz transformations down to the three-dimensional group of rotations.
Why doesn’t Goldstone’s theorem imply there must also be Goldstone modes for
these broken symmetries?

To see why, it is worth referring back to the derivation of Goldstone’s theorem
presented in §4.1.2. What matters for Goldstone’s theorem is not the number of
broken generators of the symmetry group. What matters instead is the number of
independent conserved currents, j μ (x), implied by the symmetry group, since for
each independent current associated with a broken symmetry there should be a
Goldstone state |G〉 satisfying the defining condition that

〈G | j0(x) |Ω〉 � 0, (6.59)

where |Ω〉 is the ground state. Furthermore, although Goldstone’s theorem estab-
lishes the existence of such a state for each broken current, it doesn’t require that a
new state is required for each new current.

As reviewed in Appendix C.5.3, for spacetime symmetries there are only four
independent conserved currents regardless of the dimension of the group of space-
time symmetries. This is because spacetime symmetries all have their roots in
diffeomorphisms, δxμ = V μ (x), for which the associated conserved current is the
stress-energy tensor, Tμν (x) = Tνμ (x), defined in terms of the matter action by

Tμν =
2
√−g

δSm
δgμν

, (6.60)

where the spacetime metric is temporarily introduced for the purpose of performing
the variation, before returning to the flat cartesian Minkowski metric of special
relativity: gμν = ημν = diag(−1, 1, 1, 1).

As also reviewed in Appendices C.5.2 and C.5.3, spacetime symmetries corre-
spond to those diffeomorphisms that leave the background metric invariant, which
for the Minkowski metric turns out to mean that V μ must satisfy

δημν = ∂μVν + ∂νVμ = 0. (6.61)
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This has as solutions Vμ = aμ+ωμν xν , with ωμν = −ωνμ, corresponding to the usual
translations in spacetime (δxμ = aμ) and Lorentz transformations (δxμ = ωμν xν).

For each solution to (6.61) a conserved current can be constructed using only the
symmetric stress-energy tensor Tμν , since conservation ∂μTμν = 0 together with
(6.61) implies that ∂μ j

μ
V = 0, where

jλV (x) := Tλμ (x) Vμ (x). (6.62)

The corresponding conserved charge (or generator) for this symmetry is constructed
by integrating j 0

V over all of space.
With this in mind, the Goldstone states required by spontaneously broken space-

time symmetries are those for which the stress-energy matrix element,

〈G |T0μ (x) |Ω〉Vμ (x) � 0, (6.63)

is nonzero. As seen in §13.1 and §14.3, systems (such as solids or liquids) that
spontaneously break Poincaré invariance typically do give rise to Goldstone modes
of this type (corresponding to sound waves, or phonons). What is not in general
guaranteed by Goldstone’s theorem is that the state |G〉 appearing in (6.59) need
be different than the state appearing in (6.63). The states appearing in these matrix
elements can sometimes be different, but need not always be so.

The toy model provides an explicit example where both (6.59) and (6.63) are
satisfied by the same state: the massless state described by the field ξ. Indeed, for
weak coupling the low-energy sector only has a single state available to play both
roles. To see this explicitly it is instructive to compute explicitly both the Noether
current for the internal-U (1) current and the stress energy.

Working to lowest order in the energy expansion the action is simply that of a
massless free scalar field,

LW � −
1
2

(∂μξ ∂μξ) +
λ

4m4
R

(∂μξ ∂μξ)2 + · · · , (6.64)

for which the current predicted by (4.7) for the U (1) symmetry ξ → ξ +
√

2 cv
(where c is the constant symmetry parameter) is

jμ = −
√

2 v ∂μξ
[
1 − λ

m4
R

(∂νξ ∂νξ) + · · ·
]

. (6.65)

The stress energy predicted for a minimally coupled scalar is similarly given by

Tμν = ∂μξ ∂νξ −
1
2

(∂λξ ∂λξ) ημν + · · · , (6.66)

where the ellipses in both of these expression denote higher-derivative contributions
than those written.

When expanded about a time-dependent solution, ξ =
√

2 v ωt + ξ̃, both j0 and
T0

μ contain terms linear in the fluctuation ξ̃. Writing5 〈p|ξ̃(x) |Ω〉 = F eipx (with
nonzero F) for a single-particle momentum eigenstate |p〉 shows that the field ξ̃
plays the role of the Goldstone state for all of the broken symmetries, with

〈p| jμ (x) |Ω〉 = −i
√

2 v Fpμeipx + · · ·

and 〈p|T0
μ (x) |Ω〉 = i

√
2 v ω Fpμ eipx + · · · , (6.67)

5 As written F contains factors of
√
E (p) unless |p〉 is normalized covariantly (see e.g. Appendix B.1).
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where ellipses denote terms of relative order ω2/m2
R (or those suppressed by

loop factors). In this sense, the low-energy sector of the toy model saturates the
requirements of Goldstone’s theorem in a minimal way.

6.4 Summary

To summarize this chapter, the bottom line is this: time-dependent evolution in the full theory (both of
backgrounds and classical and quantum fluctuations about them) can be captured using time-dependent
solutions to the low-energy effective theory, but only if the evolution of interest is sufficiently slow.

Generically, ‘sufficiently slow’means demanding thatμφ := φ̇/φ – for all choices of fieldsφi(x) in
the problem – be much smaller than the UV scale M (i.e. in the toy model, mR). This adiabatic condition is in
addition to all the other requirements already needed when formulating a Wilsonian low-energy theory:
such as that the energies of all fluctuation modes be much smaller than M.

This points to two kinds of generic new failure modes specific to EFTs applied to time-dependent
problems. The first new failure mode arises if the background evolution itself should become too fast.
In such a case, the transfer of energy between background and fluctuations (such as through particle
production using energy extracted from the background) becomes too efficient, destroying the adiabatic
approximation (and with it the approximately conserved notion of energy used to discriminate between
low- and high-energy fluctuation modes).

A second type of new failure mode is simply the time-dependent version of the old failure mode: a
nominally low energy, E, is not small enough to trust the E/M expansion. Time dependent drift of E(t) and
M(t) means E(t)/M(t) might eventually become large even if were small initially (such as occurs in level
crossing, see panel (a) of Fig. 6.1).

Notice that level crossing – for which the EFT expansion in powers of E/M must fail – is different from
having UV states simply evolve below some regulator scaleΛ (panel (b) of Fig. 6.1). Nothing dramatic need
happen as UV levels pass below a cutoff scale, provided the UV states evolve in their adiabatic vacua, since
cutoff scales by construction do not appear in any physical quantities.

����������
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M (t)

E(t)

(a) Level crossing

����������

����������

����������

                        M (t)

Λ

E(t)

(b) Cutoff crossing

Fig. 6.1 A sketch of the adiabatic time-evolution for the energy, E(t) (solid line), of a nominally low-energy state
and the energy, M(t) (double line), for a representative UV state. The left panel shows level crossing where
(modulo level repulsion) high- and low-energy states meet so the EFT description fails. In the right panel
high-energy states evolve past a cutoff,Λ (dotted line), without level crossing (so EFT methods need
not fail).
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Exercises

Exercise 6.1 Rederive Eq. (6.17) using the stress-energy tensor, Tμν , defined in (6.60)
applied to the action built from the lagrangian density of Eq. (6.64). Doing so
requires writing this matter action for a general metric:

Sm �
∫

d4x
√
−g
[

1
2

X +
λ

4m4
R

X2
]

,

where X := −gμν∂μξ ∂νξ and g denotes the determinant of (and gμν is
the matrix inverse of) the covariant components of the metric, gμν (see
Appendices A.2.1 and C.5.2 for more details). Once the stress-energy tensor
is computed the energy density is given by ε = T00.

Exercise 6.2 Too-rapid background time-dependence can ruin the low-energy approx-
imation. Consider the toy model of §1.1 in the semiclassical regime, but
instead of starting in the vacuum consider the background field configuration
describing homogeneous heavy-field oscillations about its minimum: χc (t) =
χ0 cos(mRt), where χ0 � v so that the cubic and quartic terms in the potential
V (χ) can be neglected. Compute the energies of the ξ particles that are
pair-produced by their interactions with this background oscillating field and
calculate their production rate. Can the production of these ξ particles be
described purely with a low-energy EFT description?

Exercise 6.3 As a toy model of level crossing (and repulsion) consider two real free
scalar fields, φ1 and φ2, that mix with one another through the lagrangian
density L = − 1

2

[
(∂φ1)2 + (∂φ2)2

]
+ Lmix where

Lmix = −
1
2

(
φ1

φ2

)T (
gn(t) μ2

μ2 m2

) (
φ1

φ2

)
where μ and m are positive and real mass parameters with μ � m, g is a
coupling constant and n(t) is the density of particles in a medium within which
the scalars are immersed. n(t) = n0 e−t/τ is assumed to be monotonically
decreasing, asymptoting to zero for large t. For any fixed t what are the
eigenvalues and eigenvectors for the mass matrix? Assume the system is
prepared in a state that is a φ1 eigenstate with momentum p at t = 0 with
gn0 > m2. After this, n(t) falls slowly enough that the evolution is adiabatic –
i.e. instantaneous energy eigenstates evolve with phase exp[−i

∫ t

t0
ds E(s)].

What is the likelihood that the state is measured at t → ∞ to be in state φ2?
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About Part II

The remaining three parts of this book aim to explore a variety of real-world
applications of the principles developed in Part I. This one (Part II) is aimed at
relativistic systems, many of which played a role in the development of EFT
techniques. The remaining two parts explore applications for nonrelativistic and open
systems.

The chapters in this section divide the applications into two main topics. The
first examples are taken from systems for which the high-energy theory is well
understood and calculable, such as for the charged-current weak interactions of the
Standard Model, for Quantum Electrodynamics with electrons and muons, or for the
interactions of the known elementary particles (gravitons, neutrinos and photons) at
energies much below the electron mass. These examples allow low-energy methods
to be explored in situations where the answer is already known from other methods.
Included in these topics are examples of how renormalization-group (RG) techniques
and EFTs are used to track large logarithms.

The second half of Part II then switches to cases for which the high-energy theory
is either unknown (such as when the low-energy theory is General Relativity or the
Standard Model itself) or when it is known but not understood well enough to allow
precise calculations (such as the behaviour of pions in the low-energy limit of QCD).





7 Conceptual Issues (Relativistic Systems)

This chapter takes up the story with the simplest cases: situations where the full high-
energy theory is well-understood and the low-energy EFT is explicitly calculable.
Examples in this chapter are chosen primarily to illustrate useful conceptual points
that arise more generically for effective theories.

7.1 The Fermi Theory of Weak Interactions ♦

We start with a classic example of an effective theory: the Fermi theory of
(low-energy) weak interactions. For presentation purposes some facts about the
charged-current weak interactions are required. The UV theory in this case is the
Standard Model of particle physics [61, 109, 110], which describes them as the result
of exchanges of W bosons.

7.1.1 Properties of the W Boson

Since the W -boson has spin one, it is represented by a gauge potential, Wμ, and
because it also carries electric charge this gauge potential is complex rather than
real. The free propagation of the W boson (within unitary gauge) is described by the
lagrangian (see also §C.3.3 for more about massive spin-1 particles)

Lfree = −
1
2

W ∗
μνW

μν − M2
WW ∗

μW μ, (7.1)

where Wμν := ∂μWν − ∂νWμ, MW � 80 GeV is the mass of the W boson.1

The field equations obtained by varying the above action with respect to W ∗
μ are

Wμ − ∂μ∂νWν − M2
WWμ = 0, (7.2)

for which the W -boson propagator is the Green’s function, given by (see Eq. (4.63)
for the massive spin-1 propagator in a more general gauge)

Gμ
ν (x, y) = −i

∫
d4k

(2π)4
eik ·(x−y)

k2 + M2
W − iε

(
δμν +

kμkν
M2

W

)
. (7.3)

Here, k · (x − y) := kμ (x − y)μ and ε is present to enforce Feynman boundary
conditions, so it is a positive infinitesimal that is taken to zero at the end of any
calculation.

1 Unless otherwise stated, quoted experimentally measured values for parameters come from reference
[62].
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Table 7.1 The three generations i = 1, 2, 3 of
fermion flavours

Leptons Quarks

ν-Type �-Type u-Type d-Type

ν1 e u d
ν2 μ c s
ν3 τ t b

The Standard Model also endows the W boson with a number of interactions,
such as the electromagnetic interactions that accompany its electric charge. These
are incorporated by replacing

∂μWν → DμWν := (∂μ + ieAμ)Wν

∂μW ∗
ν → DμW ∗

ν := (∂μ − ieAμ)W ∗
ν , (7.4)

where Aμ is the usual electromagnetic potential. Eqs. (7.4) show that the conven-
tional choice has Wμ destroying particles with charge −e and creating antiparticles
with charge +e, where e is the charge of the proton, once Wμ is expanded in terms
of creation and annihilation operators (see §C.3.3 for details).

Within this framework, the charged-current weak interactions are described by the
interactions between W bosons and fermions, with the generic form2 [61, 111]

Lcc =
ig
√

2

[
U∗

ja W ∗
μ (ν̄aγμγL�

j ) +Uja Wμ (�̄ jγμγLν
a)
]

(7.5)

+ Vi j W ∗
μ (ūiγμγLd j ) + V ∗

ji Wμ (d̄ jγμγLu
i)
]
,

where g is a fundamental coupling constant, related to the electromagnetic coupling e
by g = e/ sin θw , where the angle θw is called the weak-mixing angle (or Weinberg
angle) and is a parameter of the theory that is measured to have size sin2 θw � 0.231.
The fermion fields νa, � j , ui and d j are spinors representing the various known
elementary spin-half particles listed in Table 7.1. (See §A.2.3 and §C.3.2 for a
refresher on spin-half fields, Dirac gamma-matrices and the spinor conventions used
here.) An over-bar on a spin-half field denotes Dirac conjugation, the γμ denote
the usual Dirac matrices, and the matrix γL := 1

2 (1 + γ5) projects onto left-handed
Dirac spinors. The proportionality of interactions to γL expresses the experimental
fact that only left-handed fermions couple to W bosons, making the W interactions
chiral inasmuch as they treat left-handed and right-handed particles differently. The
presence of both the matrices γμ and γμγ5 shows that the weak interactions break
parity invariance.

The indices i, j and a run over the labels 1, 2, 3 corresponding to the three known
generations of elementary fermions.3 Every fermion is either ‘u-type’ (νa or ui)
or ‘d-type’ (�i and di). Fermions also split into two categories, called leptons (νa

2 This expression modifies the Standard Model prediction slightly by introducing the matrix of coupling
parameters Uia � δia , as required since the discovery of neutrino oscillations.

3 The neutrino index is labelled ‘a’ instead of ‘i’ because there may be more than three species of
neutrinos.
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Fig. 7.1 The Feynman graph responsible for the decay τ → eν3 ν̄1 at leading order in unitary gauge.

and �i), which do not take part in the strong interactions – i.e. do not carry ‘colour’ –
or quarks (ui and di), which do take part in the strong interactions – and so do carry
colour.

There are two kinds of 3× 3 matrices of coefficients, Uia and Vi j , each of which is
predicted (and measured) to be unitary: U†U = V †V = 1. Besides being unitary there
is no other prediction for these matrices, and the values of each entry must be taken
from experiment. The quark matrix (called the CKM matrix after physicists Cabbibo
[112], Kobayashi and Maskawa [113]) is measured to be close to – but not exactly –
diagonal, but measurements of the lepton matrix (the PMNS matrix, for Pontecorvo
[114], Maki, Nakagawa and Sakata [115]) reveal it to be more complicated. (Notice
that the conventions used to define Uia relative to U∗

ia differ – for historical reasons –
from those used for Vi j and V ∗

i j .)

7.1.2 Weak Decays

Within the Standard Model the interactions between fermions and the W boson are
special because they are the only ones that change fermion ‘flavour’ (or the basic
type – ν1 vs μ vs b etc.) of fermion. As a result, the emission and absorption of W
bosons is responsible for all decays of elementary fermions.4

Consider, for instance, the decay τ−(k) → e−(p)ν3(l)ν̄1(q) of a τ lepton (with
4-momentum kμ) into an electron (with 4-momentum pμ), a ν3 neutrino
(4-momentum lμ) and ν1 anti-neutrino (4-momentum qμ). In unitary gauge the
leading contribution from the charged-current interaction (7.5) is found by evaluating
the Feynman graph of Fig. 7.1, leading to a decay amplitude:

A(τ → eν3ν1) =
g2U∗

τ3Ue1

2
[
ūν3 (l)γμγLuτ (k)

] [
ūe (p)γνγLvν1 (q)

]
×
⎡⎢⎢⎢⎢⎣
ημν + (k − l)μ (k − l)ν/M2

W

(k − l)2 + M2
W − iε

⎤⎥⎥⎥⎥⎦ .
(7.6)

The small size of the mass ratios, m2
τ/M

2
W ≈ 5·10−4 and m2

μ/M
2
W ≈ 2·10−6, ensures

that a frame exists (the rest frame of the decaying τ) for which all components of

4 These decays are also often responsible for the decays of composite particles built from elementary
fermions, such as nuclei or mesons, but these can also decay for other reasons.
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Fig. 7.2 The tree graph that generates the Fermi Lagrangian.

4-momenta are much smaller than MW. This makes the reaction ripe for description in
terms of an effective Wilsonian theory appropriate below the W boson mass (in which
the W boson is integrated out). The required effective interaction should capture the
above amplitude to lowest order in 1/M2

W , and thus can be determined by expanding
the W -boson propagator in inverse powers of M2

W

Keeping only the lowest order term gives the following result for the decay
amplitude

A(τ → eν3 ν̄1) =
GF√

2
U∗
τ3Ue1

[
ūν3 (l)γμ (1 + γ5)uτ (k)

] [
ūe (p)γμ (1+ γ5)vν1 (q)

]
,

(7.7)

which defines the Fermi constant, GF, as the combination

GF√
2

:=
g2

8M2
W

. (7.8)

The key observation is that this is what would have been produced at lowest order
in perturbation theory using the effective 4-fermion interaction, called the Fermi
Lagrangian:

L′cc =
GF√

2
CμC∗

μ (7.9)

in which the charged current, Cμ, is defined by

Cμ = iUia �
i
γμ (1 + γ5)νa + iV ∗

i j d
j
γμ (1 + γ5)ui , (7.10)

That is to say, the lagrangian given by (7.9) and (7.10) reproduces all of the charged-
current predictions of the Standard Model at energies well below MW, to lowest
nontrivial order in E2/M2

W . Pictorially, in any W -exchange Feynman graph it is
effectively as if the W propagator were contracted to a point, as in Fig. 7.2.

Although the Fermi lagrangian is derived here as the low-energy limit of the
Standard Model, historically it was the Fermi theory that was developed first.5,6

Indeed, it is a great success of the Standard Model that it contains the Fermi
theory of weak interactions as part of its low-energy EFT since the Fermi theory

5 As the story goes, Fermi’s paper was first rejected by the journal Nature (for being too speculative), and
so it was published separately in Italian and German [116, 117].

6 The version of the Fermi theory used here is actually the one given by Feynman & Gell-Mann [118] and
separately by Sudarshan & Marshak [119], which differs from the original Fermi theory by the inclusion
of parity violation among other features. The inclusion of quarks into the theory came somewhat later
[111].
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is known to describe well the many detailed measurements of decay properties of
light elementary particles.

The emergence of the Fermi theory as the low-energy limit of the Standard
Model also carries several conceptual insights. The Standard Model provides a
more unified description of the electromagnetic and weak interactions, characterizing
them in terms of two very similar couplings g and e, rather than the superficially
very different historical couplings GF and e. On dimensional grounds a weak-
interaction decay computed at leading order using (7.9) that releases an energy Q
to the decay daughters has a generic decay rate Γ ∝ G2

FQ5, showing that the weak
interactions were historically regarded as being weak more because Q � G−1/2

F �
300 GeV than because the underlying interaction is particularly weak compared to
electromagnetism.

The experimental success of the Fermi theory also helped the particle-physics
community to come to grips with using non-renormalizable interactions within a
quantum context. Because the Fermi coupling GF has negative mass-dimension –
GF ∝ (energy)−2 – the Fermi theory is not renormalizable. Yet the development
of a renormalizable theory like the Standard Model as its UV completion reveals
very concretely that a low-energy non-renormalizable interaction need not preclude
making sensible quantum predictions, even at low energies and including radiative
corrections. What the UV theory makes clear is that more and more information
about the high-energy sector must be known the more accurately the answer is
required, in a way that is ultimately most efficiently captured at any order in terms of
the low-energy Wilsonian EFT.

7.2 Quantum Electrodynamics

An important spinoff of the EFT point of view is a deeper understanding of why the
theories we use have the form they do. In particular, it explains why renormalizable
theories are so often found to be important in physics, as this section elaborates using
Quantum Electrodynamics (QED) as an illustration.

A second, practical, reason for presenting QED in more detail here is to provide
concrete (and useful) examples of more precise treatments – such as loop-level
matching between the UV and low-energy theories – than were presented earlier
for the toy model in Part I.

For example, the very lightest electromagnetically interacting elementary particles
are the massless photon and the electron (whose mass is me � 0.511 MeV). The
next-lightest after these is the muon, which with Mμ � 106 MeV is about 200
times heavier. To the extent that one is happy to drop all corrections suppressed
by powers of 1/Mμ, all electron-photon physics at energies E � Mμ should be
described by a Wilsonian EFT with an action involving no couplings with negative
mass-dimension; that is to say, by the most general renormalizable interactions built
using only electrons and photons.

For a low-energy theory involving only electrons and photons the relevant field
content is a Dirac spinor field, ψ(x), for the electron plus the electromagetic gauge



156 Conceptual Issues (Relativistic Systems)

potential, Aμ (x). As discussed in §C.3.3, a massless spin-one particle (the photon)
requires the existence of a linearly realized gauge symmetry (also called a field
redundancy) under which ψ must also transform if it is electrically charged. For a
single Dirac field – chosen to destroy particles with charge −e – this implies that

ψ(x) → ψ(x) e−ieζ(x) and Aμ (x) → Aμ (x) + ∂μζ(x), (7.11)

where ζ(x) is the symmetry’s spacetime-dependent transformation parameter.
The most general renormalizable interactions consistent with this field content and

electron charge assignment are then given by the lagrangian7

Lren(Aμ,ψ) = − 1
4

FμνFμν − ψ(
/
D + me)ψ, (7.12)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field strength, and both fields are
rescaled to put their kinetic terms into standard form. Here

/
D denotes γμDμ (as

usual) with the covariant derivative defined by Dμψ = ∂μψ + ieAμψ, with e the pro-
ton charge (or electromagnetic coupling constant). Any other local interactions that
involve only these fields and are invariant under (7.11) necessarily involve couplings
with negative mass-dimension (and so are not renormalizable), as can be seen from
the field dimensions [ψ] = 3/2 and [Aμ] = 1 (which follow from the dimension of
the respective kinetic terms).

The remainder of this section uses QED to illustrate EFT methods in two ways.
The first class of applications uses (7.12) as the UV theory, regarding the electron as
the heavy particle whose removal generates the Wilsonian EFT. The second class
regards (7.12) as part of the EFT obtained by integrating out the next-heaviest
particle (the muon). Both categories of examples integrate out the ‘heavy’ fermion
at the loop level, raising a number of conceptual issues not worked through in detail
in the examples of Part I.

The ability to think in both of these ways also emphasizes how the notion of an
EFT is a recursive one: havingL1(φ) as the Wilson action for a UV theory containing
more fields,L2(φ,ψ), does not precludeL2(φ,ψ) from itself being the Wilson action
for yet another underlying theory, L3(φ,ψ, χ), which applies at still higher energies
(further into the UV).

7.2.1 Integrating Out the Electron

This section starts with (7.12) as the UV theory and integrates out the electron,
leaving an effective theory involving only photons. Because a low-energy world
containing only photons is a bit boring, in this section (7.12) is temporarily
supplemented with a configuration of classical macroscopic currents.

There is also a physical motivation for adding classical currents to (7.12), since any
practical applications of electromagnetism in real life usually involve the interaction
of photons with large distributions of electric charges and currents that capture the
bulk features of macroscopic collections of atoms (such as used to describe a wire

7 This is precisely the lagrangian for Quantum Electrodynamics: the theory of photons [120, 121] coupled
to relativistic electrons [122]. See also [123–126, 128].
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or a capacitor in the laboratory).8 In practice, such currents are of most interest at
energies and momenta much smaller than me, so their study lends itself well to an
EFT description below the electron mass.

To describe the currents add to (7.12) the interaction

LJ = e Aμ I
μ. (7.13)

where the current Iμ is imagined to be an explicitly given function of spacetime. This
coupling is only consistent with gauge invariance – i.e. the transformation (7.11) –
if the current is identically conserved: ∂μIμ = 0, independent of any equations of
motion. It should also fall off sufficiently quickly to preclude there being a current
flow at spatial infinity, and (of course) only vary slowly – over macroscopically large
distances – so as to capture only currents appropriate for a low-energy analysis.

It often helps to have specific examples of such conserved configurations in
mind. One such an example of practical interest might be a specified static charge
distribution: I0 = ρ(r), Ii = 0, such as, in particular, for a point charge ρ(r) =
Q δ3(r − r0). A second example could be an electrical current with no electric
charge density: I0 = 0 and Ii = j i (r, t), where j(r, t) is a local current distribution
satisfying ∇ · j = 0 at all times.

Lowest Dimension Effective Interactions

When constructing the Wilson action below me, the first step is to identify what
kinds of effective lagrangian, LW(A ,I), can be envisioned consistent with ∂μIμ = 0
and invariance under Aμ → Aμ + ∂μζ. When doing so, interactions are organized
with higher-and-higher operator dimension, keeping in mind the field dimensions,
[Aμ] = 1 and [Iμ] = 3 from which it also follows that [Fμν] = 2, for the field-
strength tensor Fμν = ∂μAν − ∂νAμ.

The Wilsonian action can be written (up to total derivatives9) as a sum over terms
of increasing operator dimension, LW = L4 + L6 + L8 + · · · , where [Ld] = d, and

L4 = −
Z
4

FμνFμν + e AμI
μ,

L6 =
a1

2m2
e

e2IμI
μ +

a2

4m2
e

Fμν Fμν +
a3

2m2
e

∂μFμν∂λFλν , (7.14)

L8 =
b1

m4
e

(FμνFμν)2 +
b2

m4
e

(Fμν F̃μν)2 +
b3

2m4
e

e2∂μIν∂μIν + (∂4F2 terms),

and so on. In this expression F̃μν := 1
2 εμνλρFλρ represents the ‘dual’ field-strength

tensor and a term linear in Fμν F̃μν is not written because – unlike 7.12 – it is not
parity invariant (and in any case can locally be written as a total derivative). A power
of 1/me is factored out of the coefficient of each term so that the constants, Z , ai , bi
etc., are dimensionless.

Notice that no ∂2F3 terms appear in L8, and they are not included because any
terms involving an odd number of F’s are forbidden by charge-conjugation (or
C) invariance, which interchanges particles and anti-particles (i.e. interchanges their

8 More detailed and systematic ways to arrive at macroscopic descriptions for large collections of atoms
are described in Parts III and IV.

9 Total derivatives are revisited in §7.4, where conducting or dielectric boundaries are present.
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destruction operators akλ ↔ ākλ) and so takes Fμν → −Fμν . (This is Furry’s theorem
in an EFT guise [127, 128].) Imposing invariance under C – or under parity, P (for
which x → −x), or their product CP – is appropriate to the extent that the UV theory
also respects these symmetries. They are indeed symmetries if the underlying theory
is given by (7.12), but invariance in the EFT below me should be revisited once
non-renormalizable interactions – like those of the Fermi theory (7.9) – are added to
the UV theory. (See Table C.1 for a summary of how quantities in QED transform
under C, P and T .)

The final step performs field redefinitions to eliminate redundant operators from
(7.14). As described in Part I, this in practice boils down to eliminating terms in
Lk (with k ≥ 6) that vanish when evaluated at a solution to Maxwell’s equations
∂μFμν+eIν = 0 (which together with the Bianchi identity, ∂μFνλ+∂νFλμ+∂λFμν =
0, also implies that Fμν+e(∂μIν−∂νIμ) = 0. Together with an integration by parts,
this allows L6 to be simplified to

L6 =
ã1

2m2
e

e2IμI
μ, (7.15)

where ã1 := a1 − a2 + a3 (or, equivalently, just setting a2 = a3 = 0). Identical
arguments also allow the removal of the ∂4F2 terms from L8 in (7.14).

The leading non-redundant terms in the Wilsonian action below me therefore
become

LW = −
Z
4

FμνFμν + eAμI
μ +

ã1

2m2
e

e2IμI
μ

+
b1

m4
e

(FμνFμν)2 +
b2

m4
e

(Fμν F̃μν)2 +
b3

2m4
e

e2∂μIν∂μIν + · · · (7.16)

with effective couplings to be obtained by matching to the UV theory.

Power Counting

The effective couplings Z , e, ai and bi are inferred by matching predictions for
observables made using (7.16) to the low-energy limit of the full QED prediction.
The first part of this requires power counting: to know precisely which Feynman
graphs need evaluation and identifying which effective interactions must appear
within them to capture all contributions to any order in 1/me.

In this particular case, the general power-counting results of §3.2.3 can be carried
over in whole cloth since the effective lagrangian of Eq. (7.14) is a special case
of the form considered in Eq. (3.55), provided one makes the choices f = M =

v = me. Directly using Eq. (3.57) for the E-point scattering amplitude, AE (q),
leads to:

AE (q) ∼ q2m2
e

(
1

me

) E (
q

4πme

)2L (
q

me

)∑
n (dn−2)Vn

. (7.17)

Gauge invariance also brings more specific information. In particular, since the
gauge potential, Aμ, only appears in LW through its field strength, Fμν (apart from the
sole exception of the AμIμ term), all effective interactions in vertices must contain at
least as many derivatives as powers of Aμ: i.e. Vn = 0 unless dn ≥ fn. Furthermore,
charge-conjugation invariance implies that fn must be even and so Vn = 0 unless
dn ≥ fn ≥ 4. (The exception to this counting would be if the Maxwell term,
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Fig. 7.3 The Feynman graph contributing the leading contribution to photon-photon scattering in the effective
theory for low-energy QED. The vertex represents either of the two dimension-eight interactions discussed
in the text.
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Fig. 7.4 The Feynman graph contributing the vacuum polarization. The circular line denotes a virtual electron loop,
while the wavy lines represent external photon lines.

ZFμνFμν , were not all kept in the unperturbed lagrangian, but instead was partly
written as a perturbative ‘counter-term’ interaction.)

As a result, vertices drawn from this particular EFT satisfy the inequality∑
n(dn − 2)Vn ≥ 2, implying AE (q) vanishes at least like q4 for all E. Furthermore,

the only way to get AE ∝ q4 is if L = 0 and
∑

n(dn − 2)Vn = 2, which can
only happen if Vn = 0 for all dn > 4 but with Vn = 1 for dn = 4 (and so also
fn = 4). There is only one such graph, shown explicitly in Fig. 7.3 with the vertex
corresponding to the effective couplings b1 and b2 of Eq. (7.16). Only A4(q) can be
proportional to q4 while AE (q) is suppressed by at least q6 for all E > 4.

Dominant Low-Energy Behaviour

Power counting shows that the only part of the Wilsonian lagrangian, (7.14), that is
completely unsuppressed by 1/me at low energies is

LW � L4 = −
Z
4

FμνFμν + e Aμ I
μ, (7.18)

so the dimensionless parameter, Z , contains all of the information about the leading
contribution from virtual electrons.

Z may be explicitly computed in QED by evaluating the graph of Fig. 7.4, and
keeping only the part quadratic in external momenta, Aμν (q) ∝ q2ημν − qμqν ,
leading to the expression (see §A.2.4)

Z = 1 − α
3π

[
1
ε
− γk + log

(
m2

e

μ2

)]
, (7.19)

where the integration over loop momentum is regulated using dimensional regu-
larization, with D = 4 − 2ε so D → 4 corresponds to ε → 0. The constant
γk is the quantity encountered in Eq. (3.39), which appears universally with the
divergence, 1/ε, and μ is the usual (arbitrary) mass scale introduced in dimensional
regularization to keep the coupling constant, e, dimensionless in D dimensions10.

The physical interpretation of Z is found by performing the rescaling, Aμ =
Z−1/2 A(R)

μ , required to return the photon kinetic term to its canonical normalization –
i.e. re-normalizing Aμ. This returns the effective theory

10 That is: eD = eμ4−D .



160 Conceptual Issues (Relativistic Systems)

L4 = −
1
4

F (R)
μν F

μν
(R) + ephys A(R)

μ I
μ. (7.20)

where e := Z1/2 ephys and the label ‘(R)’ is dropped from here on to avoid overly
cluttering the notation. The charge ephys appears in (7.20) in precisely the way that the
proton charge would appear in the lagrangian density for classical electromagnetism.
The subscript ‘phys’ emphasizes that this charge can be regarded as a physical
observable whose value can in principle be experimentally determined. For instance,
it could be measured by taking a static macroscopic distribution, I0, of known total
charge (perhaps containing a fixed number of protons, for example), and then using
Maxwell’s equations to predict the resulting flux of electric field at a large (known)
distance. Comparing this calculated flux with the measured flux gives a measurement
of ephys.

This fairly trivial effective theory reveals several things. First, it sharpens the
notion of decoupling. Eq. (7.20) shows that to leading (zeroth) order in 1/me virtual
electrons only affect low-energy photon properties through the value taken by the
physical electric charge, ephys. So it is not true that integrating out the electron
only produces effects at low energies that are suppressed by powers of 1/me; this
only becomes true after a suitable adjustment of low-energy parameters like e [1].
Decoupling only states that there exists a choice of low-energy couplings for which
virtual high-energy physics is suppressed by powers of the high scale.

A second practical conclusion also follows from (7.20). Calculations of electro-
magnetic response to the macroscopic currents, Iμ, do not get corrected at any order
in α without also being suppressed by powers of 1/me. Consequently, the justification
of using Maxwell’s equations to describe low-energy electromagnetic properties is
the neglect of terms of order 1/me, not neglect of powers of α. This is the root of
the explanation of why Rutherford scattering [129] of nonrelativistic particles from a
point charge distribution remains completely uncorrected by quantum corrections
even though it is only usually derived in tree approximation within QED. The
EFT explains the robustness of this result because any such correction must be
additionally suppressed by powers of p/me ∝ v � 1 and so get dropped in the
nonrelativistic limit.11

At low energies, the sole effect of all higher-order corrections in α is just
to renormalize the value of α in terms of which all observables are computed.
As explained at length in §7.2.2, this renormalization actually matters once it is
possible to measure the coupling e also at higher energies, since then the logarithmic
running of couplings with scale captures the potential dependence of observables on
logarithms of large mass ratios (and so encodes a real physical effect).

Scattering of Light by Light

Next examine the case E = 4 (i.e. 2 → 2 photon scattering) in more detail, restricting
for simplicity to a region where Iμ = 0. For E = 4 the power-counting arguments of
the previous paragraphs give

A4(q) ∼ q2

m2
e

(
q

4πme

)2L (
q

me

)∑
n (dn−2)Vn

, (7.21)

11 A possibly apocryphal physics tale attributes to Rutherford great pride that his scattering formula
(derived classically) survived unscathed after the invention of quantum mechanics.
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Fig. 7.5 The leading Feynman graphs in QED which generate the effective four-photon operators in the low-energy
theory. Straight (wavy) lines represent electrons (photons).

with the leading contribution – given by Fig. 7.3 – being of order A4 ∼ q4/m4
e. For

photon-photon scattering the relevant value for q is the centre-of-mass energy Ecm,
and since the cross section – which has dimension (length)2 – is an integral over
final-state momenta of a transition amplitude proportional to |A4 |2, on dimensional
grounds σ ∼ E6

cm/m
8
e for Ecm � me.

The real power of the effective lagrangian comes when computing sub-leading
contributions, as can be done using (7.21) to any order desired in q/me. Naively,
the first subdominant term is suppressed by one more factor of q2/m2

e; however, this
would require either L = 1 and

∑
n(dn − 2)Vn = 2 or L = 0 and

∑
n(dn − 2)Vn = 4.

But
∑

n(dn − 2)Vn = 2 implies that Vn = 0 for dn > 4 and Vn = 1 for
dn = fn = 4, and there is no one-loop graph with four external lines built
only using a single 4-point ( fn = 4) interaction. Similarly, no tree graphs with
only four external lines can be built using vertices involving more than four fields
( fn > 4), so because gauge invariance implies that all vertices satisfy dn ≥ fn
the only possible graph contributing at order q6/m6

e to A4 would be the graph of
Fig. 7.3 built using a single dn = 6 and fn = 4 (six-derivative four-field) vertex.
And so on.

Returning to the leading term, A4 ∝ (q/me)4, the precise values for the couplings
b1 and b2 are determined by matching to the full theory. This involves evaluating
the ‘box’ graph of Fig. 7.5 in the full theory, expanded to lowest nontrivial order in
powers of external momenta, and equating it to the implications of Eq. (7.16) in the
Born approximation (i.e. Fig. 7.3). No counterterms or renormalizations are required
in this calculation because the box graph is ultraviolet finite.

Agreement of the two calculations requires (see Exercise 7.2)

b1 =
4
7

b2 =
α2

90
, (7.22)

so that the effective four-photon interaction becomes [130, 131]

L4γ =
α2

90 m4
e

[
(FμνFμν)2 +

7
4

(Fμν F̃μν)2
]

=
α2

180 m4
e

[
5(FμνFμν)2 − 14 FμνFνλFλρFρμ

]
, (7.23)

and the cross-section for the light-by-light scattering is [132]

dσγγ
dΩ

� 139
4π2

(
α2

90

)2 (
E6

cm

m8
e

) (
3 + cos2 θ

)2
. (7.24)
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Here, Ecm is the energy of either photon in the CM frame, dΩ is the differential
element of solid angle for one of the outgoing photons and θ is the angular position
of this solid-angle element relative to the direction of (either of) the incoming
photons.

Notice that the energy-dependence of (7.24) relies only on the expansion in powers
of Ecm/me, and not also on an expansion of the cross section in powers of α. It is
only when using Eq. (7.22) that perturbation theory in α is first used.

7.2.2 E � me and Large Logs ♣

The discussion now switches gears and regards the QED lagrangian (7.12) as the
first terms in a Wilsonian effective theory rather than being the underlying UV
completion. In this picture the electron is now a light particle and interest is extended
to energies q � me. This regime allows an interpretation of the parameter Z as well
as an examination of the leading effects due to integrating out the muon at energies
me � q � Mμ.

This section starts by exploring the implications of Z in this higher-energy regime,
providing a concrete illustration of how matching can be done including loops, and
so how to deal with both UV divergences and renormalization. This section shows
how to perform these steps while both preserving the practical utility of dimensional
regularization and keeping manifest how heavy particles decouple from low-energy
observations.

To see the relevance of Z to large logarithms, it is instructive to contrast two useful
renormalization schemes. The first is the one defined above, in which all of Z is
completely absorbed into the fields and couplings:

Aμ = Z−1/2
phys Aphys

μ , and e = Z1/2
phys ephys,

with Zphys := Z � 1 − α
3π

[
1
ε
− γk + log

(
m2

e

μ2

)]
. (7.25)

The second renormalization scheme is the scheme of choice for most practical
calculations. Called the ‘modified minimal subtraction’ (or MS) scheme,12 the
renormalization is defined to subtract only the term 1/ε − γk in Z . That is:

Aμ = Z−1/2
MS

AMS
μ , and e = Z1/2

MS
eMS ,

with ZMS := 1 − α
3π

[
1
ε
− γk
]

. (7.26)

In terms of this scheme the effective lagrangian becomes

Leff = −
1
4

[
1 − α

3π
log

(
m2

e

μ2

)]
FMS
μν F

μν

MS
− eMS AMS

μ Iμ, (7.27)

as opposed to (7.20), where α can be taken to be either e2
MS
/4π or e2

phys/4π since

the difference is higher order in α. To see this explicitly, notice that αMS = e2
MS
/4π

is related to αphys = e2
phys/4π by

12 The awkward name arises historically because it came after the earlier ‘minimal subtraction’ (or MS)
scheme, which subtracts only the pole: 1/ε.
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αMS =

(
Zphys

ZMS

)
αphys �

[
1 − α

3π
log

(
m2

e

μ2

)]
αphys. (7.28)

No poles in 1/ε remain in this expression because both couplings αMS and αphys are
renormalized quantities.

A key observation states that because αphys is a physical quantity, it cannot depend
on the arbitrary scale μ. As a result, this last equation implies a μ-dependence for
αMS . It is only for μ = me that the two couplings agree:

αMS (μ = me) = αphys. (7.29)

There proves to be profit in re-expressing the μ dependence of αMS in Eq. (7.28)
as a differential Callan–Symanzik [139, 140] relation,

μ2 dαMS

dμ2 = +
α2

MS

3π
. (7.30)

This is useful because (7.30) and (7.28) have different domains of validity. While the
differential expression (7.30) requires only αMS � 1 to be valid, Eq. (7.28) requires
the stronger condition αMS log(m2

e/μ
2) � 1. One way to think of why there is an

extended domain for (7.30) is that for any μ the evolution of the coupling can be
computed for a small range of scales around μ = μ0 using the analog of (7.28)

αMS (μ) �
⎡⎢⎢⎢⎢⎣1 − α

3π
log ��

μ2
0

μ2
��
⎤⎥⎥⎥⎥⎦ αMS (μ0). (7.31)

Although (7.31) is only valid for μ close enough to μ0 to ensure |α log(μ2/μ2
0) | � 1,

it is also true that μ0 is arbitrary. So (7.30) can be derived on a sequence of overlap-
ping domains centred about different values of μ0, and what is important is that
(7.30) is then valid on the union of all these overlapping domains [40, 133, 134].13

Integrating Eq. (7.30) allows an inference of the μ-dependence of αMS when
αMS � 1 but αMS log(m2

e/μ
2) is not small:

1
αMS (μ)

=
1

αMS (μ0)
− 1

3π
log ��μ

2

μ2
0

�� = 1
αphys

− 1
3π

log

(
μ2

m2
e

)
. (7.32)

Called the ‘renormalization-group’ improved running, Eq. (7.32) is accurate to all
orders in (α/3π) log(μ2/m2

e), so long as (α/3π) � 1. Notice that Eq. (7.30)
integrates so simply only because MS renormalization is a mass-independent
scheme. That is, μ2dαMS/dμ

2 depends only on αMS and not also on ratios of mass
scales like me/μ. (‘On shell’ renormalizations, such as where e is defined in terms of
the value of a scattering amplitude at a specific energy threshold, furnish examples
of schemes that are not mass-independent.)

Eq. (7.32) is ultimately useful because it provides a simple way to track how
some large logarithms appear in physical observables. For instance, consider the
cross section, σ, for the scattering of electrons with centre-of-mass energy E, plus
an indeterminate number of soft photons, with energies up to Eγ = f E with
1 > f � me/E. On dimensional grounds one has

13 This argument is met again in §16.4.1 and §16.4.2 when computing late-time evolution in perturbation
theory.
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σ(E, me, αphys) =
1

E2 F
(me

E
, αphys, f , θk

)
, (7.33)

where F is some calculable function and the θk denote any number of dimensionless
quantities (like angles) on which the observable depends.

Now comes the main point. Interest is often in the regime E � me, so it is
tempting to Taylor expand σ in powers of me/E. Unfortunately, the function F
proves to be singular when me/E → 0 due to the appearance of large logarithms
of the form log(E/me) that arise from infrared divergences that would be present in
the limit me → 0.

These divergences are not the usual ‘Bloch-Nordsieck’ infrared divergences
[52, 53, 135–138] of QED that would arise if one were to take the unphysical
limit f → 0 (corresponding to not summing over the production of soft photons).
Instead, the large logarithms of interest only appear after performing the ‘on-shell’
subtractions that renormalize the physical coupling ephys (see, for example, the
singularity as m → 0 of the vacuum polarization computed in (A.53)). What is
important is this: these singularities would not appear if F were instead to be
expressed in terms of an ‘off-shell’ quantity like αMS . This makes it convenient
to compute σ using MS renormalization, and then use the absence of me → 0
singularities to Taylor expand the result in powers of me/E, leading to

σ(E, me, αphys) =
1

E2

[
F0

(
E
μ

, αMS (μ), f , θk
)
+ O(me/E)

]
, (7.34)

where μ is the arbitrary scale appearing in dimensional regularization.
What is important is that physical quantities like σ cannot depend on μ. Conse-

quently, any explicit μ-dependence of F0 must precisely cancel the μ-dependence
appearing implicitly through αMS (μ). This allows the singular behaviour in σ to be
identified – at all orders in α log(E2/m2

e) – by using the convenient choice μ = E in
(7.34). Making this choice and using Eq. (7.32) with Eq. (7.29) then gives

σ(E, me, αphys) =
1

E2

[
F0

(
1, αMS (E), f , θk

)
+ O(me/E)

]
, (7.35)

where

αMS (E) =
αphys

1 − 1
3π αphys log

(
E2/m2

e

) . (7.36)

Once the dependence of F0 on αMS is known in a simple (say, high-energy) regime,
its dependence on α log(E/me) is determined up to subdominant order α2 log(E/me)
effects.

7.2.3 Muons and the Decoupling Subtraction Scheme ♠

Continuing to regard the original photon-electron theory as an EFT, it is useful now
to be more explicit about what the UV theory is: the electrodynamics of photons,
electrons and muons, with the photon-electron system obtained by integrating out
the muons. The (renormalizable part of the) underlying UV theory then is

L = − 1
4

FμνFμν + eAμI
μ − ψ(

/
D + me)ψ − χ(

/
D + Mμ)χ, (7.37)
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where χ is the Dirac spinor representing the muon and Mμ is the muon mass. For
both fields the covariant derivative is as appropriate for a field with charge q = −e:
Dμ = ∂μ + ieAμ.

Integrating out the muon leads to a variety of effective interactions for the Wilson
action below the muon mass. Those interactions involving only electromagnetic
fields are identical to the ones obtained above when integrating out the electron.
The key difference with the muon is that their effective couplings are suppressed by
powers of Mμ rather than me. For instance, a muon in the graph of Fig. 7.5 generates
the dimension-eight effective photon self-interactions of (7.16)

LW ⊃
b1

M4
μ

(FμνFμν)2 +
b2

M4
μ

(Fμν F̃μν)2 + · · · , (7.38)

with b1 and b2 again as in (7.22).
These interactions are generally ignored when discussing photon-photon

scattering because their 1/M4
μ suppression makes them much smaller at low

energies than are the corresponding electron results. This is a general feature: non-
renormalizable effective couplings generically arise as a series in powers of inverse
masses, corresponding to the contribution from each threshold as heavy particles
are successively integrated out. All other things being equal, it is the smallest mass
that usually dominates the couplings of higher-dimensional interactions at low
energies.

Integrating out the muon also generates a new class of non-renormalizable
effective interactions not present in (7.16), involving the electron field ψ. Such
terms get generated at one-loop initially as redundant interactions like (compare with
Eq. (A.53) of §A.2.4)

LW ⊃
a2

4M2
μ

Fμν Fμν with a2 =
α

15π
, (7.39)

once the lowest-order Maxwell equation is used: ∂μFμν+eIμ−ieψγμψ = 0, leading
to the contact interaction (c.f. Eq. (7.15))

LW ⊃ −
a2

2M2
μ

e2
(
Iμ − iψγμψ

) (
Iμ − iψγμψ

)
= − 2α2

15M2
μ

e2
(
Iμ − iψγμψ

) (
Iμ − iψγμψ

)
. (7.40)

The terms completely unsuppressed by 1/Mμ are precisely the terms found in
(7.12) and (7.13), though with a non-canonical Maxwell action of the form of (7.18)
with

Z = 1 − α
3π

⎡⎢⎢⎢⎢⎣1ε − γk + log ��
M2
μ

μ2
��
⎤⎥⎥⎥⎥⎦ . (7.41)

Once canonically normalized this is precisely the QED lagrangian, our starting point
at the beginning of this section. In this observation lies the roots of an explanation
of why QED is such a successful description of low-energy electron-photon interac-
tions. Because QED contains the most general renormalizable couplings possible for
a spin-half charged particle and a massless spin-one boson it is guaranteed to emerge
as the dominant part of the Wilson action at sufficiently low energies.
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This exercise of integrating out the muon to construct a Wilsonian EFT below
the muon mass also shows how to efficiently track large logarithms by defining
a renormalization scheme (decoupling subtraction) that keeps the simplicity of
minimal subtraction without giving up on having heavy fields decouple from the
running of low-energy couplings.

To see how this works, it is useful first to ask how couplings run in the full
UV theory including both electrons and muons. Following the same steps as in the
previous section leads to the following relation between couplings in the MS and
physical renormalization schemes

αMS =
⎧⎪⎨⎪⎩1 − α

3π

⎡⎢⎢⎢⎢⎣log

(
m2

e

μ2

)
+ log ��

M2
μ

μ2
��
⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ αphys. (7.42)

This relation includes a contribution from both electron and muon loops, and replaces
Eq. (7.28) of the purely electron-photon theory. The physical coupling, αphys (defined
by a canonically normalized Maxwell action once both electrons and muons are
integrated out), is now given by αMS (μ =

√
meMμ).

The corresponding RG equation for the running of αMS becomes

μ2 dαMS

dμ2 = +
2α2

3π
, (7.43)

with solution

1
αMS (μ)

=
1

αMS (μ0)
− 2

3π
log ��μ

2

μ2
0

�� . (7.44)

The coupling runs twice as fast as in (7.30) because both electrons and muons
contribute.

Eqs. (7.42) through (7.44) reveal an inconvenience of the MS renormalization
scheme: its mass-independence ensures that both the electron and the muon con-
tribute equally to the running of αMS at all scales. This is true in particular for
μ � Mμ, where the physical influence of the muon should decouple.

Of course, the physical effects of the muon indeed do decouple at scales well below
the muon mass, with ‘decoupling’ meaning the existence of a choice of α for which
all muonic effects are suppressed by powers of 1/Mμ. The presence in (7.44) of too-
large running below the muon mass simply means that the MS coupling is not the
one that makes decoupling manifest. Although muon decoupling is true for physical
predictions, it is not manifest at intermediate steps when using the MS scheme.

The Wilsonian EFT suggests how to define a scheme that keeps the decoupling
manifest without giving up the practical benefits of a mass-independent renormal-
ization scheme. This is done by working with minimal subtraction, but only when
running couplings in an energy range for which there are no particle masses. To
track how couplings behave as energies pass below each particle mass, the trick is to
switch to a new effective theory defined by integrating out this particle explicitly.
The couplings in the new low-energy theory are then found by matching to the
couplings defined in the underlying theory above the relevant mass scale. (This can
be done as in §3.2.2 by computing a simple low-energy observable in both theories
and choosing couplings in the low-energy theory so that they give the same result
as does the high-energy theory for the observable in question.) The scheme defined
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by doing so through all particle thresholds is called the decoupling subtraction (DS)
renormalization scheme.

For instance, for the electrodynamics of electrons and muons, the coupling
constant as defined in the MS and DS schemes is identical at energies above the
muon mass: μ > Mμ. For me < μ < Mμ the muon is integrated out to construct
an effective theory involving only photons and electrons (as above), consisting of
the usual QED lagrangian plus an infinite number of higher-dimension effective
interactions encoding the low-energy implications of virtual muons. Within this
effective lagrangian the electromagnetic coupling constant is again defined using
minimal subtraction, but because there is no muon within this effective theory only
the electron contributes to its running. This can be repeated as necessary to include
the effects of any particles at still-higher energies.

Quantitatively, to one loop the RG equation for the DS scheme for the theory of
electrons, muons and photons then becomes:

μ2 dαDS

dμ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α2/3π if μ > Mμ

α2/3π if Mμ > μ > me ,
0 if me > μ

(7.45)

with the boundary conditions at μ = Mμ fixed by matching between the full and
effective theories, and αDS (μ = me) = αphys at μ = me. At leading nontrivial order
matching amounts to continuity of α, so

1
αDS (E)

=
1

αphys
− 1

3π
log

(
E2

m2
e

)
for me < E < Mμ, (7.46)

=
1

αphys
− 1

3π
log ��

M2
μ

m2
e

�� − 2
3π

log �� E2

M2
μ

�� for Mμ < E.

Using this last result in expressions for physical processes efficiently displays the
large logarithms discussed in earlier sections, both for me � E � Mμ and for E �
Mμ. It has the virtue of running the coupling with the ease of a mass-independent
scheme (for which equations like (7.45) are relatively easy to integrate), but with
each particle explicitly decoupling from the running as the scale μ drops through the
corresponding particle mass.

7.2.4 Gauge/Goldstone Equivalence Theorems

The Standard Model contains a myriad of other hierarchies of scale and so provides
a great many other instructive applications of EFT techniques. This next example
provides a simple illustration of why the study of Goldstone boson properties is not
limited in its practical utility to cases where there are accidental global symmetries.

Goldstone bosons are also useful when studying properties of gauge bosons in a
regime where the energies of interest satisfy MA � E � 4πv, where v is the ‘decay
constant’ (i.e. the scale at which the gauge symmetry is spontaneously broken) and
MA � gv is the gauge boson mass (with g being the gauge coupling). This can be a
significant energy window when the gauge coupling is weak: g � 4π. For instance,
for electroweak gauge bosons MA ∼ 80 − 90 GeV while 4πv ∼ 3 TeV.

When at rest, a gauge boson’s three spin states are all alike since they are
related to one another by a symmetry (rotations). This need no longer be true once
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E � MA, however, since the gauge bosons are then relativistic. In particular, although
the assumption of small g ensures the couplings of transverse spin states to other
particles is quite weak, the same need not be true of the gauge bosons’ longitudinal
spin states. After all, these started life as scalar fields and so can have couplings
with other fields (or themselves) that remain unsuppressed14 as g → 0. When these
couplings dominate, the dynamics of the gauge field is well approximated by the
physics of its purely longitudinal mode and so is captured by the scalar interactions of
the Goldstone bosons, which can be formulated quite generally whenever E � 4πv.

Probably the simplest way to see how this works is to use an explicit example.
For this purpose consider the Standard model, but in an alternative world,15 where
the Higgs boson is heavy enough to allow the decays h → W+W− and h → Z Z .
The relevant interaction terms (to leading order, in unitary gauge) in the Standard
Model are

LhVV = −
h
v

(
2M2

WW ∗
μW μ + M2

Z ZμZμ
)

. (7.47)

This leads to the leading-order matrix element for h(k) → W+(q)W−(p),

A[H (k) → W+(q)W−(p)] =
2M2

W

v
ε∗μ (q, ζ)ε∗μ (p, σ), (7.48)

where εμ denotes the spin-one polarization vector. Squaring and summing over the
final-state spins using ∑

σ=0,±1

εμ (p, σ)ε∗ν (p, σ) = ημν +
pμpν

M2
W

, (7.49)

leads to the unpolarized differential decay rate

dΓ =

(
M2

W

2πv

)2 [
2 +

(p · q)2

M4
W

]
δ4(p+q−k)

d3p d3q

2k0p0q0 . (7.50)

For the present purposes, what is important in this last expression is the square
bracket, in which the factor 2 comes from the contribution of the two transverse
polarization states of the W meson while the (p · q)2 term gives the momentum-
dependent contribution of the longitudinal spin state. The dependence on the gauge
coupling is buried in the pre-factor, but can be read off using MW =

1
2 gv so

that M2
W/(2πv) = g2v/(8π), showing how the decay into transverse polarizations

vanishes when g → 0 with v fixed. But the decay to longitudinal photon polarizations
does not vanish in this limit, since for this the MW factors cancel, leaving a result
proportional to (p · q)2/(2πv)2. Rather than being proportional to g2 this is instead
suppressed by the derivative coupling characteristic of a Goldstone boson.

Performing the final-state integrations gives the standard expression for the total
decay rate in the Higgs rest frame

Γ(h → W+W−) =
m3

H

16πv2

⎡⎢⎢⎢⎢⎣1−4
(

M2
W

m2
H

)
+12

(
M2

W

m2
H

)2⎤⎥⎥⎥⎥⎦
√

1−4M2
W

m2
H

≈
m3

H

16πv2 for MW � mH, (7.51)

14 An example of this was encountered in §4.2.3, which showed that the most dangerous couplings in the
low-energy expansion came from the longitudinal spin-one spin states.

15 The threshold for W decays is 160 GeV and for decays into Z is 180 GeV, whereas the Higgs mass
was recently measured to be 125 GeV.
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revealing Γ/mH to be controlled in the limit MW � mH by m2
H/v

2 rather than M2
W/v

2.
This makes it sensitive to the Higgs self-coupling, m2

H/(16πv2) = λ/8π – with λ
defined by the Standard Model Higgs potential, c.f. Eq. (9.5) below – rather than
the gauge coupling. This is as expected given that the longitudinal gauge coupling
started life as part of the Higgs doublet,Φ, and indeed the leading part of (7.51) could
be written down directly using only the interactions coming from the scalar sector
by computing the rate for decay into a pair of Goldstone bosons. It is this ability
to compute the high-energy interactions of longitudinally polarized gauge bosons
in terms of the scalars that they’ve eaten that is known as the ‘gauge-Goldstone
equivalence theorem’ [69].

7.3 Photons, Gravitons and Neutrinos

Photons and gravitons (and possibly some16 neutrinos) may be the only particles
that are massless, or very nearly so. They would be the only degrees of freedom to
arise at extremely low energies within the vacuum sector17 (and possibly within other
sectors) of the Standard Model.

This makes the study of very-low-energy physics largely an effective theory
of gravitons, photons and neutrinos. It is perhaps no surprise in this context
that much of macroscopic physics boils down to electromagnetic or gravitational
interactions. Neutrinos can also have practical low-energy implications, because
their small masses and weak interactions give them a unique role within very dense
environments, such as those found in astrophysics and cosmology.

The remainder of this section examines a few of the features of this very-low-
energy world, with two goals in mind. One goal is to illustrate how much of what we
know about these particles follows very naturally from general EFT considerations.
The second goal is to use this EFT to illustrate a conceptual point about how in
some circumstances the mass scales suppressing specific effective interactions can
be surprisingly different from naive expectations.

7.3.1 Renormalizable Interactions ♦

The goal is to describe the effective theory below the electron mass, involving
only the known particles light enough to be present in this energy range: gravitons,
photons and neutrinos. These particles are, respectively, represented by a symmetric-
tensor field, hμν (x) = hνμ (x), for the graviton (see §C.3.4), a vector potential, Aμ (x),
for the photon (see §C.3.3) and N spinor fields, νa (x), with a = 1, . . . , N running
over all sufficiently light neutrino species. As described in §A.2.3, without loss of
generality the fields νa can be taken to be Majorana spinors.

16 At most, one neutrino can be massless, to the best present knowledge, if there are only three neutrino
species light enough to appear in neutrino-oscillation experiments.

17 Of more practical interest for the world around us is the low-energy theory also including massive (but
long-lived and slowly moving) macroscopic objects like planets, or the Sun or everyday macroscopic
objects, depending on the application. These are included by examining sectors of the theory that carry
a conserved charge, like net baryon number. More about this in Chapters 8, 12, 13 and Part IV.
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As ever, the dominant behaviour at low-energies is described by the renormalizable
part of the EFT, since this is unsuppressed by any powers of heavier masses. This
lagrangian must be built from the above fields and (in the vacuum sector) must
be invariant under Lorentz transformations, spacetime translations and the gauge
symmetries appropriate for massless spin-one particles,

Aμ (x) → Aμ (x) + ∂μζ(x), (7.52)

and massless spin-two particles,

hμν (x) → hμν (x) + ∂μζν (x) + ∂νζμ (x). (7.53)

Here, ζ(x) and ζμ (x) are, respectively, arbitrary scalar and vector functions. The
neutrino fields are deliberately not assigned a transformation under (7.52) because
this is what it means for them to be electrically neutral.

With these fields and symmetries, the most general renormalizable lagrangian
possible is simply the free lagrangian, L = L2 + L1 + L1/2, where Ls describes the
free lagrangian for the spin-s field. Explicitly, the Dirac action for the neutrinos is18

L1/2 = −ν̄a
( /
∂ + ma

)
νa (7.54)

where there is an implied sum over neutrino type ‘a’ and ma is the mass for each
type. The spin-one term is the Maxwell action

L1 = −
1
4

FμνFμν = −1
2
∂μAν (∂μAν − ∂νAμ), (7.55)

and the spin-two term is

L2 = hμν
(
Rμν −

1
2
ημνη

αβRαβ
)

= −1
2

[
∂αhμν∂αhμν − 2 ∂αhαμ∂βhβμ + 2 ∂αhαμ∂

μh
β
β − ∂

μhαα∂μh
β
β

]
, (7.56)

which uses integrations by parts, and the definition

Rμν = Rνμ :=
1
2
ηαβ

(
∂α∂β hμν − ∂μ∂α hβν − ∂ν∂α hβμ + ∂μ∂ν hαβ

)
. (7.57)

Eq. (7.56) is invariant – up to a total derivative – under (7.53) because Rμν is invariant

and also satisfies the identity ∂μ
(
Rμν − 1

2ημνη
αβRαβ

)
= 0.

There is an interaction linear in Aμ like Lint ∝ Aμ Jμ that is possible in principle,
where Jμ is built from the other fields, but invariance under (7.52) requires ∂μ Jμ = 0.
Such a current is not possible for Majorana neutrinos, but Jμ = ν̄aγμνa is conserved
if νa is a complex (Dirac) field, since Jμ is then the conserved current associated with
rotating νa by a phase. (The same rotation is inconsistent with the reality condition
for Majorana neutrinos.) But even for complex neutrinos, identifying phase rotations
with the transformation (7.52) amounts to giving neutrinos an electric charge, which
they do not have. A similar interaction like hμνTμν is also ruled out on similar
grounds since (7.53) requires ∂μTμν = 0, and the only conserved symmetric tensor
built from neutrinos has dimension 4, making the coupling non-renormalizable.

18 For the present vacuum-sector purposes it suffices to work in an expansion around flat Minkowski
space.
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The absence of possible renormalizable interactions partly explains why gravitons,
photons and neutrinos are found to be so weakly interacting. At low energies there is
no low-energy interaction available for them to have.

7.3.2 Strength of Non-renormalizable Interactions ♦

Since all interactions for these particles must be non-renormalizable, their strength
is controlled by the size of the mass scale appearing in the effective couplings. The
next question is what scale this should be.

For gravitons, photons and neutrinos it turns out that these scales are extremely
different. Earlier sections show that photons experience interactions, like those of
(7.16), suppressed by coefficients of order α2/m4

e and α2/M4
μ (and similar terms

involving the masses of all possible charged particles whose integrating out might
generate the loop). The appearance of me � 5 × 10−4 GeV in the dominant term
seems reasonable because this is the mass of the lightest such particle to be integrated
out.

Neutrino interactions turn out generically to be much weaker than this since they
are suppressed by powers of the Fermi constant, GF, whose size is of order α/M2

W ,
where MW � 80 GeV is the mass of the W boson. Gravitational interactions are even
weaker, since they are suppressed by powers of the Planck mass:19 Mp � 2 × 1018

GeV. The Planck mass is related to Newton’s constant of universal gravitation, GN,
by 8πGN = 1/M2

p in fundamental units.20

In the same way that G−1/2
F ∼ 300 GeV and MW ∼ 80 GeV are not exactly the same

size (due to factors of α), Mp = (8πGN)−1/2 need not be the precise scale where new
degrees of freedom enter that change how gravity behaves at high energies. It may
instead be that GN � g2/M2

g for some dimensionless coupling g and a new physical
scale21 Mg. But to the extent that g <∼ 1 in this new sector then Mg <∼ Mp, so the
Planck mass is an upper bound for the scale where unknown physics is likely to
intervene.

This hierarchy of scales illustrates an important point about effective field theories,
and the low-energy limit of complicated systems. Earlier sections have argued that
the generic size to be expected for non-renormalizable effective couplings is set by
the mass of the lightest particle whose removal generates the EFT of interest. If
this is so, why are low-energy graviton and neutrino interactions not swamped by
contributions suppressed only by powers of me?

The key word in the previous paragraph’s summary of earlier sections is ‘generic’.
All other things being equal, it is true that the size of a generic interaction in the EFT
below the electron mass is set by the appropriate power of me (rather than a heavier
mass, like Mμ or MW, say). But in the case of neutrinos, we know that all other

19 On one hand, the observation that gravity is so weak explains why astrophysical objects are so large
(they must be large in order to be massive enough for gravity to compete with other interactions). On
the other hand, it is an unsolved problem why Mp should be so much larger than other known scales
(more about this in Chapter 9.).

20 Strictly speaking, the factor of 8π makes this the ‘reduced’ Planck mass, as opposed to simply defining
GN = 1/M2

p . The reduced Planck mass is more widely used by those toiling away in gravity sweatshops
worldwide.

21 In string theory, for example, Mg would be the mass of the lightest new excitation mode of the
fundamental string (called the string scale, Ms ), as described in Chapter 10.
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things are not equal: the only renormalizable couplings involving neutrinos in the
Standard Model turn out to be its couplings to the W boson – as given in (7.5), for
example – and a similar coupling to the electrically neutral Z boson (whose mass
MZ � 90 GeV is not that different from MW � 80 GeV). Once the W and Z particles
are integrated out, the neutrino only experiences non-renormalizable couplings,
the largest of which are those of the weak interactions (whose strength is set by
GF ∼ α/M2

W ).
The suppression of neutrino interactions by factors of GF then continues to lower

and lower energies as lighter and lighter particles (such as the electron and muon)
are integrated out. Although these lighter particles can generate non-renormalizable
interactions for the photon (to which they have renormalizable couplings), they
cannot change the fact that all neutrino interactions are suppressed by at least one
power of GF.

This understanding of the hierarchy between low-energy neutrino and photon
interactions suggests a similar interpretation for the even greater suppression of
graviton interactions. The hierarchy of interactions would make sense if the graviton
also were to experience renormalizable interactions with other particles, but only at
a scale Mg much larger than those now experimentally accessible (see Fig. 7.6). If
this were true then the absence of renormalizable interactions involving gravitons

Fig. 7.6 Schematic of the energy scales and couplings responsible for the hierarchy of interactions among
gravitons, photons and neutrinos. Here the ovals represent the collection of particles at a given energy that
experience renormalizable interactions with one another. Three such circles are drawn, for energies at the
electron mass, me, the W-boson mass, MW, and a hypothetical scale, Mg, for whatever theory (perhaps
string theory) describes gravity at very high energies.
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at energies below Mg would mean all of their low-energy interactions must remain
suppressed by at least one power of g2/M2

g ∼ 1/M2
p , where g is the strength of the

high-energy renormalizable couplings. This suppression would not be changed by the
process of integrating out particles at still-lower energies. From this point of view it
is perhaps less surprising that the low-energy field with the weakest couplings is also
the one for which it is impossible to write down renormalizable interactions.

7.3.3 Neutrino-Photon Interactions ♣

Though it is an attractive (and basically correct) perspective, the above argument
also turns out to be a bit too glib. This is because it comes with an important caveat:
although it is true that some of the dimensions of low-energy effective neutrino
couplings must be given by GF, it is not true that all of them must come from powers
of 1/MW. That is, an effective neutrino coupling of dimension (mass)−n need not be
as small as M−n

W ; it could instead arise with size M−2
W m2−n for m � MW. The same is

also true for gravitons: a higher-dimension effective graviton coupling of dimension
(mass)−n can be order M−2

p m2−n for m � Mp rather than M−n
p (examples of this for

gravity are described in §10).
This section provides an explicit example of this phenomenon using the effective

interactions of photons and neutrinos within the EFT below the electron mass.
The example in question has operator dimension greater than six and so the effective
coupling has dimension (mass)−2(n+1) with n > 0. Although two powers must
come from GF, the remaining scales are provided by the electron mass, leading to
a coupling of order GF/m2n

e rather than the much smaller naive estimate, Gn+1
F .

The fact that low-energy neutrino interactions can be suppressed by powers of
me rather than just MW can lead to some surprises.22 In particular, it turns out that
2 → 2 processes, like νν → γγ and νγ → νγ [141, 142], can be smaller than
reactions involving more photons, like νν → 3γ and νγ → νγγ or νν → 5γ [143,
144], even at the keV – MeV energies relevant to astrophysical applications. This
is counter-intuitive because each additional photon costs a power of electromagnetic
coupling and so, all other things being equal, the likelihood of coupling to three
photons should be smaller than the likelihood of coupling just to two. Instead, the
cross section for two-photon processes at low centre-of-mass energy E turns out to
be of order σ(2 → 2) ∼ G4

F E6, while those for three-photon processes instead behave
as σ(2 → 3) ∼ (α/4π)3 G2

F E10/m8
e. At energies E ∼ 10 keV the factor (GFE2)2 �

10−30 makes the 2 → 2 processes much smaller than the 2 → 3 processes, which are
suppressed only by (α/4π)3 ∼ 10−10 and (E/me)8 ∼ 10−14.

EFT at the Weak Scale

To understand this low-energy dependence within the EFT first calculate the size of
neutrino interactions just below the W -boson mass. At tree level the result is as found
in §7.1, with both W and Z exchange combining to give the following photon and
neutrino interactions

22 These are conceptual surprises rather than practical ones; the cross sections involved are too small to
be relevant in any known observable process.
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Fig. 7.7 Feynman graphs giving neutrino-photon interactions in the Standard Model. Graph (a) (left panel):
contributions that can be regarded as low-energy renormalizations of the tree-level weak interaction.
Graph (b) (middle panel): contributions generating higher-dimension interactions when integrating out
the W. Graph (c) (right panel): contributions obtained when integrating out the Z. Although not labelled
explicitly, quarks can also contribute to the loop in panel (c). Similar graphs with more photon legs
contribute to neutrino/n-photon interactions.

Ltree
wk (μ = MW) = e Aμ J

μ
em +

GF√
2

(
iνaγμγLν

b
)

L
μ
ab
+O

(
1

M4
W

)
, (7.58)

where there is an implied sum over the neutrino flavour indices, a, b, (and over
charged-lepton indices i, j = e, μ, τ in later expressions). The charged-lepton
dependence in the above lagrangian is given by

L
μ
ab
= i�

i
γμ

(
vab ij + aab ijγ5

)
� j , (7.59)

J
μ
em = −i�

i
γμ�i .

where the effective couplings, vab ij and aab ij , as found from tree-level matching are
given by:

vab ij (μ = MW) = U∗
ja Uib + δab δi j

(
− 1

2
+ 2s2

w

)
(7.60)

and aab ij (μ = MW) = U∗
ja Uib −

1
2
δab δi j ,

where sw = sin θw is the sine of the weak mixing angle and Uia denotes the PMNS
matrix defined in §7.1.1. The terms involving Uia in (7.60) arise due to W -boson
exchange, while the others come from Z-boson exchange.

No direct couplings involving just neutrinos and photons arise in these tree-level
effective interactions. Direct couplings do arise once loops are included, of which the
leading graphs of interest for neutrino-photon scattering within the Standard Model
are shown in Fig. 7.7. The next few paragraphs summarize their size, working in the
limit of vanishing neutrino mass since the known neutrino masses cannot be larger
than ∼ 1 eV.

In the massless limit the graphs of Fig. 7.7 preserve neutrino helicity and so can
only generate effective interactions for which an odd number of Dirac matrices
appear between ν̄a and νb . Consider first panels (a) and (b) of Fig. 7.7. The lowest-
dimension effective interactions with this Dirac-matrix structure and involving one
or two electromagnetic fields (which must appear through the field strength Fμν on
grounds of gauge invariance, (7.52)) are

Leff
ν2γ = C

(1)
ab

Mab
μν Fμν + C (2)

ab
Mab
μν FμλFλ

ν , (7.61)

where C (1)
ab

and C (2)
ab

are dimensionless coefficients and

Mab
μν := iνaγμγL∂νν

b − i∂νν
aγμγLν

b. (7.62)
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The derivatives in (7.62) must act antisymmetrically because the symmetric
combination is a total derivative, ∂ν (νaγμγLνb), for which both terms in (7.61) are
redundant operators. Their redundancy can be seen by integrating by parts and using
the Maxwell equations, ∂μFμν = 0 and ∂μFνλ + ∂νFλμ + ∂λFμν = 0, together with/
∂νa = 0 – which also implies that ∂μ (ν̄aγμγLνb) = 0. The left-handed projection
matrix, γL =

1
2 (1 + γ5), appears in (7.62) because only left-handed fermions

couple to the W boson in the Standard Model. The necessity of having the neutrino
differentiated in this interaction – and the resulting suppression of low-energy
neutrino-photon scattering – follows from neutrino helicity conservation for the first
term, while for the second term it follows from Yang’s theorem [145], which prohibits
coupling two photons to a state of angular momentum one.

Chirality conservation implies that the leading contributions of panel (c) of
Fig. 7.7 must also take the form of Eqs. (7.61) and (7.62), and as a result this
graph does not contribute at all to the coefficients C (1)

ab
and C (2)

ab
. This is because

the neutrino fields in (c) necessarily arise in the neutral-current combination, Jab
μ =

iν̄aγμ (A + Bγ5)νb found in the tree level interactions, (7.58) and (7.59). But all
effective operators at this dimension built from this current and its derivative plus one
or two electromagnetic field strengths are redundant by the same arguments made in
the previous paragraph.

In the limit where the mass of the charged lepton in the loop can be neglected
(as appropriate for its UV contribution), the two-photon coefficient obtained by
matching to the EFT using the graphs given above turns out to be

C (2)
ab

(μ) =
2
√

2 αGF

πM2
W

[
1 +

4
3

log

(
M2

W

μ2

)]
δab , (7.63)

which uses the unitarity of the PMNS matrix:
∑

i U∗
iaUib = δab . This dimension-six

interaction arises at order α2/M4
W when the W boson is integrated out, as naively

expected.

Integrating out the Charged Leptons

To identify where factors of lighter masses like 1/me or 1/Mμ might enter into
neutrino-photon scattering, consider integrating out these lighter fermions one by
one, eventually obtaining the EFT below the electron mass. The corresponding
graphs required to do so within the EFT below the W -boson mass are shown in
Fig. 7.8. The sum of the graphs in Fig. 7.8 should agree with those of Fig. 7.7 to the
first few orders in 1/M2

W , and the matching process chooses the coefficients of the
effective interactions in the EFT below MW to make this so.

In particular, the effective interactions shown as fat dots in panels (b) and (c) of
Fig. 7.8 represent the leading direct neutrino-photon interactions described in (7.61)
and (7.62), above. In particular, these come already suppressed by four powers of
1/MW in the two-photon case due to the matching result (7.63) when integrating out
the W boson. By contrast, the effective interaction appearing in the graph of panel
(a) is simply the tree-level Fermi interaction, and so it is this graph that gives the
contribution to neutrino-photon scattering suppressed by only one power of 1/M2

W .
What is important is that this graph – i.e. panel (a) of Fig. 7.8, with one or

two external photons – does not contribute at all to the coefficients C (1)
ab

or C (2)
ab

of (7.61). It cannot do so because the neutrinos in this graph appear only through
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Fig. 7.8 Feynman graphs giving neutrino/single-photon interactions within the EFT below MW. Graph (a) (left
panel): loop corrections to the tree-level Fermi interaction. Graph (b) (middle panel): loop corrections to
tree-level higher-dimension effective four-fermion/one-photon interactions. Graph (c) (right panel):
loop-generated higher-dimension effective two-fermion/one-photon interactions. Similar graphs with
more photon legs describe multiple-photon interactions.

their contribution to the Fermi current Jab
μ and its derivative, much as was true for

panel (c) of Fig. 7.7. Consequently, all its potential contributions to effective ν̄∂νF
and ν̄∂νF2 interactions are redundant. As a result, the dominant contribution to low-
energy 2 → 2 photon-neutrino scattering amplitudes remains suppressed by four
powers of MW, even after integrating out the charged leptons.

The next step is to identify what the dominant low-energy contribution is arising
from panel (a) of Fig. 7.8 (and its counterparts with more external photons) since this
can be suppressed only by two powers of 1/MW. To identify terms where the rest of
the suppression comes from powers of 1/me, the focus is on when it is electrons
that circulate within the loop. This contribution to the effective neutrino-photon
interaction lagrangian can be obtained by evaluating

Leff
νnγ (μ = me) =

GF√
2

(
iνaγμγLνb

) (
vabee

〈
ψ̄ γμ ψ

〉
+ aabee

〈
ψ̄ γμγ5ψ

〉)
, (7.64)

where ψ is the electron field and 〈Xμ〉 represents the expectation of the operator Xμ,
obtained by integrating out the electrons, weighted by the QED lagrangian

〈
Xμ〉 = ∫

DψDψ̄ Xμ exp

[
i
∫

d4x
(
Lkin − ie Aμ ψ̄ γμ ψ

)]
. (7.65)

Our interest is in how quantities like 〈ψ̄γμψ〉 and 〈ψ̄γμγ5ψ〉 depend on the
external electromagnetic fields. Since the electromagnetic interactions preserve
parity (P) and charge conjugation (C), these symmetries may be used to further
organize the contributions to LW. In particular, C and P invariance imply that any
term in LW involving an odd power of Fμν receives contributions only from the vector

current,
〈
ψ̄γμ ψ

〉
, while those involving even powers of Fμν arise purely from the

axial current,
〈
ψ̄γμγ5 ψ

〉
.

Since the leading low-energy couplings to two photons are suppressed by at least
four powers of 1/MW, focus now on the low-energy couplings to three photons. This
requires evaluating the expectation of the vector current, 〈ψ̄γμ ψ〉, at cubic order in
the electromagnetic field. But because the vector current is also the electromagnetic
current for the electron-photon effective theory, its expectation may be expressed in
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Fig. 7.9 Feynman graph showing how the light-by-light scattering box diagram appears in the 2 → 3
neutrino-photon scattering problem. The dot represents the tree-level Fermi coupling, though C and P
invariance of electromagnetic interactions imply only the vector part need be used.

terms of the Euler-Heisenberg effective lagrangian, WEH [A], obtained in (7.23) for
photon-photon scattering below me:

〈
ψ̄γμ ψ

〉
= (1/e)

(
δZ/δAμ

)
where

Z[A] = eiWEH [A] =

∫
DψDψ̄ exp

[
i

∫
d4x

(
Lkin − ie Aμ ψ̄ γμ ψ

)]
. (7.66)

As shown in (7.23), the leading term in W [A] is quartic in Fμν and so the leading
contribution to 〈ψ̄γμψ〉 is cubic and given by:

Leff
ν3γ =

e vab α

90πm4
e

(
GF√

2

) [
5 (Nab

μν Fμν)(Fλρ Fλρ) − 14 (Nab
μν Fνλ Fλρ Fρμ)

]
, (7.67)

with Nab
αβ = ∂α

(
νaγβγLνb

)
− (α ↔ β) and23

vab := vab ee (μ = me) = U∗
ea Ueb + δab

(
− 1

2
+ 2s2

w

)
. (7.68)

This appearance of the light-by-light scattering lagrangian occurs because of the
contribution of the box diagram that appears within panel (a) of Fig. 7.8, once three
external photons are involved (as shown in Fig. 7.9).

As advertised, this particular effective interaction is suppressed by only two powers
of 1/MW, with the rest of the dimensions of the effective coupling being filled by the
factor of 1/m4

e. The non-existence of similar terms with fewer photons is seen to be
related to the non-existence of photon-photon scattering interactions involving fewer
than four powers of Fμν .

7.4 Boundary Effects

Low-energy electromagnetic interactions also provide simple practical examples
where total derivatives (and boundary terms) in an EFT cannot be neglected.
Two examples are explored here: surface polarizations (such as are experienced
by electromagnetic fields in the presence of conducting or dielectric boundaries)
and their implications for Casimir energies. (§15.3 describes the closely related
phenomenon of boundary currents in the context of Quantum Hall materials.)

23 This expression also runs the values taken by the effective couplings vabee (μ = me ) and aabee (μ =
me ) down from μ = MW, although it happens that vabee (μ = me ) does not run in this energy range
because the current ψ̄ γα ψ is conserved, and so does not get renormalized.
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7.4.1 Surfaces between Media

To study surface polarization near boundaries, consider again the EFT for electro-
magnetism defined for energies below me. The main new feature introduced in this
section is the presence of an interface marking the transition between, say, the region
exterior to a conductor or a dielectric and the description appropriate for its interior,
with action

Sfull =

∫
Mext

d4x Lext +

∫
S

d3x Ls +
∫
Mint

d4x Lint.

In particular, the interest in this subsection is on instances where it is the surface
actionLs that influences the electromagnetic response outside of a macroscopic body,
as an illustration of some of the issues described in §5.

Classical Electromagnetism

Consider first the case where all interactions are dropped if they are suppressed by
powers of microscopic scales (like 1/me); a limit found in §7.2.1 to correspond
to Maxwell electromagnetism. In this case, both Lint and Lext involve terms only
quadratic in electromagnetic fields, which for rotation- and translation-invariant
dielectric materials (that need not be Lorentz-invariant) has the form

Ldiel �
1
2

(
εE2 − B2

μ

)
, (7.69)

where ε and μ are the electric and magnetic dielectric constants. The Lorentz-
invariant vacuum is the specific dielectric for which μ = ε = 1 and so for objects
sitting immersed in the vacuum one might expect Lext ⊃ − 1

4 FμνFμν .
Classical macroscopic currents can also appear in this effective theory, both in the

interior and exterior of any materials and on the interface, S, where they represent
surface charge or current distributions,

Sext =

∫
M

d4x

(
−1

4
FμνFμν + Jμ Aμ

)
and Ss = −

∫
S

d3x jμ Aμ, (7.70)

and something similar for Lint. Here, Jμ = eIμ = {ρ, J} denotes any classical test
charges and currents external to the material and jμ = {σ, j} denotes the surface
charge and current densities. As shown in Exercise 5.4, regarding S as the boundary
of both Mint and Mext (and using Lint = Ldiel from (7.69)) the boundary condition
found by varying Aμ freely at the interface itself gives the standard relations that
relate σ = j0 and j to the jump in boundary values of the normal component of
the electromagnetic displacement, Dn := n · (εE), and the tangential components of
H = B/μ. (The other components are dictated by continuity of E and B.)

The conditions at the surface of a perfect conductor are similarly simple to phrase,
to the extent that very good conductors do not support electromagnetic fields within
their interiors. In this case, the vanishing of E and B within the interior makes Lint

drop out of the variational condition on δAμ on the interface S, making it behave
instead like a bona-fide boundary for the exterior region. In this case, the condition
obtained by varying Eq. (7.70) with respect to Aμ on the boundary ∂Mext = S
becomes
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nμFμν + jν = 0 on ∂Mext , (7.71)

where nμ is the outward-pointing normal from the point of view of Mext, and so
points into the material. These relate the surface charges, σ = j0, to the normal part
of the near-boundary electric field, En, and the surface current j to the tangent part
of the exterior magnetic fields at the interface. Continuity implies that the other field
components vanish at the interface, a condition that is expressed compactly as

εμνλρnνFλρ = 0 on ∂Mext, (7.72)

since this captures the vanishing of both Bn = n ·B and n×E. In practice, it is (7.72)
that is the useful boundary condition for fields external to perfect conductors, with
(7.71) instead to be read as determining the surface charge and currents induced by
the external fields.

Effective Surface Interactions

So far, so good. But real conductors and dielectrics are not ideal: they need not
be perfectly flat and any large-scale curvature they have may carry energy. Their
surfaces might also be wrinkled rather than smooth over shorter distances and
these fluctuations could influence nearby fields. Similarly, the bulk electromagnetic
properties of the underlying materials do not turn on infinitely sharply at their
surfaces; instead, there is a transition region that must be penetrated before bulk
behaviour emerges as a good approximation.

What is important for the present purposes is the length scale, λ, for many of
these effects is generally much smaller than the distances of interest when studying
surrounding electromagnetic fields. Although in everyday examples these scales
cannot be smaller than atomic dimensions, λ >∼ ratom � (αme)−1, they are usually
much larger; perhaps set by grain sizes in the material or other mesocopic scales.

Effective field theory is a natural language for their description to the extent that
λ can be regarded as a microscopic scale whose detailed physics has been integrated
out. In general, the localization of such effects at the surface means that they appear
in Ss and not the parts describing the bulk (exterior or interior) physics. As usual,
the dominant surface effects for long-distance applications should correspond to the
lowest-dimension effective interactions, and the effects of these interactions can be
worked out without studying the underlying microphysics in detail.

For instance, geometrical effects associated with the long-distance curvature of
the surface may be parameterized in terms of the geometrical quantities that measure
this curvature. These can generally be expressed in terms of the surface’s intrinsic
induced metric, hab = ∂ay

μ∂by
νημν , and its derivatives for a surface located

at xμ = yμ (σ). Here, σa are parameters along the surface’s world-volume. For
instance, derivatives of the normal to the surface are encoded in the surface’s
extrinsic curvature tensor, Kab (whose precise definition is not needed below), while
derivatives of the intrinsic geometry appear through the Riemann curvature Ra

bcd

built from hab (see §A.2.1 for its definition).
Sample low-dimension terms in a surface’s action might include

Ss ⊃ Sgeom = −
∫
∂M

d3x
√
−h

(
s0 + s1K + s2R + · · ·

)
, (7.73)
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where K := hbdKbd has dimensions of (length)−1, h := det(hbd) is dimensionless,
while R := hbdRa

bad has dimension (length)−2. The tensor hab is the inverse matrix
for hab so that habhbc = δac . On dimensional grounds the effective couplings, sk ,
should be proportional to successively higher powers of the relevant microscopic
length scale, λ, with s0 ∼ λ−3 an energy-per-unit-area, s1 ∼ λ−2 a bending energy
density and so on. (For a review with references of this kind of description for the
statistical mechanics of two-dimensional membranes, see [146].)

Similarly, effective interactions describing the largest corrections to electromag-
netic effects (but subdominant to the surface charges and currents) take the form,

Ss ⊃ SEM = −
1
2

∫
∂M

d3x
√
−h
[
c1E2

n + c2B2
‖ + c3 E2

‖ + c4B2
n

]
. (7.74)

The coefficients of these operators all should be of order ci ∼ λEM on dimensional
grounds, where λEM here is the medium’s relevant electromagnetic length scale.
More complicated combinations become possible if the surface breaks rotational
symmetries parallel to the surface or has inhomogeneous properties.

Following the usual EFT story, the effective couplings si and ci of (7.73) and (7.74)
can either be regarded as phenomenological parameters (obtained by comparing with
experiment) or as quantities to be matched to calculations within a calculable UV
completion. It does not matter which of these is ultimately chosen when extracting
the implications of terms in Ss for observables (an example involving Casimir energy
is described in §7.4.2).

Sample Matching Calculation

Before exploring further how effective couplings for surface interactions contribute
to observables, consider first an illustrative matching calculation to develop intuition
about their size. This section uses QED as the UV theory to illustrate how integrating
out electrons in the presence of boundaries can generate the electromagnetic
interactions of (7.74). Although requiring only standard knowledge about the QED
vacuum polarization – whose main results are briefly reviewed in §A.2.4 – this
calculation is more of a pedagogical than a practical exercise in that the Compton
wavelength associated with the virtual electrons being integrated out are impossibly
small compared to the width of any practical boundary region.

To this end, consider the leading 1/me correction to surface interactions obtained
by integrating out an electron loop starting from the UV completion of the previous
sections,

SQED = −
∫
M

d4x

[
1
4

FμνFμν + ψ (
/
D + m)ψ

]
+

∫
M

d4x Jμ Aμ −
∫
∂M

d3x jμ Aμ .

(7.75)

For simplicity (and for later comparisons with other calculations) the electrons are
assumed not to acquire boundary conditions at the position of the interfaces, with just
the electromagnetic field experiencing there the same perfect-conductor boundary
conditions as described above.

The leading me-dependent contribution to the surface action, Ss, then arises from
the vacuum polarization graph of Fig. 7.4, which describes how quantum fluctuations
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of the electron–positron field make the vacuum behave like a polarizable medium.
A consequence of this polarization is that any would-be point charge gets smeared
into a charge distribution over scales of order λEM ∼ m−1

e . An effective boundary
interaction gets generated in the low-energy EFT because this is required to describe
the short-range electron-cloud polarization caused by the surface charges induced on
the conducting surface by the presence of any test charges nearby, as required by the
boundary condition (7.71) [147].

To see this, explicitly evaluate Fig. 7.4 and compute the electron’s contribution
to the vacuum polarization. Because the electron field is assumed not to be directly
affected by the boundary surfaces the result is the standard one from textbooks:

Πμν (q2) =
(
q2ημν − qμqν

)
Π(q2) (7.76)

with Π(q2) given after renormalization by (compare to Eq. (A.53))

Π(q2) =
2α
π

∫ 1

0
du u(1 − u) log

[
1 + u(1 − u)

q2

m2
e

]
. (7.77)

For comparisons with effective surface interactions it is more useful to have the
position-space version of this result. In particular, the polarization implied for a given
point-charge distribution, Q δ3(x), is found by writing ρeff = Q

[
δ3(x) + η(x)

]
,

where

η(x) =
1
2

∫
d3q

(2π)3 eiq·x Π(q2)

=
α
π

∫ 1

0
du u(1 − u)

∫
d3q

(2π)3 eiq·x log

[
1 +

q2

m2
e

u(1 − u)

]
(7.78)

= N δ3(x) − α

2π2 r3

∫ 1

0
du

(
1 +

mer√
u(1 − u)

)
u(1 − u) exp

[
− mer√

u(1 − u)

]
.

Here, r = |x| and N is a constant that renormalizes the bare charge Q, whose value
is determined by the on-shell renormalization condition∫

d3x η(x) =
1
2
Π(q2 = 0) = 0. (7.79)

Effective Description

For conducting surfaces what is important is that this polarization also applies to the
surface charges associated with enforcing conducting boundary conditions there. The
modified charge distribution caused by this polarization is obtained by integrating
Eq. (7.78) over a planar sheet of charge, σ δ+(z), where δ+(z) = 2δ(z) is normalized
to integrate to unity on one side of the boundary:

∫ ∞
0 dz δ+(z) = 1.

The polarized charge distribution associated with a surface-charge sheet posi-
tioned at z = 0 then is

ρ(z) = σ

{
(1 + N ) δ+(z) − 2 α

π |z |

∫ 1

0
du u(1 − u) exp

[
− me |z |√

u(1 − u)

]}
. (7.80)

The delta-function term here expresses how virtual electrons renormalize the bare
surface charge distribution.
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For matching purposes it is the second, exponential, part of (7.80) that matters
because it generates detectable multipole moments around the uniform surface
charge at z = 0. It is these moments that are replaced by effective interactions
localized on the surface of the conducting plates once the electrons are integrated out.
In particular, the electric dipole moment density, d = ρ(z) z ez , implied by (7.80) is

d(z) = − 2 α σ ez
π

∫ 1

0
du u(1 − u) exp

[
− me |z |√

u(1 − u)

]
� − 3 α σ ez

64 me
δ+(z), (7.81)

where the approximate equality drops all but the leading power of 1/me.
A matching observable can be the field energy, U , that arises when a test charge,

Q, is placed in the vicinity of a conducting surface. At leading order (in the absence
of vacuum polarization) any test charge placed near the conducting surface sets up
an electric field whose normal component at the surface induces a nonzero charge
density, σ, there, as dictated by Eq. (7.71). Virtual electrons then polarize the vacuum
within a distance 1/me of both the test charge and this surface charge, leading to a
change in the field energy.

To leading order this change is the sum of the interaction of the induced charge
density σ with the polarization around the test charge, plus the interaction of the test
charge Q with the induced polarization near the surface charge. Each of these effects
has precisely the same size, leading to a correction of the interaction energy of size

ΔU = 2 ×
(

1
2

) ∫
d3x E · d = − 3 α

64 me

∫
z=0

d2x σ En = −
3 α

64 me

∫
z=0

d2x E2
n ,

(7.82)

which uses the lowest-order result, Eq. (7.71), to write σ = En, where E is the lowest-
order electric field, not including the vacuum-polarization corrections.

This is to be compared with the value for the effective coupling c1 of Eq. (7.74)
that reproduces energy shifts quadratic in En. The coefficient c1 contributes to the
field energy of a classical static test charge by an amount

ΔU = −c1

2

∫
z=0

d2x E2
n (7.83)

and so comparing with Eq. (7.82) gives the matching result

c1 =
3α

32 me
. (7.84)

7.4.2 Casimir Energies ♠

To explore the implications of boundary interactions more concretely consider how
some of the interactions in (7.74) can alter physical predictions. A simple observable
that depends on the near-surface physics is the electrodynamic Casimir energy [148]
of two parallel conducting plates separated by a distance a. From a macroscopic point
of view the Casimir energy is associated with the response of quantum fluctuations
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to the presence of the conducting surfaces,24 and because this response is driven by
the presence of these surfaces it can be sensitive to any effective interactions that
may reside there.

Casimir energies (more generally, Casimir stress-energies) are observable because
of their dependence on external variables (like the distance between the plates). As
seen explicitly below, they imply a force acting between the plates, and these forces
have been measured [150]. Calculating how effective interactions like (7.74) alter
predictions for Casimir energies is not entirely of academic interest, since modern
measurements [151, 152] are becoming accurate enough to be sensitive to some
subleading corrections described by such operators.

Parallel Conducting Plates

For the purposes of illustrating the method, it is simplest to specialize to perfect
conductors through use of the conducting boundary conditions on ∂Mext given
by (7.72). The leading part of the Casimir energy is then computed by evalu-
ating the vacuum-expectation value of the usual Maxwell stress-energy density,
〈0|Tμν |0〉, with

Tμν = FμλFν
λ − 1

4
gμν FαβFαβ, (7.85)

for the electromagnetic field. In particular, the time-time component of the result
gives the energy density

〈0|T00 |0〉 =
1
2
〈0|(E2 + B2) |0〉. (7.86)

The matrix element is evaluated by inserting the expansion of Aμ in terms of
creation and annihilation operators – see (C.39),

Aμ (x) =
∑
λ=±1

∫
d3k√

(2π)32ωk

[
eμ (k, λ; x) akλ + e

∗
μ (k, λ; x) a∗kλ

]
, (7.87)

where ωk = |k| is the photon dispersion relation and eμ (k, λ; x) are the mode
functions found by solving Maxwell’s equations for its two polarization states in
the region between the plates, subject to the boundary conditions (7.72), and the
creation- and annihilation-operators satisfy the algebra,

[
akλ , a∗

qζ

]
= δλζδ3(k −

q), together with aqζ |0〉 = 0. The answer acquires its dependence on boundary
conditions through these mode-functions, eμ (k, λ; x).

In general, the resulting expression involves an integration over mode momentum
k which diverges for large |k|. This UV divergence in general can be absorbed into
renormalizations of effective couplings like a ‘cosmological constant’ (i.e. energy-
density term in the bulk lagrangian density, Lext, as well as the effective couplings
in Ls. This is overkill for the case of parallel flat plates, however, for which the

24 Like any other EFT property, there is also a more microscopic – sometimes less illuminating –
description directly in terms of the underlying atoms (in this case, from which the boundaries are
made [149]).
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divergence is independent of the separation, a, between the plates and so drops out
once measurable a-dependent quantities are considered.

In what follows interest is in the difference between the energy at finite and infinite
a and UV divergences cancel from this difference. Standard calculations [153] in this
case (in the absence of the effective interactions of Ls) give the leading stress-energy
for infinite parallel and perfectly conducting plates separated by a distance a as

〈0|Tμν |0〉 =
π2

720 a4

(
ημν − 4nμnν

)
=

π2

720 a4

������
−1

1
1

−3

������
, (7.88)

where the plates are chosen to be parallel to the x − y plane and located at z = 0
and z = a, and nμ is the unit vector normal to the plates (in their rest frame). The
tensor structure of this result is dictated by the symmetries of the problem together
with stress-energy conservation, ∂μ〈0|Tμν |0〉 = 0 and the conformal-symmetry
condition25 ημν〈0|Tμν |0〉 = 0.

The energy-per-unit area associated with this stress tensor is

ε(0)
c := lim

A→∞

1
A

∫
A

d3x 〈0|T00 |0〉 =
∫ a

0
dz 〈0|T00 |0〉 = −

π2

720 a3 , (7.89)

where A =
∫
A

d2x is the surface area of each plate and the plates are chosen to be
parallel to the x − y plane and located at z = 0 and z = a. The pressure (force-
per-unit area) on either of the plates is similarly (by the definition of stress-energy)
given by

p(0)
c := 〈0|Tzz |0〉 = −

π2

240 a4 , (7.90)

which is negative, indicating attraction between the plates (in agreement with the
result found by differentiating ε(0)

c and using the principle of virtual work).

Influence of Surface Operators

The boundary condition (7.72) is Lorentz-invariant in the directions parallel to the
plates, and for simplicity suppose this is also true of the physics responsible for the
effective boundary terms (7.74). This implies that they reduce to

Ss = −
c1

2

∫
∂Mext

d3x
(
E2
n − B2

‖

)
. (7.91)

In this case, the contribution of this interaction to the Casimir energy can be found
in a variety of ways, such as by evaluating the vacuum-to-vacuum amplitude at very
late euclidean times. A straightforward calculation using (7.91) corrects the energy-
per-unit area of (7.89) to εc = ε

(0)
c + ε

(1)
c , with revised coefficient [154]

ε(1)
c � π2c1

240 a4 . (7.92)

25 This is one of those symmetries that has anomalies, but these vanish when evaluated for flat space in
the absence of background electromagnetic fields.
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Keeping in mind that c1 ∼ O(λEM) for a microscopic length-scale λEM, Eq. (7.92)
represents the generic correction to εc due to surface-polarization effects that is of
relative order λEM/a.

In the particular case where (7.84) is obtained by integrating out electrons, the
matching condition (7.84) can be used, giving the leading Casimir shift due to
vacuum polarization of the form

ε(1)
c � π2c1

240 a4 �
π2α

2560 me a4 . (7.93)

This agrees with the correction found by explicitly evaluating the full one-loop
correction to the Casimir energy and expanding the result to this order in 1/(mea)
[155, 156].

7.5 Summary

For the most part, this section examines systems where the underlying UV theory is well-understood and
calculable, making the calculation of the effective theory a convenience rather than a necessity. This shows
how the general properties of effective theories arise in concrete and practical situations, and shows how
low-energy behaviour is particularly transparent when viewed through an EFT lens.

The weak interactions are part of the foundations of EFT methods, with the Standard Model of
electroweak unification providing an archetype for how non-renormalizable interactions (in this case the
Fermi theory of weak interactions) emerge at low energies from underlying renormalizable physics. The
dimensionful coupling GF of the Fermi theory is given by powers of the mass and coupling of the W boson,
GF ∝ g2/M2

W, whose renormalizable interactions are at work in the UV description. The realization that
this is possible underlines that it should be possible to use non-renormalizable theories predictively.

As applied to neutrinos the weak interactions also teach other simple lessons about low-energy limits.
Neutrinos illustrate how low-energy particle properties can preclude these particles from having any
renormalizable interactions at all. (Gravitons furnish another real-life example of this.) Such particles are
guaranteed to interact very weakly at low energies because all of their interactions are irrelevant (in the
technical sense of §2.4.1).

Neutrinos and gravitons also show how hierarchies of interaction strengths can arise amongst non-
renormalizable low-energy couplings. All other things being equal (as examples using QED show), it is the
lightest UV particle mass that dominates in non-renormalizable couplings, but neutrinos and gravitons
show how some (but not all) of the dimensions of effective couplings can be reserved for the potentially
much higher scales where renormalizable interactions were last possible for the particle in question. In
practice, this means that effective neutrino couplings with dimension (mass)−2(n+1) need not be as small
as Gn+1

F , but can instead arise with size GF/m2n
e where 1/m2

e � GF. Chapter §10 argues that similar
statements also hold for gravitons.

Quantum electrodynamics provides the other examples explored in this chapter, with effective inter-
actions throughout space and at simple boundaries (or interfaces between media) studied as elec-
trons and muons are integrated out. Besides illustrating how the smallest masses dominate effective
couplings at low energies, these also furnish examples where matching can be studied beyond the classical



186 Conceptual Issues (Relativistic Systems)

approximation. This study motivates the ‘decoupling subtraction’ renormalization scheme; a convenient
framework for keeping decoupling explicit within renormalization-group running without losing the
benefits of mass-independent schemes (like the various variations of minimal subtraction).

Exercises

Exercise 7.1 For the effective theory of QED defined below the electron mass, what
is the complete list of dimension-10 interactions, L10, that should appear in
Eq. (7.14) assuming unbroken C, P and T symmetry? Remove all redundant
interactions (assuming that boundaries and topology play no role). What is the
lowest-dimension effective interaction in this EFT that breaks P and/or CP?

Exercise 7.2 Perform the calculation that gives the values of the effective couplings
b1 and b2 by matching the evaluation of Fig. 7.3 in the effective theory to the
low-energy limit of the box graph, Fig. 7.5, in QED (for electrons circulating
in the loop). Verify in this way the validity of Eq. (7.22).

Exercise 7.3 Compute the vacuum polarization graph of Fig. 7.4 and verify using
it the evolution equations (7.45) and solution (7.46) when integrating out
electrons and muons in decoupling subtraction. Extend these results using also
the τ lepton, u, d, s c and b quarks (don’t forget that quarks come with three
colours each; for the masses and charges of these particles use the Particle
Data Group particle summary tables found at http://pdg.lbl.gov). What is your
prediction for the value of 1/α evaluated just below μ = MW if you start at
μ = me with 1/α(me) = 137.035999074(44)? How much of the difference
between 1/α(me) and 1/α(MW) is due to the contribution of quarks? Is it
correct simply to evaluate the running of α between 100 MeV and MW � 80
GeV simply by summing over the contribution of virtual quarks? If not, why
not and how might you do better?

Exercise 7.4 Prove there are no renormalizable interactions for the graviton field, hμν ,
in Minkowski spacetime that are invariant under the symmetry transformation
of Eq. (7.53) for arbitrary ζμ. Take renormalizable here to mean interactions
for which the couplings have canonical dimension that is a non-negative power
of mass.

Exercise 7.5 Expand the Einstein–Hilbert action of General Relativity – see Eqs.
(C.100), (C.95) and (C.91) – about Minkowski space with gμν = ημν + 2κhμν
and κ2 = 8πGN. Verify that the term quadratic in hμν is given by Eq. (7.56).

Exercise 7.6 Verify that the neutrino part of the charged-current Fermi lagrangian
given in Eqs. (7.9) and (7.10) can be rewritten in the form given by the terms
in Eqs. (7.58), (7.59) and (7.60) that involve the matrix Uia. To prove the
equivalence requires using Fierz identities that are derived by expanding the
spinor bilinear ψi ψ̄ j , regarded as a 4 × 4 matrix in spinor-space, in terms of
the basis of sixteen Dirac matrices given in (A.33).

The analog of Eq. (7.5) for the leptonic couplings of the Z boson is given by

Lnc =
ig

2 cos θw
Zμ
[
(ν̄aγμγLνa) + [�̄ jγμ (−γL + 2 sin2 θw )� j]

]
,
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with an implied sum over neutrino and lepton flavour labels a and j. The Z is
electrically neutral (it is its own antiparticle) and its mass is related to the W
mass by MW = MZ cos θw . Show that at low energies the exchange of Z bosons
gives rise to the remaining ‘neutral-current’ terms of Eqs. (7.58), (7.59) and
(7.60).

Exercise 7.7 Taking as given the low-energy light-by-light scattering lagrangian given
in Eq. (7.23) and using the W -lepton couplings of (7.58), show that the
Feynman graph of Fig. 7.9 leads to expression (7.67) for the leading low-
energy effective coupling of neutrinos to three photons.

Exercise 7.8 Compute the contribution of the boundary couplings of Eq. (7.74) to
the Casimir energy of electromagnetic fields between two parallel perfectly
conducting plates, and in particular thereby verify Eq. (7.92).
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Much of the utility of effective theories is most fully exploited in situations where the
UV theory is more poorly known, or difficult to work with (if known). The remaining
chapters in Part II aim to describe several examples of this type, keeping for now to
systems with relativistic kinematics.

8.1 Quantum Chromodynamics ♠

In many ways low-energy Quantum Chromodynamics (QCD) is the poster child for
EFT techniques. This is because this is the area where much of the systematic treat-
ment of Goldstone bosons was first developed. Before describing this development a
brief summary of QCD and the strong interactions is in order.

8.1.1 Quarks and Hadrons

The strong interactions are the strongest interactions so far seen in nature, and were
discovered when exploring what holds protons and neutrons together into atomic
nuclei. According to the Standard Model (for more about which see §9), nuclei
are only one piece of the strong-interaction story since the protons and neutrons
themselves are understood to be composites built from point-like quarks and gluons.
In the Standard Model all other strongly interacting particles – collectively called
hadrons – are also postulated to be composites built from quarks, antiquarks
and gluons [157–160], and QCD is the interaction believed to be responsible for
binding them together. There is considerable experimental evidence that this picture
is correct.

There is a strong analogy between QCD and QED, with massless spin-one gluons
playing the role for QCD of photons in QED. In QCD the notion of electric
charge is replaced by a new type of 3-valued charge called colour, with each
species of quark coming in three variants, each carrying one of the three colours
[161–163]. There are eight types of spin-one gluons that couple to colour in much
the same way that photons couple to electric charge [164]. The big difference relative
to electrodynamics is that the gluons themselves also carry colour (this is why
there are eight of them) and so interact amongst themselves even in the absence
of quarks.

More precisely, each of the six types (or flavours) of quark – for historical reasons
called up, down, strange, charm, bottom and top (see Table 8.1) – comes in three

188
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Table 8.1 Quark properties

Up-type Down-type

u c t d s b

Elec. Charge (e) +2/3 +2/3 +2/3 −1/3 −1/3 −1/3
Mass (GeV) 0.002 1.3 175 0.005 0.1 5

possible colours – red, yellow and blue, say. For instance, the three colours of
up-type quark are represented by a Dirac spinor field, ua, with a = 1, 2, 3, while
the three kinds of strange quark would be described by sa and so on. Sometimes, all
six quark flavours are collectively denoted by the Dirac spinor field qan, where the
new index n = 1, . . . , 6 labels quark types u through t. The eight types of gluon are
similarly represented by eight gauge potentials Gα

μ where α = 1, . . . , 8 (while μ is a
4-vector index like for the electromagnetic potential, Aμ).

The (renormalizable) lagrangian for QCD is constructed from these fields and
takes the deceptively simple form (see Appendix A.2 for a summary of conventions)

LQCD = −
1
4

Gα
μνG

μν
α − q(

/
D + m)q, (8.1)

where the gauge field-strength in this case is given by

Gα
μν := ∂μGα

ν − ∂νGα
μ + gs cαβγ G

β
μGγ

ν = −Gα
νμ, (8.2)

where gs is a new dimensionless parameter called the QCD coupling constant and the
‘structure constants’ cαβγ = −cαγβ are described in more detail below. The Einstein
summation convention is in effect, so there is an implied sum over repeated indices
like α in (8.1) and β and γ in (8.2). As before

/
D = γμDμ but now the covariant

derivative of the quark field is given by

Dμq := ∂μq − igs Gα
μ (Tα q), (8.3)

where Tα are a basis of eight 3 × 3 traceless and hermitian matrices which matrix
multiply the q’s regarded as 3-component objects in colour space. Finally, the quark
mass-matrix m is a 6 × 6 diagonal matrix in flavour space, whose diagonal elements
are the quark masses, mu , · · · , mt .

The previous formulae use a convenient and powerful matrix notation that packs
a lot of information. In particular, to eliminate clutter they suppress both the Dirac
spinor indices (as was also done earlier for electromagnetism) and the colour and
flavour indices on both qan and qan. Writing flavour and colour indices in full
converts (8.3) into

[Dμq]an := ∂μqan − igs Gα
μ (Tα)ab qbn, (8.4)

with the Einstein summation convention again implying a sum over all repeated
indices (even if these indices are, perversely as in (8.3), not explicitly written). Notice
that the flavour index just goes along for the ride in (8.4), since the matrices Tα act
only on colour.

For the present purposes what is important is that the lagrangian (8.1) has several
properties. First, it is renormalizable (inasmuch as all couplings are dimensionless
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and all dimensionless couplings are included consistent with the field content
and symmetries). Second, the absence of γ5 in any of the interactions implies that
these symmetries include parity invariance and the interchange of particles and
antiparticles (charge-conjugation invariance). Third, the symmetries include a crucial
one: invariance under a local (i.e. position-dependent) 3 × 3 unitary rotation of
all the q’s in colour space, accompanied by an appropriate gauge transformation
for the Gα

μ’s.
Explicitly, the couplings amongst the Gα

μ and between these and qan are designed
to be invariant under the infinitesimal transformations (see §C.5 for more details of
how this type of nonabelian local symmetry works)

δq = igsζ
αTαq and δGα

μ = ∂μζ
α + gsc

α
βγζ

βGγ
μ, (8.5)

where ζα (x) are arbitrary real spacetime-dependent transformation parameters
and the matrices Tα are the same ones as appear in the lagrangian, and are generators
of the group of 3 × 3 unitary matrices with unit determinant – called SUc (3)
(where the subscript denotes ‘colour’ to distinguish it from other instances of this
group). The group structure of SU (3) implies that the commutator of two Tα’s gives
another of the Tα’s, allowing the structure constants, cγαβ, to be defined through
[Tα, Tβ] = i cγαβTγ (see Appendix C.4.1 for a brief summary of useful facts about
Lie groups and algebras).

Quarks and antiquarks experience an interaction mediated by the gluons that turns
out to cause quarks and antiquarks to be attracted to one another when they are
prepared in a colour-neutral – or SUc (3)-invariant – combination. (Electromagnetism
similarly causes opposite charges to attract, favouring the formation of electrically
neutral bound states.) The three ways to achieve colour neutrality using quarks and
antiquarks are: (a) to combine a quark with an antiquark, leading to combinations
like Mn

m = qanqam or, (b) to take a completely antisymmetric combination of
three quarks, Bmnp = εabcqamqbnqcp or, (c) do the same for three antiquarks,
Bmnp = εabcqamqbnqcp.

The evidence is that all of the known hadrons can be understood as colour-neutral
bound states in this way, with spin-zero and spin-one mesons being formed from
quark-antiquark combinations while spin- 1

2 and spin- 3
2 baryons (and antibaryons)

are formed from 3-quark (or 3-antiquark) combinations. For example, a proton in this
picture is the combination uud while a neutron is udd and an antiproton is ūūd̄. The
charged pion is a meson with π+ = ud̄ and its antiparticle is π− = ū d. The electric
charges of these bound states are consistent with the u (and c and t) quarks having
electric charge qu = 2

3 e and the d (and s and b) quarks having charge qd = − 1
3 e. In

principle, the masses of all QCD bound states should be calculable in terms of the
basic parameters, which in this case are the coupling gs and the quark masses, mq .
At present, such ab initio calculations are only possible for relatively simple bound
states, using numerical methods.

8.1.2 Asymptotic Freedom

Because gs is dimensionless one might expect QCD to be scale invariant in the
absence of quark masses. This turns out to be false, due mainly to the running of gs.
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Repeating the arguments leading to the running of electromagnetic couplings shows
that loops of coloured particles cause the strong coupling to be scale dependent,
given by

1
αs (μ)

=
1

αs (μ0)
− bs log ��

μ2

μ2
0

�� (8.6)

where αs := g2
s/4π (by analogy with the definition of the electromagnetic fine-

structure constant, α := e2/4π). Compare this result to its electromagnetic counter-
part in (7.32).

An important difference from electromagnetism is that both gluons and quarks
contribute to the coefficient bs, crucially with opposite signs [165–167]. Explicit
calculation using the DS scheme gives

bs =
1

12π
(
2nq − 33

)
, (8.7)

where nq represents the number of quark flavours appearing within the EFT of
interest and the 33 comes from evaluating the gluon loops. Because there are only six
flavours the gluon contribution in practice dominates, so bs is negative [168, 169].
This implies that αs gets larger for lower μ and gets weaker for larger μ – what is
called ‘asymptotic freedom’. For μ sufficiently small αs eventually becomes large
enough to invalidate the perturbative calculation of bs.

Both αs and α can be measured at energies near the mass of the Z boson, MZ � 90
GeV, where they are given by [170]

αs (μ = MZ) � 0.12 and α(μ = MZ) � 1
128
= 7.8 × 10−3 (8.8)

showing that the strong coupling is the larger of the two, and both are small enough
to permit perturbative calculations. But whereas the electromagnetic coupling gets
smaller and smaller at lower energies (eventually reaching α � 1/137 at μ � me, as
discussed in earlier chapters), the coupling αs gets larger and larger at lower energies,
until it eventually becomes too big to trust perturbation theory [171, 172].

The scale where αs becomes nonperturbative is a fundamental scale of the strong
interactions, and is the basic scale that competes with quark masses to set the
dimensions of hadron masses. Precisely what this scale is depends on exactly how
it is defined. A conventional definition is the QCD scale, ΛQCD, defined as the point
where an extrapolation of the perturbative running drives αs to infinity (in the DS
renormalization scheme, say). This scale is given at one-loop by

(nq )ΛQCD = MZ exp

[
1

2bsαs (MZ)

]
, (8.9)

and so naturally depends on the value chosen for nq when evaluating bs. This evalutes
to (5)ΛQCD = 80 MeV in the 5-quark EFT below MZ � 90 GeV, although this
counting of quarks is not appropriate below mb � 5 GeV; the QCD scale rises to
(4)ΛQCD = 140 MeV in the 4-quark EFT below mb , but again this number of quarks
is not appropriate below mc � 1 GeV. A better picture of the physical QCD scale
is obtained using (3)ΛQCD = 220 MeV in the 3-quark regime that applies below mc

but above ms � 100 MeV, having matched across the thresholds at mc and mb when
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Table 8.2 Pion properties

Particle Charge Parity Spin Mass (MeV)

π± ±e −1 0 140
π0 0 −1 0 135

running down from MZ. It makes no sense to use perturbative arguments for QCD
below this scale.

Of course, the QCD coupling does not really diverge at ΛQCD; it is our ability
to compute its behaviour there that breaks down. Nonetheless ΛQCD provides a
convenient way to parameterize the characteristic physical scale of the strong
interactions, lying in the ballpark of several hundred MeV. This scale is expected
to typify the momentum required by the uncertainty principle for a quark within
a hadron, because the growth of gs at lower energies implies that gluon-mediated
forces become stronger over longer distances. This growth is believed to confine
the coloured constituents of hadrons inside a region whose size is of order
ΛQCD

−1 ∼ (200 MeV)−1 ∼ 1 fm.
Quarks much lighter than ΛQCD should therefore have zero-point momenta inside

hadrons that are much larger than their masses, making their energies also of order
ΛQCD. Assuming interaction energies also to be roughly ΛQCD one expects mesons
built from quark-antiquark pairs to have masses of order several times ΛQCD, while
baryons built from three light quarks should be somewhat heavier than this. Indeed,
hadrons built from u, d and s quarks are found at accelerators with masses roughly
in this range, such as the ρ meson (mass 770 MeV), the ω meson (782 MeV), proton
(938 MeV) and neutron (940 MeV).

The existence of a fundamental scale like ΛQCD also provides a natural benchmark
against which strong-interaction processes can be judged to be ‘low-energy’ or ‘high-
energy’. In particular, it turns out that processes at low energies – much smaller
than around 1 GeV – lend themselves to a low-energy EFT description called chiral
perturbation theory, whose features are the main topic of this chapter. It is mainly
the lightest quarks (u and d and perhaps s) that are relevant for this effective theory,
since the others are too massive to be included at such low energies.

Of course, having a low-energy regime would not be that interesting if there were
no particles light enough to appear in it. If all baryons and mesons really all had
similar masses then one might worry that the EFT for energies well below a GeV
might be empty. But light mesons do exist: the lightest hadrons are pions: π± and
π0 (some of whose properties are listed in Table 8.2). Pions, whose properties are
consistent with being quark-antiquark meson combinations built using only u and d
quarks, are much lighter than other hadrons, making them important actors in QCD’s
low-energy limit.

8.1.3 Symmetries and Their Realizations

Inspection of Table 8.1 shows that for the lightest quarks it should be a good
first approximation to neglect quark masses, since mu , md � ΛQCD ∼ 200 MeV.



193 8.1 Quantum Chromodynamics

The effects of nonzero masses can then be included perturbatively as small correc-
tions. To the extent that this perturbative treatment is an expansion in powers of
mq/ΛQCD it should be much worse – though perhaps still qualitatively useful – when
applied to s quarks than for u and d quarks.

The first step when analyzing the limit of massless quarks is to ask what
symmetries are present in the underlying theory in this regime. To see what these
are it is useful to restrict the QCD lagrangian (8.1) to up and down quarks and drop
their mass terms, leaving

q
/
Dq =

(
u
d

)T /
D

(
u
d

)
=

(
u
d

)T

γL

/
D

(
u
d

)
+

(
u
d

)T

γR

/
D

(
u
d

)
. (8.10)

Here, the superscript ‘T’ on a two-component vector indicates taking its transpose
and all colour and spinor indices are suppressed. The Dirac matrices, γL =

1
2 (1+ γ5)

and γR =
1
2 (1−γ5), project onto left- and right-handed Weyl spinors (see §A.2.3), and

are introduced to emphasize how the left- and right-handed quarks in (8.10) interact
with gluons independent of one another in the absence of quark masses.

Writing the quark part of the QCD lagrangian like (8.10) shows how the massless
lagrangian enjoys a ‘chiral’ symmetry, meaning one for which left- and right-handed
fermions can transform independently. The symmetry of (8.10) is an SUL(2)×SUR(2)
symmetry under which left- and right-handed quarks are independently rotated by
arbitrary 2 × 2 unitary matrices that mix up the flavours u and d:(

u
d

)
→
[
UγL + VγR

] ( u
d

)
. (8.11)

Here, U ∈ SUL(2) and V ∈ SUR(2) are 2 × 2 matrices that satisfy U†U = I, V †V = I
as well as1 det U = det V = 1.

Having identified symmetries of the underlying action, the next question is
whether or not they are spontaneously broken by the QCD ground state (or
‘vacuum’), |Ω〉. The answer to this determines whether these symmetries should
be linearly or nonlinearly realized in any effective theory describing the strong
interactions at low energies.

It happens that the QCD vacuum is invariant under the diagonal (or ‘vector’)
subgroup SUI(2) ⊂ SUL(2) × SUR(2) corresponding to the choice V = U [177].
For historical reasons this particular combination is called ‘isospin’ symmetry
[178, 179], due to the analogy with the SU (2) that describes spin rotations for spin-
half states in quantum mechanics.

Following the general discussion in Part I this isospin symmetry should therefore
be linearly realized on low-energy fields. Since the quark pair

(
u
d

)
is a doublet

under these transformations, the three types of pion – π± and π0 which, being built
from u and d quark-antiquark combinations, combine two doublets – are naturally
regarded as transforming as a triplet under isospin symmetry (much like two

1 Dropping the determinant condition makes the group UL (2) × UR (2), which at face value is also a
symmetry of (8.10) [173]. But the additional ‘axial’ combination (for which left- and right-handed
parts of both u and d fields get multiplied by opposite phases) is anomalous (and so is not really a
symmetry – see §4.3) [164, 174–176]. This leaves one symmetry beyond SUL (2) × SUR (2) that simply
multiplies the left- and right-handed parts of both u and d quarks by a common phase. This symmetry
is responsible for the conservation of baryon number, but plays no role in the remainder of this section.
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spin-half objects can combine to form a spin-one state). This interpretation is
supported by the comparatively small splitting in mass between π± and π0 (see
Table 8.2), since in the approximation of exact SUI(2) symmetry (i.e. vanishing quark
masses and no electromagnetic interactions) the mass difference between states
related by a linearly realized symmetry should vanish (see §C.4).

On the other hand, all the evidence2 (experimental, numerical and circumstantial)
suggests that the ‘axial’ part of the symmetry, defined as the subset SUA(2) ⊂
SUL(2) × SUR(2) with V = U†, is spontaneously broken by the QCD vacuum,
with order parameter 〈Ω| q q |Ω〉 � 0. If SUA(2) were an exact symmetry of QCD,
Goldstone’s theorem would argue there must be an exactly massless state created
from the vacuum by the three conserved Noether currents for the axial symmetry,
given by

j
μ
α =

i
2

(
u
d

)T

γμγ5 τα

(
u
d

)
, (8.12)

where τα, with α = 1, 2, 3 represent the three Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (8.13)

acting in the 2 × 2 flavour space labelled by u and d.

Pions as Pseudo-Goldstone Bosons

The triplet of pions have precisely the right quantum numbers to be the bosons
required by Goldstone’s theorem, inasmuch as they can satisfy

〈πβ (p) | j
μ
α (x) |Ω〉 = −iFπ p μ e−ipxδ βα � 0, (8.14)

for some nonzero constant Fπ (called the pion decay constant). Here the three
hermitian pion-fields πα with α = 1, 2, 3 are related to the physical pion fields by

π± =
1
√

2

(
π1 ∓ iπ2

)
and π0 = π3, (8.15)

while p μ is the 4-momentum of the pion in question.
In reality, pions are not massless and quark masses are nonzero so axial transfor-

mations are not exact symmetries. But the requirement that pion masses should go to
zero in the limit that the quark masses vanish ensures they are systematically lighter
than other hadrons in the real world, where mu , md � ΛQCD. The spirit of chiral
perturbation theory is to make this connection between mπ and mu and md explicit
by describing pions using the low-energy effective theory of Goldstone bosons and
then incorporating the symmetry-breaking influences of quark masses perturbatively
in powers of mq/ΛQCD.

2 The first evidence for this symmetry pattern came from phenomenological successes [11, 180, 181],
while the earliest theoretical argument (for three light quarks) was one of the early uses of anomaly
matching [80].
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8.2 Chiral Perturbation Theory

The above arguments suggest that QCD at energies much below the QCD scale
is dominated by the dynamics of the lightest hadrons – pions3 – which can be
interpreted as pseudo-Goldstone bosons for the symmetry breaking pattern SUL(2)×
SUR(2) → SUI(2). In this picture pions are light (and so appear in the low-energy
theory) because u and d quarks are almost (but not quite) massless and pions would
become honest-to-God Goldstone bosons (and so massless) in the limit mu , md → 0.
This is the framework of chiral perturbation theory, whose success describing the
properties of the low-energy hadrons is a success of QCD.

A similar picture of kaons and η particles as pseudo-Goldstone bosons also
follows if the s-quark is regarded as being perturbatively light, though ms ∼ 100
MeV makes expansion in powers of ms/ΛQCD a worse approximation. The discussion
below restricts just to u and d quarks.

8.2.1 Nonlinear Realization ♦

If pions are pseudo-Goldstone bosons then building their low-energy EFT involves
constructing the nonlinear realization for the symmetry-breaking pattern where G =
SUL(2) × SUR(2) breaks down to H = SUI(2), following the steps of §4.2.2. Writing
the three Pauli matrices collectively as �τ = {τα}, so that ωατα = �ω · �τ and so on, the
elements of G can be explicitly written as 4 × 4 matrices with

g =

(
U 0
0 V

)
=

(
ei �ωL ·�τ/2 0

0 ei �ωR ·�τ/2

)
∈ G = SUL(2) × SUR(2), (8.16)

while the unbroken group is

h =

(
ei �ωI ·�τ/2 0

0 ei �ωI ·�τ/2

)
∈ H = SUI(2), (8.17)

corresponding to �ωL = �ωR =: �ωI.

Transformation Rules

Following along in the footsteps of §4.2.2, the standard representation for the three
Goldstone fields, θ α (x), becomes

exp
[
i �θ · �X

]
= �� exp

[
i
2
�θ · �τ
]

0
0 exp

[
− i

2
�θ · �τ
] �� , (8.18)

in terms of which the standard nonlinear realization of G is obtained by multiplying
(8.18) on the left by g given in (8.16) and decomposing the result into

g exp
[
i �θ · �X

]
= exp

[
i �̃θ · �X

]
γ, (8.19)

3 Later sections – §8.2.3 and §13.1 – show that particles heavier than ΛQCD can also appear in the low-
energy theory in some cases (such as if they are stable). These can be included either by adding new
second-quantized fields as described in §8.2.3 or in the first-quantized formulation of §13.1.
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where the rightmost factor appearing here is an element of H – c.f. (4.47) – and so

γ = exp
[
i �u ·�t

]
= �� exp

[
i
2 �u · �τ

]
0

0 exp
[

i
2 �u · �τ

] �� . (8.20)

Explicit formulae for �̃θ(�θ, g) and �u = �u(�θ, g) in closed form may be found using
the identity exp

(
i�α · �τ) = cos α + iα̂ · �τ sin α, where α =

√
�α · �α, and α̂ = �α/α.

Specializing to infinitesimal transformations, this leads to

δ�θ = �θ × �ωI +
θ
2

(
tan

θ

2
+ cot

θ

2

) [
�ωA − θ̂(θ̂ · �ωA)

]
+ θ̂(θ̂ · �ωA),

= �ωA + �θ × ωI + O(θ2); , (8.21)

and

�u = �ωI + (θ̂ × �ωA) tan
θ
2
= �ωI +

1
2
�θ × �ωA + O(θ2), (8.22)

where (as before) θ :=
√
�θ · �θ and θ̂ := �θ/θ. Notice, in particular, that the group

structure of G implies that the three fields �θ shift under the broken transformations
labelled by �ωA, and transform as a triplet under the unbroken subgroup, H =

SUI(2), labelled by �ωI.

Invariant Action

The quantities required to build G-invariant actions for �θ and to couple �θ to other
fields are computed following the steps in §4.2.2 in terms of the decomposition of
e−i�θ ·�X∂μei�θ ·�X onto the �X and �t directions, leading to the ‘dreibein’

�eμ =

(
sin θ
θ

)
∂μ �θ −

(
sin θ − θ
θ3

)
(�θ · ∂μ �θ) �θ,

= ∂μ �θ

(
1 − 1

6
θ2

)
+

1
6

(�θ · ∂μ �θ) �θ +O(θ5); , (8.23)

and ‘gauge connection’

�Aμ = −
2
θ2 sin2 θ

2
(�θ × ∂μ �θ) = −1

2
�θ × ∂μ �θ +O(θ4). (8.24)

Notice that when �θ → −�θ the dreibein �eμ changes sign while �Aμ does not.
This observation becomes important once one asks how the low-energy lagrangian
transforms under parity (which is a symmetry of the underlying QCD dynamics),
since the nonvanishing of the matrix element (8.14) implies that �θ changes sign
under parity.

The most general G-invariant lagrangian with the fewest derivatives that is
invariant under these transformations is constructed using the rules summarized in
§4.2.2 (with details given in Appendix C.6.3). In particular, because �θ shifts under
the broken �ωA transformations, no G-invariant scalar potential is possible at all. The
most general lagrangian up to overall normalization involving up to two derivatives is

Leff = −
F2

2
gαβ (�θ) ∂μθ

α∂μθβ + (higher-derivative terms), (8.25)
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where F is a real constant and the ‘target-space metric,’ gαβ, on G/H is

gαβ (θ) = δγδ eγα eδβ = δαβ

(
sin2 θ

θ2

)
+ θαθβ

(
θ2 − sin2 θ

θ4

)
,

= δαβ

(
1 − 1

3
θ2

)
+

1
3
θαθβ +O(θ4), (8.26)

where eγα is obtained from �eμ · �X by writing �eμ · �X = Xγ eγα ∂μθα.
For applications it is useful to rescale the pion fields so their kinetic terms take the

canonical form − 1
2 ∂μ�π · ∂

μ�π, in which case �θ = �π/F. With this choice the most
general two-derivative pion self-interactions are (after performing an integration by
parts)

Leff = −
1
2
∂μ�π · ∂μ�π −

1
2F2 (�π · ∂μ�π) (�π · ∂μ�π) +O(π6) + · · · , (8.27)

where all two-derivative terms out to arbitrary order in π are similarly obtained by
expanding the explicit function given in Eqs. (8.25) and (8.26).

Symmetry-Breaking Terms

So far, the discussion has proceeded as if the symmetry G = SUL(2)×SUR(2) were an
exact symmetry, and the pions were massless. To improve on this requires including
the effects of the symmetry-breaking quark masses, which is done by matching the
EFT to QCD perturbatively in powers of the quark masses.

In QCD the quark mass terms are

Lm = −q Mq = −q MγLq + h.c., (8.28)

where

q =

(
u
d

)
and M =

(
mu 0
0 md

)
. (8.29)

Under the G = SUL(2) × SUR(2) symmetry, q → (UγL +VγR)q, this transforms into

q MγLq → q V †MUγLq + h.c.. (8.30)

Although this is not invariant, the key observation is that it would have been invariant
if the mass matrix had been a field which had also transformed under G, according
to the rule

M → V MU†. (8.31)

This is a useful observation because it suggests how to determine how M appears in
the low-energy effective pion theory.

To this end, imagine the effective pion action to have an expansion in powers of
the light quark masses,

Leff = L0 + L1 + · · · , (8.32)

where the subscript indicates the power of M that appears in each term. Each of the
Li can also be separately expanded in powers of the fields �π and their derivatives,
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as is done above for the lowest-derivative terms that appear in L0. The goal now is
to do the same for L1, starting with those terms containing no derivatives at all. The
key for doing so is to use the fact that L1 must depend on the �π’s in such a way
that it would be G-invariant if M were allowed to transform through the rule (8.31).
The trick of identifying non-invariant terms by pretending that a symmetry-breaking
parameter (like M) is a field is called the spurion trick, where ‘spurion’ is the name
for the fictitious (or spurious) field whose expectation value is M .

The term L1 is linear in M and provides the leading symmetry-breaking contribu-
tion at low energies. Its dependence on �π is found by demanding L1 be G-invariant,
but only if we simultaneously transform �π – using (8.21) – and take M → V MU†. It
is straightforward to construct one such a term involving only the pion fields, and the
simplest method does so by building a 2×2 quantity Ξ(�θ) that transforms oppositely
to M: i.e.

Ξ→ Ξ̃ = U ΞV †. (8.33)

Once this is done, the required lagrangian density is proportional to Tr [M Ξ] + c.c..
The required Ξ can be built from the basic quantities ξL := ei�θ ·�τ/2 and ξR :=

e−i�θ ·�τ/2 that appear on the diagonal in (8.18), repeated again here for convenience

exp
[
i �θ · �X

]
= �� ξL(�θ) 0

0 ξR(�θ)
�� , (8.34)

since Eqs. (8.19) and (8.20) imply these transform relatively simply:

ξL → U ξ̃L ei�u ·�τ/2 and ξR → V ξ̃R ei�u ·�τ/2. (8.35)

Clearly, the transformation property (8.33) holds for the 2 × 2 matrix4

Ξ := ξL ξ
†
R = ei

�θ ·�τ. (8.36)

The leading symmetry-breaking term in the pion lagrangian therefore is

L1 =
Λ3

m

2
Tr [M (Ξ + Ξ†)] = (mu + md)Λ3

m cos θ,

= m2
π

[
F2 − 1

2
�π · �π − (�π · �π)2

4! F2 +O(π6)

]
, (8.37)

where Λm is a new dimensionful parameter. The last line shows that L1 generates a
common mass for all three pions whose size is given by [182]

m2
π = (mu + md)

Λ3
m

F2 , (8.38)

a result of order the known pion masses given quark masses of order a few MeV,
F ∼ 100 MeV (as is shown below) andΛm of order 300 MeV (and so not so different
from ΛQCD). This confirms that small quark masses suffice to explain the size of the
observed pion masses, as would be required if they are to be interpreted as pseudo-
Goldstone bosons.

The pion mass term found here is proportional to �π ·�π and so necessarily preserves
the unbroken isospin symmetry, SUI(2), at least to this order in the derivative and

4 In terms of Ξ, the two-derivative interactions of (8.25) can also be written Leff = − 1
4 F

2 Tr (∂μΞ† ∂ μΞ).
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quark-mass expansions. This ensures, in particular, degenerate masses for all three
pions despite there being an isospin-breaking quark mass difference, mu − md.
Approximate isospin invariance for the pion masses turns out to follow from the
small size of both mu and md relative to ΛQCD, rather than any requirement that
md − mu is small compared with md + mu . An understanding of the mass difference
between charged and neutral pions must therefore be sought elsewhere, such as the
isospin-breaking electromagnetic interactions [183, 184].

Finally, notice that the mass term given in Eq. (8.37) is the unique such term
that is linear in M and depends only on �θ but not its derivatives. This uniqueness
follows from the impossibility of building a G-invariant scalar potential in L0. To
see why this is true, suppose there were two operators, O1(θ) and O2(θ), for which
L1i = Tr (M Oi) + h.c. transforms in the desired way. Since both of these operators
must transform the same way under G the combination V (θ) = Tr [O1O†2 ] would be
a G-invariant scalar potential, which does not exist. It follows that the transformation
rule (8.33) determines Ξ(θ) up to normalization.

8.2.2 Soft-Pion Theorems ♠

What is important about (8.27) is that the strength of all of the two-derivative pion
interactions are determined by only the one constant F. The additional interactions
allowed by (8.37) introduce only one more parameter, mπ. If QCD were better
understood, F could be computed from first principles (as is now becoming possible
using numerical techniques). But even if this cannot be done, the lagrangian (8.25)
is very predictive since any measurement of F from (say) low-energy ππ → ππ
scattering can then be used (in principle) to compute ππ → 4π and higher scattering
as well. These relationships amongst low-energy pion properties are known as
‘soft-pion’ theorems.

Decays and Conserved Currents

The situation is even more predictive than just for pion scattering, as it turns out,
because F also (see below) controls the decay rate of charged pions. In practice, this
means that F can be determined purely using the measured π± lifetime, and once
this is done its value in principle5 completely determines the leading contribution to
all low-energy pion scattering amplitudes.

This calculational windfall occurs because the current ūγμγLd appearing in the
low-energy charged-current weak interaction – c.f. Eqs. (7.9) and (7.10) – is also a
Noether current (8.12) for the approximate G = SUL(2)× SUR(2) symmetry of QCD.
For instance, the matrix element appearing in the π− decay amplitude is 〈Ω | uγμ (1+
γ5)d | π−〉, which is calculable in terms of the parameter Fπ defined in (8.14) because
parity invariance of QCD implies that only the axial part of the current has a nonzero
matrix element.

5 In practice, pion scattering is hard to measure and practical low-energy processes also involve protons,
neutrons and other mesons, complicating the picture (but not negating the predictivity of the low-energy
theory).
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This observation allows the charged-pion lifetime to be computed in terms of
Fπ, leading to the following prediction for the lifetime for the decay π → μνν
[185, 186, 188]:

1
τß
=

G2
F |Vud |2F2

π m2
μmπ

4π
��1 −

m2
μ

m2
π

��
2

, (8.39)

where mμ and mπ are the masses of the muon and pion while GF and Vud are the
Standard Model parameters defined in §7.1 and measured in muon and nuclear β-
decays. Comparing this with the observed mean lifetime, τexp(π−) = 2.6030(24) ×
10−8 s, gives Fπ � 92 MeV.

To determine the value of the effective parameter F appearing in (8.25) it therefore
suffices to compute the vacuum-to-pion matrix element of the conserved SUL(2) ×
SUR(2) currents within the EFT and compare the result to (8.14). This is done by
computing the Noether currents directly by using the invariance of the action (8.25)
under the transformations (8.21), with the result

�j
μ

I = −
(
�π × ∂ μ�π

)
+ · · · and �j

μ
A = F ∂ μ�π + · · · , (8.40)

where the ellipses denote terms involving more powers of �π and/or more derivatives.
Using this to compute the matrix element 〈π |�j μA |Ω〉 and comparing with (8.14) then
allows the inference F = Fπ � 92 MeV.

Power Counting

With F determined in this way, the effective lagrangian for low-energy pion-pion
scattering becomes very predictive. As usual, the first step is to identify the Feynman
graphs and interactions that are required to capture the scattering to any fixed order in
the low-energy expansion. This involves applying the power-counting rules of §3.2.3
to this example [2].

For a first pass it is simplest to do this using only the G-invariant terms of L0, in
which case the results of §3.2.3 can be carried over in whole cloth. To translate the
parameters appearing here to those used in earlier sections imagine expanding L0

out to include subdominant terms involving higher derivatives, with the schematic
form

Leff = −F2
π (∂θ)2

[
ĉ2,0 + ĉ2,2θ

2 + · · ·
]
−

F2
π

Λ2
χ

(∂θ)4
[
ĉ4,0 + ĉ4,2θ

2 + · · ·
]
+ · · ·

= −F2
πΛ

2
χ

⎧⎪⎨⎪⎩ 1
Λ2
χ

(
∂π

Fπ

)2 [
ĉ2,0 + ĉ2,2

π2

F2
π

+ · · ·
]

(8.41)

+
1
Λ4
χ

(
∂π

Fπ

)4 [
ĉ4,0 + ĉ4,2

π2

F2
π

+ · · ·
]
+ · · ·

⎫⎪⎬⎪⎭ ,

where Λχ <∼ 1 GeV is of order a typical strong-interaction scale and the dimension-
less coefficients are in principle – but typically not in practice – calculable from
QCD.

Comparing this form with the coefficients with (3.55) shows that the scales used
there are f2 = FπΛχ, M = Λχ and v = Fπ. The general power-counting arguments of
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Fig. 8.1 The Feynman graphs giving the dominant contributions to pion-pion scattering in the low-energy pion
EFT. The first graph uses a vertex involving two derivatives while the second involves the pion mass, but no
derivatives.

§3.2.3 then show that the L-loop contribution to a scattering amplitude for scattering
involving E external pions at energy q is of order

AE (q) ∼ q2F2
π

(
1

Fπ

) E (
q

4πFπ

)2L (
q
Λχ

)∑
n (dn−2)Vn

∼ q2F2
π

(
1

Fπ

) E (
Λχ

4πFπ

)2L (
q
Λχ

)2L+∑n (dn−2)Vn

(8.42)

whereVn counts the number of vertices involving dn derivatives. The second line of
(8.42) is useful because in practice Λχ ∼ 4πFπ ∼ 1 GeV, and because of this there
is only a single quantity that controls the low-energy expansion.

These power-counting formulae are easily extended to include the symmetry-
breaking interactions as well. For instance, those arising in L1 involve only a single
power of quark masses, and can be included by considering the corresponding
dimensionless couplings to be suppressed by an additional factor of order ĉ ∼ m2

π/Λ
2
χ

for each vertex taken from L1 (as may be seen by comparing (8.37) to (3.55) using
f2 = FπΛχ, M = Λχ and v = Fπ).

Pion-Pion Scattering

Applied to ππ → ππ scattering – for which E = 4 – the above power-counting
arguments show the dominant contributions come from the graphs of Fig. 8.1, involv-
ing a single 4-point vertex taken from the two-derivative terms of L0 or from the
no-derivative terms in L1. According to (8.42), the graph built using L0 contributes
A4(q) ∼ (q2/F2

π) since L = ∑
n(dn−2)Vn = 0. The contribution built using L1 con-

tains an extra factor of (Λχ/q)2 because
∑

n(dn − 2)Vn = −2 and a factor of m2
π/Λ

2
χ

carried by the dimensionless coupling ĉ that is not written explicitly in (8.42). These
are comparable in size for scattering at pion energies of order 100 MeV because one
is of order q2/F2

π while the other is of order (q2/F2
π)(Λχ/q)2(m2

π/Λ
2
χ) ∼ m2

π/F
2
π.

Explicitly evaluating these graphs leads to an invariant scattering amplitude for
the scattering πaπb → πcπd of the form [48]

A4 =
1

F2
π

[
δabδcd (s − m2

π) + δacδbd (t − m2
π) + δadδbc (u − m2

π)
]
, (8.43)
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where the Lorentz-invariant Mandelstam variables are defined by

s := −(pa + pb)2 , t := −(pa − pc)2 and u := −(pa − pd)2 (8.44)

and so are related to one another by the identity: s+t+u = 4m2
π. In the centre-of-mass

frame s, t and u have simple expressions:

s = 4E2 , t = −2E2 + 2p2 cos ϑ + 2m2
π and u = −2E2 − 2p2 cos ϑ + 2m2

π.
(8.45)

Here, E is the pion energy and p = |pa | = |pb | = |pc | = |pd | is the magnitude of
3-momentum shared by all the pions in this frame, and ϑ is the scattering angle
defined by pa · pc = pb · pd = p2 cos ϑ.

Comparison with experiment is done using channels with definite angular momen-
tum and isospin. For 2-body scattering the decomposition of A into combinations
with definite isospin I = 0, 1, 2 is given by

A = A
(0)

3
δabδcd +

A (1)

2
(δacδbd − δadδbc)

+A (2)

[
1
2

(δacδbd + δadδbc) − 1
3
δabδcd

]
, (8.46)

so that (8.43) gives the absolute predictions

A (0) =
2s − m2

π

F2
π

, A (1) =
t − u

F2
π

, A (2) = −
s − 2m2

π

F2
π

. (8.47)

Decomposing these into partial waves, using

A (I)
� ≡ 1

64π

∫ 1

−1
d cos ϑ P� (cos ϑ)A (I) , (8.48)

where P� (cos ϑ) are the usual Legendre polynomials, and expanding the (real part
of) A (I)

� in powers of the squared pion momentum: p2/m2
π = E2/m2

π − 1 = (s −
4m2

π)/4m2
π,

A (I)
� =

(
p2

m2
π

)� (
aI

� + bI

�

p2

m2
π

+ · · ·
)

, (8.49)

gives predictions for the pion scattering lengths, aI

� , and slopes, bI

� . Table 8.3 shows
the experimental values6 for these quantities, as well as the predictions obtained from
(8.47) and from their first subdominant O(p2/Λ2

χ) correction (see §8.2.4). These
support the validity of chiral perturbation theory as a systematic approximation to
the low-energy strong interactions.

This example nicely illustrates the predictive power made possible by a low-energy
effective lagrangian, even when the values for the effective couplings cannot be
computed ab initio from the underlying theory. Predictive power arises because there
are more observables – such as the pion scattering lengths and slopes used here –
than there are effective couplings. At any order in the low-energy expansion unknown
couplings can be extracted directly from experiment, much as would have been done
for renormalizable interactions.

6 It is not feasible to directly perform pion-pion scattering experiments so pion-pion scattering amplitudes
at low energies are instead inferred from their influence on the final state in other processes, such as
K → ππeνe or pion-nucleon scattering.
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Table 8.3 Theory vs experiment for low-energy pion scattering (from [189])

Parameter Leading Order + Next Order Experiment

a0
0 7m2

π/32πF2
π 0.16 0.20 0.26(5)

b0
0 m2

π/4πF2
π 0.18 0.26 0.25(3)

a1
1 m2

π/24πF2
π 0.030 0.036 0.038(2)

a2
0 −m2

π/16πF2
π −0.044 −0.041 −0.028(12)

b2
0 −m2

π/8πF2
π −0.089 −0.070 −0.082(8)

8.2.3 Including Baryons

Chiral perturbation theory also provides an instructive example of how pseudo-
Goldstone bosons couple to other degrees of freedom within the low-energy theory
[187]. In this case, the natural degrees of freedom with which pions interact at
low energies are nucleons – both protons and neutrons – which group together as
a doublet under the unbroken isospin subgroup, H = SUI(2),

N :=
(

p
n

)
. (8.50)

Inclusion of nucleons in the low-energy theory also raises a conceptual issue: why
should nucleons be considered low-energy, given that their masses mN � 940 MeV
are comparable to the UV scales being integrated out to obtain the low-energy
effective theory?

It turns out that it is often the case that very massive particles get included within
an EFT defined below their mass. As discussed at greater length in §11.1, this can
be consistent provided that the energy tied up in the heavy particle’s rest mass is not
accessible on the time-scales of interest in the low-energy theory. In the case of the
chiral effective theory, the inertness of nucleon rest masses is usually ensured by two
things: (i) conservation of baryon number (which prevents nucleons from decaying)7

and (ii) the scarcity of anti-baryons in the states of interest (which prevents nucleons
from releasing their rest-mass through annihilation).

So how does the symmetry-breaking pattern G = SUL(2)× SUR(2) → H = SUI(2)
constrain the low-energy couplings of pions to nucleons? This is largely dictated by
their transformation properties under H , and since nucleons form an isodoublet, they
transform under H according to

δN =
i
2

�ωI · �τ N . (8.51)

This implies that the rule for general G tranformations is therefore

δN =
i
2
�u(θ) · �τ N , (8.52)

7 Neutrons can decay to protons without violating B conservation, but this decay only liberates a few
MeV and so poses no threat to the low-energy approximation.
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with �u(θ) given explicitly by (8.22). The appropriate covariant derivative for
nucleons then becomes

DμN = ∂μN − i �Aμ (θ) · �τ N , (8.53)

with �Aμ (θ) as written in (8.24).

Invariant Action

These transformation rules determine the most general couplings between nucleons
and pions to lowest order in the derivative expansion. The leading terms involve only
one derivative and are given by

LπN = − N

[ /
∂ − i

2
�/A(θ) · �τ + mN

]
N − igA

2
(
Nγμγ5�τ N

)
· �eμ (θ), (8.54)

= − N
(/
∂ + mN

)
N − igA

2Fπ

(
Nγμγ5�τN

)
· ∂μ�π

− i

2F2
π

(
Nγμ�τN

)
· (�π × ∂μ�π) + · · · ,

which uses expression (8.23) for �eμ (θ). The ellipses in the second line represent
terms that involve either three or more powers of the pion field, more than two
powers of the nucleon field, or involve more than one derivative. These leading-order
interactions are characterized by a single new coupling constant, gA, whose value is
related to the rate for neutron β decay.

To see why gA appears in the rate for neutron decay, recall that the weak currents
are related (as discussed for pions above) to the Noether currents for the symmetry
group G = SUL(2) × SUR(2). Incorporating nucleons into this derivation to leading
order generalizes (8.40) to

�j
μ

I = −
(
�π × ∂μ�π

)
+

i
2

Nγ μ�τ N + · · · ,

�j
μ

A = Fπ ∂
μ�π +

igA

2
Nγ μγ5�τ N + · · · . (8.55)

All terms not written explicitly above involve additional factors of the fields �π or
N , or more derivatives of these fields. Because the transition n → p samples the
matrix elements of these currents, measurements of the neutron decay rate allow a
determination of a value for gA.

Goldberger–Treiman Relation

Historically, the trilinear pion-nucleon interaction was written as a Yukawa coupling,

LNNπ := igNNπ (N γ5�τ N ) · �π, (8.56)

with the constant gNNπ found from phenomenological studies to be close to 14 –
which is to say, since gNNπ/4π ∼ O(1), the strong interactions are not perturbatively
weak. The Yukawa coupling gNNπ can be predicted in terms of the constant gA, since
the trilinear part of (8.54) differs from (8.56) by a field redefinition. To see why,
perform an integration by parts in the interaction
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LNNπ = −
igA

2Fπ

(
Nγμγ5�τ N

)
· ∂μ�π, (8.57)

to move the derivative to the nucleon fields, and simplifying the result using the
lowest-order equations of motion for N : i.e. (

/
∂ + mN) N = 0.8 Comparing the result

with (8.56) gives

gNNπ =
gAmN

Fπ
, (8.58)

a result known as the Goldberger-Treiman relation [188].
The Goldberger–Treiman relation is a phenomenological success9 inasmuch as

neutron decay implies that gA � 1.25, while mN = 940 MeV and Fπ = 92 MeV,
and so predict gNNπ � 12.8. But chiral perturbation theory provides a much better
framework for understanding pion-nucleon interactions than does the historical guess
(8.56) because besides explaining why gNNπ is so large, it also shows why there are
circumstances under which pion-nucleon interactions are nonetheless perturbative.
At energy E the expansion parameter to compare to 4π is not a strong-coupling
constant like gNNπ, but is instead the energy ratio E/Fπ.

Subdominant non-derivative pion-nucleon couplings are also allowed once
G-breaking nonzero quark masses are included, suppressed by powers of mu or
md . Their systematic description goes beyond the scope of this book (for further
reading see Appendix D).

8.2.4 Loops and Logs ♦

Another instructive feature of the chiral perturbation theory example is the need
for (and structure of) next-to-leading corrections. Table 8.3 shows that these play a
practical role in obtaining agreement with experiment, and their structure illustrates
more precisely how EFTs can be predictive even when used at a precision where
sub-dominant interactions play a role.

The general power-counting expression (8.42) shows that the next-to-leading
contributions to pion scattering arise in two ways: (i) through one-loop graphs built
using only the lagrangian’s two-derivative interactions (or symmetry-breaking zero-
derivative interactions), or (ii) tree graphs built using only two-derivative interactions
plus precisely one 4-derivative interaction (or one subdominant symmetry-breaking
interaction). For G-invariant interactions with momenta q the loop graph is sup-
pressed relative to leading order by a factor of (q/4πFπ)2 while the tree-level graph
with a 4-derivative contribution is down by (q/Λχ)2. Graphs using the symmetry-
breaking interactions replace q2 in these estimates with m2

π. All contributions are
similar in size when q ∼ mπ because for QCD Λχ ∼ 4πFπ ∼ 1 GeV.

8 Since these two forms are related by use of the equations of motion for N , the general arguments of
§2.5 imply they are also related by performing a field redefinition of N .

9 This relation was derived well before the discovery of quarks. At this time the proposal that weak
interactions couple to some sort of conserved current helped explain their universal strength [118, 119].
This led to a picture where the pion decays by the formation of a virtual nucleon-antinucleon pair [186]
followed by a charged-current nucleon-lepton transition. This related pion decay to the nucleon-pion
coupling and nucleon matrix elements arising in neutron β decay – leading to relations like (8.58).
These predictions, being mainly consequences of symmetries, proved more robust than their initial
derivation might have indicated [188].
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There are two types of SUL(2) × SUR(2)-invariant 4-derivative interactions, which
can be written (up to total derivatives and field redefinitions) as [32]

L4 = c41
[
Tr

(
∂μΞ

† ∂μΞ
)]2
+ c42 Tr

(
∂μΞ

† ∂μΞ ∂ν Ξ
† ∂νΞ

)
, (8.59)

with dimensionless couplings c4i and Ξ as defined in (8.36). At the same order a
number of symmetry-breaking terms that trade pairs of derivatives for a power of
quark mass, M , or all four derivatives for two powers of M , can also be written, but
for simplicity are not written here.

With these corrections, the lowest-order result, Eq. (8.43), for the scattering
amplitude generalizes to [32]

A = δabδcd A(s, t, u) + δacδbd A(t, s, u) + δadδbc A(u, t, s), (8.60)

where the function A(s, t, u) has the expansion

A(s, t, u) � A0(s, t, u) + A1� (s, t, u) + A1p (s, t, u), (8.61)

with the lowest-order result of (8.43) corresponding to

A0(s, t, u) =
s − m2

F2 , (8.62)

where F is the parameter controlling the 2-derivative couplings of (8.25) and

m2 := (mu + md)
Λ3

m

F2 ∼ (mu + md)
Λ3
χ

F2 (8.63)

is the parameter defined by the leading 0-derivative (symmetry breaking) term of
(8.37).

At next-to-leading accuracy the parameters m2 and F2 need no longer precisely
equal the physical quantities m2

π and F2
π, and indeed are modified to expressions of

the form

m2
π = m2

[
1 +

m2

32π2F2 log

(
m2

μ2

)
+ · · ·

]
, (8.64)

and

Fπ = F

[
1 − m2

16π2F2 log

(
m2

μ2

)
+ · · ·

]
, (8.65)

where the ellipses represent O(1) quantities unaccompanied by logarithms (whose
precise form is not required in what follows, beyond the observation that it is their
dependence on the couplings c4i (μ) that ultimately cancels the explicit μ-dependence
of the logarithm).

The remaining terms in (8.61) correspond to the two types of subdominant
corrections, with the one-loop contributions using only lowest-order interactions
giving

A1� (s, t, u) =
1

96π2F4

{
3(s2 − m4) J (s) +

[
t(t − u) − 2m2t + 4m2u − 2m4

]
J (t)

+
[
u(u − t) − 2m2u + 4m2t − 2m4

]
J (u)
}
, (8.66)
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with

J (x) := y(x) log

[
y(x) − 1
y(x) + 1

]
+ 2, (8.67)

where y(x) :=
√

1 − (4m2/x).
The tree contributions using precisely one subdominant interaction similarly give

A1p (s, t, u) =
1

96π2F4

{
C1(s − 2m2)2 + C2

[
s2 + (t − u)2

]
− 12m2s + 15m4

}
,

(8.68)

where C1 and C2 are both UV divergent (containing poles as ε → 0 in dimensional
regularization, with D = 4 − 2ε) and linear in the constants c41 and c42. It is the
renormalization of these constants that absorbs the divergences, leaving finite parts
that depend on the precise renormalization scheme used. Two observables must be
used to determine the values of these two renormalized parameters, in addition to the
two used earlier to fix the values of m and F.

Decomposing the scattering as before into amplitudes with definite isospin – c.f.
(8.46) – leads to

A (0) = 3A(s, t, u) + A(t, s, u) + A(u, t, s) (8.69)

while

A (1) = A(t, s, u) − A(u, t, s) and A (2) = A(t, s, u) + A(u, t, s). (8.70)

Further decomposing into partial waves then leads to the order m4/(16π2F4)
corrections listed in Table 8.3 for the tree-level partial waves b0

0, a2
0, b2

0 and a1
1 that are

already nonzero at leading order. It also leads to order m4/(16π2F4) contributions
to partial waves such as b1

1, a2
0 and a2

2 that vanish at lowest order.
For the present purposes these subleading corrections illustrate two noteworthy

features. First, notice that the coefficients of all terms having logarithmic singularities
in the limit s, t, u → 0 – which all involve the function J defined in (8.67) –
depend only on the lowest-order coupling parameters m and F. In particular, they
do not depend on the values of the unknown new couplings c4i , which appear
only premultiplying polynomials in external momenta. They are also not ultraviolet
divergent, as might be expected given that UV divergences also arise at one loop as
polynomials in momenta, as is required for them to be ultimately renormalized into
the coefficients c4i .

This is a general feature: unitarity dictates the imaginary part of A(s, t, u) in the
forward-scattering regime in terms of total scattering rates [38, 39], and this requires
that next-to-leading contributions to A(s, t, u) that are non-analytic in external
momenta are absolute predictions that depend only on the lowest-order couplings.

The second noteworthy feature about the next-to-leading corrections is the
presence in them of chiral logs; i.e. corrections involving factors that are not
differentiable in the chiral limit m2 → 0, such as factors of m2 log m2. These terms
enter both from the explicit logarithms in J (x) of Eq. (8.67) and from the revised
relationships between the parameters F and m and physical quantites like Fπ and
mπ – c.f. Eqs. (8.64) and (8.65).
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Chiral logs are important because the expansion in powers of small symmetry
breaking parameters (like quark masses) is ultimately an expansion in powers of m2.
Although logarithms of small scales are not tracked in power-counting formulae like
(8.42), they can sometimes matter in practice. For instance, the subleading correction
to the soft-pion theorem for � = I = 0 turns out be

a0
0 =

7m2
π

32π2F2
π

[
1 −

9m2
π

32π2F2
π

log
m2
π

μ2 + · · ·
]

, (8.71)

which for μ ∼ 1 GeV is the 25% correction seen in Table 8.3 rather than the few
percent that might have been guessed from m2

π/(4πFπ)2.

8.3 Summary

This chapter summarizes chiral perturbation theory; the modern understanding of the low-energy limit of
Quantum Chromodynamics. This starts with a brief summary of QCD itself; in particular, its quark spectrum,
asymptotic freedom and the existence of a characteristic QCD scale,ΛQCD ∼ 200 MeV, that sets the scale
of quark and gluon momenta within hadrons. In particular, typical hadrons built from quarks lighter than
ΛQCD (u, d and possibly s) have masses starting slightly less than 1 GeV.

An octet of pseudo-scalar mesons is somewhat lighter than this, most notably including the lightest
hadrons: pions, π± and π0, whose masses are around 140 MeV. These are understood to be unusually
light (for hadrons) because they are pseudo-Goldstone bosons for approximate symmetries that emerge
in the limit of massless quarks. The symmetries in question are SUL(N)×SUR(N) transformations that rotate
the left- and right-handed quarks, where N = 2 or 3 is the number of quark flavours lighter thanΛQCD.
Both choices for N are possible, depending on whether or not the s quark, with ms ∼ 100 MeV, is included.

Being pseudo-Goldstone bosons, the low-energy properties of these lightest hadrons are dictated by
the assumed symmetry-breaking pattern, in which the QCD vacuum spontaneously breaks the SUL(N) ×
SUR(N) symmetry down to its diagonal SU(N) subgroup. This chapter applies the tools of §4.2 to construct
the EFT for pseudo-Goldstone bosons that nonlinearly realize the symmetry-breaking pattern SUL(2) ×
SUR(2) → SUI(2), and shows that it provides a good description of pion properties for energies well below
1 GeV. The experimental success of this picture is one reason QCD is regarded as the theory of the strong
interactions.

Two new conceptual EFT issues arise in this discussion. One of is these concerns the appearance of
particles in a low-energy theory whose mass is higher than the UV scale. Such particles (including baryons
like nucleons in low-energy QCD) can make sense in the low-energy limit provided that their rest-energy
remains locked up and inaccessible. This could be true if the heavy particle in question cannot itself
decay (or does so only after sufficiently long times), or if the system involves negligible numbers of heavy
antiparticles, with whom the heavy particles would otherwise annihilate.

The second conceptual issue that chiral perturbation theory illustrates is the practical value of including
loop corrections. Besides being necessary for agreement with experiment, loops contribute non-analytic
parts to low-energy amplitudes whose coefficients are robust functions of the lowest-order couplings that
are largely insensitive to UV divergences and higher-order effective couplings.



209 Exercises

Exercises

Exercise 8.1 The parameter Λm entering into the mass formula (8.64) can be related
to properties of QCD as follows. Suppose the quark masses are replaced
by an external local field mq → χq (x) in both QCD and the symmetry-
breaking lagrangian given in (8.37). Compute the generating functional, W [χ],
to leading order in χu and χd, both in QCD and in the low-energy effective
theory, and by differentiating and evaluating δW/δχu and δW/δχd in the
vacuum show that

〈Ω | ūu |Ω〉 = 〈Ω | d̄d |Ω〉 = −Λ3
m.

This reveals the order parameter for the spontaneous symmetry-breaking. It
also shows that the value of Λm (and so also the value of mu + md inferred
from mπ) depends on the precise renormalization prescription used to define
ūu and d̄d.

Exercise 8.2 Historically, the effective lagrangian first used for the G-invariant two-
derivative interactions with symmetry-breaking pattern SUL(2) × SUR(2) →
SUI(2) had the form [11]

Leff = −
1
2
∂μ�π · ∂ μ�π

(1 + �π · �π/F2)2 −
m2
π

2
�π · �π

1 + �π · �π/F2 .

Verify that this also leads to the 2 → 2 pion scattering amplitude given in
Eq. (8.43).

Exercise 8.3 Show that the two-derivative term of the lagrangian in Exercise 8.2 is
invariant under the linear isospin rotations, δ�θ = �ωI × �θ (with �θ = �π/F) as
well as the nonlinearly realized broken transformations given by

δ�θ = �ωA(1 − �θ · �θ) + 2�θ ( �ωA · �θ).

Identify the local field redefinition required to put this transformation into the
standard form given in Eq. (8.19). This extends the results of Exercise 4.2 to
include nonzero masses.

Exercise 8.4 Find the leading graphs that contribute within the effective theory to
low-energy pion-nucleon scattering. Show that these give the leading-order
predictions

a(1/2)
0 � mπ

πF2
π

and a(3/2)
0 � − mπ

2πF2
π

,

for the s-wave scattering lengths for each of the two isospin channels.
Exercise 8.5 u, d and s quarks are arguably light enough to apply chiral perturbation

theory, though the lightest mass for a meson containing an s quark is mK � 500
MeV (instead of mπ � 140 MeV for u and d quarks). Using x log x with
x = [m/(4πFπ)]2 as the figure of merit, estimate the relative accuracy of chiral
perturbation theory using s quarks compared with u and d quarks.

Compute the nonlinear realization for the symmetry-breaking pattern G →
H with G = SUL(3) × SUR(3) and H = SUF(3), where the unbroken ‘flavour’
SUF(3) is the diagonal subgroup of the two factors in G. In particular, compute
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the quantities Ai
μ (θ) and eαμ (θ) that generalize (8.23) and (8.24) to the

3-quark case.
Exercise 8.6 Compute the invariant two-derivative action for the three-quark

symmetry-breaking pattern of Exercise 8.5. (Expressing the result using the
analog of the quantity Ξ defined in the main text might prove useful when
doing so.) Apply Noether’s theorem to this action to derive an expression for
the vector and axial-vector SU (3) currents relevant to the weak interactions.
Identify the quartic interactions amongst the mesons predicted by this
lagrangian. When doing so, it is useful to relate the fields θα to the physical
octet of pseudoscalar mesons using

λαθ
α =

1
F

�����
π0 + 1√

3
η8

√
2π+

√
2 K+√

2π− −π0 + 1√
3
η8

√
2 K0

√
2 K− √

2 K
0 − 2√

3
η8

����� ,

where λα are the eight 3 × 3 Gell-Mann matrices that play the same role
for SU (3) as the three Pauli matrices do for SU (2) (and in particular satisfy
Tr (λαλβ) = 2δαβ). The subscript ‘8’ on η8 is meant to distinguish it from the
SU (3)-singlet state (usually denoted η0). Because of SU (3)-breaking effects,
the physical mass eigenstates, η and η′, are linear combinations of η8 and η0.

Identify all of the G-invariant interactions that arise at 4-derivative level, and
show that there are three independent ones:[

Tr
(
∂μΞ

† ∂μΞ
)]2

, Tr
(
∂μΞ

† ∂μΞ ∂ν Ξ
† ∂νΞ

)
,

Tr
(
∂μΞ

† ∂νΞ
)

Tr
(
∂μΞ† ∂νΞ

)
.

Why are there more here than the two found in (8.59)?
Exercise 8.7 Prove that the electromagnetic interactions of the pseudoscalar octet of

mesons explicitly break SUL(3) × SUR(3) but do not break an SUU(2) ×U (1)
subset of each of the SU (3) factors. As a consequence of this, show that the
electrically neutral pseudoscalar octet mesons do not receive mass corrections
due to the electromagnetic interactions.

Use this unbroken symmetry to argue that the electromagnetic corrections
to the K+ and π+ masses must be equal for zero quark masses [193] (see also
[184]).

Exercise 8.8 For the symmetry-breaking pattern of Exercise 8.5 compute the leading
symmetry-breaking terms involving the quark mass matrix

M =
����

mu

md

ms

���� ,

and show that it – once summed with the electromagnetic corrections, Δem,
described in Exercise 8.7 – leads to the mass formulae [182, 190]

m2
π0 = (mu + md)

Λ3
m

F2
π

, m2
π+ = (mu + md)

Λ3
m

F2
π

+ Δem

m2
K0 = (md + ms)

Λ3
m

F2
π

, m2
K+ = (mu + ms)

Λ3
m

F2
π

+ Δem
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m2
η8
= (mu + md + 4ms)

Λ3
m

3F2
π

,

as well as a π0-η8 mixing term

m2
πη8
= (mu − md)

Λ3
m√

3 F2
π

.

One linear combination of diagonal mass terms is independent of mu , md , ms

and Δem, leading to a version of the Gell–Mann–Okubo mass relations [191,
192]

3m2
η8
+ 2m2

π+ − m2
π0 = 2m2

K+ + 2m2
K0 .

Derive also the following formulae expressing the quark mass ratios, mu/ms

and md/ms , as ratios of measurable pion and K meson masses,

md

ms
=

m2
K0 + m2

π+ − m2
K+

m2
K0 − m2

π+ + m2
K+

and
mu

ms
=

2m2
π0 − m2

K0 − m2
π+ + m2

K+

m2
K0 − m2

π+ + m2
K+

.

Because these do not depend on Λm the experimental ratios of quark masses,
md/ms � 0.053±0.002 and mu/ms � 0.029±0.003 are known more accurately
than are their absolute values.
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The Standard Model as

an Effective Theory

In the applications considered up to this point the Standard Model plays the role
of the underlying UV theory whose low-energy limit is to be explored using the
EFT of interest. But it is also instructive to regard the Standard Model itself as an
effective theory describing the low-energy limit of whatever ‘new physics’ ultimately
replaces the Standard Model once new phenomena at much shorter distances become
accessible to experiments.

There are two reasons why this point of view is useful. First, the fact that it is
even possible says something about the robustness of the assumptions on which the
Standard Model rests. Earlier sections show that low-energy limits are generically
described by renormalizable theories: those theories involving (i) only couplings
with non-negative mass dimension – geff ∝ (mass)p for p ≥ 0 – and (ii) including
all such couplings consistent with the assumed field content and symmetries.

The Standard Model ticks these two boxes, and (as argued below) does so in
a nontrivial way. It does so because it is the most general theory possible that
can describe the low-energy limit of the known elementary particles, together with
their transformation properties under the gauge symmetries.1 If the Standard Model
fails, its failure implies either the existence of new light elementary particles in the
low-energy theory or the failure of the low-energy limit (and the associated new
physics at not-too-high scales that this implies).

The good news is that – as of this writing (2019) – the best evidence is that the
Standard Model does fail, though only in a few specific ways. Its failures include
providing no understanding of Dark Matter, of cosmological primordial fluctuations
or of neutrino oscillations (more about which below). And this failure raises the
second reason why it is useful to think of the Standard Model as an effective theory:
the EFT point of view suggests how to think about what kinds of new phenomena
might exist to be sought in experiments.

The examples described in the remainder of this section are meant to illustrate
these points more concretely. But first we present a lightning summary of the
Standard Model’s field content and gauge symmetries, following the notation
of [194].

1 The requirement that there be gauge symmetries is not a separate condition once the low-energy theory
includes very light spin-one particles (see the discussion leading to Eq. (4.73) as well as the arguments
for massless spin-one particles in §C.3.3).
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9.1 Particle Content and Symmetries♥

The Standard Model portrays the strong, weak and electromagnetic interactions
as being mediated by the exchange of spin-one particles, each of which is the
gauge boson of a local symmetry group. The symmetry group is chosen to
be SUc (3) × SUL(2) ×UY(1), with eight gluons, Gα

μ, corresponding to the eight
generators of the colour gauge group SUc (3), while the three gauge bosons, W a

μ ,
for SUL(2) and the single UY(1) boson Bμ correspond to linear combinations of the
photon, the W± and the Z0 boson.

The structure of the Standard Model follows from the way its field content trans-
forms under these symmetries. It is conventional to summarize the transformation
properties of any particular field, Ψ, in the format

Ψ ∼
(
n3, n2, y

)
, (9.1)

where n3 is the dimension of the SUc (3) representation, n2 is the dimension of the
SUL(2) representation and y is the ‘charge’ – called hypercharge – of the field under
the UY(1) transformation.

Having hypercharge y means the field in question transforms under UY(1) as
Ψ → Ψ eiyg1ω1 , where g1 is the UY(1) coupling constant and ω1 is its transformation
parameter (normalized so that Bμ → Bμ + ∂μ ω1). In the Standard Model the
hypercharge assignments are obtained by relating the generator, Y , to the electric
charge matrix, Qem, and the diagonal SUL(2) generator, T3, by

Qem = T3 + Y . (9.2)

In this notation the transformation properties of the gauge bosons can be written

Gα
μ ∼

(
8, 1, 0

)
W a
μ ∼

(
1, 3, 0

)
Bμ ∼

(
1, 1, 0

)
, (9.3)

because SUc (3) has eight generators and SUL(2) has three.
Besides spin-one particles, the Standard Model’s other boson is the scalar Higgs-

doublet field, Φ, that transforms under the gauge symmetry as

Φ =

(
φ+

φ0

)
∼

(
1, 2,

1
2

)
. (9.4)

Notice that because T3 =
1
2 τ3 has eigenvalues ± 1

2 in the doublet representation, Eq.
(9.2) gives the electric charges of the two component fields, φ+ and φ0, to be as
indicated by their names: q(φ+) = 1

2 +
1
2 = +1 and q(φ0) = − 1

2 +
1
2 = 0.

The Standard Model’s scalar potential,

V = λ

(
Φ†Φ − v2

2

)2

, (9.5)

is designed to be minimized at a nonzero value Φ†Φ = 1
2 v

2, which spontaneously
breaks the SUL(2) × UY(1) subgroup down to the unbroken Uem(1) of electromag-
netism. Because of this symmetry-breaking pattern, three of the four real scalars
contained within the complex doublet Φ are eaten by the Higgs mechanism to give
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the W and Z bosons masses, leaving the massless photon and a single real physical-
Higgs field, h. The resulting particle spectrum and interactions are simple to identify
in unitary gauge, defined by the condition

Φ =
1
√

2

(
0

v + h

)
. (9.6)

In particular, a simple calculation shows the W -boson mass to be MW =
1
2gv (where

g = g2 is the SUL(2) gauge coupling constant), which, when used in (7.8), implies
that v is related to the value of Fermi’s coupling, GF, by

GF =
1

√
2 v2

, (9.7)

and so the measured value GF � 1.166 × 10−5 GeV−2 implies that v � 246 GeV.
The remaining fields in the Standard Model are spin-half fermions, and for

the present purposes what is interesting is how these fields transform under the
SUc (3) × SUL(2) ×UY(1) gauge symmetry. As mentioned earlier – see, for example,
Table 7.1 – these fermions come in triplicate inasmuch as there are three identical
copies of a basic set, or generation, of fermions. Each generation transforms in
precisely the same way as do all the other generations under the gauge group. For
notational simplicity the generational index that distinguishes these copies – e.g. the
index n = 1, 2, 3 of en that distinguishes e from μ and τ – is suppressed in much of
what follows.

A key characteristic of the fermions’ gauge transformations in the Standard Model
is that they are chiral, with left- and right-handed particles transforming differently.
Because of this, it is useful to adopt notation that treats left- and right-handed
fermions separately. Because the antiparticle of a left-handed fermion is right-
handed, and vice versa, the convention used here is to track only those fields that
destroy left-handed fermions and left-handed anti-fermions (as opposed to tracking
the fields that destroy the left- and right-handed parts of only fermions).2 This way of
organizing fields does not pre-judge what is a fermion and what is an anti-fermion,
or whether fermions and anti-fermions are distinct from one another.

For instance, the Dirac spinor field representing the electron is often written in
terms of left- and right-handed parts,

e =

(
eL

eR

)
(spinor space), (9.8)

in Lorentz-spinor space, where eL(x) ∼ ∑
pσ[u(p, σ) apσ + v(p, σ) ā∗pσ] both destroys

left-handed electrons and creates right-handed positrons while eR(x) destroys right-
handed electrons and creates left-handed positrons. When listing all the fermions,
rather than using eL and eR this section instead uses eL and ecL = ε (eR)∗, which
destroys left-handed positrons and creates right-handed electrons. (Similarly,
ecR = −ε (eL)∗ destroys right-handed positrons and creates left-handed electrons.
Here, ε = iσ2 is a 2 × 2 antisymmetric matrix in spinor space, defined below
Eq. (A.28).)

2 These are not propagation eigenstates because the lagrangian’s mass terms can mix them.
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This notation is useful because neither ecL nor eR transform in the same way
as eL under SUL(2) × UY(1) transformations. For instance, whereas the left-handed
electron and neutrino fields transform as a doublet3 under SUL(2),

LL =

(
νL

eL

)
(SUL(2) space), (9.9)

the right-handed electron, eR (and so also ecL ), is a singlet (and, in the Standard
Model, the right-handed neutrino νR does not exist). They similarly differ in the their
value of UY(1) hypercharge, since for the doublet L we have yL = y(LL) = − 1

2 and
for the right-handed electron y(eR) = −1 and so yE = y(ecL ) = +1.

With these conventions the gauge-transformation rules for the left-handed particle
content of a single generation within the Standard Model may be summarized by:(

νL

eL

)
∼

(
1, 2,−1

2

)
and

(
uL

dL

)
∼

(
3, 2,+

1
6

)
, (9.10)

for the SUL(2) doublets and

ecL ∼
(
1, 1,+1

)
, uc

L ∼
(
3̄, 1,−2

3

)
and dc

L ∼
(
3̄, 1,+

1
3

)
, (9.11)

for the rest. Here, 3̄ denotes the conjugate of the 3 representation – which are
inequivalent representations for the group SUc (3).

Although not present in the Standard Model, if there were a right-handed neutrino
the requirement that it could combine with the left-handed neutrino and Higgs boson
to give a Yukawa coupling (and so a neutrino mass once the Higgs acquires an
expectation value) requires it to transform as

νcL ∼ (1, 1, 0) . (9.12)

It would therefore not couple at all to Standard Model gauge bosons, and as a result
could plausibly be very hard to detect (and so might well exist without having
been detected). Hypothetical particles like this that do not transform at all under
SUc (3) × SUL(2) ×UY(1) are called sterile, and are often called the ‘dark sector’ in
theories that propose their existence. Many potential explanations for dark matter are
founded on the idea that such a dark sector could exist and have remained undiscov-
ered despite not being particularly heavy compared with experimentally accessible
energies.

9.1.1 The Lagrangian

The Standard Model lagrangian is defined to be the most general renormalizable
interactions amongst the fields discussed above that are invariant under the gauge
group SUc (3) × SUL(2) ×UY(1). This consists of the terms

LSM = Lgauge + L̃gauge + LHiggs + Lf kin + Lyuk (9.13)

3 As emphasized explicitly, although they look similar, Eqs. (9.8) and (9.9) are vectors in different spaces:
the spinor space of Lorentz spinors for (9.8) and the SUL (2) gauge space for (9.9).
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where Lgauge has the form of a sum of the QCD gauge kinetic term given in (8.1),
plus its counterparts for the SUL(2) ×UY(1) group factors:

Lgauge = −
1
4

Gα
μνG

μν
α − 1

4
W a
μνW

μν
a − 1

4
BμνBμν . (9.14)

The gluon field strength, Gα
μν , is defined in Eq. (8.2), while W a

μν = ∂μW a
ν − ∂νW a

μ +

g2 εabcW b
μW c

ν and Bμν = ∂μBν − ∂νBμ are its counterparts for SUL(2) and UY(1)

(see §C.5 for details). The term L̃gauge contains the parity and time-reversal violating
counterparts to Lgauge, involving εμνλρGα

μνGαλρ, and its analogs for the other two
gauge groups.

The Higgs part of the action, LHiggs, is given by a scalar kinetic term −DμΦ
†DμΦ

(with DμΦ = ∂μΦ − i
2 g2τaW a

μ Φ − i
2 g1 Bμ Φ the appropriate gauge covariant

derivative) plus the scalar potential of Eq. (9.5); the term Lf kin consists of a kinetic
term ψ

/
Dψ for each fermion field in the problem, with Dμψ being the covariant

derivative appropriate to its transformation properties.
Most of the parameters of the Standard Model can be found in the last term of

(9.13), containing its Yukawa couplings. Suppressing all gauge and Lorentz indices
while re-introducing the generation labels m, n = 1, 2, 3, gives the most general
Yukawa interactions as4

−Lyuk = fmn(LmγR En)Φ + hmn(QmγR Dn)Φ + gmn(QmγR Un) Φ̃ + c.c. (9.15)

where (suppressing indices) the SUL(2)-singlet Majorana fields satisfy γRU = uR,
γR D = dR and γRE = eR, while the SUL(2) doublets are given by (9.4) and

Φ̃ = iτ2Φ
∗ =

(
φ0∗

−φ+∗
)

while γLQ =

(
uL

dL

)
and so Q γR =

(
u†L
d†L

)
iγ0,

(9.16)

and similarly for γL L and the lepton doublet in (9.10). The dimensionless coefficients
fmn, gmn and hmn are symmetric 3 × 3 matrices in generation space.5 The interac-
tions in Lyuk represent fermion mass terms once Φ is replaced by its expectation
value using (9.6).

Accidental Symmetries

It is worth noting some things that do not appear in the Standard Model lagrangian,
since these contribute to its overall smell of rightness.

First, notice that all terms in the Standard Model lagrangian are by accident
invariant under a common rotation for all quarks – qL → eiωb qL and qc

L → e−iωb qc
L

with ωb constant – provided all other fields are held fixed. This is ‘by accident’ in
as much as this symmetry was not an input of the theory, so invariance (modulo
anomalies – more about which below) is an automatic consequence of the assumed
gauge symmetries together with the gauge quantum numbers of the known particles
and the condition of renormalizability [195].

4 This is written using Majorana spinors, both because these minimize the proliferation of sub- and
superscripts and because they are more convenient when writing general higher-dimension interactions.
For definitions, in general and for Standard Model fermions, see §A.2.3.

5 One way to see they are symmetric is to work in unitary gauge for which φ+ = 0. In this gauge the
couplings multiply explicitly symmetric operators like uLm uR n = (uc

R m )Tε uR n .
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The conserved charge implied by this global symmetry is baryon number, which
only quarks carry (with all quarks assigned a charge B = 1/3 so a proton carries
B = 1). For the Standard Model (classical) conservation of B is a prediction since it
is impossible to build renormalizable interactions using only Standard Model fields
that violate B conservation. Such an economical prediction is a great success given
that all observations to date are consistent with B conservation.

The same is true for lepton-number rotations LL → eiωl LL and ecL → e−iωl ecL with
ωl constant and all other fields held fixed. That is, all gauge-invariant renormalizable
interactions for Standard Model particles are automatically also invariant (again up
to anomalies – see below) under a common global phase change for all leptons. The
conserved quantity associated with this ‘accidental symmetry’ is lepton number.

From an EFT point of view, these properties arise within the context that the
Standard Model is likely just the low-energy part of a more complete theory
involving much higher energies than v � 246 GeV. Indeed, the Planck mass –
Mp = (8πGN)−1/2 ∼ 1018 GeV – inferred from Newton’s constant of gravitation
provides circumstantial evidence that much higher energies actually do exist in
nature. At low energies relative to this renormalizable interactions should dominate.
So if only Standard-Model particles survive at low energies then no baryon- or
lepton-number-breaking interaction are possible at leading (zeroth) order in the low-
energy expansion. Crucially, this is true regardless of whether or not the underlying
UV completion itself preserves B or L at higher energies. The EFT perspective shows
how B and L conservation can emerge as approximate symmetries at low energy, and
so hints at a deep explanation as to why these symmetries work so well in nature.

Because of the Standard Model’s assumed absence of right-handed neutrinos,
leptons actually enjoy a larger set of accidental symmetries than the previous para-
graphs indicate. Rather than being invariant only under a common phase rotation for
all leptons, the Standard Model is invariant (again, up to potential anomalies) if each
generation of lepton is rotated separately. These additional accidental symmetries
imply separate conservation for lepton number for each generation: Le, Lμ and Lτ.
Though the τ had not yet been discovered [196], separate conservation for Le and Lμ
had been hypothesized [114, 197] before the Standard Model’s discovery to explain
properties of various radioactive decays.6

The Standard Model also hints at the existence of accidental approximate sym-
metries. The only term in the Standard Model with a dimensionful coupling is the
Higgs-potential term, μ2Φ†Φ, where μ2 = λv2, perhaps hinting at an underlying
approximate scale invariance. In particular, there are no mass terms at all for the
gauge or fermionic fields until Φ acquires its nonzero expectation value. Only one
‘relevant’ interaction arises because there are no SUc (3) × SUL(2) ×UY(1) invariants
involving only two fermion or gauge fields with no derivatives. For the fermions this
is a consequence of the gauge symmetries acting chirally (i.e. acting differently on
the left- and right-handed fields).

Within an EFT context the absence of gauge-invariant fermion masses (without
a nonzero Higgs vev) is the start of an explanation as to why the observed particles

6 Only comparatively recent evidence [198–202] for neutrino oscillations [203, 204] shows that separate
electron, muon and tau-number symmetry is not exactly conserved – more about which below (and in
Chapter 16).
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are light enough to be observed in the first place. In any more complete theory at
higher energies the coefficient of any explicit mass term might also be expected
to be large and so, if present, would give Standard Model particles large masses
(perhaps at the Planck scale). But such terms are forbidden because Standard Model
fermions transform in a chiral representation of the gauge group, so their masses are
‘protected’ from being very large provided there is a reason why the vacuum value,
v, for the Higgs should be much smaller than any UV scales. Although it does not
explain why v – or μ in the Higgs potential – should be small in the first place, this
argument does suggest that if you find fermions in the low-energy limit of a more
fundamental theory, it shouldn’t be a surprise to find them transforming in chiral
representations of any low-energy gauge symmetries.

A final approximate accidental symmetry starts from the fact that most fermion
masses are actually quite small compared with v � 246 GeV. In the Standard Model
this happens because the corresponding fermion Yukawa couplings, y f = m f /v,
are themselves small. But in the limit where these couplings vanish, and so Lyuk is
completely turned off, the Standard Model fermions enjoy a very large accidental
classical generation symmetry:

GG = UQ(3) ×UL(3) ×UE(3) ×UU(3) ×UD(3), (9.17)

under which fermions in each representation of the gauge group given in (9.10)
and (9.11) are rotated by separate 3 × 3 unitary transformations in flavour space.
Although it goes beyond the scope of this book to describe it, these approximate
symmetries and their breaking by the Yukawa couplings explain observed patterns
of observed flavour-violating transitions (and sometimes their absence) in many
reactions [205, 206].

9.1.2 Anomaly Cancellation ♣

Defining the Standard Model as the most general renormalizable theory consistent
with local SUc (3) × SUL(2) × UY(1) transformations reveals the central role played
in it by gauge invariance. This is no accident. As argued in §C.3.3, gauge sym-
metries are required for massless spin-one particles by the interplay between the
requirements of Lorentz invariance and unitarity in a quantum system. §4.2.3 extends
this argument to massive spin-one particles that are sufficiently light compared with
integrated-out UV scales.

Yet gauge invariance is only checked above at the classical level, by asking when
the Standard Model lagrangian density is invariant, even though quantum effects are
known to break classical symmetries.7 Furthermore, quantum symmetry-breaking
typically happens precisely when the transformations in question act chirally on
the fields, as they do in the Standard Model. Since consistency of the Standard
Model fails if such quantum effects break its gauge group, SUc (3) × SUL(2) ×UY(1)
transformations must be anomaly free [207–209]. From an EFT perspective, this is
required if the Standard Model is to emerge as a low-energy limit from some sensible

7 As discussed in §4.3, quantum symmetry-breaking effects can be regarded as non-invariance of the
path integral measure under the would-be symmetry, and when this happens the symmetry is said to be
‘anomalous’.
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higher-energy theory; a special case of the general principle of anomaly matching
discussed in §4.3.

This section verifies that although any one species of particle actually does break
the Standard Model gauge group at the quantum level, this breaking cancels once
summed over all the particles in a single generation. The absence of gauge anomalies
in the Standard Model happens in an interesting way, with gauge invariance ulti-
mately relying on an intricate cancellation that depends on the specific hypercharge
assignments of members of a fermion generation have relative to one another. These
relations between hypercharge assignments turn out to explain the very precise
agreement between the absolute values of the proton and electron charges [210]. The
intricacy of these anomaly cancellations seems to provide a clue about how nature
works at a fundamental level.

Anomaly Cancellation in the Standard Model

Recall from §4.3.1 that in four dimensions anomalies are proportional to the
coefficient

Aabc = tr
(
Ta ,
{
Tb Tc

})
, (9.18)

where Ta denote the (possibly reducible) generators of the symmetry group acting on
a column vector built from all left-handed fermions (i.e all left-handed particles plus
all the left-handed antiparticles of all right-handed fermions). This section evaluates
these anomaly coefficients, Aabc , for all choices of Ta in the algebra for SUc (3) ×
SUL(2)×UY(1), showing that Aabc = 0 when the trace is over all left-handed fermions
in a single generation.

To this end, it is useful to adopt the notation A(3, 3, 3) for the anomaly coefficient
involving three generators all taken from within the subgroup SUc (3); A(3, 2, 2) for
the coefficients with one generator taken from SUc (3) and the other two from SUL(2);
and so on, considering each possible combination in turn.

A(3, 3, 3): The SUc (3) representations are all left–right symmetric because both left-
and right-handed quarks transform in the triplet 3 representation (and so left-handed
antiquarks transform as anti-triplet 3̄’s). The left-handed representation is therefore
pseudo-real so the general arguments of §4.3.1 ensure that all of these anomaly
coefficients vanish.

A(2, 2, 2): All representations of SUL(2) are pseudo-real (for the doublet representa-
tions this follows from the Pauli-matrix identity τ2τ∗i τ2 = −τi) and so these anomaly
coefficients also vanish.

A(3, 3, 2) and A(3, 2, 2): Because the groups SUc (3) and SUL(2) act on different
spaces, the generators can be written as direct products of the form Tα = tα ⊗ I for
generators of SUc (3) and Ti = I ⊗ ti for generators of SUL(2), with the first factor
acting on colour indices and the second factor on SUL(2) doublet indices.

Because the generators factorize, the A(3, 3, 2) anomaly coefficients also factorize
and so are proportional to the trace over a single SUL(2) generator. Similarly,
A(3, 2, 2) coefficients are proportional to a single SUc (3) generator. But all gen-
erators of SU (N ) are traceless, for any N , due to the requirement that the group
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elements of SU (N ) have unit determinant (that is what the ‘S’ means). Consequently,
these anomaly coefficients must also vanish, as must all others involving only a
single SUc (3) generator or a single SUL(2) generator like A(3, 2, 1), A(3, 1, 1) and
A(2, 1, 1).

A(3, 3, 1): For the same reasons as given above this coefficient is proportional to
tr c Y , where the subscript on the trace means the sum is only over the hypercharge
eigenvalues for each left-handed field that also carries colour. The anomaly coeffi-
cient (for a single generation) therefore is

A(3, 3, 1) ∝ y(uL) + y(dL) + y(uc
L ) + y(dc

L )

= 2yQ + yU + yD = 2
(

1
6

)
+

(
−2

3

)
+

1
3
= 0. (9.19)

A(2, 2, 1): The same argument as in the previous case shows this anomaly coefficient
is proportional to the sum over the weak hypercharge eigenvalues of only the SUL(2)-
doublet left-handed fermions:

A(2, 2, 1) ∝
∑

LH doublets

y = yL + 3yQ =

(
−1

2

)
+ 3

(
1
6

)
= 0, (9.20)

where the factor of 3 in front of yQ arises from the sum over colours.

A(1, 1, 1): This coefficient is proportional to the sum over the cube of the hyper-
charge eigenvalue for all left-handed fermions:

A(1, 1, 1) ∝
∑
all LH

y3 = 2y3
L + y3

E + 6y3
Q + 3y3

U + 3y3
D

= 2
(
−1

2

)3

+ (+1)3 + 6
(

1
6

)3

+ 3
(
−2

3

)3

+ 3
(

1
3

)3

= 0. (9.21)

One further anomaly-cancellation condition must also be checked. This involves
anomalies for the Lorentz group of spacetime symmetries [210]. The Lorentz group
is also a gauge symmetry because it is a subset of the broader gauge symmetries of
General Relativity, which is also part of the low-energy effective theory (see §10).
Anomalies involving the Lorentz group must also cancel in order not to ruin the
consistency of the description of the massless spin-two graviton (see, for example,
§C.3.4).

A(J, J, 1): The only Standard Model particles not in real representations of the
Lorentz group are again the fermions. Since Lorentz transformations act on spin-
half fermions essentially as SU (2) transformations, anomaly-cancellation arguments
are similar to those for an SU (2) gauge group. It follows that the only anomaly
coefficient that does not trivially vanish is A(J, J, 1), where J is a Lorentz generator.
This anomaly coefficient is proportional to the trace of the weak hypercharge over
all left-handed fermions, which for a single generation of Standard Model fermions
is itself proportional to∑

all

y = 2yL + yE + 6yQ + 3yU + 3yD

= 2
(
−1

2

)
+ (+1) + 6

(
1
6

)
+ 3

(
−2

3

)
+ 3

(
1
3

)
= 0. (9.22)
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It is clear that cancellation of gauge anomalies within the Standard Model
requires a number of relationships amongst the fermionic weak hypercharge assign-
ments within any given generation. Indeed, Eqs. (9.19) through (9.22) impose four
conditions on the five hypercharges yQ, yL, yE, yU and yD, generically fixing them all
up to overall normalization. (The overall normalization cannot be fixed by anomaly
cancellation conditions alone since these remain invariant when all yi’s are scaled by
a common factor.)

One way to think about this is to imagine whether it would be possible to choose
yukawa couplings to be slightly different than in the Standard Model, such as by
having yL = − 1

2 + ε (and similarly for other yukawa couplings) for some small ε. In
general, such a choice would make electric charges slightly different than usual, and,
in particular, could allow the positron and proton charges to differ slightly from one
another.

Anomaly cancellation severely restricts the freedom to do so within the Standard
Model. To see why, notice (9.20) implies that yL = −3yQ and so the electron and
quark electric charges are both given in terms of yQ, with qe = − 1

2 + yL = − 1
2 − 3yQ,

while qu = 1
2 + yQ and qd = − 1

2 + yQ. Since the proton and neutron charges are related
to the quark charges by qp = 2qu + qd and qn = qu + 2qd , the prediction for the
proton/electron charge ratio is given by

qp

qe
=

2qu + qd
qe

=

1
2 + 3yQ

− 1
2 + yL

= −1, (9.23)

in agreement with very precise precision measurements of the proton/electron charge
ratio.

The neutron’s charge is also set by the value of yQ through qn = qu + 2qd =
− 1

2 + 3yQ. Similarly, the neutrino charge is qν = 1
2 + yL =

1
2 − 3yQ = −qn, once (9.20)

is used. These both vanish when yQ =
1
6 , although the invariance of the anomaly-

cancellation conditions under a common rescaling of all hypercharges precludes
them dictating a specific value for yQ. What does fix this value is the combination
of anomaly cancellation and the condition that the expectation value of the Higgs
doublet does not break electromagnetic invariance, since this means that one of its
component fields must be electrically neutral and so yH =

1
2 (or yH = − 1

2 , in which
case redefine Φ→ Φ∗). UY(1)-invariance of the lepton yukawa coupling then implies
that yL + yE = yH =

1
2 , while (9.19) and (9.22) together show 2yL + yE = 0, and

so yL = −(yL + yE) = −yH = − 1
2 . This then implies that both neutrino and neutron

are neutral.
Weak-hypercharge assignments within the Standard Model are remarkably rigidly

dictated by consistency issues, given the field content [210, 211].

9.2 Non-renormalizable Interactions

The Standard Model is by definition renormalizable, as would be expected at energies
E � M within a more fundamental system involving higher energies M , to the
extent that all effects suppressed by powers of E/M can be ignored. One way to
interpret the Standard Model’s success is that this picture is basically right: the
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Fig. 9.1 An example of UV physics that can generate the dimension-five lepton-violating operator within SMEFT.

lightest particles yet to be discovered are very heavy, with M much higher than all
energies yet experimentally accessible.8

In this kind of scenario the first signs that heavy new physics exists would show
up as deviations from the Standard Model due to the presence of higher-dimension
interactions suppressed by powers of 1/M . Interactions with the lowest-dimension
should dominate, so identifying these might usefully guide the search for new
phenomena.

For this reason, it is worth listing the lowest-dimension of these higher-
dimensional operators. Such a list contains all possible effective interactions that can
be built using only the usual Standard Model fields that are both Lorentz-invariant
and invariant under SUc (3) × SUL(2) × UY(1). Redundant interactions should be
identified and excluded as described in Part I. The result of such a construction is
often called the Standard Model Effective Field Theory, or SMEFT.

9.2.1 Dimension-Five Interactions

In the Standard Model’s case this list is particularly simple at linear order in 1/M ,
since there is only one dimension-five interaction possible [212]. As is straightfor-
ward to show, the only dimension-5 interaction consistent with the Standard Model
field content and gauge symmetries is

L5 = −kmn (L
m

i γR Ln
j )ΦiΦj + c.c., (9.24)

where, as above, L denotes the Majorana spinor representing the lepton doublet for
which i, j = 1, 2 are SUL(2) doublet indices and m, n = 1, 2, 3 label the fermion
generation. The matrix of effective couplings, kmn = cmn/M , is a general complex,
symmetric 3 × 3 matrix, with dimension (mass)−1, making the coefficients cmn

dimensionless.
Fig. 9.1 gives an example of a UV completion that could generate an effective

operator like (9.24), consisting of heavy sterile neutrinos, Nm, that mix with the
light neutrinos through a yukawa coupling of the form

LN = −Mmn (N
m
γR Nn) − ymn (L

m

i γR Nn)Φi + c.c. (9.25)

In this case, evaluating the graph in Fig. 9.1 gives kmn � (yT M−1y)mn to leading
order in the inverse sterile-neutrino mass. Consequently, M is of order the sterile

8 Undiscovered light particles could also exist, but only if they couple sufficiently weakly – as would
happen if they are SUc (3)×SUL (2)×UY (1) singlets (like sterile right-handed neutrinos), for example.
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neutrino mass while cmn is controlled by the size of the yukawa couplings that
couple the sterile neutrino to the lepton and Higgs doublets. Since all other effective
interactions come suppressed by at least two powers of 1/M , they are plausibly
negligible compared with (9.24) if M is very large.

The physical implications of (9.24) can be seen by going to unitary gauge, (9.6),
leading to

L5 = −
1
2

kmn(νmγRν
n)(v + h)2 + c.c. (9.26)

where, as before, v = 246 GeV and h is the physical Higgs boson. Besides describing
neutrino-Higgs interactions, (9.26) also contains a right-handed neutrino mass matrix
of size

mmn = kmnv
2 = cmn

v2

M
. (9.27)

The eigenvalues of the matrix m†m then give the squares of the masses for the
neutrino mass eigenstates.

Intriguingly, although there are only a few pieces of evidence that the Standard
Model cannot be nature’s whole story, the existence of neutrino masses is one
of them. A variety of experiments reveal that neutrinos take part in oscillations:
processes wherein the evolution of different neutrino species |νi (t)〉 = e−iEi t |νi (0)〉
are seen to interfere with one another, leading to time-dependent effects in neutrino-
mediated interactions that are proportional to e−i(Ei−Ej )t . Since E2

i = p2 + m2
i , the

existence of a nonzero energy difference (at fixed momentum) shows that neutrino
masses cannot all vanish.

These experiments point to neutrino mass differences of order Δm2 ∼ (50 meV)2,
corresponding to a mass scale M ∼ 1015 GeV if cmn ∼ O(1). The enormity
of this scale compared with the energies currently accessible in accelerators (104

GeV at this writing) makes the neglect of still-higher-dimension interactions self-
consistent. An EFT picture of the Standard Model links the small but nonzero size
observed of neutrino masses to the potential existence of new physics at an extremely
large scale: the bigger the new-physics scale M , the smaller the neutrino mass
(an example of what is called a ‘see-saw’ mechanism for generating small masses
[213, 214]).

But even if new degrees of freedom at the large scale M exist, why does the scale
M dominate the effective coefficient in L5 rather than a much smaller scale? After
all, the lepton doublet and the Higgs doublet interact with one another even in the
absence of L5 because a renormalizable coupling between them already exists in the
Standard Model. So why doesn’t lower-energy physics contribute to kmn, allowing it
to be much larger?

In this regard the important property of the interaction L5 is its transformation
property under the Standard Model’s accidental symmetries. In particular, it does
not share the Standard Model’s accidental conservation of total lepton number,
L, because it changes lepton number by two units. Since lepton number becomes
conserved in the limit, the coupling in L5 vanishes, integrating out lepton-preserving
lower-energy physics can only change kmn in a way that vanishes as M → ∞. In
this sense, the selection rule of L5 under the accidental lepton symmetry protects its
coefficient, keeping it at most of order 1/M .
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9.2.2 Dimension-Six Interactions

There are a great many more interactions possible at the dimension-six level
[195, 212, 215, 217, 218], and unlike for dimension-five there is no compelling
experimental evidence for the existence of any of them. With a few exceptions
(see below), most of these would not be expected to have been seen if the scale
suppressing them is as large as the scale M ∼ 1015 GeV suggested for the dimension-
five interactions by neutrino oscillations, since they are twice-suppressed by this
large scale.

Systematic treatments of these dimension-six operators, including their enumera-
tion (including removing redundant combinations) and one-loop evolution, was only
done comparatively recently [218], with a complete description being beyond the
scope of this book. But a more manageable subset (that illustrates how dimension-
six operators can be usefully used more generally) are those that break the accidental
baryon-number symmetry of the renormalizable Standard Model interactions [195,
215, 216]. Since dimension-six interactions are the lowest-dimension interactions
that can break baryon-number invariance, they should capture very robustly the low-
energy implications of any high-energy baryon-number violating physics (assuming
it involves only the known Standard Model particles at low energies).

Six independent baryon-number violating interactions are possible, consistent
with Standard Model field content and gauge symmetries. These can be written
LB = cI

mnpqO I
mnpq + c.c., where m, n, p, q are generation indices and I labels the

following basis of operators:

O1
mnpq = ε

αβγεi j[Q
i

mγγLL j
n][DpαγRUqβ]

O2
mnpq = ε

αβγεi j[Q
i

mαγLQ j

nβ][UpγγREq]

O3
mnpq = ε

αβγεi jεkl[Q
i

mαγLQ j

nβ][Q
k

pγγLLl
q] (9.28)

O4
mnpq = ε

αβγ (τaε)i j (τaε)kl[Q
i

mαγLQ j

nβ][Q
k

pγγLLl
q]

O5
mnpq = ε

αβγ[DmαγRUnβ][UpγγR Eq]

O6
mnpq = ε

αβγ[UmαγRUnβ][DpγγREq].

As before, α, β, γ = 1, 2, 3 denote color-triplet indices; i, j, k, l = 1, 2 are
SUL(2)-doublet indices and m, n, p, q = 1, 2, 3 are generation labels. εαβγ and εi j are,
respectively, the invariant completely antisymmetric Levi-Civita tensors for SUc (3)
and SUL(2), with ε123 = ε12 = 1. As before, τa, a = 1, 2, 3, denote the three Pauli
matrices acting on SUL(2) indices.

On dimensional grounds, the effective couplings for these interactions are
inversely proportional to two powers of the (presumably heavy) energy scale, M , at
which baryon-number violating physics occurs: cI

mnpq = c̃I
mnpq/M

2. Once the 1/M2

factor is extracted, the remaining dimensionless couplings, c̃I
mnpq , contain all the

other dimensionless factors – coupling constants and such – that would also arise
when generating these effective terms from some more fundamental theory.

Experimental searches for baryon-number violation – such as proton decay –
are clearly of considerable interest because no fundamental principles preclude
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its occurrence, and if it were to occur, the accidental B conservation of the
renormalizable interactions of the Standard Model would explain why it has not been
observed before now. The absence of observational evidence for baryon-number
violation implies that there is a smallest allowed value for M for the interactions
in (9.28).

As of this writing (2019) it is known that the proton’s mean decay lifetime – such
as through the hypothetical reaction p → π0e+ – cannot be much shorter than
of order 1033 years.9 But since the dimension-6 interactions of Eq. 9.28 all satisfy
ΔB = ±1, they can produce a nonzero amplitude for proton decay at linear order in
the coefficients cmnpq , leading to a predicted decay rate that on dimensional grounds
is of order

1
τ
∼ |cI |2m5

p, (9.29)

where phase-space integrals over the final-state momenta are estimated by the
appropriate power of the proton mass, mp. Here, cI generically represents the
relevant effective coupling, for which the lower limit on τ implies an upper bound
|cI | <∼ (1016 GeV)−2. This again points to the existence of a very large mass scale,
intriguingly close to the Planck scale, Mp ∼ 2 × 1018 GeV, and similar to scales
found above from estimates of the M-dependence of neutrino masses.

The list of (9.28) contains much more information than this, however [195, 212,
215]. First, since ΔB = ±1, 0 is satisfied by all dimension-6 terms, ΔB = ±2
processes – like neutron-antineutron oscillations – can only proceed suppressed by
even more powers of 1/M .

Second, all the interactions in (9.28) satisfy the selection rule ΔB = ΔL, which
implies that protons must decay into anti-leptons, and so while the decays p → π0�+

or n → π−�+ are allowed (with � = e, μ), the decays p → π+π0, p → π+π+π−, or
n → π+�− are not. The Standard Model field content ensures B − L conservation
is automatically a much better approximation than B conservation alone (at low
energies), regardless of whether or not this is true in detail for the underlying higher-
energy particles that are ultimately responsible. In the absence of other non-standard
particles at low energies, it would not be a surprise to find that proton decay (if
observed) happened to satisfy B − L conservation, and if so this does not say much
about whether B − L is actually preserved at much higher energies.

Third, all dimension-6 interactions satisfy signΔS = − signΔB, where S =
−1 is the (only approximately conserved) charge assigned to the strange quark,
s. Consequently, transitions that lower B by one unit can destroy zero, one or
two strange quarks (or create the corresponding number of strange antiquarks),
but cannot create any strange quarks without antiquarks. This allows decays like

p → K0�+ while forbidding p → K
0
�+ or n → K−�+, where K0 and K+

are, respectively, mesons with quark content ds and us and K
0

and K− are their
antiparticles.

Similarly, all interactions in (9.28) that satisfy ΔS = 0 also satisfy the isospin
selection rule ΔI = 1/2, where I is the ‘isospin’ quantum number associated with
the diagonal SUI(2) symmetry (described below (8.11)) that rotates u and d quarks

9 Lifetimes like this, much longer than the age of the universe, are measured by the absence of observed
decays in very large samples of protons.
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into one another in a non-chiral way. This implies relations amongst the decay rates
for different channels like Γ(p → π0�+R ) = 1

2 Γ(n → π−�+R ) = 1
2 Γ(p → π+ν) =

Γ(n → π0ν) and Γ(p → π0�+L ) = 1
2 Γ(n → π−�+L ), and so on.

Of course, more detailed predictions than these are possible once the specific
underlying B-violating UV theory is known [219]. But comparison with general EFT
results like those given above is also instructive when trying to infer the properties
of such a specific theory, since it is useful to know which predictions depend on the
details and which do not.

9.3 Naturalness Issues♠

As described above, many features of the Standard Model suggest it can be usefully
regarded as the low-energy limit of something more fundamental. There are also
several circumstantial reasons to expect that this more fundamental physics could
include scales that are quite high. This evidence includes:

• Cosmic rays bombard the Earth’s upper atmosphere with energies that have been
observed to be as high as 1010 GeV.

• Gravity exists and in fundamental units its coupling strength points to a scale
Mp = (8πGN)−1/2 � 2 × 1018 GeV. (More about this clue in §10.)

• If interpreted in terms of an effective dimension-five operator, neutrino oscillations
point to a scale associated with lepton-number breaking at or below M ∼ 1015 GeV.

• The three gauge couplings of the Standard Model, when extrapolated to higher
energies using their renormalization-group running (such as in §8.6), come close
to becoming equal10 in size at a scale of order 1016 GeV [220].

• Cosmological measurements of primordial fluctuations, as seen in the cosmic
microwave background, suggest the existence of a very early cosmological epoch
during which the size of the universe, a(t), had an expansion rate H = ȧ/a of size
H/Mp � 10−6 and the expansion was accelerating, ä > 0. In the simplest models
this occurs if the universal energy density at the time was dominated by a potential
energy V ∼ M4 with M ∼

√
H Mp ∼ 10−3 Mp ∼ 1015 GeV.

If these indications are to be trusted then the world revealed to us by experiments
touches only the very lowest of energies compared to some of the basic scales in
nature. If true, what clues does this suggest about the kinds of phenomena that
might be expected to arise beyond the Standard Model but not too far beyond present
experimental reach?

9.3.1 Technical and ’t Hooft Naturalness ♦

One way to approach this question is to ask if there are properties of the Standard
Model that do not resemble what would be expected as being generic for a

10 They do not become precisely equal, though this need not be a big worry since the running depends on
the spectrum of particles at intervening energies and plausible choices can be made for this spectrum
that makes them agree more precisely [221–223]. It has been speculated that this may indicate the
existence of a ‘grand-unified’ scale, where the three factors of SUc (3)×SUL (2)×UY (1) all unify into
one spontaneously broken simple gauge group like SU (5) or SO(10) [219].
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low-energy theory. Features that are not generic should require some explanation,
and the additional physics associated with the explanation might have observable
implications. Indeed, there are a few features of the Standard Model that do seem
non-generic in this way, consisting mostly of effective interactions that are ‘missing’
in the sense that they are much smaller than an effective interaction might be
expected to be.

To clarify this expectation, recall that the examples considered earlier teach that an
effective interaction of dimension11 dn arises in the low-energy effective theory with
an effective coupling of dimension cI � c̃I M4−dn , where the dimensionally required
factor of M is made explicit so the remaining coefficient c̃I is dimensionless.

As discussed at length above, when successive scales, M1 � M2 � M3,
are integrated out in this way the effective coefficients receive contributions from
each, with the smallest scale – i.e. M1 – dominating for irrelevant operators (those
with dn > 4) and the largest scales – i.e. M3 – dominating in relevant ones (with
dn < 4). Marginal operators (with dn = 4) have dimensionless coefficients
that typically depend logarithmically on the various scales, corresponding to their
renormalization-group running between successive mass thresholds.12

Of course, this is a generic statement that can have exceptions, such as the apparent
suppression of lepton-number violating dimension-five interaction by a very large
scale rather than a much smaller one closer to the weak scale. But it is precisely
this type of deviation from the generic expectation that calls out for explanation; in
the case of the dimension-five interaction it is possible that physics at lower scales
preserves lepton number and this is why smaller scales do not contribute to this
particular interaction.

The interactions with dn ≤ 4 are particularly interesting because they should be
the most sensitive to what goes on at the highest energies.13 This is because their
couplings arise enhanced rather than suppressed by any very large scale M associated
with UV physics [79]. The Standard Model has two such operators with dn < 4, and
a host of interactions with dn = 4, that are considered below in turn.

The two relevant interactions with dn < 4 allowed by the Standard Model field
content and gauge symmetries are given by

Lrel = −c4 + c2Φ
†Φ ⊂ LSM, (9.30)

where cn has dimension (energy)n, and both are contributions to the Higgs potential.
The problem (to the extent there is one) with these interactions is the size of the two
coefficients c4 and c2. Consider first c2.

On one hand, the form of the Higgs potential (9.5) in the Standard Model dictates
c2 = λv2, where λ is the Higgs self-coupling and v is the size of the Higgs
vacuum expectation value, as defined by Φ†Φ = 1

2 v
2, say. The numerical values for

11 For strongly coupled systems an interaction operator’s scaling dimension, dn , need not be close to its
naive dimension, but the argument being given goes through in this case as well, so long as it is the full
scaling dimension that is used.

12 Dimensionful couplings also depend on logarithms of scales – this is just not emphasized in what
follows since the powers are usually more important.

13 Although the rest of this discussion focuses on dn < 4, a puzzle also exists for dn = 4 – called
the strong CP problem [224–226]. The problem arises because none of the parity- and time-reversal
violating interactions in L̃gauge defined below (9.14) are measured to be present, with dimensionless
coefficients that must vanish to very good accuracy in the case of the gluon field.



228 The Standard Model as an Effective Theory

these parameters follow from the relation (9.7) relating v � 246 GeV to the Fermi
constant (which is measured in muon decay), and from the measured Higgs-boson
mass, m2

H = 2λv2 � (125 GeV)2, and so agreement between the Standard Model and
observations dictates c2 =

1
2 m2

H � (88 GeV)2.
On the other hand, a generic contribution to cn obtained by integrating out particles

with mass M is expected to be δcn ∝ Mn, and so can be much larger than is observed,
particularly for masses as large as M ∼ 1015 GeV. To be completely concrete as to
why this kind of contribution might be disturbing, it is worth examining in detail a
specific model of (part of) what the UV physics might be. For this purpose a minimal
example consists of a real, heavy Standard-Model-singlet scalar field, S, coupled to
the Standard Model through the most general possible14 renormalizable interactions:

Ls = LSM −
1
2
∂μS∂μS − 1

2
M2S2 − g

2

2
S2Φ†Φ − 1

4
λsS4, (9.31)

where the Standard Model part includes, in particular, the offending couplings c2

and c4.
This extension of the Standard Model introduces a single new spinless particle and

three new parameters: the two dimensionless couplings g, λs and the new-particle
mass M . The existence of a renormalizable coupling like this between Standard
Model fields and a singlet scalar is sometimes called the scalar portal (see Exercise
9.6). Sterile fields interact very weakly and so could well exist at experimentally
accessible energies without having been detected. When a sterile particle can couple
to Standard Model particles through renormalizable interactions, those interactions
are said to be a portal to the hypothetical sterile (or dark) sector. There are only a
handful of such portals, inasmuch as there are only a few kinds of sterile particles
that can couple to Standard Model fields through renormalizable interactions.

With this UV extension in hand it is possible to integrate out the heavy S particle
explicitly to derive the low-energy EFT appropriate for energies E � M . It is
instructive to compute the size of the effective coefficient c̄2 in the low-energy EFT
and compare it to the size of c2 in the full theory. Following the spirit of §3.2, loops
are regularized using dimensional regularization and both c̄2 and c2 renormalized
using the decoupling-subtraction scheme of §7.2.3.

Both c̄2 and c2 are fixed by comparing to the mass of the physical Higgs boson, and
because the renormalizable part of the EFT in this example is the Standard Model,
for it the result is the standard one:

m2
H = 2c̄2 + (SM loops) = 2λ̄v̄2 + (SM loops), (9.32)

where λ̄ and v̄ are the corresponding Standard Model parameters within the EFT.
The classical Standard Model relation c̄2 = λ̄v̄2 is used in the tree-level term, and
all parameters are renormalized. What is important in this expression is that loop
corrections in the low-energy EFT involve only low-energy Standard Model fields
and so the loop terms in (9.32) are suppressed relative to the tree-level term by small
factors like α/4π.

14 The existence of a symmetry S → −S is assumed for simplicity.
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Fig. 9.2 Graphs contributing to the Higgs mass in the extended UV theory. Solid (or dotted) lines represent S (or
Higgs) fields. Graph (a) is the one-loop graph through which a massive S particle contributes at the 1-loop
level; Graph (b) is the direct contribution of the effective coupling c2; the effectiveΦ†Φ coupling in the
low-energy Wilsonian EFT. To these are to be added all other contributions (not drawn) including one-loop
Standard-Model effects. What is important is that these other effects are present in both the full theory
and the low-energy EFT.

The corresponding calculation for the full UV completion is precisely the same,
with the exception that the loop contributions now also include graph (a) of Fig. 9.2,
in which the heavy field S also circulates.

m2
H = 2cbare

2 + (SM loops)ε +
g2 M2

8π2

[
1
ε
+ γm − log

(
M2

μ2

)]
� 2c2 + (SM loops) − g

2 M2

8π2 log

(
M2

μ2

)
, (9.33)

where the g2 M2 term comes from evaluating explicitly the contribution of graph (a)
in Fig. 9.2 using dimensional regularization (with D = 4− 2ε), and the precise value
of the μ-independent constant γm is not required. The contributions of loops with
SM particles are also present precisely as they were for the low-energy EFT, with
a subscript ε denoting inclusion of the divergent (as ε → 0) pre-renormalization
result.

The relation between c2 and c̄2 is inferred by comparing (9.33)–(9.32), keeping in
mind that mH is a physical observable and so is 125 GeV for both calculations. This
shows that c2 and c̄2 depend differently on μ, with

c̄2(μ) � c2(μ) − g
2 M2

16π2 log

(
M2

μ2

)
, (9.34)

where the approximate equality neglects subdominant contributions, including the
small subdominant shifts λ − λ̄ or v − v̄ in the values of SM couplings inferred
within the UV theory and the EFT.

This comparison shows that although the parameter c̄2 � 1
2 m2

H � (88 GeV)2 has
a typical weak-scale size in the effective theory for a wide range of μ, the same is
not true for the coupling c2 in the UV theory except at the specific point μ = M .
For any other scale (9.34) shows c2 must take a much larger value of order g2 M2

that mostly cancels the equally large S-loop contribution to leave the much smaller
residual weak-scale value for c̄2.

If there were another still heavier particle with mass M̂ � M then c2(μ = M̂)
is order M2 at this new threshold, and the new coupling for energies above M̂ is of
order M̂2 and so on. The UV theory must carefully choose to be on the RG trajectory
that emerges at the threshold μ = M with a weak-scale value. What is striking about
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this choice is its precision: for g ∼ O(1) and M ∼ 1015 GeV the coupling c2 at a
scale M must be chosen with a precision of over 23 decimal places.

In the absence of such a precise choice Eq. (9.34) would instead give c̄2 ∼ c2 and
so would predict mH ∼ M . In the UV theory a huge hierarchy like mH � M between
the values of two masses is not understood in terms of the small size of a coupling
parameter like c2(μ) for all μ; instead, it is controlled by an extremely precise choice
for the RG trajectory that is large at all scales except at the very low energies where
it is measured to be small.

This is not the way hierarchies of scale usually work. For instance, if one asks why
atoms are larger than nuclei the answer can be cast in terms of the overall size of
couplings within the Wilson action, and this can be done for any scale one chooses
to define this action. Asked within the Standard Model itself, defined at hundreds of
GeV, then the size of an atom is set by the Bohr radius, 1/a0 � αme, and the size
of a nucleus is set by the QCD scale, 1/rN � ΛQCD. From the Standard Model’s point
of view, atoms are larger than nuclei because the fine-structure constant is small,
α � 10−2, and the electron is much lighter than the QCD scale, me/ΛQCD � 10−3, and
this is true for any μ one chooses to evaluate running couplings like α.

When asked in the effective theory below the confinement scale of QCD, the
quarks and gluons of the Standard Model are replaced by the protons and neutrons
(or nucleons) that are built out of them. Although the Bohr radius is still set by
ᾱ m̄e in this new theory, the size of a nucleus is now set by the nucleon mass, m̄N,
where (as above) ‘bars’ denote the corresponding renormalized parameters within
this new Wilson action. The quantities ᾱ, m̄e and m̄N can be computed in terms of
the parameters α, me and ΛQCD, of the Standard Model, and this can be done above or
below the muon threshold. It is true at any scale in the low-energy theory that ᾱ � 1
and m̄e/m̄N � 1.

There are a great many hierarchies of scale found in nature, and experience with
them all teaches that there are two parts to understanding why they exist:

1. One first finds which renormalized parameters (such as c2 or c̄2) must be small in
the underlying microscopic theory.

2. One then asks why this parameter remains small as one integrates out a succession
of higher-energy states to obtain the Wilson action for the effective theory
appropriate to the lower energies where the parameter is measured.

When both of these questions have an answer then the small parameter is said to be
technically natural. Our understanding of why atoms are large compared with nuclei
is technically natural in this sense, as are all of the other known hierarchies in nature
(with one exception, more about which below).

In the above example the hierarchy mH � M is not technically natural in this
sense. At low-energies the small size of mH compared to M is understood in terms of
the small size of c̄2 compared to M2. But it is not technically natural because it is not
true that c2 remains small in the EFT defined both above and below the large mass
threshold at E = M .

’t Hooft Naturalness

Approximate symmetries provide a very common reason why a parameter hierarchy
can be technically natural. The reason for this is that symmetries can often forbid
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there being large corrections to a small quantity. They can do so because if the
quantity of interest breaks a symmetry, then any corrections to it must also break
the symmetry and so must contain any small factors associated with making the
symmetry a good approximation in the first place.

This suggests defining a slightly stronger condition than technical naturalness,
called ’t Hooft naturalness. This states that a small parameter is (’t Hooft-) natural if
additional symmetries arise once it is set to zero [80].

Small masses for pseudo-Goldstone bosons for spontaneously broken approximate
symmetries fall into this category, since they must vanish in the limit that the
spontaneously broken symmetry becomes exact rather than approximate. This is
also why fermion masses (like the electron mass) can be small compared with other
scales while still being technically natural. They can do so because additional chiral
symmetries emerge once the fermion mass goes to zero, under which the fermion’s
left- and right-handed parts rotate separately: ψ → exp(iθγ5)ψ.

Pretty much all of the known hierarchies are ’t Hooft natural in this sense,
as well as being technically natural, and the two concepts are often regarded as
being synonymous. However, there are exceptions – such as within supersymmetric
theories, where corrections to parameters in the super-potential can be small even
when not protected by a symmetry.15 At the end of the day, it is technical naturalness
in the sense defined above that seems satisfied by well-understood effective theories,
with ’t Hooft naturalness providing a means to this end.

9.3.2 The Electroweak Hierarchy Problem

Returning to the Standard Model example, can the absence of large contributions
to c2 of order M2 be understood in a technically natural way? (The puzzle of how
to do so is called the electroweak hierarchy problem.) Three classes of proposals
have been made to do so, and each has its own predictions for new phenomena to
be sought at the highest energies available (none of which has been seen as of this
writing – mid 2019).

Option A: Composite Higgs Particle

One way to avoid the problem of c2 having to cancel carefully against quantum
contributions of heavy particles is to have the c2Φ

†Φ term not appear at all within the
Wilsonian EFTs appropriate to very high energies. This might happen if the Higgs
boson were a composite built out of some sort of constituents, much as atoms are
built from nuclei and electrons and the proton is built from quarks and gluons.

Such substructure could have escaped detection if the compositeness scale,
Mc , were high enough to put the composite nature of the Higgs beyond experi-
mental reach. Here Mc is the lowest scale associated with compositeness, which
could mean Mc � 1/aH with aH of order the radius of the Higgs bound state, or
it could mean the excitation energy, Mc � EB, to the first excited bound state above
the ground state, whichever is smaller. Although these are similar scales for protons
(and also similar to the proton rest mass), they are very different from one another for
atoms, for which the radius of the bound state is of order the Bohr radius 1/aB � αme

15 Small parameters of this type that are technically natural despite not being protected by a symmetry –
usually due to the structure of corrections in supersymmetric theories – are sometimes known as
supernatural.
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(where α � 1/137 is the fine-structure constant encountered earlier and me is the
electron mass), while EB ∼ α2me � 1/aB and both are small compared with the
atomic rest mass.16

This kind of scenario helps with the electroweak hierarchy problem because
any EFT relevant at scales above Mc would involve fields representing the new
constituents rather than the Higgs field Φ. (In the same way, there are no proton
or neutron fields in the Standard Model itself, despite these fields – and other
composite fields, such as pions – appearing explicitly in EFTs defined below a few
GeV. The Standard Model instead contains the gluon and quark fields from which
these composite states are made.) Since the absence of the field Φ implies that the
operator c2Φ

†Φ does not appear in the Wilsonian action above Mc , there is no longer
an issue as to what the size of c2 must be.

This is the most historically conservative option, since past decades are littered
with examples where particles once thought to be elementary instead prove on closer
inspection to be built of smaller stuff. The hard work in this scenario is designing
plausible dynamics that can bind constituents into Higgs-like objects (and nothing
else that would have given away its composite nature). Part of what makes this tricky
is the fact that, unlike for protons, the absence of evidence for Higgs compositeness
up to energies well above 1000 GeV means Mc must satisfy Mc � mH � 125 GeV.
Having a bound state with a mass much smaller than the typical binding scale is
unusual, though not impossible (as the example of the pion shows). With pions in
mind, this kind of scenario often arranges for the Higgs to be a pion-like pseudo-
Goldstone boson for some new type of approximate internal symmetry, often by
proposing a new kind of QCD-like strongly coupled ‘technicolour’ gauge group
acting on constituent ‘techni-quarks’ for which the Higgs is one of the bound mesons
[227, 228].

The power of using technical naturalness as a criterion to motivate such models
comes from the fact that the compositeness scale, Mc , cannot be too far out
of experimental reach if the compositeness is to solve the electroweak hierarchy
problem. It cannot be too large because if it were all of the constituents could be
integrated out to arrive at Wilsonian description of physics below Mc , and this would
contain a field Φ for the composite Higgs. Once this is true, the size of the operator
c2Φ

†Φ again becomes relevant and we are back where we started. This illustrates
how technical naturalness can suggest specific kinds of new physics – in this case a
composite structure for the Higgs – that (crucially) should not be at energies too high
to be accessed experimentally.

Option B: Symmetries

A second approach to solving the electroweak hierarchy problem is to suppose
that the Higgs really is elementary (at least on the scales relevant to upcoming
experiments), and to propose a symmetry that makes the small size of c2 ’t Hooft
natural (and so therefore also technically natural).

This is harder than it looks, since a term like c2Φ
†Φ is automatically invariant

under a large class of symmetries, since these must also preserve the scalar kinetic

16 This particular hierarchy of scales is a consequence of the nonrelativistic kinematics of the bound
electron (more about which in Part III devoted to nonrelativistic applications).
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term ∂μΦ†∂μΦ. These include all orthogonal linear transformations of the four real
fields contained within Φ.

There are essentially three types of symmetries proposed to make the Higgs mass
parameter ’t Hooft natural. One of these occurs if the symmetry transformation is
inhomogeneous (i.e. involves shifts Φ → Φ + c + · · · as well as linear rotations
of the fields), as do the nonlinear realizations discussed in §4 associated with a
Goldstone boson. Invariance under shift symmetries of this type not only forbid
interactions of the form c2Φ

†Φ, but they also completely forbid the appearance of
Φ within the scalar potential. They can therefore provide a ’t Hooft-natural cover
for the appearance of scalars with small coefficients in the scalar potential, and so,
in particular, protect a small size for c2. This kind of symmetry also plays a role in
Option A above, but does not, in principle, require Φ to be composite.

The other two classes of symmetries that can forbid c2Φ
†Φ are spacetime

symmetries in that they act on the spacetime coordinates (or the spacetime metric) as
well as on the Higgs field (see §C.4.2 for more about the distinction between internal
and spacetime symmetries). The simplest example of this type is scale invariance,
under which Φ→ λpΦ (for some nonzero p), while the spacetime metric transforms
as gμν → λ2gμν , where λ is a constant transformation parameter.17

For such symmetries the lagrangian density transforms as L → λ−4L, and so is
not invariant (even though the action S =

∫
d4x L is) because the spacetime measure

is also not invariant. Invariance of the kinetic term ∂μΦ† ∂μΦ = gμν∂μΦ
†∂νΦ then

implies that p = −1, in which case the only invariant form for the scalar potential is a
term like (Φ†Φ)2. In particular,Φ†Φ is not invariant and so can be protected provided
this symmetry itself survives quantization (and so is not anomalous). The tricky part
in this case is devising couplings of Φ to heavy states that are scale invariant and not
anomalous. (Unfortunately, scale invariance is one of those symmetries that usually
is anomalous.)

The other kind of spacetime symmetry (and the third type of symmetry used to
address the electroweak hierarchy) is the one whose implications have been explored
in the most detail: supersymmetry [229–233]. Although a detailed explanation goes
beyond the scope of this description, supersymmetry relates spinless particles to
spin-half ones (and more generally relates particles whose spin differs by 1

2 ), forcing
these to have related couplings (and identical masses) in the limit that it is unbroken.
Since spin-half particles can have ’t Hooft-natural masses because of the new chiral
symmetries that emerge in the massless limit and since supersymmetry requires spin-
half and scalars to share the same mass, the combination of supersymmetry and
chiral symmetries can also protect scalar masses [223, 234, 235]. Supersymmetry
turns out to be a spacetime symmetry because invariance of the action again requires
the lagrangian density, L, to transform in a specific way rather than itself be
invariant.

To see more explicitly how supersymmetry helps, consider a supersymmetric
extension of the simple toy UV theory given in (9.31). In the supersymmetric version

17 This type of symmetry can sometimes be rephrased for specific metrics (like the Minkowski metric,
gμν = ημν), as a coordinate transformation, xμ → λxμ , whose effect is to rescale the metric gμν →
λ2gμν . Metrics for which such a transformation δxμ = ξμ is possible are said to admit a ‘homothetic
vector field’, ξμ .



234 The Standard Model as an Effective Theory
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Fig. 9.3 A new graph that contributes to the shift in c2 when the heavy fields are integrated out in the

supersymmetric UV model. Dotted lines represent the scalarΦ field, while a solid line here represents its
superpartnerψ (rather than the heavy scalar S). The double line represents the superpartner χ of the
heavy scalar S. All order-M2 terms in this graph precisely cancel those coming from the left-hand graph of
Fig. 9.2 in the supersymmetric limit (in which the masses and couplings in this graph are related to those
of Fig. 9.2).

of this theory S must be complex and both the scalar Φ and S have spin-half
partners, respectively denoted ψ and χ. These spin-half fields share the same gauge
transformation properties as their scalar partners, making ψ an SUL(2) doublet and χ
a singlet. Φ and ψ also share the same mass so long as supersymmetry is preserved,
and the same is true for S and χ.

It turns out that supersymmetry does not forbid the existence of the problematic
c2Φ

†Φ term and also allows the dangerous interaction g2Φ†Φ S∗S in the scalar
potential whose use in loops gives potentially large order-M2 contributions to c2.
But crucially, if this last term exists, supersymmetry also requires the existence of a
Yukawa coupling of the form g Φ†(χ γLψ) + c.c..

The existence of the new Yukawa interaction is important because it implies
that there is another graph – Fig. 9.3 – that contributes to the relation between the
coefficients c̄2 and c2 once the heavy fields S and χ are both integrated out (as
they must be, given they are both equally heavy). Because the particles in the loop
are fermions, the sign of this new contribution is opposite to the left-hand graph
of Fig. 9.2. In the supersymmetric limit the equality of the χ and S masses and
the fact that the g2Φ†Φ S∗S interaction has coupling strength that is the square of
the g Φ†(χ γLψ) coupling strength then turns out to ensure all order-M2 terms in
∂c2/∂ log μ cancel between the graphs of Figs. 9.2 and 9.3.

Once again, technical naturalness suggests new effects to be sought at energies
not too large compared to those to which there is already access. The new effects in
this case relate to the properties of the new particles required by the symmetry (such
as superpartners), and these cannot be too heavy without (e.g.) the large difference
between the boson and fermion masses ruining the cancellations required to enforce
’t Hooft naturalness for the size of c2.

Option C: Low Gravity Scale

Historically, the third option took longer to identify, and essentially involves denying
the evidence for the existence of physical scales much larger than the weak scale.
How is this possible, given the evidence for higher-energy physics outlined at the
start of §9.3?

The strongest line of evidence18 for higher-energy scales comes from the value
of the Planck mass, Mp = (8πGN)−1/2 � 2 × 1018 GeV, reflecting the small size
of Newton’s gravitational constant relative to other known couplings in nature. The

18 Note that simply observing cosmic rays with high energies does not necessarily mean that there are
new types of fundamental physics at these high energies.
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observation on which Option C relies is that Mp gives the strength of a coupling
rather than the mass of a physical particle. As such, it likely depends both on physical
masses and on the size of coupling constants, much in the same way that the Fermi
constant is related to the W -boson mass by a relation of the form GF ∝ g2/M2

W (c.f.
Eq. (7.8)). It is because the coupling g is small that the scale G−1/2

F � 300 GeV is
several times larger than the actual W mass: MW � 80 GeV.

Can the scale set by Newton’s constant similarly be much larger than the mass
of the relevant particles in the UV theory? It turns out that it can, provided more
than just the usual three dimensions of space exist. Extra spatial dimensions could
exist and have escaped detection if they are compact and sufficiently small, and
(as explored in more detail in §10.3.2) if this is true then the effective theory at
sufficiently low energies becomes four-dimensional.

One measure of extra-dimensional size is its volume, which in the case of d extra
dimensions is here denoted bySd . For instance, if there were a single extra dimension
that is a circle then S1 = 2πL where L is the circle’s radius; for two extra dimensions
with the geometry of a sphere S2 = 4πL2, and so on. In what follows, D = 4 + d
denotes the total number of spacetime dimensions, with d reserved for the number
of additional ones besides the usual four.

It turns out that the volume of any extra dimensions enters into the relationship
between the strength of Newton’s constant, Gd , in the extra dimensions compared
with G0 = GN that one measures in practice in the low-energy four-dimensional
effective theory.19 As shown in more detail in §10.3.2, for a broad class of extra-
dimensional geometries this relation is given by

GN =
Gd

Sd
. (9.35)

There are several ways to understand this relation, one of which is to recall that for
an infinite-range field like gravity, when all dimensions are infinitely large, Gauss’
Law implies that the gravitational force falls off with distance like

|F| ∝ Gd

r2+d (for r � L), (9.36)

in 3+d spatial dimensions. This power law follows from the observation that the total
gravitational flux through a sphere is independent of the size of the sphere, whose
area (for all dimensions infinitely large) grows like r2+d in 3 + d spatial dimensions.
Eq. (9.36) expresses how the force falls with distance due to the spreading of force
lines into the surrounding space.

When d of the extra dimensions are compact with linear size L, however, Eq.
(9.36) can only be a good approximation when r � L. Distances much larger than L
are only possible in the directions that are non-compact, and so for r � L the factors
of r get replaced by factors of L for each of the compact extra-dimensions, and so
Eq. (9.36) becomes replaced by

|F| ∝ Gd

Ldr2 (for r � L). (9.37)

19 For aficianados: strictly speaking it can be the ‘warped’ volume of the extra dimensions that determines
the size of Newton’s constant in the low-energy theory [237].
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This last result assumes that only the observed three spatial dimensions are much
larger than L. Once the dimensionless order-unity factors are included (see below),
the value of GN inferred from measurements of the strength of gravity’s inverse-
square law are related to the extra-dimensional coupling, Gd , by Eq. (9.35).

Now comes the main point: it is actually possible for Sd to be large enough that
the fundamental gravitational scale, Gd , can be closer to the weak scale than the 4D
Planck scale, without these extra dimensions being so large they would already have
been discovered [236, 237]. For instance, in order to have 8πGd � (10 TeV)−2−d

requires

Sd =
8πGd

8πGN

� (2 × 1018 GeV)2

(104 GeV)2+d , (9.38)

and so S2 � (2×1010 GeV−1)2 � (4 μm)2 if d = 2 while S6 � (5 GeV−1)6 � (1 fm)6

if d = 6. But (for some classes of models) the best constraint on the size of any extra
dimensions comes from tests of the inverse-square law of gravity. These tests show
that the inverse-square law works well down to about r >∼ 45 μm, with nothing really
known for distances smaller than this.

In these models the trick is to be able to calculate why Sd should happen to be this
large, rather than much smaller, since in gravity the geometry is a dynamical variable.
But once this is done one transitions to an extra-dimensional world at energies larger
than the inverse size of the extra dimensions: providing an unusual way to explain
the electroweak hierarchy. In this case, technical naturalness suggests new things
to seek (the presence of the extra dimensions) at energies close to experimental
reach.

To summarize: there are, broadly speaking, three classes of proposals for how new
physics could arise above the electroweak scale in a way that keeps the presence of a
small Higgs mass technically natural. All three classes of models have experimental
signatures, and the good news is that these signatures should appear not too far above
experimentally accessible energies. These signals have been sought in experiments
for all three types of proposals. The bad news is that no evidence for any of these
categories has been found.

Does this mean that demanding technical naturalness is a fruitless exercise? It is
difficult to say at present because although naturalness motivates new physics that
cannot be too far above the energies currently being accessed, it is not clear precisely
how far above the electroweak scale is ‘too far’. Although most would agree that
M � 1015 GeV makes the electroweak hierarchy seem unnatural, is M � 102 TeV
acceptable? How about 104 TeV? Since our reach at present extends only out to
14 TeV it is hard to know for sure whether to be confident that technical naturalness
will continue to be satisfied at higher energies.

9.3.3 The Cosmological Constant Problem

The same kinds of uncertainty do not apply to the other naturalness problem afflicting
the Standard Model, mentioned in passing earlier. This problem is to do with the size
of the parameter c4 defined in Eq. (9.30). Because c4 is only an additive constant
in the scalar potential, it is not normally discussed much in particle physics. This
is because it does not involve any Standard Model fields at all (apart from the
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spacetime metric, due to the factor of
√−g, with g = det gμν , not made explicit

in the above lagrangian).
Because this term involves only the metric, its implications are only apparent once

gravity is considered. Since c4 contributes to the stress energy by an amount

Tμν = −c4 g
μν , (9.39)

it gravitates as does a relativistic perfect fluid (see, for example, Eq. (14.105)) whose
pressure, p, and energy density, �, are related by � = −p = c4. Because this implies
that either p or � must be negative, the gravitational effects of c4 can be disentangled
from those of other sorts of gravitating matter (for which these are both positive).
Intriguingly, there is now observational evidence20 [238, 239] that c4 is nonzero and
positive, with size

c4 � (3 × 10−3 eV)4. (9.40)

In cosmology (from whence the evidence comes) this inferred energy density is
called Dark Energy.

All the naturalness issues encountered above for c2 and the electroweak hierarchy
also apply to c4, which typically receives contributions of order M4 when integrating
out particles of mass M . As of this writing there is no understanding of how c4 can be
small at all scales within the Standard Model, and so the understanding of the small
size of this vacuum-energy density is not technically natural. The problem of how to
make it technically natural is called the (old) cosmological constant problem.

Modifying the Standard Model to make the observed size of c4 technically natural
proves to be much harder than the electroweak hierarchy problem. It is harder because
even ordinary particles like the electron already contribute dangerously to c4, with
an initial value of order m4

e in the EFT above the electron mass having to cancel the
contributions of electron loops. Because me � 511 keV this cancellation must happen
to 36 decimal places in order to make the energy density in cosmology as small as
(9.40). And it only gets worse for heavier particles, with the W , Z and Higgs bosons
requiring cancellations of 56 decimals.

Technical naturalness is clearly going to be harder to achieve for c4 since
it involves modifying how even the electron contribution to the vacuum energy
gravitates, and this must be done at low energies right down to sub-eV scales. But
the electron is probably the particle that we think we understand the best, so any
modification must be done in such a way as not to ruin any of the many successful
tests that have been made of electron properties at these energies. This seems a
tall order, for which no known proposals seem to work. Although there is also
no definitive no-go result showing it impossible, much effort has been invested in
seeking a technically natural explanation of c4, so far to no avail.21

20 This evidence comes from two lines of argument. One measures the spatial curvature of the universe
(which fixes the total energy density), assigning to Dark Energy the difference between the total
energy density and the energy density present in ordinary (and dark) matter. The other evidence comes
from the discovery that the universal rate of expansion is currently accelerating (as General Relativity
predicts would happen if � + 3p < 0).

21 The leading approach so far takes the point of view that having c4 as small as (9.40) is indeed unnatural.
This is lived with by making anthropic arguments [240] where c4 actually varies from place to place
throughout the universe and arguing that regions where c4 differs from (9.40) are inconsistent with
the formation of life (and so our existence should correlate with finding a small size for c4 in our
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Although technical naturalness seems to hold well for all other of the many known
hierarchies of scale, the failure to resolve the naturalness problem for c4 currently
undermines the proposal that all hierarchies of nature should be technically natural.

9.4 Summary

This chapter first briefly summarizes some properties of the Standard Model of particle physics, starting
with its particle content and how these transform under its SUc(3) × SUL(2) × UY(1) gauge symmetries.

The Standard Model is our most successful theory of nongravitational interactions and when combined
with General Relativity provides the current framework for understanding nature. Much about the model
carries the whiff of a low-energy limit: in particular, the fact that it can be defined as the most general
renormalizable theory consistent with the assumed gauge symmetries and field content. This is precisely
what would be expected if the Standard Model were the low-energy limit of some more fundamental
theory, whose fundamental scale, M, is so high that it suffices to work at zeroth order in E/M.

Another feature that suggests the Standard Model is a low-energy limit is the fact that its fermions
transform in chiral representations of the gauge group (i.e. left- and right-handed particles transform
differently). If the fundamental scale M is large, chiral fermions help explain why a low-energy limit exists
at all, because chiral fermions (similar to gauge bosons) cannot acquire masses unless the gauge symmetry
spontaneously breaks. If the scale v set by this symmetry breaking proves to be low, it automatically also
ensures that chiral fermions and gauge bosons are also light. Chiral fermions tend to have anomalous
gauge transformations, but these turn out to cancel once summed over the particle content of a single
Standard Model generation.

The Standard Model enjoys just the right accidental global symmetries, where ‘accidental’ means they
are not assumed as part of the model’s definition and instead simply emerge as consequences of gauge
invariance, the Standard Model field content and renormalizability. Several successful conservation laws
emerge in this way, including baryon number and a lepton number for each generation. Although evidence
now exists against separate conservation of lepton number for each generation, it came quite recently
and the violation found is restricted to the neutrino sector. Intriguingly, the unique dimension-five non-
renormalizable interaction that would naively be the first to show up in an expansion in powers of E/M
predicts precisely the symmetry-breaking pattern that is observed.

Although attractive, the Standard Model also has its flaws. The most important flaws are observational.
The model gets wrong the pattern of lepton-flavour conservation seen in neutrino oscillations, and
although these might just be first indications of higher-dimension interactions, they might equally well
point to new species of light sterile neutrinos. The model also does not describe some cosmological
observations, such as those that provide evidence for Dark Matter. This suggests our list of low-energy
particles is not yet complete (something that can be possible if the undiscovered ones – the hypothetical
‘dark sector’ – interact too weakly with those we know). The Standard Model also becomes less and less
compelling the further back it is extrapolated into the earlier universe, requiring more and more unusual
initial conditions to explain what is seen now.22

neighborhood). My own take on the different approaches – and a definition of what the ‘old’ and ‘new’
versions of the problem are – is in [486].

22 Among these initial-condition puzzles are: the ratio of the number of baryons and antibaryons in the
universe; the pattern of observed primordial density fluctuations; and so on.
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The other flaw with the model is more theoretical: some effective couplings are unusually small for a
low-energy effective theory. Most puzzingly, some small couplings do not remain small as heavy particles
get integrated out; they are not ‘technically natural’. The lower dimension the interaction involved, the
more puzzling it is to find a small coupling, and on this score the cosmological constant (or vacuum energy)
is the biggest such puzzle. It is not yet known how these puzzles will ultimately be resolved.

Exercises

Exercise 9.1 In the Standard Model calculate the mixed anomaly coefficients Aabc

where two indices represent a GSM generator and the other corresponds to
one of the Standard Model’s accidental symmetries: B, Le, Lμ and Lτ. If
these are nonzero, particularly for the strong SUc (3) interactions, then the
corresponding accidental symmetry is not really a symmetry at the quantum
level.
For what linear combinations of these accidental symmetries do all such
anomaly coefficients vanish when summed within only a single generation?
Show that additional anomaly-free combinations exist if all three generations
are included in the sum.
Repeat this exercise with the Standard Model field content supplemented by a
singlet sterile neutrino for each generation.

Exercise 9.2 Suppose each generation of the Standard Model is supplemented by two
types of new spinless particles, transforming as a (3̄, 1, y) with y = − 2

3 and
y = + 1

3 under GSM = SUc (3)×SUL(2)×UY(1). The y = − 2
3 (or y = + 1

3 ) particle
is called a ‘right-handed up-squark’ (or ‘right-handed down-squark’).23

What are the most general renormalizable interactions possible for such
particles, both with themselves and with the rest of the Standard Model?
What are the accidental global symmetries that are allowed by these (and the
usual Standard Model interactions)?
Minimize the scalar potential and identify what choices of parameters give the
same symmetry-breaking pattern for GSM as in the Standard Model.
Answer the previous three questions while including also left-handed squarks,
transforming under GSM as (3, 2, y) with y = + 1

6 .
Repeat the exercise including also left- and right-handed sleptons, which
respectively transform under GSM as (1, 2,− 1

2 ) and (1, 1,+1).
Exercise 9.3 Suppose the Standard Model is supplemented by new left-handed

spin-half particles that transform in the same way as do the bosons in the
Standard Model. That is, add left-handed ‘gluinos’ transforming under GSM

as (8, 1, 0), left-handed ‘winos’ transforming as (1, 3, 0), left-handed ‘bino’24

transforming as a singlet: (1, 1, 0) and left-handed ‘higgsino’ transforming
as (1, 2, 1

2 ).

23 The squarks themselves are not right- or left-handed since they are spinless, but the name comes from
supersymmetric theories for which they are partners of the corresponding quarks. Despite the name
‘right-handed’ they share the quantum numbers of the corresponding left-handed antiquark.

24 The wino and bino are pronounced ween-oh and been-oh, and together with the gluino are called
‘gauginos’.
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Compute the gauge anomalies (including the Lorentz anomaly) using these
fields. Do they all vanish? If not, what happens if one also adds a new higgsino
transforming as (1, 2,− 1

2 )?
What are the most general renormalizable interactions possible for such
particles, both with themselves and with the rest of the Standard Model?
What are the accidental global symmetries that are allowed by these (and the
usual Standard Model interactions)?
Identify the left-handed mass matrix for these and the Standard Model
fermions. Identify the propagation eigenstates in the case where both gauginos
and the two types of higgsinos described above are included.

Exercise 9.4 Prove that Eq. (9.26) is the unique dimension-five operator that can be
built using only Standard Model fields that is both a Lorentz scalar (as must be
the lagrangian) and is GSM = SUc (3)× SUL(2)×UY(1) invariant. Prove that this
operator satisfies ΔL = ±2 and ΔB = 0.
Identify the 3 × 3 left-handed neutrino mass matrix in flavour space that this
term predicts. Identify the mass eigenvalues and PMNS matrix elements in the
special case where the coefficients kmn appearing in the weak-eigenstate basis
of Eq. (9.26) are given by

kmn =
����

0 1 0
1 0 1
0 1 0

����
y2

M
. (9.41)

Exercise 9.5 Prove that any baryon-number violating dimension-six operator can be
written as a linear combination of the ones given in Eq. (9.28), assuming they
must be built using only Standard Model fields and be both a Lorentz scalar
and GSM = SUc (3) × SUL(2) × UY(1) invariant. Prove that any such operator
satisfies ΔL = ΔB.

Exercise 9.6 A portal to the dark sector is defined to be any renormalizable interaction
between Standard Model fields and a new field that transforms as a Standard
Model singlet. Any such an interaction has the general form

Lportal =
∑
I

cI OI
SM OI

dark,

where O I
M depends only on Standard Model fields while O I

dark depend only on
the new singlet fields. Being renormalizable requires the coefficients cI to have
dimension (mass)n with n ≥ 0.
Identify the three kinds of singlet fields – i.e. three kinds of Lorentz tensor
fields – for which such a portal can exist.

Exercise 9.7 Evaluate the Feynman graph of Fig. 9.3 giving the contribution of a
sterile heavy spin-half fermion to the Higgs mass and verify that it can
cancel the contribution of a (complex) sterile heavy scalar particle provided
its couplings and mass are chosen appropriately. What choices for couplings
and masses give cancellation?
Repeat this problem for the contributions to the vacuum energy. What choices
make the corrections to this vanish?
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General Relativity1 (GR) provides an excellent description of gravitating systems
and in many ways is the Standard Model of gravitational physics [241, 242]. But
unlike the Standard Model, General Relativity is not renormalizable [243, 244]. One
way to see this is to observe that its coupling constant – i.e. Newton’s constant of
universal gravitation, GN – has dimension (mass)−2 in fundamental units, and so
(other things being equal) on dimensional grounds Feynman graphs involving more
and more powers of GN diverge more and more in the ultraviolet.

The dimensions of Newton’s constant can be read in turn from the Einstein–Hilbert
action [245], whose variation with respect to the spacetime metric, gμν , reproduces
the Einstein field equations. This has lagrangian density

LEH = −
1

16πGN

√
−g R, (10.1)

where the g in
√−g denotes the determinant of the metric gμν (x), and is required to

ensure SEH =
∫

d4x LEH is generally covariant (i.e. invariant under diffeomorphisms
of spacetime). The quantity Rμν := Rλμλν is the Ricci tensor built from the curvature
(Riemann) tensor, Rαμλν , whose conventions and definition in terms of the metric
are summarized in §A.2.1. Its trace, R := gμνRμν , is the Ricci scalar, where gμν is
the inverse metric defined by gμνgνλ = δμλ. For the purposes of this chapter what is
important about all of these curvatures is that they involve precisely two derivatives
of the metric.

Although non-renormalizability was once regarded as poison for a serious theory,
the previous sections of this book summarize why non-renormalizability in itself is
no longer regarded as that remarkable. After all, other very predictive theories, like
the Fermi theory of weak interactions of §7.1 or the low-energy interactions of pions
encountered in §8, also share this property.

Non-renormalizability is what happens whenever couplings (like Newton’s
constant, GN, or the Fermi constant, GF) have dimension of an inverse power of
mass, and the central observation that gives non-renormalizable theories predictive
power is that any series in this coupling is necessarily a low-energy expansion;
effective field theories are the natural language for their description.

From this point of view the Einstein–Hilbert action should not be regarded as
being carved by Ancient Heroes into tablets of stone; one should instead seek the
most general action built from the spacetime metric, gμν , that is invariant under the
symmetries of the problem (which in this case should include general covariance and
local Lorentz invariance), organized in a derivative expansion. Since the Riemann
tensor (and its traces and derivatives) is the unique covariant object built from

1 See §C.5.2 for an extremely brief summary of the elements of GR.241
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derivatives of the metric [246], the effective lagrangian describing pure gravity
should come as an expansion in powers of curvatures and their derivatives [2, 247].

This suggests General Relativity is the leading part of a more general Wilsonian
effective action – call it GREFT – whose action is

− Leff√−g
= λ +

M2
p

2
R +
[
a41 R2 + a42 RμνRμν + a43 RμνλρRμνλρ + a44 R

]
(10.2)

+
1

M2

[
a61 R3 + a62 RRμνRμν + a63 Rμν

λρRλρ
αβRαβ

μν + · · ·
]
+ · · · ,

corresponding to a sum over all possible scalars built from powers of the curvature
tensor and its derivatives. In this expression the first two terms represent the usual
interactions of General Relativity (GR) – consisting of a cosmological constant, λ,
(also called c4 in earlier sections) and the Einstein–Hilbert action – while the first
square bracket contains four-derivative terms, the second square bracket contains
six-derivative terms and so on. As always, M2

p = (8πGN)−1 is a proxy for Newton’s
gravitational constant.

The effective couplings adi are dimensionless (in four dimensions) and to this end
an appropriate power of a UV mass scale denoted M is factored out of the curvature-
cubed and higher terms, where M � Mp is envisaged as being the lightest UV scale
to have been integrated out to obtain this action.2 Notice that the scale M is not
written in front of the Einstein–Hilbert term, since if there it would be swamped by
the M2

p term that is required to properly reproduce the value of GN.
This is as would be expected from the discussion in earlier chapters – see e.g. §3

and §7.3 – which argue that it is generically the smallest UV scale that dominates in
all denominators, while the largest UV scale dominates in all numerators. Although
this expectation works fine for the large coefficient M2

p of the Einstein–Hilbert term,
as discussed in the previous chapter it is an unsolved puzzle why the cosmological
constant is not also dominated by contributions from the largest values of M . In
what follows the observational information that λ is measured to be extremely small
is used to justify its neglect, at least until discussing cosmological models in later
sections.

Finally, it should also be noted that many of the interactions appearing in
the action (10.2) are redundant, in the precise sense used in §2.5. Terms like√−g R are total derivatives, as is (locally, in four dimensions) the combination√−g

(
RμνλρRμνλρ − 4 RμνRμν + R2

)
(called the Euler invariant) which allows the

Reimann-squared term to be traded for terms involving only the Ricci tensor
[248, 249].

Furthermore – as is also argued in §2.5 – field redefinitions can be used to remove
terms that vanish when using the lowest-order field equations. For just gravity (in
the absence of other fields – more about the inclusion of other fields below) with
vanishing cosmological constant (λ = 0) the lowest-order metric field equations
imply Rμν = 0 and so any terms involving Ricci tensors or Ricci scalars can also be

2 To the extent that M is discussed in the literature, it is often chosen to be M ∼ Mp , although this usually
dramatically underestimates the influence of these effective interactions. For instance, for applications
to very large distances (such as in late-time cosmology) it could be that M is the electron mass once
electrons are integrated out (see the related discussion in §7.3.2).
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dropped. Under these circumstances, the first nontrivial effective interactions arise at
curvature-cubed level, such as the term (a63/M2) RμνλρRλραβRαβμν ⊂ Leff of (10.2).

10.1 Domain of Semi-Classical Gravity ♦

The next step is to power-count using this effective theory, to identify the small
expansion parameter underlying the semiclassical expansion.3 To this end, expand
the metric about a classical solution to Einstein’s equations,4

gμν (x) = g̃μν (x) +
2hμν (x)

Mp
, (10.3)

and rewrite (10.2) as a sum of effective interactions of the form

Leff = L̃eff + M2 M2
p

∑
n

cn
Mdn

On

(
hμν
Mp

)
, (10.4)

where L̃eff = Leff(g̃μν) is the lagrangian density evaluated at the background
configuration.

As in previous sections the sum over n runs over the labels for a complete set of
non-redundant interactions, On, each of which involves fn ≥ 2 powers of the field
hμν (with fn � 1 because of the background field equations satisfied by g̃μν). The
parameter dn counts the total number of derivatives appearing in On (acting either
on the background or the perturbation), and so the factor M−dn is what is required to
keep the coefficients, cn, dimensionless. For instance, an example of an interaction
appearing in (10.4) (call it n = n0) that has dn0 = 2 and fn0 = 3 is (c.f. Exercise 10.3)

M2 M2
p

(
cn0On0

M2

)
=

cn0

Mp

√
−g̃ hμνhλρ∇̃μ∇̃νhλρ. (10.5)

In this interaction (and also for the others) indices are raised and covariant derivatives
are built using the background metric, g̃μν , so hμν = g̃μλ g̃νρhλρ and so on.
The overall prefactor, M2 M2

p , is chosen so that the kinetic terms – i.e. those terms in
the sum for which dn = fn = 2 – are M and Mp independent. As is clear from the
example, the operators On depend implicitly on the classical background, g̃μν , about
which the expansion is performed.

The coefficients cn are calculable in terms of the adi of (10.2), and if M � Mp the
cn’s cannot be order unity if the adi’s are. Comparing Eqs. (10.2) and (10.4) shows
that the absence of Mp in all of the curvature-squared and higher terms in (10.2)
implies that the cn for these interactions should be of order

cn = ��M2

M2
p

�� gn (if dn > 2), (10.6)

where gn is (at most) order unity and depends only logarithmically on M .

3 This section uses the power-counting logic [2] of §3.2.1, whose application to gravity is given in [24].
4 Beware of a convenient – though somewhat perverse – notational change in this chapter: here tildes

denote the background metric (whereas they marked the classical deviation from the background in
earlier chapters). The factor of 2 in (10.3) is not required in what follows, but achieves canonical
normalization – see Exercise 10.3.
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Perturbation theory proceeds as in earlier chapters, by separating Leff − L̃eff into
quadratic and higher order parts,

Leff =
(
L̃eff + L0

)
+ Lint, (10.7)

where L0 denotes the ‘unperturbed’ lagrangian density consisting of those terms in
Leff for which fn = 2 and dn ≤ 2. All other terms are lumped into Lint. Expanding
the path integral in powers of Lint allows the integral over hμν to be expressed as a
sum of Gaussian integrals, classifiable in terms of Feynman graphs, with L0 defining
the propagators, Gμν,λρ (x, y) = 〈hμν (x) hλρ (y)〉, appearing in these graphs and Lint

defining their vertices in the usual way. For the purposes of power counting what
matters about these propagators is that they do not depend on M and Mp (though
they do depend on scales associated with g̃μν).

From here on the discussion follows earlier treatments, like that of the Toy Model
in §1.1 or of chiral perturbation theory in §8.2. For gravitational applications it is
important to recognize that the power-counting arguments of earlier sections are in
essence dimensional: one counts factors of M and Mp coming from vertices and
assigns the power of the low-energy scale purely on dimensional grounds (assuming
all low-energy scales are similar in size). In particular, nothing in the power-
counting argument requires working in momentum space, or that the background
metric be flat.5

In position space UV divergences emerge as singularities experienced by the
propagators, Gμν,λρ (x, y), in the coincidence limit y → x. As usual, regulating
these using dimensional regularization – see e.g. Exercise 10.6 – and renormalizing
using a scale-independent scheme (like modified minimal subtraction) makes the
dimensional power-counting argument particularly simple. As usual, the spacetime
dimension is written as D = 4 − 2ε and divergences arise as ε → 0.

The relevant low-energy scale appearing when power counting might be set by
the energies, E, of scattered gravitons, or it might be set by the generic size of a
derivative of the background configuration and denoted by H , so that ∂2g̃ ∼ H2, for
instance. For simplicity there is assumed to be only one low-energy scale relevant for
the process of interest, so when scattering particles with energy E on a background
geometry with curvature scale H it is assumed E ∼ H .

With these choices, the arguments used in §3.2.1 imply that a graph involving
E (amputated) external graviton lines, L loops and Vn vertices (each involving dn

derivatives) depends on the scales H , M and Mp as

AE (H) � H2 M2
p

(
1

Mp

) E (
H

4π Mp

)2L ∏
n

⎡⎢⎢⎢⎢⎣cn
(

H
M

)dn−2⎤⎥⎥⎥⎥⎦
Vn

, (10.8)

with factors of 4π also included as in earlier sections. Keeping in mind the factors
of M and Mp hidden in the cn’s for dn > 2 – c.f. Eq. (10.6) – the above expression is
more usefully rewritten as

5 This is not to say that curved space introduces no new issues; one such is the existence sometimes of
horizons and the way this makes an external observer’s description more similar to the open systems
described in §16 than like traditional Wilsonian EFTs [250, 251].
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AE (H) � H2 M2
p

(
1

Mp

) E (
H

4π Mp

)2L ⎡⎢⎢⎢⎢⎢⎣
∏
dn=2

cVn
n

⎤⎥⎥⎥⎥⎥⎦
∏
dn ≥4

⎡⎢⎢⎢⎢⎣gn
(

H
Mp

)2 (
H
M

)dn−4⎤⎥⎥⎥⎥⎦
Vn

.

(10.9)

Here, the condition dn > 2 is traded for dn ≥ 4 because dn must be even. General
covariance requires dn to be even because each derivative contributes a spacetime
index, ∇μ, and all indices must be contracted with a rank-two metric, g̃μν , or a rank-
four Levi-Civita symbol, ε̃μνλρ (whose definition is given in §A.2.1).

Because (as in earlier sections) external lines are amputated in (10.9), the
amplitude AE has dimension (mass)4−E , as would be expected for the coefficient
of E powers of hμν in an expansion of the 1PI action. This makes the dependence of
AE on scales useful when estimating the size of effective couplings in this action.

Eq. (10.9) shows that the validity of the semiclassical expansion in General
Relativity (or, more precisely, the loop expansion in GREFT) is controlled by the
small parameter (

H
4πMp

)2

� 1, (10.10)

since this is what allows for graphs with fewer loops to dominate those with more
loops (for a fixed number of external lines). Similarly, the suppression of interactions
involving higher-derivatives additionally requires

gn

(
H

Mp

)2 (
H
M

)dn−4

� 1 (for dn ≥ 4). (10.11)

By contrast, repeated insertions of two-derivative interactions (i.e. those coming
from the Einstein–Hilbert action) are not generically suppressed unless the graph in
question also involves higher loops. Because the Einstein–Hilbert term generically
predicts6

cn � 1 (for dn = 2), (10.12)

the low-energy semiclassical expansion in itself therefore does not also require the
neglect of the nonlinearity of General Relativity. The lack of suppression of these
interactions resembles what was found earlier when power counting using the EFT
for non-abelian Goldstone bosons, and has its roots in the dominance of derivatively
coupled interactions.

Why Classical Methods Work in GR

Conceptually, Eq. (10.9) (and its analog once matter is included – see e.g. §10.2)
is the foundation for all applications of General Relativity to observations, since
it identifies systematically which interactions are important in any given physical
process and quantifies the theoretical error implicit in any classical calculation.
Because H is always in the numerator in this expression, it shows that control over

6 Exercise 10.3 calculates cn for cubic two-derivative interactions in an expansion about flat space. Later
examples explore cosmological situations with two low-energy scales, for which hierarchies can arise
amongst the dimensionless couplings cn .
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semiclassical methods is essentially a low-energy approximation (as expected due to
the presence of the dimensionful non-renormalizable coupling GN).

In particular, the vast majority of applications use General Relativity as a classical
field theory and Eq. (10.9) shows why this is usually valid: for a fixed number of
external lines the least-suppressed contributions come if two conditions are satisfied:

C1a: L = 0 (that is, no loops – corresponding to the classical limit);

C1b: Vn = 0 for all interactions for which dn > 2.

Since dn is even for all interactions (and the neglect of the cosmological constant,
λ, implies that dn ≥ 2); this means that the dominant contributions to observable
processes arise from tree graphs using only interactions having precisely dn = 2
derivatives. That is, from classical processes computed using only interactions
coming from the Einstein–Hilbert action.

But Eq. (10.9) says much more than this: it also identifies the contributions that
enter at subleading, and sub-subleading order, and so on. The dominant subleading
corrections arise in one of two ways: either

C2a: use only dn = 2 interactions but with L = 1 , or

C2b: use only L = 0 with Vn = 0 for dn > 4 interactions

and
∑

nVn = 1 for the dn = 4 interactions.

These say that the leading subdominant corrections to classical GR arise suppressed
by (H/4πMp)2 and come either from one-loop General Relativity or from tree
graphs containing exactly one curvature-squared interaction. It is renormalizations
of the coefficients of the curvature-squared interactions appearing in tree graphs
that cancel the UV divergences that arise in the one-loop graphs. One can proceed
similarly to any order in H/M and H/Mp .

To make this more concrete, consider quantum corrections in the Schwarzschild
geometry that describes the gravitation field of the Sun in our solar system. These
corrections are part of the theoretical error for any classical solar-system predictions
obtained using General Relativity (which are routinely compared with observations
of how objects move – see, for example, [252, 253]). In this case, derivatives of the
classical background geometry at a distance r from the Sun are characterized by the
curvature scale, H2 � rs/r3, where

rs = 2 GNM =
M

4πM2
p

(10.13)

is the geometry’s Schwarzschild radius, with M the mass of the gravitating source.
For the Sun M =M� � 1.99 × 1030 kg, and so (10.13) evaluates to rs � 3 km. This
makes the estimate (10.10) of the fractional size of quantum corrections to local
physics at radius r from a source of order(

H
4πMp

)2

� rs
(4πMp)2r3 � 6 × 10−94

(
M
M�

) (
R�
r

)3

, (10.14)

which gets smaller the larger r is. The numerical estimate uses the solar mass and
the solar radius, R� � 6.96 × 105 km, as would be appropriate at the solar surface.
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This estimate shows that quantum effects in the solar system are extremely small
because the Planck length, �p := 1/Mp � 5 × 10−19 GeV−1 � 1 × 10−34 m, is so tiny
compared with the macroscopic scales of practical interest. Even for radii as small
as r � rs the size of loop corrections is of order(

�p

4πrs

)2

�
(

Mp

M

)2

, (10.15)

showing that quantum effects remain under control at the Schwarzschild radius
provided the gravitating source is much more massive than the (reduced) Planck
mass, which is Mp = (8πGN)−1/2 � 4 μg in macroscopic units.

It is the small size of Mp/M that ultimately justifies the validity of semiclassical
calculations near the event horizon of a black hole, such as those leading to the
prediction of Hawking radiation7 [254]. Although (10.15) is extremely small for
astrophysical objects, it is enormous for elementary particles (like electrons or
protons, for example). This is why classical black hole physics is trusted (and
small) in astrophysical settings, but need not give a good description of spacetime
at distances r ∼ rs from an electron or proton.

10.2 Time-Dependence and Cosmology ♠

Although quantum effects involving gravity are incredibly small in the solar system,
and even just outside relativistic astrophysical objects, there is a situation where they
might actually be large enough to be observable while still believing semiclassical
methods (and indeed may have already been observed).

The observations that might be sensitive to a practical quantum/gravity interplay
study the distribution of matter within the universe. This can be measured using a
variety of astrophysical methods, including surveys of the large-scale distribution
of galaxies and by measurements of temperature fluctuations seen in the Cosmic
Microwave Background (CMB) radiation. Although a complete description of these
observations is well beyond the scope of this book, suffice it to say that a good
quantitative understanding is emerging for the overall distribution of matter and
its evolution in time [255]. The large-scale distribution of matter in the Universe
seems consistent with what would be expected from gravitational amplification of
initially small density fluctuations due to the Jeans instability, wherein initially
slight over-densities get amplified as they gravitationally accrete more material onto
themselves8 [256].

7 Although control over semiclassical methods inevitably means quantum processes are small, the saving
grace of phenomena like Hawking radiation is that – in ideal systems – there is no classical black-hole
radiation with which it must compete.

8 This picture is only successful in the presence of Dark Matter and Dark Energy – two poorly understood
types of matter – and indeed part of the evidence for their existence comes from the details of how large-
scale structures form.
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More precisely, gravitational amplification of small density fluctuations explains
current observations provided the relatively recent Universe inherits a specific
pattern of primordial density fluctuations from much-earlier epochs. To produce
the observed pattern of large-scale structure these primordial fluctuations must be
small in amplitude – with δρ/ρ ∼ 10−5 – and have a spectrum that is close to
scale invariant. Intriguingly, the much earlier epochs that produce these fluctuations
plausibly have a Hubble scale, H , much closer to (though still smaller than) the
Planck scale, making quantum effects more important (but still under control). Best
of all, semiclassical calculations in simple models [257] reveal that the required
primordial fluctuations would be well-described (both in amplitude and in spectrum)
by vacuum fluctuations, if these were stretched across the sky by an intervening
epoch during which the expansion of the Universe accelerates.

A precondition for comparing observations to the predictions of such models
is a controlled framework within which semiclassical calculations can be reliably
performed. Without this, no meaningful assessment of theoretical error can be
made. The purpose of this section is to explore how the above picture of quantum
fluctuations in GREFT can be extended to provide this framework.

In cosmology universal expansion is described by an explicitly time-dependent
background metric, g̃μν , of the form

ds̃ 2 = g̃μν dxμdxν = −dt2 + a2(t) γi j dxidx j , (10.16)

where a(t) describes the evolution of length scales with cosmic time, t, and γi j
is a 3-dimensional metric describing the geometry of spatial slices at fixed t. The
observed homogeneity and isotropy of the Universe on the largest scales suggests
γi j is maximally symmetric (i.e. describes a 3-sphere, 3-plane or 3-hyperbola).
Measurements of the CMB further indicate that these slices are consistent with being
flat (so γi j = δi j) [258]. The generic size of background-metric derivatives for this
class of metrics is set by the Hubble scale, H (t) = ȧ/a, where over-dots denote
differentiation with respect to t.

Simple cosmological models achieve the required accelerated expansion, ä > 0,
by supposing the universe’s energy density is dominated in the past by a collection
of N ≥ 1 scalar fields, θa (with the simplest models restricting to a single field and so
N = 1). In many of these models9 – called inflationary models [259] – the scalars are
designed to evolve very slowly in time because when this is so their energy density
is dominated by their potential energy, V , and the Einstein equations imply that the
Hubble scale is approximately constant in time, H (t) � HI where H2

I � V/(3M2
p).

Under these circumstances, the Universe expands exponentially:

a(t) � a0 exp[HI(t − t0)]. (10.17)

The controlled study of primordial fluctuations requires an effective description of
the early universe (such as a scalar-gravity system) as a systematic semiclassical
expansion.

9 Inflationary models comprise that subset of accelerating cosmologies (i.e. those for which ä > 0) that
take an initially expanding universe and increase its expansion (as opposed, say, to changing an initially
contracting universe into an expanding one).
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The effective lagrangian relevant to a scalar-metric system can be expressed as
a derivative expansion, including both scalar fields and the metric, with the leading
terms being

− Leff√−g
= v4U (θ) +

M2
p

2
gμν
[
W (θ) Rμν + Gab (θ) ∂μθ

a∂νθ
b
]

(10.18)

+

[
A(θ)(∂θ)4 + B(θ) R2 + C(θ) R (∂θ)2 + · · ·

]
+

[
E(θ)
M2 (∂θ)6 +

F (θ)
M2 R3 + · · ·

]
,

with terms involving up to two derivatives written explicitly in the first line, those
involving four derivatives in the square bracket of the second line, those with six
derivatives in the square bracket of the third line and so on. The second and third
lines are schematic inasmuch as R2 and R3 collectively respectively represent all
possible independent curvature invariants involving four and six derivatives, each
with a separate coefficient function.

Redundant interactions are eliminated from these interactions as usual, leaving
an independent basis whose precise details are not important for the discussion to
follow. The detailed form of the dimensionless functions W (θ), A(θ), . . . is also not
very important in the power-counting arguments made below. Successful cosmology
assumes some broad properties for the scalar potential, V (θ) = v4U (θ), as is
elaborated in more detail below.

As for GREFT, the scale M appearing in all denominators denotes the mass of
the lightest states that are imagined to have been integrated out to obtain the Wilson
action (10.18). More care is needed for scales appearing in numerators, however, and
v and Mp are extracted so that the accompanying functions U (θ), W (θ) and Gab (θ)
are also dimensionless. The cosmologies of interest normalize the scalar fields so that
their kinetic term has Planck mass coefficient, as above when Gab (θ) is order unity,
and (as usual) take M � Mp. The scale v is pulled out of the scalar potential and
U (θ) ∼ O(1) is assumed when θ � O(1), so that V � v4. Of particular interest are
models for which10 v � M .

10.2.1 Semiclassical Perturbation Theory

Since the phenomenologically successful description of primordial fluctuations
relates them to vacuum fluctuations, the first step is to identify the domain of validity
of such a semiclassical calculation. This section shows that power counting broadly
goes through as it did for GREFT (following the discussion in [260]), with loops
being suppressed by powers of H2/M2

p . But the presence of the scalar potential also
introduces an important new complication.

Semiclassical calculations are performed in the usual way, by expanding about a
classical solution

θa (x) = ϑa (x) +
φa (x)

Mp
and gμν (x) = g̃μν (x) +

hμν (x)

Mp
, (10.19)

10 As discussed in §9.3, naturalness issues can often arise within this class because the assumption v �
M is not generic when v appears in the numerator.
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where in practice ϑa = ϑa (t) describes a homogeneous but time-dependent scalar
evolution and g̃μν has the form given in (10.16). Because the background is time-
dependent, all of the considerations of §6 apply, including the proviso that the
low-energy EFT only aspires to capture slowly varying backgrounds for which all
background time-rates-of-change – such as ϑ̇a and H = ȧ/a – are much smaller
than all UV scales (such as M).

Expanding the effective lagrangian of (10.18) in powers of φa and hμν allows it
to be written in a form resembling (10.4):

Leff = L̃eff + M2 M2
p

∑
n

cn
Mdn

On

(
φ

Mp
,

hμν
Mp

)
. (10.20)

As before, L̃eff = Leff(ϑ, g̃μν ) and the interactions, On, involve fn = f
(φ)
n + f (h)

n ≥ 2
powers of the fields φa and hμν . Also as before, the parameter dn counts the
number of derivatives appearing in On, the coefficients cn are dimensionless and
the prefactor, M2 M2

p, ensures the kinetic terms (and so also the propagators) are M
and Mp independent.

Power counting is performed for this system following the now-familiar steps of
previous sections. In particular, requiring Eq. (10.20) to capture the same dependence
on M and Mp as does Eq. (10.18) requires the coefficients cn (for dn > 2) to satisfy
(10.6), repeated again here for convenience of access:

cn = ��M2

M2
p

�� gn (if dn > 2), (10.21)

with gn at most order-unity, depending only logarithmically on M .
Similarly, properly reproducing the scales coming from the scalar potential, V (θ),

requires

cn = �� v4

M2 M2
p

�� λn (if dn = 0), (10.22)

where the dimensionless couplings λn are also largely independent of Mp and M .
This choice amounts to assuming the scalar potential has the schematic form

V (φ) = v4
⎡⎢⎢⎢⎢⎣λ0 + λ2

(
φ

Mp

)2

+ λ4

(
φ

Mp

)4

+ · · ·
⎤⎥⎥⎥⎥⎦ , (10.23)

which shows that V ranges through values of order v4 as the φa range through values
of order Mp (and so the θ a range through values that are order unity).

Following the same steps as for earlier examples, a perturbative calculation writes
Leff =

(
L̃eff+L0

)
+Lint and expands exp

[
i
∫

d4x Lint

]
in powers ofLint within the path

integral. As usual, the goal is to quantify how Feynman graphs with E external lines,
L loops and Vn vertices (involving dn derivatives) depend on the various scales v,
M , Mp and the assumed single low-energy scale,11 H .

11 For cosmology with flat spatial slices correlation functions typically depend on both the Hubble scale
H and mode momentum k/a, but these variables are both similar in size when evaluated for momenta
comparable to H , as is in particular true for the epoch of ‘horizon exit’ of interest for primordial
fluctuations.



251 10.2 Time-Dependence and Cosmology

In particular, the focus for cosmological applications is on primordial fluctuations,
and these are related in cosmological models to correlation functions of the scalar and
metric fluctuation fields, like 〈θa · · · θb〉 or 〈hμν · · · hλρ〉 or 〈θa · · · hμν〉. Unlike the
amputated amplitudes AE studied earlier for the pure-gravity case, these correlation
functions – denoted BE – are not amputated and so include a propagator for each
external line relative to an amputated graph. Since power counting associates factors
of H on dimensional grounds, this means the Feynman amplitude for an unamputated
E-point amplitude, BE , scales relative to an amputated amplitude, AE , according to
BE � AEH2E−4.

Combining everything leads to the result

BE (H) � Mp

(
H2

Mp

) E−1 (
H

4π Mp

)2L ⎡⎢⎢⎢⎢⎢⎣
∏
dn=2

cVn
n

⎤⎥⎥⎥⎥⎥⎦
×

∏
dn ≥4

⎡⎢⎢⎢⎢⎣gn
(

H
Mp

)2 (
H
M

)dn−4⎤⎥⎥⎥⎥⎦
Vn ∏

dn=0

⎡⎢⎢⎢⎢⎣λn
�� v4

H2 M2
p

��
⎤⎥⎥⎥⎥⎦
Vn

, (10.24)

where all but the very last product are much as found in the previous section for
pure gravity. What is new is the product over vertices with dn = 0 containing the
contribution of interactions coming from the scalar potential. What is dangerous
about these scalar-potential contributions is the appearance within them of the low-
energy scale H in the denominator, rather than numerator. These contributions are
dangerous because at face value this enhancement for small H undermines the
validity of the entire low-energy expansion.

In practice, however, cosmological models remain under control, provided the
coefficients λn of the scalar potential are O(1) (or smaller). This is because in the
models of most interest the parameters v and H are not independent of one another.
Indeed, H is determined by the classical Einstein equations for the background fields,
and (as discussed above) in these models the potential V (θ) is assumed to dominate
the scalar stress energy, leading to the relation H ∼ v2/Mp . Using this allows the
potentially dangerous dn = 0 terms of (10.24) to be rewritten as∏

dn=0

⎡⎢⎢⎢⎢⎣λn
�� v4

H2 M2
p

��
⎤⎥⎥⎥⎥⎦
Vn

�
∏
dn=0

λVn
n . (10.25)

leading to the more transparent power-counting result

BE (H) � Mp

(
H2

Mp

) E−1 (
H

4π Mp

)2L ⎡⎢⎢⎢⎢⎢⎣
∏
dn=2

cVn
n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∏
dn=0

λVn
n

⎤⎥⎥⎥⎥⎥⎦
∏
dn ≥4

⎡⎢⎢⎢⎢⎣gn
(

H
Mp

)2 (H
M

)dn−4⎤⎥⎥⎥⎥⎦
Vn

(10.26)

Although insertions of scalar interactions can in principle undermine the underlying
expansion in powers of H/Mp , this does not happen for potentials of the form
assumed in the cosmological models of most interest.12

12 This power-counting argument shows that if the potential has the form given in (10.23) then the
potential does not ruin the low-energy expansion. It does not show why a potential of the form
(10.23) should emerge in the first place when integrating out heavier fields. For this there are two
kinds of potentially dangerous interactions: the usual ones that get flagged by naturalness problems –
the super-renormalizable (or relevant) interactions like φ2 whose coefficients involve positive powers
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Eq. (10.26) shows that the validity of the semiclassical expansion in the scalar-
tensor models of cosmological interest again relies heavily on the low-energy
approximation given in (10.10): H2 � (4πMp)2. The leading contribution again
comes from no-loop – i.e. classical – physics, built using just the zero- and two-
derivative parts of the action. This is what justifies standard classical treatments of
cosmological models.

For theories where primordial fluctuations have a quantum origin it is important
that no observable primordial fluctuations arise from the leading classical contribu-
tions. Otherwise, small quantum effects are easily swamped by the classical results.
Happily enough, classical erasure of pre-existing classical fluctuations often occurs
automatically in expanding cosmologies. For instance, the contribution of spatial
gradients like

g̃i j∂iϑ
a∂jϑ

b =
1

a2(t)
γi j∂iϑ

a∂jϑ
b , (10.27)

in energy densities tends to drop rapidly at late times due to the growth of a(t). This
ironing out of initial fluctuations is particularly ruthless in inflationary models, for
which a(t) ∝ eHIt grows exponentially.

In the absence of dominant classical perturbations the leading contributions to
primordial fluctuations arise at subdominant order. In inflationary models classical
fluctuations get inflated away by exponential expansion, but near-scale-invariant
quantum fluctuations of fields in their vacuum state persist indefinitely and so
eventually can dominate even though they are small. The power-counting formula
(10.26) shows that for fixed E the size of subdominant contributions is suppressed by
the small loop factor (HI/4πMp)2 and comes from one-loop quantum contributions
built using the zero- and two-derivative interactions (together with classical contri-
butions using precisely one insertion of the appropriate counterterms involving up to
four derivatives). Although standard treatments often do not go through the power-
counting exercise, the dominant ingredients to which it leads are indeed the ones
used in practice in the simplest models.

10.2.2 Slow-Roll Suppression

In principle, since the spectrum of primordial fluctuations is actually measured, one
might hope to be able to use observations to infer the value of HI/Mp during the
primordial epoch when the fluctuations were generated. This turns out not to be
possible at present because HI/Mp is not the only parameter that is important for
these models.13

This complication arises because successful cosmological models actually usually
involve more than one low-energy scale, and so violate the single-scale assumption
made when deriving (10.26). The underlying reason for this (at least within simple
inflationary models) is that phenomenological success relies on there being near-
exponential expansion, a(t) � eHIt , for a sufficiently long time. The precise amount

of mass – but also non-renormalizable scalar interactions like φn that (10.23) says have coefficients
v4/Mn

p rather than M4−n .
13 The ratio HI/Mp could be inferred if primordial gravitational waves were observed, but as of 2020

these had as yet escaped detection.
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of time required depends on some of the details, but in many models the criterion is
that a should expand exponentially for HIt >∼ 50. Because of this, H (t) = ȧ/a must
be approximately constant for a long period of time, and this means that Ḣ/H is a
new low-energy scale that is hierarchically different from HI itself. This appearance
of two scales is usually quantified in terms of their ratio: a dimensionless parameter
ε = −Ḣ/H2 that is generally positive for the cosmologies of interest. In terms of
ε the regime of phenomenological success is 0 < ε � 1; a regime that fits nicely
with the assumptions about slow time-variation underlying the use of EFT methods
in time-dependent situations, as discussed in §6.

In the simplest models there is just this one new low-energy scale, rather than
there being an independent new scale associated with each new derivative, H , Ḣ , Ḧ
and so on [261]. For these models power-counting predictions can be fairly simply
generalized to include the effects of the second low-energy scale. This is most simply
done by quantifying how the dimensionless coefficients – like gn, λn in (10.26) –
depend on the new slow-roll parameter ε � 1, rather than being order unity.

To see how this works, consider what is required for the leading classical solutions
to have a long period of near exponential expansion. Since the leading contributions
come from classical evolution (i.e. zero-loops) using those parts of the action
involving two or fewer derivatives, the classical solutions must satisfy the scalar field
equations

M2
pGab

[
D2ϑb

dt2 + 3H ϑ̇b

]
+
∂V
∂ϑa

= 0 (10.28)

where ϑ̇a := ∂tϑa and D2ϑa/dt2 = ϑ̈a + Γa
bc
ϑ̇b ϑ̇c where (as usual) H = ȧ/a and

Γabc :=
1
2

Gad
(
∂bGcd + ∂cGbd − ∂dGbc

)
, (10.29)

is the target-space Christoffel symbol (of the 2nd kind) built from the target-
space metric, Gab (ϑ), that appears in the two-derivative terms of the EFT of (10.18).
These are supplemented by the Einstein equations, which in this case boil down to
the Friedmann equation that determines H in terms of ϑa:

3H2 =
1
2

Gab ϑ̇
a ϑ̇b +

V (ϑ)
M2

p

. (10.30)

Exponential expansion occurs when H � HI is approximately constant, and
(10.30) reveals this to be assured if ϑa is itself approximately constant (that is to
say, if ϑa (t) evolves slowly enough that its kinetic energy is negligible compared
with its potential energy). When this is true, then H2 � V (ϑ)/3M2

p , and so in order
of magnitude the Hubble scale of interest is given by H2

I ∼ v4/M2
p , while the slow-

roll parameter obtained by taking its derivative is

ε = − Ḣ

H2 � −
ϑ̇a

6H3 M2
p

∂V
∂ϑa

. (10.31)

But if time-derivatives of ϑa are small, then second derivatives in (10.28) can be
dropped, leading to an expression for how ϑ̇a is related to the choices made in the
lagrangian:

ϑ̇a � − 1
3H M2

p

Gab ∂V

∂ϑb
, (10.32)
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where Gab is (as usual) the inverse matrix of Gab . Using (10.32) in (10.31) then
gives

ε � 1
18H4 M4

p

Gab ∂V
∂ϑa

∂V

∂ϑb
� 1

2V 2 Gab ∂V
∂ϑa

∂V

∂ϑb
. (10.33)

These arguments show what is in any case intuitive: a sufficiently slowly rolling
classical background can be ensured by choosing a sufficiently shallow scalar
potential. But the above arguments quantify precisely how shallow: in order to
have only a single new low-energy scale (with each background time-derivative
suppressed by a factor of

√
ε H), we ask each additional derivative of V to be

suppressed by an additional power of
√
ε:

∂sV
∂ϑa1 · · · ∂ϑas

∼ εs/2V ∼ εs/2v4. (10.34)

In terms of the quantities appearing in the power-counting result (10.26), this
implies that the previously order-unity quantities λn should now be regarded as
suppressed by

λn � ε fsn/2λ̂n, (10.35)

where λ̂n is now order unity and fsn counts the number of scalar lines that meet
at the dn = 0 vertex in question (and so differs from fn, which also counts metric
lines). Using this in Eq. (10.26) shows how insertions of interactions from the scalar
potential cost powers of the slow-roll parameter

√
ε (but no powers of H/Mp because

V ∼ v4 ensures H ∼ v2/Mp).
Notice that no slow-roll suppression by powers of ε need also be assumed in

Gi j (ϑ) or W (ϑ) or other places where the scalar field appears undifferentiated in
the action, besides the scalar potential.14

The other way slow-roll parameters enter into Eq. (10.26) is through scalar
background-field derivatives, which we assume satisfy Eq. (10.32) and its higher
slow-roll extensions, so

dsϑa

dts
∼

(√
ε H

) s
. (10.36)

This kind of suppression is distinct from the factors of
√
ε in the λn, and arises

in the effective lagrangian once differentiated scalar-fields are expanded about their
background (assuming all slow-roll parameters are similar in size), as in

∂μ

(
ϑa +

φa

Mp

)
= ϑ̇a δ0

μ +
∂μφa

Mp
, (10.37)

and so on. Whenever a factor dsϑa/dts arises in the EFT in this way it therefore
counts as a suppression by a factor of εs/2 in addition to the factors of H that had
been tracked earlier.

For example, expanding a kinetic term like M2
p

√−g gμν∂μθ ∂νθ in this way
includes an order

√
ε H contribution to a bilinear φa-hμν mixing term coming

from keeping a term linear in fluctuations from each of
√−g gμν and ∂μθa

while evaluating ∂νθa as ϑ̇a δ0
ν . This kind of term is crucial for cosmological

14 Ignoring ε suppression in functions like W (ϑ) likely over-estimates its size in models where the small
size of V (ϑ) is understood because ϑ is a pseudo-Goldstone boson.
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applications, as it turns out, because the metric-scalar mixing that accompanies time-
dependent backgrounds allows quantum fluctuations of the scalar field to induce
related fluctuations in the Newtonian gravitational potential. It is ultimately these
fluctuations in the Newtonian potential that are observable using galaxy distributions
(regarded as proxies for density fluctuations) and the properties of the CMB.

To track these factors of ε in a power-counting formula, replace the two labels
dn and fn with a new set that more finely resolves the properties of a Feynman
graph. Instead of counting just the total number of derivatives, dn, in a graph, it
is useful also to count the number of derivatives acting only on background scalar
fields, dsn, since these come accompanied by powers of

√
ε. It is similarly useful to

track the number of background scalar fields, fsn, meeting at a vertex in addition to
the total number of fields (background plus fluctuation). Slow-roll suppression due
to background evolution is then included by requiring any vertex with these labels to
be suppressed by

cn � εdsn/2ĉn (for 2 = dn ≥ dsn)

and gn � εdsn/2ĝn (for dn > 2), (10.38)

where now it is ĉn and ĝn that are order-unity constants.
Using these choices in Eq. (10.26) leads to the very useful power-counting

estimate for an unamputated Feynman graph with E external lines, L loops and Vn

vertices of type ‘n’,
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. (10.39)

This expression summarizes the dependence of a general Feynman graph on the two
small parameters ε and H/Mp appearing in the simplest inflationary models.

Of most practical interest when comparing to observations are single-field models,
which involve only one scalar field. For these, comparisons with observations
potentially involve the two- and three-point correlation functions of scalar and tensor
perturbations,15 〈φφ〉 � Bφφ, 〈hφ〉 � Bhφ and 〈hh〉 � Bhh. Here, ‘h’ generically
denotes both the transverse-traceless tensor fluctuations, hi j , corresponding to
gravitational waves, and the scalar metric components that mix with the scalar
field. For two-point functions the above power counting estimates show that the
leading contributions come from Feynman graphs with E = 2 external lines, built
using L = 0 graphs using vertices taken only from the 2-derivative interactions,
predicting them to arise at leading order with size

Bhh ∼ Bφφ ∼ H2
I while Bφh ∼

√
ε H2

I . (10.40)

This specializes to H = HI, since this is the epoch of observational interest.

15 Although it goes beyond the scope of this presentation, these correlation functions are taken with the
fields prepared in a specific vacuum state, called the Bunch–Davies vacuum state.
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The leading contribution for 3-point correlations instead comes from graphs with
E = 3, though still using L = 0 and taking only 2-derivative interactions, which for
the quantities 〈hhh〉 and 〈hφφ〉 are (for single-field models) ε-unsuppressed

Bhhh ∼ Bhφφ ∼
H4

I

Mp
. (10.41)

For these contributions the ε-unsuppressed cubic vertex comes from either the
Einstein–Hilbert action or the inflaton kinetic term. No similarly unsuppressed
contributions arise for 〈hhφ〉 or 〈φφφ〉, however, since no cubic interactions of these
types arise unsuppressed by ε in the dn ≤ 2 lagrangian. (This need no longer be true
for multiple-scalar models.) Since the cubic interaction of the scalar potential is order
ε3/2, it is subdominant to the interactions obtained by inserting a single O(

√
ε) h-φ

kinetic mixing into 〈hhh〉 or 〈hhφ〉, giving the slow-roll suppressed size

Bhhφ ∼ Bφφφ ∼
√
ε H4

I

Mp
. (10.42)

For tensor fluctuations the above expressions basically tell the whole story. Since
tensor fluctuations arise purely in the gravitational sector there are no issues about
mixing with the scalar sector. The result for fluctuations in the normalized strain,
ti j = hi j/Mp , can therefore be directly read off from Bhh and Bhhh above, to give

Btt ∼
H2

I

M2
p

and Bttt ∼
H4

I

M4
p

for ti j =
hi j

Mp
. (10.43)

Scalar fluctuations are a bit more subtle, since for these issues of scalar-metric
mixing and of gauge-choice are relevant. Although a proper discussion goes beyond
the scope of this presentation, some simple statements can be made for completeness’
sake. In particular, only one combination of the scalar fluctuation φ and the scalar
part of the metric fluctuation h is physical, because the other combination can be
modified merely by changing coordinates – i.e. changing gauge. (The discussion to
this point essentially works in a non-unitary gauge for which the scalar field and
scalar-metric fluctuations are tracked separately, even though only one combination
of these survives in physical quantities.)

As it turns out, the physical gauge-invariant combination of these two fields can
be found by moving to unitary gauge, which for power-counting purposes amounts
to rescaling

ζ �
φ

ϕ̇/H
∼

φ
√
ε Mp

, (10.44)

where ϕ = ϑMp . Combining Eq. (10.44) with previous estimates leads to the
expectations

Bζζ ∼
H2

I

ε M2
p

, Bttζ ∼
H4

I

M4
p

and Bζζζ ∼
H4

I

ε M4
p

. (10.45)

and so on, to any order desired.
It is the prediction of (10.45) for Bζζ = 〈ζζ〉 that agrees well with observations,

both in its overall size and in the dependence implicitly made for how its spectrum
depends on scales (it is close to, but not exactly, scale invariant largely because HI
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and ε are approximately constant since both only evolve very slowly with time).
Current observations allow all correlation functions except Bζζ to vanish, with
agreement between observations and more detailed calculations of Bζζ requiring
H2

I /ε � (1 × 1015 GeV)2 [262].
More can be learned once any of the other correlation functions are also detected

as being nonzero, including redundant tests (in principle) of the entire single-field
slow-roll inflationary framework. Redundant tests become possible – for instance,
once Btt is measured – because more observables are then available than there
are parameters in the predictions. At present, the best one can do is use the non-
observation of primordial gravitational waves in cosmology to put an upper limit on
Btt/Bζζ, which requires ε <∼ 0.064 [262].

Encouragingly, both of these values are consistent with small ε and HI/Mp , as is
required for the validity of EFT methods. Although it is not yet clear whether they
provide the ultimate explanation of primordial fluctuations, inflationary models set
the current standard for observational success and calculational control against which
all other theoretical proposals are compared.

10.3 Turtles All the Way Down? ♣

So far, it seems that there is always another, deeper, effective theory that plays
the role of UV completion at smaller distances for long-distance (or low-energy)
effective theories. Does this nesting of effective theories continue forever? Is
it effective theories all the way down?

Although nobody knows for sure how nature ultimately answers this question,
some conceptual progress has been made by identifying what a theory can look like
in which endlessly new microscopic scales might not be necessary.

10.3.1 String Theory

At present, the main clues about what goes on at the smallest distances come from
gravity. That is because, with very few exceptions, nature seems to be described very
well by the Standard Model of particle physics combined with General Relativity
(GR). But while the Standard Model is renormalizable – and therefore relatively
insensitive to physics at much higher energies – GR is not. This fact that it is
not renormalizable makes GR potentially more sensitive to UV physics, perhaps
providing a clue as to how things work at the highest energies, at and above
the Planck mass (which, after all, is the largest fundamental energy scale known
in physics).

To put it slightly differently, because it is not renormalizable the only known
control of gravitational predictions are as a low-energy expansion, using the GREFT
framework described above. Some sort of UV completion for General Relativity
must therefore intervene at sufficiently short distances (at the Planck length, or
possibly at some other, longer, length scale) to allow more complete gravitational
predictions using quantum gravity at these short distances. What might a candidate
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UV completion of General Relativity look like? Using as a guide the Standard
Model’s completion of the Fermi theory of the weak interactions suggests it should
include both the massless graviton and new massive particles (with masses at or
below Mp) whose exchange generates the effective non-renormalizable couplings of
GR once they are integrated out. Ideally, these new interactions might themselves be
renormalizable, so they can be insensitive to physics at still-higher energies.

The Good News is that this suggests a method for guessing what the UV
completion might be: one just collects all renormalizable systems that include
the gravitational field, gμν , and seeks within it the subset that generates General
Relativity once the heavier particles are integrated out. The Bad News – at least
before the early 1980s – is that the list of renormalizable field theories including a
dynamical metric, gμν , appeared to be empty.

This bleak picture changed in the early 1980s when a consensus developed that
a candidate renormalizable theory including gμν might actually exist.16 Better yet,
the candidate theory in question appears not only to be renormalizable (that is,
any dependence on still-higher energies can be absorbed into a small number of
couplings), but it seems to be ultraviolet finite (i.e. seems not to depend on still-
higher energies at all).

If renormalizability is motivated by a desire that the physics in question be
insensitive to unknown physics at still-higher energies (because the contributions of
such scales can be absorbed into unknown couplings), then a UV-finite theory is what
one might expect to find if there were no unknown higher-energy physics at all. It is
not that short-distance physics is present but can be absorbed into a few couplings;
rather the calculations of the low-energy theory are complete in themselves, and
make no reference to any unknown high-energy scales.

The rest of this section describes (in very broad brush-strokes) some of the features
of this candidate UV completion. This is done not so much because this must be the
theory of everything. It is instead done because it is the only known example that
could be the theory of everything. As such, it provides a useful illustration of how it
can be that there might not be just more EFTs on and on forever at higher energies.
It also shows concretely how the energy scale where the UV completion kicks in can
be much smaller than the Planck mass, and how and why this can occur.

String Theory: The Basic Idea

The theory that does all this is called string theory (or superstring theory or M-theory,
as various variants are known [264, 265]), and the remainder of this section gives a
brief cartoon of a few of its properties. As its name suggests, its main change of
perspective relative to an ordinary field theory is its proposal that the fundamental
constituents of nature are one-dimensional objects in space having zero thickness
(i.e. strings, that sweep out two-dimensional world-sheets in spacetime), rather than
being zero-dimensional objects in space having zero thickness (i.e. point particles,
that sweep out one-dimensional world-lines in spacetime).

16 This line of argument takes the point of view – motivated by experience with EFTs elsewhere – that
non-renormalizability is a central clue. But this is not the only point of view, and at this writing
(2019) there are a variety of other approaches to quantum gravity being vigorously pursued for which
renormalizability is not the main motivation [263].
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How could this possibly be a viable proposal, given that all known elementary
particles behave as (quantum-mechanical) point particles? The idea is this: funda-
mental strings are envisioned to be very short; possibly almost as short as the Planck
size. This makes them too short to have their nonzero length be experimentally
resolved, even with the best present-day efforts. More quantitatively, relativistic
strings are characterized by their tension (or energy-per-unit-length), T , which for
historical reasons is often also represented as a ‘slope parameter’: α′ := 1/(2πT ).
For fundamental strings the absence of a string thickness makes the ‘string scale’
M2

s ∼ 1/α′ the only characteristic scale in the problem, and so having strings be too
short to have measured their lengths in practice means taking Ms to be much higher
than the highest energies accessible experimentally.

The ability to confuse a short string for a point particle also carries with it a
potentially enormous economy of description: in string theory all known particles
(and all particles not yet discovered) are imagined to be different modes of vibration
of a single type (or a very few types) of string. How does this work? The idea is this: a
string has infinitely many normal modes of vibration, each with a specific oscillation
energy roughly determined by having the wavelength of oscillation be commensurate
with the length of the string. But if the string is too short to be resolved and so
is mistaken as a particle, then this energy of oscillation appears to be an energy
that is independent of the particle’s motion. That is to say: the oscillation energy
would be interpreted as the particle’s rest mass. Crucially for what follows, because
there are an infinite number of string oscillation modes, a single short string can be
mistaken as an infinite number of different types of particles having a specific pattern
of masses.

As it turns out, fundamental strings come in several types: those with ends, called
‘open’ strings, and those that are loops (without ends), called ‘closed’ strings. The
basic interaction that fundamental strings experience is interconnection: when two
strings cross, they can reconnect differently as they pass through one another. The
quantum amplitude for this process to happen is proportional to a dimensionless
quantity called the string coupling constant, gs.

String theory naturally involves supersymmetry in its formulation (for reasons
[266] not explained here for brevity’s sake), and usually involves more than one
type of supersymmetry at that. Its implications are often easiest to understand when
background fields for the various particle states are chosen so as to leave one or more
of these supersymmetries unbroken. The spectrum of string oscillations is simplest
for such vacua, particularly when the geometry of the spacetime through which the
strings move is flat.

String Theory: Spectrum at Weak Coupling

Weakly coupled strings are those for which gs is small, and for these the spectrum of
energies for oscillating string states can be computed perturbatively in gs, with the
free-string spectrum providing a good first approximation.

This spectrum, for strings moving in flat space, includes a collection of massless
states of various spins. The massless states found in the spectrum of open strings
include massless spin-one states (whose low-energy interactions prove to be well-
described by gauge-boson interactions), while for closed strings they include a



260 General Relativity as an Effective Theory

massless spin-two excitation (which turns out to be the graviton). In general each
of these massless states has an associated field, with the massless spin-two particle
associated with the spacetime metric, the massless spin-one particles with various
gauge potentials, Aa

μ, spinless particles associated with scalar fields, and so on. All
of these fields (not just the metric) in principle can take nontrivial background values,
with different values corresponding to different string vacua.

The string spectrum also contains many massive excitations with masses quantized
in units of 1/α′. Broadly speaking, the spectrum of free strings about a supersym-
metric and flat field configuration has the general form

M2
N = N M2

s , (10.46)

where N is a non-negative integer17 and Ms ∼ (α′)−1/2 up to a dimensionless order-
unity coefficient (whose precise value depends on the particular string involved).
There is more than one state for each N and these generally fill out multiplets for all
of the unbroken symmetries, be these spacetime symmetries like Poincaré invariance
or supersymmetry, or internal transformations for the gauge symmetries associated
with the massless spin-one gauge bosons. For large N the degeneracy of states
with mass MN grows very quickly, asymptotically going exponentially with N for
large N .

In the simplest vacua the only nonzero background field that is turned on is the flat
(Minkowski) metric, and such vacua only exist for specific numbers of dimensions.
The weak-coupling examples involving the maximal spacetime symmetries occur
in 10 spacetime dimensions (nine space plus one time),18 and for these the states
fall into multiplets of 10D supergravity. There is more than one type of 10D
supergravity – with variants called Type I, Type IIA, Type IIB and Heterotic [268] –
and the modern picture is that each of them describes the low-energy limit of string
excitations about a particular supersymmetric 10D string vacuum (rather than each
being a separate kind of string theory).

There are also solutions with fewer maximally symmetric dimensions, which is
possible if other background fields are turned on. Among these are background
geometries that are more complicated solutions to the same 10-dimensional field
equations (more about these equations below) that describe alternatives to the max-
imally symmetric 10D Minkowski background configurations. Examples include
‘compactified’ spacetime geometries likeMd × Xn, say, whereMd is d-dimensional
Minkowski (or anti-de Sitter) space and Xn is an (n = 10 − d)-dimensional
compact space, plus possibly other nonzero background fields. When the background
curvatures and fields of these new solutions are small each of the levels of (10.46)
gets split by a small amount (as illustrated in Fig. 10.1), into multiplets that represent
the new background’s smaller number of symmetries.

EFTs and String Interactions

The spectrum (10.46) brings several important lessons about string theory and EFTs.

17 I have superstrings in mind when writing this, since for bosonic strings N can be negative.
18 There is also an 11-dimensional vacuum, though not a weakly coupled one [267].
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Fig. 10.1 Cartoon of how free string levels (labelled by N = 0, 1, 2, . . . and spaced by order Ms) are split at weak
coupling into a ‘fine structure’ whose size is either suppressed by a power of string coupling, gsMs, or a
Kaluza–Klein compactification scale.

The first lesson builds on the observation that (10.46) says M2 comes equally
spaced in steps of M2

s . This implies that there is never a regime Λ > Ms for which
the heavier states with M > Λ are all hierarchically heavier than the lighter states
with M < Λ. For instance, if MN < Λ < MN+1 the ratio of masses for the heaviest
light state over the lightest heavy state is

MN

MN+1
=

√
N

N + 1
and so

1
√

2
� 0.7 ≤ MN

MN+1
≤ 1 for N ≥ 1. (10.47)

Consequently, although there are only a finite number of states with mass less than
any fixedΛ, onceΛ is larger than Ms it is never a very good approximation to expand
in inverse powers of the masses of the states that have been integrated out. Intuition
based on Wilsonian EFTs involving a finite number of fields is likely to be misleading
about the high-energy behaviour of string theory, opening up the possibility that this
behaviour might be interestingly different.

The exception to the above assertion is the case N = 0; for the massless sector
energies can be chosen to be hierarchically low compared with Ms , and in this
regime standard EFT arguments should apply. Consequently, one expects ordinary
field theories to furnish Wilsonian descriptions for the ‘massless’ sectors19 of string
vacua to the extent that effective interactions suppressed by inverse powers of Ms

are hierarchically small. For maximally symmetric 10D vacua the terms in the low-
energy EFT involving two and fewer derivatives are precisely the 10D supergravities
mentioned above.

The leading, two-derivative, terms are, in general, also supplemented by higher-
derivative interactions, as usual, that capture the exchange of the massive string
states that are integrated out. As usual for EFTs the masses of the lightest states
dominate in the denominators of effective couplings having dimensions of inverse
powers of mass. For string theory this means that higher-dimension interactions in the

19 The word ‘massless’ is in quotes here because, strictly speaking, (10.46) only holds in the limit gs → 0
(and for maximally symmetric flat space and so on). More generally, the free-string massless state splits
into states with a variety of masses when gs and background curvatures are nonzero (see Fig. 10.1).
Since the masses of any of these massive N = 0 states can be parametrically small relative to Ms , they
can be described by an EFT, and in this case the low-energy EFT expansion for physical quantities
reproduces the gs (or small-curvature) expansion of the full theory.
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low-energy field theory are generically suppressed by powers of Ms , which (as shown
below, when gs � 1) turns out to be smaller than the Planck mass. What is more
unusual is that the UV finiteness of string theory also allows it to be Ms (together with
dimensionless couplings), rather than arbitrarily high scales, that dominate when
masses appear in numerators of effective couplings.

To make this all more concrete, consider the effective description for heterotic
strings expanded about maximally symmetric 10-dimensional flat space. The fields
describing the massless modes for the free string then consist of the symmetric
10D metric, gMN, a collection of 10D gauge fields, Aa

M , a 10D scalar, D, (called the
‘dilaton’) and an anti-symmetric ‘Kalb-Ramond’ potential, BMN = −BNM, subject to a
gauge symmetry of the form BMN → BMN + ∂MΩN − ∂NΩM, for an arbitrary 10D vector
field ΩM. Plus fermionic superpartners for each of these bosonic fields.

The leading part of the low-energy action for this string sector turns out to be
governed by the following effective field theory [248, 269]

Shet = −
∫

d10x
√
−g
⎡⎢⎢⎢⎢⎣ 1
2κ2

10
gMN

(
RMN + ∂M D ∂N D

)
+

1
6

e−
√

2 DHMNP HMNP

+
1
4

e−D/
√

2Fa
MNFMN

a + · · ·
]

, (10.48)

where dots represent both fermionic and other types of terms involving up to two-
derivatives, as well as a myriad of higher-derivative interactions. Here, κ2

10 = 8πG10

represents the reduced 10D gravitational constant, RMN is the Ricci tensor for the 10D
metric, gMN, and the gauge field-strength tensor, Fa

MN, for the nonabelian gauge group
is defined as usual by

Fa
MN = ∂M Aa

N − ∂N Aa
M + g10 cabc Ab

M Ac
N . (10.49)

Here, g10 is the gauge-field coupling constant with the structure constants cabc
defined by the gauge commutation relations [Tb , Tc] = icabcTa with the represen-
tation matrices Ta assumed normalized by the condition tr (TaTb) = 2 δab . Finally,
with these conventions the field strength HMNP is defined by

HMNP =

[
∂M BNP −

κ10

4
tr

(
AMFMP −

1
3
g10 AM AN AP

)
+ · · ·

]
+ (cyclic), (10.50)

where the gauge-field quantity is a ‘Chern-Simons form’ and the ellipses denote
a similar quantity built from the metric’s spin connection rather than the gauge
potential.

The action (10.48) captures the leading low-energy behaviour of perturbative
string scattering amplitudes, and agreement with these amplitudes fixes the value
of the coupling parameters to be [248, 269]

κ2
10

g2
10
=
α′

2
and κ10 = 2 gs (α′)2. (10.51)

Notice that the second of these implies that weak coupling, gs � 1, makes the string
scale parametrically small compared with the 10D Planck scale: writing κ10 = M−4

10
and defining α′ = M−2

s gives M4
s = 2gsM4

10 � M4
10.

Another important property of (10.48) is the way it depends on the dimensionless
string coupling, gs. This turns out to appear everywhere in the lagrangian together
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with the dilaton, as is most easily seen by rescaling fields Aa
M = Âa

M/g10 and BMN =

κ10 B̂MN and defining the ‘string-frame’ metric, ĝMN, through20

gMN = e−φ/2ĝMN, (10.52)

where φ =
√

2 D. With these redefinitions the action (10.48) becomes

Shet = −
∫

d10x
√
−ĝ e−2φ

⎡⎢⎢⎢⎢⎣ 1
2κ2

10
ĝMN

(
R̂MN − 4 ∂Mφ ∂Nφ

)
+
κ2

10

6 g4
10

ĝMQĝNRĝPT ĤMNP ĤQRT +
1

4g2
10

ĝMPĝNQF̂a
MNF̂aPQ + · · ·

⎤⎥⎥⎥⎥⎦ , (10.53)

where Fa
MN = F̂a

MN/g10 and HMNP = κ10ĤMNP/g
2
10 with F̂a

MN and ĤMNP given in terms of Âa
M

and B̂MN by (10.49) and (10.50), but without the dependence on κ10 and g10, which
have been scaled out.

What is important about (10.53) is that (for the two-derivative terms) φ appears
undifferentiated only through the factor e−2φ in front of the whole action. But this
also ensures that it only appears in the combination gs eφ, since κ10 and g10 are both
proportional to gs. As a consequence, gs can be completely absorbed into a shift of
φ. This shows that gs is not a free parameter of string theory; it is better regarded
as the expectation value of the dilaton field. The replacement of gs by eφ is the rule
in string theory: there are no fundamental dimensionless parameters at all. The one
fundamental parameter is α′, which simply sets the overall units of the problem.
The role normally played by parameters in other theories is in string theory instead
played by the values of background fields [270].

From this point of view, the string loop expansion – which in the full theory is
a series in powers of gs – can be regarded as an expansion in powers of e2φ. This
can be seen independently by power counting in the low-energy theory because in
the action (10.48) φ appears undifferentiated only through the overall factor e−2φ,
and so systematically appears together with the factors of 1/� in eiS/�. Semiclassical
methods therefore provide a good approximation only for that part of field space for
which eφ is small.

The two expansions that control the use of (10.48) or (10.53) as the low-energy
limit of the perturbative string are: powers of eφ (for the string loop expansion) as
well as powers of α′E2 that control the low-energy approximation (the α′ expansion).
Couplings like the effective 10D gravitational coupling are, in practice, combinations
of these:

κ := κ10 eφ ∝ (α′)2gs eφ. (10.54)

Having string loops counted by the value of a field is useful, in some cases
leading to what are called ‘non-renormalization’ theorems. For instance, in the above
example supersymmetry alone dictates the dilaton-dependence of the two-derivative
terms of the action (10.48). Because this gives a dilaton-dependence proportional
to e−2φ, appropriate to a tree-level contribution, supersymmetry implies that there
can be no higher-loop contributions to the action’s two-derivative terms. After all,

20 The metric gMN appearing in (10.48) is called the ‘Einstein-frame’ metric, and is defined by the property
that there is no scalar-field dependence premultiplying the Einstein–Hilbert action.
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if there were such corrections they would involve a different power of e2φ, which
supersymmetry forbids. (This argument is, in practice, most commonly applied to
compactifications to 4D maximally symmetric vacua [271] rather than to the 10D
action.)

Some of the subleading corrections to (10.48) have also been computed by
working at string tree level but to subdominant order in powers of α′. This is possible
because the full string tree-level 4-point graviton amplitude due to string exchange
has been calculated explicitly as a function of energy. The dependence often involves
products of Euler Gamma-functions, sometimes called a Veneziano form based on
the earliest discovered examples [272].

For instance, for Type II strings the tree-level amplitude for 2 → 2 scattering of
massless gravitons in 10D flat space turns out [273] to be proportional to

A ∝ κ2(α′)3
[
Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)

]
, (10.55)

where s = −(p1 + p2)2, t = −(p1 − p2)2 and u = −(p1 − p3)2 are the usual three
Mandelstam invariants built from the momenta of the scattering states. Γ(z) is Euler’s
gamma function – which has poles at non-positive integer arguments – showing
that (10.55) has multiple poles corresponding to the exchange of all possible string
excitations as intermediate states.

The low-energy EFT applies at energies well below the string scale, in which case
(10.55) reduces to21

A � κ2(α′)3
[
− 64

(α′)3stu
− 2ζR(3) + O(α′)

]
, (10.56)

where the Riemann zeta-function is defined for sufficiently large real argument by
ζR(r) :=

∑∞
n=1 n−r , and by analytic continuation for other complex values. The first

term of (10.56) depends only on κ2 (and not also on α′) and is captured by the
corresponding two-derivative supergravity contribution. The second term gives the
first subleading correction, and implies the existence of a quartic-curvature term
in the Wilsonian EFT for the metric. Recalling that each factor of the canonically
normalized metric perturbation comes with a factor of κ, the effective coupling
required for this quartic-curvature term by matching to (10.56) is of order (α′)3/κ2 ∝
e−2φ/α′ [274]. The proportionality to e−2φ is the right dependence for a contribution
at string tree level and the power of α′ is dimensionally appropriate in 10D for a term
with four powers of the background curvature tensor.

10.3.2 Extra Dimensions

The above discussion makes the connection between the string scale and the Planck
scale explicit, but so far only does so in 10 dimensions. To make contact with the
measured 4D Planck mass requires identifying how a four-dimensional world might
emerge from a 10-dimensional one.

21 Strictly speaking, taking s ∼ t ∼ u all small but similar in size is a low-energy, large-angle
approximation because the variables t and u can be � s for small-angle scattering.
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Dimensional Reduction

A comparatively simple way to make the connection from 10 to 4 dimensions explicit
is by seeking more general background solutions to the field equations of actions
like (10.48), such as by seeking geometries with background metrics, g̃MN, of the
form,22

g̃MN(x, y) dxMdxN = g̃μν (x) dxμdxν + g̃mn(y) dymdyn, (10.57)

with possibly nonzero backgrounds allowed for other fields as well. Here, xM =

{xμ , ym} with M = 0, . . . , 9 with μ = 0, 1, 2, 3 corresponding to the 4D geometry
and m = 4, · · · , 9 to the rest. As discussed in §6, solutions found using the 10D EFT
should be a good approximation to the full UV theory if all background curvatures
and derivatives of background fields are small compared with the string scale.

Many explicit solutions of this type are known with a maximally symmetric 4D
metric, g̃μν . Much of the focus is on solutions that break the 10D supersymmetry
down to a single 4D supersymmetry, in which case g̃μν is either flat space or anti-
de Sitter space [275]. Unbroken 4D supersymmetry gets a lot of attention, partly
for phenomenological reasons (to help solve the electroweak hierarchy problem
discussed in §9.3), and partly because it turns out to help control the size of the
gs and α′ corrections to such solutions.

In the semiclassical limit the spectrum of fluctuations about a background
configuration like (10.57) is found in the usual way by expanding fields,

gMN(x, y) = g̃MN(x, y) + hMN(x, y), (10.58)

and expanding the action in powers of the fluctuations, treating all cubic and
higher terms perturbatively. In this kind of expansion hμν (x, y) transforms as a 4D
symmetric tensor, hmν (x, y) = hνm(x, y) is a 4D 4-vector and hmn(x, y) transform
as a collection of 4D scalars. A similar decomposition goes through for other 10D
fields, like Aa

μ (x, y) and Aa
m(x, y).

In addition to this, the dependence on the extra-dimensional coordinate ym can
often be traded for a discrete label, corresponding to what is called a ‘Kaluza–Klein’
tower of 4D fields that depend on 4D position, xμ, only [276]. This kind of discrete
expansion applies, in particular, when the extra-dimensional geometries are compact.

As a simple example of how this works, consider a massless 10D scalar field,
Φ(x, y), whose equation of motion is linearized about this background. The resulting
(linearized) 10D field equation might be

g̃MN∇̃M∇̃NΦ = g̃μν∇̃μ∇̃νΦ + g̃mn∇̃m∇̃nΦ = 0. (10.59)

The idea is to expand

Φ(x, y) =
∑
b

φb (x) ub (y), (10.60)

in a complete set of eigenfunctions satisfying

g̃mn∇̃m∇̃nub (y) = −λbub (y), (10.61)

22 A product space is chosen here for simplicity. 4D maximal symmetry allows more general geometries,
such as if the 4D part of the metric is pre-multiplied by a ‘warp factor’ W 2 (y).
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in which case the 10D field equation, (10.59), becomes a Kaluza–Klein tower of 4D
equations for the φb (x):

g̃μν∇̃μ∇̃νφb − λbφb = 0, (10.62)

showing that each mode φb (x) behaves as a 4D field and satisfies a 4D Klein–
Gordon equation with mass m2

b
= λb . Similar expansions in terms of eigenfunctions

also go through for higher-spin fields.
For stable background configurations the eigenvalue spectrum satisfies λb ≥ 0.

For example, if there were two extra dimensions with the geometry of a 2-sphere
of radius �, then the desired eigenfunctions are spherical harmonics, Y�m(θ,φ), and
λ�m = �(� + 1)/�2 ≥ 0 is non-negative because � = 0, 1, 2, · · · .

This example shows that the generic size of the Kaluza–Klein masses, mb , is set by
a geometrical scale appearing in the internal metric, g̃mn, with m ∝ 1/� in the case
of the 2-sphere. These masses are parametrically small compared with the string
mass scale, mb � Ms , in the regime where curvatures are small enough to justify
calculating them using the 10D effective theory rather than using string theory in its
full glory. From that point of view the Kaluza–Klein mass spectrum can be regarded
as the fine-structure of string energy levels: 10D string states with masses of order
Ms become split into many 4D states separated by masses of order mb (as illustrated
in Fig. 10.1).

Modulus Stabilization

Because the internal metric is a dynamical quantity, ideally � (and consequently also
the m2

b
) should be calculable using the 10D field equations, though this is often –

but not always (see for example [277]) – a challenge in practice. One reason this can
be a challenge arises because higher-dimensional supergravities generically enjoy
a classical scaling symmetry under which a transformation like gMN → c gMN (plus
possibly transformations of other fields) causes the two-derivative parts of the 10D
lagrangian to scale: LW → cpLW, for some p. Here, c is the constant symmetry
parameter.

An example of this can be seen in (10.53), which transforms as SW → c2SW when
e−φ → c e−φ and all other fields are fixed. Although this does not transform the
string-frame metric ĝMN, it does transform the Einstein-frame metric (10.52), with
gMN → c1/2gMN. In particular, it rescales the overall volume of the extra-dimensional
Einstein-frame metric (such as its radius, �, if this metric were that of a sphere).

Because this kind of transformation rescales the action, it is not a symmetry in the
usual sense (which involves being an invariance of the action). It does preserve the
equations of motion, however, since any classical solution (or saddle point, δSW = 0,
of the action) gets mapped to another such a solution. Consequently, if a classical
solution exists for any nonzero parameter like � and if this parameter transforms
nontrivially under such a classical rescaling symmetry, then other classical solutions
must also exist for all values of �. These must all exist because they are all just
rescalings of one another under a symmetry of the classical equations of motion.

Variables like � on which solutions can depend parametrically like this are called
‘moduli’. Another simple example of a modulus is also visible in (10.59), because
φ = 0 is satisfied by a one-parameter family of solutions φ = constant. Notice that
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constant φ is also a zero-mode, g̃mn∇̃m∇̃nu0 = 0, corresponding to the massless
state, ϕ0(x), found in the example above. This connection between moduli and
massless 4D Kaluza-Klein modes is one of the reasons why moduli are of interest:
their identification is central to reliably identifying the field content of the low-energy
4D theory.

Because the above scaling argument is explicitly classical, it need no longer apply
once corrections are included – such as quantum corrections – that violate the
invariance of the field equations. Incorporating such corrections is therefore very
important, since predictions for the stabilized values of modulus fields (and for the
mass of the associated particle) cannot be made until they are included.

4D EFTs

Because Kaluza–Klein states come in towers, there is usually not a sufficiently clean
hierarchy of scales to allow a low-energy EFT to be defined that keeps any of
the nonzero-mass states, ϕb (x), in the low-energy sector while integrating out the
others – for reasons similar to those given surrounding Eq. (10.47) for the string
spectrum.

Intuition based on 4D Wilsonian EFTs can therefore easily be misleading about the
high-energy behaviour of higher-dimensional field theories, as is indeed borne out by
experience.23 For instance, earlier sections argue that integrating out heavy 4D states
of mass M contribute to 4D Wilsonian action terms like

√−g
(
c0 M4+c2 M2R+ · · ·

)
,

where R is the 4D Ricci scalar and the ci are calculable dimensionless constants.
Integrating out a particle of mass M in D dimensions instead contributes to a
Wilsonian action an amount

√−g
(
c0 MD + c2 MD−2R + · · ·

)
where R denotes the

D-dimensional Ricci scalar and ci are a different set of calculable dimensionless
constants. Higher-dimensional EFTs depend differently on M and are subject to
all of the constraints of higher-dimensional symmetries (like higher-dimensional
diffeomorphism or Lorentz invariance): symmetries whose implications are more
difficult to see when written as a tower of 4D Kaluza–Klein fields.

What 4D theories can capture is the physics of the massless (or near-massless)
modes, for which λb = 0. These are the states present at energies that are
hierarchically small compared with the lowest-lying Kaluza–Klein mass, which in
the rest of this section is denoted Mc (for ‘compactification scale’). Because the
corresponding zero-mode fields, like ϕ0(x), depend only on xμ, in practice they
live in four dimensions, and so their low-energy EFT is four-dimensional (with
the leading higher-dimensional interactions having effective couplings suppressed
by powers of24 Mc ∼ 1/� � Ms � Mp , with the last hierarchy applying in the
perturbative limit gs � 1).

23 Although the form for divergences computed in higher dimensions [278] generally differs from what
is found by performing a sum of 4D KK divergent contributions, these can agree for logarithmic
divergences [279] (in what is a variant of the general argument for the magic of logarithms given
around Eq. (3.30)).

24 Although simple geometries – e.g. spheres – only involve one scale, more complicated ones can
involve a wide variety of scales and Mc need not be simply related to the mean geometrical curvature
or volume [280].
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A zero mode that is generically present whenever the background 4D metric,
g̃μν (x), is maximally symmetric is the massless 4D graviton. To see why its
presence is generic, recall that when a gravitational wave is written as an expansion
about the background geometry, gMN = g̃MN + hMN, the graviton part of the fluctuation
can be chosen to satisfy ∇̃MhMN = g̃MNhMN = 0 [281]. But linearizing the extra-
dimensional vacuum Einstein equations, RMN = 0, shows that the linearized graviton
fluctuation satisfies the Lichnerowicz equation, Δ̃PQ

MNhPQ = 0, where [282]

Δ̃
PQ
MNhPQ =

1
2
∇̃2hMN +

1
2
(
R̃P

MhNP + R̃P
NhMP

)
− R̃PMRNhPR (10.63)

defines the ‘Lichnerowicz operator’: Δ̃PQ
MN. Here, tildes indicate that the corresponding

derivative or curvature is built from the background metric, g̃MN.
The 4D spin-2 graviton is contained in the part, hμν , where both indices take values

in 4D and ∇̃μhμν = g̃μνhμν = 0. Assuming the background metric is maximally
symmetric in 4D – which implies that R̃m

μ = 0 = R̃μmnν , with the proof of the
second of these requiring use of the Bianchi identity (C.96) – and evaluating (10.63)
with M = μ and N = ν then gives

Δ̃
PQ
μνhPQ =

1
2
(
g̃λρ∇̃λ∇̃ρ + g̃mn∇̃m∇̃n

)
hμν +

1
2
(
R̃ρμhνρ + R̃ρνhμρ

)
− R̃ρμσνhρσ

= Δ̃
λρ
μν hλρ + g̃

mn∇̃m∇̃n hμν , (10.64)

where Δ̃
λρ
μν is the 4D Lichnerowicz operator (which describes graviton fluctuations

in the 4D Einstein–Hilbert action). Consequently, the Kaluza–Klein mode decom-
position for the spin-two part of hμν (x, y) =

∑
s h

s
μν (x)us (y) involves modes us (y)

that are eigenvalues of the Laplacian, g̃mn∇̃m∇̃n, acting on extra-dimensional scalars.
The zero mode for this operator is simply given by u0(y) = constant, and so a single
massless 4D graviton exists on very general grounds for compact extra-dimensional
geometries.

On equally general grounds the low-energy action governing the two-derivative
self-interactions of this massless spin-two 4D graviton are given by the 4D Einstein–
Hilbert lagrangian (to which one can add possible couplings to other low-energy
4D fields). The 4D Planck mass appearing in this lagrangian is most easily seen by
restricting the higher-dimensional Einstein–Hilbert action to the quadratic part in
the zero-mode hμν (x), and so – assuming the product-space background geometry
(10.57),

SEH(10D) = −
1

2κ2
10

∫
d10x

√
−g̃10 hMNΔ̃

PQ
MNhPQ + · · · (10.65)

= − 1
2κ2

10

∫
d6y

√
g̃6

∫
d4x

√
−g̃4 h

μνΔ̃
λρ
μν hλρ + · · · ,

where g̃10 = det g̃MN, g̃4 = det g̃μν and g̃6 = det g̃mn and (as above) κ2
10 = 8πG10,

where G10 is the higher-dimensional Newton’s constant of universal gravitation.
Eq. (10.65) agrees with the corresponding expansion of the 4D Einstein–Hilbert

action,

SEH(4D) = −
1

2κ2
4

∫
d4x

√
−g̃4 h

μνΔ
λρ
μν hλρ + · · · , (10.66)
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provided the 4D gravitational coupling (defined by κ2
4 = 8πGN) is given by κ−2

4 =

κ−2
10 S6, where S6 =

∫
d6y

√
−g̃6 is the volume of the extra dimensions. Using the

Planck-mass definitions, κ−1
10 = M4

10 and κ−1
4 = Mp then shows

M2
p = M8

10 S6 or GN =
G10

S6
, (10.67)

a formula used earlier, such as in Eq. (9.35).
Recall that the neglect of higher-curvature terms when performing dimensional

reduction is only valid if Kaluza–Klein scales are much smaller than the string scale,
Mc ∼ 1/� � Ms . Furthermore, the string scale itself is much smaller than M10

for weakly coupled strings – c.f. the discussion below (10.51) for gs � 1. Provided
the length scale defined by the volume is comparable to the Kaluza–Klein scale of
the background geometry (or is larger), S6 ≥ �6, this also means that M6

10 S6 ≥
M6

10 �
6 � M6

s �
6 � 1 and this in turn implies that Mp � M10. We are left with the

generic hierarchy

Mp � M10 � Ms � Mc , (10.68)

for weakly coupled string compactifications performed within the higher-
dimensional EFT.

In this regime the new physics describing high-energy gravity can kick in at ener-
gies well below the Planck mass. The first big change occurs at the compactification
scale, Mc � Ms, above which the 4D Wilsonian EFT gets replaced by a higher-
dimensional field theory. This higher-dimensional field theory itself then fails at
scales of order Ms , above which a description in terms of a finite number of fields
becomes inadequate and the proper treatment involves the full spectrum of string
theory.25

String vacua indeed seem to explore a wide range of this parameter space
[275, 283], with (at this writing) the only completely model-independent constraint
being the requirement that the string scale be larger than observable energies, Ms >∼ 1
TeV [284]. This is a surprisingly weak bound because it happens that the stronger
contraint Mc >∼ 1 TeV need not be true, since it can happen that ordinary particles
can interact too weakly with extra-dimensional physics to rule out having Mc at
surprisingly low energies [285]. At present, the strongest robust upper bound on
the size of extra dimensions comes from tests of the gravitational inverse-square law
[286], which as of this writing (2019) allow a few extra dimensions to be as large as
40 μm.

10.4 Summary

This chapter brings some gravity to the more general themes about effective theories that run through this
book.

25 Notice that the new physics at each of these scales can be – though of course need not be – weakly
coupled, in the sense that it is well described by perturbing in the dimensionless couplings. This is one
of many examples arguing against use of the term ‘strong coupling’ to describe the breakdown of the
low-energy approximation at higher energies.
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The most important message of this chapter is that the non-renormalizability of General Relativity need
not preclude being able to make precise quantum predictions. Reliable predictions are possible because
the same power-counting tools used for other non-renormalizable theories (like the Fermi theory of weak
interactions or chiral perturbation theory) also apply to gravity, once it is recognized that semiclassical
predictions intrinsically involve a low-energy expansion.

Indeed, in the end it is power-counting formulae like (10.9) that define the boundaries of validity for the
classical (and semiclassical) tools that are universally used in all practical applications of General Relativity.
Because they quantify the theoretical error associated with any classical GR calculation, low-energy power
counting rules are implicit in any meaningful comparisons between theory and observations when testing
classical theories of gravity.

Although laughably small for applications within the solar-system, quantum corrections can be impor-
tant in other gravitational situations. Most notable of these are black-hole and cosmological spacetimes,
for which quantum predictions – such as those leading to Hawking radiation or a quantum origin for
primordial fluctuations – can introduce novel phenomena not present at all within a purely classical
regime.26

Continued exploration of both black-hole and cosmological examples has proven very instructive,
helping identify conceptual challenges to the current understanding that arise within a controlled context
[287]. A quantum origin for primordial fluctuations would also bring quantum-gravitating effects into the
concrete realm of observations. Conceptual puzzles and practical applications both motivate quantifying
theoretical error by power counting the precise size of quantum effects for more involved systems, such
as the cosmological models used to derive (10.24) or (10.26) (which could yet be tested by precision
observations).

Gravitational systems also provide insight in other, more conceptual ways. The fact that GR is not
renormalizable suggests seeking more complete descriptions of quantum-gravity effects at the much
higher energies where low-energy techniques inevitably fail. Although it is not yet known what this UV
completion might be in nature, theories now exist that, in principle, could play this role. This chapter
provides a whirlwind summary of string theory to illustrate some of the things study of UV complete
systems might teach us about how effective theories may work at much shorter length-scales. Theories
such as this provide the first potentially realistic examples of what UV finite physics could look like, and so
provide insight into what might be possible at the shortest of distances. If the successive effective theories
describing nature are regarded as successive layers of a cosmic onion, UV finite theories provide a first
glimpse into its core.

Exercises

Exercise 10.1 Fill in the steps and derive the power-counting rule (10.9) starting from
the GREFT effective action (10.2). Repeat the exercise for relativistic scalar-
tensor theories and derive (10.24) starting from the effective action (10.18).

26 More interesting novel quantum predictions may also be possible, perhaps resolving the curvature
singularities that plague these geometries. Unfortunately, at the present writing no proposals along
these lines have yet shown complete control over the semiclassical methods used.
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Exercise 10.2 Eliminate the redundant curvature-squared and curvature-cubed inter-
actions for pure gravity in an expansion about flat space in D spacetime
dimensions, dropping total derivatives and performing field redefinitions as
necessary. Identify in this way a basis of non-redundant 4- and 6-derivative
interactions.

Specialize the result to D = 4 and D = 6, keeping in mind that some
combinations of curvatures might be total derivatives in specific numbers of
dimensions.

Repeat this exercise for an expansion about de Sitter space rather than flat
space.

Exercise 10.3 Expand the Einstein–Hilbert action (10.1) using gμν = ημν + 2κ hμν ,
with κ2 = 8πGN = 1/M2

p and show using the quadratic term that hμν is
the canonically normalized fluctuation. Show also that the cubic term in hμν
includes the two-derivative interaction

L
(3)
EH = −κ

(
hμνhλρ∂μ∂νhλρ + 2∂ ρhμν∂

μhνλhλρ
)
.

Exercise 10.4 For two-body graviton-graviton scattering show that the power-
counting result (10.9) implies that the leading-order contribution has amplitude
A ∝ (E/Mp)2. Draw all of the Feynman graphs that contribute to this order.
Evaluate these graphs and show that the amplitude for tree-level unpolarized
graviton-graviton scattering in flat space is given by

A = 8πi GN

s3

tu
,

where s, t and u are the Mandelstam invariants defined in (8.44).

Exercise 10.5 For single-field cosmological models – i.e. the system of §10.2 with
a single scalar field – explicitly expand the action built from (10.18) to
quadratic order about a spatially flat FRW background geometry (10.16) with
a homogeneous time-dependent scalar, ϑ(t), and compute the dimensionless
coefficients cn appearing in (10.20) for the fn = dn = 2 terms as functions of
the effective couplings in (10.18).

Exercise 10.6 To see how to work with dimensional regularization in curved posi-
tion space, calculate the Feynman propagator, G(x, x ′), for a free massive
scalar field in n-dimensional de Sitter space, where the field equation is
(− + m2)φ = 0.

Define n-dimensional de Sitter space as the surface ηMNξMξN = κ−1 within
(n + 1)-dimensional Minkowski space, with flat metric ηMN. Show that the
surface defined in this way has Riemann curvature Rμνλρ = κ(gμλgνρ −
gμρgνλ). Show that a de Sitter invariant measure of the separation of two points
can be defined in terms of the embedding space by σ(x, x ′) = 1

2 ηMN(ξ − ξ′)M

(ξ − ξ′)N, and that this satisfies the identities ∇μσ∇μσ = σ(2 − κσ) and
∇μ∇νσ = gμν (1 − κσ).

de Sitter invariance implies that G(x, x ′) = G[σ(x, x ′)] is a function of x and
x ′ only through the variable σ(x, x ′). Use this to show that the Klein–Gordon
equation becomes the ordinary differential equation

(− + m2)G(x, x ′) = σ(κσ − 2)G′′ + n(κσ − 1)G′ + m2G = 0,
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where G′ := dG/dσ. Use this to show that the only propagator that is singular
only at σ = 0 and that is analytic in the upper-half σ-plane and the lower-half
m2-plane is given by the Hypergeometric function

G(x, x ′) =
iκ(n−2)/2

(4π)n/2

⎧⎪⎪⎨⎪⎪⎩
Γ
[

1
2 (n − 1) + iα

]
Γ
[

1
2 (n − 1) − iα

]
Γ[n/2]

⎫⎪⎪⎬⎪⎪⎭
× 2F1

[
1
2

(n − 1) + iα,
1
2

(n − 1) − iα;
n
2

; 1 − 1
2
κ(σ + iε)

]
,

where ε → 0+ in the end and α2 = (m2/κ) − 1
4 (n − 1)2. Use this result to

evaluate the dimensionally regularized coincident limit G(x, x) obtained by
taking x ′ → x. Expand this result in powers of n−4 to identify its divergence in
the n → 4 limit. Position-space dimensional regularization can also be adapted
to more general geometries using heat-kernel techniques [84, 288–291].

Exercise 10.7 Evaluate the displayed terms of the low-energy Einstein-frame effective
action (10.48) using the string-frame metric defined by (10.52) and thereby
verify (10.53).

Exercise 10.8 Identify all of the poles in the string scattering amplitude given in
(10.55). Given that these poles occur once s, t or u is evaluated at the masses of
a string state, identify the string spectrum and compare it with (10.46). What
is the residue of the amplitude at the poles in the s-channel? What should this
residue be for resonant s-wave scattering?
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About Part III

This part of the book makes the switch to nonrelativistic applications. By restricting
to systems involving a relatively small number of particles, nonrelativistic issues are
addressed in a framework where many-body issues are not also needed. This is meant
to isolate the new complications associated with nonrelativistic kinematics from the
other independent complications associated with having a large number of degrees
of freedom.

The core applications in Part III are to the electrodynamics of slowly moving
particles (such as electrons in bound states) and to the electrodynamics of neutral
particles (like atoms) built from charged constituents. As such, they are the natural
framework for understanding atoms and their properties and lay the foundations for
many of the more complicated systems studied in later sections.

The final chapter of this part then broadens the focus again to more complicated
types of nonrelativistic objects, in situations where their substructure is much smaller
than the size of the physics of interest. Examples considered range from classical
motion of ‘lumps’ whose substructure is explicitly known – such as solitons or
large-scale defects (monopoles, vortex lines, domain walls, etc.) in field theories
– through to potentially complicated composite systems – such as nuclei within
atoms or the influence of the Earth itself (or other planets or stars) in applications to
orbital motion. For these systems EFT techniques generalize the logic of multipole
expansions to a broader class of settings than electromagnetism.

In these last applications the interest is usually in specific numbers of nonrelativistic
objects (several specific planets, say, or an atom’s individual nucleus), so the
description is more efficiently made using first-quantized methods rather than
second-quantized techniques. In this way one comes full circle: conceptually
retrieving single-particle Schrödinger quantum mechanics as the EFT governing
a specific type of low-energy limit of a full quantum field theory.





11
Conceptual Issues

(Nonrelativistic Systems)

Up to this point in this book, all of the applications of EFT methods deal with
relativistic systems. This is done partly on historical grounds but also partly because
of simplicity: the comparatively large number of symmetries helps reduce the
number of independent interactions in relativistic applications. But restricting just
to relativistic applications also gives a distorted picture of the real power of EFT
methods, which apply essentially anywhere in physics where a hierarchy of scales
exists.

To illustrate the extent of this Wilsonian reach, the rest of the book relaxes the
relativistic assumption and concentrates instead on the new features that emerge
when effective theories are applied to intrinsically nonrelativistic systems. That
starts here in Part III, with a discussion of some of the new scaling issues that
arise for nonrelativistic kinematics, followed by a selection of instructive examples.
(Part IV continues the story with a discussion of a slightly different kind of EFT
generalization: to many-body and open systems.)

A second point of the following chapters is to show how second-quantized,
nonrelativistic Schrödinger field theory – and, indeed, even ordinary single-particle
Schrödinger quantum mechanics – systematically emerges as the low-energy limit
of relativistic systems, as do many of the other effective theories used at much lower
energies in more complicated many-body settings. Making this connection explicit
allows the influence of small relativistic effects – like QED radiative corrections or
parity violation from the weak interactions – to be tracked systematically within
slowly moving bound systems like atoms, to which nonrelativistic Schrödinger
methods normally are best suited.

11.1 Integrating Out Antiparticles ♦

Nonrelativistic particles arise in effective theories where the UV scale, Λ, of the
low-energy theory is smaller than the mass, M , of the particle in question: Λ <∼ M .
Such a particle’s kinetic energy is necessarily much smaller than M , making its
kinematics nonrelativistic, but its total energy satisfies E ≥ M since it cannot be
smaller than its rest mass. The very first question to ask is why it makes sense for
particles with E ≥ M >∼ Λ to be present in the low-energy theory – whose energies
are by assumption much smaller than Λ – in the first place.

The presence in an EFT of such massive particles is only consistent if later
time evolution does not involve any integrated-out high-energy states. This requires
the energy locked away in the rest-mass M to be inert, in the sense that it cannot
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be released to produce these other high-energy states. If that were to happen, their
exclusion (as is done by assumption in the EFT below Λ) would be inconsistent.

Among other things, having the heavy objects be inert implies that they must be
relatively stable (i.e. not able to liberate their rest mass by decaying into much lighter
fields). If they are unstable, release of too much rest-energy might be precluded if one
of the decay daughters is also nonrelativistic, with M −M ′ < Λ so that enough of the
rest mass remains locked up. Alternatively, the decay might be very slow relative to
the time-scales under study, so that although EFT methods eventually do break down
this takes longer than the timeframe of interest.1

Being in a low-energy theory also implies that nonrelativistic particles must
encounter their antiparticles very infrequently, since once they do, the resulting
annihilation releases order M in energy; too much to allow a purely low-energy
description. Most often the absence of annihilation happens because antiparticles
are completely absent, but it might also just be that antiparticles are only rarely
encountered. In the presence of antiparticles EFT methods are valid only until
particle and antiparticle meet.

Should annihilations (or energetic decays) occur, the effective theory can some-
times be used so long as no attempt is made to follow any high-energy states. The
price paid for doing so is that the low-energy theory becomes non-unitary: EFT
evolution is not unitary because probability is being lost to higher-energy sectors
whose evolution is not being tracked. Examples along these lines are examined below
for the EFT relevant to precision calculations with positronium (an e+e− bound state).

Nonrelativistic Field Theories

In relativistic systems the relationship between fields and creation/annihilation
operators always involves both particles and antiparticles, and as a result it is
impossible to build a local interaction that does not change the number of particles
in a relativistic theory. For instance, a relativistic complex scalar field φ(x) consists
of the combination

φ(x) =
∫

d3p√
(2π)32Ep

(
ap eip ·x + ā∗p e−ip ·x

)
, (11.1)

where ap destroys particles with 4-momentum pμ while ā∗p creates antiparticles with
4-momentum pμ. Both are required in order to ensure the fields (and so also the
interaction Hamiltonian densities) commute at space-like separations.2

By contrast, nonrelativistic field theories involve separate fields for each particle
type (with antiparticles, if they appear, getting their own separate field). For
instance,3

1 The treatment of baryons in chiral perturbation theory provides a concrete example of these alternatives,
such as in the discussion of §8.2.3.

2 As argued in Appendix C.3, having Hamiltonian densities commute at spacelike separation is compul-
sory in relativistic theories because otherwise time-ordering – such as arises when computing the S

matrix – is ill-defined for spacelike-separated events (on whose ordering in time different observers can
disagree).

3 Notice the conventional change of normalization between relativistic fields (11.1) and nonrelativistic
fields (11.2), with φ = (Ψ + Ψ)/

√
2M when Ep � M (see Appendices B.1, C.2 and C.3).
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Ψ(x) =
∫

d3p
(2π)3/2 ap eip ·x and Ψ(x) =

∫
d3p

(2π)3/2 āp eip ·x , (11.2)

with nothing forcing Ψ and Ψ to appear in the specific combination Ψ + Ψ
∗
. From

this point of view nonrelativistic effective field theories are obtained from relativistic
ones by integrating out the antiparticle part of a field while keeping the particle (or
vice versa).

At first sight this seems an odd thing to do because a particle and an antiparticle
have precisely the same mass. Since neither is lighter than the other, why does it
make sense to integrate one out and not both? Indeed, in a world with equal numbers
of particles and antiparticles all particles and antiparticles can mutually annihilate,
and so the low-energy sector is usually devoid of both.4 In what types of situations
are nonrelativistic particles ever relevant to an EFT below their mass?

Conserved Charges and Selection Rules

An important instance where nonrelativistic particles naturally appear in low-energy
EFTs arises for states containing more stable particles than antiparticles (or vice
versa). In this case, the excess particles can survive at the lowest-available energies
just for want of a way to disappear. Unequal numbers of particles and antiparticles
can be consistent with being at low energies when the particles in question carry
a conserved charge, Q = Q0 (like baryon number or electric charge). When this
is true then the lowest-energy state in a sector of the theory with nonzero net
charge, say Q = NQ0, necessarily contains |N | particles without their antiparticles
(or antiparticles without the particles, depending on the sign of N).

Conserved charges can also keep the heavy particles from decaying too quickly (or
at all), keeping them sufficiently stable to survive on the relatively slow time-scales
appropriate at low energies. Both annihilations and decays can then be sufficiently
rare (or absent) on the long timeframes of interest. The existence of such a charge
is assumed throughout most of the remainder of this part of the book (§12.2.4 is an
exception), with the first few sections specializing to situations where N is relatively
small, and later sections considering systems for which N can be extremely large.

The remainder of this chapter sets out some of the main ways in which the
formalism of Part I differs when applied to nonrelativistic systems. One such a dif-
ference comes because nonrelativistic systems treat space and time differently. This
changes the basic scaling properties of fields, and so also changes the assessments
of which types of interactions are relevant, irrelevant or marginal. The precise way
this scaling changes can differ for different systems (depending, for example, on
how energies and momenta are related by dispersion relations) and so nonrelativistic
systems can exhibit a broad class of novel types of scaling regimes in the low-energy
and/or low-momentum limit. Indeed, for nonrelativistic systems low energy need not
mean low momentum, and so it is important to keep these two limits conceptually
separate.

4 As §12.2.4 emphasizes, even with equal number of particles and antiparticles EFTs can remain useful
for specific kinds of questions.
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A second important new feature generic to nonrelativistic systems is the inevitable
appearance of multiple scales in the low-energy theory. More scales become
inevitable simply for kinematic reasons: because the nonrelativistic assumption
ensures that speeds in the low-energy theory satisfy v � 1 (or v � c, in units
with c � 1). For any particular low-energy scale m there is always a number of other
low-energy scales also present – m � mv � mv2 � · · · and so on. The presence
of so many scales in the low-energy sector complicates the power-counting story
for these theories, independent of the presence of any other scales associated with
interactions.

The next few sections address each of these new features in turn.

11.2 Nonrelativistic Scaling ♦

The first step is to revisit the discussion of scaling given for perturbative systems
in §2.4 to see how it changes in a nonrelativistic regime. To this end, the next few
paragraphs recall how scaling works for relativistic systems, following [19].

In particular, the key argument in the (perturbative) discussion of §2.4.2 assumes
the path integral to be dominated by kinetic terms in the action, such as5 ∂μφ∗ ∂μφ
for a relativistic scalar field. The demand that this part of field space be preserved
under rescalings of coordinates, xμ → x

′μ := s xμ, dictates a scalar field scales as
φ(x) → φs (x) := s−1φ(x). The same analysis for a spin-half fermion starts from
the invariance of the kinetic term ψ

/
∂ψ to conclude that ψ(x) → ψs (x) = s−3/2ψ(x).

In both cases, this leads to the conclusion that an effective interaction of the
form Lint = cnOn, involving an operator of dimension [On] = Δn, has an effective
coupling that scales as cn → sΔn−4cn, implying irrelevance for Δn > 4 and relevance
for Δn < 4, in agreement with the expectations of naive dimensional analysis. In
particular, mass terms like m2φ∗φ or mψψ are relevant, implying they become
more important at sufficiently low energies – making their neglect eventually a bad
approximation when setting scaling dimensions.

11.2.1 Spinless Fields

To see how the mass term changes things consider (for concreteness’ sake) a complex
scalar field, and recall that fields representing a particle state with energy Ep depend
on time like φ ∝ e−iEp t . Because Ep � m in the nonrelativistic regime, the kinetic
term ∂tφ∗∂tφ � m2φ∗φ, implying a big cancellation occurs between it and the mass
term in quantities like the lagrangian density or the equations of motion.

This near-cancellation of two large contributions obscures the scaling prop-
erties of physical quantities, so it is useful to adopt a more convenient set of
variables

φ(x) =
1
√

2m
Φ(x) e−imt . (11.3)

5 As discussed above, a complex field is used with the idea that it carries a conserved charge to ensure
the nonrelativistic particle is stable and/or has an excess of particles over antiparticles.



281 11.2 Nonrelativistic Scaling

The extraction of the phase e−imt can be regarded as a change of the overall zero
of energy so that particle energy in the low-energy theory really measures kinetic
energy, relative to the rest mass.6

Making this change of variables in the free action gives

−
[
∂μφ

∗∂μφ + m2φ∗φ
]
=

i
2

(Φ∗∂tΦ − Φ∂tΦ∗) −
1

2m
∇Φ∗ · ∇Φ + 1

2m
|∂tΦ|2.

(11.4)

For free nonrelativistic particles with kinetic energy Ep ∼ |p|2/2m – and so which
satisfy (i∂t + ∇2/2m)Φ = 0 (on shell) – the first two terms in the last line are
similar in size in the dominant part of the path integral while the last one is order
E2
p/m = |p|4/4m3 and so is much smaller. The field Φ can then be split into particle

and antiparticle parts, as in (11.2), and the antiparticles integrated out. This shows
how (second-quantized) Schrödinger field theory emerges as the low-energy limit of
a relativistic Klein–Gordon field.

Scaling

The goal now is to study how interactions scale under the assumption that the path
integral over Φ is dominated by the Schrödinger lagrangian – i.e. all but the last term
on the right-hand side of (11.4). In particular, the nonrelativistic scaling of the field
Φ is chosen to be whatever is required to preserve the relative size of the terms in the
Schrödinger action.

That is, consider rescaling time and space coordinates according to x → x′ := s x
and t → t ′ := s2 t, as required to have Φ∗∂tΦ and ∇Φ∗ · ∇Φ scale in the same way.
This implies that the unperturbed action, Sunp, transforms under rescalings as

Sunp[Φ(s x, s2t)] =
∫

dt ′

s2
d3x′

s3 s2
[

i
2

(Φ∗∂t′Φ − Φ∂t′Φ∗) −
1

2m
∇′Φ∗ · ∇′Φ

]
,

(11.5)

where the spacetime integration variable is changed from t and x to t ′ and x′. This
shows that the property Sunp[Φ(s x, s2t)] = Sunp[Φs (x, t)] requires the field rescaling
Φ(x) → Φs (x) := s−3/2Φ(x).

With this definition, various interaction terms can be classified as relevant,
irrelevant and marginal at lower energies (as s → 0). For instance, for interaction
terms like

Sint[Φ(x); c1, c2, c3, · · · ] =
∫

dt d3x
[
c1∂tΦ

∗∂tΦ + c2(Φ∗Φ)2 +
c3

|x|n Φ
∗Φ + · · ·

]
,

(11.6)

the scaling of couplings is given by

Sint[Φ(s x); c1, c2, c3, · · · ]

=

∫
dt ′

s2
d3x′

s3

[
s4c1∂t′Φ

∗∂t′Φ + c2(Φ∗Φ)2 +
snc3

|x′ |n Φ
∗Φ + · · ·

]
= Sint[Φs (x); s2c1, s c2, sn−2c3, · · · ], (11.7)

6 At least this is what happens for particles. Because the antiparticle part of the field varies with time like
e+iEt , antiparticle energies instead get shifted up to E ≥ 2m, ensuring that particle-antiparticle pairs
still cost total energy 2m.
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showing, as before, that most interactions are irrelevant, although there are a few that
are not (such as the c3 interaction with n ≤ 2).

Notice, in particular, that relevance or irrelevance of operators can differ when
explored using relativistic or nonrelativistic scaling. For example, the interaction
λ(φ∗φ)2 is marginal for relativistic scalars but becomes irrelevant once written in
terms of Φ, since

λ(φ∗φ)2 =
λ

4m2 (Φ∗Φ)2, (11.8)

and nonrelativistic scaling of Φ implies that λ → s λ — c.f. (11.7) — as s → 0.

11.2.2 Spin-Half Fields

In practice, many of the nonrelativistic particles in everyday life, like electrons and
nucleons, are spin-half fermions. Although the arguments leading to nonrelativistic
scaling in this case are similar to those used above for spinless fields, spin introduces
a few complications that later applications make worth working through explicitly.

For spin-half particles the basic argument for relativistic scaling goes through as
for scalars: for relativistic scaling the mass term m ψψ is relevant and so eventually
competes with the kinetic term ψ

/
∂ψ. To see how scaling works past this point it again

helps to remove the large m-dependence hidden in the time derivatives by scaling
out a factor of e−imt . But in the spin-half case integrating out the anti-particle spin-
states plays a more prominent part in arriving at the low-energy nonrelativistic theory
[292].

To see how this works, recall that in the particle/antiparticle expansion of a fermion
field

ψ(x) =
∑
σ=± 1

2

∫
d3p√

(2π)32Ep

[
ap σ up σ eip ·x + ā ∗p σ vp σ e−ip ·x

]
(11.9)

the Dirac equation (
/
∂ + m)ψ = 0 implies that the particle and antiparticle spinors,

respectively, satisfy(
i
/
p + m

)
up σ = 0 and

(
−i

/
p + m

)
vp σ = 0. (11.10)

Because of this, it is convenient to write the fermion 4-momentum as pμ = m uμ+kμ,
where kμ is of the order of momentum transfers found in the low-energy theory (and
so is small) while uμ is the 4-velocity of its rest frame (and so is order unity). In
the conventions used here uμ satisfies uμuμ =

/
u2
= −1 and in the rest frame gives/

u = −γ0 = γ0 and u · x = −t, where t is rest-frame time.
With these definitions the O(m) part of Eqs. (11.10) become (1 + i

/
u)up σ =

(1 − i
/
u)vp σ = 0, so the particle and antiparticle parts of a spinor field ψ can be,

respectively, written ψ = ψ− + ψ+ where

ψ± :=
(

1 ± i
/
u

2

)
ψ, (11.11)

satisfy i
/
uΨ± = ±Ψ±. In terms of these fields the free Dirac action (in the particle rest

frame) becomes
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−ψ(
/
∂ + m)ψ = ψ†−(i∂t − m)ψ− + ψ

†
+(i∂t + m)ψ+ − ψ†−(γ · ∇)ψ+ + ψ

†
+(γ · ∇)ψ−

(11.12)

which uses the rest-frame result
/
u = −γ0 = γ0 as well as ψ = iψ†γ0.

As before, the dependence on the large mass, m (for particles), is removed by
extracting a power of e−imt , writing

ψ(x) = Ψ(x) e−imt , (11.13)

so that the free Dirac action becomes

−ψ(
/
∂ + m)ψ = iΨ†−∂tΨ− + Ψ

†
+(2m + i∂t )Ψ+ − Ψ†−(γ · ∇)Ψ+ + Ψ

†
+(γ · ∇)Ψ−.

(11.14)

Because the spatial-derivative terms mix Ψ+ with Ψ−, the next step – integrating
out Ψ+ – is not the same as simply truncating it to zero. Instead, evaluating the
gaussian integral over Ψ+ works out to be equivalent to replacing it in the action
using its equations of motion (2m + i∂t )Ψ+ = −γ · ∇Ψ−, and so

Ψ+ = (2m + i∂t )
−1(−γ · ∇)Ψ− � −

1
2m

(γ · ∇)Ψ− +
i∂t

4m2 (γ · ∇)Ψ− + · · · , (11.15)

leading to the following low-energy lagrangian for Ψ+ (after a spatial integration by
parts):

−ψ(
/
∂ + m)ψ = iΨ†−∂tΨ− +

1
2m
Ψ
†
−∇2Ψ− + · · · . (11.16)

Here, the ellipses include all terms suppressed by more than two powers of 1/m,
which encode the higher-order terms of the nonrelativistic expansion of kinetic
energy, √

|p|2 + m2 − m =
|p|2
2m

− |p|4

8m3 + · · · , (11.17)

and the hermiticity of the spatial gamma matrices, γ†i = γi is used, as well as
(γ · ∇)2 = ∇2.

For later use notice that the projection (11.11) implies that the spinor Ψ−
is essentially the two-dimensional Pauli spinor [293] describing rotations. It is
convenient to regard Ψ this way, dropping the subscript ‘−’ when doing so. Spatial
Dirac matrices, γi , are then converted to Pauli matrices, σi , using the rest-frame
representation (

1 ± i
/
u

2

)
γi

(
1 ∓ i

/
u

2

)
→ ±i σi . (11.18)

Scaling

From the point of view of scaling, what is important is that the leading terms in
(11.16) are again those of the Schrödinger lagrangian density, just as was true for the
spinless case. Consequently, nonrelativistic scaling is defined precisely as was done
in the previous section:

Sunp[Ψ(s x, s2t; c1, c2, · · · ] = Sunp[Ψs (x, t); c′1, c′2, · · · ], (11.19)
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where Ψs (x) = s−3/2Ψ(x) and c′a denote the rescaled effective couplings. Inter-
actions then scale precisely as they do for spinless particles, leading to scaling
transformations as given in (11.7).

As the following sections show, scaling becomes more interesting once nonrela-
tivistic and relativistic degrees of freedom couple to one another.

11.3 Coupling to Electromagnetic Fields ♠

Many practical uses of nonrelativistic EFTs involve slowly moving particles that
interact through electromagnetic, gravitational, or strong interactions, so it is useful
to extend the above nonrelativistic scaling arguments to gauge interactions [294].
This section does so using electromagnetism as the example, highlighting the
two reasons why it introduces several new complications into low-energy scaling
arguments.

One complication arises because photons are massless and so are never themselves
nonrelativistic. Because of this, photons with momenta similar to those of the
nonrelativistic particles, |k| ∼ |p| � m, necessarily have energies that are much
larger than the nonrelativistic kinetic energies, ωk = |k| � Ep = |p|2/2m. Similarly,
photons with energies similar to nonrelativistic kinetic energies, ωk ∼ Ep, neces-
sarily have momenta that are much smaller than their slowly moving counterparts,
|k| � |p|. This means there are several different regimes to consider when studying
how photons interact with slowly moving matter, each of which has its own scaling
properties.

The second complication arises because electromagnetic interactions involve more
than just photons. In addition to photons, the electromagnetic field also includes
‘constrained’, non-propagating, physics like the electrostatic Coulomb interaction.
For nonrelativistic systems these contributions can also scale differently than do
photon interactions.

Gauge-Invariant Interactions

The coupling between electromagnetism and an electrically charged particle (with
charge7 eq) is obtained for nonrelativistic systems in precisely the same way as
for relativistic ones (see e.g. Appendix C.5): the requirement of gauge invariance
dictates that all spacetime derivatives are replaced by gauge-covariant derivatives,

∂tΦ→ DtΦ = (∂t − ieq A0)Φ and ∇Φ→ DΦ = (∇ − ieqA)Φ, (11.20)

and similarly for Ψ. To this must be added all possible interactions built directly
using the field strengths E and B.

At lowest order in 1/m this modifies (for spinless particles with charge eq) the free
Schrödinger lagrangian density to become

7 Particle charge is denoted eq rather than q to avoid confusion with momentum q. e without a subscript
is reserved to be the proton charge.



285 11.3 Coupling to Electromagnetic Fields

Lsch =
i
2

(Φ∗D0Φ − ΦD0Φ
∗) − 1

2m
DΦ∗ · DΦ + · · · , (11.21)

= Lunp + eq A0Φ
∗Φ +

ieq
2m

A · (Φ∇Φ∗ − Φ∗∇Φ) −
e2
q

2m
A2(Φ∗Φ) + · · · .

A similar story goes through for spin-half particles, but with one important
difference. At linear order in 1/m it is important to remember that the D2 term
initially arises as (γ · D)2, and so has a spin-dependence that contributes a new term
in the presence of an electromagnetic field. Keeping in mind that [Di , D j] = −ieqFi j

when acting on Ψ (which assumes Ψ destroys particles with charge eq), after
integrating by parts the DiD j term as derived above becomes

1
2m
Ψ
†
−(γ · D)2Ψ− =

1
2m
Ψ
†
−

(
D2 −

ieq
4

Fi j[γ
i , γ j]

)
Ψ−

=
1

2m

(
Ψ†D2Ψ + eq B · Ψ†σ Ψ

)
. (11.22)

The second term on the right-hand side does not arise at all for scalars, and
it vanishes for spin-half fermions in the absence of an electromagnetic field. The
lowest-order spin-half electromagnetic interactions – up to and including O(1/m) –
therefore contain a magnetic coupling to spin, as in

Lpauli = iΨ†∂tΨ +
1

2m
Ψ†∇2Ψ + eq A0 Ψ

†Ψ (11.23)

+
ieq
2m

A ·
(
∇Ψ†Ψ − Ψ†∇Ψ

)
−

e2
q

2m
A2(Ψ†Ψ) +

eq
2m

B · (Ψ†σ Ψ) + · · · ,

for spin-half particles with charge eq .

11.3.1 Scaling

In order to assess the relative importance of these interactions at low energy, the next
step is to identify how electromagnetic interactions affect the scaling encountered in
previous sections.

Classical Electro- and Magneto-Static Interactions

For later comparisons, consider first interactions between a nonrelativistic charged
particle and an applied classical electromagnetic field (i.e. the field generated by a
macroscopic distribution of electric charge, � = J0, and electric current, J). As in
earlier sections, these would be implemented by modifying the lagrangian density
couplings according to

L → LJ := Lsch + Aμ Jμ, (11.24)

with Jμ regarded as fixed distributions. The new interaction preserves gauge
invariance provided the macroscopic distribution is conserved, ∂μ Jμ = ∂t�+∇·J = 0,
which includes the static case ∂t� = ∇ · J = 0. (A concrete choice explored in
some detail below is the case of a massive static point charge: �(x) = Q δ3(x)
and J = 0.)
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Electromagnetic fields satisfy Maxwell’s equations, which in this case are

∇ · E = � + eq Φ
∗Φ + · · ·

∇ × B = J +
ieq
2m

(Φ∇Φ∗ − Φ∗∇Φ) −
e2
q

m
A(Φ∗Φ) + · · · , (11.25)

where ellipses denote terms suppressed by more than one power of 1/m. For
sufficiently large � and J the response to the quantum field Φ should become
negligible, with the electromagnetic field well-described by a classical configuration
that satisfies (11.25) with only � and J on the right-hand side. Much of the discussion
to follow is aimed at quantifying the size of deviations from this classical picture.

When the classical Maxwell equations dominate they imply E and B inherit a
scaling behaviour from the scaling properties of their sources. Since

∫
d3x � = Q

is fixed, it follows that � → �s = s−3� when x → x′ := s x. Notice
that this scaling is also shared by the contribution, eΦ∗Φ, to the electric charge
density of non relativistic quantum matter to (11.25), since previous sections argue
Φs = s−3/2Φ.

Assuming J also scales similarly to Φ∗∇Φ − Φ∇Φ∗ (or to � v) then invariance of
(11.25) implies that E and B must scale as

E → Es = s−2E and B → Bs = s−3B. (11.26)

Although this electric scaling agrees with what would have been obtained if t and
x were to scale in the same way, the magnetic scaling does not. This reflects the
assumption that J scales the same way as does the contribution from nonrelativistic
matter, and so is suppressed by factors of charged-particle speed, v.

In principle, the implications of (11.26) for the vector and scalar potentials are
found from the usual relations

E = ∇A0 − ∂tA and B = ∇ × A, (11.27)

and for the electrostatic potential this does imply

A0 → A0
s = s−1 A0, (11.28)

consistent with what would be found for a Coulomb potential, A0 ∝ 1/|x|.
Using the scaling of electric and magnetic fields in (11.26) to infer the scaling

of A from (11.27) gives inconsistent implications, however, depending on whether
or not one makes the inference using ∂tA ⊂ E or ∇ × A = B. The problem
has its root in the mismatch between the relativistic kinematics of photons and the
nonrelativistic kinematics assumed for the sources (and in particular for the different
scaling that this implies for t and x). This inconsistency plays an important role
when understanding nonrelativistic charged systems since it forces different kinds
of scalings in situations where a photon’s momentum or energy are matched to the
corresponding nonrelativistic quantity.

For quasistatic sources ∂tA can be dropped in E, in which case (11.26) and (11.27)
imply that A scales according to

A → As = s−2A. (11.29)



287 11.3 Coupling to Electromagnetic Fields

With these choices the corresponding effective interactions

Sint[Φ(x, t), A0(x, t), A(x, t); c1, c2, c3, · · · ] (11.30)

=

∫
dt d3x

[
c1 A0Φ

∗Φ + ic2 A · (Φ∇Φ∗ − Φ∗∇Φ) − c3A2(Φ∗Φ) + · · ·
]
,

scale to lower energies according to

Sint[Φ(s x, s2t), A0(s x, s2t), A(s x, s2t); c1, c2, c3, · · · ] (11.31)

= Sint[Φs (x, t), A0s (x, t), As (x, t); s−1c1, s c2, s2c3, · · · ].

This scaling starts with couplings taking the values c1 = eq , c2 = eq/2m and
c3 = e2

q/2m at lowest order when matched at scales μ ∼ m.
The scaling of c1 in Eq. (11.31) shows, in particular, that the Coulomb interaction

is relevant and so grows in importance at lower energies for nonrelativistic systems.
This growth reflects the fact that low-energy Coulomb interactions of slowly moving
charges are enhanced by positive powers of 1/v, as later sections show in detail.
Magnetostatic interactions, on the other hand, are irrelevant in the nonrelativistic
regime and so become less important (being suppressed at low energies by positive
powers of v).

Electromagnetic Fluctuations I: Soft Regime

For the study of how electromagnetic waves – i.e. photons – interact with nonrela-
tivistic systems it is useful to scale the electromagnetic field differently than above,
in such a way as to preserve the form of its kinetic term. Since photon propagation
is controlled by the Maxwell action,

SMaxwell =
1
2

∫
dt d3x

(
E2 − B2

)
, (11.32)

it is this action that dominates the path integral in these applications, and so controls
the perturbative scaling of electromagnetic fluctuations. As x → x′ = s x and t →
t ′ = s2t, this implies that

E → Es = s−5/2E and B → Bs = s−5/2B, (11.33)

which differs from the scaling found for the classical quasi-static systems in (11.26).
So far, so simple. But as mentioned earlier, having time and space transform

differently complicates the inference of how the vector potential, A, transforms.
Physically, this reflects the clash between photon’s relativistic kinematics, ωk = |k|,
and the nonrelativistic kinematics of the charged particles, Ep � |p|2/2m, which for
|p| � m precludes their agreeing on both the energy and momentum scales involved
in any particular process. If |k| ∼ |p| then ωk � Ep and when ωk ∼ Ep then
|k| � |p|.

Since the higher-energy of these two alternatives corresponds to |k| ∼ |p|, this
section extrapolates to lower energies by keeping spatial derivatives and dropping
∂tA in E, deferring the opposite choice to the next section. In this regime the scaling
(11.33) implies that

A0 → A0s = s−3/2 A0 and A → As = s−3/2A, (11.34)
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causing the interactions of (11.30) to scale according to

Sint[Φ(s x, s2t), A0(s x, s2t), A(s x, s2t); c1, c2, c3, · · · ] (11.35)

= Sint[Φs (x, t), A0s (x, t), As (x, t); s−1/2c1, s1/2c2, s c3, · · · ].

This shows that the Coulomb interaction remains relevant, though grows more slowly
than in the regime considered earlier. Magnetic interactions remain irrelevant, though
they also evolve more slowly than previously.

The growth of the Coulomb interaction at low energies is saying something
physical. If c1(μ) ∼ eq starts perturbatively small at μ ∼ m then c1(μ�) ∼ 1 for
μ� ∼ e2

q m, indicating that perturbation theory in c1 is likely to break down at length
scales of order (αq m)−1. It is no accident that this is of order the Bohr radius when
αq = α and m is the electron mass, since bound states signal that the Coulomb
interaction is no longer a small perturbation.

The neglect of time derivatives when inferring the scaling of A amounts to lumping
the (∂tA)2 terms from the Maxwell action in with the perturbative interactions
rather than including them in the unperturbed action. This implies that unper-
turbed electromagnetic propagators appearing in Feynman rules are instantaneous:
G(t, x; t ′, x′) = G(x, x′) δ(t − t ′), as appropriate for the effects of photons whose
momenta are similar to the momenta of the nonrelativistic particles. Such photons
have much higher energies than the kinetic energies of the nonrelativistic particles,
and so indeed act effectively instantaneously over typical orbital times for the slowly
moving massive particles.

Electromagnetic Fluctuations II: Ultra-Soft Regime

How does scaling work at very low energies where time-derivatives of A cannot be
neglected, and how does the effective theory for this regime differ from what has
been found to this point? This is not a purely academic question because this is the
regime relevant for low-energy photon exchange, for instance, given that for photons
the dispersion relation ωk = |k| ensures equally rapid variations for A in space
and time. (Exercise 11.3 explores how interactions scale if one naively scales the
electromagnetic field to ignore spatial derivatives of A.)

Photons in this energy regime capture non-instantaneous effects such as time-
retardation, amongst other things [295–297]. In this regime because photon energies
are order ωk ∼ mv2 their momenta are much lower than typical nonrelativistic
momenta, |k| ∼ mv2 � mv. This makes the influence of such photons effectively
nonlocal in space, suggesting a framework in which their influence is captured
through an ultra-soft effective theory involving a series of effective potentials [298].

The different scaling for soft and ultra-soft photons shows that they influence
slowly moving charges very differently at different scales. Relative impact on
different observables can be identified by matching in the effective theory all
dependence on small hierarchical parameters like mass ratios and/or powers of small
velocities (as may be determined from the full theory using techniques such as the
method of regions discussed in §3.2.1). Some instances of this type of reasoning are
given in the examples of §12. Although it goes beyond the scope of this book to
describe, more specialized EFT techniques have been developed to systematize the
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study of these types of regimes, such as for ultra-soft [295–298] and collinear gauge
physics [299], or their analogs for nonrelativistic gravitating objects [247, 359].

11.3.2 Power Counting

To further quantify the implications of various effective interactions, a power-
counting estimate is useful (with the soft and ultra-soft cases treated separately).
Although precisely the same Wilsonian action,8 SW(Φ, A0, A), is of interest for both
soft and ultrasoft regimes, for each the division of the action into unperturbed and
perturbing parts, SW = Sunp + Sint, is done differently.

Power Counting in the Soft Regime

Consider first the simplest situation, for which ωk ∼ |k| ∼ |p| � Ep ∼ |p|2/2m,
where photon momenta are comparable to the momentum of the heavy charged
particles, but recoil energies for the heavy particle are negligible compared with the
photon energy. In this regime the term (2m)−1Φ∗∇2Φ is subdominant to iΦ∗∂tΦ in
the action, suggesting perturbing around

Lunp = iΦ∗∂tΦ +
1
2
(
E2 − B2

)
. (11.36)

All other terms of SW in this case are in Sint(Φ, A0, A) =
∫

d4x Lint, which consists of
all possible local operators built from powers of the fields and their derivatives,9

Lint = m4
∑
n

1
mdn

On

(
Φ

m3/2 ,
A0

m
,

A
m

)
. (11.37)

Here, appropriate powers of the non relativistic particle mass, m, are included on
dimensional grounds, assuming this is the only scale – such as is true, in particular,
for the nonrelativistic limits, (11.4) and (11.23), of the Klein–Gordon and Dirac
lagrangians. For these lagrangians all terms in Sint come suppressed by at least one
power of 1/m, except the (relevant) Coulomb interaction, eA0Φ

∗Φ, whose coefficient
is dimensionless.

The Feynman rules are computed as usual, with the propagator for Φ given in
Fourier space by

G(p) ∝ i

p0 + iε
, (11.38)

(where ε is the positive infinitesimal chosen to implement the time-ordered boundary
conditions) and so falls off only linearly for large p0. The electromagnetic prop-
agators can be evaluated in a gauge where its propagator falls off like 1/k2 for
large k0 ∼ |k| = k. (When required to choose, electromagnetic propagation is

8 For simplicity the spinless case is described explicitly in this section, but the dimensional power-
counting arguments used apply equally well to the spin-half case.

9 It is assumed for simplicity that the particle mass m provides the only important UV scale, such as
would be true (for different reasons) for comparatively simple particles like electrons or protons. In
later sections this assumption is re-examined for particles like nuclei whose size, R, and inverse mass,
1/m, are not comparable.
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evaluated using Coulomb gauge, for which ∇ ·A = 0, since this removes any mixing
between A0 and A.)

This lagrangian has the form used earlier in (3.61), with the choices f = M =

vB = vF = m, and electromagnetic fields counting as ‘B’ fields and Φ counting as ‘F’
fields (Φ counts as an ‘F’ field even though it could be a boson rather than a fermion,
since what counts is that its propagator falls off only like 1/k for large k0 ∼ |k| = k).
This means the power-counting arguments culminating in Eq. (3.64) are appropriate,
provided that all external momenta and energies are similar in size k0 ∼ |k| = k.

This leads to the following power-counting result for amputated amplitudes with
EA external electromagnetic field lines and EΦ external Φ lines:

AEAEΦ (k) ∼ m2k2
(

1
m

) EA
(

1
m2k

) EΦ/2 (
k

4πm

)2L (
k
m

) P̂
. (11.39)

Here, L counts the number of loops and P̂ = P − 2 + 1
2 EΦ where P, is given by

(3.65). Consequently, P̂ = ∑
n Pn with:

Pn :=
(
dn +

1
2

fn − 2
)
Vn. (11.40)

As before, Vn counts the number of vertices taken from interaction On, having dn

derivatives, fn powers of Φ or Φ∗ and bn powers of A0 or A.
Notice that most interactions – that is, interactions with four or more Φ fields or

interactions with two Φ fields and at least one derivative – contribute non-negative
amounts to P̂. Exceptions for which Pn < 0 include the Coulomb interaction,
A0Φ

∗Φ (denoted here by n = c), or the ‘seagull’ interaction, A2Φ∗Φ (denoted n = s),
since these satisfy dc = ds = 0 and fc = fs = 2, and therefore Pc = −Vc and
Ps = −Vs. Each insertion of this kind of interaction costs a potentially dangerous
power of m/k.

To see how this works, consider the Coulomb scattering process described by
the Feynman graphs of Fig. 11.1, obtained by multiply iterating the basic two-body
Coulomb interaction. Applying (11.39) to the contribution of the graph involving
n such Coulomb interactions gives (using EA = 0, EΦ = 4 and L = n − 1 while
P̂ = Pc = −Vc = −2n):

Anc
04 (k) ∼

e2n
q

m2

(
k

4πm

)2(n−1) (
k
m

)−2n

∼
e2
q

k2

( eq
4π

)2(n−1)
. (11.41)

This expression includes also powers of the dimensionless charge, eq , of the Φ
particle while k denotes the generic size of the external momentum/energy scale.

(n = 1)

+

(n = 2)

+

(n = 3)

+ · · ·

Fig. 11.1 ‘Ladder’ graphs describing multiple Coulomb interactions that are unsuppressed at low energies. Solid
(dashed) lines representΦ (A0), propagators.
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Eq. (11.41) shows what might have been obvious from the very beginning:
because both Lunp and the Coulomb interaction eq A0Φ

∗Φ involve no powers of m,
any graph built only with these components cannot be suppressed by powers of
k/m. This comes about in (11.41) by having the (m/k)Vc enhancement cancel the
(k/m)2L suppression coming from loops. It follows that the Coulomb interaction is
suppressed only by the small value of its dimensionless coupling; in this case, the
electromagnetic coupling. In particular, for eq = ±e each loop is suppressed by a
factor of (e/4π)2 = α/4π, where α := e2/4π � 1/137 is the usual fine-structure
constant.

The overall factor of 1/k2 is also easily understood in the n = 1 special case, where
it arises simply as the contribution, 1/|k|2, of the Coulomb interaction (written in
momentum space), where k = p − p′ is the momentum transfer of the scattering.

Contributions to A04(k) involving all other (non-Coulomb) interactions neces-
sarily involve suppressions by powers of m, and (as usual) (11.39) identifies which
interactions and which graphs arise at next-to-leading order in k/m. Next-to-leading
order arises in one of two ways:

1. use interactions (like the seagull interaction, e2
qA2Φ∗Φ), for which P̂ = −2 is the

same as for the leading (n = 1) Coulomb contribution, but with L = 1; or
2. remain at tree level (L = 0) but use interactions (like eqA · Φ∗∇Φ), for which
P̂ = 0.

The first of these – a one-loop graph built using two seagull interactions – contributes
A04 ∼ (e2

q/4πm)2, while the second – a tree graph built by single-photon (or A)
exchange – givesA04 ∼ e2

q/m
2. Both are suppressed relative to the leading Coulomb

result by (k/m)2, with the seagull loop also suppressed by the dimensionless loop
factor (eq/4π)2.

Power Counting in the Ultra-Soft Regime

Experience with the Coulomb potential suggests dramatic things should happen for
fluctuations with energies and momenta related by E ∼ |p|2/m since this is the
regime appropriate for Coulomb bound states.10 Because the size of such states
is set by the Bohr radius, aB � (mαq)−1, they are characterized by the scales
|p| ∼ mαq in momentum space while their typical energy is set by E ∼ mα2

q

[301]. Here αq = e2
q/4π is the relevant fine-structure constant. The existence of

bound states suggests that power counting should indicate that perturbation theory
in dimensionless couplings like αq should eventually break down (as is indeed
found, below).

The presence of two scales – both |p| ∼ mv and E ∼ mv2 for v ∼ αq � 1 –
precludes directly applying earlier power-counting results, such as (3.64), to this
regime. A different estimate is required that can expose the presence of the small
dimensionless factors of v. It is, after all, these factors of v that are responsible for
the different scaling between x and t and so also for the novelty of the low-energy
nonrelativistic scaling.

10 This assumes all particles have roughly the same mass, and is revisited in §12.2, which considers bound
states built from particles with different masses (such as atoms).
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To this end, it is helpful to rescale the coordinates and fields of the problem
in a way suggested by the scaling behaviour of ultra-soft photons found in §11.3
[296]. In particular, change variables to dimensionless coordinates, x̂ = x mv and
t̂ = tmv2, so that ∇ = mv∇̂ and ∂t = mv2∂̂t since this ensures virtual momenta are
automatically order mv and energies are order mv2. Then, in order to keep the kinetic
terms in

Sunp =

∫
dt d3x

[
Φ∗

(
i∂t +

∇2

2m

)
Φ +

1
2
[
(∇A0)2 − (∇ × A)2

] ]
(11.42)

invariant, also rescale to Φ = (mv)3/2 Φ̂ as well as A0 = mv3/2 Â0 and A = mv3/2 Â.
With these redefinitions, the action of (11.21) becomes

Ssch =

∫
dt̂ d3x̂

⎧⎪⎨⎪⎩Φ̂∗ ��i∂̂t + ∇̂
2

2
�� Φ̂ +

eq√
v

Â0 Φ̂
∗Φ̂ +

ieq
2
√
v Â · (Φ̂∇̂Φ̂∗ − Φ̂∗∇̂Φ̂)

−
e2
qv

2
Â

2
(Φ̂∗Φ̂) +

1
2
[
(∇̂Â0 − v ∂̂tÂ)2 − (∇̂ × Â)2

]
+ · · ·

⎫⎪⎬⎪⎭ , (11.43)

showing how v � 1 acts to enhance the Coulomb interaction while couplings to Â
are suppressed by powers of v. With these variables all factors of v are explicit in
the couplings and in the propagators, so repeating the power-counting arguments of
earlier sections allows Feynman graphs to be ordered according to the number of
powers of v that appear within them. It is useful to use Coulomb gauge when doing
so because this allows A0 and A exchange to be treated separately.

In this kind of framework the graphs that give the leading contributions in powers
of v are those of Fig. 11.1 involving multiple insertions of the Coulomb interaction.
The relative strength of each successive exchange is in this case controlled by powers
of e2

q/v (rather than just e2
q , as in (11.41)). The enhancement of the scattering cross

section for two-body Coulomb scattering in the regime αq = e2
q/4π � v � 1 by

powers of 1/v is a well-known result (sometimes called Sommerfeld enhancement),
with the leading contribution being order e4

q/v
2. Perturbation theory in powers of eq

eventually fails once e2
q/v � 4π, or v � αq � 1, precisely in the regime appropriate

to Coulomb bound states.
Using the Coulomb interaction and propagators,

G(Φ) (p, p0) =
i

p0 − 1
2 p2 + iε

, G(A0) (p̂) =
i

p2 , (11.44)

obtained from (11.43) ensures that it is the ladder graphs of Fig. 11.1 that dominate
for small v since crossed graphs vanish due to the absence of energy-dependence
in the A0 propagator. Summing these graphs is equivalent to solving for the two-
body Schrödinger–Coulomb propagator (as is made more explicit below for the
interactions of two charged particles with differing masses).

Subdominant contributions in powers of v are found in the usual way using the
propagators and vertices read off from (11.43). Since the couplings of A are of order
eq
√
v while those of A0 are order eq/

√
v, naively the A couplings are suppressed

relative to those of the Coulomb sector by replacing e2
q → e2

qv
2. This conclusion is
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modified, however, by the appearance of v in the Coulomb-gauge photon propagator,
which reads

G(A)
jk
=

i

v2(p0)2 − p2 + iε

(
δ jk −

pjpk
|p|2

)
. (11.45)

This introduces factors of 1/v (from the residues of the poles at p0 = |p|/v) that can
reduce the suppression of A exchange to a single power of v relative to the Coulomb
contribution. The factors of 1/v arising from these poles reflect the fact that on-
shell photons have energies and momenta both order mv and so, in particular, their
energies are larger than mv2 by order 1/v.

The propagator (11.45) illustrates a fundamental complication that can arise when
power counting in situations where different regimes of integration compete in their
dependence on small parameters. For instance, for graphs built using (11.45) in
a regime where p0 ∼ |p| the v2(p0)2 term is small and so can be regarded as a
perturbative two-point interaction rather than part of the propagator. Doing so leads
to a relatively straightforward expansion in powers of v. But for graphs dominated
by on-shell photon exchange the pole at p0 = |p|/v � |p| controls the integration
over p0, leading to contributions that scale differently with v, carrying as they do
the non-instantaneous effects of photon exchange. In this regime the path integral is
dominated by configurations where v2(∂tA)2 competes in size with A · ∇2A, making
it wrong to treat the v2(∂tA)2 as a perturbation. As later examples show, in any
particular graph both regimes must be examined (such as through the method of
regions described in §3.2.1) when matching to low-energy properties.

11.4 Summary

Effective theories by definition integrate out states with energies E larger than some scale Λ to focus
exclusively on low-energy processes. This section elaborates an observation already made in §8.2.3, that
it can be useful to include particles within a low-energy EFT, even if the heavy particle’s mass satisfies
m � Λ. Doing so can make sense if the particle’s rest mass remains locked up, and so cannot be released
to produce other high-energy states whose absence the effective theory assumes.

There are two necessary pre-conditions for this type of rest-mass sequestration. First, the particle
should be exactly (or approximately) stable, since this precludes (or delays) liberation of energy through
radioactive disintegration. Second, the particle’s antiparticles should be absent (or rare) in the environment
of interest, since this precludes (or makes infrequent) energy release through annihilation.

When these conditions are satisfied it is useful to integrate out the heavy particle’s antiparticle, leading
to a nonrelativistic Schrödinger EFT describing the low-energy interactions of the slowly moving heavy
states. For any particle that survives down to low-enough energies a nonrelativistic EFT must eventually
dominate below the rest mass. The inevitability of this transition from relativistic to nonrelativistic
kinematics is reflected by the particle mass being generically a relevant operator when perturbative scaling
is assessed using relativistic kinematics.

The scaling of interactions differs in the nonrelativistic regime, and, in particular, the Coulomb inter-
action switches from being marginal (in a relativistic counting) to relevant. In particular, the small ratio
v ∼ Ekin/|p| can compete with other small dimensionless couplings, like αq = e2

q/4π, to radically
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change the relative importance of these interactions at energies well below the mass. The relative growth
of newly relevant interactions at lower energies can allow initially weak interactions eventually to become
strong, sometimes leading to the appearance of new phenomena like bound states at these lower energies.

Exercises

Exercise 11.1 Evaluate the position-space form, G(t, x; t ′, x′), of the nonrelativistic
propagator given in (11.38).

Exercise 11.2 Evaluate the position-space propagator, D(t, x; t ′, x′), for the Coulomb
part of the electromagnetic field, given that its action is given by the Maxwell
term

S0 = −
1
2

∫
d4x (∇A0)2.

Use this to argue why ‘crossed’ graphs (obtained by swapping the top ends
of any two lines) are not as large as the graphs shown explicitly in Fig. 11.1.
(Imagine time points to the right in this figure.)

Exercise 11.3 For ultra-soft photons imagine scaling the electromagnetic potentials,
A0 and A, in such a way as to ensure the scaling (11.33) is satisfied with the
scaling of A determined from E = ∇A0 − ∂tA (and ignoring the connection
between B and A). Show that in this case one would have found

A0 → A0s = s−3/2 A0 and A → As = s−1/2A,

instead of (11.34). Show that these imply that the interactions of (11.30) would
now scale according to

Sint[Φ(s x, s2t), A0(s x, s2t), A(s x, s2t); c1, c2, c3, · · · ]
= Sint[Φs (x, t), A0s (x, t), As (x, t); s−1/2c1, s−1/2c2, s−2c3, · · · ],

and in particular that all three interactions would grow strongly in the infrared
in a regime dominated by perturbation theory around this type of unperturbed
action.

Exercise 11.4 This exercise provides practice using the method of regions (from
§3.2.1) to identify ‘Sudakov’ double logarithms [302] (following [30, 303]).
Consider the following integral, coming from a vertex-correction diagram
involving effectively massless particles

I(p, �) :=
i

μD−4

∫
dDk

1
[(p + k)2 − iε][(� + k)2 − iε][k2 − iε]

,

for which our interest is in large logarithms that arise in the limit |p2 | ∼
|�2 | � Q2 := |(p − �)2 |. To explore this limit, define the small parameter
λ2 := |p2/Q2 | ∼ |�2/Q2 | and seek terms that are large as λ gets small. To this
end, decompose pμ, �μ and kμ in terms of a basis that includes null vectors n

μ
±

that satisfy n2
± = 0 and n+ · n− = −2, so that pμ = p

μ
+ + p

μ
− + p

μ
⊥ (and similarly

for �μ and kμ), where p
μ
+ = − 1

2 (p · n−) n
μ
+ , p

μ
− = − 1

2 (p · n+) n
μ
− and n± · p⊥ = 0.
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Then choosing n
μ
+ to lie along the direction of pμ and n

μ
− to be parallel to �μ

means the components of pμ and �μ are of order[
p · n+, p · n−, p⊥

]
=

[O(λ2),O(1),O(λ)
]

Q[
� · n+, � · n−, �⊥

]
=

[O(1),O(λ2),O(λ)
]

Q,

since this ensures p2 ∼ �2 ∼ O(λ2)Q2.
By Taylor expanding the integrand in each of these regimes and integrating

the result in dimensional regularization, show that the leading behaviour of
I(p, �) for small λ receives contributions from each of the regions correspond-
ing to kμ of size[

k · n+, k · n−, k⊥
]
=

[O(1),O(1),O(1)
]

Q (hard)[
k · n+, k · n−, k⊥

]
=

[O(λ2),O(1),O(λ)
]

Q (collinear-1)[
k · n+, k · n−, k⊥

]
=

[O(1),O(λ2),O(λ)
]

Q (collinear-2)[
k · n+, k · n−, k⊥

]
=

[O(λ2),O(λ2),O(λ2)
]

Q (ultrasoft).

Show that all other scaling of kμ in powers of λ contribute zero in dimensional
regularization, but that the above regions contribute the leading behaviour

Ih(p, �) =
πD/2Γ(1 + ε)

Q2

[
1
ε2 +

1
ε

ln

(
μ2

Q2

)
+

1
2

ln2
(
μ2

Q2

)
− π

2

6

]
Ic1(p, �) =

πD/2Γ(1 + ε)
Q2

[
− 1
ε2 −

1
ε

ln

(
μ2

|p2 |

)
− 1

2
ln2

(
μ2

|p2 |

)
+
π2

6

]
Ic2(p, �) =

πD/2Γ(1 + ε)
Q2

[
− 1
ε2 −

1
ε

ln

(
μ2

|�2 |

)
− 1

2
ln2

(
μ2

|�2 |

)
+
π2

6

]
Ius(p, �) =

πD/2Γ(1 + ε)
Q2

[
1
ε2 +

1
ε

ln

(
μ2Q2

|p2�2 |

)
+

1
2

ln2
(
μ2Q2

|p2�2 |

)
+
π2

6

]
,

where D = 4 − 2ε in dimensional regularization. These sum to give a result
that is finite as ε → 0, giving:

I(p, �) =
π2

Q2

[
ln

(
Q2

|p2 |

)
ln

(
Q2

|�2 |

)
+
π2

3
+ O(λ)

]
.



12
Electrodynamics of Nonrelativistic

Particles

The world around us is filled with slowly moving charged particles, and this chapter
exploits this fact to identify practical examples that illustrate the utility of the
previous chapter’s power-counting procedure. These include applications to the
properties of both atomic constituents as well as to the interactions of atoms (and
larger objects) as a whole.

The presentation starts by explicitly matching to determine the leading effective
interactions of the nonrelativistic theory for particles like electrons with simple
underlying relativistic UV completions. For these the utility of EFT methods is
illustrated using examples for which the matching can be performed beyond leading
order in the electromagnetic coupling, showing how precision radiative corrections
can be systematically incorporated into Schrödinger bound-state calculations.

The discussion then widens to include more complicated nonrelativistic systems,
including more complicated charged particles (like nucleons and nuclei) that are
built from smaller constituents. A particular focus is systems (like real atoms) that
involve more than one species of slowly moving particles with very different masses.
The discussion then closes by treating the universal low-energy electromagnetic
response of composite systems that are electrically neutral but built from smaller
charged constituents. Although the results obtained are not surprising, their deriva-
tion within an EFT framework shows how standard treatments can be embedded
from first principles into a systematic field-theoretic framework using controlled
approximations.

12.1 Schrödinger from Wilson ♦

This section starts by enumerating the possible lowest-dimension effective interac-
tions for a non-relativistic charged particle, a theory called Nonrelativistic Quantum
Electrodynamics (or NRQED) [294]. Because these are the most general, consistent
with general symmetries, they equally well describe simple elementary particles and
more complicated composite charged objects. A matching calculation then follows
to determine the values taken by the leading effective couplings in a situation where
the relativistic UV completion is well-understood: the quantum electrodynamics of
a point-like lepton.

12.1.1 Leading Electromagnetic Interactions

Consider the low-energy EFT governing the dynamics of a nonrelativistic spin-half
particle described by a two-component Pauli–Schrödinger field, Ψ, interacting with296
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the electromagnetic potential, Aμ = {A0, A}. To start, the particle mass m and charge
eq are left general, but when applied to electrons these will take values m = me and
eq = −e.

As usual, there are an infinite number of possible interactions, with the most
important interactions having the smallest operator dimension. Since electromag-
netic interactions are weak, this operator dimension is computed perturbatively
assuming dominance in Leff of terms like iΨ†∂tΨ as well as (∇A0)2 and (∇ × A)2.
With applications to electrons or nucleons in mind it is conventional to extract powers
of m and factors of eq so that the dimensionless effective couplings would satisfy
ci = 1 in lowest-order expressions like (11.23).

With applications to QED and QCD in mind it suffices to restrict to interactions
that are rotationally invariant and preserve both parity and time-reversal (see
§C.4.3 for a summary of parity and time-reversal transformation properties in
electrodynamics). The resulting Wilsonian action has the form Seff =

∫
dt d3x Leff

with Leff = L0+L1+L2+L3+ · · · where Ln is proportional to m−n. The terms L0 and
L1 are given by interactions familiar from (11.23), though here assigned arbitrary
coefficients [294]

L0 = iΨ†∂tΨ + eq A0(Ψ†Ψ) +
εE

2
E2 − 1

2μB

B2, (12.1)

of which the first two terms are equivalent to i
2 [Ψ†(DtΨ) − (DtΨ

†)Ψ]. Similarly,

L1 =
1

2m
Ψ†D2Ψ +

eq
2m

cF B · (Ψ†σ Ψ) (12.2)

=
1

2m
Ψ†∇2Ψ +

ieq
2m

A ·
[
(∇Ψ†)Ψ − Ψ†∇Ψ

]
−

e2
q

2m
A2(Ψ†Ψ) +

eq
2m

cF B · (Ψ†σ Ψ) · · · ,

where (as usual) E = ∇A0 − ∂tA and B = ∇ × A while σ = {σ1, σ2, σ3}
represents a vector of two-by-two Pauli matrices acting on the (unwritten) spinor
indices of Ψ. Covariant derivatives of Ψ are given by DtΨ = (∂t − ieq A0)Ψ and
DΨ = (∇ − ieqA)Ψ.

In these expressions Ψ is rescaled1 to remove any parameter in front of iΨ†DtΨ

and the coefficient of Ψ†D2Ψ is taken to define the charged-particle mass.2 At this
order in 1/m the effective couplings are εE, μB and cF, which §11 shows are unity
at lowest order in eq for slowly moving particles moving within a Lorentz-invariant
environment (like the vacuum). Notice also that no term L−1 = mΨ†Ψ is written in
Leff because this can be removed using the field redefinition Ψ → Ψe−imt (as indeed
is done explicitly in §11). The removal of any such a term is a prerequisite for cleanly
identifying the low-energy 1/m expansion.

1 In principle A0 and A can be similarly rescaled to remove εE and μB (if these are constants), but this is
not done here to allow for later applications where they vary in space.

2 That is, m is defined by the coefficient of Ep = (p2/2m) + · · · in the particle dispersion relation. For
nonrelativistic systems this need not, in general, agree with other definitions of mass, such as the size
of the particle gap Ep (p = 0), and the relation between different definitions must be computed on a
case-by-case basis.
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The terms involving higher powers of 1/m are constructed in a similar way, with
care taken at each order to remove redundant interactions as described in §2.5. In
particular, the freedom to perform field redefinitions to remove terms in Ln that
vanish on use of the lowest-order field equations allows the elimination of any terms
involving time derivatives like DtΨ or DtΨ

∗.
At order m−2 a basis of independent interactions can be written

L2 =
eq

8m2 cD(Ψ†Ψ)(∇ · E) −
ieq
8m2 cS Ψ

†σ ·
(
D × E − E × D

)
Ψ

+
d1

m2 (Ψ†σ Ψ) · (Ψ†σ Ψ) +
d2

m2 (Ψ†Ψ)(Ψ†Ψ), (12.3)

with undetermined coefficients cD (‘Darwin’ term), cS (‘Spin-orbit’ term) and the
‘two-body contact’ couplings d1 and d2. Integrating out the antiparticle to lowest
order in eq – either as in §11 or through the matching calculation below – gives
cD = cS = 1 and d1 = d2 = 0, so deviations from these values indicate contributions
beyond leading order.

Strictly speaking, when εE is constant the coefficients cD and d2 are not indepen-
dent because the Darwin term can be removed by performing the field redefinition

δA0 =
eq

8m2εE

cD Ψ
†Ψ, (12.4)

at the expense of causing the shift d2 → d2 + e2
qcD/(8εE). They are nonetheless kept

here separately, partly for historical reasons and partly because the argument relating
them becomes more subtle once more than one species of nonrelativistic particle is
included.

Not all of the effective couplings appearing in these (and higher-order) interactions
are independent if the underlying physics being described is Lorentz invariant (such
as for slow particles moving in the vacuum). When this is true then Leff must be
invariant under Lorentz boosts, and although the absence of antiparticles makes the
transformation rules for these more complicated than in the high-energy theory (and
beyond the scope of this book to describe in detail) they relate the values of some
of the effective couplings. A simple and intuitive example of this is the operator
Ψ†D4Ψ, whose coefficient becomes dictated by Lorentz invariance to be −1/(8m3)
because it represents the order p4 correction to the underlying relativistic dispersion
relation E =

√
m2 + p2 = m+p2/(2m)−p4/(8m3)+ · · · . For the effective couplings

listed out to order m−2 in (12.1) through (12.3), Lorentz invariance turns out also to
imply both that εE μB = 1 and the constants cS and cF are related by [304–306]

cS = 2 cF − 1, (12.5)

as is satisfied in particular by the lowest-order results cS = cF = 1.

12.1.2 Matching

In later applications to precision calculations it becomes necessary to know the
values predicted by QED for the effective couplings to subdominant order in αq =

e2
q/4π so that ci = 1+ c(1)

i + c(2)
i + · · · and di = d (1)

i + d (2)
i + · · · with c(n)

i , d (n)
i ∝ αn

q .
The hard way to obtain these is to explicitly integrate out the antiparticle within
the path integral along the lines used at leading order in §11. Much easier is to
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determine these couplings by demanding EFT and QED calculations agree for a
few simple observable quantities. It is important when doing this matching to focus
on quantities that are insensitive to field redefinitions, since these are often used (as
above) to arrive at a basis of independent effective interactions. For this reason it is
useful to use either in-principle observable quantities or their close proxies, because
observables do not change when field redefinitions are performed.

To see how this works in detail, consider extending the leading-order calculation
[294] of the couplings ci to subdominant order [305, 307, 308]. A convenient
matching calculation for fixing these couplings compares the matrix element of the
conserved electromagnetic current, 〈p′σ′ |Jμ (x) |p σ〉, calculated both within QED
and in the nonrelativistic effective theory between single-fermion states. This matrix
element is a good proxy for an observable because it controls the emission/absorption
amplitude for real photons as well as the coupling to applied electromagnetic
fields.

Within a relativistic theory, parity- and Lorentz-invariance together with current
conservation dictate that the matrix element must have the form [309]

〈p′σ′ |Jμ (x) |p σ〉 = ie u(p′, σ′)
[
γμF1(k2) +

i
2m

F2(k2) γ μνkν

]
u(p, σ) eik ·x ,

(12.6)

where e is the electromagnetic coupling constant – conventionally, the charge of a
proton – while u(p, σ) is the relativistic spinor representation of a spin-half particle
with 4-momentum pμ and third component of spin σ = ± 1

2 (see §A.2.3 and §C.3.2
for details) while kμ := (p′ − p)μ and γ μν := 1

2
[
γ μ, γν

]
. The matrix element

of Jμ for any spin-half fermion therefore depends only on the two dimensionless
and Lorentz-invariant ‘form factors’, F1(k2) and F2(k2), which are functions of the
invariant 4-momentum transfer.

Eq. (12.6) follows purely as a consequence of symmetries and quantum numbers
and does not rely on the spin-half particle being weakly interacting or elementary,
and so applies equally well to strongly interacting and composite spin-half particles,
like protons and neutrons, as it does to electrons. Indeed, it is the shape of the
form factors, F1(k2) and F2(k2) as functions of k2, that provides an operational
diagnostic for whether or not the particle is elementary. Form factors are useful
discriminants of particle structure because their shape can be inferred experimentally
by measuring the cross section for electromagnetic Ψ-scattering as a function of
energy and scattering angle. Part of the evidence that protons and neutrons have
substructure (they are built from quarks and gluons) while electrons do not comes
from the fact that such measurements reveal that for electrons F1(k2) and F2(k2)
agree with the expectations (see below) for weakly coupled elementary fermions
while the same is not true for nucleons [310].

Physically, the functions Fi (0) capture the fermion’s static electromagnetic prop-
erties, with the response to applied electric fields showing that its electric charge is
given by eq = eF1(0). Similarly, eF2(0) parameterizes the fermion’s ‘anomalous’
magnetic moment, since using (12.6) to compute particle energy in a magnetic field
reveals the (z-component of the) magnetic moment to be

μM =
e

2m

[
F1(0) + F2(0)

]
=

eq
2m

[
1 +

eF2(0)
eq

]
. (12.7)
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To compare with the nonrelativistic EFT it is useful to specialize (12.6) to slowly
moving fermions, expanding the spinors u(p, σ) to linear order in the momenta p and
p′ and expressing the result in terms of the 2-component spinor, χ(σ). This gives

〈p′σ′ |J0(0) |p σ〉 = ie u(p′, σ′)
[
γ0F1(k2) +

i
2m

F2(k2) γ0nkn

]
u(p, σ)

= eF1(0) (χ ′†χ) + (quadratic in momenta), (12.8)

and

〈p′σ′ |J� (0) |p σ〉

= ie u(p′, σ′)
[
γ�F1(k2) +

i
2m

F2(k2) γ�nkn

]
u(p, σ) (12.9)

=
e

2m

{
F1(0)(χ ′†χ)(p′ + p) + [F1(0) + F2(0)](χ ′†σ χ) × (p′ − p)

}�
,

which again drops terms quadratic or higher in momenta.
Matching proceeds by computing F1(k2) and F2(k2) in the UV theory and then

comparing (12.8) and (12.9) to the same matrix element in the low-energy EFT. The
conserved current for the low-energy theory is again found by differentiating the
matter part of the action with respect to the electromagnetic potential, and as applied
to the lagrangian Leff � L0 + L1 given by (12.1) and (12.2) this gives

J0 =
δSeff

δA0
= eq Ψ

†Ψ (12.10)

and

J =
δSeff

δA
=

eq
2m

{
i
[
(∇Ψ†)Ψ − Ψ†∇Ψ

]
+ cF ∇ × (Ψ†σ Ψ)

}
, (12.11)

at least up to order 1/m. The matrix element for this current must be computed within
the low-energy EFT to the same order in small quantities as is done in the UV theory,
with the constants ci chosen to ensure the results agree.

Evaluating the single-fermion matrix element of (12.10) to lowest order and
equating to (12.8) then gives the matching condition eq = eF1(0), as expected. The
same conclusion follows from the comparison of (12.11) and the p′+p term of (12.9).
The p′ − p term, on the other hand, gives

eq cF = e
[
F1(0) + F2(0)

]
. (12.12)

Repeating this exercise at quadratic order in momenta similarly implies that

eq cD = e
[
F1(0) + 2F2(0) + 8F ′

1 (0)
]

and eq cS = e
[
F1(0) + 2F2(0)

]
, (12.13)

where F ′
1 := m2dF1/dk2.

Elementary Fermions: Lowest-Order Matching

Further progress requires choosing a specific UV theory. To this end, specialize
now to the case of an elementary fermion (such as an electron) for which the UV
completion is simply QED with spin-half part of the UV action given by

LUV = −ψ(
/
D + m)ψ (12.14)
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with
/
D = γμ (∂μ − ieq Aμ). The electromagnetic current obtained using Noether’s

theorem for this action is

Jμ =
δSUV

δAμ
= ieq ψγ

μψ, (12.15)

and it is the matrix elements of this operator between single-fermion states that
defines the functions F1(k2) and F2(k2) through (12.6) and so also (12.8) and (12.9).

Evaluating the matrix element 〈p′σ′ |ψγ μψ |p σ〉 � u(p′, σ′)γ μu(p, σ) eik ·x (to
lowest order in eq) predicts [294]

eF1(k2) = eq and eF2(k2) = 0, (12.16)

for all k2, which includes, in particular – c.f. Eq. (12.7) – the standard prediction
μM = eq/2m. Using (12.16) in (12.12) and (12.13) implies that point fermions satisfy

cF � cD � cS � 1 (zeroeth order in αq) (12.17)

reproducing the leading results obtained in §11 by integrating out the antiparticle.

Elementary Fermions: Matching to Orderαq/m2

Similar logic applies if the matching is performed for elementary fermions at
higher order in the fine-structure constant, αq = e2

q/4π, again assuming the UV
theory is described by the QED lagrangian (12.14). On the UV side the current
matrix element must be computed to one-loop order, which involves evaluating the
vertex-correction Feynman graphs of Fig. 12.1. These graphs are evaluated using
dimensional regularization, since this keeps gauge invariance explicit and so ensures
automatically that eF1(0) = eq remains true even once loop corrections are included.
Since evaluation of the graphs is straightforward, the result is simply quoted below,
together with a few general observations [305, 307].

It turns out that graph (d) of Fig. 12.1 does not contribute at all when matching
the coefficients ci , and this is because it contributes in the same way in both the full
and low-energy theories and so cancels in the difference once these are compared to
read off the ci . That is, to order 1/m2 the vacuum polarization graph of Fig. 7.4 can
be regarded as an O(αq) contribution to the effective operator Fμν Fμν , rather than
to the vertex correction, and graph (d) of Fig. 12.1 simply captures the influence of
this operator to fermion-photon scattering, rather than a contribution to the cis.

Fig. 12.1 The graphs used when matching the fermion-fermion-photon vertex at one-loop order. Not shown
explicitly are the counter-term graphs. Graphs (b), (c) and (d) contribute wave-function renormalization
contributions, though gauge invariance ensures graph (d) need not be evaluated explicitly in a matching
calculation, since fermion charge eq does not get renormalized. Graphs (b) and (c) do contribute
nontrivially through the fermion wave-function renormalization, δZ, with graph (a) contributing the rest.
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The only graph in Fig. 12.1 with the right Dirac-matrix structure to contribute to
F2(k2) is graph (a), which when Taylor expanded in powers of k2 evaluates to give
the finite result

e
eq

F (a)
2 (k2) =

αq

2π

[
1 +

k2

6m2 + O(k4)

]
. (12.18)

The remaining graphs all contribute to F1(k2), and do so in a way that diverges
in both the ultraviolet and infrared. For this reason a few words are in order about
how these divergences are regularized and (for UV divergences) renormalized.
Since the external fermion lines of Fig. 12.1 are on shell – i.e. their momenta
satisfy p2 + m2 = 0 – divergences are cancelled using an on-shell renormalization
scheme, rather than a mass-independent scheme like modified minimal subtraction.
In practice, this means counterterms are chosen to make the fermion propagator have
residue unity at the position of the pole at p2 + m2 = 0, ensuring the fields remain
canonically normalized at one-loop order. Such a scheme keeps the intermediate
fermion propagators in graphs (b) and (c) from being a problem since it ensures
that the sum of the self-energy loop with the corresponding counter-term (whose
graph is not explicitly drawn) vanishes on shell, and so cancels the propagator’s
on-shell pole.

The use of an on-shell renormalization scheme leads to infrared divergences in
places in which they do not otherwise arise, such as in the self-energy graphs
(b) and (c) of Fig. 12.1. IR divergences normally arise (in four dimensions) when
external lines in an on-shell scattering process are connected by a massless-particle
propagator — such as in graph (a) of Fig. 12.1. In this graph the on-shell condition
for the external fermion implies that the two internal fermion lines each depend
on small virtual photon momentum like 1/k, while the photon propagator goes
like 1/k2, leading to an IR divergence of the form

∫
d4k/k4 for small k. But

IR divergences can also arise in other places – like self-energy graphs – if on-
shell subtractions are made when renormalizing ultraviolet divergences, since these
improve the large-momentum behaviour at the expense of worsening the asymptotic
form for small momenta (as is nicely described in [40], for instance).

In what follows both ultraviolet and infrared divergences are regularized using
dimensional regularization, making them arise as poles in the limit ε = (D−4)/2 →
0. IR and UV divergences are distinguished by artificially labelling the regularization
parameter ε during intermediate steps, with poles of the form 1/εIR representing
IR divergences and those coming from UV divergences labelled 1/εUV. Thus the
following integrals become

μ4−D
∫

dDp
(2π)D

1
p2(p2 + m2)

=
1

(4π)2

[
1
εUV

− ln
m2

μ2 − γ + 1
]

while μ4−D
∫

dDp
(2π)D

1
p4(p2 + m2)

= − 1
(4π)2m2

[
1
εIR

− ln
m2

μ2 − γ + 1
]

,

(12.19)

for D = 4 − 2ε (see §A.2.4) with, at the end of the day, εUV = εIR = ε.
Keeping these divergences separate during intermediate steps is useful because they
eventually disappear from physical quantities for entirely different reasons: 1/εUV

poles are removed by renormalization counterterms in both the UV and effective
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theories while 1/εIR poles cancel automatically amongst themselves once a physical
observable is computed.

Distinguishing UV from IR poles also illuminates an otherwise puzzling feature of
dimensional regularization (that turns out to play an important role in what follows).
Consider, for example, the integral I ∝

∫
dDp/p4, which for general D has mass-

dimension [I] = D − 4. Dimensional regularization evaluates such integrals as zero
because there is no dimensionful parameter on which I can depend for D � 4 that
can carry the right dimensions. This vanishing is a bit less obscure if the integral is
regarded as a sum of IR- and UV-divergent parts, such as by writing∫

dDp
(2π)D

1
p4 =

∫
dDp

(2π)D

1
p2(p2 + m2)

+

∫
dDp

(2π)D

m2

p4(p2 + m2)

=
1

(4π)2

(
1
εUV

− 1
εIR

)
, (12.20)

which evaluates the integrals using (12.19). Vanishing occurs once εUV = εIR = ε is
used.

With these comments in mind a straightforward evaluation of Fig. 12.1 gives a
prediction for F1(k2) at order αq , of which only the Taylor expansion out to quadratic
powers of k2 is relevant for the matching calculation to order 1/m2. For graph (a) this
leads to

e
eq

F (a)
1 (k2) =

αq

π

[(
1

2εUV

+
1
εIR

+ 1 − 3
4

ln
m2

μ2

)
+

k2

m2

(
− 1

3εIR

− 1
8
+

1
6

ln
m2

μ2

)
+ O(k4)

]
(12.21)

while graphs (b) and (c) sum to

e
eq

F (b,c)
1 = −

αq

π

(
1

2εUV

+
1
εIR

+ 1 − 3
4

ln
m2

μ2

)
. (12.22)

where μ is the usual arbitrary dimensional regularization scale. Notice that the UV
divergent factors 1/εUV cancel once all three graphs are summed, indicating that no
renormalization is necessary.3

Combining all contributions gives the two form factors out to order αq:

e
eq

F1(k2) = 1 +
αq

π

(
k2

m2

) (
− 1

3εIR

− 1
8
+

1
6

ln
m2

μ2

)
+ O(k4) (12.23)

and

e
eq

F2(k2) =
αq

2π

(
1 +

k2

6m2

)
+ O(k4). (12.24)

The remaining infrared divergence in (12.23) is the usual one that ultimately cancels
against the rate for soft-photon emission in any physical scattering process [135].

Eqs. (12.23) and (12.24) are to be compared to the result computed using the
same approximations within the low-energy EFT, which amounts to again evaluating

3 Not needing to renormalize eq to cancel divergences in the vertex correction is a famous consequence of
gauge invariance. Because eq Aμ always appears together in the covariant derivative Dμ = ∂μ−ieq Aμ ,
renormalizations of eq and Aμ always cancel. This ensures that any UV divergences in graph (a) can be
absorbed into the fermion wave-function renormalization – i.e. must cancel those of graphs (b) and (c).
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the graphs of Fig. 12.1, but (at order k2/m2) with vertices and propagators found
using the lagrangian Leff � L0 + L1 + L2 given in (12.1) through (12.3). Working in
Coulomb gauge allows the electromagnetic propagators to be split into separate A0

and A exchange. Furthermore, only the term iΨ†∂tΨ is needed when defining the
fermion propagator, leading to the result given in (11.38).

Using these Feynman rules the loop corrections to 〈p′σ′ |Jμ |p σ〉 computed in the
effective theory are then particularly simple: they all vanish. They do so because none
of the propagators carry any dimensionful parameters besides the virtual momenta
and energies over which loop integrals get performed. Consequently, the loop graphs
in the low-energy theory all evaluate to zero in dimensional regularization, along the
lines of (12.20).

When performing the matching it is useful to keep in mind how this vanishing
of loop graphs can be regarded as a cancellation between 1/εUV and 1/εIR. This is
useful because the 1/εUV part of this cancellation should really instead be absorbed
into renormalizations of the effective couplings,

cbare
i = cren

i +
c∞i
εUV

, (12.25)

within the effective theory. But once this is done the factors of 1/εUV are no longer
available to cancel with the 1/εIR terms of the loops, which in the low-energy theory
actually then remain uncancelled. This is just as well since the IR divergences also
do not cancel in the UV result (12.23), and should have precisely the same form
when calculated in the UV or effective theories (which after all do not differ in their
low-energy IR physics).

The upshot is that Fi (k2) is given at this order in terms of the bare couplings by
precisely the same formula as at lowest-order, with

e
eq

F1(k2) = (2cbare
F − cbare

S ) +
cbare

D − cbare
S

8

(
k2

m2

)
+
αq

3π

(
1
εUV

− 1
εIR

) (
k2

m2

)
(12.26)

= (2cren
F − cren

S ) +

(
cren

D − cren
S

8
−

αq

3πεIR

) (
k2

m2

)
,

where the IR divergence is precisely the same as for the UV theory. As a result, it
cancels once UV and EFT results are compared to infer the values of cren

i . Notice the
general condition eF1(0) = eq is enforced in this expression by the relation (12.5)
between cS and cF. The second form factor similarly becomes

e
eq

F2(0) = cbare
S − cbare

F = cren
S − cren

F . (12.27)

Including order αq corrections into matching of the renormalized quantities cren
F ,

cren
D and cren

S is therefore very simple: the result is simply Eqs. (12.12) and (12.13), but
evaluated using the loop-corrected expressions, (12.23) and (12.24), for F1 and F2,
with all UV- and IR-divergent poles simply thrown away. Dropping the superscript
‘ren’, this leads to

cF = 1 +
αq

2π
+ O(α2

q) , cD = 1 +
4αq

3π
ln

m2

μ2 + O(α2
q) and

cS = 1 +
αq

π
+ O(α2

q), (12.28)
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and the same procedure can be adapted to any desired accuracy in αq and/or
k2/m2.

As usual, the great power of EFT methods is that these coefficients can now be
used to compute any other low-energy observable. A particularly simple example is
given by the magnetic moment, given by (12.7) as

μM =
eqcF

2m
=

eq
2m

[
1 +

αq

2π
+ O(α2

q)
]

, (12.29)

capturing the leading QED contribution to the fermion’s anomalous magnetic
moment. Later sections use Eqs. (12.1.2) to illustrate further how high-energy
radiative corrections propagate through to contribute to precision calculations of low-
energy observables.

Composite Particles

The effective lagrangian Leff of Eqs. (12.1)–(12.3) applies equally well to composite
particles (such as protons, neutrons, nuclei or atoms and ions) as for elementary
fermions (like electrons or muons), since it contains the most general interactions
consistent with the assumed spacetime symmetries (parity, rotation invariance and
so on). What does not hold for such particles is the matching results of Eqs. (12.1.2).

For applications to composite particles it is less useful to normalize all effective
couplings by powers of the mass, m. Although this makes sense if the mass is the
only relevant scale in the problem (as is true both for elementary particles and
for composite particles like protons and neutrons), it need not for nonrelativistic
composite particles which may exhibit many different low-energy scales.

Suppose, for example, Ψ represents a 4He+ ion, which is a spin-half ion consisting
of a spinless 4He nucleus orbited by a single spin-half electron. In this case, the
ion mass is approximately its nuclear mass, which is of order the sum of four
nucleon masses, M � 4mN � 3.8 GeV. This is much larger than the energy scale
associated with ion’s radius, Ri , say, since this is of order the appropriate Bohr radius,
1/Ri ∼ Zαme = 2αme � 7 keV. And 1/Ri is bigger still than typical electronic
binding energies, |EB | � 1

2 (Zα)2me � 55 eV.
Mass can also be much larger than inverse size for nuclei, for which M is often

the largest of many scales and effective nuclear properties instead often involve the
nuclear size, RN. Although 1/RN and M are similar for nucleons, for larger nuclei
usually M � 1/RN. These scales differ because the nuclear mass is largely dominated
by the rest mass of its constituent nucleons, and the density of nuclear matter turns
out to be approximately independent of the number of nucleons within a nucleus.
Consequently, the nuclear mass is roughly proportional to both the nuclear volume,
R3

N , and to the total number, A, of nucleons in a nucleus, M ∼ mN A. It follows that its
radius scales with A like RN ∼ A1/3/mN (where mN is of order the nucleon mass) and
so M ∼ A4/3/RN � 1/RN when A � 1.

As discussed at length in Part I, if all other things are equal it is usually the smallest
energy scale (largest distance) that suppresses the size of higher-dimension effective
coefficients within an EFT. Since this is often not the mass it is less useful to scale
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factors of M out of effective couplings when working with composite particles, such
as by writing4

L1 =
1

2M
Φ†D2Φ +mB · (Φ†σ Φ) , (12.30)

=
1

2M
Φ†∇2Φ +

ieq
2M

A ·
[
(∇Φ†)Φ − Φ†∇Φ

]
−

e2
q

2M
A2(Φ†Φ) +mB · (Φ†σ Φ) · · · ,

where (as usual) eq denotes the particle’s electric charge whilem denotes its magnetic
moment. For typical nuclei or ions m is of order the radius, eqR, of the bound-state’s
charge-distribution rather than its inverse mass, eq/M .

12.1.3 Thomson Scattering

As a first, fairly trivial, example of how Leff can simplify low-energy calculations,
consider computing the low-energy limit of Compton scattering between a (possibly
composite) charged particle and a photon: γ + Ψ → γ + Ψ.

Since the energy and momentum transfers are comparable in such a reaction,
the contributions of interactions in Leff can be estimated using the Ep ∼ |p|
power counting of §11.3.2. In this case, no factors of m arise in the unperturbed
lagrangian and so power counting in powers of 1/m is relatively simple. In particular,
since real photons only appear in A and not in A0, and since all A interactions
come with a factor of eq and are suppressed by at least one power of 1/m, the
low-energy scattering amplitude must satisfy A2,2(k) <∼ O(αq/m). More precisely,
(11.39) implies that

A2,2(k) ∼ k

m2

(
k

4πm

)2L (
k
m

) P̂
, (12.31)

with L counting the number of loops and P̂ given by (11.40). The leading
contribution at low energies therefore comes fromL = 0 and P̂ = −1, corresponding
to a single insertion of one A2Ψ†Ψ interaction.5 Including also the factors of electric
charge eq this gives A2,2(k) ∼ e2

q/m and so dσ/dΩ ∝ |A2,2 |2 <∼ O(α2
q/m

2).
Putting in the order-unity factors, taking the matrix element of the A2Ψ†Ψ term

in L1, as given in (12.2), leads to the invariant amplitude (see §B.2 for a refresher on
scattering)

A2,2
[
Ψ(p), γ(k) → Ψ(p̃), γ(k̃)

]
= −2i ��

e2
q

2m
�� (χ̃†χ) ε̃ · ε, (12.32)

where ε=ε(k, λ) and ε̃=ε(k̃, λ̃) are the polarization vectors for the initial and
final photons (with helicity λ, λ̃ = ±1), while χ = χ(p, σ) and χ̃ = χ(p̃, σ̃) are
the 2-component spinors for the initial and final fermions (with spin components
σ, σ̃ = ± 1

2 ). The initial factor of 2 comes from the two ways A2 can destroy the
initial particle and create the final one.

4 A factor of 1/M remains in front of the Φ†D2Φ term because the coefficient of this term is taken to
define the object’s inertial mass, through the dispersion relation E (p) = p2/2M .

5 Multiple Coulomb exchanges do not complicate this power counting due to the presence of only a single
fermion.
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Averaging over initial spins and summing over final spins gives the unpolarized
squared matrix element

〈|A2,2 |2〉 :=
1
4

∑
σσ̃λλ̃

|A2,2 |2 = 2 ��
e2
q

2m
��

2 ∑
λλ̃

|ε̃ · ε |2 =
e4
q

2m2 (1 + cos2 θ), (12.33)

which uses
∑
λ ε

∗
j (k, λ)εl (k, λ) = δ jl − k̂ j k̂l , where k̂ = k/|k|, and ditto for∑

λ̃ ε̃
∗
j (k̃, λ̃) ε̃l (k̃, λ̃). Here θ is the scattering angle between the momenta of the

incoming photon, k, and the outgoing one, k̃, in the charged particle’s rest frame.
The differential cross section then is

dσ
dΩ
=

1
(4π)2 〈|A2,2 |2〉 =

α2
q

2m2 (1 + cos2 θ) (12.34)

leading to the standard expression for the total unpolarized Thomson cross section,

σ =
8π
3

(αq

m

)2
, (12.35)

where αq = e2
q/4π = Z2α for particles with electric charge eq = Ze.

Eqs. (12.34) and (12.35) agree with the low-energy limit of the lowest-order
QED result [311] for photon scattering from an elementary fermion, but is here
computed with much less effort and with a much broader domain of validity. For
instance, as derived here the result depends only on the total charge and mass,
equally for spin-half and spinless particles (and this is true regardless of whether the
particle in question is elementary or composite). Furthermore, knowing that the 1/m2

contribution to dσ/dΩ is completely controlled by the coefficient of Osg := A2Ψ†Ψ

in Leff also shows that this 1/m2 contribution to the cross section does not receive
radiative corrections to any order in αq . It cannot receive any corrections because
the only way they could contribute is by modifying the coefficient of Osg. But
the coefficient of this interaction is tied by gauge invariance to the term Ψ†∇2Ψ,
whose coefficient is determined by the energy-momentum dispersion relation to be
precisely (2m)−1.

12.2 Multiple Particle Species ♠

With applications to atoms (and single-electron ions) in mind it is useful to extend
the low-energy lagrangian Leff to include two different species of nonrelativistic
charged particles (such as electrons and nuclei). To this end, the same arguments
as above are repeated to construct the low-energy couplings of A0 and A to a pair
of nonrelativistic particles: an electron, Ψ with charge eq = −e and mass m, and
a nucleus, Φ with charge Q = Ze and mass M . For definiteness both Ψ and Φ
are chosen here to be spin-half particles (such as for the 1H atom), though in other
applicationsΦ could equally well have different spin (such as spin zero for even-even
nuclei like 4He). Of particular interest in this section is the practical situation where
the two species have very different masses, M � m, since this allows a systematic
exploration of the approximations involved when replacing the heavy particle by a
Coulomb potential [312].
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The low-energy action appropriate to such systems has a similar form as given in
(12.1) through (12.3), but written as a double series in 1/m and the relevant heavy-
particle scale (either a scale of order its size – e.g. the nuclear radius, RN – or its
inverse mass, 1/M):

Leff = L0,0 + L1,0 + L0,1 + · · · (12.36)

where Lk,l involves k powers of 1/m and l powers of the relevant nuclear scale. For
example, the first few terms are6

L0,0 = iΨ†∂tΨ + iΦ†∂tΦ + eA0
(
Z Φ†Φ − Ψ†Ψ

)
+

1
2

E2 − 1
2

B2, (12.37)

and

L1,0 =
1

2m
Ψ†∇2Ψ − ie

2m
A ·
[
(∇Ψ†)Ψ − Ψ†∇Ψ

]
− e2

2m
A2(Ψ†Ψ) − e

2m
cF B · (Ψ†σΨ) + · · · , (12.38)

while

L0,1 =
1

2M
Φ†∇2Φ +

iZe
2M

A ·
[
(∇Φ†)Φ − Φ†∇Φ

]
− Z2e2

2M
A2(Φ†Φ) +mN B · (Φ†σ Φ) + · · · . (12.39)

These expressions use DμΨ = (∂μ + ieAμ)Ψ and DμΦ = (∂μ − iZeAμ)Φ, and adopt
the notation mN for the nuclear magnetic moment for a spin-half nucleus7 (which, if
Φ represents a proton, is often instead written mN = ecF/2M , with cF order unity).

More terms arise suppressed by two powers of the microscopic UV energy scale,
such as terms similar to those in (12.3) including contact interactions like

Lcontact = e1(Ψ†σΨ) · (Φ†σΦ) + e2(Ψ†Ψ)(Φ†Φ). (12.40)

No terms of the formΦ†Ψ arise even for spin-half nuclei because these are forbidden
by the symmetries responsible for making each particle type stable (which allow
them to be in the low-energy action in the first place). For atoms these include
global symmetries encoding conservation of lepton number, Ψ → eiθLΨ, and baryon
number, Φ→ eiθBΦ.

Power Counting

The same power-counting issues arise with two species of fields as do when only
one species is present, although any hierarchy in masses, m � M , introduces similar
hierarchies in small power-counting parameters like |p|/M � |p|/m. For both fields
the Coulomb interaction is relevant using nonrelativistic power counting, eventually
leading to a breakdown of perturbation theory for fluctuations with energies E � |p|.

Intuition for where this breakdown occurs can be found from the known properties
of two-body Coulomb bound states, whose centre-of-mass wave-functions involve

6 This expression assumes a Lorentz-invariant UV theory and so sets εE = μB = 1, together with further
relations – such as (12.5) – amongst higher-order couplings.

7 Rotation invariance forbids the term Φ†σ Φ for spinless nuclei, and so mN = 0 in this particular case.
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equal momenta for both fields, of size |p| ∼ m̃ Zα, where m̃ := mM/(m + M) �
m + O(m2/M) denotes the system’s reduced mass and α = e2/4π is (as usual)
the fine-structure constant. The relevant bound-state energies are similarly of order
E ∼ m̃ (Zα)2. Since these scales satisfy E ∼ |p|2/m � |p|2/M when m � M , the
regime of interest when applying the power-counting arguments of §11.3.2 to bound-
state properties can treat interactions like (Φ†∇2Φ)/2M as a perturbation, but cannot
equally neglect (Ψ†∇2Ψ)/2m.

12.2.1 Atoms and the Coulomb Potential

Because the large mass appears only in powers of 1/M within bound-state energies,
the leading features of atomic systems can be explored in the M → ∞ limit,
with O(m/M) corrections added later perturbatively. In this regime the dominant
contributions to two-particle propagation unsuppressed by any powers of 1/m or 1/M
come from multiple Coulomb exchange, as in the graphs of Fig. (12.2).

Crucially, in this figure the nucleus and Coulomb propagators are

G(Φ) (p, p0) =
i

p0 + iε
and G(A0) (p, p0) =

i

p2 , (12.41)

and so because G(Φ) depends only on energy and G(A0) depends only on 3-
momentum, the argument of the Φ propagator remains unchanged before and after
the emission of an A0 line. These propagators are more informatively written in
position space by Fourier transforming, leading to

G(Φ) (x − x′, t − t ′) =
∫

d4p

(2π)4

(
i

p0 + iε

)
e−ip0 (t−t′)+ip·(x−x′) = δ3(x − x′)Θ(t − t ′),

(12.42)

where the p0 integration is performed by contours andΘ(x) = {0 if x < 0; 1 if x > 0}
is the Heaviside step function. Similarly,

G(A0) (x − x′, t − t ′) = lim
m→0

∫
d4p

(2π)4

(
i

p2 + m2

)
e−ip0 (t−t′)+ip·(x−x′)

=
i

4π |x − x′ | δ(t − t ′). (12.43)

Notice that the two propagators depend on time through a step-function and a delta-
function, and this is what prevents crossed versions of Fig. 12.2 from contributing a
nonzero result.

(n = 1)

+

(n = 2)

+

(n = 3)

+ · · ·

Fig. 12.2 ‘Ladder’ graphs describing multiple Coulomb interactions that are unsuppressed at low energies. Solid
lines represent electrons (Ψ propagators), double lines represent nuclei (Φ propagators) and dashed lines
represent A0 propagators.
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Using these propagators to evaluate the top half of the ladder graphs of Fig. 12.2
(in position space) gives

(Ze)n
∫

d4x1d4x2 · · · d4xn φ
∗
f (xn) G(Φ) (xn − xn−1) G(A0) (xn − yn) · · ·

× G(Φ) (x2 − x1) G(A0) (x1 − y1) φi (x1) (12.44)

=

∫
d3xφ∗f (x, y0

n)

(
iZe

4π |x − y1 |

) (
iZe

4π |x − y2 |

)
· · ·

(
iZe

4π |x − yn |

)
φi (x, y0

1 ),

where the unwritten step functions enforce the inequalities y0
1 < y0

2 < · · · < y0
n

and the factors φ∗f (x, y0
n) and φi (x, y0

1 ) represent the initial and final nuclear wave-
function, as represented by the external double lines. This is to be multiplied by the
Feynman rule for the electron field describing the bottom solid line of Fig. 12.2, and
integrated over d4y1 · · · d4yn.

Notice that assuming initial and final nuclear states to have vanishing energy does
not constrain their x-dependence because all momentum states contribute to the
energy suppressed by 1/M , which is negligible to the order of interest. With this
in mind, it is convenient to work in the rest-frame of the nucleus, with the nucleus
in an approximate position eigenstate chosen to be the origin of coordinates, so
φ∗f (x) φi (x) = δ3(x).

Now comes the key observation. So far as the electron sector is concerned, the
ladder graphs of Fig. 12.2 are completely equivalent to interacting with a classical
background field, A0 = A0, with

A0(y) :=
Ze

4π |y| . (12.45)

Interactions with this background potential are described by summing the Feynman
graphs of Fig. 12.3, where the dashed lines ending in crosses represent the field of
(12.45).

What is important about this is that it allows the ladders to be resummed by
reorganzing which terms in Leff lie in the unperturbed lagrangian and which are
perturbations. In particular, rather than perturbing around the lagrangian

Lunp = iΦ†∂tΦ + iΨ†∂tΨ −
1

2m
∇Ψ† · ∇Ψ + 1

2
E2, (12.46)

the ladder graphs are resummed by instead expanding in graphs describing perturba-
tions around the alternative lagrangian

��

(n = 1)

+

�� ��

(n = 2)

+

�� �� ��

(n = 3)

+ · · ·

Fig. 12.3 Graphs describing multiple interactions with an external Coulomb potential, A0(k) = Ze/k2. Solid lines
representΨ propagators while dashed lines capped by an ‘×’ represent insertions of the external
Coulomb potential.
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L′unp = iΦ†∂tΦ + iΨ†∂tΨ − eA0Ψ
†Ψ − 1

2m
∇Ψ† · ∇Ψ + 1

2
E2, (12.47)

with the Coulomb part of the interaction terms rewritten to become

Lint ! ZeA0Φ
†Φ − e(A0 − A0)Ψ†Ψ. (12.48)

Alternative Feynman rules are then obtained by replacing the free electron
propagator with the result obtained for an unperturbed electron field interacting with
the static Coulomb potential of (12.45), satisfying

i∂tΨ = −
1

2m
∇2Ψ +

Ze
4π |x| Ψ, (12.49)

with solutions

Ψ(x, t) =
∑
σ=± 1

2

∑
n

χnσ (x) anσ e−iEn t . (12.50)

Here, χnσ (x, t) represent the usual spinor basis of Coulomb energy eigenstates of
elementary quantum mechanics courses (with spin), satisfying

− 1
2m

∇2χnσ +
Ze

4π |x| χnσ = Enχnσ and Szχnσ = σ χnσ, (12.51)

and anσ represents the annihilation operator for this state, satisfying the fermionic
algebra

{
anσ , a∗

mλ

}
= δnmδσλ. In these expressions n and m denote the complete set

of labels for these Coulomb states, and the resulting fermionic propagator becomes

〈0|T
[
Ψ(x, t)Ψ†(x′, t ′)

]
|0〉 = Θ(t ′ − t)

∑
nσ

χnσ (x)χ†nσ (x′) eiEn (t−t′)

= i
∑
nσ

∫
dω
2π

⎡⎢⎢⎢⎢⎣χnσ (x)χ†nσ (x′)
ω − En + iε

⎤⎥⎥⎥⎥⎦ eiω(t−t′) .

(12.52)

Power counting with this revised perturbation theory no longer implies that the
infinite sequence of ladder graphs of Fig. 12.2 are all leading order since it is
only A0 − A0 that now couples to Ψ†Ψ. This is the way the low-energy EFT
connects with standard single-particle atomic Rayleigh–Schrödinger perturbation
theory. The advantage of making this connection is the ability to systematically
integrate these atomic calculations with higher-order quantum-field effects (such
as radiative corrections that enter through higher-order matching conditions like
(12.1.2), or effects of the weak interactions) as perturbations. Although it goes
beyond the scope of this book to explore further, considerable effort has been made
to systematize this kind of perturbative expansion [313].

12.2.2 Dipole Approximation

A simple example of the practical use of Leff in atomic systems computes the low-
energy limit of photon absorption by a charged particle, γ + Ψ → Ψ′ (or emission
Ψ → Ψ′+γ), for an electron bound in an atom. Besides illustrating the utility of EFT
methods this example also introduces the dipole approximation that proves useful for
later sections.
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The leading graphs for this process involve attaching an external photon line in
all possible ways to the bottom (electron) line of the graphs of Fig. 12.2 (or to the
graphs of Fig. 12.3). Since real photons only appear in A, the photon-electron vertex
that is relevant to leading order in 1/m comes from either the 2nd or 4th terms of the
lagrangian of (12.38), reproduced here for convenience of reference

Lint = −
ie

2m
A ·
[
(∇Ψ†)Ψ − Ψ†∇Ψ

]
− e

2m
cF B · (Ψ†σΨ). (12.53)

It is the first of these – the (electric) ‘dipole’ term – that dominates in atomic
absorption and emission processes. This is because for these the photon energy is
given by the difference in electron energy levels, and so is of order mv2, where
v ∼ Zα � 1. This implies that the photon momentum is also of this order, making
it much smaller than the typical electron momentum: |k| ∼ mv2 � |pe | ∼ mv. Since
the derivative in the first term of (12.53) involves electron momenta, it dominates
the second term, whose derivative (inside B = ∇ × A) samples only the photon’s
momentum.

As a consequence of this, only the dipole term contributes to leading order in v,
and the photon momentum can be dropped in this term. So initial and final electron
momenta are approximately equal, p f = pi +k � pi , and the matrix element relevant
for photon absorption become

〈0|A(x, t) |k, λ〉 = Ac ε(k, λ) ei(k·x−k0t) � Ac ε(k, λ) e−ik0t , (12.54)

where λ denotes the photon helicity and Ac can be regarded as the amplitude of an
incoming classical electromagnetic wave, or can be evaluated as the matrix element
of the photon destruction operator in an initial configuration with multiply occupied
photon states (see §B.1 and §C.3.3, respectively, for conventions about momentum-
state and field normalization). Writing the density of initial photons as n = N/V =
nkd3k/(2π)3, where V is the volume of space, then8

|Ac |2 =
nk

(2π)32k0 . (12.55)

Keeping only the electric-dipole interaction of (12.53) and dropping the dependence
on photon momentum is called the ‘dipole approximation’.

The summation over arbitrary numbers of Coulomb interactions between nucleus
and electron makes evaluation of the graphs daunting at first sight; however, these
are elegantly resummed – as discussed above – by expanding the electron field Ψ
as in (12.50), using the single-particle Schrödinger–Coulomb wave-functions for
the electron, χnσ (x), found as solutions to (12.51). In practice, what is required
is the matrix element of Lint between the Coulomb wave-functions for the initial
and final states.

Denoting the initial and final electronic spins by σ and σ̃, these observations lead
to a transition matrix element

Aabs[Ψ(i, σ) + γ(k, λ) → Ψ( f , σ̃)] = −
∫

d3x〈Ψ( f , σ̃) |Lint |Ψ(i, σ), γ(k, λ)〉

� ie
m

Ac ε(k, λ) ·
∫

d3x χ†
f σ̃∇χiσ, (12.56)

8 These formulae use nonrelativistic normalization for momentum states: 〈k |k′〉 = δ3 (k − k′).
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where χnσ is the Schrödinger–Coulomb wave-function of (12.50). An example of the
utility of making contact with Coulomb eigenstates is the ability to use single-particle
quantum reasoning to rewrite this matrix element in terms of the dipole moment:

Aabs[Ψ(i, σ) + γ(k, λ) → Ψ( f , σ̃)] = − e
m

Ac ε(k, λ) · 〈 f |P̂|i〉 δσσ̃

= −ie Ac ε(k, λ) · 〈 f |[Ĥ, x̂]|i〉 δσσ̃ (12.57)

= iω f i Ac ε(k, λ) · d f i δσσ̃,

where ω f i := E f − Ei is the energy change of the electron, and the first-quantized
atomic dipole-moment matrix element is defined by

d f i (t) := −e〈 f |x̂|i〉 = −e
∫

d3x x χ∗f (x, t)χi (x, t), (12.58)

where χ f (x, t) without an index σ indicates the spin-independent Schrödinger wave-
function. The first line of (12.57) follows from the single-particle Schrödinger
representation of the momentum operator, P̂ = −i∇, and the second and third lines
use 〈 f |P̂|i〉 = m(d/dt)〈 f |x̂|i〉 = im〈 f |[Ĥ , x̂]|i〉 and the fact that both initial and final
states diagonalize the Schrödinger–Coulomb Hamiltonian Ĥ .

For later reference, notice that the matrix element (12.57) has the form expected
from an interaction Hamiltonian, H ∝ E · d, since E = −∂tA + ∇A0 implies that
〈 f |E|i〉 = iω f i〈 f |A|i〉.

The differential lab-frame absorption rate for an atomic electron exposed to
polarized photons with 3-momentum within a volume element d3k of k can then
be obtained from Fermi’s Golden rule (c.f. §B.2.2)

dΓabs[Ψ(i, σ) + γ(k, λ) → Ψ( f , σ̃)] = 2π |Aabs |2δ(k − ω f i) d3k. (12.59)

As shown in Exercise 12.1, using (12.55) and (12.57) in this expression gives the
following unpolarized lab-frame absorption rate for an atomic electron exposed to a
bath of electromagnetic radiation:

Γabs =
ω3

f i
nk

6π
|d f i |2 =

π
3
ρ(ω f i) |d f i |2, (12.60)

where the final equality writes the rate in terms of the energy density of the initial
radiation per unit frequency

ρ(ω f i) :=
(
k

dnγ
dk

)
k=ω f i

=
nk ω3

f i

2π2 . (12.61)

Here, the density of initial photons with wave-number k is assumed to be independent
of photon direction, so dnγ = nk d3k/(2π)3 and so the initial density of photons in a
frequency range dk is dnγ/dk = nk k2/(2π2) once summed over photon direction.

Although (12.60) is a standard result, this derivation makes clear that it relies
only on working to leading order in the 1/m expansion and on the energy difference
ω f i ∼ mv2 being much smaller than the inverse size of the bound state: 1/a ∼ mv.
For situations where v and α are independent of one another there would be no
radiative corrections (in powers of α) that are not also accompanied by additional
powers of v. These cannot arise because the normalization of the dipole term is
completely dictated by the charged particle’s mass and charge, being tied as it is
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by gauge invariance to the term Ψ†∇2Ψ, whose coefficient is determined by the
energy-momentum dispersion relation E = p2/2m. For systems (like many atoms)
for which v ∼ α corrections in powers of α can arise but are at least partly due
to the presence of subdominant powers of v . The EFT derivation shows that the
above rate also holds equally well for other, possibly composite, charged particles
inside bound states, provided these satisfy the basic hierarchy k = ω f i ∼ mv2 �
p ∼ mv, since nothing in the EFT relies on the charged-particle involved being
fundamental.

12.2.3 HQET

Previous sections risk leaving the impression that the utility of nonrelativistic
field theories is limited to electromagnetic systems like atoms. A practical non-
electromagnetic application for the above framework is to the properties of mesons
in QCD for which one of the constituent quarks is heavy enough to be treated
nonrelativistically. This application is known as heavy-quark effective theory, or
HQET for short [314].

As described in §8, mesons are colour-neutral bound states involving one valence
quark and one valence antiquark, and a framework using nonrelativistic particles is
relevant when the mass of one (or both) of the quark/antiquarks involved is much
larger than the typical quark momentum, which is of order the strong-interaction
energy scale: mQ � ΛQCD ∼ 200 MeV. Table 8.1 shows this is appropriate for mesons
involving c, b and t quarks (although the t quark decays so quickly that its mesons
are usually not of practical interest).

Casting the interactions of heavy quarks in terms of nonrelativistic EFTs reveals
how the limit of infinite quark mass enjoys symmetries that relate different heavy
quark species and spins. Because these symmetries are not broken by the QCD
couplings to gluons, they should be good approximations for describing mesons
containing these quarks, up to corrections in powers of heavy-quark velocity,
v ∼ ΛQCD/mQ. This leads to a systematic approximation scheme for describing many
features of mesons built from heavy quarks.

To display these symmetries explicitly start from the QCD lagrangian, (8.1), and
integrate out the antiparticles9 of the three heavy-quark species. Dropping all terms
suppressed by heavy mass scales (including mQ for the heavy quarks), this leads to
an EFT of the form

LHQET = LNR + L
light
QCD , (12.62)

where the second term on the right-hand side describes the relativistic degrees of
freedom with lagrangian

LQCD = −
1
4

Gα
μνG

μν
α −

∑
q=u,d,s

q(
/
D + mq)q, (12.63)

with gauge field-strength given by (8.2) and
/
D = γμDμ with covariant derivative of

the quark fields given by (8.3).

9 For mesons involving antiparticles, one instead integrates out the particles.
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By contrast, the terms involving the heavy-quark fields start off with

LNR = i
∑

Q

Ψ
†
Qu
μ
Q DμΨQ (12.64)

where ΨQ = {Ψa
Qi } represents the heavy-quark fields, with the sum on the ‘flavour’

index Q running over whichever of the heavy-quark species, Q = c, b, t are relevant
to the process of interest. The index i = 1, 2 similarly represents the 2-component
nonrelativistic spinor index, while a = 1, 2, 3 represents their three colours. The
covariant derivative relevant in this case acts only on the colour index and is the
same as for light quarks:

(DμΨQi)
a := ∂μΨa

Qi − ig Gα
μ (Tα)ab Ψ

b
Qi , (12.65)

with Tα an SUc (3) generator and Einstein summation convention assumed (as usual)
for the repeated indices α = 1, · · · , 8 and b = 1, 2, 3.

The 4-vector uμ represents the heavy quark’s 4-velocity, and it comes with a
subscript Q to emphasize that this 4-velocity, in general, depends on which heavy
quark is of interest. In particular, for a decay Q → Q′ the rest frame of the initial
and final heavy quarks differ due to the recoil against any other relativistic degrees
of freedom participating in the decay. Notice that

iΨ†Q uQ · DΨQ = iγQ

[
Ψ
†
Q DtΨQ + Ψ

†
Q vQ · DΨQ

]
, (12.66)

with γQ = (1 − v2
Q )−1/2, and momentum conservation implies that the magnitude, vQ,

of the 3-velocity of the daughter heavy quark, Q′, is of order vQ′ ∼ (mQ − mQ′ )/mQ′

in the rest frame of the decaying heavy quark. Consequently, vQ need not be small in
the heavy-quark limit because mQ − mQ′ need not be much smaller than mQ′ .

For mesons involving one heavy and one light quark interactions like10

(Ψ†D2Ψ)/2mQ are small relative to those shown in (12.62). This is because the
energy and momentum transfer within such mesons between the heavy quark and
the relativistic quarks and gluons is order ΛQCD. As a consequence, the heavy quark
recoil kinetic energy is order Λ2

QCD/mQ and therefore is negligible when mQ � ΛQCD.
This neglect of 1/mQ interactions is important from the point of view of symme-

tries. This is particularly clear in the kinematic regime where vQ → 0, since in this
limit the heavy-quark term becomes

iΨ†DtΨ, (12.67)

where now all indices on Ψ involving spin i or flavour Q are suppressed. For N
species of heavy quark this has a large symmetry group, SU (2N ), corresponding to
unitary rotations acting on both the ‘flavor’ index n = 1, · · · , N and the 2-valued
spin index i. The mixing of spin and flavor symmetries in this way is possible when
mQ → ∞ because in this limit spin-orbit couplings disappear and spin essentially acts
as just another internal symmetry.11 For systems involving only c and b quarks the

10 Here D represents the projection of Dμ in the direction perpendicular to u
μ
Q , and so is, in principle,

also Q-dependent.
11 For relativistic systems the Coleman–Mandula theorem [315] excludes similar symmetries that mix

spin with internal symmetries. It states that (for systems with a nontrivial S matrix at least) under
broad assumptions the most general symmetry algebra consists of the product of spacetime symmetries
(i.e. ordinary Poincaré or conformal transformations) and internal symmetries.
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appropriate value is N = 2, and so this suggests the heavy sector has an approximate
SU (4) symmetry that mixes the four flavour and spin states – b↑, b↓, c↑ and c↓ – into
one another.

To display these symmetry implications more explicitly consider adding the low-
energy weak interactions perturbatively, LHQET → LHQET + Lweak, and computing

the rates for spinless B mesons (with quark content B− = b u, B
0
d = b d or B

0
s = b s)

to decay into spinless D mesons (with quark content D+ = c d and D0 = c u).
These decays arise due to the underlying heavy-quark decay through virtual W -boson
emission, b → cW via the charged-current weak interactions in Lweak.

To see what such a symmetry can imply, following [316] imagine computing the
rate for the semi-leptonic decay, B → D�−ν, where B and D are mesons containing
heavy b and c quarks, respectively. Assuming the decay occurs due to the weak
interaction responsible for b → cW , evaluation of this rate requires computing the
matrix element

〈D(p′) |cγμb|B(p)〉 = f+(q2) (p + p′)μ + f−(q2) (p − p′)μ (12.68)

→
[

f+(q2
mx)(mB + mD) + f−(q2

mx)(mB − mD)
]
uμ,

where the first line uses only lorentz-invariance, the spinless character of the B and
D mesons and the parity-invariance of the strong interactions. The ‘form factors’
f± = f±(q2) are functions of the Lorentz-invariant combination, q2 = −(p − p′)2,
and the axial current does not contribute to the left-hand side because of the parity
invariance of the strong interactions. The second line, however, specializes to the
kinematic regime where initial and final heavy quarks do not move relative to one
another, and uμ denotes the 4-velocity of their common rest frame. In this limit the
leptons carry off as much momentum as they can, so q2 → q2

mx = (mB − mD)2.
HQET makes a number of predictions for the otherwise unknown form factors,

f+ and f−, and because HQET is a consistent EFT for a low-energy regime of QCD
its predictions are also robust consequences of QCD itself up to small quantities like
ΛQCD/mQ or αs that are neglected in its derivation (but whose implications can, in
principle, be included to any desired order).

The first prediction is a relation that must be satisfied by the functions f± when
evaluated at q2 = q2

mx (for which both heavy quarks share the same rest frame –
i.e. vQ → 0). The reasoning goes as follows. Charged-current weak decays are
governed in the UV theory (above mQ) at leading order by matrix elements like
(12.68) of the operator iq′ γμq. After transitioning to the nonrelativistic EFT below
mQ, this operator matches at leading order to the operator iq′ γμΨQ, and this can be
run (using perturbative QCD in the leading-log approximation) down to mQ′ to give
the operator [317]

iΨ†
Q′γ

μΨQ = CQQ′ (Ψ
†
Q′ΨQ)uμ + · · · , (12.69)

where

CQQ′ =

[
αs (mQ)

αs (mQ′ )

]−6/25

, (12.70)

with the power of 6/25 coming from the QCD beta function 6/(33 − 2nq) evaluated
with nq = 4 quark flavours. Ellipses in Eq. (12.69) represent contributions that are
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suppressed relative to those shown by powers of ΛQCD/mQ and/or small couplings like
αs or α.

The factor CQQ′ captures the renormalization of the quark current by gluon loops,
and is simply multiplicative (rather than involving mixing with other effective
operators, say) because the quantity of interest is a conserved Noether current for
the SU (2) ⊂ SU (4) symmetry of (12.62) that rotates the Q and Q′ quarks (i.e. the b
and c quarks) into one another without touching their spins. The Noether current for
this symmetry computed from the action (12.62) is

j
μ
α = (Ψ†tαΨ)uμ + · · · , (12.71)

where tα is an SU (2) generator and (again) the ellipses denote terms suppressed by
powers of ΛQCD/mQ or small couplings.

Evaluating (12.68) by computing the matrix element of the current (12.69) gives –
keeping in mind (see §B.1) that the normalization of a relativistic state, |p〉, differs
from the normalization of nonrelativistic states by a factor of

√
2Ep – then implies[

f+(q2
mx)(mB + mD) + f−(q2

mx)(mB − mD)
]
uμ =

√
4mBmD CBD, (12.72)

up to order ΛQCD/mQ and αs corrections. As above, q2
mx = (mB − mD)2 denotes the

maximum momentum transfer possible in the decay, and CBD is given by (12.70), with
Q → B and Q′ → D.

But there is also much more symmetry information in the low-energy HQET EFT,
and this also constrains the form-factors for nonzero recoil 3-velocity vQ (and so for
uμ � uμ ′ and q2 � q2

mx). In this case, the relevant information relates the form factors
f±(q2) to the form factors arising in the matrix elements measured in other reactions,
such as

〈D(p′) |cγμc|D(p)〉 = fD (p + p′)μ and 〈B(p′) |bγμb|B(p)〉 = fB (p + p′)μ,
(12.73)

where fD and fB are again functions of q2 = −(p− p′)2. All of these form factors can
equivalently be regarded as functions of u · u′ since

q2
D = −(pD − p′D)2 = 2m2

D(1 + u · u′) , q2
B = −(pB − p′B)2 = 2m2

B (1 + u · u′)
and q2

BD = −(pB − pD)2 = (mB − mD)2 + 2mBmD(1 + u · u′). (12.74)

Now comes the main point. Because these currents are all related to combinations
of the form (Ψ†Ψ′)uμ, for Ψ and Ψ′ representing either ΨB or ΨD it follows that all
four form factors (at low velocities) are determined by one unknown function of u·u′.
That is,

fB(q2) = ξ(q2) , fD(q2) = ξ(q2m2
B/m

2
D) (12.75)

and f±(q2) = ±CBD

[
mB ± mD√

4mBmD

]
ξ[(q2 − q2

mx)(mB/mD)],

for a single function ξ(q2), at least to leading order in ΛQCD/mc and ΛQCD/mb and
dropping powers of αs (mc) that are not pre-multiplied by ln(mb/mc). Furthermore,
direct evaluation shows that ξ(0) = 1, and the robustness of this result can
be understood as a general consequence of the fact that the operators involved
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are conserved currents in the infinite-mass limit. Notice, in particular, that using
ξ(0) = 1 in (12.75) implies (12.72), as it must.

What is important here is that these results are exact in the non-perturbative strong
interactions at or belowΛQCD since it is a consequence of general symmetry properties
in the heavy-quark limit.

12.2.4 Particle-Antiparticle Systems

The picture given above treats nonrelativistic EFTs as being obtained by integrating
out antiparticles (or particles), with the idea that heavy particles could still appear
in the low-energy effective theory provided they are stable and so cannot release the
energy tied up in their rest mass (and thereby ruin the low-energy approximation).
Since particle-antiparticle annihilation also liberates the energy locked up in the rest
mass, the examples considered up to this point involve only heavy particles or heavy
antiparticles, but not both.

This section steps beyond this framework by examining systems involving both
heavy particles and heavy antiparticles. This can be consistent with the existence of a
sensible low-energy limit so long as rates for heavy-particle decay or annihilation are
sufficiently slow. In this case, EFT methods can be appropriate so long as questions
are only asked about physics before any decays or annihilations occur, but not
afterwards.

NRQED and Positronium

Positronium provides a simple example of this type, since it is the electromagnetic
bound state of an electron and its antiparticle the positron. Once captured into
ordinary matter, positrons produced in experiments often pair off with electrons into
bound states after which the electron–positron pair eventually annihilates. But the
lifetime for annihilation proves to be long enough that hydrogen-like energy levels
form whose properties can be accurately measured. Because these systems are so
theoretically simple, considerable effort is made computing their properties, in order
to perform high-precision comparisons between experiments and calculations.

The effective theory useful for studying these energy levels is again NRQED
[294], but specialized to two kinds of nonrelativistic fields, with one (Ψ) destroying
the nonrelativistic electron and another (Φ) that destroys the nonrelativistic positron
[318, 319]. NRQED facilitates computing radiative corrections (such as the Lamb
shift) in positronium by efficiently separating the high-energy radiative corrections –
that enter in the low-energy theory through higher-order matching determinations of
effective couplings, as in (12.1.2) – from low-energy bound-state physics – described
in the low-energy theory using well-tested Schrödinger–Coulomb techniques.

The EFT is then constructed along the lines given in Eqs. (12.37)–(12.39) (and
higher orders), specialized to the case Ze = e and M = m (and the resulting
simplification that higher dimensions are suppressed only by a single suppression
scale: m−1). The leading terms are given by

L0 = iΨ†∂tΨ + iΦ†∂tΦ + eA0(Φ†Φ − Ψ†Ψ) +
1
2

E2 − 1
2

B2, (12.76)
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while the leading subdominant interactions become

L1 =
1

2m
Ψ†∇2Ψ +

1
2m
Φ†∇2Φ − e2

2m
A2(Φ†Φ + Ψ†Ψ) +

e
2m

cF B · (Φ†σΦ − Ψ†σΨ)

+
ie

2m
A ·
[
(∇Φ†)Φ − Φ†∇Φ − (∇Ψ†)Ψ + Ψ†∇Ψ

]
+ · · · . (12.77)

For later purposes the 1/m2 interactions are also required, and generalize those of
(12.3) to include terms involving both Ψ and Φ, specialized to eq = ±e.

L2 =
e

8m2 cD(Φ†Φ − Ψ†Ψ)(∇ · E) +
cU

m2 Fμν Fμν

− ie

8m2 cS

[
Φ†σ ·

(
D × E − E × D

)
Φ − Ψ†σ ·

(
D × E − E × D

)
Ψ
]

(12.78)

+
dv

m2 (Ψ†σ Ψ) · (Φ†σ Φ) +
ds

m2 (Ψ†Ψ)(Φ†Φ) + Lcontact,

where Lcontact involves four-fermion terms that involve either four powers of Ψ or
four powers of Φ. These interactions are not written explicitly because they are not
used in what follows. Other interactions like (Ψ†Φ)(Φ†Ψ) are not independent of the
ones shown, as can be seen using a ‘Fierz’ spinor identity [320].12

The purely electromagnetic interaction of (12.78) (with coefficient cU, called the
Uehling term) is often not written since – as described surrounding Eq. (7.15) – it
is redundant inasmuch as it can be traded for a particular combination of 4-fermion
couplings using a field redefinition. This is not done here because it proves simpler
to keep it rather than track the additional 4-fermion terms in Lcontact.

So far as power counting is concerned, for bound e+e− states the energies and
momenta of interest are of order E ∼ |p|2/m ∼ mv2 with v ∼ α � 1. This makes
it impossible to neglect the interactions (Ψ†∇2Ψ)/2m and (Φ†∇2Φ)/2m relative to
iΨ†∂tΨ and iΦ†∂tΦ.

Because both electron and positron are elementary, their various effective cou-
plings are obtained by matching along the lines of §12.1.2. For vertex corrections this
leads to the results of (12.1.2), which are repeated for convenience here (specialized
to eq = ±e)

cF = 1 +
α

2π
+ O(α2) , cD = 1 +

8α
6π

ln
m2

μ2 + O(α2) cS = 1 +
α
π
+ O(α2),

(12.79)

together with the contribution of the QED vacuum polarization graph – Fig. 7.4 –
to cU

cU =
α

60π
+ O(α2). (12.80)

For positronium it is also necessary to perform a matching calculation for the 4-
fermion couplings dv and ds. These are obtained by matching tree- and one-loop-
4-fermion graphs in QED to the graphs in NRQED at the same order, also computed
in dimensional regularization with minimal subtraction. The leading contributions
arise by demanding NRQED reproduce the tree graph of Fig. 12.4.

12 A Fierz identity is obtained by decomposing the dyadic matrix ΦΦ† in terms of the unit and Pauli
matrices as follows: ΦΦ† = − 1

2 (Φ†Φ)I − 1
2 (Φ†σ Φ) · σ.
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Fig. 12.4 The tree graphs whose matching determine ds and dv toO(α). All graphs are evaluated for scattering
nearly at threshold, with the ones on the left evaluated in QED and the ones on the right in NRQED.

Fig. 12.5 Loop corrections to one-photon exchange graphs whose matching contributes to ds and dv atO(α2).
Dashed lines on the NRQED (i.e. right-hand) side represent ‘Coulomb’ A0 exchange.

Fig. 12.6 Diagrams whose matching contributes the two-photon annihilation contributions (and imaginary parts)
to ds and dv.

The effects of the tree-level s-channel annihilation graph in QED must be
reproduced by an effective interaction in NRQED because the exchanged virtual
photon necessarily has four-momenta of order m, and so does not appear in the
low-energy theory. Although the t-channel photon-exchange graph also contributes
to electron–positron collisions at tree level in QED, the energy of the exchanged
photon is well below the electron mass and so is described by the same t-channel
graph within NRQED. Consequently, tree-level t-channel photon exchange cancels
once low and high-energies are compared, and does not contribute to ds or dv in the
matching process. The leading-order matching results obtained by evaluating this
graph give [294]

ds =
3πα

2
and dv = −

πα
2

. (12.81)

A qualitatively new feature emerges once this matching is performed at sub-
dominant order in α. This is achieved by demanding NRQED reproduce the same
scattering amplitude as do the graphs of Figs. 12.5–12.7 computed for energies at
threshold (i.e. with external particles essentially at rest). Comparing results implies
that QED is reproduced properly only if Eq. (12.81) is generalized to [318, 321, 322]:

ds =
3πα

2
− α2

[
ln

m2

μ2 +
23
3
− ln 2 +

iπ
2

]
+ O(α3)

dv = −
πα
2
+ α2

[
22
9
+ ln 2 − iπ

2

]
+ O(α3). (12.82)

The qualitatively new feature here is the imaginary part that ds and dv acquire
at O(α2), whose origin traces back to matching with the graphs of Fig. 12.6.
On the QED side these particular graphs develop imaginary parts due to unitar-
ity [39], because they incorporate the physics of electron–positron annihilation.
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Fig. 12.7 One-loop t-channel matching diagrams that contribute to ds and dv toO(α2). Vertices and self-energy
insertions marked with crosses represent terms in NRQED that are subdominant in 1/m. Dashed and wavy
lines on the right-hand (NRQED) side are, respectively, Coulomb gauge A0 and A propagators. For brevity’s
sake not all of the time-orderings of the A propagator are explicitly drawn.

This annihilation contributes in the effective theory to local 4-Fermi contact inter-
actions because annihilation occurs only when electron and positron are within of
order a Compton wavelength, m−1, of one another.

Because these annihilation contributions to ds and dv are not real, the lagrangian
density is also not real, Leff � L∗eff, and so the corresponding Hamiltonian is not
hermitian. Having Heff � H∗

eff implies that U (t) = exp[−iHefft] is not unitary within
the effective theory, reflecting the loss of probability from the low-energy electron-
positron sector as an electron and positron occasionally annihilate one another. From
the point of view of the low-energy theory annihilation looks like a loss of probability
because the photons produced by annihilation are not low-energy states and so are
not present in the EFT.

In particular, the non-hermitian operators describing annihilation contribute imag-
inary parts into positronium energy levels, En = ER

n − iE I
n, and so the time-evolution

ψ(t) ∝ e−iEn t of an energy eigenmode implies that the probability density falls
exponentially, ψ∗ψ ∝ e−Γn t , showing that the energy eigenvalue and decay rate,
Γn, are related by E I

n = Γn/2 ≥ 0.
As usual, the good news is that the matching calculation is the only place where

the full complexity of QED enters, and matching can be done using the simplest
possible scattering process, and in particular need not involve any bound states
at all. But once known, the effective couplings of the NRQED lagrangian can be
used to calculate any observable in the low-energy theory, including properties of
bound states. This sequestering of issues lies at the heart of NRQED’s simplicity, for
instance allowing different gauges to be used in the relativistic and nonrelativistic
parts of the calculation if convenient (assuming one matches using gauge-invariant
quantities). This permits the convenience of using a covariant gauge, like Feynman
gauge, in the QED part of the calculation while keeping Coulomb gauge for bound-
state calculations.

Positronium Decay and Hyperfine Structure

This section follows [318] and uses the previous matching arguments in an illus-
trative calculation: computing both the leading and next-to-leading contributions to
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Table 12.1 Powers of ene vnv (and of αnα when e2 ∼ v ∼ α) appearing
in leading effective couplings

Coulomb Dipole Seagull cF cS (A0) cD (A0) ds dv

ne 1 1 2 1 1 1 2 2
nv −1/2 1/2 1 1/2 3/2 3/2 1 1
nα 0 1 2 1 2 2 2 2

the hyperfine splitting as well as the decay lifetime for para-positronium. Along the
way this example also provides a concrete illustration of how to use the ultra-soft
power-counting rule.

Hyperfine splitting is the energy difference between positronium levels for states
that differ only in the combined spin of the electron–positron system, which can
be either S = 0 or S = 1. It provides a convenient example partly because it is
complicated enough to show the merits of the method, but also because it is relatively
simple: only spin-dependent energy shifts need be considered.

The first step (as always) is to use power counting to identify which interactions
within the EFT contribute to observables at any particular order. Because the
application of interest involves the positronium bound state, the relevant power-
counting analysis from §11.3 is the ultra-soft regime for which p ∼ mv and E ∼ mv2

with v ∼ α. In the present instance this requires working non-perturbatively in the
Coulomb interaction, which – as described above – amounts to perturbing about the
Schrödinger–Coulomb system (i.e. using Coulomb wave-functions).

Consider computing a graph with two external electron and two external positron
lines, such as would arise when computing a time-ordered correlation function of
the form 〈T [Ψ∗i1 (x1)Φ∗i2 (x2) Ψi3 (x3)Φi4 (x4)]〉, where ik are two-component spinor
indices. On general grounds [323] positronium bound-state energies can be extracted
by taking x

μ
1 = x

μ
2 = 0 and x0

3 → x0
4 = x0, say, and Fourier transforming the variables

x0 and x = x3−x4 (see §C.7 for details). Positronium energies appear as the positions
of poles in Fourier space for such an object.

The Feynman rules used to evaluate the graphical representation of such a
correlation function are taken from the NRQED lagrangian given in Eqs. (12.76),
(12.77) and (12.78) (and so on, to higher orders). According to the ultra-soft power-
counting rules built using the rescaled lagrangian (11.43), each vertex in the graph
comes with a factor ene vnv , with values for ne and nv given in Table 12.1 for the
lowest-dimension interactions.13

Once evaluated at v ∼ α (as appropriate for bound states) any graph built from
these vertices contributes a total power of α to bound state energies that are (modulo
logarithms of α) δE ∼ m αpE , where

pE = 2 + κv +
κe
2
− L. (12.83)

13 In this table ‘dipole’ denotes the A · Ψ∗∇Ψ interaction, while ‘seagull’ denotes the A2Ψ∗Ψ term and
the powers are quoted for the Coulomb field ∇A0 ⊂ E for the spin-orbit and Darwin terms. For ds and
dv the quoted power of e uses the result of (12.81) that the leading coupling arises at order α.



323 12.2 Multiple Particle Species

Fig. 12.8 The NRQED graphs contributing to the hyperfine structure at order mα4 (and order mα5). The fat vertex in
graphs (a) and (b) represents cF, and is cS in graphs (c). The contact interaction in (d) involves ds and dv.

Here, the initial 2 comes because all energies are order mv2 ∝ mα2 once one converts
to ordinary units from the rescaled time, t̂, of (11.43). κv =

∑
nv and κe =

∑
ne

represent the total power of e and v contributed by all the graph’s vertices and
L counts the number of loops containing A particle lines, each of whose energy
integrations contributes a factor of 1/v because of the pole at k0 = |k|/v that arises
due to the v-dependence of the vector-potential’s propagator (as given in (11.45)).
Although the quantity L enters this expression with a negative sign, increasing L by
inserting additional interactions also involves adding sufficiently many new vertices
to ensure that the net contribution to p increases, giving a net suppression by positive
powers of v.

Eq. (12.83) confirms that repeated insertions of the Coulomb interaction – each
of which increases κe by +1 and decreases κv by 1

2 while leaving L unchanged –
are not suppressed in the ultrasoft regime, forcing its non-perturbative resummation
(as described above) using Coulomb–Schrödinger wave functions. Adding any other
interaction, however, increases the value of pE.

For applications to hyperfine splitting it suffices to restrict to graphs for which
at least one of the vertices involves a spin-dependent coupling; i.e. at least one
involvement of cF, cS or a combination of the contact couplings ds and dv . Since the
leading contributions have L = 0 they involve only a single instantaneous interaction.
The graphs with L = 0 contributing the smallest value for pE, for which at least
one vertex is spin-dependent, are displayed in Fig. 12.8. Consider each of these
in turn.

• Simplest to understand are the graphs in figure (d), involving the four-fermi
couplings ds and dv . Since ds,v ∼ αv this graph has κv = 1 and κe = 2, which
using (12.83) implies that pE = 4 and so δE ∼ m α4. Indeed, an energy shift this
large is intuitively easy to understand: because these are contact interactions, at
leading order they shift the energy by an amount proportional to the wave-function
at the origin,

δE ∼ ds,v |ψ(0) |2 ∝ α

m2 (αm)3 ∼ m α4. (12.84)

• Similarly, the graphs in (c) contain one Coulomb interaction proportional to
e/
√
v and one spin-dependent spin-orbit interaction proportional to cSev3/2. Since

matching implies that cS ∼ O(1) this graph contributes with κv = 1 and κe = 2,
and so again pE = 4.

• The graph labelled (a) is quadratic in the spin-dependent vertex cF, and so is
proportional (e

√
v cF)2. Since matching gives cF ∼ O(1) this graph also gives

κv = 1 and κe = 2, leading again to pE = 4.
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• Finally, graph (b) involves one factor of the spin-dependent vertex e
√
v cF and a

standard lowest-order ‘dipole’ A coupling – proportional to e
√
v. These graphs

therefore again have κv = 1 and κe = 2 and so pE = 4.

It turns out that only graphs (a) and (d) of Figure 12.8 actually contribute to the
hyperfine splitting of the ground state, since the others vanish when evaluated in
an s-wave configuration. This is because the other two graphs always contain only
one vector, σ, which has no other vector to contract with once evaluated in a state
with � = 0.

To illustrate the power of EFT methods next ask: what provides the leading
subdominant contribution to hyperfine splitting? Additional exchange of A inevitably
causes L > 0; how large are these contributions? Having L = 1 requires at
least one interaction more than the diagrams shown in Figure 12.8. As is easily
checked, all such additional interactions (except the Coulomb interaction) increase
the combination κv + κe/2 by at least 2, and so first contribute to δE at order m α6.
For example, adding a transverse photon coupled to two dipole vertices introduces
the square of the coefficient e

√
v and so increases κv by 1 and κe by 2. Similarly,

adding another Coulomb photon, with a Coulomb interaction of order e/
√
v at one

end and a Darwin vertex, ecDv
3/2, at the other, again increases κv by 1 and κe

by 2. Alternatively, adding a relativistic kinetic vertex ∼ Ψ†∇4Ψ doesn’t change
κe at all but increases κv by 2 (because of the two extra spatial derivatives). The
upshot is this: all graphs other than those given in Fig. 12.8 contribute at best
δE ∼ m α6.

This doesn’t mean there are no O(m α5) contributions to the hyperfine structure.
What it means is that all O(m α5) contributions come from the same graphs –
those of Fig. 12.8 – but using the effective couplings that are matched to next-to-
leading order (i.e. using the matching to the precision given explicitly in Eqs. (12.79)
and (12.82).

To compute the hyperfine splitting in detail one evaluates the graphs of Fig. 12.8
explicitly (see §C.7 for details of how to extract δE from these graphs). Because
L = 0 there is no integration over photon energy and all of the graphs involve
instantaneous interactions. Their contribution to the energy shift amounts to stripping
off the external fermion lines and treating the rest of the graph as if it were a
perturbing interaction in old-fashioned Rayleigh–Schrödinger perturbation theory,
using Schrödinger–Coulomb wave-functions, ψ(p), to resum multiple insertions of
the Coulomb interaction.

For simplicity only the result for s-wave states is given explicitly here, for which
only graphs (a) and (d) need be evaluated. This gives

δEn(a) = c2
F

∫
d3p d3k
(2π)3 ψ∗n(p)

[
−ie(p − k) × σ1

2m

]
i

[
−ie((p − k) × σ2

2m

]
j

×
[
− 1

(p − k)2

] [
δi j −

(p − k)i (p − k)j
(p − k)2

]
ψn(k) (12.85)

=
2παc2

F

3m2 〈σ1 · σ2〉|ψn(0) |2 =
mα4c2

F

6n3

[
S(S + 1) − 3

2

]
(s-wave),

where n is the principal quantum number and S = 0, 1 denotes the total intrinsic spin
of the electron–positron system. Similarly, evaluating graph (d) gives
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δEn(d) =
m α3

8πn3

[
ds + dv

(
3 − 2S(S + 1)

)]
(s-wave). (12.86)

Summing these results gives the following expression

δEn(� = 0) =
m α3

2πn3

[
1
4
(
ds + 3dv − 2παc2

F

)
+

(
παc2

F

3
− dv

2

)
S(S + 1)

]
, (12.87)

for the spin-dependent part of the positronium s-wave energy shifts.
Using Im cF = 0 and Im ds = Im dv = − 1

2 πα
2 – c.f. (12.82) – together with

the formula Γn = −2 Im En – these expressions give the well-known result for the
O(m α5) decay rate of the s-wave state of para-positronium (for which S = 0) [324]:

Γn(� = S = 0) = − m α3

4πn3 Im
(
ds + 3dv

)
=

m α5

2n3 . (12.88)

The corresponding result for ortho-positronium (S = 1) vanishes to this order
because it is proportional to Im (dv − ds) = 0. This is also standard: charge-
conjugation (C) invariance forbids an � = 0 and S = 1 state from annihilating into
fewer than three-photons [325].

For the hyperfine splitting itself the imaginary part of δEn can be dropped.
Subtracting the result for S = 0 from that for S = 1 in (12.87) and using the matching
conditions of Eqs. (12.79) and (12.82) in the result gives:

ΔEhfs(� = 0) := δEn(S = 1) − δEn(S = 0) =
m α3

n3

(
αc2

F

3
− dv

2π

)
(12.89)

=
mα4

2n3

[
7
6
− α
π

(
ln 2 +

16
9

)]
,

reproducing O(mα4) and O(mα5) QED calculations [326] (though with much less
effort). The hyperfine splitting for arbitrary � is similarly computed to this order by
evaluating the graphs of Fig. 12.8 without the restriction to s-wave Schrödinger–
Coulomb states.

To summarize, the calculation of hyperfine splitting to next-to-leading order is
hardly more difficult to obtain within NRQED than is the leading-order result,
and both are much more simply obtained than is the case when a fully relativistic
treatment of positronium is performed in QED without first separating scales. The
only real effort required is to obtain the higher-order matching of all spin-dependent
effective couplings, but this can be done for scattering in a convenient kinematic
regime without any bound-state complications.

NRQCD and Quarkonia

QCD contains a close counterpart to the previous positron example, consisting of
‘quarkonium’ mesons involving a heavy-quark and its antiparticle: QQ. For such
systems the Coulombic energy levels are of order mQα2

s where αs = αs (μ = mQ)
is the QCD coupling evaluated at the relevant quark mass. For mQ � ΛQCD ∼ 200
MeV the QCD coupling is weak and so the Coulomb energy satisfies the hierarchy
ΛQCD � mQα2

s � mQ, and so lends itself to an analysis within an EFT for scales below
mQ, involving a nonrelativistic quark-antiquark pair interacting with relativistic
gluons and light quarks. The effective theory that results is called Nonrelativistic
Quantum Chromodynamics, or NRQCD for short [294, 327].
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This treatment resembles NRQED, with the heavy quark described by a nonrel-
ativistic colour-triplet field, Ψa

Q , and a nonrelativistic colour-antitriplet field, ΦQ a,
representing the heavy antiquark. To these are coupled the various relativistic degrees
of freedom, including the gluons and light quarks of QCD. The purpose of writing
this EFT lies in its ability to isolate the Coulomb interaction of QCD as being the
dominant contribution to the heavy meson binding energy, with the strong low-
energy QCD interactions being systematically suppressed by powers of ΛQCD/mQ.

There are two key differences between the NRQCD lagrangian and the HQET
effective theory described earlier. A fairly trivial difference is the inclusion of fields
for both the heavy quark and heavy antiquark, similar to what is encountered in
NRQED above. But a more important difference lies in the parts of the lagrangian
that are chosen as the ‘unperturbed’ part, about which the perturbative expansion
is ultimately performed. For HQET the heavy-quark (or antiquark) kinetic term,
(Ψ†QD2Ψ)/2mQ, is negligible because the bound state energies and momenta are
both of order ΛQCD, making heavy-quark recoil effects of order Λ2

QCD/mQ and so
perturbatively small. But for NRQCD these same terms are not perturbative because
the momenta of interest are order αsmQ, while bound-state energies are order α2

smQ.
The physics of NRQCD is very rich, but a full description lies beyond the scope of
this book.

12.3 Neutral Systems

The previous sections develop the EFT for slowly moving electrically charged
objects interacting with electromagnetic fields. This section turns to the low-energy
description of how electromagnetic fields interact with electrically neutral objects.
These interactions need not be trivial since the neutral objects might themselves be
constructed from smaller charged particles (as indeed are neutral atoms and most
other macroscopic neutral objects).

An EFT description aims to identify the kinds of interactions that dominate when
electromagnetic fields vary only over length scales much larger than the size of
the composite neutral bodies. In this long-distance, low-energy regime interactions
might be expected to be captured by a multipole expansion, and this is indeed part of
the story. But it is not the whole story, and part of this section’s purpose is to identify
how the multipole expansion fits into the broader EFT context.

12.3.1 Polarizability and Rayleigh Scattering

Consider first the simplest case where the neutral particle is spinless. In this
case, the only dynamical degree of freedom appearing in the low-energy theory
is the particle’s centre-of-mass motion, and the field Φ(x, t) is a rotational scalar.
Since the weak interactions usually play a negligible role in a particle’s substructure,
the Wilson action describing its low-energy properties can be required to be invariant
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under rotations, translations, gauge invariance, discrete parity and time-reversal
transformations. To these should also be added a global rephasing symmetry like
Φ→ eiθΦ (in practical examples perhaps the symmetry responsible for conservation
of baryon number) that is responsible for the nonrelativistic particle’s stability (or
approximate stability) and so also its presence at low energies.

The lowest-dimension lagrangian density describing interactions between the Φ
and electromagnetic fields satisfying all of these properties has the formLneut = Ln2+

Ln3+ · · · , with Lnk having effective couplings with dimensions (length)k . For neutral
objects like atoms, whose size is much larger than their inverse mass – i.e. R � 1/m –
these couplings would naturally be of order Rk in size.

The first interactions arise at order (length)2, and are given by14

Ln2 = g Φ
∗Φ∇ · E + h (Φ∗Φ)2. (12.90)

These parallel the Darwin term and spinless two-body interactions of (12.3) for
charged particles, but different notation is used here for the couplings g and h to
emphasize that their natural scale is R2 rather than eq/m2.

As usual – see the discussion below (12.3) – in the absence of other particles, one
combination of the two couplings in (12.90) is redundant, and so either one can be
dropped in favour of the other. Both are kept here for later comparison with §13.3.4,
in which other fields are also present. In these later applications the couplings of
(12.90) turn out to describe the mean-square electromagnetic charge radius of the
neutral object in question: the radius as measured using electromagnetic probes.

At order (length)3 a number of possible couplings arise, of which the ones having
precisely two powers of electromagnetic fields are of particular interest:

Ln3 =
1
2
Φ∗Φ

(
pE E2 − pB B2

)
+ (linear in EM fields). (12.91)

The couplings pE and pB are called electric and magnetic ‘polarizabilities’ and are
later shown – c.f. section §16.3.3 – to arise at second order from microscopic dipole
couplings (of the form also described in §12.2.2) to the constituent charged particles
inside the neutral object of interest. The interactions of Eq. (12.91) are particularly
interesting because they often control how neutral particles scatter long-wavelength
electromagnetic waves.

Rayleigh Scattering

As an application of the EFT for neutral particles interacting with electromagnetism,
consider the cross section for scattering long-wavelength electromagnetic waves
(i.e. those with wavelengths much larger than the particle size, R) from spinless
neutral particles. Low-energy scattering from small neutral polarizable objects
is called ‘Rayleigh scattering’. It is this kind of scattering, applied to small

14 Terms of the form j · E or j · B, with j = i(Φ∗∇Φ − ∇Φ∗Φ), are not included in Ln2 because
they, respectively, violate time-reversal or parity invariance (see §C.4.3 for the relevant transformation
properties).
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particles suspended in the atmosphere, that ultimately explains why the sky is
both blue and polarized.

To lowest order in powers of kR, where k is the photon frequency, this scattering
arises from the polarizability terms of (12.91). These dominate because the linear
‘Darwin’ coupling of (12.90) vanishes for radiation – because k · ε(k) = 0 – and
because scattering requires two factors of electromagnetic fields, so the terms linear
in electromagnetic fields in (12.91) only contribute at second order. The six powers
of the microscopic scale R that this implies are therefore subdominant to the three
powers appearing in the couplings pE and pB.

For composite objects built from charged constituents (as opposed to magnetic
materials) it is the electric polarizability that is more important for photon scattering.
Putting in the order-unity factors, taking the matrix element of Ln3, and restricting to
electric polarizability, leads to the invariant amplitude (see §B.2)

A2,2[Φ(p) + γ(k) → Φ(p̃) + γ(k̃)] = ipE k k̃ ε̃ · ε, (12.92)

where ε=ε(k, λ) and ε̃=ε(k̃, λ̃) are the polarization vectors for the initial and final
photons (with helicity λ, λ̃ = ±1), while k = |k| and k̃ = |k̃|.

Averaging over the initial polarization, λ, and summing over the final spin, λ̃,
gives the unpolarized squared matrix element (see Exercise 12.1)

〈|A2,2 |2〉 :=
1
2

∑
λλ̃

|A2,2 |2 =
k2 k̃2p2

E

2

∑
λλ̃

|ε̃ · ε |2 =
k2 k̃2p2

E

2
(1 + cos2 θ), (12.93)

where θ is the scattering angle between the momenta of the incoming photon, k, and
the outgoing one, k̃, as measured in the (lab) rest-frame of the initial heavy particle.
The lab-frame differential cross section then is

dσR

dΩ
=

1
(4π)2 〈|A2,2 |2〉 =

p2
E k4

32π2 (1 + cos2 θ), (12.94)

leading to the following expression for the total unpolarized Raleigh cross section,

σR =
p2

E k4

6π
, (12.95)

for light with wavelength much larger than the scattered object’s size.
As shown in more detail in §16.3.3, for scattering from neutral atoms the natural

scale for the polarizabilities is given by |di j |2/ΔE, where |di j | ∼ eaB is a typical
transition dipole moment (where aB is the Bohr radius) and ΔE ∼ e2/aB is
a typical energy denominator for the difference between two electronic energy levels.
This leads to an estimate wherein the polarizability is given by the atomic size,
pE ∼ a3

B , with no additional factors of e.
Rayleigh scattering accounts for much of the systematics of how light is scattered

in transparent media. The proportionality of the cross section to k4 is what favours
the scattering of blue relative to more reddish colours when visible sunlight passes
through transparent materials like the atmosphere. The dependence on six powers of
the size of the scattering object helps explain why a medium’s transparency can vary
so strongly depending on the kinds of objects that are suspended within it.

The cross section (12.95) predicts that light passing through a medium containing
a density, n =: 1/�3, of polarizable particles of size a is likely to scatter after
travelling a distance of order the scattering length,
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Table 12.2 Scattering lengths for λblue = 400 nm and λred = 600 nm

a in μm n in cm−3 Dred in m Dblue in m

gas atoms 10−4 1019 2 × 108 3 × 107

liquid atoms 10−4 1024 2000 300
haze aerosol 1 10 200 30
fog droplets 1 100 20 3

D =
1

n σR

= 3λ
(
λ

2πa

)3 (
�

a

)3

, (12.96)

where pE = a3 and λ = 2π/k is the light’s wavelength. Defining ‘blue’ and ‘red’ light
to have wavelength λred = 600 nm and λblue = 400 nm (putting them on opposite
sides of the visible range), then (12.96) predicts the values given in Table 12.2 given
a few representative numbers for the size and density of scatterers. Notice that the
approximation λ � 2πa is not very good for the last two rows of this table.

The polarization of initially unpolarized light due to its scattering from neutral
objects is also predicted by the Rayleigh cross section. Measuring the final-state
photon polarization amounts to not summing over its possible values, so using

〈|Â2,2 |2〉 :=
1
2

∑
λ

|A2,2 |2 =
k2 k̃2p2

E

2

∑
λ

|ε̃ · ε |2 =
k2 k̃2p2

E

2
[
1 − (k̂ · ε̃)2

]
,

(12.97)

shows that the polarized cross section is maximized when the final polarization, ε̃, is
perpendicular to the initial photon direction, k̂ := k/|k|, and vanishes when they are
parallel or antiparallel.

Scattering formulae are often derived using specific, often simplistic, models of
electrons within an atom (such as where they are modelled as charges in a simple-
harmonic potential), and then taking the long-wavelength limit. The derivation given
here shows that the Rayleigh scattering formula, (12.94), is much more robust than
any particular model-dependent derivation of this type. Of course, the flip side
of this generality is the inability of EFT methods to capture any of the detailed
microscopic effects (such as resonance) that arise once the photon wavelength
becomes comparable to the size of the scatterers.

The EFT derivation shows that the validity of the Rayleigh scattering formula
ultimately rests only on the long-wavelength approximation, ka � 1, together
with the dominance of the effective action (12.91) in this regime. For spherically
symmetric neutral particles the above discussion shows that this dominance is
guaranteed by the symmetries of the general low-energy action, but it can also
happen that (12.91) dominates in this regime even for non-spherical objects (like
most practical molecules or dust particles). Whether this is so or not depends on
whether a lower-dimension effective interaction is also possible that can be larger
than (12.91).

An example of an interaction that can successfully compete with (12.91) is an
interaction of the dipole form

Ldipole = D · E, (12.98)
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where D(Φ∗,Φ) represents the density of any permanent electric dipole moment
arising from the microscopic distribution of the charged constituents within the
neutral object. On dimensional grounds D ∼ n d where n is the particle density and
|d| ∼ eq R scales only linearly in the object’s size. Because photon scattering arises
at second order in Ldipole the scattering amplitude produced by a dipole interaction
contributes at order R2 (and so at long wavelengths potentially beats the O(R3)
Rayleigh result). This is why dipole scattering (rather than Rayleigh scattering)
dominates the low-energy interactions of photons with some non-spherical objects,
such as water molecules.

12.3.2 Multipole Moments

This section follows up on several questions suggested by the above discussion.
How do multipole moments fit into an EFT description? How many other moments
(besides dipole moments) can compete with Rayleigh scattering at low energies,
and what does this say about when Rayleigh scattering should control the low-
energy behaviour of non-spherical particles? Many scatterers of real interest, be they
neutrons or molecules, are not spherically symmetric; what governs how these scatter
electromagnetic waves at low energies?

The constraints of gauge-invariance, locality and conservation of heavy-particle
number imply that any effective interaction with lower dimension than (12.91) should
be linear in either E or B or their derivatives, and this class of interactions is closely
related to the EFT representation of multipole moments. Since the heavy particle
of interest is not rotationally invariant (by assumption), assume it is represented by
a collection of non-scalar fields Φa, on which rotations act nontrivially. Calling an
interaction ‘n-body’ if it involves n powers of bilinears, Φ∗aΦb , then electromagnetic
multipole interactions have the general form

Lmp =

∞∑
k=1

[
Φ†N i1 · · ·ik

E Φ ∂ik · · · ∂i2 Ei1 + Φ
†N i1 · · ·ik

B Φ ∂ik · · · ∂i2 Bi1

]
, (12.99)

where, without loss, the coupling coefficients NE
i1 · · ·ik and NB

i1 · · ·ik (more about which
below) can be taken to be completely symmetric in the vector indices15 i2, . . . , ik =
1, 2, 3. No terms involving A0 or A undifferentiated are written here because these
are forbidden by electromagnetic gauge invariance when Φa describes an electrically
neutral particle.

The couplings in (12.99) can also be chosen to be traceless on any pair of indices
involving i1 – e.g. δi j N

i1 · · ·i · · · j · · ·ik
E = 0 and so on – because any effective operators

built from the trace involve one of the quantities ∇ · E and ∇ · B, and so can be
simplified using the Maxwell equations (which state ∇ · B = 0 and trade ∇ · E for
the density of electrical charge). As such, they are either completely redundant or
can be rewritten, using the arguments of §2.5, in terms of two-body interactions
(or interactions with other, non-electromagnetic fields). The Maxwell equations
similarly allow omitting time derivatives ∂tE and ∂tB.

15 Notice this symmetry excludes the index i1 of the electromagnetic field itself.
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The completely symmetric couplings in (12.99) correspond to multipole interac-
tions in the limit of zero momentum, inasmuch as they contain interaction energies
that are proportional to the local electromagnetic field, or its symmetric derivatives,
at the position of the particle in question. For instance, the first terms in the expansion
(12.99) are given by

Lmp = −Φ†N i
EΦ Ei − Φ†N i

BΦ Bi − Φ†N i j
E Φ ∂iEj − Φ†N i j

B Φ ∂iBj + · · · , (12.100)

and if these survive in the static limit they define electric and magnetic multipole
moments. For instance, the first two give static energies proportional to electric
and magnetic fields of the dipole form, DE · E or DB · B, suggesting the quantities
DE = Φ

†NEΦ and DB = Φ
†NBΦ are the electric and magnetic dipole-moment density

operators. The static and symmetric parts of the next two terms are similarly related
to quadrupole moments, and so on.

But what are the coefficient matrices Nab;i1 · · ·ik
E and Nab;i1 · · ·ik

B in concrete exam-
ples? In practice, these quantities are independent couplings whose form could be
relatively complicated combinations of microscopic degrees of freedom (such as
moments of the microscopic charge distributions for a molecule like water). Things
are simpler in the special case where the underlying particle only has particle spin and
centre-of-mass position as independent low-energy dynamical degrees of freedom. In
this case, the N i1 · · ·in must be built from these two quantities, in a way consistent with
the transformation properties under rotations and discrete symmetries (like parity or
time-reversal). In all cases, the values of the coupling coefficients are determined by
matching to the UV theory (or experiments).

To make this concrete, consider the case discussed in some detail above where Φ
represents a neutral spin-half particle, like a 3He atom or a neutron, and so indices
a, b are two-valued. In this case, invariance under translations, rotations and fermion-
number transformations requires N i1 · · ·in to be built from Pauli matrices and spatial
derivatives, such as Φ†σ Φ or i(Φ†∇Φ − ∇Φ†Φ), and so on. Parity and time-reversal
invariance impose further conditions leading at the zero-derivative level to

N i
B = m σ

i , N i
E = N i j

E = N i j
B = 0, (12.101)

where m denotes the magnetic dipole moment. Once parity breaking is included
(such as arises in the weak interactions) then an ‘anapole’ moment, N i j

B = a εi jkσk is
also possible [328], as is an electric dipole moment N i

E once both P and T invariance
are broken.16

As discussed above, persistent dipole moments play particularly important roles
for low-energy scattering because they can successfully compete with the general
polarizability interaction of (12.91). They can do so because dipole moments can
scale linearly with a neutral object’s size and so contribute to 2 → 2 electromagnetic
scattering amplitudes at order A22 ∝ m2 (and so give scattering cross sections of

16 P- and T -preserving electric dipoles are possible for particles for which more than just spin breaks
rotation invariance, such as for water molecules whose microstructure picks out a plane (of the H −
O − H bonds) plus a direction within the plane, along which its electric dipole moment points.
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order σ ∝ k2R4, as compared with the k4R6 predicted by Rayleigh scattering).
But higher multipoles do not similarly compete with Rayleigh scattering since a
quadrupole moment of size R2 would contribute to scattering amplitudes at order
A22 ∝ R4, which is already smaller than the R3 dependence found for Rayleigh
scattering.

These arguments show why the Rayleigh scattering result applies so robustly.
Even if an object is not spherically symmetric, all that is required is an absence of
sizeable dipole moments to ensure the effective interaction (12.91) can prevail at low
energies.

12.4 Summary

This chapter applies the tools of §11 to a variety of practical applications taken from the electromagnetic
and strong interactions. The electromagnetic examples show how nonrelativistic EFT methods robustly
capture the low-energy electromagnetic interactions of slowly moving particles, both when they are
electrically charged (Thomson scattering) and when they are neutral but built from charged constituents
(dipole and Rayleigh scattering). In all cases, the implications of the predictions are revealed to have a
much broader domain of validity than any particular microscopic derivation.

The strong-interaction example (HQET) illustrates a different virtue of nonrelativistic methods: the
power of symmetry arguments in the limit that recoil kinetic energies can be neglected. This is partic-
ularly valuable for applications to QCD, where an absence of small expansion parameters makes explicit
calculation of kinematic decay distributions relatively rare. Although the HQET action might not solve
this problem, the large spin-flavour symmetry of the leading term instead systematically allows such
distributions to be related for different decays.

The examples described here also illustrate how the coupling of relativistic photons (or gluons) to
nonrelativistic charged particles complicates power counting at low energies, as described in §11. While
Thomson and Rayleigh scattering fall into the soft-regime (for which photon energies and momenta are
both order mv), absorption and bound-state spectra are sensitive to the ultra-soft regime (for which
photon energies and momenta are order mv2). As expected, the small energy denominators associated
with loops of non-static ultra-soft photons contribute less suppressed by powers of v than is true for harder
photons.

The inclusion of both particles and antiparticles within the framework of a nonrelativistic EFT is explored
in some detail, using positronium (an electron–positron bound state) as the practical example for doing
so. Positronium also provides a vehicle for displaying the utility of EFT techniques for precision calculations
more generally, via the next-to-leading hyperfine splitting and the annihilation rate. This utility relies
on the separation between the relativistic higher-energies relevant to the radiative corrections and the
low-energy complications to do with the bound-state structure. From the point of view of the low-energy
theory, radiative corrections enter when determining the values of the low-energy effective couplings, by
matching beyond leading order in the fine-structure constant. The nonrelativistic character of the low-
energy theory then simplifies bound-state calculations by allowing use of well-developed Schrödinger
methods. It is the derivation of these Schrödinger methods from first principles that allows all effects to be
treated within a systematic approximation scheme.
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Exercises

Exercise 12.1 Use the dipole-approximation for the photon-absorption amplitude
given in Eqs. (12.55) and (12.57) to show that the absoprtion rate of (12.59)
can be written

dΓabs[Ψ(i, σ) + γ(k, λ) → Ψ( f , σ̃)] =
ω3

f i

8π2 nk |ε · d f i |2δσσ̃d2
Ω.

Use the polarization completeness identity
∑
λ ε

∗
j (k, λ)εl (k, λ) = δ jl − k̂ j k̂l ,

where k̂ = k/|k|, to average over initial polarizations and perform the integral
over photon directions to show∫

d2
Ω 〈|ε · d f i |2〉 =

4π
3
|d f i |2,

and thereby find that the unpolarized lab-frame absorption rate for an atomic
electron in a bath of electromagnetic radiation is

Γabs =
ω3

f i
nk

6π
|d f i |2,

which is Eq. (12.60) of the main text.

Exercise 12.2 Explicitly evaluate the matching of NRQED parameters at leading and
next-to-leading order and thereby derive Eqs. (12.79), (12.80) and (12.82).
This involves evaluating the form factors F1(q2) and F2(q2), the vacuum
polarization and fermion-fermion scattering at threshold in both QED and
NRQED and fixing NRQED couplings to ensure they agree to the required
order. Be careful when performing the matching to keep track of the con-
ventional difference between normalization for relativistic and nonrelativistic
momentum eigenstates (about which, see §B.1 for details).

Exercise 12.3 Identify which effective interactions in the low-energy nonrelativistic
effective theory contribute to electronic energy shifts in single-electron ions
to order me (Zα)4, where Z is the nuclear charge. Use the effective couplings
as matched in the main text to compute the fine-structure contribution to the
positronium energy levels.

Exercise 12.4 Imagine a world where the muon mass is M � 10 MeV (rather than
its real-world value of 105 MeV), so its Bohr radius is much larger than
the electron Compton wavelength: αM � me. In this regime the vacuum
polarization graph, Fig. 7.4, should be more important for muonic hydrogen-
like atoms – i.e. a muon-nucleus electromagnetic bound state – than other
one-loop corrections because cU ∝ α/m2

e is suppressed by the electron mass
(see, e.g. (12.80), where the Uehling coupling is defined in Eq. (12.78)), while
other one-loop corrections might be expected to be suppressed instead by 1/M .
(For real-world muonic Hydrogen me is not so different from αM and so it is
not such a good approximation to expand the vacuum polarization, π(k2), in
powers of k2/m2

e and thereby use just the Uehling interaction of (12.78) [329].)

For the Lamb shift (2S1/2 − 2P1/2 energy splitting) power count the size of
one-loop contributions to muonic energy levels and quantify the amount by
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which the vacuum polarization dominates other one-loop effects. Evaluate the
vacuum polarization contribution to the energy level of an S-wave state (� = 0)
with principal quantum number n and show that it is given by

δEn(� = 0) � −4(Zα)4αM3

15πn3m2
e

,

where Z is the nuclear charge.
Exercise 12.5 Power count the contributions to Hydrogen’s electronic atomic energy

levels and identify all of the graphs in the low-energy non relativistic EFT
that can contribute at order δE � meα5. Identify in this way which effective
couplings must be determined by matching (as well as the order in α with
which the matching must be performed) in order to compute the full Lamb
shift (between the 2S1/2 − 2P1/2 levels). Which graph involves a loop with
ultra-soft photons? (For this graph be sure to use the Coulomb propagator of
Eq. (12.52) obtained by resumming multiple Coulomb interactions.) Identify
how the infrared divergences that arise in the parameter matchings cancel to
give an IR-finite energy shift. (For hints see [307, 330].)

Exercise 12.6 Show that the lowest-dimension effective electromagnetic interactions
for the nucleus (besides those describing the total mass and charge) in the non-
relativistic EFT for the 4He+ ion (i.e. for a spinless nucleus) has an effective
coupling with dimension (length)2. Use this observation to show that the
leading contribution to atomic energy levels from nuclear substructure arises
at order δE ∼ (Zα)4m3

eR2 where R ∼ 1 fm is a typical nuclear size. What does
your argument imply for the dependence of δE on principal quantum number
n and angular quantum number �?

Exercise 12.7 Use the dipole approximation to compute the rate for spontaneous
emission of a photon as an atomic electron transits from an initial excited
state | i〉 to a another state | f 〉 with lower energy, as a function of the
energy difference Ei − E f and the dipole transition matrix element, d f i , as
given in (12.58).
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In the discussion of the previous two chapters heavy particles are treated nonrelativis-
tically, but still within second-quantized field theory. However, for some problems
keeping the entire superstructure of second-quantized field theory unnecessarily
complicates matters. This is particularly true for systems where there is only a single
heavy particle, whose presence may be largely passive, since in this case all of the
action occurs purely within the single-particle sector of the Hilbert space for which
first-quantized methods suffice and can be more convenient.

Atomic energy levels provide an important example of this type, as alluded to
in §12.2. In this case, the heavy particle is often the nucleus, and the EFT exploits
both the small electron/nucleus mass ratio, me/M � 5 × 10−4/A (for A the atomic
number), and the small ratio between nuclear and atomic sizes, R/aB � 2×10−5 A1/3,
to determine how atomic properties depend on those of the nucleus. Keeping the
nucleus as a second-quantized field is largely a distraction in this type of problem,
which is more fruitfully cast in terms of light particles interacting with a specific
localized source (to which many tools built1 for 1st-quantized Schrödinger–Coulomb
quantum mechanics can be applied).

For such systems the formalism comes full circle, with ordinary nonrelativistic
quantum mechanics emerging as the systematic low-energy EFT in some sectors.2

This chapter develops the description of EFT techniques using a first-quantized
description for the heavy particle (or particles, if more than one is present). There
turn out to be two parts to the story, of which the first simply identifies how
the low-energy dynamical quantities – typically the centre-of-mass coordinate and
(possibly) spin – of the heavy particle emerge as quantum variables from the full field
theory. This is explored in §13.1, using solitons as a concrete and well-understood
example of how an emergent low-energy first-quantized description arises within
field theory.

The second part of the story then asks how these heavy-particle variables interact
with the quantum fields describing any other low-energy degrees of freedom that
may be present. The upshot of this second part is that the matching conditions that
dictate the influence of the single heavy particle on other low-energy fields boils
down to a set of boundary conditions these fields must satisfy in the region near the
heavy particle. It turns out that the precise form of these boundary conditions can be
derived directly from the effective action for the massive classical particle. How these

1 Among these tools is the Born–Oppenheimer approximation [312], which exploits the small electron-
nucleus mass ratio, me/M , to organize calculations of molecular energies and can be regarded as one
of the earlier examples of EFT reasoning (see §16.1 for still earlier examples).

2 Not all sectors need be well-described by single-particle methods, so formulating them as EFTs provides
a foundation for coupling 1st- and 2nd-quantized systems to one another (as was historically done first
[120]).335
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boundary conditions emerge is described in §13.2, with illustrative applications to
nuclear effects in atoms given in §13.3.4 and §13.3.3 then shows that a spin-off of
this framework is the systematic understanding of how to handle singular interactions
(like the inverse-square potential) in quantum mechanics. Together these two parts
provide the key to efficiently extracting how individual heavy particles interact with
their surroundings.

13.1 Effective Theories for Lumps ♦

A common idealization in physics describes how point particles interact with one
another and with applied fields (perhaps electromagnetic or gravitational). Although
called ‘point particles’, in practical applications the objects of interest usually are
not; they are often macroscopic things like projectiles or planets. They are point-like
only inasmuch as their size is smaller than the spatial resolution of interest, and to
the extent that their centre-of-mass motion (and perhaps rigid rotation) are the only
relevant degrees of freedom.

This section sets up how this kind of description arises systematically when small
massive and relatively inert objects – collectively called3 ‘lumps’ – are described
using EFT methods. In particular, the focus here is on how centre-of-mass position
emerges as a collective variable when an object’s physical radius, a, is much smaller
than the shortest wavelengths, �, available as probes in the low-energy theory: � � a.
It is perhaps worth emphasizing that this regime need not automatically follow from
the conditions 1/� <∼ Λ and M � Λ expected for measurements on a heavy particle
in an EFT with a UV scale, Λ. For example, for Λ at everyday energies like those
associated with room temperatures, Λ ∼ 100 K ∼ 10−2 eV, we have Λ−1 ∼ 100 μm
and so atoms and molecules are both point-like and heavy while the Earth or the Sun
would be heavy, but not necessarily point-like.

The discussion given here is broad enough to include objects that span more
dimensions than point particles, such as one-dimensional strings or vortices (lumps
that span one spatial dimension as well as time, but whose transverse size is
neglected) or two-dimensional domain walls (lumps that span two spatial dimen-
sions – plus time – whose thickness in the third dimension is negligible). For the
present purposes it doesn’t really matter if these lumps arise as complicated objects
(like the Earth, say) or as relatively simple classical soliton solutions within a specific
field theory.

The description can be so general because the limit � � a ensures that the
object is captured by only a few properties, such as its centre-of-mass coordinate, yμ,
and perhaps its spin. The leading part of the effective field theory where only such
quantities are relevant becomes the ordinary quantum mechanics of these degrees of
freedom. Furthermore, these degrees of freedom have a symmetry origin inasmuch
as they quantify how the lump breaks an underlying invariance of the problem, with

3 Inspired by Coleman [331], the word ‘lump’ is adapted here to describe a generic small and heavy
object, as opposed to specific examples such as a topological soliton or a bound system (like an atom or
the Earth).
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position and spin describing, in particular, the response of the lump to translations
and rotations.

The effective theory to which one is led therefore realizes Poincaré invariance
nonlinearly, and as such represents an example of spontaneously broken spacetime
symmetries.4 As argued below, the Goldstone mode in this case is the centre-of-
mass coordinate itself, since this shifts under symmetries like spacetime translations.
In this sense, the ordinary ‘first-quantized’ quantum mechanics of the position of
a massive object emerges as the EFT appropriate to its low-energy motion, whose
generality follows from the general robustness of the description of Goldstone modes
[230, 332–334].

13.1.1 Collective Coordinates ♥

This section starts the discussion with a simple and relatively explicit example of a
heavy object, imagined to be a classical soliton solution for a microscopic scalar field
theory. This is done to see explicitly how the centre-of-mass coordinate, yμ, emerges
as a low-energy degree of freedom within a concrete framework. The next section
then looks at what the spacetime symmetries imply for the effective field theory of
the centre-of-mass variable.

Domain-Wall Example

As ever, it is useful to have a concrete example in mind when describing the issues.
This could be done using the toy model of Part I involving a complex scalar field,
which contains vortex solitons in its low-energy limit. However, it is simpler instead
to restrict to a real field φ with action otherwise similar to the toy model one

S = −
∫

d4x

[
1
2

(∂φ)2 +
λ
4

(φ2 − v2)2
]

, (13.1)

for which the classical equations of motion are

φ = λ(φ2 − v2)φ. (13.2)

Much like for the toy model, the classical energy

E =
∫

d3x

[
1
2

(∂tφ)2 +
1
2

(∇φ)2 +
λ
4

(φ2 − v2)2
]

, (13.3)

is minimized by more than one solution: in this case, constant configurations with
φ = ±v.

The classical soliton solution playing the role of the lump in this model is found
by seeking solutions that depend only on one cartesian coordinate, φ = φ(z). The
lump is selected (rather than the vacuum) by minimizing the energy subject to the
boundary condition φ(z) → ±v as z → ±∞, since this excludes a constant solution.
The minimum-energy configuration satisfies

4 §14.3 describes a regime for which spacetime symmetries are broken in homogeneous many-body
systems without breaking translation invariance (unlike the situation here, where it is the heavy-
particle’s position that breaks the spacetime symmetries).
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Fig. 13.1 Plot of the kink solution,ϕ(z)/v, as a function of κ(z − z0).

−φ′′ + λ(φ2 − v2)φ = 0, (13.4)

where primes denote differentiation with respect to z.
The resulting solution – called the ‘kink’ (or domain wall) – is φ = ϕ(z) with

ϕ(z) = v tanh
[
κ(z − z0)

]
, (13.5)

where z0 is an arbitrary constant, and the equations of motion require

κ2 =
λv2

2
. (13.6)

The field configuration φ = −ϕ(z) – the ‘antikink’ – is similarly the minimum-
energy solution satisfying φ → ∓v as z → ±∞. As shown in Fig. 13.1, for
κ |z − z0 | � 1 the profile ϕ(z) approaches the vacuum configuration, ϕ → ±v,
exponentially quickly. Its energy density is therefore concentrated within a region
of width Δz ∼ κ−1 centred about z = z0.

Moduli

For the present purposes what is important is that the kink/antikink solutions exist
for any value of the parameter z0. Parameters such as these carried by background
solutions are called moduli (see also §10.3.2), and this particular modulus arises
on general symmetry grounds: because the kink is not translation invariant in the z
direction, whereas the equations of motion are. Translation-invariance of the field
equations guarantees that the translation of any solution is another solution. Only
translations in the z direction generate a parameter because the kink is invariant under
translations in the x–y plane.

A similar story holds for objects with different dimensions. For instance, trans-
lation invariance ensures that a straight one-dimensional string-like object localized
parallel to the x-axis has two moduli, y0 and z0, describing the transverse position
where the localization takes place. A particle-like lump localized in all three
dimensions instead has three translation-related moduli, x0, y0 and z0. These moduli
represent the transverse centre-of-mass position for each of these types of objects.

Other moduli can also arise for other spacetime symmetries δxμ = ξμ (x) – like
rotations – not respected by the lump solution. A general kink is described not just
by a single position, z0, but also by two angles that describe the direction normal
to the plane of the kink. But not all parameters obtained by acting with spacetime
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symmetries necessarily lead to independent labels that can be used to specify the state
of a quantum lump.5 For example, a Lorentz boost of a kink explicitly changes its
energy (unlike time-independent translations or rotations) and so the new parameters
associated with boosting the background ϕ are not strictly moduli. They instead
describe the rate of change of parameters like z0 with time and do not label a new
degeneracy of vacua sharing the same minimum energy. Parameters in ϕ associated
with the action of time-dependent transformations (like boosts) instead show up as
contributions to the canonical momenta for honest-to-God moduli like z0 (and x0

and y0 if these are present).
Moduli are important because they correspond to zero-energy excitations of the

basic lump solution and as a result generically appear in the low-energy effective
theory describing lump interactions. To see how this arises in more detail consider
the quantum theory of small fluctuations about the classical lump (not restricted
to be a kink, so possibly involving more than a single translational modulus).
In a semiclassical expansion this involves expanding about the classical solution,
φ(x) = ϕ(x − χ) + φ̂(x), and quantizing all of the modes appearing in φ̂(x).
The notation here emphasizes the dependence of the background solution on both
the spacetime position, xμ = {t, x, y, z}, and on the moduli describing the world-line
of the centre-of-mass, χμ (t) = {t, x0(t), y0(t), z0(t)}, of the lump in question (if it
is localized in all three spatial directions, or with fewer components if localization
happens only in a few directions such as for a kink). If the lump is assumed to be
inertial but not in its rest frame then the xi0(t) = χi

0 + v
it are at most linear in t.

Expanding the action in this way leads to S[ϕ+ φ̂] = S[ϕ]+ S2[ϕ, φ̂]+ Sint[ϕ, φ̂],
where

Sint[ϕ + φ̂] =
∞∑
n=3

Sn[ϕ, φ̂], (13.7)

and Sn denotes those terms involving n powers of the fluctuation, φ̂. (There is no term
linear in φ̂ because ϕ solves the classical equations of motion.) The leading quantum
effects correspond to truncating this expansion at quadratic order, and so dropping
Sint. In this limit the action governing how the modes of φ̂ are to be quantized is
given by the quadratic part

S2(ϕ, φ̂) = −
∫

d4x φ̂Δφ̂ (13.8)

for some ϕ-dependent differential operator Δ. [For instance, for the kink example
this operator is Δ = − + λ(3ϕ2 − v2).]

A key point is that some of the modes of the fluctuation φ̂ being quantized can be
traded for the variables χμ (t) because the fluctuations, φ̂, include as a specific case
the translations of the background configuration, δϕ = χμ∂μϕ. The integration over

Dφ̂ can therefore be broken up into a part over the independent components of χμ

and a part, Dφ̂′, over those modes of φ̂ orthogonal to δϕ.
This is a useful decomposition of φ̂ because the mode u0 = δϕ = χμ∂μϕ is a zero-

eigenvector: Δu0 = 0. This is a consequence of the statement that (δS/δφ)φ=ϕ = 0
holds as an identity for all χμ, which is what it means to say χμ are moduli of

5 A broader counting of Goldstone modes for broken spacetime symmetries is deferred to §14.3.
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the classical solution. [For example, with the kink solution it is easily verified that
u0 ∝ ϕ′ ∝ cosh−2(κz) satisfies −u′′0 + λ(3ϕ2 − v2)u0 = 0 when ϕ = v tanh(κz).]

In a path integral formulation the integration over eiS in the semiclassical
approximation writes eiSint =

∑∞
k=0(iSint)k/k!, leaving a series of gaussian integrals

to be evaluated weighted by∫
Dφ̂ exp[iS2(ϕ, φ̂)](1 + · · · ) =

(
detΔ

)−1/2 [
1 + · · ·

]
, (13.9)

where detΔ =
∏

n λn is formally the product over all of the eigenvalues of Δ. This
can be evaluated in a basis that diagonalizes Δ, by expanding φ̂(x) =

∑
n anun(x)

in terms of the eigenfunctions, un(x), that satisfy Δun = λnun, and writing the path
integral measure as Dφ̂ ∝∏

n dan.
The appearance in (13.9) of factors of λ−1/2

n (from the determinant) shows that
zero eigenvalues of Δ are a problem, and so the integral over these – and in
particular over the χμ – requires more care. Generically, the problem arises because
the description of the zero modes as small gaussian fluctuations breaks down. In
particular, the zero modes count as low energy when dividing

∫
Dφ̂ up into low-

and high-energy parts, so their integral should be reserved to the low-energy theory
(leaving only the product over nonzero eigenvalues to be performed when integrating
out UV modes).

These arguments show how the ordinary quantum mechanics of lump motion –
i.e. the first-quantized path integral over χμ (t) – can be regarded as emerging as
the low-energy limit of the more complete quantum field theory describing the UV
sector.

13.1.2 Nonlinearly Realized Poincaré Symmetry ♣

Rather than continuing down the road of explicitly integrating out the UV modes
in a specific model, what is more useful for what follows is a discussion of the
symmetry constraints that govern the general ways that the centre-of-mass modes,
χμ, can enter the low-energy action [334]. Because these symmetry constraints arise
from the breaking of spacetime symmetries, they are generic for any low-energy
description of interacting lumps.

The upshot of the previous section is that translation invariance of the UV
theory implies that the centre-of-mass coordinates, χμ (t), are generic in the low-
energy effective theory of large slowly moving lumps. For point-like particles these
coordinates describe the world-line of the lump’s trajectory through spacetime,
χμ (t) = {t, x(t), y(t), z(t)} while for higher-dimensional objects they instead
describe the world-volume,

χμ (σa) = {t(σa), x(σa), y(σa), z(σa)}, (13.10)

swept out as time evolves. Here, σa = {τ, σ} might be two parameters describ-
ing the two-dimensional world-sheet swept out by a string (see Fig. 13.2), or
σa = {τ, σ1, σ2} could be the three parameters decribing the world-volume of a
domain wall.

The dependence of the low-energy action on these variables is strongly constrained
by many symmetries. First off, if the ‘target’ 4D spacetime is invariant under motions
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Fig. 13.2 Sketch of the world-sheet swept out in spacetime by a one-dimensional lump (i.e. a string) as time
evolves. The world-sheet coordinates σa = {τ, σ} label points on the world-sheet while χμ(σa)
describes the embedding of the world-sheet into spacetime.

δxμ = ξμ (x) then the action must not change under the shifts δχμ = ξμ (χ).
For instance, for a flat target space, for which gμν = ημν , this can include spacetime
translations for which ξμ = aμ is constant, as well as Lorentz transformations

χμ (σa) → Λμνχν (σa). (13.11)

By definition, the matrix Λμν satisfies ΛμαΛνβημν = ηαβ, which implies that
its infinitesimal form is ξμ = ωμνxν , where ωμν := ημλωλν is completely
antisymmetric under μ ↔ ν. These symmetries act inhomogeneously on χμ because
they are spontaneously broken by the lump solution in the underlying theory, much
as happened for the U (1) symmetry of the toy model developed in Part I.

Furthermore, the parameterization, σa, of the lump’s world-volume is arbitrary, so
the action also must be invariant under nonsingular reparameterizations,

σa → σ̃a (σ). (13.12)

This requires it to be built in a generally covariant way (see, for example, the
discussion of general covariance in the review of gravity in Appendix C) from
the point of view of world-volume reparameterizations. This typically requires6

a metric γab to be defined within the lump’s world-volume. Any such a metric
should transform under reparameterizations, (13.12), as a covariant second-rank
tensor,

γab (σ) = γ̃cd (σ̃)
∂σ̃c

∂σa
∂σ̃d

∂σb
, (13.13)

and should be symmetric under a ↔ b, and have Lorentzian signature (i.e. have
one negative eigenvalue corresponding to the time direction, with all the others
positive).

6 The requirement of a metric can be avoided in a few cases with specific field contents [335, 336].



342 First-Quantized Methods

A metric with these properties can be built using only χμ and the ‘target-space’
metric, gμν (for the spacetime through which the lump moves), by defining7 the
induced metric

hab (σ) := ∂aχμ ∂bχν gμν[χ(σ)]. (13.14)

Invariant distances, s, measured within the world-volume using the differential
relation ds2 = hab dσa dσb correspond to distances measured tangent to the world-
volume within the ‘embedding’ space using the metric, ds2 = gμν dχμ dχν .

General covariance of the world-volume requires the low-energy lagrangian
(which from arguments given in Part I must be local) to have the form

Seff[χ] = −
∫

dnσ
√
−γ L(χ, ∂χ, · · · ), (13.15)

where γ = det γab and the quantity L is a coordinate scalar – i.e. built from fields
like χμ (σ) in such a way that L(σ) = L(σ̃). The factor

√−γ is required to cancel
the transformation properties of the measure dnσ, where n is the dimension of the
world-volume.

The low-energy couplings of χμ are therefore dictated by the choice of L, but
further information about L requires more information about the kinds of fields that
appear in the low-energy theory of the underlying system of interest. In general, L is
built as a derivative expansion involving all of the relevant fields, such as γab and χμ

and any other low-energy fields that may be present localized on the lump (such as
those associated with spin or other internal degrees of freedom, some of which are
discussed below). All terms must also be invariant under any assumed symmetries, so
(for instance) if δχμ = aμ is a symmetry then χμ must always appear differentiated,
through the combination ∂aχμ, and so on.

For example, the simplest situation is if the low-energy lump dynamics is
translation-invariant and involves no other fields on the lump’s world-volume beyond
χμ (σ). In this case, L is built only using ∂aχμ and the metric is the induced metric
γab = hab . In this case, L can be written

L = T0 + · · · (13.16)

where T0 is a constant (with the interpretation of the energy-per-unit-volume of the
lump) and the ellipses all involve more derivatives. These derivatives include powers
of the curvature tensor built from hab and its first and second derivatives in the usual
way (see Appendix C for details) as well as its (covariant) derivatives. The detailed
form of this expansion is not needed below.

Point Particles

For later purposes (and to be concrete) it is useful to write out what the above
expressions become in the special case where the lump moves through Minkowski
space (with metric gμν = ημν) and is localized in all three dimensions (and so at low
energies resembles a point particle). Since n = 1 for a world-line, the n × n ‘metric’

7 The induced metric is denoted hab rather than γab because the metric in the lump action can, but need
not, be given by hab .
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γab (σ) degenerates into the single function γ(σ). The induced metric similarly
becomes h = ημν χ̇μ χ̇ν , where dots denote differentiation with respect to the single
parameter8 σ.

To write down explicit lagrangians, first assume that γ(σ) is an independent field
in addition to χμ (σ), and is not assumed to be the induced metric h. The leading
contributions to the action then are

Seff[χ, γ] = −1
2

∫
W

dσ
√
−γ
[
M

(
1 + γ−1ημν χ̇

μχ̇ν
)
+ · · ·

]
. (13.17)

Here, W denotes the range traced by the arbitrary parameter, σ, along the world-
line, χμ (σ), along which the particle in question moves. The overall factor of 1

2
is conventional and the freedom to rescale χμ is used to remove any independent
parameter in front of the χ̇2 term. Once this is done, the same cannot also be done
for the terms involving more derivatives (indicated by the ellipses). The factor of
γ−1(σ) in the second term is required for reparameterization invariance, as may be
seen by comparing it to its higher-dimensional analog: γab∂aχμ∂bχνημν = γabhab.

Including both γab and χμ as independent fields is called the ‘Polyakov’ for-
mulation of the action [337–339], as opposed to the ‘Nambu’ formulation [264],
which uses only the induced metric, h, from the get-go. (The relation between
these formulations is described below.) The interpretation of (13.17) is found at the
classical level by using it to find the equations of motion for both γ(σ) and χμ (σ),
which (neglecting the ellipses) leads to the equations

δSeff

δχμ
= − M

2√−γ ημν
[
χ̈ν −

γ̇ χ̇ν

2γ

]
= 0,

and
Seff

δγ
=

M
4√−γ

[
1 −

ημν χ̇μχ̇ν

γ

]
= 0, (13.18)

the second of which has as solution γ = ημν χ̇μχ̇ν and so γ = h. Evaluating Seff at
this solution for γ leads to

Seff[χ, γ = h] = −
∫
W

dσ
√
−h M

(
1 + · · ·

)
, (13.19)

which is the leading form for the action in the Nambu formulation. This shows that
these two formulations have the same classical predictions.

For point particles, carrying around a world-line metric like γ or h is overkill,
since any such a metric can be made into a constant by performing an appropriate
reparameterization of σ. To this end, it is conventional to trade σ for the proper time,
τ (or ‘arc-length’ as measured along the world-line):

dτ2 := −h dσ2 = −ημν χ̇μχ̇ν dσ2 = −ημν dχμdχν , (13.20)

with the negative sign required because h < 0 along any time-like world-line.
Changing variables from σ to τ allows h to be written

h = ημν
dχμ

dτ
dχν

dτ
= −1, (13.21)

where the last equality follows from (13.20).

8 If σ is target-space time, t, then h = −1 + v2 (t), where v = dy/dt is the lump’s centre-of-mass velocity.
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The action (13.19) then becomes

Seff[χ] = −
∫
W

dτ M
(
1 + · · ·

)
, (13.22)

and the equation (13.18) for χμ reduces to

d2χμ

dτ2 = 0. (13.23)

That is to say: within the approximations made the lump described by Seff moves in
straight lines at constant speed.9 The interpretation of the parameter M can be found
by computing the canonical momentum for χμ, found in the usual way from

pμ :=
δSeff

δχ̇μ
=

M
√
−h

ημν χ̇
ν = M ημν

dχν

dτ
. (13.24)

Combined with the condition (13.21) this implies that ημνpμpν = −M2, verifying
that the lump’s energy and 3-momenta are related by E2 = p2 + M2 and so M is its
rest-mass.

13.1.3 Other Localized Degrees of Freedom

Any lagrangian (such as L = T0 in particular) built using only ∂aχμ contracted using
only target-space fields (like the metric gμν) describes a relativistic lump in the sense
that its action is invariant under any symmetries of the target space fields – including,
in particular, the Lorentz transformations of (13.11) when gμν = ημν . For these
systems preferred-frame effects arise through interactions with ambient fields, like
χ̇μAμ (χ) or χ̇μχ̇νRμν (χ), once χ̇μ is evaluated at its classical background value,
dχμ/dτ = Uμ, which is the 4-velocity of the lump’s centre-of-mass.

The low-energy dynamics can be much richer if there are also other fields besides
χμ localized on the world-line in the low-energy limit, as can arise if the underlying
physics of the lump gives it other physical properties. These properties could include
effects like an intrinsic spin or more complicated multipole moments, some of
which might point along directions perpendicular to the lump’s world-volume (unlike
∂aχμ). If these new properties are free to evolve in the low-energy regime they
become dynamical degrees of freedom localized at the lump’s position, and so are
described by new fields defined on the lump’s world-volume. Among these can
be vectors, Nμ (σ), normal to the world-volume, and their derivatives, ∂aNμ (which
are covariantly expressed in terms of the world-volume’s extrinsic curvatures), which
can express an energy cost for bending the lump in question.

Intrinsic spin provides perhaps the simplest example of this type. For a spinning
particle the position field χμ (σ) is supplemented by adding a new target-space vector
field [337, 338] of the form ζμ (σ), which at the classical level is a fermionic (or
Grassman [340]) variable (which means it anticommutes with itself {ζμ , ζν } = 0,
where (as usual) curly brackets denote the anticommutator: {A , B} := AB + BA).
The field ζμ (σ) transforms under reparameterizations of the world-line like a scalar
(just as does χμ).

9 For particles moving in a curved spacetime Eq. (13.23) generalizes to imply that the particle moves
along a target-space geodesic (see Exercise 13.1).
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The lowest-derivative kinetic action for such a field is

Skin =
i
2

∫
dσ (ζ̄ζ̇ − ˙̄ζζ), (13.25)

which (because of the σ derivative) is reparameterization invariant without the need
for any factors of h(σ). Quantizing this system leads to the quantum variable ζ̂μ

whose equation of motion implies is τ-independent, and for which the canonical
commutation relations imply the algebra{

ζ̂μ , ζ̂ν
}
= 2 ημν , (13.26)

generalizing the classical result {ζμ , ζν } = 0.
The quantum dynamics of ζ̂μ therefore takes place in the Hilbert space that

represents this algebra, whose finite-dimensional representations fix the object’s spin.
For instance, spin-half particles correspond to choosing a 2-dimensional Hilbert
space for these degrees of freedom, with ζ̂μ represented by Pauli matrices (and
the unit matrix). If both heavy particle and antiparticle are present a 4-dimensional
representation [337, 338] using the Dirac matrices, γμ (as defined in §A.18, for
example), is preferable.

13.2 Point-Particle EFTs

The explicit point-particle effective field theories (PPEFTs) studied to this point
involve lumps in isolation, but things really only get interesting once they interact
with the quantum fields that make up their environments. This section mostly
explores the interactions of first-quantized heavy particles with bulk electromagnetic
fields, with a short aside exploring also their gravitational interactions. Here, the
adjective ‘bulk’ is meant to convey that the field in question (in this case electro-
magnetic) permeates all of space and is not localized at the position of the lump.
The spirit of this discussion is similar to the theory of ‘quantum defects’ [341],
wherein a potential localized near the nucleus, is introduced, for outer valence
electrons, to capture incomplete screening due to the inner electrons. One way
to think about this chapter is that it embeds these techniques into the broader
EFT canon.

To couple a first-quantized heavy particle to a bulk field only requires including
this field in Seff, evaluated at the lump position xμ = χμ (σ). For instance, coupling
to electromagnetic fields requires allowing Seff to depend on Aμ[χ(σ)] in addition
to fields discussed above, like γab (σ) or χμ (σ) or ζμ (σ), that describe degrees of
freedom localized at the lump’s position.

The main result of this section comes in §13.2.3, which reveals a virtue of treating
the heavy particle within a first-quantized framework. The first-quantized treatment
allows all of the information in the lump’s effective action to be translated into a
boundary condition for bulk fields in the vicinity of the heavy object. This boundary
condition succinctly summarizes the matching conditions that determine the lump’s
effective couplings, since it ultimately transmits all of the information about the
heavy object to the bulk fields, and thereby to any observables (like scattering
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amplitudes or bound-state energies) built from them [342]. In §13.2.3 the boundary
condition is first derived for the special case of electric multipole moments, where the
argument is a familiar one. It is then extended in §13.3 to the less familiar situation
where the heavy object couples nonlinearly to the bulk field, using bulk Schrödinger,
Klein–Gordon and Dirac fields as examples.

13.2.1 Electromagnetic Couplings

Electromagnetic couplings of a lump are built by asking how Seff can be generalized
to include a dependence on the electromagnetic gauge potential, Aμ[χ(σ)]. As
always for low-energy effective theories this is done by writing down the most
general possible couplings consistent with the required symmetries, to which is now
added the requirement of invariance under gauge transformations,

Aμ → Aμ + ∂μζ. (13.27)

The lowest-dimension interactions found in this way are no longer as model-
independent as is the mass term considered above, and this is a reflection that
different types of microscopic UV physics can give rise to different kinds of
low-energy electromagnetic response. In particular, the kinds of allowed effective
interactions depend on whether or not the lump in question is rotationally invariant
or has nonzero intrinsic angular momentum.

If not rotationally invariant, the EFT depends on precisely how rotational invari-
ance is broken. How many independent order parameters are there? In the simplest
cases the only non-symmetric quantity is the spin degree of freedom, and in this
case the EFT is required to be rotationally invariant but couplings involve both
χμ (σ) and ζμ (σ) (and so break rotational invariance once the spin is chosen to
point in a specific direction). Examples of this type could include electrons or (to
good approximation) nucleons, or a spinning but spherical planet or neutron star.
Alternatively, the underlying object might break rotational invariance through more
than just spin, in which case more kinds of interactions can be entertained. Examples
of this type could include molecules, or a moving aspherical macroscopic object like
a spinning chair.

For simplicity of presentation suppose the physics governing the lump is rota-
tionally invariant, and that the lump is spinless and so does not carry any dipole or
higher-multipole moments. The lowest-dimension interactions in Seff involving the
electromagnetic field and consistent with these symmetries then are (in the Nambu
formulation)10

Seff = Q
∫
W

dσ Aμ χ̇
μ +

∫
W

dσ CD χ̇
μ∂νFνμ

+
1
2

∫
W

dσ
√
−h
[
(CE + CB)h−1χ̇μχ̇νFμνFν

λ +
1
2

CB FμνFμν + · · ·
]

10 The same issues of redundant interactions described in §2.5 arise here as for the second-quantized
case, in the sense that terms in the world-line action that vanish using lowest-order (bulk) equations
of motion (like Maxwell equations) can be removed using a field redefinition whose parameter now is
localized at the position of the lump.
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= Q
∫
W

dτ Aμ Uμ +

∫
W

dτ CD Uμ∂νFνμ (13.28)

+
1
2

∫
W

dτ

[
−(CE + CB)UμUνFμλFν

λ +
1
2

CB FμνFμν + · · ·
]

where the fields Aμ and Fμν are evaluated at the lump’s position: xμ = χμ, and the
second equality specializes to proper time parameter, with lump 4-velocity given by

Uμ = γ

(
1
v

)
with γ :=

1
√

1 − v2
. (13.29)

This is particularly simple in the lump’s rest frame, since then Uμ = dχμ/dτ = δ
μ
0

and so

Seff → Q
∫
W

dτ A0 +

∫
W

dτ

[
CD∇ · E +

1
2

(CE E2 + CB B2) + · · ·
]

(rest frame).

(13.30)

These interactions are to be added to the terms in (13.17) discussed earlier.
Notice that the first interaction does not involve the world-line metric, h, at all but

is nonetheless generally covariant because the factor χ̇μ transforms under world-line
reparameterizations in precisely the way

√
−h does. Notice also that this first term is

gauge invariant despite it depending explicitly on the gauge potential, Aμ, because
under the replacement δAμ = ∂μζ this term transforms as

δ

∫
W

dσ Aμ χ̇
μ =

∫
W

dσ χ̇μ∂μζ =
∫
W

dσ
dζ
dσ

, (13.31)

and so because the integrand is a total derivative the result depends only on the
values taken by ζ at the boundaries of the integration range, ∂W . (This is a special
case of similar higher-dimensional ‘Chern-Simons’ terms [335] – see, for example,
the discussion in Eq. (15.56) – that are also reparameterization and gauge invariant
despite being built with Aμ not appearing only through Fμν and without reference to
the world-sheet metric.)

As usual, the interpretation of the parameters in this lagrangian can be inferred
by matching, and this time the matching is to the spinless interactions in the second-
quantized version, Eqs. (12.1)–(12.3), of the electromagnetic couplings of a heavy
particle. One way to make this comparison is to evaluate the expectation value
〈Ψ∗(x, t)Ψ(x, t)〉 = δ3 [x − χ] in a static centre-of-mass position eigenstate. This
reveals the dimensionless parameter Q to be the lump’s net electric charge, while
the parameter CD is its (redundant) Darwin coupling. If the first-quantized action is
obtained by matching to a second-quantized action like (12.3) then

Q = eq CD =
eqcD

8m2 . (13.32)

For composite particles like nuclei the size of CD is instead expected to be set by
its radius, CD ∼ QR2, rather than Q/m2 (see, for example, Eq. (13.57) below). A
similar comparison using couplings with dimension (length)3 – c.f. Eq. (12.91), for
example – shows the parameters CE = pE and CB = pB represent the particle’s electric
and magnetic polarizabilities.

Alternatively, matching can be done in the first-quantized theory by reproducing
motion of the heavy particle in the classical limit. For instance, including the Q term
in the field equation for χμ modifies (13.23) to become
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M ημν
d2χν

dτ2 +Q Fμν
dχν

dτ
= 0, (13.33)

which is recognizable as the Lorentz force law for a particle of mass M and charge Q.

13.2.2 Gravitational Couplings

The low-energy couplings of lumps to gravitational fields are explored in much the
same way. To first approximation this is done by everywhere promoting the flat-
space Minkowski metric ημν to the curved metric gμν (x) expressing the spacetime
gravitational field. In particular, the induced metric becomes

h(σ) = gμν[χ(σ)] χ̇μχ̇ν . (13.34)

Once this is done, keeping only the M and Q terms in the action and varying χ
modifies the Lorentz-force equation (13.33) to

M gμν

(
d2χμ

dτ2 + Γ
μ
νλ

dχν

dτ
dχλ

dτ

)
+Q Fμν

dχν

dτ
= 0, (13.35)

where Γ
μ
νλ is the usual Christoffel symbol constructed from the metric gμν (see

Appendix C). This expression predicts, in particular, that the lump moves along
geodesics of the target-space metric, gμν , in the absence of an electric charge.

Similarly varying Seff with respect to gμν gives the lump’s contribution to the stress
energy to be

Tμν =
2
√−g

δSeff

δgμν
= M

∫
W

dτ
dχμ

dτ
dχν

dτ
δ4[x − χ(τ)], (13.36)

appropriate for a point source of mass M localized on the world-line xμ = χμ (τ).
These expressions show how the point-particle lump actions, regarded as func-

tionals of χμ, reproduce standard expressions for how the heavy lump moves in the
presence of bulk electromagnetic and gravitational fields. This includes a framework
for computing the corrections to the point-particle picture by including in the action
higher-dimension interactions, order by order in powers of the object’s size (relative
to any other, larger, length scales). The next section asks the reverse question: how
does the presence of the lump back-react onto these bulk fields?

13.2.3 Boundary Conditions I

To ask how the lump acts as a source for electromagnetic fields one instead varies
Aμ (x) in the action formed by combining Seff with the bulk Maxwell action,

S = −
∫

d4x

{
1
4

FμνFμν +

∫
W

dσ
[
M

√
−h(σ) −QAμ (x)χ̇μ (σ) + · · ·

]
δ4 [x − χ(σ)]

}
.

(13.37)

Here, the 4D delta-function appearing with the Seff terms enforces the evaluation of
fields like Aμ at xμ = χμ (σ).

In the rest-frame of the lump the temporal delta-function δ[t − χ0(τ)] can be
used to evaluate the proper-time integration over τ, leaving a 3D spatial δ3(x − χ)
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R ε a

Fig. 13.3 The relative size of scales arising when setting near-source boundary conditions to the source action: R
represents an actual UV scale characterizing the size of the source; a is a (much longer) size of the external
physical system; ε is the radius between these two where boundary conditions are imposed. The precise
value of ε is arbitrary, subject to the condition R � ε � a.

expressing the localization of the source. The electrostatic Maxwell equation then
becomes

∇ · E = ∇2 A0 =
(
Q + · · ·

)
δ3 [x − χ] , (13.38)

showing that the lump’s charge density is Q δ3[x − χ] at leading order in the low-
energy expansion. Before discussing the implications of subdominant terms in the
PPEFT it is useful first to dispense with the delta-function by trading the localized
source in (13.38) for a statement about boundary conditions for the electromagnetic
field near the heavy charged particle.

For the point-charge interaction with coupling Q this boundary condition is found
using a standard argument: at any given time t integrate (13.38) over a small spherical
region of radius ε, Sε (see Fig. 13.3), surrounding the heavy particle’s instantaneous
position, leading to the standard Gauss’ law result∮

∂Sε
d2x x̂ · E =

∫
Sε

d3x ∇ · E = Q, (13.39)

with ∂Sε denoting the bounding surface of Sε. For a static spherically symmetric
source this is a boundary condition on the electrostatic potential, implying

4πε2
(
∂A0

∂r

)
r=ε

= Q, (13.40)

where r = |x − χ |. The utility of this boundary condition is its determination of an
integration constant in the solution to ∇2 A0 = 0 everywhere in the bulk (away from
the heavy particle).

For later purposes notice that despite appearances the Gaussian boundary condi-
tion (13.40) does not really depend on the arbitrary radius, ε, of the integration region
Sε. This is because the general spherically symmetric solution to ∇2 A0 = 0 is

A0 = C1 +
C2

r
, (13.41)

with integration constants Ci , and so the combination ε2(∂A0/∂r)r=ε = −C2 is
independent of ε. The sole content of Eq. (13.40) is to determine the value of the
integration constant: C2 = −Q/4π.
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The basic idea of point-particle effective field theory (PPEFT) is that essentially
this same argument goes through for any of the effective couplings in the first-
quantized action, which can therefore be regarded as providing a boundary condition
that determines integration constants like C2 to ever-increasing accuracy in powers
of the small size of the heavy object. Such boundary conditions in the first-quantized
theory provide simple proxies for the matching arguments used in the second-
quantized formulations described in earlier chapters.

To see how this works in a simple example, imagine that the EFT for an electrically
neutral particle contains an electron dipole moment interaction of the form

Sd =
∫
W

dτ dE · E, (13.42)

which when combined with the Maxwell action in the heavy-particle rest-frame
becomes

Stot =

∫
d4x

{
1
2
(
E2 − B2

)
+ dE · E δ3(x)

}
, (13.43)

where for simplicity coordinates are chosen here so that χ = 0. This modifies the
Maxwell equation obtained by varying A0 to

∇ · E = −(dE · ∇)δ3(x). (13.44)

What is important about (13.44) is the boundary condition it predicts for the
external electric field, in precisely the same way that (13.38) leads to the boundary
condition (13.39) for a point charge. Away from the position, x = 0, of the dipole
itself the solution constructed using only dE and x that satisfies ∇ · E = ∇ × E = 0 is
E = C3 Ed where

Ed := −∇
[

x · dE

4π |x|3

]
=

1
4π |x|3

[
−dE + 3

x (x · dE)
|x|2

]
, (13.45)

and C3 is an undetermined constant. But do ∇ · Ed and ∇ × Ed also vanish at x = 0?
If not (and it turns out not) then the solution to (13.44) should be sought in the form

E = C3 Ed + C4 dE δ
3(x), (13.46)

since this differs from Ed only at x = 0 and is also built only from x and dE (with no
derivatives). How are the constants C3 and C4 determined given the singularities of
the solutions at x → 0?

It is here that boundary conditions play the decisive role. To see how, consider the
identity

dE · [x × (∇ × E)] = dE ·
[
∇(x · E) − E − (x · ∇)E

]
(13.47)

= ∇ ·
[
dE(x · E) − x(dE · E)

]
+ 2 dE · E.

The left-hand side ensures this is a quantity that vanishes everywhere provided
only that ∇ × E = 0 everywhere, including at x = 0. Although one might not
know the precise electric fields deep within the heavy particle’s interior, Eq. (13.47)
relies only on this configuration being smooth and curl-free. Furthermore, the right-
hand side contains a total divergence that does not depend at all on the interior
solution because it can be rewritten (using Gauss’ theorem) as a surface integral
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once both sides are integrated over the small sphere, Sε, centred on the heavy-
particle’s position. Finally, (13.47) is chosen bilinear in x and dE in order for this
surface integral to pick off the � = 1 spherical harmonic (unlike the � = 0 harmonic
seen by (13.39), for example).

It follows that any electric field that is curl-free everywhere throughout Sε must
satisfy ∮

∂Sε
d2x x̂ ·

[
dE(x · E) − x(dE · E)

]
= −2

∫
Sε

d3x dE · E, (13.48)

which when applied to (13.46) implies that

C3

∮
∂Sε

d2x x̂ ·
[
dE(x · Ed) − x(dE · Ed)

]
= −2 C4 d2

E , (13.49)

because the delta-function cannot contribute to the surface integral at |x| = ε and
because the angular integrations ensure that

∫
d2
Ω dE · Ed ∝

∫
d2
Ω [3(dE · x̂)2 −

d2
E ] = 0. The integral on the left-hand side of (13.49) evaluates to 2

3 d2
E and so (13.49)

implies that C4 = − 1
3 C3, and so

E = C3

[
Ed −

1
3

dE δ
3(x)

]
. (13.50)

Now comes the main point: to determine the constant C3 requires the boundary
condition implied by (13.44), which implies that E = Ehom − dE δ3(x), where Ehom

satisfies∇·Ehom = 0 everywhere withinSε, including at x = 0. An identical argument
to the one culminating in (13.50), but using the identity

(x · dE)∇ · E = ∇ ·
[
(x · dE)E

]
− dE · E (13.51)

shows that if ∇ · Ehom = 0 everywhere within Sε then∮
∂Sε

d2x x̂ ·
[
(x · dE)Ehom

]
=

∫
Sε

d3x dE · Ehom, (13.52)

and so

E = Ehom − dE δ
3(x) = C ′

3

[
Ed +

2
3

dE δ
3(x)

]
− dE δ

3(x). (13.53)

Combining this with (13.50) then implies that C3 = C ′
3 = 1, reproducing the standard

electric dipole expression.
A similar story goes through for the spherically symmetric effective interactions of

(13.30). Focussing on the Darwin-like term, the A0 field equation then alters (13.38)
to become

∇2 A0 = Q δ3 (x) + CD∇2δ3 (x) , (13.54)

whose formal solution now is

A0 = Ac
0 + CD δ

3 (x) . (13.55)

In this case, because the solution remains spherically symmetric the boundary
condition does not change from (13.40), because the CD term does not contribute to
the surface term at r = ε. This leads to a standard Coulomb homogeneous solution,
Ac

0 = −Q/(4πr), simply supplemented by the delta-function potential as in (13.55).
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The physical interpretation of CD is most easily seen by computing the effective
electric charge density of the point particle within the effective theory. This is
identified (as always) by differentiating its effective action with respect to A0:

ρ(x) =
δSeff

δA0(x)
= Q δ3(x) + CD ∇2 δ3(x), (13.56)

which both confirms Q =
∫

d3x ρ(x) to be the total charge and reveals CD couples to
classical electromagnetic fields as does the mean-square charge radius, rc , defined by

r2
c :=

1
Q

∫
d3x x2ρ(x) =

CD

Q

∫
d3x x2∇2δ3(x) =

6CD

Q
. (13.57)

The main lesson is this: the point-particle EFT completely determines both the
response of the heavy particle to external fields and the response of the fields to the
presence of the heavy particle. In particular, the response of the field is completely
contained within the integration constants of the solution to the bulk field equations,
and is solely fixed through the boundary condition that is dictated by the heavy-
particle action.

Although these are standard results for electromagnetic multipole moments when
restricted to terms in the action linear in electromagnetic fields, subsequent sections
in this chapter show the same statements also holds for other types of fields, including
for terms in the action that are not linear in these fields.

13.2.4 Thomson Scattering Revisited

But first a reality check on the above arguments. The point-particle action (13.30)
appears to differ fundamentally from the second-quantized expression (12.2), in
particular by not including a coupling involving A2. Since §12.1.3 shows that the A2

interaction is responsible for successfully reproducing the Thomson scattering cross
section, this cross section is now recalculated within the PPEFT framework to verify
that it obtains the same results.

The lowest-order contribution to low-energy Thomson scattering uses just the net
charge Q and so comes purely from the Aμ χ̇μ coupling of (13.37). In particular,
writing the particle position as χμ (τ) = Xμ (τ) + yμ (τ), where the unperturbed
position represents a particle at rest and so satisfies Ẋμ = δ

μ
0 , the leading interaction

lagrangian describing the coupling of y to the vector potential, A, is given by

Lint = Q A · ẏ δ3(x − X). (13.58)

Similarly, the part of the lagrangian (13.37) describing free propagation of the
variable y is given by expanding the Nambu action using h = ημν χ̇μχ̇ν = −1 + ẏ ·
ẏ + · · · so

L0 = −M
√
−h = −M

[
1 − 1

2
ẏ · ẏ + · · ·

]
, (13.59)

where over-dots denote differentiation with respect to proper time for the background
trajectory Xμ.

To compute the Thomson scattering amplitude requires evaluating the Feynman
graph of Fig. 13.4, wherein the vertex represents the coupling given in (13.58) and
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Fig. 13.4 Graph giving the leading Thomson scattering amplitude for photon scattering by a heavy charged particle
in the first-quantized formulation.

the internal double line represents the propagator, Gi j (τ − τ′), for the ‘field’ yi (τ).
Inspection of (13.59) shows that the propagator satisfies

M
d2

dτ2 Gi j (τ − τ′) = i δi j δ(τ − τ′). (13.60)

The graph in Fig. 13.4 then evaluates to

Q2
∫

dτdτ′d3x d3x′ εi (k, λ)ε̃∗j (k̃, λ̃) eik·x−ikτ−ik̃·x′+ik̃τ′

× d
dτ

d
dτ′

Gi j (τ − τ′)δ3(x − X)δ3(x′ − X)

= −Q2

M
ε · ε̃∗ ei(k−k̃) ·X 2πiδ(k − k̃),

(13.61)

which should be equated to 2πiδ(k − k̃)A22. (The second way of writing this result
uses (13.60) to simplify the differentiated propagator.) Since the heavy particle being
considered here is spinless, the spin-averaging only involves photon polarizations,
giving

〈|A22 |2〉 =
1
2

∑
λλ̃

|A22 |2 =
Q4

2M2

∑
λλ̃

|ε · ε̃ |2, (13.62)

in agreement with (12.33).

13.3 PPEFT and Central Forces ♠

This section extends the couplings of first-quantized effective actions to other bulk
fields besides electromagnetic ones. The sections to follow then extend the discussion
to atomic problems for which both electromagnetic and other matter fields appear.

To start, consider problems for which the bulk degrees of freedom are described
by a Schrödinger field with bulk action

SB =

∫
dD x

{
i
2

(
Ψ∗∂tΨ − ∂tΨ∗ Ψ

) − 1
2m

∇Ψ∗ · ∇Ψ − V (x) Ψ∗Ψ + · · ·
}

,

(13.63)

where D = d + 1 and d counts the number of spatial dimensions. Although d = 3 is
obviously the case of interest for a central source localized in all three dimensions,
such as a massive compact particle, keeping d general is nonetheless useful in order
to include also the interactions of line (d = 2) or domain-wall (d = 1) defects.
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The ellipses in (13.63) represent possible subdominant terms in the bulk effective
theory for Ψ, which do not play any role in what follows.

The point of the examples to come is to determine how the first-quantized
lump interacts with the bulk field, and in particular identify precisely how different
interactions in the low-energy PPEFT influence Ψ observables order-by-order in the
lump’s small size. These effects get passed to the bulk degrees of freedom purely
through a set of boundary conditions, whose detailed form is governed completely
by the first-quantized action of the compact source, similar to the discussion of
electromagnetic multipoles given above.

The new feature that arises in the Schrödinger example is that the point-particle
action in general depends nonlinearly on the bulk fieldΨ, and as a result the boundary
condition obtained involves evaluating the bulk field itself at the position of the
compact source. But it is generic that the extrapolation of bulk fields to the source
position diverges (as does, for example, the Coulomb potential A0 ∝ 1/r when
extrapolated to r = 0) so the boundary condition obtained is also ill-defined in
this limit. (Of course, the actual fields in nature do not really diverge, because the
extrapolation using only external fields breaks down once one enters the interior of
the compact central object.) Because of this it is important to define the boundary
condition at a distance ε > R a short distance outside of the actual compact source,
with ε regarded as a cutoff that regulates the divergent near-source behaviour of the
bulk fields (as in Fig. 13.3).

What is crucial is that the radius |x| = ε is essentially arbitrary, provided only that
it is much smaller than the scales of physical interest in the bulk. This is because ε
is really just a hypothetical scale associated with deriving the boundary condition,
and is not intrinsic at all to the structure of the physical central source. As a result,
nothing physical actually depends on the precise value of ε. This gets expressed
by the first-quantized EFT in a familiar way: any apparent dependence on ε that
observables appear to have gets cancelled by the implicit dependence on ε that is
carried by all the first-quantized theory’s effective couplings. That is, the couplings of
the first-quantized EFT acquire an ε-dependence that renormalizes the divergences
that otherwise would have appeared in the limit ε → 0. As the examples below show
in detail, a renormalization-group equation expresses how the couplings must depend
on ε in order to ensure that physical observables are ε-independent.

13.3.1 Boundary Conditions II

To make all of this concrete, suppose the bulk degrees of freedom are the low-
energy nonrelativistic particles described by Ψ, whose bulk action is (13.63) with
no potential: V (x) = 0. Then

SB =

∫
dD x

{
i
2

(
Ψ∗∂tΨ − ∂tΨ∗ Ψ

) − 1
2m

∇Ψ∗ · ∇Ψ + · · ·
}

. (13.64)

What are the leading interactions such a field can have with a first-quantized
PPEFT describing a compact massive particle? As usual, these are found by writing
down all possible local interactions consistent with the symmetries, built from Ψ(x)
and its complex conjugate, along the compact particle’s world line. Among the
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symmetries to be imposed is the one responsible for conservation of Ψ particle
number: Ψ(x) → eiη Ψ(x), where η is a spatially constant real parameter.

There is a unique nontrivial interaction term that arises at lowest dimension,
given by

Sb = −
∫
W

dτ hΨ∗Ψ = −
∫

dD x
∫
W

dτ hΨ∗Ψ δD[x − χ(τ)], (13.65)

where h is the corresponding effective coupling (not to be confused with the induced
metric h). As mentioned earlier, the main new feature relative to the examples
discussed above is the nonlinearity of Sb in the bulk field (in this case, Ψ), and this
complicates the story because of the divergences bulk fields often experience when
evaluated at the position of the source. The symmetry Ψ(x) → eiη Ψ(x) clearly
forbids including terms linear in Ψ or Ψ∗.

Since Ψ is canonically normalized, its dimension is (mass)d/2 and so h has
dimension (length)d−1. If obtained from an EFT in which the heavy compact source
is also represented by a second-quantized field, Φ, then (13.65) corresponds to a
two-body interaction of the form L2−body = −h (Φ∗Φ)(Ψ∗Ψ).

Choosing the heavy compact particle to be at rest, with coordinates chosen so that
χ(τ) = 0, the field equations for Ψ obtained by varying the action SB + Sb become

i∂tΨ +
∇2Ψ

2m
= h δd (x) Ψ, (13.66)

showing that (13.65) contributes to the bulk Schrödinger equation in the same way
as does a delta-function potential. As usual, the implications of such a potential for
physics in the bulk is obtained by integrating over the standard small sphere Sε,
chosen to surround the source out to radius |x| = ε.

In the usual presentation integrating (13.66) over Sε and dropping terms that are
subdominant in the limit ε → 0 leads to

1
2m

∮
∂Sε

dd−1x x̂ · ∇Ψ = hΨ(0), (13.67)

where only the ∇2 term in (13.66) is taken to contribute on the left-hand side. If Ψ(0)
is identified with Ψ(|x| = ε) – in the spirit that distances of size ε are too small to be
distinguished in the effective theory – then (13.67) leads to the following boundary
condition for Ψ at r = |x| = ε:(

Ωd−1rd−1 ∂Ψ

∂r

)
r=ε

= 2mhΨ(r = ε), (13.68)

at least for the spherically symmetric modes with no angular momentum. Here,
Ωd−1 = 2πd/2/Γ[ 1

2 d] – where Γ(x) is Euler’s gamma-function – is the volume of the
unit (d − 1)-dimensional sphere (or area of a d-dimensional ball with unit radius),
with

Ω1 = 2π , Ω2 = 4π , Ω3 = 2π2 , Ω4 =
8π2

3
, Ω5 = π

3 and so on.

(13.69)

To justify the neglect of the ∂tΨ term in (13.67) imagine expanding

Ψ(x) =
∑
N

uN(x) aN with − ∇
2uN

2m
= ωNuN, (13.70)
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in terms of modes, uN(x), that satisfy i∂tuN = ωNuN, where N represents a complete
set of single-particle state labels. (For example, when d = 3 we have N = {n, �, �z },
where � = 0, 1, 2, · · · and �z = −�,−� + 1, . . . , � − 1, � are the integers that label the
state’s angular momentum. For d = 2 instead N = {n, �}, where � = 0,±1, · · · .) The
modes uN – which can be computed, say, by separation of variables in spherical polar
coordinates – come as two linearly independent solutions, whose small-r asymptotic
behaviour is uN ∝ rp where p = � or p = −�−d+2 for the two solutions, respectively
(for d ≥ 2). But if Ψ ∼ rp for small r , then ∇2Ψ ∼ rp−2 and so for sufficiently small
ε the integral over Sε of ∂tΨ is order εd−1+p while that of ∇2Ψ is order εd−3+p,
showing that the relative error of dropping the ∂tΨ term when deriving (13.68)
is order ε2.

The Boundary Action

Since these boundary conditions are being argued to be very general, it is worth
looking more closely at the assumptions underlying this derivation. For instance,
what if the Schrödinger equation contains an interaction potential, V (x), for which
V ≥ O(1/r2) for small r? Then the integration of V (x) Ψ over Sε need not be
subdominant to the integral over ∇2Ψ when ε → 0, undermining faith in the validity
of (13.68).

To arrive at a better argument refer again to Fig. 13.3, which shows how the radius
where boundary conditions are inferred relates to the problem’s underlying hierarchy
of scales. In what follows it is again important to recognize that the scale ε arises
purely as a calculational crutch, dividing the calculation into the following two steps:

• Part I: starting (in principle) from the microscopic properties of the compact source
(typically as specified by its action, Sb), one imagines computing the values Ψ and
its derivatives at the surface of Sε.

• Part II: Calculate the behaviour of observables well outside of Sε, referring only
to the boundary data derived in Part I on the surface of S (as opposed to using
detailed microscopic properties of the compact source).

These two steps reveal the utility of choosing ε � R, since when this is true
Part I should only depend on a few properties of the source, such as the lowest few
multipole moments (and perhaps their generalizations), since successive terms are
suppressed by higher powers of R/ε. The utility of choosing a � ε comes in Part II,
since it ensures that observables are not inordinately sensitive to boundary effects at
Sε, which are suppressed by powers of ε/a.

The key question is: how is the boundary condition at Sε determined in practice?
When answering this it is important conceptually that Part I above does not literally
specify Ψ or its derivatives at the boundary, B := ∂Sε at r = ε. In general,
specifying Ψ (or perhaps its derivative) would overdetermine the problem exterior
to Sε because, in practice, the actual values taken by fields on ∂Sε also depend
somewhat on the positions of other possible heavy compact particles elsewhere in
the problem, outside and far from Sε. This dependence on external compact particles
gets weaker the further away they are from Sε (hence the condition ε � a), but it is
there in principle and so the boundary information at ∂Sε must be encoded in a way
that leaves the fields free to adjust as required in response to their distant motions.
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A simple and efficient way to do so is to specify the boundary data at B in terms of
the variation of a boundary action, IB , along the lines considered in §5 of Part I. This
action is related to, but not the same as, the original point-particle effective action,
Sb , discussed above – such as found in (13.65). Whereas Sb is an integral over the
source’s world-tube, IB is always a d-dimensional integral over the codimension-1
world-volume that B = ∂Sε sweeps out as time evolves. For example, for a point
particle in 3 spatial dimensions Sb comes as a one-dimensional integral over the
particle world-line while IB is a 3-dimensional integral over time plus the two angular
directions of a 2-sphere surrounding the particle.

In principle, IB is constructed given Sb through a matching calculation. For N
effective couplings in Sb one computes N convenient observables exterior to Sε from
which the couplings can be determined. Computing these same N observables using
the most relevant interactions on IB and equating results gives the couplings of IB in
terms of those of Sb.

In practice, it is often simpler than this. For � = 0 modes about spherically
symmetric sources the connection between Sb and IB at lowest order is fairly direct:
IB is simply Sb multiplied byΩd−1εd−1, which is the surface area ofSε (or the volume
of its boundary, ∂Sε). For example, in the rest-frame of the compact source, with Sb
given by (13.65), the surface action is simply

IB = −
∫

ddx h̃Ψ∗Ψ = −
∫

dτ
∫

dd−1
Ω εd−1 h̃Ψ∗Ψ, (13.71)

and so

h = Ωd−1ε
d−1 h̃. (13.72)

Whereas h has dimension (length)d−1 the coupling h̃ is dimensionless. It is similar
for non-spherically symmetric sources and higher multipoles, such as the dipole-
moment system considered in §13.2.3, with the difference that the angular integration
is weighted by the appropriate spherical harmonic.

Once IB is specified, the surface B can be regarded as a boundary of the exterior
region, with its influence on physics exterior to Sε obtained along the lines described
in §5: by requiring that the total action, SB+IB , is stationary with respect to variations
of the fields on B in addition to the bulk:[

δSB

δΨ∗
+
δIB
δΨ∗

]
r=ε

= 0. (13.73)

For the example where SB is given by (13.64) and IB by (13.71), this takes the
form found in (13.68):

1
2m

(
Ωd−1rd−1 ∂Ψ

∂r

)
r=ε

= − δIB
δΨ∗

= Ωd−1ε
d−1 h̃Ψ(ε) = hΨ(ε). (13.74)

This can be regarded as a regularization of the formal boundary condition.

1
2m

(
Ωd−1rd−1 ∂Ψ

∂r

)
r=ε

= − δSb
δΨ∗

. (13.75)

This last equation is formal in the sense that its right-hand side involves fields
evaluated at the position of the source, like Ψ(x, t) δd (x), where Ψ generically
diverges at x = 0 and so needs regularization. These kinds of terms first arise when
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Fig. 13.5 Sketch of a real bulk-field profile produced by a localized source in the UV theory (solid line) superimposed
on the diverging profile obtained by extrapolating towards the source from outside within the external
PPEFT (dotted line). Two radii, r = ε1 and r = ε2, are shown where boundary conditions are applied
using the boundary actionIB(ε) in the external EFT. The ε-dependence ofIB(ε) is defined to ensure that
the external profile approximates the fixed real profile, no matter what particular value of ε is chosen. This
shows how the ε-dependence of the effective boundary couplings is designed to reproduce the
r-dependence of the real field profile as predicted by the bulk field equations.

the action is nonlinear in the field, and this is why the divergence issue does not arise
for linear multipole couplings discussed in §13.2.3. The advantage of the boundary
construction is that it goes through equally well in the presence of nonlinear terms,
singular bulk potentials and other potential complications to the naive delta-function
treatment.

RG As Field Equations

The boundary action also provides a simple geometrical interpretation of the
renormalization group alluded to at the beginning of §13.3, and described in more
detail in the examples to follow. As always, the RG expresses how physical quantities
cannot depend on arbitrary scales used to regularize short-distance physics, since any
apparent dependence cancels – i.e. is renormalized into – dependence that is implicit
in the theory’s coupling constants.

In the particular case of the boundary action described above, the renormalization
group expresses the fact that physical quantities do not depend on the precise radius
of Sε, since this can be chosen fairly arbitrarily. This ε-independence arises in detail
because any explicit dependence cancels an ε-dependence that is implicit in effective
couplings like h̃.

The required ε-dependence of couplings is most easily found simply by differ-
entiating observables with respect to ε while holding fixed all physical quantities.
This corresponds to adjusting the couplings in IB in such a way as to not
change the physical bulk-field profile as the radius of Sε is varied (see Fig. 13.5).
Because the bulk-field profile is determined by the bulk field equations, this Callan–
Symanzik type of condition relates the RG evolution of couplings in IB to the
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classical bulk evolution.11 The couplings of Sb , such as h, then also inherit an
ε-dependence because of relations like (13.72).

13.3.2 Contact Interaction

To see in detail how this renormalization story implies boundary conditions can be
imposed without introducing ε-dependence into physical predictions, return to the
example where SB is given by (13.64) and Sb by (13.65) (or IB by (13.71)). Working
in the rest-frame of a static source the field equation for this system then is (13.66)
and the boundary condition is (13.68). Expanding the field Ψ(x) =

∑
N uN(x) aN as in

(13.70) then implies that the modes satisfy

−∇
2uN

2m
= ωNuN, (13.76)

for all r = |x| � 0, with the near-source boundary condition(
rd−1 ∂

∂r
ln uN

)
r=ε

=
2mh
Ωd−1

. (13.77)

Expand now in spherical harmonics, YL(Ω), where Ω = {θ1, · · · , θd−2} denote
the angular variables and the mode label N becomes {n, L}. Then uN(r ,Ω) =
RnL(r)YL(Ω), where (13.76) implies that the radial mode-function satisfies

r2 d2R
dr2 + (d − 1)r

dR
dr
+
[
−�L + k2r2

]
R = 0, (13.78)

where k2 = 2mωnL and �L is the total angular momentum eigenvalue.
For later reference, notice that for scalar functions on a (d − 1)-sphere for general

d ≥ 2 it is a standard result that the label L always includes a non-negative integer �
for which the angular-momentum spectrum is

�� = �(� + d − 2), (13.79)

with each level arising with degeneracy D� (d) given by

D� (d) =

(
d − 1 + �

d − 1

)
−

(
d − 3 − �

d − 1

)
=

(d − 3 + �)! (d − 2 + 2�)
�! (d − 2)!

. (13.80)

The above formula for D� (d) breaks down in the special case d = 2 and � = 0, in
which case direct calculation shows D0(2) = 1.

These expressions reproduce the familiar simplest cases. For d = 2 angular modes
are labelled by L = ±� = 0,±1, · · · and�� = �

2, and so D0(2) = 1, while D� (2) = 2
for all � � 0. Similarly, for d = 3 the modes are labelled by L = {�, �z }, with
� = 0, 1, 2, · · · and �z = −�,−� + 1, · · · , � − 1, �, while �� = �(� + 1) and
D� (3) = 2� + 1.

Returning to the radial equation, Eq. (13.78) is solved by

RnL(r) = C+ R+nL(r) + C− R−nL(r), (13.81)

11 This argument qualitatively resembles similar arguments [343] relating field equations and RG-
evolution in holographic models based on the AdS/CFT correspondence [344].
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where C± are integration constants and the R±nL(r) are linear combinations of Bessel
functions. For the present purposes it is useful to choose these functions so that they
differ in their asymptotic form for small r , behaving there as

R±nL(r) = (2kr)s± [1 + O(kr)] , (13.82)

where the factor of 2 is for later convenience and

s+ = � while s− = −� − (d − 2). (13.83)

This power-law form breaks down in the special case � = 0 and d = 2, for which one
of the solutions instead varies logarithmically for small r .

Now comes the main point. The boundary condition, (13.77), in this instance
becomes

2mh

Ωd−1εd−2 =

(
r
∂

∂r
lnRn�

)
r=ε

=

[
r ∂r lnR+n� + Ξ r ∂r lnR−n�

1 + Ξ

]
r=ε

, (13.84)

where

Ξ :=
(

C−
C+

) R−n� (ε)

R+
n� (ε)

. (13.85)

There are two complementary ways to read Eqs. (13.84) and (13.85).
The naive way to read (13.84) and (13.85) is to regard them as determining C−/C+

once values are specified for both h and ε. Read this way Eq. (13.84) shows how
the boundary condition coming from Sb dictates the ratio of integration constants,
C−/C+, and thereby affects physical observables like scattering amplitudes or energy
levels for the Ψ particles. At face value, C−/C+ obtained in this way depends
explicitly on ε, and so also must all observables that can be expressed in terms of
this ratio.

A more sophisticated reading starts from the observation that if physical observ-
ables are to be ε-independent then so must also be C−/C+. This requirement is
consistent with (13.84) if h = h(ε) is not held fixed as ε is varied. In this point
of view Eqs. (13.84) and (13.85) are instead read as dictating the functional form
of h(ε) given that the physical requirement that C−/C+ cannot depend on ε. In this
language Eqs. (13.84) and (13.85) give h(ε) as a one-parameter family of formulae,
where the parameter is C−/C+. This formula defines the RG flow of h(ε). The value
of C−/C+ then determines which particular RG trajectory of this one-parameter
family of flows describes the system of interest.

These alternatives can be made more explicit by rewriting (13.84) as

2mh

Ωd−1εd−2 −
1
2
[
r ∂r ln

(
R+n�R

−
n�

)]
r=ε
=

1
2

(
r ∂r ln

R+n�
R−

n�

)
r=ε

(
1 − Ξ
1 + Ξ

)
, (13.86)

with Ξ defined by (13.85). As above, the naive way to read this solves for C−/C+
(which appears only in Ξ), to find

C−
C+
= −

R+n� (ε)

R−
n� (ε)

⎡⎢⎢⎢⎢⎣
2mh −Ωd−1εd−1∂r lnR+n�
2mh −Ωd−1εd−1∂r lnR−

n�

⎤⎥⎥⎥⎥⎦r=ε (13.87)

which explicitly gives C−/C+ for any specified pair (ε, h).
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The second, renormalization-group, way to view (13.84) instead defines the
variable

λ(ε) :=
1 − Ξ
1 + Ξ

, (13.88)

since this satisfies

ε ∂ελ =
2Ξ

(1 + Ξ)2

(
r ∂r lnR+n� − r ∂r lnR−n�

)
r=ε

=
1
2
(
1 − λ2

) (
r ∂r lnR+n� − r ∂r lnR−n�

)
r=ε

, (13.89)

when ε is varied with C−/C+ held fixed.
The main difference between Eqs. (13.88) and (13.89) is that the differential

version can be regarded as an equation that relates the running with ε of λ to R± in
a way that does not depend explicitly on C−/C+. The appearance of the ratio C−/C+
in (13.88) (through expression (13.85) giving Ξ in terms of R±) shows that it can be
regarded as the integration constant found when integrating (13.89). Once λ(ε) is
known then the corresponding RG evolution for h(ε) is found by writing (13.86) as

2mh

Ωd−1εd−2 −
1
2
[
r ∂r ln

(
R+n�R

−
n�

)]
r=ε
=
λ(ε)

2

(
r ∂r ln

R+n�
R−

n�

)
r=ε

. (13.90)

RG Evolution at Leading Order in 2kε

It is worth pausing at this point to explore more fully the properties of the RG
evolution defined by (13.89) – in particular, how h(ε) and λ(ε) evolve – in the
low-energy regime of most practical interest: 2kε � 1. Evolution formulae for this
regime are collected here since they are also useful in later sections.

In this regime simplification occurs because the mode functions satisfy R±n� (ε) �
(2kε)s± (c.f. Eq. (13.82)). With this asymptotic form equation (13.87) reduces to

C−
C+
= Ξ

[R+n� (ε)

R−
n� (ε)

]
� 1 − λ(ε)

1 + λ(ε)
(2kε)s+−s− . (13.91)

This inverts (13.88) to eliminate Ξ in terms of λ(ε). Eq. (13.90) giving h in terms of
λ simplifies similarly,

2mh

Ωd−1εd−2 �
1
2

(s+ + s−) +
λ(ε)

2
(s+ − s−), (13.92)

while Eq. (13.89), giving the differential running of λ, becomes [357]

ε ∂ελ �
1
2

(s+ − s−)
(
1 − λ2

)
, (13.93)

when ε is varied with C−/C+ held fixed.
The approximate equality in these last three expressions indicates how the right-

hand sides drop a factor of the form [1 + O(2kε)]. These last expressions do not
also use the explicit formulae (13.83) for s± because they apply equally to the more
general situations encountered in later examples.

The evolution defined by (13.93) has fixed points at λ�± = ±1. Eq. (13.92) shows
that if λ sits at the fixed point λ�± = ±1 while ε varies, then the original coupling
2mh�±(ε) must scale with its naive scaling dimension,
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2mh�±(ε) � Ωd−1s± ε
d−2. (13.94)

From this point of view, nontrivial running for λ(ε) corresponds to 2mh acquiring
an ‘anomalous’ scaling dimension.

A perhaps surprising observation hides within Eq. (13.94): the fixed-point condi-
tion need not be consistent with the absence of a first-quantized coupling: h = 0.
When h = 0 is not a fixed point it is inconsistent to ignore this particular bulk-source
interaction, since even if it is set to zero at some specific scale ε0, RG evolution
implies that it cannot remain zero at other values for ε.

A second potential surprise lies in the observation that effective couplings like
2mh run in a way that depends on bulk-particle quantum numbers – such as angular
momentum, �, which appears in s± through formulae like Eqs. (13.83). On one
hand, this seems natural since different choices for � lead to radial mode-functions
with different near-source asymptotic behaviour. On the other hand, having effective
couplings depend on bulk quantum numbers seems counter-intuitive since normally
physical properties of a compact source (like multipole moments) are intrinsic
properties of the source alone. As is argued below, however, physical properties are
characterized by RG-invariants, so it is only these that should be expected to be
intrinsic to the source alone.

To see how this works, it helps to identify convenient RG-invariant descriptions
of the coupling flow. To do so notice that the general solution to the flow equation
(13.93) is

λ(ε) =
(1 + λ0)(ε/ε0)s+−s− − (1 − λ0)
(1 + λ0)(ε/ε0)s+−s− + (1 − λ0)

, (13.95)

where the integration constant is chosen so that λ(ε0) = λ0. But this expression has
(by construction) precisely the same ε-dependence as does (13.88), and so comparing
them shows that the integration constant λ0 is related to C−/C+ by

C−
C+
=

1 − λ0

1 + λ0
(2kε0)s+−s− =

1 − λ(ε)
1 + λ(ε)

(2kε)s+−s− . (13.96)

Here the second equality uses (13.95) to eliminate (λ0, ε0) in favour of (λ, ε). This
verifies how the physical quantity C−/C+ is ε-independent and instead depends only
on a choice for a particular RG trajectory, λ(ε).

Eq. (13.95) also reveals that the general RG evolution runs from the fixed point at
λ�− = −1 to the fixed point at λ�+ = +1 as ε runs from zero to infinity, as illustrated
in Fig. 13.6. The figure reveals two distinct categories of flow, distinguished by η� =
sign(λ2 − 1), which is itself an RG-invariant quantity. Any flow line is uniquely
characterized in an RG-invariant way by specifying both η� and ε� defined by the
condition |λ(ε�) | = ∞ if η� = +1 or λ(ε�) = 0 if η� = −1. Inspection of (13.95)
shows that these are defined in terms of an initial-condition pair, (λ0, ε0), by η� =
sign(λ2

0 − 1) and

ε�
ε0
=
�����λ0 − 1
λ0 + 1

�����
1/(s+−s−)

. (13.97)

Finally, (13.95) and (13.96) give the flow and C−/C+ in terms of the RG-invariant
parameters η� and ε�, as follows
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Fig. 13.6 Plot of the RG flow predicted by Eq. (13.95) for λ vs ln (ε/ε�) where the RG-invariant scale ε� is chosen
to be the unique value of ε for which λ either vanishes or diverges, depending on the RG-invariant sign
η� = sign(λ2 − 1).

λ(ε) =
(ε/ε�)s+−s− + η�
(ε/ε�)s+−s− − η�

and
C−
C+
= −η� (2kε�)s+−s− . (13.98)

Since physical observables (like the scattering cross sections or energy-level shifts –
see Exercises 13.2–13.6 and 13.7 for example) are computed in terms of C−/C+, this
last equation shows that these only depend on the RG-invariant parameters ε� and
η� describing the coupling’s RG trajectory.

Eq. (13.98) also reveals the physical meaning of the scale ε�: it is the radius
where the solution transitions between being dominated by each type of small-r
asymptotic behaviour: R+ � (2kr)s+ and R− � (2kr)s− . From this point of view
the RG evolution merely traces the crossover between these two asymptotic forms
as one moves into the bulk away from the compact source. The fixed points then
correspond to the special cases where no such transition takes place: i.e. either C− or
C+ vanishes, as is most easily seen by setting λ0 = ±1 in (13.96).

Notice that because ε� is a derived scale it need not be similar to the physical
underlying size, R, of the source. A hierarchy between ε� and R occurs if initial
conditions for very small scales, ε0 ∼ O(R), give values for λ0 very near one of the
fixed points λ�±. Whenever λ0 � λ�− inspection of Fig. 13.6 shows that ε� � ε0,
and so physical quantities (like scattering cross sections – see Exercise 13.2) can
be much larger than the geometrical size of the compact central object. Practical
examples along these lines include some light nuclei [345], or trapped atoms tuned
near a Feshbach resonance [347], for which scattering lengths can be significantly
larger than the object’s size.12

Conversely, λ0 � λ�+ implies that ε� � ε0. The extreme case of this is when there
is no central source at all. This corresponds to the RG-invariant condition ε� → 0, in
which case (13.98) implies that the coupling sits at the IR fixed point, λ = λ�+ and
so (13.98) implies that C− = 0. This implies that the radial solution remains smooth
at the origin (as is usually assumed in the absence of a central object).

12 See [346] for a description of systems with large scattering lengths within 2nd-quantized EFTs.
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RG Evolution for the d = 3 Contact Interaction

To make things explicit, return to the specific case of a contact interaction in d = 3
spatial dimensions, with bulk and source actions as given in (13.64) and (13.65).
Then the above RG formulae can be restricted to the special case (13.83), for which
s+ + s− = −1 and s+ − s− = 2� + 1. When this is so, dropping subdominant powers
of 2kε (but not of ε/ε�) allows the relation between h and λ to be written

mh(ε)
πε

+ 1 � (2� + 1)λ(ε), (13.99)

where the running of λ satisfies

ε ∂ελ �
1
2

(2� + 1)
(
1 − λ2

)
, (13.100)

with solution

λ(ε) =
(1 + λ0)(ε/ε0)2�+1 − (1 − λ0)
(1 + λ0)(ε/ε0)2�+1 + (1 − λ0)

=
(ε/ε�)2�+1 + η�
(ε/ε�)2�+1 − η�

. (13.101)

In terms of these the physical integration constant C−/C+ is given by

C−
C+
=

1 − λ0

1 + λ0
(2kε0)2�+1 = −η� (2kε�)2�+1 . (13.102)

Once C−/C+ is known, any bulk observable (such as cross sections and energy levels)
can be computed, such as is done explicitly in Exercises 13.2–13.6 at the end of
this chapter. Using (13.102) in these expressions then shows how these observables
depend only on the parameters ε� and η�, and so depend on h(ε) and ε only in an
RG-invariant way. For instance, the scattering phase δ for elastic Ψ scattering from
the heavy central object predicted by the actions (13.64) and (13.65) is given by (see
Exercise 13.2)

e2iδ =
1 − iη�kε�
1 + iη�kε�

, (13.103)

where k =
√

2mE is the momentum of the scatteredΨ particle (whose kinetic energy
is E).

The absence of the central source similarly corresponds to the choice C− = 0
(since this makes the radial solution smooth at r = 0), or equivalently to ε� = 0, in
which case λ(ε) = λ�+ = +1 for all ε. As Eq. (13.99) shows, the coupling h then is

h = h�+ =
2π� ε

m
, (13.104)

which vanishes for nonzero ε when � = 0, and not otherwise. This nonvanishing
expression for h(ε) when � � 0 is precisely what is required to ensure Rn� (r) ∝
(2kr)� once used in the original boundary condition (13.84):

mh
2π
= � ε =

(
r2 ∂

∂r
lnRn�

)
r=ε

. (13.105)

The presence of a nontrivial central compact source is signalled by any deviation
from the above specific asymptotic form, which necessarily involves a nonzero
overlap with R−n� (r). This occurs if there should be any radius ε0 for which λ0 =

λ(ε0) � +1. If so, the physical content of this source lies in the RG-invariant
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quantities η� = sign(λ2
0 − 1) and ε� found using the second equality of (13.102).

Although h depends on bulk quantum numbers like �, the physical RG-invariant
quantities η� and ε� do not.

RG methods are usually useful inasmuch as they can be used to resum corrections,
such as large logarithms of scale. The above formulae also provide some insight
into what is being resummed in this case. To see why, consider the weak-coupling
limit where ε� is much smaller than the central object’s intrinsic size, ε� � ε0, and
specialize to the case where � = 0. With these choices λ is close to +1 for the entire
region ε > ε0 outside the source, and so Eq. (13.101) can be expanded in powers of
ε�/ε to give

λ(ε) � 1 +
2η�ε�
ε
+ O
[( ε�
ε

)2]
. (13.106)

Comparing this with Eq. (13.99) gives mh/(πε) = λ − 1 � 2η�ε�/ε + · · · , and so
to leading order in ε�/ε the coupling h does not evolve with scale, with

mh � 2πη�ε� + O
(
ε2
�

ε

)
(for � = 0). (13.107)

Using this to trade η�ε� for h in the scattering phase given in (13.103) then gives

e2iδ =
1 − iη�kε�
1 + iη�kε�

� 1 − i(mh k/2π)
1 + i(mh k/2π)

, (13.108)

reproducing standard formulae [348] for scattering from a delta-function potential
h δ3(x). When ε� is not quite so small, however, the first equality of (13.108)
remains true but the connection between ε� and h(ε0) becomes more complicated,
as found by combining Eqs. (13.99) and (13.101). This more complicated
RG-improved expression resums corrections in the dimensionless variable
mh(ε0)/ε0 as this combination becomes larger, as it does once ε�/ε0 becomes
order unity.

13.3.3 Inverse-Square Potentials: Fall to the Centre

This section generalizes the above discussion by extending the PPEFT formalism
to the case where the bulk field experiences a long-range inverse-square attraction
towards the heavy central object in addition to their contact interaction. It is shown
that the presence of such an inverse-square potential makes the presence of the
contact interaction compulsory, in the sense that the inverse-square potential modifies
the running of the effective coupling h in such a way that makes it inconsistent to set
h = 0 for all scales.

Attractive inverse-square potentials (and those more singular than this for small r)
have long been studied as quantum systems [349] because the competition between
the potential and the angular momentum barrier necessarily modifies the asymptotic
shape of the wave-function near the origin. In particular, these systems provide
concrete examples where the wave-function cannot remain bounded at the origin,
which makes predictions depend sensitively on precisely how boundary conditions
at the origin are chosen.

From the PPEFT point of view, this sensitivity to boundary conditions simply
reflects the fact that the attractive potential concentrates the bulk-particle probability
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to lie near the compact source, making its properties sensitive to the point-particle
action, Sb. Because the properties of Sb dictate the required boundary condition, its
form removes all guess-work from the choice of boundary conditions to be made at
the origin. A concrete example explored in Exercise 13.3 also illustrates how the
boundary conditions chosen at the source need not always be chosen to be self-
adjoint, depending on whether the UV physics allows probability to be lost at the
source. Just as in §12.2.4, such probability loss shows up here through the appearance
of complex couplings within the low-energy EFT [350].

Consider, therefore, the complex Schrödinger field, Ψ, governed by the bulk action
of Eq. (13.63) (repeated for convenience here)

SB =

∫
dD x

{
i
2

(
Ψ∗∂tΨ − ∂tΨ∗ Ψ

) − 1
2m

∇Ψ∗ · ∇Ψ − V (x) Ψ∗Ψ + · · ·
}

,

(13.109)

where the potential is now chosen to be

V (x) = − g

r2 , (13.110)

with g > 0 and r = |x| is the distance to the compact, massive central source, which
is assumed to be approximately localized at x = 0. Spacetime dimension D = d + 1
is again kept open, though the cases of practical interest are d = 2 (a line source) and
d = 3 (point-particle). See Exercise 13.3 for a concrete atomic system described by
this action.

The Schrödinger modes in the presence of such a potential satisfy

−∇
2uN

2m
− g

r2 uN = ωNuN, (13.111)

for all r � 0, and once decomposed in terms of spherical harmonics, uN(r ,Ω) =
RnL(r)YL(Ω), the radial function RnL satisfies

r2 d2R
dr2 + (d − 1)r

dR
dr
+
[
2mg −�L + k2r2

]
R = 0, (13.112)

instead of (13.78), where as before k2 = 2mωnL and �L = �(� + d − 2) is the total
angular momentum eigenvalue in d spatial dimensions.

Because the inverse-square potential competes with the angular-momentum bar-
rier, the independent radial solutions

RnL(r) = C+ R+nL(r) + C− R−nL(r), (13.113)

have small-r asymptotic forms that depend on g, with R±nL(r) = (2kr)s± [1 + O(kr)]
where s2

± + (d − 2)s± + 2mg −�L = 0 and so

s± =
1
2

[2 − d ± ζ] with ζ :=
√

(2� + d − 2)2 − 8mg. (13.114)

The convention is adopted that ζ > 0 when it is real and nonzero. Notice that ζ
initially decreases as g increases from zero, but eventually becomes imaginary (so
both powers s± become complex) when g > gc where

gc :=
1

8m
(2� + d − 2)2. (13.115)
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The interesting thing about this asymptotic behaviour is that for some quantum
numbers both solutions are singular at the origin, underlining that boundedness at the
origin cannot in general be the right criterion for choosing the boundary condition for
small r . The singularity of the wavefunction reflects the accumulation of probability
near the origin due to the suppression of the centrifugal barrier by the attractive
potential, making energy levels and scattering amplitudes depend sensitively on the
boundary conditions chosen at the origin.

What is important is that these near-origin boundary conditions are not arbitrary;
they are dictated by the PPEFT action, Sb, describing the source that resides there.
In the present instance, the lowest-dimension interaction for a Schrödinger field is
the same as in the previous example, Eq. (13.65). Choosing coordinates so that the
central source sits at x = 0 in its rest frame, the leading term in the first-quantized
source action becomes

Sb = −
∫

dD x hΨ∗Ψ δd (x). (13.116)

Because the derivation of the boundary conditions that follow from this action so
closely resembles the treatment of §13.3.1, in what follows only the main steps are
highlighted, with an emphasis on places where the inverse-square potential modifies
the conclusions.

RG Evolution for Real ζ

The RG evolution of the interaction of (13.116) is as given in the previous sections,
with the presence of the bulk inverse-square potential implying s+ + s− = −(d − 2)
and s+ − s− = ζ, with ζ as given in (13.114).

The connection between h and λ in this case therefore becomes

4mh

Ωd−1εd−2 + (d − 2) � λ̂(ε) := ζ λ(ε), (13.117)

in which the last equality defines the useful variable λ̂. The running of λ̂ inherited
from the evolution equation (13.93) is

ε ∂ε λ̂ �
1
2
(
ζ2 − λ̂2

)
, (13.118)

with solutions

λ̂
ζ

(ε) =
(ζ + λ̂0)(ε/ε0)ζ − (ζ − λ̂0)

(ζ + λ̂0)(ε/ε0)ζ + (ζ − λ̂0)
=

(ε/ε�)ζ + η�
(ε/ε�)ζ − η�

, (13.119)

and RG-invariant quantities

η� = sign(λ̂2 − ζ2) and
ε�
ε0
=

������ λ̂0 − ζ
λ̂0 + ζ

������
1/ζ

. (13.120)

In terms of these the physical mode-function integration constants are

C−
C+
= −η� (2kε�)ζ . (13.121)

In the absence of the inverse-square potential the special case C− = 0 corresponded
to choosing bounded mode-functions at the origin, and made λ = λ�+ = +1 sit at the
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Fig. 13.7 The RG evolution predicted by Eq. (13.119) in the complex λ̂/|ζ | plane. The left (right) panel uses a real
(imaginary) value for ζ. Arrows (shading) show direction (speed) of flow as ε increases. Figure taken
from [350]

IR fixed point for all ε. For the � = 0 mode this also implied h(ε) = 0 for all ε. These
statements change in the presence of the inverse-square potential, however, since in
this case Eqs. (13.114) and (13.117) together show that g � 0 is an obstruction to
the coupling h vanishing for all ε, even when λ̂ = λ̂�+ = +ζ and � = 0. This shows
how the presence of an inverse-square potential makes it inconsistent to set to zero
the effective coupling h, even when ε� = � = 0. Although h(ε0) might vanish at
some scale ε0, if g � 0 then (for all �) h(ε) cannot vanish for ε � ε0. This is the RG
version of the message that inverse-square potentials are intrinsically sensitive to the
details of the boundary conditions near the origin, and so also require information
about the properties of Sb.

RG Evolution for Complex λ̂

For sufficiently strong inverse-square potentials – i.e. when g > gc as defined in
(13.115) – the parameter ζ is no longer real even if the original coupling h is. When
ζ becomes imaginary the flow qualitatively changes, as might be expected given
that both solutions R± then share the same value for Re s±, which implies that the
behaviour of |R | is the same for both at small r .

Fig. 13.7 draws the resulting flow lines within the complex λ̂ plane, with the left
panel showing the flow for real ζ and the right panel illustrating the case where ζ
is imaginary. As the figure makes clear, the condition λ̂ = λ̂∗ is RG invariant, so
once λ̂ is chosen real at any scale it remains so for all scales, regardless of the sign
of ζ2.

What changes when ζ is imaginary is the ability to hit a fixed point starting from
a real initial value λ̂(ε0) = λ̂0. The flow of an initially real λ̂ instead displays a
limit-cycle behaviour which reflects the emergence of a discrete scale-invariance.
Further exploration of this kind of flow goes beyond the scope of this section, though
it has practical applications, such as to the Efimov effect [351]: a universal discrete
scale-invariance that emerges in the low-energy limit of many-body scattering.

Why entertain complex values for λ̂ in the first place if RG flow preserves the
reality of λ̂, even when ζ is imaginary? This can be worth doing because for some
systems complex values for λ̂ (and so also for h) are appropriate, corresponding
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Fig. 13.8 RG flows predicted by (13.121) for Re λ̂/ξ and Im λ̂/ξ (where ξ = |ζ |) for ζ real (left panel) and ζ
imaginary (right panel). Each flow defines an RG-invariant scale ε� defined by Re λ̂(ε�) = 0, at which
point Im λ̂(ε�) = iy� is a second RG-invariant label. ε� is multiply defined when ζ is imaginary. Figure
taken from [350]

to the occurrence of probability loss at the position of the central object (in much
the same way that annihilation gave an imaginary part to couplings in the EFT for
positronium described in §12.2.4). A concrete example of this is provided by the gas
of polarizable atoms around a charged wire introduced in Exercise 13.3, for which
the atoms in question could be in an atomic trap from which they are ejected on
scattering from the charged wire (with a consequent loss of probability localized at
the position of the wire).

To quantify the relation between Im h and probability loss at the source compute
the radial probability flux operator at r = ε:

Jr (ε) =
i

2m
(Ψ∂rΨ

∗ − Ψ∗∂rΨ)r=ε = i
(
h∗ − h

) |Ψ(ε) |2

Ωd−1εd−1 , (13.122)

where as before Ωd−1 is the surface area of the unit d − 1 sphere and the final
equality uses the boundary condition (13.74). The operator controling the net rate
of probability flow out of a sphere of radius r = ε then is

P :=
∮
r=ε

Jr ε
d−1dd−1

Ω = 2 |Ψ(ε) |2 Im h, (13.123)

and so positive (negative) Im h corresponds to the compact object at x = 0 being a
net probability source (sink).

Once λ̂ is complex then the RG evolution is richer, even when ζ is real, as is
illustrated by the plots of Fig. 13.7. The projections of these plots giving Re λ̂ and
Im λ̂ as functions of ε are seen in Fig. 13.8. These flows can be characterized using
two RG-invariant real numbers, ε� and y�, where ε� is defined as the scale where
the flow crosses the imaginary axis – i.e. where Re λ̂(ε�) = 0 – and y� defined by
the imaginary value taken by λ̂ at this crossing: Im λ̂(ε�) =: iy�.

When the flow crosses the imaginary axis more than once (as happens when ζ is
imaginary) y� is chosen as the larger of the absolute values taken by Im λ̂ = y� on
the trajectory of interest. (Equivalently, y� is defined as the value at the axis crossing
for which the real part of λ̂ satisfies dλ̂R/dε > 0.) The parameter y� generalizes
the RG-invariant sign η� defined above for real λ̂, inasmuch as when specialized
to real λ̂ the new parameter y� takes one of two values: y� = 0 (corresponding to
η� = −1 in earlier sections) or y� → ±∞ (corresponding to η� = +1 in earlier
sections).
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When ζ is real the fixed points are also at real values for λ̂, showing that RG
evolution is in this case always towards real values for h, for which the system
becomes unitary. The same is not true when ζ is imaginary, however, since the fixed
points then occur for imaginary values of λ̂, for which either C+ or C− vanishes and
so the small-r limit of the full solution Rn� ∝ (2kr)s± is governed by a single power
(either s+ or s− depending whether it is C+ or C− that vanishes). Writing ζ = ±iξ and

(kr)ζe−iωt = exp
{
−i
[
ωt ∓ ξ ln(kr)

]}
(13.124)

shows that these fixed-point solutions correspond to completely in-falling or com-
pletely out-going boundary conditions (with no admixture of the other type) in the
small-r limit.13 Exercises 13.5 and 13.6 give explicit expressions for bound-state
energies and scattering cross sections (both elastic and inelastic) for Ψ particles as
functions of the RG-invariant quantities y� and ε�.

13.3.4 Nuclear Effects in Atoms

Atoms provide a very natural place to apply first-quantized tools, with the nucleus
playing the role of the compact central source. Atoms are also of considerable
practical interest because high-precision measurements of their energy levels call
for equally accurate theoretical calculations. Reliable determinations of how atomic
energy levels respond to nuclear structure are valuable, since nuclear uncertainties
often dominate theoretical errors.

This section explores several issues that arise when studying how electrons couple
to nuclei, representing the electron as a Schrödinger field (with a brief discussion of
how to include relativistic effects at the end). For simplicity only individual electrons
orbiting spinless nuclei are considered here, such as for 4He+ ions.

Using a 2-component Pauli spinor field, Ψ, to represent the bulk nonrelativistic
electrons leads to a bulk action similar to the one used in earlier sections, see e.g.
Eq. (13.63). To this is added the Maxwell action for electromagnetism. Altogether
SB =

∫
d4x LB with

LB =
1
2
(
E2 − B2

)
+

i
2
(
Ψ†DtΨ − DtΨ

† Ψ
)
− 1

2m
DΨ† · DΨ − ecF

2m
B· (Ψ†σ Ψ) + · · · ,

(13.125)

where DtΨ = (∂t + ieA0)Ψ and DΨ = (∇ + ieA)Ψ while cF = 1 + O(α) is
the effective magnetic-moment coupling whose value is obtained by matching to
QED, as in (12.1.2). For atoms the ellipses in (13.125) can also be important, in
principle containing the subdominant single-body terms discussed in more detail in
§12.2, such as kinematic corrections to the dispersion relation, E = m + p2/(2m) +
p4/(8m3) + · · · , spin-orbit couplings, and so on.

The leading couplings of electron and electromagnetic fields to the first-quantized
nucleus are given by (13.30) and (13.65) as

13 These fixed-point boundary conditions are called perfect absorbers or perfect emitters. See [352] for
an application of these boundary conditions to black-hole physics, for which having a perfect absorber
as a fixed point corresponds physically to the horizon not being a particularly special place.
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SN =

∫
d4x
{
M +QA0 + CD∇ · E − hΨ†Ψ + · · ·

}
δ3(x), (13.126)

where Q = Ze is the nuclear charge and we neglect (for simplicity) nuclear recoil
effects, and so specialize to the nuclear rest-frame, choosing coordinates that place it
at x = 0. Here, the ellipses contain only terms suppressed by more than two powers
of the nuclear size, R.

Using this action to infer the near-nucleus boundary conditions for the electromag-
netic field, and perturbing in the electron-photon couplings, leads – see (13.55) and
the discussion that follows it – to Aμ acquiring a nontrivial background configuration,
Aμ = Aμ + δAμ, with

A0(x) = − Ze
4πr

+ CD δ
3(x). (13.127)

Furthermore, for bound-state calculations the power-counting arguments of §12.2.1
argue that this background should be included in the unperturbed action, correspond-
ing in the second-quantized language to resumming multiple Coulomb exchange.

The lowest-order electron-field expansion then takes the formΨ(x) =
∑

N uN(x) aN,
where uN(x) satisfies

0 = i∂tuN +
∇2uN

2m
− eA0(x)uN(x) − h δ3(x) uN (13.128)

= i∂tuN +
∇2uN

2m
+

Zα
r

uN(x) −
(
h + eCD

)
δ3(x) uN,

with α = e2/4π being the usual electromagnetic fine-structure constant. Energy
eigenstates in the presence of such a potential in particular satisfy the usual time-
independent Schrödinger–Coulomb equation

−∇
2uN

2m
− Zα

r
uN = ωNuN, (13.129)

for all r � 0, subject to the near-nucleus boundary condition – c.f. Eqs. (13.68) and
(13.77): (

∂

∂r
ln uN

)
r=ε

=
2mheff

Ω2
=

mheff

2π
, (13.130)

where

heff := h + eCD. (13.131)

Having h and CD only appear together through the one combination heff reflects the
fact that these two couplings are effectively redundant. This redundancy can be seen
using the arguments of §2.5 because the Darwin term can be simplified using the
Maxwell equation ∇ · E = −eΨ†Ψ + Ze δ3(x).

The main conclusion to which these expressions lead is that the leading effects
of the nucleus’ finite size for electronic energy levels is communicated through the
near-nucleus boundary condition (13.130). At leading order there is only a single
parameter, heff, describing the nuclear shape that can contribute to atomic energy-
level shifts. Furthermore, this nuclear parameter is related to its mean-square charge
radius – c.f. Eq. (13.57) – in a way that is established in more detail below.
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Atomic Energy Levels

To compute nucleus-dependent atomic energy shifts explicitly, decompose uN in
terms of spherical harmonics, uN(r , θ,φ) = Rn� (r)Y��z (θ,φ), with the radial
function Rn� satisfying

r2 d2Rn�

dr2 + (d − 1)r
dRn�

dr
+
[
wr − �(� + 1) − κ2r2

]
Rn� = 0, (13.132)

where w = 2mZα and κ2 = −2m ωnL > 0 (because for bound states ωnL < 0).
A choice for the two independent solutions with the desired asymptotic behaviour

at small r are

R±n� (r) = (2κr)
1
2 (−1±ζ) e−κrM

[
1
2

(
−w
κ
+ 1 ± ζ

)
, 1 ± ζ; 2κr

]
, (13.133)

where

M (a, b; z) = 1 +
( a

b

)
z +

1
2

[
a(a + 1)
b(b + 1)

]
z2 + · · · , (13.134)

is the confluent hypergeometric function that is regular at z = 0 (but with a series that
breaks down when b is a non-positive integer). For the Coulomb solution ζ = 2� + 1
and because 1− ζ = −2� is a negative integer the series for R− becomes problematic
(and so is instead obtained by a limiting procedure).

The properties of hypergeometric functions imply the linear combination that is
normalizable at r → ∞ is14

Rn� (r) = C

⎡⎢⎢⎢⎢⎢⎣
Γ(−ζ)

Γ
[

1
2

(
−w
κ + 1 − ζ

)] R+n� (r) +
Γ(ζ)

Γ
[

1
2

(
−w
κ + 1 + ζ

)] R−n� (r)

⎤⎥⎥⎥⎥⎥⎦
(13.135)

for arbitrary normalization constant C. Clearly, this fixes C−/C+ to be

C−
C+
=
Γ(ζ) Γ

[
1
2

(
−w
κ + 1 − ζ

)]
Γ(−ζ) Γ

[
1
2

(
−w
κ + 1 + ζ

)] = −Γ(1 + ζ) Γ
[

1
2

(
−w
κ + 1 − ζ

)]
Γ(1 − ζ) Γ

[
1
2

(
−w
κ + 1 + ζ

)] , (13.136)

and it is the demand that this be consistent with the near-nucleus boundary condition
(13.130) that gives the quantization conditions for κ (and so for the bound-state
energy).

Consider first a point-like nucleus, for which standard treatments assume the mode
functions to be bounded at the origin, implying C− = 0. In this case the energy levels
are found by choosing κ such that (13.136) vanishes, leading to the condition

Γ
[

1
2

(
−w
κ + 1 − ζ

)]
Γ
[

1
2

(
−w
κ + 1 + ζ

)] = 0, (13.137)

which implies that κ = κN where15

1
2

(
− w

κN

+ 1 + ζ
)
= −N , (13.138)

14 The singular factor Γ(−ζ) for ζ = 2�+1 is an artefact of the degeneracy of the solution R− in (13.133),
and again can be finessed using a limiting procedure.

15 These solutions use the fact that Γ(z) has no real zero and has a pole for non-positive integers z = −N .
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for a non-negative integer N = 0, 1, 2, · · · . Using w = 2mZα and defining n =
N + � + 1 (so n = 1, 2, · · · and � = 0, 1, · · · , n − 1) this implies that

κn =
mZα

n
and so En = −

κ2
n

2m
= −m(Zα)2

2n2 , (13.139)

reproducing the standard lowest-order hydrogen-like energy levels.

Nuclear Charge Radius

To compute the leading nuclear-size shift to atomic energy levels requires repeating
the above exercise and tracing the dependence that C−/C+ acquires on the effective
coupling heff due to the near-nucleus boundary condition. This then alters the
resulting energy eigenvalues when its nonzero value is equated to (13.136).

To verify the ε-independence of the result, recall that the RG evolution of heff(ε)
appropriate here is identical to the running used in the example considered above
of a contact interaction in d = 3 spatial dimensions. In particular, the RG formulae
given earlier can be restricted to the special case (13.83), for which s+ + s− = −1
and s+ − s− = 2� + 1, leading to Eqs. (13.99) and (13.100), reproduced here for
convenience:

mheff(ε)
πε

+ 1 � (2� + 1)λ(ε) with ε ∂ελ �
1
2

(2� + 1)
(
1 − λ2

)
. (13.140)

These have (13.101) as solution:

λ(ε) =
(1 + λ0)(ε/ε0)2�+1 − (1 − λ0)
(1 + λ0)(ε/ε0)2�+1 + (1 − λ0)

=
(ε/ε�)2�+1 + η�
(ε/ε�)2�+1 − η�

. (13.141)

These expressions work to lowest nontrivial order in 2κε but do not restrict the size
of ε/ε�.

The physical integration constant C−/C+ to be compared with (13.136) is then
given by (13.102), which becomes

C−
C+
=

1 − λ0

1 + λ0
(2κε0)2�+1 = −η� (2κε�)2�+1 . (13.142)

It is clear that any energy shift inferred by equating Eqs. (13.136) and (13.142) can
depend on the pair (λ0, ε0) only through the RG-invariant combinations η� and ε�.
Furthermore, because 2κε� � Zmαε� � ε�/aB � 1 (where aB = (mZα)−1 is the
appropriate Bohr radius) the �-dependence of (13.142) shows that at leading order
only the � = 0 (S-wave) states are shifted in this way. For � = 0 Eq. (13.142) then
shows that ε� and η� only appear as the product η�ε�.

Since it is the same parameter η�ε� – or the pair heff(ε0) and ε0 – that also
controls deviations from the point-nucleus Rutherford cross section when electrons
scatter from the nucleus (see Exercises 13.2 and 13.5), it is possible to trade η�ε� for
the charge radius as measured through low-energy electromagnetic scattering from
nuclei. The result of doing so is most easily seen after performing a field redefinition
δA0 ∝ (h/e) δ3(x) to eliminate the coupling h so that heff = eCD, and then repeat the
argument leading to (13.57) to conclude

mheff �
2π
3

Zαmr2
c . (13.143)
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In the limit ε�/ε0 � 1 the RG evolution of heff is superfluous because (13.107)
shows for � = 0 that

mheff � 2π η�ε� + O
(
ε2
�

ε

)
, (13.144)

and so in this limit

η�ε� �
1
3

Zαmr2
c . (13.145)

Since rc is measured to be similar to typical nuclear sizes, this justifies ex post facto
the assumption ε� � ε0 for any ε0 of order nuclear sizes (or larger).

When RG evolution is not negligible (such as when moving beyond leading-
order accuracy, such as when including relativistic corrections, as described below)
it is important to realize that it is (13.145) and not (13.143) that remains valid as
the relationship between η�ε� and heff becomes more complicated than (13.144).
This is because rc , being a measureable quantity, is primarily tied to RG-invariant
combinations like η�ε� rather than to ε-dependent couplings like heff(ε).

Leading Nuclear Energy Shift

With these tools the atomic energy shift as a function of rc can be computed. In
this case, the energy found by equating Eqs. (13.136) and (13.142) changes from its
point-nucleus value, and this is the leading contribution to the energy due to finite
nuclear size. In this case, κ = κn is determined by solving the equation

C−
C+
= −η�(2κε�)ζ =

Γ(ζ)Γ
[

1
2

(
−w
κ + 1 − ζ

)]
Γ(−ζ)Γ

[
1
2

(
−w
κ + 1 + ζ

)] , (13.146)

with w = 2mZα and the limit ζ → 2� + 1 taken at the end.
In particular, solutions to (13.146) are sought perturbatively close to (13.139):

κ = κn + δκ, where the small perturbation parameter is

2κnε� =
2Zαmε�

n
=

2ε�
naB

. (13.147)

The perturbative solution is found by using

1
2

(
−w
κ
+ 1 + ζ

)
= −N + �� w

2κ2
n

�� δκ (13.148)

as well as 1
2

(
− w
κn
+ 1 − ζ

)
= −N − ζ to rewrite (13.146) as

−η�(2κnε�)ζ � Γ(ζ)Γ (−N − ζ)

Γ(−ζ)Γ
[
−N +

(
w/2κ2) δκ] � Γ(ζ)Γ (ζ + 1) N!

Γ(ζ + N + 1)
�� w

2κ2
n

�� δκ,

(13.149)

where the second equality uses the near-pole expansion

Γ(z − N ) � (−)N

N! z

[
1 + O(z)

]
, (13.150)

as well as Γ(−N − ζ)/Γ(−ζ) = (−)NΓ(ζ + 1)/Γ(ζ + N + 1).
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The limit ζ → 2� + 1 is now safe to take, leading to

δκn�

κn
= −η�

(n + �)!
n(2�)! (2� + 1)! (n − � − 1)!

(
2Zαmε�

n

)2�+1

, (13.151)

and so using δEn = −κnδκ/m gives

δEn� = η�
(n + �)!

(2�)! (2� + 1)! (n − � − 1)!

(
2Zαmε�

n

)2�+1 m(Zα)2

n3 . (13.152)

The factor (2κnε�)2�+1 on the right-hand side shows that � = 0 states get the largest
shift, so specializing to S-wave states gives

δEn0 = η�
2(Zα)3m2ε�

n3 . (13.153)

Using (13.145) in (13.153) gives a standard formula [353]

δEn0 =

(
Zαm

n

)3 2
3

(Zα)r2
c , (13.154)

relating the nuclear charge radius to the leading S-wave atomic energy shift. As might
be expected, this has the delta-function form

δEn0 = |ψn0(0) |2heff, (13.155)

with heff given by (13.143) for hydrogen-like S-wave states.

Mesonic Atoms

Mesonic atoms provide a similar example of calculable nuclear shifts in atomic
energy levels, but one for which ε� is not as small as above, and so for which the RG
evolution is comparatively more important. In mesonic atoms a negatively charged
pion or kaon (pions are considered here for concreteness) is electromagnetically
bound to a nucleus. Such states form when mesons are stopped in materials, and
the formation of the atomic levels can be detected by seeking the photons that are
emitted as the meson cascades through a series of excited states down to its ground
state [354].

The two main kinematic differences between mesonic states and electronic ones
are the absence of meson spin and the much larger meson mass. For pions, because
mπ/me ∼ 280 the corresponding Bohr radius,

aBπ =
1

Zαmπ
, (13.156)

is much smaller than for electrons, ensuring that the meson nestles deep down in a
hydrogen-like orbit well inside any clouds of screening electrons. Furthermore, the
larger binding energy, En = −(Zα)2mπ/(2n2), of these hydrogen-like mesonic states
is of order keV, so the photons emitted during the meson cascade are X-rays.

Unlike electrons, mesons participate in the strong interactions (being made, as
they are, of quarks and gluons) and this is the main dynamical difference between
them. The strong interaction between mesons and nuclei is short-ranged, however,
acting only over distances of order rn ∼ m−1

π ∼ 1 fm. Because this is about 100 times
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smaller than the size, aBπ, of the electromagnetic mesonic orbit, it lends itself well to
being treated using the PPEFT methods described above.

Indeed, there are practical reasons for doing so. This is because observations of X-
rays from the meson cascade provide precise measurements of the mesonic energy
levels, and so inferences can be drawn from them about how badly these energies
are perturbed by the short-range strong interactions. This provides an experimental
window on meson-nucleus interactions at lower energies than those sampled with
other methods.

The calculation proceeds much as in the previous section, with only a few changes
to highlight. To start with, the leading-order action simply replaces the electron field
Ψ with the spinless meson field, Φ, thereby changing Eqs. (13.125) and (13.126) to

SB =

∫
d4x

{
1
2
(
E2 − B2

)
+

i
2

(
Φ∗DtΦ − DtΦ

∗Φ
) − 1

2mπ
DΦ∗ · DΦ + · · ·

}
,

(13.157)

and

SN =

∫
d4x
{
M + ZeA0 − hπ Φ

∗Φ + · · ·
}
δ3(x), (13.158)

where, as before, DμΦ = (∂μ + ieAμ)Φ and a field redefinition is used to eliminate
a redundant interaction ∇ · E δ3(x), thereby absorbing its coefficient, CDπ, into hπ,
along the lines described below Eq. (13.131).

The resulting effective coupling hπ now does double duty: it contains the leading
contributions from the pion-nucleus strong force in addition to any contributions to
do with the nuclear charge radius. It can do both because both are short-distance
effects, and hπ is the unique lowest-dimension effective coupling (and as a result
captures the leading long-wavelength implications of any short-distance effects
localized near the nucleus).

Given the action of (13.157) and (13.158), the calculation of the leading energy
shift goes through word-for-word as in the previous section, culminating, for S-wave
states, in the main result, Eq. (13.153):

δEn0 = 2
(

Zα
n

)3

m2
π η�πε�π. (13.159)

What is no longer true for pions is formula (13.145) relating η�ε� to the nuclear
charge radius, since hπ now contains (larger) contributions from pion-nucleus strong
interactions.

The difference can be made more explicit by trading ε� for λπ using the second
equality of (13.102), or for hπ using Eq. (13.99) with � = 0. This gives

δEn0 = 2
(

Zα
n

)3 [λπ (ε0) − 1
λπ (ε0) + 1

]
m2
πε0 = 2

(
Zα
n

)3 [ mπhπ (ε0)
mπhπ (ε0) + 2πε0

]
m2
πε0,

(13.160)

where ε0 might be a typical near-nuclear scale at which the interaction’s strength is
determined. This last expression reduces to (13.155) only if mπhπ0 � 2πε0, which
is true for nuclear charge radii but typically not so for pion-nuclear interactions. In
this sense, the RG resums all orders in the dimensionless combination mπhπ0/(πε0).
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A more useful expression trades the combination η�ε� for something else
physical, so that (13.159) becomes a prediction relating two observables. For pions
a useful observable to use is its strong-interaction elastic scattering length with the
nucleus, defined to be the scattering amplitude obtained for the residual short-range
nuclear forces once Rutherford scattering from the Coulomb potential is subtracted
out.

This amounts to fixing η�ε� by comparing with the S-wave part of the result found
in Exercise 13.2:

e2iδ0 =
1 − ik η�ε�
1 + ik η�ε�

. (13.161)

Since the wave-numbers associated with atomic states are extremely low compared
with nuclear scales, it suffices when comparing to use only the scattering length, as,
given by phase-shift’s low-energy limit

k cot δ0 � −1/as + O(k2), (13.162)

which is read from the low-energy cross section: σle � 4πa2
s . Eq. (13.161) then

shows

as = η�πε�π. (13.163)

The experimental fact that this scattering length is not that different from nuclear
scales verifies that the strong pion-nucleus interaction is not in the small-ε� limit.

Using this in (13.159) gives a direct connection between the fractional nucleus-
induced atomic energy shift and the scattering length for low-energy pion-nucleus
scattering:

δEn0

|En0 |
� 4

(
Zαmπ

n

)
η�πε�π =

4
n

(
as

aBπ

)
, (13.164)

which uses the definition (13.156) of the pionic Bohr radius. For the ground state
n = 1 this reproduces what is known as the Deser formula for mesonic atoms [355].
As is usual for an EFT analysis, corrections to this expression should arise from
higher-dimension interactions localized at the source, and because of their higher
dimension would be expected to be suppressed by further powers of as/aB (and not
by some not-small strong-interaction coupling, like gNππ of §8.2.3).

Relativistic Near-Nucleus Effects

Although the compact central source described by the first-quantized action is
necessarily heavy, nothing forces the various bulk fields discussed above to be non-
relativistic. In fact, one might worry that a relativistic treatment eventually becomes
mandatory, if the near-source boundary condition is imposed sufficiently near to
the compact object. In particular, one might imagine relativistic bulk kinematics
to be important if the evolution of couplings like h(ε) are to be followed down
to distances small enough that relativistic kinematics become relevant where the
boundary conditions are to be applied.

For instance, if R is a nuclear size then once mR <∼ Zα near-nucleus Coulomb
potential energies are of order Zα/R >∼ m, raising the possibility that a non-
relativistic treatment might not get the nuclear boundary conditions quite right
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because the behaviour of fields near r = R are not treated sufficiently accurately.
This regime is also not hypothetical, since for R ∼ 1 fm the electron mass satisfies
meR ∼ 1/400 and so can be smaller than Zα ∼ Z/137.

On the other hand, any error due to this mistreatment of the boundary condition
lies only in a short-distance component of the states relative to atomic scales, and
so should be captureable by the usual expansion in powers of v/c, as is done using
standard methods (like NRQED, as described in §12). This section shows both of
these statements are true: on one hand, a relativistic treatment of the boundary
condition does change the relation between effective couplings and RG-invariants;
on the other hand, it does not change the relationship between observables and these
RG invariants in a way not captured by the usual nonrelativistic expansions.

Relativistic Crossover

The crossover to relativistic running of h(ε) is most simply described for relativistic
bosons, and is discussed here since it closely resembles the Schrödinger treatment
given above (see [356] for the treatment of Dirac fermions). It turns out that the RG
evolution of h(ε) changes in a relativistic regime because the bulk potential seen by
the relativistic boson transitions from being dominated by 1/r behaviour to 1/r2 for
small enough r . To see why, recall that for relativistic spinless bosons the bulk action
replaces (13.157) with the Klein–Gordon form

SB =

∫
d4x

{
−1

4
FμνFμν − Dμφ

∗Dμφ − m2φ∗ φ + · · ·
}

,

while the leading coupling to the first-quantized system remains as in (13.165),

SN =

∫
d4x
{
M + ZeA0 − hφ φ

∗φ + · · ·
}
δ3(x), (13.165)

and as before, Dμφ = (∂μ + ieAμ)φ.
The bulk Klein–Gordon field equation for φ in a Coulomb potential,A0 = −Ze/r ,

is given by (DμDμ − m2)φ = 0, and so for a stationary mode function, UN(x, t) =
uN(x) e−iωt , the spatial part satisfies

0 =
[
−(∂t + ieA0)2 + ∇2 − m2

]
UN =

[
∇2 − 2ωeA0 + (eA0)2 − κ2

]
uN, (13.166)

where κ2 = m2 − ω2 for bound state solutions (for which ω < m).
Notice that (13.166) has the same form as for the Schrödinger problems studied

earlier – i.e. the form ∇2φ −U φ = κ2φ – with ‘potential’ U (x) defined by

U (r) := 2ωeA0 − (eA0)2 = −2ωZα
r

− (Zα)2

r2 , (13.167)

containing both 1/r and 1/r2 components. As a result, the explicit radial mode
functions now solve the bulk radial equation (using d = 3)

r2 d2Rn�

dr2 + 2r
dRn�

dr
+
[
wr + v − �(� + 1) − κ2r2

]
Rn� = 0, (13.168)

where

w = 2ωZα , and v = 2mg = (Zα)2. (13.169)
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Comparing this with the Schrödinger–Coulomb radial equation, (13.132), shows that
this is again solved by confluent hypergeometric functions as in (13.133),

R±n� (r) = (2κr)
1
2 (−1±ζ) e−κrM

[
1
2

(
−w
κ
+ 1 ± ζ

)
, 1 ± ζ; 2κr

]
, (13.170)

with M (a, b; z) as given in (13.134) but with the inverse-square potential implying

ζ =
√

1 + 4�(� + 1) − 4v =
√

(2� + 1)2 − 4(Zα)2. (13.171)

The presence of an inverse-square potential means that a nonzero effective
coupling, hφ, arises even for S-wave states, since hφ = 0 never solves the fixed-
point equations. To see this in detail recall that (13.165) implies that the near-nucleus
boundary condition for the Klein–Gordon field is the same as for the Schrödinger
field, but with the replacement 2mh → hφ, and so

4π
(
r2 ∂

∂r
ln uN

)
r=ε

= hφ. (13.172)

The RG flow implied by this is cast in terms of λφ defined by (13.117),

hφ
2πε

+ 1 � λ̂φ (ε) := ζ λφ (ε), (13.173)

with λ̂φ naively satisfying the evolution equation (13.118), which is solved (as usual)
by

λφ (ε) =
λ̂φ
ζ

(ε) =
(ε/ε�)ζ + η�
(ε/ε�)ζ − η�

� 1 + 2η�
( ε�
ε

)ζ
+ · · · , (13.174)

where the last equality takes the limit ε� � ε. Specializing to � = 0 gives

ζs = ζ(� = 0) =
√

1 − 4(Zα)2 � 1 − 2(Zα)2 + · · · (13.175)

and because the right-hand side is not unity the fixed points of this flow are
inconsistent with hφ = 0, as is seen by using (13.174) in (13.173), leading to

hφ (ε) � 2πε
[
(ζs − 1) + 2ζsη�

( ε�
ε

)ζs
+ · · ·

]
� 4πη�ε� − 4π(Zα)2

[
ε + 2η�ε� ln

( ε�
ε

)]
+ · · · . (13.176)

It is the first term in the second line of (13.176) that dominates in the Schrödinger
case and leads to the leading ε-independent identification hφ � 4π

3 m(Zα)r2
c used

when discussing the nuclear charge radius. But for situations where ε�/ε <∼ (Zα)2 it
is instead the second term that dominates, leading to the alternate RG evolution hφ �
−4π(Zα)2ε. This new regime would be the appropriate one when ε ∼ rc is of order
a nuclear radius and mrc <∼ Zα (making the near-nucleus kinematics relativistic).

Although this shows that the relation between η�ε� and h(ε) changes once
relativistic kinematics dominate in the boundary-condition regime, what does not
change at leading order is the relation between RG invariants and charge radius,
(13.145), or energy-shift formulae like (13.153) or (13.154). It is for this reason
that the leading energy-shift formula is not changed, and standard nonrelativistic
expansions remain unchanged.
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Although qualitatively correct, the above RG discussion must be done with more
care once higher orders in α are sought. This is because once the order (Zα)2 term
in ζ is included, so must subdominant O(2kr) corrections in the small-r expansion
of mode functions like RnL(kr), since these are of relative order 2κε � 2Zαmε/n
and it is the regime mε ∼ Zα that is of interest. For the Klein–Gordon equation the
small-r expansion of the S-wave radial mode functions takes the form

R+n0(ε) � (2κε)
1
2 (−1+ζs )

[
1 − Zαmε +

2n2 + 1
6n2 (Zαmε)2 + · · ·

]
(13.177)

R−n0(ε) � (2κε)
1
2 (−1−ζs )

[
1 − mε

Zα
+ (mε)2 − 2n2 + 1

6n2 Zα(mε)3 + · · ·
]

,

using 1 − ζs � 2(Zα)2 and κ =
√

(m − ω)(m + ω) � Zαm/n, where n is the
principal quantum number. In principle, the evolution of hφ in this regime is captured
by returning to the full boundary conditions, (13.88) and (13.89), rather than the
simpler version found using only the leading power of 2κε. Energy shifts and
scattering amplitudes are then computed as before by finding C−/C+ using (13.172)
and comparing with the conflicting demands coming from r → ∞.

13.4 Summary

First-quantized methods bring the EFT discussion full circle: successively integrating out high-energy
modes can lead to effective theories at lower energies involving very massive but approximately stable and
slowly moving nonrelativistic particles. In many situations these massive particles only appear individually
and are too small to have their structure resolved, making their centre-of-mass and overall rigid-body
orientation the important low-energy degrees of freedom. In these circumstances second-quantized EFT
methods can be overkill: it is simpler to directly focus on the centre-of-mass motion using first-quantized
techniques, leading to a good old-fashioned single-particle quantum description of these heavy states.
This represents a full circle inasmuch as single-particle quantum mechanics – which is usually one’s first
experience with quantum systems – here emerges systematically as the low-energy EFT of slowly moving
and compact particles. It turns out that we were all using effective field theories right from day one.

Having a systematic framework for having first-quantized techniques emerge from second-quantized
EFTs offers additional advantages beyond the usual ones associated with efficiently isolating any hierarchy
of scales. In particular, it shows how to systematically couple first- and second-quantized systems to one
another with corrections included order-by-order in any small parameters and scale ratios. It also reinforces
how exploiting separations of scales is equally useful to classical systems, where using the hierarchy
between fast and slow degrees of freedom has also been the subject of much study [358], recently including
computing gravitational radiation from compact orbiting black holes [359].

A useful feature that the first-quantized formulation highlights is the role played by boundary condi-
tions for the interaction between fields and first-quantized effective systems. Standard matching proce-
dures for the effective couplings in a first-quantized formulation of small compact sources are efficiently
expressed in terms of near-source boundary conditions for the bulk fields with which it interacts, that
can be derived directly from the source’s first-quantized effective action. More details of the source’s
structure get included into the boundary condition by including more effective interactions in this action,
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thereby generalizing standard ‘multipole’ techniques from electromagnetism to arbitrary bulk fields.
Furthermore, this grounding of boundary conditions into the choice of the source’s low-energy effective
action explains why some boundary conditions (e.g. linear Neumann, Dirichlet and Robin boundary
conditions) arise so frequently in physical problems.

The ability to turn an effective first-quantized particle action into boundary conditions for bulk fields
also has other uses, such as allowing EFT methods to be employed in ordinary quantum mechanical
settings. In particular, they remove the guesswork associated with singular potentials, which have long
been known to be very sensitive to choices of boundary conditions near the potential’s singularity [349].
The EFT picture described in this chapter directly relates the freedom to choose boundary conditions to the
choices available in the action describing the heavy compact object responsible for the singular potential
in the first place.

Exercises

Exercise 13.1 Generalize the point-particle action of (13.19) to a curved target space
with metric gμν (x) by using h = gμν (χ)χ̇μχ̇ν as the induced metric on the
particle world-line. By repeating the steps leading to Eq. (13.23) show that the
classical equations of motion expressed using proper time dτ2 = −gμν dxμ dxν

become the equations for an affinely parameterized geodesic

d2χμ

dτ2 + Γ
μ
νλ

dxν

dτ
dxλ

dτ
= 0,

where Γ
μ
νλ represents the Christoffel symbol built from gμν , defined by (C.91).

Exercise 13.2 Consider a Schrödinger field coupled through a contact interaction to a
first-quantized source – with action given in (13.64) and (13.65) – and use the
boundary condition (13.68) to compute the cross section for S-wave (� = 0)
scattering of Ψ particles from a stationary compact centralized source when
d = 3. Express your result in terms of the RG-invariant quantities ε� and
η� that govern the evolution of h(ε), and show that the scattering phase shift
satisfies

e2iδ =
1 − iη�kε�
1 + iη�kε�

,

where k2 = 2mE for E the incident energy in the source’s rest frame. For low-
energy scattering the scattering length, as, is defined by k cot δ � −1/as +

O(k2). Show that as is in this case given by

as = η�ε�.

Exercise 13.3 Consider a charged wire with charge/length σ, whose electric field
points radially (perpendicular to the wire) and is given by

E =
σ

2πr
x̂,

where r = |x| is the perpendicular distance from the wire and x̂ denotes the
unit vector pointing radially outward in the plane perpendicular to the wire.
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Imagine placing a polarizable atom in this electric field, recalling that – as
discussed for neutral particles in §12.3.1 – the electromagnetic interactions
of a polarizable atom are proportional to pEE2 (with pE denoting the atomic
polarizability). Show that an atom a distance r = |x| from the charged wire
experiences an interaction energy

V (x) = −1
2
pEE2 = − pEσ2

8π2r2 ,

of inverse-square form, V = −g/r2, with g = pEσ2/(8π2). The negative sign
arises because the atom’s polarizability gives it a dipole moment dE ∝ E in
the presence of an applied field, and this dipole lowers its energy by aligning
with the field. In this case, cylindrical symmetry (in three spatial dimensions)
allows one to use the analysis in the main text for inverse-square potentials
with d = 2. For any angular momentum, � what is the critical charge density,
corresponding to the value g = gc above which ζ becomes imaginary? What
about the special case � = 0?

For a gas of polarizable atoms in a trap surrounding such a charged wire
assume that any atoms that hit the wire get ejected from the trap (so the wire is
a perfect absorber – see the discussion surrounding Eq. (13.124)). What is the
value of the effective coupling λ that corresponds to this boundary condition?
What is the corresponding value of the contact interaction h(ε)?

Exercise 13.4 For d = 3 use boundary condition (13.105) together with the condition
that the uN is normalizable as r → ∞ to find the bound states for a Schrödinger
field interacting with a compact point source through both a long-range
inverse-square potential and a delta-function contact interaction. (General
solutions to the radial equation satisfied by R (r) with an inverse-square poten-
tial can be found in terms of confluent hypergeometric functions, as described
in the main text.) Show that the energy of these bound states is given by

E = − 2
mε2

�

⎡⎢⎢⎢⎢⎢⎣
Γ
(
− 1

2ζ
)

Γ
(
+ 1

2ζ
) ⎤⎥⎥⎥⎥⎥⎦

−2/ζ

.

What is ζ in this formula? Under what conditions on the parameters can these
bound-state energies be trusted? (Self-consistency requires them to lie within
the EFT regime.)

For ζ real show that these bound states of the joint inverse-square/delta-
potential system amount to those that are supported by the compulsory delta-
function interaction alone. When ζ is imaginary (so g > gc) but λ̂ is real show
that there is instead a tower of bound states with energies related by a discrete
scale transformation that are supported by the inverse-square potential itself.

Exercise 13.5 When λ̂ is complex show that the bound-state energies of the joint
inverse-square/delta-potential system are complex, E = E − 1

2 iγ̂, and given by

E = − 2
mε2

�

⎡⎢⎢⎢⎢⎢⎣
(
ζ − iy�
ζ + iy�

)
Γ
(
− 1

2ζ
)

Γ
(
+ 1

2ζ
) ⎤⎥⎥⎥⎥⎥⎦

−2/ζ

.

The imaginary part of this energy gives the bound state’s decay rate, or inverse
mean life γ̂ = 1/τ, due to the loss of probability at the source. For d = 3
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compute γ̂ as a function of the real and imaginary parts of h(ε0), defined at a
microscopic scale ε0. How does the result depend on the RG invariants y� and
ε�?

Exercise 13.6 For complex h scattering phase shifts need no longer be real and so are
written eiγ with γ� = δ� + iη� . Unitary scattering corresponds to η� = 0. For
d = 3 the elastic and absorptive cross sections are

σ(�)
el = f� (k2)

[
1 + e−4η� − 2e−2η� cos 2δ�

]
and σ(�)

abs = f� (k2)
(
1 − e−4η�

)
,

where f� (k2) = π(2� + 1)/k2 and k2 = 2mE for incident particles of energy
E. For each partial wave show that scattering from an inverse-square potential
in d = 3 dimensions implies that

e2iγ =

[
1 − A eiπζ/2

1 − A e−iπζ/2

]
eiπ(�−l) with A =

(
iy� − ζ
iy� + ζ

) (
kε�
2

)ζ Γ (
1 − 1

2ζ
)

Γ
(
1 + 1

2ζ
) ,

where l is defined by 2l + 1 := ζ =
√

(2� + 1)2 − 8mg.

Use these expressions to prove that there is no absorption – i.e. η� = 0 –
for real λ̂ (for which y� = 0 or y� → ±∞), both when ζ is real and when ζ
is pure imaginary. Show that for small incident momentum the elastic cross
section approaches ε2

� while the absorptive cross section is proportional to
ε�/k. (Historically, this small-k dependence was what convinced people that
ordinary quantum mechanics could account for measured rates for low-energy
neutron absorption reactions [360].)

Exercise 13.7 Use the small-r boundary condition of the main text to show that
for scattering from the combined Coulomb/inverse-square/delta-function
potential,

V (r) = −v
r
− g

r2 + h δ3(x),

in d = 3, with real v, h and g, the scattering phase shift is

e2iδ� =
N++ − η�(2ikε�)ζN+−

N−+ − η�(−2ikε�)ζN−−
eiπ(�−l) ,

where

Nab :=
Γ(1 + b ζ)

Γ
[

1
2

(
a iw

k
+ 1 + b ζ

)] ,
with a, b = ± and w = 2mv. Assume g < gc so that ζ =

√
(2� + 1)2 − 8mg is

real, and define l using ζ =: 2l + 1.

Show that this reproduces of the results of Exercise 13.6 when the Coulomb
contribution is turned off (w → 0), and those of Exercise 13.2 for S-wave
scattering from a delta-function potential. Show that the above expression also
reproduces the usual Rutherford expression

e2iδ� =
Γ(� + 1 − iw/2k)
Γ(� + 1 + iw/2k)

(Rutherford limit),

when g → 0 and in the absence of a delta-function potential (ε� → 0).
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Exercise 13.8 In Type IIB string theory D7 branes (objects with seven spatial
dimensions that sweep out an 8-dimensional world-surface) in 10 spacetime
dimensions provide completely different examples of localized sources to
which PPEFT methods can be applied. Since D7 branes are ‘fundamental’,
this example also provides insight in how the RG evolution might behave for
such objects (the brane couplings do not run).

For the present purposes the fields sourced by D7 branes are the
10-dimensional spacetime metric, gMN, and a complex scalar field

τ = C0 + i e−φ and τ̄ = C0 − i e−φ,

where C0 is called a ‘Ramond-Ramond’ scalar and φ is the 10D dilaton,
related to the string coupling by gs = eφ along the lines described in §10.3.
The bulk action for these fields can be written

SB = −
1

2κ2

∫
d10x

√
−g gMN

[
RMN +

∂Mτ ∂Nτ

2 (Im τ)2

]
,

where RMN is the Ricci tensor for the 10D metric (see Appendix A.2.1
for definitions). Assuming the world-volume of the D7 brane spans the
{x0, x1, · · · , x7} = {xa} dimensions, use complex coordinates z = x8 + ix9

and z̄ = x8 − ix9 in the two transverse directions and show that the 10D field
equations for τ and the metric are solved if the 10D metric is written

gMN dxMdxN = ηab dxadxb + e2L(z,z̄) dzdz̄,

with τ and L satisfying the equations

∂∂τ +
2∂τ∂τ
τ̄ − τ = 0 and 2∂∂L =

∂τ∂ τ̄

(τ − τ̄)2 .

The first of these is solved by any holomorphic function, τ = τ(z), for which
∂τ = 0.

It happens that the field C0 is multi-valued very close to a D7 brane situated
at z = zi , requiring a monodromy τ → τ + 1 as z − zi → (z − zi) e2πi. This,
together with holomorphy – i.e. τ = τ(z) – requires that solutions to the field
equations take the following asymptotic form [361]

τ(z) � 1
2πi

ln(z − zi) + · · · and e2L(z,z) � k Im τ,

for constant k. Notice this implies a profile for φ, with eφ → 0 as |z− zi | → 0.

The first-quantized action for a D7 brane can be taken as

Sb = −
∫

d8x
√
−γ Tb (τ, τ),

where γab = ηab is the usual induced metric and Tb = T∗/Im τ, for constant
T∗. Use the techniques of this chapter to show that this brane action implies
that the bulk scalar must satisfy the near-brane boundary condition

2π
κ2

[
r ∂rτ

4 (Im τ)2

]
zi

=
∂ Tb

∂ τ
,
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where r = |z |. Similar arguments applied to the metric [362] imply that the
metric function L also must satisfy

−2π
κ2

[
r ∂r L

]
zi
= Tb (τ, τ).

Show that the near-brane profiles of τ and L are such that both sides of these
conditions share the same dependence on |z | and so can be evaluated without
requiring a renormalization of the parameter T∗. Show that both boundary
conditions boil down to the single condition 2κ2T∗ = 1 that relates T∗ to the
gravitational coupling κ. Notice that this relation is satisfied by the string
theory predictions for D7 branes [363]

T∗ =
1

(2π)7(α′)4 and κ2 =
1
2

(2π)7(α′)4,

with α′ as defined in §10.3.1.





Part IV

Many-Body Applications
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About Part IV

The systems whose low-energy limit has been analyzed to this point all involve
small numbers of particles, with both relativistic and nonrelativistic kinematics.
Effective field theories are also useful tools for more complicated many-body
systems, however, and some representative examples of these are explored in the
remaining parts of this book.

Several conceptual issues arise when treating many-body systems using these
tools. A relatively trivial one of these remarks that from the fundamental point of
view many-body systems are not really at low energies. Because in everyday life they
can involve enormous numbers of atoms, the energy tied up in their rest mass can
be huge. This is similar to the issue encountered with baryons in chiral perturbation
theory, at the end of §8, and its resolution is the same: one works at low energies
within a subsector of the Hilbert space carrying a specified amount of a conserved
charge. Rather than choosing the ground state of the B = 0 or B = 1 sector, as in
chiral perturbation theory, one might work within the B = 1023 sector when thinking
about a macroscopic number of atoms.

An important change relative to the nonrelativistic systems described in Part III
is the loss in many-body applications of conclusions like those surrounding Eq.
(12.5) that are implications of non-linearly realized Poincaré invariance. Formally,
these relations amongst the low-energy couplings arose in Part III as a consequence
of matching the nonrelativistic theory to a relativistic underlying theory, for which
the only breaking of Lorentz invariance comes from integrating out the antiparticle.
For many-body systems the UV physics usually breaks Lorentz invariance in many
ways due to the preferred frame effects provided by the system’s many background
atoms, preventing the inference of relations like (12.5). Indeed, other spacetime
symmetries are often broken by the background matrix of atoms as well (such as
rotation invariance or translation invariance).

A final issue concerns dissipation and the very existence of an action. This issue
arises because for macroscopic systems one rarely follows all of the low-energy
degrees of freedom and as a result one necessarily ignores some degrees of freedom
with which the system can entangle or exchange energy and information. In short,
most many-body applications really are open systems, rather than proper Wilsonian
systems.

The final chapter of the book aims at systems for which this open nature of many-
body problems plays a more central role. Although methods for handling quantum
open systems have been known for some time, the interpretation of these methods in
terms of effective field theories in open systems is comparatively less well-developed.





14 Goldstone Bosons Again

Goldstone bosons feature prominently in the low-energy limit of many systems, and
because they interact weakly at low energies they can often be studied in relative
isolation. As discussed in §4.1.2, both their appearance at low energies and their weak
low-energy interactions have their origin in Goldstone’s theorem, which guarantees
on very general grounds that their energy and interactions must vanish at long
wavelengths.

This chapter examines several examples of Goldstone modes in many-body
systems, with examples involving both gauged and global internal symmetries, as
well as broken spacetime symmetries. These examples are presented with several
goals in mind. A first goal is simply to show that §4.2 applies equally well within
nonrelativistic contexts. Second, some of the ideas encountered in these examples
also prove useful in later sections. But most importantly, effective field theories
and spontaneous symmetry breaking in nonrelativistic many-body systems also
involve features that are interesting in their own right: Goldstone bosons can have
unusual dispersion relations, and their number can differ from the number of broken
symmetry generators; effective theories can be nonlocal; low energies can coincide
with large momenta; and so on.

14.1 Magnons ♦

The first many-body example to be considered aims at the low-energy behaviour of
spin systems, both for ferromagnets and antiferromagnets. Both of these systems
consist of atoms for whom electron spin plays a significant role in how the atoms
order once brought together in bulk. What is important about the relevant spins is
that they are typically free to rotate with comparatively low energy cost, subject to
spin-dependent inter-atomic interactions. When this is so, the interplay of how each
atom responds to the spins on its various neighbours can determine how atomic spins
align relative to one another.

This spin-spin interaction can arise microscopically in a variety of ways – often
due to exchange effects for the Coulomb interactions of the electrons most relevant
for inter-atomic interactions [364] – whose details are largely not important for
the purposes of this section. The interaction is often modelled in terms of nearest-
neighbour spin-spin couplings with Hamiltonians of the form [365, 366]

Hspin =
∑
〈i j〉

Ji j si · sj , (14.1)

391
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Fig. 14.1 A cartoon illustrating how any given spin is parallel (antiparallel) to its four nearest neighbours for
ferromagnetic (antiferromagnetic) order in two dimensions.

where si is the spin on the atom labelled by ‘i’ and the sum is over atomic positions
(typically sites on some lattice) with ‘〈i j〉’ indicating that the sum runs over only
nearest neighbours rather than all possible atomic pairs. Here, Ji j represents an
energy of alignment that, when negative, favours spins that point in the same
direction and, when positive, favours spins that instead anti-align so that their spins
point in opposite directions.

For models like (14.1) macroscopic numbers of spins tend either to align or anti-
align within their ground state, as sketched in the two panels of Fig. 14.1, according
to which of these takes less energy. A system for which neighbouring spins tend to
align is called a ferromagnet, and it acquires a macroscopic magnetization in which
the magnetic moment of each atom adds coherently to give a large sum.

If neighbouring spins prefer to anti-align, however, then the ground state consists
of spins that point in alternating directions, for which no net macroscopic magneti-
zation need be present. Such an arrangement is called antiferromagnetic, and is still
ordered even though the net magnetization in the ordered state vanishes. This type of
ordering is called Néel ordering [367].

Both ferromagnets and antiferromagnets exhibit spontaneous symmetry breaking,
because a preferred direction is picked out once the spins all align or anti-align, and
this means the ground state is not invariant under the symmetry of Hspin that rotates
all spins through a common angle. The remainder of this chapter aims to describe the
Goldstone bosons associated with this ordering, and the effective action that robustly
describes their low-energy interactions.

The next two subsections examine antiferromagnetism and ferromagnetism in
turn, following the treatment in [107]; treating them separately because the results
obtained turn out to differ considerably. From the low-energy perspective, what
makes ferromagnets and antiferromagnets differ is the way they realize time-reversal
symmetry.

14.1.1 Antiferromagnetism

Consider first antiferromagnets, since these resemble the spontaneous symmetry
breaking encountered earlier for relativistic systems more closely than do ferromag-
nets. For an antiferromagnet, the order parameter, N, can be taken to be the staggered
sum of the spins, si , for each lattice site, ‘i’:

N =
∑
i

(−)i si , (14.2)



393 14.1 Magnons

where the sign, (−)i , alternates for adjacent atomic sites in such a way that it is +1
for the sublattice of sites on which the spin is up (say) and is −1 for sublattice of
down spins. This ensures these two lattices contribute in the same way to the average
of N in the system’s ground state, which allows 〈N〉 to be nonzero.

Time-reversal invariance, T , imposes important constraints on the low-energy
action of an antiferromagnet. This might seem surprising given that T reverses the
sign of each individual spin, si → −si , and so also reverses the order parameter,
N → −N. At first sight, one might therefore expect the existence of a nonzero 〈N〉
therefore to break time-reversal invariance.

This turns out not to be true, however, because T can be combined with another
broken symmetry, S, to obtain a transformation, T̃ = T S, that is not broken when
〈N〉 � 0. This other symmetry, S, consists of a translation that maps the whole
sublattice of sites pointing in one direction onto the sublattice aligned in the opposite
direction. For instance, in the simple configuration illustrated in Fig. 14.1 S could
correspond to a translation to the right (say) by a single lattice site. Since both S
and T act to reverse the direction of N, when they are performed together N remains
unchanged.

The basic ordering, 〈N〉 � 0, breaks the underlying rotation symmetry of the
atomic spins, si → O si , for OTO = I, so the general arguments of §4.1.2 imply
the spectrum of low-energy fluctuations should contain Goldstone particles – called
magnons – whose low-energy EFT is the main focus in what follows. As usual, the
quantum numbers and dominant interactions at low energies for Goldstone modes
are dictated purely by the symmetry-breaking pattern and so can be identified very
robustly using the general tools described in §4.2.2 (and Appendix C.6).

The first step is to identify the symmetry-breaking pattern, G → H , relevant to
antiferromagnets. In this case, the symmetry of the action (or Hamiltonian) consists
of the group of spin rotations in three dimensions: G = SO(3), the group of 3 × 3
orthogonal matrices,1 {O}, describing 3-dimensional spin rotations. [Alternatively,
this can also be described as G = SU (2), the group of 2 × 2 unitary matrices, {U },
acting on the underlying electron spins, where (schematically) Pauli matrices satisfy
U† σiU = σ jOi

j for U ∈ SU (2) and O ∈ SO(3). These are interchangeable at the
level of their Lie algebra since SU (2) shares the same Lie algebra as G = SO(3),
and so the distinction between these two groups doesn’t play an important role in this
section’s discussion.]

It is tempting to conclude that because G is at heart a rotation, it is therefore a
spacetime symmetry that acts on vectors like ∇ as well as spins (as opposed to being
an ‘internal’ symmetry that acts only on field labels and not also positions). This
would be important if so, because the tools developed in §4.2.2 assume the symmetry
to be internal.

There are several reasons to see why G really is an internal symmetry, at least to
a very good approximation. One such starts from the specific Hamiltonian given
in (14.1), which is invariant under rotations si → O si without requiring any
transformation on the spin’s position (or label ‘i’).

Furthermore, for spins sitting on a lattice of atoms the lattice itself already breaks
rotational and translational symmetries. So these are not available to be rebroken by

1 The ‘S’ in SO(3) and SU (2) stands for ‘special’ and means that these matrices must also have unit
determinant.
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the antiferromagnetic order. (The Goldstone bosons for the spontaneous breaking of
translational and/or rotational symmetry by the lattice itself also exist in the low-
energy spectrum in the form of phonons, but these are not the focus of the present
section.)

Microscopically, atomic spins ultimately have their origins in the spins of slowly
moving particles like electrons or nucleons, whose electromagnetic interactions are
argued in §12.1.1 to be dominated at low energies by the interactions of L0 of
Eq. (12.1). The point is that L0 is invariant under independent rotations of spins and
spatial vectors (like derivatives or electromagnetic fields), because it never involves
a dot product between spins and other vectors. This is why spin rotations effectively
behave as if they are internal symmetries in many systems.

The same is no longer true once L1 and L2 of Eqs. (12.2) and (12.3) are included,
due to the appearance of magnetic moment (cF) and spin-orbit (cS) interactions. These
are invariant only if both spins and spatial vectors rotate by a common amount, and
so in real systems invariance under separate spin and spatial rotations is ultimately
broken by effects suppressed by at least one power of e/m.

What is the unbroken group, H? Since the order parameter is the vector, 〈N〉,
the group of transformations in G left invariant by 〈N〉 consists of rotations about the
axis defined by 〈N〉 itself. This corresponds to the subgroup H = SO(2) ⊂ SO(3) (or
H = U (1) ⊂ SU (2)), and so the coset space parameterized by the Goldstone bosons
is G/H = SO(3)/SO(2) (or G/H = SU (2)/U (1)). Geometrically, this makes G/H
the space swept out as a unit vector,

�n(ϑ,ϕ) :=
N
|N| , (14.3)

of fixed length is rotated in all directions.2 This two-dimensional space is a definition
of the two-sphere, S2, and so can be parameterized by two angles, (ϑ,ϕ), that define
the direction of �n. Because N(x, t) is a field, the same is true for �n(x, t), and so also
are the two component Goldstone fields ϑ(x, t) and ϕ(x, t).

At this point, the formalism of §4.2.2 could be launched in all its glory,
allowing a systematic construction of the low-energy effective interactions of the
Goldstone fields. However, in this instance this formalism is not necessary since
the variables ϑ(x) and ϕ(x) also provide an equally valid representation of these
fields. The formalism of §4.2.2 uses the freedom to perform field redefinitions to put
the nonlinear transformations of the Goldstone fields into a standard form, for which
the problem of building invariant actions is solved once and for all. But nothing
requires the use of these variables if the action can be derived in other ways. Because
field redefinitions cannot change anything observable, the predictions of Eq. (14.8)
below are completely equivalent to what would have been obtained if instead the
formalism of §4.2.2 had been deployed (see Exercise 14.1).

The action of the nonlinear realization of G transformations on the variables
ϑ and ϕ is straightforward to work out, starting with the standard SO(3) vector
transformation rule for �n:

δ�n = �ω × �n, (14.4)

2 The vector �n is not denoted using a bold-face font in order to emphasize that it is regarded as rotating
independent of spacetime vectors like ∇ and B.
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with the vector �ω representing the three SO(3) group transformation parameters.
Writing the components of the unit vector �n out explicitly

nx = sin ϑ cosϕ , ny = sin ϑ sinϕ and nz = cos ϑ, (14.5)

shows that �n · �n = 1 for any ϑ and ϕ, and (for sin ϑ � 0) implies that the
transformation rule is

δϑ = ωy cosϕ − ωx sinϕ

δϕ = ωz − ωx cot ϑ cosϕ − ωy cot ϑ sinϕ. (14.6)

Notice the characteristic inhomogeneous shifting of a Goldstone field.
The effective lagrangian involving the fewest derivatives that governs the low-

energy Goldstone dynamics is then given (assuming the modified time-reversal
invariance, T̃ ) by

LAF =
F2
t

2
�̇n · �̇n − 1

2
Zab ∂a�n · ∂b�n + (higher derivatives), (14.7)

in which the matrix Zab must be invariant under any residual rotation symmetries
of the underlying spacetime lattice. For some lattice symmetries this imposes as
powerful constraints as would full-blown rotational invariance in space, in which
case Zab = F2

s δ
ab , and this is assumed in what follows.3 At the very long

wavelengths relevant at low energies invariance under lattice translations implies
ordinary translation invariance, so that both F2

t and F2
s are constants.

The lagrangian (14.7) makes clear the physical interpretation of the Goldstone
fields: they describe long-wavelength variations in the direction of the order param-
eter �n ∝ 〈N〉 evaluated for low-energy states that are near, but not precisely in, the
ordered vacuum. The quanta of these waves are called magnons. The lagrangian
(14.7) obscures, however, that there are self-interactions amongst the Goldstone
fields despite its being purely quadratic in �n. These self-interactions are hidden in
the constraint �n · �n = 1, but are made explicit by rewriting (14.7) in terms of the
unconstrained fields ϑ and ϕ, leading to

LAF =
F2
t

2
(
ϑ̇2 + sin2ϑ ϕ̇2

)
−

F2
s

2
(
∇ϑ · ∇ϑ + sin2ϑ ∇ϕ ·∇ϕ

)
+ (higher derivatives).

(14.8)

What role did time-reversal invariance play in this story? What is important is
T̃-invariance forbids terms in LAF that are linear in time derivatives, implying that
the lowest-derivative combinations have the general form

LAF =
F2
t

2
gαβ (ϑ) ϑ̇α ϑ̇β − Zab gαβ (ϑ) ∂aϑ

α∂bϑ
β + (higher derivatives) (14.9)

where {ϑα} = {ϑ,ϕ} and gαβ (ϑ) is the standard SO(3)-invariant metric on the
two-sphere.4

3 The agreement between the implications of lattice rotations and full spatial rotations is an accident for
terms in L with the fewest derivatives, which does not also hold for generic effective interactions.

4 Comparison to (14.8) reveals the G-invariant metric to be the standard 2-sphere metric, gαβdϑαdϑβ =

dϑ2 + sin2 ϑ dϕ2, in the coordinates used.
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In order to interpret the constants Fs and Ft in (14.8) consider the interactions
of small spacetime-dependent fluctuations in the order parameter, corresponding
to perturbations δ�n (or, equivalently, δϑ and δϕ) about the vacuum configuration,
�n0 = 〈N〉. The direction of �n0 can be chosen to point in any convenient direction by
performing an appropriate SO(3) transformation, which is used to ensure �n0 points
along the positive x-axis (in field space). With this choice the vacuum values for ϑ
and ϕ become ϑ0 =

π
2 and ϕ0 = 0.

Writing the canonically normalized fluctuation fields as χ := (ϑ − π
2 )Ft and

ψ = ϕFt , the lagrangian for small values of χ and ψ becomes

LAF =
1
2
(
χ̇2 − v2 ∇χ · ∇χ

)
+

1
2

cos2
(
χ
Ft

) (
ψ̇2 − v2 ∇ψ · ∇ψ

)
+ (higher derivatives),

=
1
2

(
χ̇2 − v2 ∇χ · ∇χ + ψ̇2 − v2 ∇ψ · ∇ψ

)
− χ2

2F2
t

(
ψ̇2 − v2 ∇ψ · ∇ψ

)
+ · · · ,

(14.10)

where v2 = F2
s /F

2
t and terms not written in the second line involve at least six

powers of the fields, or involve more than two derivatives with respect to either
position or time.

The quadratic piece of (14.10) describes two real modes that propagate at low
energies according to the dispersion law:

E2(p) � v2p2. (14.11)

These modes physically represent spin waves: small, long-wavelength precessions
of the vector �n about its vacuum value, �n0. Their quanta, magnons, carry ±1 unit
of the conserved SO(2) spin in the direction parallel to 〈N〉. The parameter v is the
propagation speed for these modes, and the condition that it must be smaller than the
speed of light – i.e. v ≤ 1 in fundamental units – implies that Fs ≤ Ft . The lagrangian
(14.10) reveals how the spin waves interact at low energies, with a strength governed
by 1/F2

t .
Understanding magnon phenomenology also requires knowing their couplings

to electromagnetic fields. To construct these, notice that when the microscopic
physics is described by (12.1) through (12.3) magnetic fields couple to electron
spins dominantly through the effective interaction (eqcF/2m) B · (Ψ†σ Ψ) ⊂ L1 of
Eq. (12.2) – or more generally to mB · (Ψ†σ Ψ) ⊂ L1 of Eq. (12.39). But for the
microscopic lagrangian the combination

�ρ := �j 0 =
1
2
Ψ†�σΨ, (14.12)

is also the charge density of the Noether current, �j μ, for the SO(3) spin-rotation
symmetry.

The interaction between magnons and electromagnetic fields is therefore also
given by a term of the form:

Lem = μ �ρ · B, (14.13)

where �ρ is the Noether charge (or spin) density, computed as a function of �n
using Noether’s theorem for the SO(3) symmetry of the low-energy action LAF .
Matching the couplings to the underlying theory gives at leading order μ = eqcF/m.
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Applying Noether’s theorem to the effective magnon action (14.7) gives the
conserved charge and current,

�ρ = F2
t (�̇n × �n) + · · · and �j = − F2

s (∇�n × �n) + · · · , (14.14)

where the dots are a reminder of the unwritten higher-derivative contributions.
Writing this interaction in terms of unconstrained fields then gives the lowest-

dimension effective interaction between magnons and magnetic fields to be

Lem = μF2
t B · (�̇n × �n) + · · ·

= μF2
t

[
Bx (ϑ̇ sinϕ + ϕ̇ sin ϑ cos ϑ cosϕ) (14.15)

+ By (−ϑ̇ cosϕ + ϕ̇ sin ϑ cos ϑ sinϕ) − Bz ϕ̇ sin2 ϑ)
]
,

which at lowest order in the canonical fluctuation fields involves mixing with the
components of B that are perpendicular to the ground-state configuration �n0:

Lem = −μFt

(
By χ̇ + Bz ψ̇

)
+ · · · . (14.16)

Notice that the time derivative in this interaction ensures invariance with respect to T̃
transformations, under which B → −B. Some implications of this magnon EFT are
explored together with a similar treatment for Ferromagnets, in §14.1.3 below.

14.1.2 Ferromagnetism

For ferromagnets, the order parameter is simply the total spin,

S =
∑
i

si . (14.17)

whose nonzero expectation 〈S〉 � 0 again spontaneously breaks the spin symmetry,
G = SO(3), down to H = SO(2), precisely as for an antiferromagnet. What is
different in this case is the absence of any time-reversal symmetry like T̃ that was
present for antiferromagnets. The low-energy effective theory can therefore contain
T-violating terms, and this changes the properties of its Goldstone bosons in an
important way.

Since the symmetry-breaking pattern for both ferromagnets and antiferromagnets
is SO(3) → SO(2), the nonlinear realization of this symmetry on the Goldstone
boson fields can be carried over from the antiferromagnetic case in whole cloth.
Again defining the unit vector �s = S/|S| and using polar coordinates, ϑ(x, t) and
ϕ(x, t), to describe its direction,

sx = sin ϑ cosϕ sy = sin ϑ sinϕ and sz = cos ϑ , (14.18)

so that �s · �s = 1, the field, �s(r, t), describes long-wavelength variations in the
direction of S.

The action of SO(3) on these variables is again given by Eq. (14.6), and the
term in the effective lagrangian with two spatial derivatives is the same as for an
antiferromagnet,

LF,s = −
F2
s

2
(
∇θ · ∇θ + sin2 θ ∇φ · ∇φ

)
, (14.19)

where invariance under spatial rotations is again assumed for simplicity.
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The new features appear once the leading term involving time derivatives is
constructed, because this time a term is possible having only a single time derivative
(possible because of the absence of time-reversal symmetry). It has the following
general form:

LF,t = −Aα (ϑ) ϑ̇α, (14.20)

where the coefficient function, Aα (θ), is to be determined. At low energies this type
of term always dominates the two-derivative term encountered for antiferromagnets.

To determine Aα (ϑ) requires knowing how it transforms under G transformations.
Performing a general field redefinition of the form δϑα = ξα (ϑ) shows that the
coefficient Aα transforms like a vector field on the target space, G/H ,

δAα = £ξAα := ξβ∂βAα + Aβ∂αξ
β. (14.21)

What is puzzling at first sight is that there is no nonzero choice for Aα (ϑ) that
remains invariant under all G transformations. This is intuitively clear because if any
such quantity existed the vector Aα (ϑ) would be a rotationally invariant vector field
tangent to a 2-sphere, which are known not to exist [368]. (To see why intuitively,
recall that all rotationally invariant vector fields in three dimensions point radially
and so cannot lie tangent to a 2-sphere centred at the origin.)

But now comes the main point: it is only the action that must remain G-invariant,
and not the lagrangian density. So if a choice for Aα (ϑ) could be found that satisfies

£ξAα = ξ
β∂βAα + Aβ∂αξ

β = ∂αΩξ , (14.22)

for some choice of functions Ωξ (ϑ), then the action would be invariant. It suffices
that the right-hand side is the gradient of a scalar because if Aα = ∂αΩ then Aαϑ̇α =
Ω̇ is a total derivative, and so drops out of the action (up to temporal boundary
terms).

Geometrically, this says that Aα may be considered to be proportional to a
G-invariant gauge field (rather than a vector field) defined on the target space
G/H , because the condition that the action be G invariant is that Aα must only
be G-invariant up to a gauge transformation: Aα → Aα + ∂αΩ. This last condition is
equivalent to the invariance of the field strength for Aα:

£ξFαβ := ξγ∂γFαβ + Fγβ∂αξ
γ + Fαγ∂βξ

γ = 0, (14.23)

where Fαβ := ∂αAβ − ∂βAα. A G-invariant action exists if there is a G-invariant
choice for Fαβ tangent to G/H = SO(3)/SO(2) ≡ S2.

The construction of such an invariant field strength is actually quite simple. Since
the coset space is two dimensional, it is always possible to write the field strength
in terms of a scalar field, Fαβ = F (ϑ) εαβ, where εαβ is the antisymmetric Levi-
Civita tensor – see e.g. Appendix A.2.1 – constructed using the coset’s G-invariant
metric. The condition that Fαβ must be G invariant is then equivalent to the invariance
of F :

£ξF ≡ ξα∂αF = 0, (14.24)

which is only possible for all G transformations on a 2-sphere if F is a constant.
All that is required is a gauge potential for which Fαβ = F εαβ on the two-sphere,

S2 = SO(3)/SO(2). But this is the field strength of a magnetic monopole positioned
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at the centre of the two-sphere, so what is required is the gauge potential for a
magnetic monopole configuration. Since for a unit 2-sphere the nonzero component
of the Levi-Civita tensor is εϑϕ = sin ϑ, the solution to Fϑϕ = F εϑϕ may be written
(locally) as:

A±α dϑα = F (±1 − cos ϑ) dϕ, (14.25)

where A+α � 0 throughout the region cos ϑ � +1, while A−α � 0 for the region
cos ϑ � −1.

Although neither A+α nor A−α is everywhere nonzero on G/H , the field strength
Fαβ obtained from them can nonetheless be globally defined provided its magnitude
satisfies a quantization condition [369]. To see why, require A±α to differ by a single-
valued gauge transformation in the region −1 < cos ϑ < 1 — i.e. A+α − A−α = ∂αΩ =
−ig−1∂αg for some group element g = exp(iΩ) satisfying g(ϕ+2π) = g(ϕ), and so
Ω(ϕ + 2π) = Ω(ϕ) + 2πl for integer l. Writing Ω(ϕ) = lϕ + Ω̂(ϕ) where Ω̂(ϕ +
2π) = Ω̂(ϕ) then shows that the only ϕ-independent possibility is A+ϕ − A−ϕ = l,
which leads to a quantization condition for the coefficient F of the form5

F = l
2

, (14.26)

where l is a nonzero integer.
The corresponding lagrangian is then given by

LF,t =
lF3

t

2
(±1 − cos ϑ) ϕ̇, (14.27)

for an arbitrary mass scale Ft . Either sign is equally good for most purposes because
the difference is a total derivative in the action. Combining the contributions of
Eqs. (14.19) and (14.27) then gives the lowest-derivative terms for the magnon
lagrangian,

LF =
lF3

t

2
(±1 − cos ϑ) ϕ̇ −

F2
s

2
(
∇ϑ · ∇ϑ + sin2 ϑ ∇ϕ · ∇ϕ

)
. (14.28)

As is easily verified, the classical equations of motion for the lagrangian, (14.28), are
equivalent to

�̇s + k
(
�s × ∇2�s

)
= 0, (14.29)

an equation – known as the Landau–Lifshitz–Gilbert equation [370] – long known
to describe long-wavelength spin waves in ferromagnets. The constant, k, in this
equation is given by

k =
2F2

s

lF3
t

. (14.30)

For small fluctuations, �s (x, t) = �s0 + δ�s (x, t), the linearization of (14.29) predicts
that δ�s satisfies

δ�̇s + k
(
�s0 × ∇2δ�s

)
= 0, (14.31)

5 For gauge transformations of the form g(θ) = eieΩ this quantization condition becomes F = n/(2e).
It is the freedom to define what one means by ‘charge’ on the target space that allows the introduction
of an arbitrary scale F3

t in (14.27).



400 Goldstone Bosons Again

which describes spin waves transverse to �s0 that at low energies have a dispersion
relation

E(p) = k p2, (14.32)

that rises much more steeply with |p| than does its antiferromagnetic counterpart
(14.11).

For the purposes of coupling to magnetic fields (and also as a reality check), it is
instructive to compute the Noether currents for the SO(3) symmetry that are implied
by this lagrangian density. Since the terms involving spatial derivatives are the same
as for antiferromagnets, the conserved current density is the same as was found in
the previous section

�j = F2
s (�s × ∇�s) + (higher derivatives). (14.33)

When computing the charge density, it is important to keep in mind that LF is not
invariant under G-transformations, but instead transforms into a total derivative:

δLF =
d
dt

{
lF3

t

2

[
ωx cosϕ + ωy sinϕ

sin ϑ

]}
. (14.34)

Using this in the general expression, Eq. (4.7), for the Noether current gives the
conserved charge density:

�ρ =
lF3

t

2
�s + (higher derivatives). (14.35)

This is the reality check alluded to above: (14.35) confirms that �ρ indeed does give
the spin density – just as does its microscopic counterpart, (14.12) – inasmuch as its
direction is completely set by the direction of �s. This reveals the total ground-state
spin density to be

〈S〉 =
lF3

t

2
�s0, (14.36)

thereby providing a phenomenological value for lF3
t .

As is easy to check, using (14.33) and (14.35) in the equation for current conser-
vation, ∂t �ρ +∇ ·�j = 0 reproduces the Landau–Lifshitz equation (14.29). Eq. (14.35)
also shows that it is the conserved charge density, �ρ, itself that is the order parameter
whose expectation value breaks the symmetry:〈

�ρ
〉
=

lF3
t

2
〈
�s
〉
� 0, (14.37)

something that would have been forbidden for a Lorentz-invariant system.
From here on, the determination of the lowest-dimension effective coupling

between �s and magnetic fields proceeds as for antiferromagnetism, with the basic
coupling having the form μB · �ρ. The only difference for ferromagnets is the use
of (14.35) instead of (14.14) when expressing �ρ in terms of ϑ and ϕ. In the
ferromagnetic case this gives

Lem = μ �ρ · B =
μlF3

t

2
(
Bx sin ϑ cosϕ + By sin ϑ sinϕ + Bz cos ϑ

)
,

=
μlF3

t

2
Bx +

μlF3
t

2
(
By δϕ − Bz δϑ

)
+ · · · , (14.38)
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where μ is the effective coupling parameter, expected to match onto eqcF/m at
UV scales, and the expansion in powers of fluctuations chooses variables to ensure
�s0 ∝ 〈S〉 points in the positive x direction, corresponding to ϑ = π

2 +δϑ and ϕ = δφ.
Eq. (14.38) does not involve derivatives of �s because invariance of the interaction
B · �s requires spin rotations to be accompanied by rotations in real space, thereby
making them spacetime rather than internal symmetries. (See §14.3.1 for more detail
about counting Goldstone modes for spacetime symmetries.)

The first term in the final line of (14.38) gives the μB ·
〈
�ρ
〉

interaction energy
between the magnetic field and the spins in the ordered vacuum and this is why it
survives when evaluated at �s = �s0. This also reveals the effective coupling μ as the
material’s magnetic moment per particle, as is also clear from the matching condition
μ � eqcF

/
m.

14.1.3 Physical Applications

For both ferromagnets and antiferromagnets it is useful to couple the magnons to
other degrees of freedom with which the system might be probed. Of particular
interest are those involving magnetic fields, since these couple microscopically to
the underlying spin degrees of freedom that are of interest.

An example of such a probe is the scattering of slow neutrons from magnetically
ordered materials [371]. A nonrelativistic neutron dominantly couples to the mag-
netic field through the magnetic-moment interaction coming from L1 of Eq. (12.39),

Lint = mn B · Ψ†n σ Ψn, (14.39)

where Ψn(x) denotes the neutron field and mn is the neutron magnetic moment
(which is negative and of order e/mn in size). Because of this coupling, neutrons
undergo magnetic-moment scattering from a sample’s atomic electrons.6 The very
different nuclear and electron masses also mean that the recoil distribution of
magnetically scattered neutrons can be distinguished from their much stronger (but
short-ranged) nuclear interactions with a sample’s nuclei.

Integrating out the instantaneous photon exchange using (14.13) and (14.39) leads
to a dipole–dipole interaction, which when used in Fermi’s Golden Rule leads to a
standard expression for the differential cross section for inelastic magnetic neutron
scattering [372] (see Exercise 14.2)

dσ
dE ′dΩ

=
p′

p
(2mnmn)2

(
δi j −

qiqj

q2

)
Si j (ω, q), (14.40)

where p = |p| (and p′ = |p′ |) is the magnitude of the initial (final) neutron
momentum and E ′ = (p′)2/2mn is the final neutron energy. Si j (ω, q) is the
magnetization dynamical structure function, defined by7

Si j (ω, q) =
1

2π

∫
dt

〈
Mi (−q, t) Mj (q, 0)

〉
e−iωt , (14.41)

6 A medium’s electrons dominate over its nuclei in magnetic scattering for the same reason they dominate
in spin ordering: the electron has a much larger magnetic moment due to its much smaller mass.

7 Unlike common practice this definition does not divide Si j by the total number of scattering sites.
Furthermore, the cross section as derived neglects the contribution of electronic spin-orbit coupling to
the magnetization (which is a good approximation for many – but not all – materials).
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with

�M (q, t) := μ
∫

d3r �ρ (r, t) eiq·r, (14.42)

and the expectation-value is taken in whatever state the material is initially in. Here
ω = E − E ′ and q = p− p′ are the energy and momentum transferred by the neutron
to the medium. Expressions like these show that measurements of scattered neutron
momenta and energies can provide information about two-point functions for the
spin density �ρ.

Although this response function can receive contributions from many sources, the
specific contribution from magnon excitations is easily computed using the effective
theory, within which the magnons are weakly coupled states. The result differs for
antiferromagnets and ferromagnets. For antiferromagnets, Eq. (14.14) relates �ρ to �n
and so using

�n = sin ϑ cosϕ ex + sin ϑ sinϕ ey + cos ϑ ez � ex +
1
Ft

(
ψ ey − χ ez ) + · · · ,

(14.43)

leads to the lowest-order result �ρ � Ft (χ̇ ey + ψ̇ ez ) + · · · and so Si j (ω, q) can be
evaluated using the properties of χ and ψ read from the lagrangian (14.10) together
with knowledge of the state in which the magnon field is prepared (such as in a
thermal state).

The simplest case takes the medium initially to be in the no-magnon ground state,
with energies low enough to neglect magnon self-interactions. In this case, Si j (ω, q)
is related to the Wightman function [373] for what are essentially Klein–Gordon
fields (see Appendix C.3.1), 〈χ(x)χ(x ′)〉 and

〈
ψ(x)ψ(x ′)

〉
, leading to

Si j (ω, q) �
Ωμ2F2

t ω

2
[
δi j − (n0)i (n0)j

]
δ(ω − v |q|) (AF magnons).

(14.44)

Here v = Fs/Ft is the speed of magnon propagation and �n0 = ex is the direction of
the ground-state alignment. This shows the appearance of a narrow peak centred on
the magnon dispersion relation that provides a way to measure this relation. (Once
interactions are included, the infinitely narrow peak typically widens to a line-shape
characterized by a magnon decay width Γ.) Ω is the system volume, which arises
because the ground state is assumed translation invariant.

A similar calculation goes through for ferromagnets, though with a number of
instructive differences. For ferromagnets the relation between �ρ and the magnon
fields is instead found from (14.35), which states

�ρ =
lF3

t

2
[
sin ϑ cosϕ ex + sin ϑ sinϕ ey + cos ϑ ez

]
� S0 +

1
Ft

(
ψ ey − χ ez ) + · · · ,

(14.45)

where in this case the canonical fields are defined so that the quadratic lagrangian in
the expansion of (14.28) is

Lquad = −
lF3

t

2
cos ϑ ϕ̇ −

F2
s

2
(
∇ϑ · ∇ϑ + ∇ϕ · ∇ϕ

)
= χψ̇ − k

(
∇χ · ∇χ + ∇ψ · ∇ψ

)
,

(14.46)

with k as given in (14.30).
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Eq. (14.46) shows that the pair {χ,ψ} includes fewer degrees of freedom for
ferromagnets than for antiferromagnets. This can be seen because χ enters (14.46)
with no time derivatives, more like a canonical momentum for ψ than a separate
field. Alternatively, for ferromagnets it suffices to specify χ(x, t0) and ψ(x, t0) at
an initial time to have a well-posed initial-value problem for the linearized field
equations, whereas χ̇(x, t0) and ψ̇(x, t0) would also have to be given separately in
the antiferromagnetic case. As a consequence, the pair {χ,ψ} get quantized more as
the real and imaginary parts of a Schrödinger field than like a Klein–Gordon field,
making their Feynman rules follow as in the nonrelativistic examples of Part III (see
Appendix C.2) rather than a relativistic field [107, 108].

With this in mind a similar calculation as above gives the magnon contribution
to the spin response function, Si j (ω, q), of Eq. (14.41). Just as was true for
antiferromagnets this shows peaks where the neutron scatters to produce a
magnon, although this time satisfying the ferromagnetic dispersion relation
ω = k q2.

The momentum-dependence of the magnon dispersion relation also has impli-
cations for the temperature dependence of the magnitude of the magnetization,
M = |〈M〉|, of a ferromagnet at very low temperatures. Since it is the magnon
field itself that describes the long-wavelength deviations of the magnetization,
deviations at very low temperatures are controlled by the average magnon occupation
number:

M (0) − M (T ) ∝ M (0)
∫

d3p f
(
Ep/T

)
, (14.47)

where f (x) = (ex − 1)−1 is the Bose–Einstein distribution function and E(p) ∝ |p|z
is the long-wavelength magnon dispersion relation.

The temperature dependence of (14.47) is sensitive to z, as is made explicit by
changing integration variables from p = |p| to the quantity x = Ep/T . If E(p) ∝ pz

then:

p2 dp = p2 dp
dE

dE ∝ E2/z E−(z−1)/z dE ∝ T3/z x (3−z)/zdx. (14.48)

For z = 2 this predicts [M (0) − M (T )]/M (0) ∝ T3/2 – a result known as
Bloch’s Law [374] – which agrees well with low-temperature observations with
ferromagnets [375].

14.2 Low-Energy Superconductors ♠

Spontaneous gauge symmetry breaking and the Higgs mechanism8 also arises for
nonrelativistic systems, with superconductors providing the best-known practical
example.

Once cooled below a critical temperature, Tc , superconductors display a number of
remarkable electromagnetic properties, including: the absence of resistance to elec-
trical currents (with super-currents known to persist undiminished for years [376]),

8 More aptly: the Anderson–Higgs mechanism in this case, since the understanding of the mechanism
arguably started with superconductors [60].
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the Meissner effect (in which magnetic fields are expelled from the interior of a
superconductor) [377], flux quantization (in which flux threading a superconducting
ring is quantized with apparently arbitrary precision) [378, 379] and more.

These properties are consequences of the spontaneous breakdown of electromag-
netic gauge invariance by the superconducting material. This spontaneous breaking
is understood to arise because of a tendency for pairs of electrons to bind together
and condense in the ground state in response to comparatively weak attractive forces
that in specific circumstances can dominate their naive Coulomb repulsion. For many
‘traditional’ superconductors the attractive force responsible arises as a consequence
of interactions between electrons and the vibrations of the material’s lattice of ions
[380]. As of this writing the underlying reason for pairing is not equally well
understood for the more recently discovered [381] class of high-Tc superconductors.

Effective field theories contribute in several ways to the understanding of how
electron pairing works. As discussed in more detail in §15.2, EFT methods are
useful for understanding which interactions amongst electrons dominate at low
energies. For traditional superconductors such low-energy methods are relevant
because for them Tc is typically much smaller than typical interaction energies of
atomic electrons.

However, this section deploys EFT arguments to superconductors with a different
goal. The purpose here – closely following the presentation in [382] – is not to
understand why electrons pair (and so why electromagnetic gauge invariance sponta-
neously breaks). Instead, it aims to show how the striking electromagnetic response
of superconductors mentioned above depends only on the fact of electromagnetic
symmetry breaking, and not on the details of why this symmetry breaks. This helps
understand why the predictions for these effects are so much more accurate than
the understanding of the details of electron pairing; the predictions are general
low-energy consequences of the symmetry-breaking pattern itself for which the
microscopic details are (literally) irrelevant.

14.2.1 Implications of the Goldstone Mode

The most robust consequence of spontaneous symmetry-breaking is the existence
of a Goldstone boson [3]. This boson is typically not gapless when the symmetry
is gauged (due to its mixing to become a component of – and thereby generating a
mass for – the relevant gauge boson [60]). It nonetheless mediates physical effects,
and (as usual) its low-energy properties are largely governed purely by the symmetry-
breaking pattern itself.

For superconductors the symmetry-breaking pattern is G → H , where G = U (1)
is the gauge symmetry of electromagnetism and H = Z2 is the two-element
group {h0, h1} with h0 the unit element and multiplication rule h2

1 = h0. The
residual Z2 symmetry here arises because the microscopic order parameter for real
superconductors comes from the pairing of electrons, and so has electric charge
eq = −2e.

To see how this works, recall that the gauge group G acts on charged fields through
the rule

ψ(x) → g ψ(x) = eieq ζ(x) ψ(x), (14.49)
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which defines the U (1) group element g = eieq ζ, where eq is the field’s electric
charge. At the same time, the U (1) gauge potential transforms as

Aμ (x) → Aμ (x) + ∂μζ(x) = Aμ −
i

eq
g−1∂μg. (14.50)

To the extent that all free charges are quantized9 in units of e – i.e. eq = Nq e for
Nq an integer, and Nq = ±1 for at least one particle type – the single-valuedness
of g[ζ] implies that the gauge parameters ζ and ζ + 2π/e should be identified. The
unbroken group H consists of those transformations for which ζ = π/e, since these
act nontrivially on fields with Nq = ±1 but leave unchanged fields (like those for
paired electrons) with Nq = ±2.

Like for any internal symmetry, the Goldstone boson field, φ(x), parameterizes
the coset G/H , which for real superconductors is U (1)/Z2. Normalizing φ so that
its transformation rule under G is

φ(x) → φ(x) + ζ(x), (14.51)

a typical element of G can then be written g[φ(x)] = eieqφ. The fact that the discrete
group Z2 remains unbroken means that φ(x) lives on a circle with φ and φ + π/e
identified.

But having a semiclassical Goldstone field means more than simply having a
field that shifts under the gauge symmetry. After all, defining χ = lnψ, where ψ
transforms as in (14.49), generates a field that shifts under the symmetry without
the need for spontaneous symmetry-breaking. The change of variables from ψ to
χ breaks down, however, inasmuch as a semiclassical expansion for χ around any
finite vacuum χ0 provides a poor description of the expansion of ψ about ψ0 = 0.
So, besides having the field φ shift under gauge transformations it should also be
required to have a sensible semiclassical expansion. In what follows this is built in by
demanding that the effective lagrangian for φ deep within a superconductor have an
equilibrium ground state for which φ = φ0 is constant (and can be chosen to vanish),
about which the effective lagrangian can be expanded at low energies in powers of
φ and its derivatives. The key assumption is that this expansion does not start only
with higher derivatives, but also includes terms with two or fewer derivatives.

Now imagine writing down the low-energy effective lagrangian, Ls , for a super-
conductor, well below its symmetry-breaking scale. Given that a field exists that
shifts under a symmetry, it is always possible to take any other charged field and
make it gauge invariant by absorbing the appropriate power of eiφ. That is, suppose
ψ(x) is a local operator that transforms like (14.49) for some nonzero value of eq .
Then the new operator ψ̃(x) := ψ(x) e−ieqφ(x) is gauge invariant. It is useful to
use the gauge-invariant variable ψ̃i (x) to describe all charged degrees of freedom
because when this is done gauge invariance completely ties φ to the electromagnetic
field:

Ls (A, A0,φ,ψi

)
= Ls

(
A − ∇φ, A0 − ∂tφ, ψ̃i

)
. (14.52)

In previous sections one would proceed by writing Ls =
∫

d3x Ls as a local
expression, and expand it in powers of the fields and their derivatives. However, this

9 We know quark charges come as fractions of e, but because these are confined within colour-neutral
hadrons, in practice all present evidence is consistent with free charges being quantized in units of e.
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is one of the places where many-body applications can differ from the discussion of
previous sections. They can differ because the underlying material can contain the
effects of long-range forces, such as (but not restricted to) the Coulomb force.

In many-body applications this can happen in a variety of ways. First, because
a material always has a preferred rest frame, special relativity is (spontaneously)
broken and high-energy modes need not also have short wavelengths. If a high-
energy mode involves large spatial correlations it can produce nonlocal effects once
integrated out.

Second, it can also be true that not all of a body’s low-energy modes are of
equal interest for any given application. Because of this it can be useful to integrate
out some modes that actually belong in the low-energy theory, simply because no
measurements on them are ever intended. This also can give nonlocal effects (in
addition to other issues, that are the topic of §16) since such modes often have long
wavelengths. When this is done the action of interest is no longer, strictly speaking, a
Wilsonian action (since Wilsonian actions by definition remove states only based on
their energy – plus perhaps also their charges for some other conserved quantities).

For traditional superconductors it happens that the pairing of electrons takes place
over a correlation length, ξ, that can be quite large (compared, say, to the lattice
spacing, a, of the underlying atoms). The effective low-energy description therefore
need not be local if it includes distances, x, satisfying a � x <∼ ξ.

What should the effective lagrangian on these scales look like? Since we assume
ground states for which φ is constant, the lagrangian describing fluctuations near
this ground state can be built using powers of φ and its derivatives. Gauge invariance
then implies that the expansion is in powers of A − ∇φ and A0 − ∂tφ, and the
expansion starts quadratically in these fields because the ground-state configuration
solves the field equations. Specializing to time-independent fluctuations – for which
∂tφ − A0 = 0 – this leads to the form

Ls = Ls0 −
1
2

∫
d3x d3yCi j (x, y)

[
Ai (x) − ∂iφ(x)

]
×
[
Aj (y) − ∂jφ(y)

]
+ (higher orders), (14.53)

with a positive-definite symmetric kernel, Ci j (x, y) = C ji (y, x), that can be nonlocal
up to distances of order ξ. For non-superconducting materials this kernel would
vanish, leaving the energy to be governed only by derivatives of A (i.e. field strengths
like B = ∇ × A) rather than A itself.

For simplicity of presentation, in what follows it is assumed that Ci j (x, y) is
invariant under translations, rotations and parity (though invariance under more than
the rotational symmetries of the underlying lattice, in particular, need not be true for
real systems). When this is so the kernel simplifies to

Ci j (x, y) = δi j c1
(
|x − y|2

)
+ ∂i∂ j c2

(
|x − y|2

)
, (14.54)

where c1,2(x) are positive functions of a single scalar argument.
The electromagnetic charge and current densities predicted by the superconduct-

ing effective lagrangian are Jμ = δLs/δAμ, which (14.52) links to variations with
respect to φ,

σ = J0 =
δLs

δA0
= − δLs

δ(∂tφ)
and J =

δLs

δA
= − δLs

δ(∇φ)
. (14.55)
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The field equations for φ (with ψ̃i and Aμ fixed) boil down to ∂tσ +∇ · J = 0, which
simply expresses local conservation of electromagnetic charge.

The first of Eqs. (14.55) implies that −σ is the canonical momentum for φ, and
so once written in a Hamiltonian framework one trades ∂tφ for σ so that, Hs =

Hs[σ,φ]. In terms of Hs the gauge-invariant φ evolution equation is

∂tφ − A0 =
δHs

δ(−σ)
=: −v(φ, σ), (14.56)

where the voltage, v(φ, σ) = δHs/δσ, is defined as the rate of change of energy with
respect to changes in charge density.

The rest of this section is devoted to showing that the above properties suffice to
capture many of the characteristic low-energy properties of superconductors.

Meissner Effect

The assumption that the equilibrium condition deep inside a superconductor occurs
for A − ∇φ = 0 locally implies that B = ∇ × A = 0 there, immediately implying
that magnetic fields must vanish deep within a superconductor. The Meissner effect
[377] is thereby seen to emerge as a low-energy theorem in the effective description.

For static configurations – those satisfying, in particular, ∂tφ − A0 = 0 – the
approach to zero field within superconductors with boundaries is found by combining
Eqs. (14.55) and (14.53), to give

Ji (x) = −
∫

d3y Ci j (x, y)
[
Aj (y) − ∂jφ(y)

]
(14.57)

= −
∫

d3y c1(|x − y|2)
[
Ai (y) − ∂iφ(y)

]
− ∂i∂ j

∫
d3y c2( |x − y|2)

[
Aj (y) − ∂jφ(y)

]
.

Putting this into the static Maxwell equation ∇ × B = J and taking the curl of both
sides (using ∇ · B = 0) then implies that

∇2B = −∇ × J =
∫

d3y c1( |x − y|2) B(y). (14.58)

For a superconductor filling the half-space x ≥ 0 a solution to (14.58) and
∇ · B = 0 is Bx = By = 0 and Bz = B0e−x/λ where the parameter λ gives the
magnetic penetration depth [383], and satisfies the implicit equation

1
λ2 =

∫ ∞

0
dx

∫ ∞

−∞
dy dz c1(x2 + y2 + z2) e−x/λ. (14.59)

This has a unique real solution because c1(r2) is a positive function that is bounded
at r = 0 and falls to zero for r � ξ (ensuring the integral converges for any non-
negative λ).

Flux Quantization

If the deep interior of a superconductor is topologically trivial then because
A − ∇φ = 0 a gauge can be chosen for which φ = 0 everywhere. The effects of
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Fig. 14.2 Diagram of a superconducting annulus. Dashed line marks a path deep within the annulus along which
A − ∇φ = 0.

topology can be studied by considering instead a superconducting annulus that is
thick enough to ensure A−∇φ = 0 deep within its interior (such as along the dashed
line of Fig. 14.2).

Because φ is equivalent to φ+π/e, the single-valuedness of physics as one circles
the midline of the annulus implies that φ(r) must satisfy∮

C

dr · ∇φ = φ(θ + 2π) − φ(θ) =
πn
e

, (14.60)

for some integer n, where C is the circle around the midline of the annulus. The
vanishing of A−∇φ along this midline then implies that the net flux through the disc
bounded by C is

ΦB :=
∮
C

dr · A =
∮
C

dr · ∇φ = πn
e

, (14.61)

showing how the flux through any closed curve deep within a superconductor must
be quantized. This is not so informative for curves entirely contained within a simply
connected superconductor because the Meissner effect implies that Eq. (14.61) is just
satisfied with n = 0. But for a superconducting annulus like in Fig. 14.2 the integer
n can in principle be – and is measured to be [379] – nonzero.

Infinite Conductivity

Deep within the superconductor the conditions A − ∇φ = A0 − ∂tφ = 0 imply
vanishing fields, B = E = 0, as well as (from Eq. (14.57)) vanishing currents, J = 0.
Imagine, however, perturbing the system away from its ground state in such a way
that a nonzero current flows, J � 0.

If this is done in such a way that voltage varies with position within the sample,
∇v � 0, then (14.56) implies that ∂t∇φ − ∇A0 = −∇v � 0, and so the configuration
cannot be static inasmuch as ∂tφ−A0 cannot vanish everywhere. Using E = −∂t (A−
∇φ)+∇v, relations like (14.57) imply that the electric current is also time-dependent
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∂tJ(x, t) =
∫

d3y c1(|x − y) |2)
[
E − ∇v

]
+ ∇
[∫

d3y c2( |x − y|2)
(
σ − ∇2v

)]
+ · · · ,

(14.62)

which uses the Maxwell equation ∇ · E = σ and ellipses denote the contribution of
other terms in the expansion in powers of A − ∇φ and A0 − ∂tφ.

Since voltage gradients lead generically to time-dependent currents,10 then a
nonzero and time-independent current, ∂t J = 0, between two points deep within
a superconductor requires the voltage difference between these points to vanish.
Constant currents flowing for vanishing voltage difference is what it means to have
infinite conductivity.

Josephson Effect

The final example to be explored here is the AC version of the Josephson effect [384,
385], which predicts a periodic current to flow between two superconductors that are
brought into proximity, separated by a gap of non-superconducting material. For the
present purposes the significance of this example lies in the fantastic precision of the
prediction and measurements [386] for the frequency of the oscillating current.

Consider therefore two semi-infinite superconductors separated by a gap of width
d oriented along the x − y plane, perpendicular to the z axis. Suppose first that
all external electromagnetic potentials are turned off. Then the energy per unit area
associated with the interface between the superconductors depends on the difference,
Δφ = φ2 − φ1, between the value taken by φ in the two superconductors: Ls/A =
F (Δφ). But because φ and φ + π/e are two coordinates for the same point on G/H
it must be true that the function F (x) is periodic:

F (x + π/e) = F (x). (14.63)

Suppose now that a time-independent voltage difference, Δv, is applied across the
gap between the two superconductors. Because of (14.56) it follows that Δφ must be
time-dependent:

Δφ = −Δv t + constant. (14.64)

But in the presence of electromagnetic fields the energy can only depend on the gauge
invariant quantity, F = F (ΔΦ), where

ΔΦ :=
∫ 2

1
dz (∂zφ − Az ) = Δφ −

∫ 2

1
dz Az . (14.65)

Because this introduces a dependence of the energy on Az it follows that a current
must also flow between the two superconductors,

Jz
A =

δF
δAz

= −F ′(ΔΦ). (14.66)

Together with (14.63) and (14.64) this implies an oscillatory current with period

τ =
π

e|Δv| . (14.67)

This prediction of the AC Josephson period is thereby seen to be very robust; not
depending on microscopic details at all.

10 E.g. the analog of Eq. (14.57) for σ does not allow σ = ∇2v.
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14.2.2 Landau–Ginzburg Theory

It is instructive to contrast the above effective theory of a superconductor’s Goldstone
mode with the Ginzburg and Landau effective theory for superconductors [387].
Unlike the effective theory just described, the Landau–Ginzburg theory is not
meant to apply to energies very small in comparison to the superconducting scale,
E � εsc ∼ Tc (where Tc denotes the superconductor’s critical temperature). The
Landau-Ginzburg theory instead describes the superconductor’s behaviour very close
to this critical temperature, i.e. |T − Tc | � Tc .

In particular, there are more degrees of freedom relevant for the Landau–Ginzburg
theory than just the Goldstone mode. The lagrangian (or free energy) LGL of
the Landau–Ginzburg theory still depends on the electromagnetic field and the
Goldstone mode, φ, since both of these degrees of freedom are necessarily in the
low-energy spectrum in the superconducting phase. The new feature is that this
theory also contains another scalar degree of freedom, χ, in addition to the Goldstone
mode. This field describes the mode which must combine with the Goldstone field,
φ, in order to fill out a linear representation – i.e. a complex field, ψ = χ e2ieφ, of
the full symmetry group, G = U (1), above the transition point.

The appearance of χ in the effective description near the critical point, Tc , is
guaranteed so long as the particle spectrum remains continuous as T varies across the
transition temperature. Continuity across Tc requires the existence of an additional
degree of freedom because of the interplay of the properties of the normal and
superconducting phases. In particular, we know that φ and χ must have identical
dispersion relations above Tc , because they are related in the normal phase by the
unbroken U (1) transformations. On the other hand, φ must also be gapless below
Tc , since it is a Goldstone mode. These two conditions, together with continuity at
Tc , then require χ to also become gapless precisely at Tc . The gapless condition for
χ at Tc implies that it must be included in any effective description of the system
response near the critical point.

It should be remarked at this point that such a continuity requirement does not
always hold for a phase transition. In particular, it can fail if phase transition is of
first order. As a result, a Landau–Ginzburg description need not be appropriate for
an arbitrary phase transition, even near the transition temperature.

As usual, it is the lowest-dimension interactions that dominate the long-
wavelength, low-energy response near the critical temperature. Assuming the
relevant physics to be local, the most general form for these is given in terms of
the complex field, ψ, by the well-known expression:

LGL = LEM + i ψ∗(ψ̇ + 2ie A0 ψ) − w2
s (∇ψ + 2ie A ψ)∗ · (∇ψ + 2ie A ψ)

− V (ψ∗ψ) + · · · , (14.68)

where ψ is given charge eq = −2e and some freedom has been used to give the time-
derivative terms a standard normalization. Once expanded in powers of the fields the
potential energy has the form

V (ψ∗ψ) = V0 − μ2 ψ∗ψ +
g

2
(ψ∗ψ)2 + · · · , (14.69)

where g > 0 and μ is a new parameter (which, unlike in the previous section, is
unrelated to magnetic moments).
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In this language the normal and superconducting phases differ in the sign they
have for μ2, since the classical energy11

H =
∫

d3x

[
1
2
(
E2 + B2

)
+ w2

s (∇ψ + 2ieAψ)∗(∇ψ + 2ieAψ) + V (ψ∗ψ)

]
+ · · · ,

(14.70)

corresponding to (14.68) is minimized at ψ∗ψ = 0 when μ2 < 0 (normal phase)
and at ψ∗ψ = μ2/g when μ2 > 0 (superconducting phase). The transition region
between the two therefore lies in the regime where μ2 is close to zero. Eq. (14.69)
predicts that the classical difference in energy density between these phases is

Vn − Vsc �
μ4

2g
. (14.71)

For μ2 < 0 the U (1) symmetry ψ → e−2ieζψ is unbroken by the ground state and
small fluctuations of the field ψ about the ground state describe degenerate quasipar-
ticles with energy gap |μ|. For μ2 > 0 the ground state breaks the U (1) symmetry,
and the field χ = |ψ | acquires a gap of order |μ| while the phase of ψ is the Goldstone
boson (and so would be gapless in the absence of mixing with the electromagnetic
field, but acquires an energy gap of order e|μ| once this mixing turns on).

These semiclassical arguments show how the non-Goldstone mode χ becomes
light enough to be in the low-energy theory near the transition, where μ is close to
zero. Qualitatively, the Landau–Ginzburg dynamics goes over to the dynamics of the
Goldstone mode when μ2 > 0 is large, because then the modulus, χ, acquires a large
gap and can be integrated out (much as is done for the toy model in Part I) leaving
only the phase φ.

Vortices and Type II Superconductors

One piece of physics well-suited to a Landau–Ginzburg description is the devel-
opment of vortices [387]. In this context vortices are line-like regions of non-
superconducting material that can thread a superconducting bulk, and because a
vortex’s centre does not superconduct, it also does not exclude magnetic fields. Such
vortices can arise – at least in some superconductors, called Type II superconductors
[388] – in sufficiently strong magnetic fields, and provide a way for these fields to
penetrate into a superconducting sample; a region that would otherwise have been
forbidden to them by the Meissner effect.

A Landau–Ginzburg description of vortices is appropriate because their physics
is about the energetic trade-off between having regions of the sample superconduct
or not. Within a Landau–Ginzburg description vortices arise as ‘lumps’, in the sense
used in Chapter 13. That is, they arise as soliton solutions to the classical field
equations, found by minimizing the classical energy (14.70) subject to the boundary
condition

ψ(r → ∞, z, θ) →

√
μ2

g
eiθ, (14.72)

11 Beware: in low dimensions (and at nonzero temperatures in 3 dimensions) IR divergences (due to large
fluctuations tied to μ being zero) typically cause semiclassical perturbation theory to break down very
near Tc .
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for all z, in cylindrical coordinates (r , z, θ). Notice that this boundary condition
assures that the field lies in its ground state at infinity, since ψ∗ψ → μ2/g.
But because this boundary condition implies that the phase of ψ satisfies
φ(θ + 2π) = φ(θ) + π/e at r → ∞, the profile of χ must vanish somewhere at
smaller r . Otherwise the profile of ψ would have to have a discontinuity somewhere.
It is useful to choose coordinates so that χ vanishes at r = 0.

It is straightforward to verify that a solution exists that minimizes the energy
subject to these boundary conditions, subject to the cylindrically symmetric ansatz
[387, 389]

Aμdxμ = Aθ (r) dθ and ψ = χ(r) eiθ, (14.73)

with χ → v :=
√
μ2/g and so Aθ → 1/(2e) as r → ∞ in order to ensure that

(∂θ + 2ieAθ)ψ vanishes at infinity. Notice that this implies that the vortex carries
precisely one quantum of magnetic flux, since the line integral

∮
A · dx at r → ∞

evaluates to

Φ = lim
r→∞

∮
Aθ dθ =

π
e
=: Φ0. (14.74)

Examining the asymptotic form of the solutions to the field equations at large r
reveals the approach to the values at infinity is exponential, with

Aθ −
1
2e
∝ e−r/λ and χ − v ∝ e−r/ξ , (14.75)

where

λ � 1
ev

and ξ ∝ 1
|μ| �

1
√
g v

, (14.76)

are, respectively, the magnetic penetration depth described above and the supercon-
ducting correlation length of the field ψ.

These scales provide a criterion for understanding the energy trade-off that
controls whether vortices will form, and so whether or not a superconductor
should be Type I (vortices do not form) or Type II (vortices do form). For a
Type-I superconductor, turning on a large enough magnetic field ruins the sample’s
superconductivity because eventually the energy density, B2, paid to exclude the
magnetic field (because of the Meissner effect) is not worth the energy density,
μ4/g ∼ gv4, gained – see (14.71) – by becoming a superconductor. This shows
that for Type-I superconductors the critical field (above which superconductivity is
ruined) is of order

Bc ∼
√
g v2. (14.77)

For a Type II superconductor vortices can form once the field is large enough to
squeeze a single flux quantum, Φ0 = π/e, into an area set by the magnetic length,
πλ2. The minimum field required therefore is

Bc1 ∼
Φ0

πλ2 ∼ ev2. (14.78)

For smaller fields than this a magnetic field cannot penetrate into the sample, but for
fields B > Bc1 fields penetrate by forming more vortices, each of which drives an
area πξ2 normal in its immediate vicinity (because this is the region over which χ
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is appreciably smaller than its vacuum value). The entire sample is therefore driven
normal once the total number of flux quanta, N = BA/Φ0, is equal to the total area,
A, divided by πξ2. This happens at a field value Bc2 given by

Bc2 ∼
Φ0

πξ2 ∼
gv2

e
. (14.79)

Notice Bc is the geometric mean of Bc1 and Bc2. But having vortices penetrate the
sample without ruining superconductivity only makes sense if Bc2 > Bc1, which
requires g > e2 (and so λ > ξ). It follows that a superconductor will be Type I
if λ < ξ and Type II if λ > ξ. This criterion proves to be useful in later sections
(e.g. §15.3).

14.3 Phonons ♣

Real materials are not Poincaré invariant since, at the very least, their ground state
picks out a preferred reference frame: the rest-frame of the material. For such systems
Poincaré invariance itself can be regarded as a spontaneously broken symmetry, and
it is natural to ask about the properties of the corresponding Goldstone modes
[230, 390].

As might be expected, the properties of these bosons depend to some extent on
the symmetry-breaking pattern: if G is the Poincaré group, what is H in the breaking
G → H? The answer depends on the system of interest. The Poincaré group has ten
generators: four translations, three rotations and three boosts.12 For solids the ground
state breaks nine of these, leaving only time-translation invariance plus whichever
discrete group of translations and rotations preserves the underlying lattice. For
some systems (like gelatin) boosts are broken but the ground state is translation- and
rotation-invariant. Fluids support even more symmetries, since the relative positions
of different fluid elements can be changed without energy cost provided the fluid is
not compressed when doing so.

14.3.1 Goldstone Counting Revisited

This section argues that phonons are the Goldstone modes for all of the above
examples, and sketches the effective field theory of Goldstone states to which the
usual symmetry arguments lead. As already discussed in §6.3.2 there is not a one-
to-one relation between the number of Goldstone states and the number of broken
generators in G/H , contrary to what one might naively expect from the discussion in
§4, and this is ultimately because Poincaré symmetries are spacetime symmetries –
i.e. they act on spacetime coordinates, xμ, as well as on the fields.

To see why the counting of Goldstone particles changes, one must return to the
proof of Goldstone’s theorem given in §4.1.2. The key equation there is (4.19), which
states that spontaneous symmetry-breaking guarantees the existence of a Goldstone
state, |G〉, for which the following matrix element is nonzero,

12 Reminder: boosts are those Lorentz transformations that relate inertial observers with different
velocities.
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〈G |J0(x, t) |Ω〉 � 0, (14.80)

where |Ω〉 is the system’s ground state and Jμ (x, t) is the Noether current for the
broken symmetry of interest. All of the properties of |G〉 follow as consequences
of (14.80). What changes for spacetime symmetries is the number of independent
Noether currents that exist: the current associated with all spacetime symmetries is
built from the stress-energy tensor, Tμ

ν (x, t).
To see why this is so, it is worth digressing to recall how spacetime symmetries

work.13 In general, spacetime symmetries like Poincaré transformations are defined
as symmetries (isometries) of the background spacetime metric, gμν (x). A metric
has an isometry if it is left unchanged by a transformation (diffeomorphism) of the
form δxμ = ξμ (x). Like any rank-two tensor, under this type of transformation gμν
transforms as

δgμν = £ξgμν := ∂μξλgλν + ∂νξλgμλ + ξλ∂λgμν
= ∇μξν + ∇νξμ, (14.81)

where the first line defines the Lie derivative acting on the metric, and the second line
is a consequence of the definitions, where ξμ := gμνξν and ∇μξν := ∂μξν + Γλμνξλ
is the usual covariant derivative, with Γλμν the Christoffel symbol – see §C.5.2 for the
precise definition – built from gμν .

So for any given metric, gμν , there is a symmetry for each independent solution to
the Killing equation,

δgμν = ∇μξν + ∇νξμ = 0. (14.82)

There are ten such solutions for the Minkowski metric, gμν = ημν , for which
Γλμν = 0. These are given by ξμ = aμ + ωμν xν , for constant aμ and ωμν = −ωνμ,
corresponding to the 10-parameter Poincaré group.

Solutions to (14.82) are called Killing vector fields and whenever one exists the
corresponding Noether current

Jμ := Tμ
ν ξ

ν , (14.83)

is (covariantly) conserved, ∇μ Jμ = 0, as a consequence of the symmetry of the
stress-energy tensor, Tμν = T νμ, stress-energy conservation, ∇μTμ

ν = 0, and
Eq. (14.82).

Now comes the main point. Clearly, the way a Goldstone state satisfies (14.80) is
by having a nonzero matrix element

〈G |J0(x, t) |Ω〉 = 〈G |T0
ν (x, t) |Ω〉ξν � 0, (14.84)

so what matters for counting Goldstone states is the number of independent currents
of this type that exist, not the number of independent Killing vectors, ξμ. Since there
are at most four independent components of the form T0

μ (x) for the stress-energy
tensor, there are at most four independent Goldstone modes that can be produced by
spontaneously broken space time symmetries.

For systems that do not break time-translation invariance the symmetry associated
with the energy density, T0

0, is not broken, leaving a total of three independent

13 The treatment here slightly generalizes the discussion of §6.3.2 away from Minkowski space to a
broader class of background fields (extensions to a much broader class can be found in [391]).
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Goldstone modes for which 〈G |T0
i (x, t) |Ω〉 � 0 for i = x, y, z. These three modes

are the three phonon modes – one longitudinal and two transverse – corresponding
to the gapless sound waves that are generic to many-body systems.

14.3.2 Effective Action

Once sound waves are seen in this way to be generic to the low-energy spectrum
of many-body systems, the next step is to identify the effective lagrangian that
governs their properties. This section specializes for simplicity to the lagrangian
governing their propagation and self-interactions. Although the results obtained
for real phonons are old ones (for a modern textbook treatment see [392]), their
reformulation in terms of a modern EFT description has continued until quite
recently [108, 230, 333]. The description here closely follows [393–395].

The procedure is similar to the procedure used in §4.2.2 when identifying the low-
energy Goldstone boson action for internal symmetries: parameterize the Goldstone
state as a slowly varying symmetry transformation of the ground state, and ask how
the energy changes when doing so. For spacetime symmetries this amounts to asking
how the energy of a medium responds when its component parts are moved relative
to one another.

To track this, imagine dividing a medium up into many small volume elements,
perhaps labelled by painting co-moving coordinates onto the medium itself and
watching how these move relative to a fixed set of spatial coordinates xμ as the
medium deforms. In three spatial dimensions denote the co-moving labels by φI

with I = 1, 2, 3, and the spatial coordinates by xi , with every point (volume element)
of the medium corresponding at all times to a particular value for the three labels φI.

Although one might initially choose

φI(t = 0) = xI, (14.85)

in general this need not remain true at later times, after which their new spatial
positions might be xi (φI, t). An exception to this might be the ground state, which
would usually be static and so (14.85) could hold for all times.

Provided the medium doesn’t do anything singular the relation between φI and xi

at any given time is invertible, so one might equally well think about φI(xi , t) instead
of xi (φI, t). This is convenient because the motion can then be simply regarded as
the evolution of three scalar fields. In this case, the ground state can be characterized
as the configuration for which (14.85) holds for all times, which is to say that the φI

have ground-state expectation values

〈φI(x, t)〉 = xI. (14.86)

In this language any residual spacetime symmetries of the medium (i.e the group
H ) can be regarded as internal symmetries acting on the index I of φI, independent
of spacetime. This is how the lagrangian knows whether it is describing a solid, a
gelatin or a fluid. If the medium’s ground state is translation-invariant then the action
must be invariant under the shifts

φI → φI + aI, (14.87)
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for constant aI. If the medium allows a residual rotational symmetry then the action
is invariant with respect to transformations of the form

φI → OI
J φ

J, (14.88)

for some orthogonal 3 × 3 matrix O. (For instance, for a solid OI
J and aI might live

within the invariance group of lattice rotations and translations, while for gelatin
OI

J might consist of the full group of O(3) transformations and aI might consist of
arbitrary translations.)

What is important is that these internal symmetries are a-priori independent of
the Poincaré symmetry of spacetime (assuming a flat metric ημν), so the action must
be separately invariant under both. It is the expectation value (14.86) that breaks the
product of these independent symmetries down to a diagonal subgroup acting on
both the internal label ‘I’ and the spatial label ‘i’.14

Consider next constructing the lowest-derivative terms for the low-energy EFT for
φI consistent with Poincaré invariance in spacetime and invariance under the internal
transformations (14.87) and (14.88). All of the issues from the previous sections also
apply here. For instance, the action for L could be nonlocal if the distances of interest
are not much larger than the medium’s underlying correlation length ξ. The action
might contain multiple order parameters breaking Poincaré symmetry, and so on.

The most general shift-invariant and Lorentz-invariant quantity can be built from
the matrix-valued scalar field

BIJ(x, t) := ημν ∂μφI ∂νφ
J, (14.89)

which transforms only under the internal rotation symmetries of (14.88) according
to B → OBOT. If it is assumed – as was also done in §14.1 – that the intended
applications are to distances long enough to allow the lagrangian (or free energy)
to be given by a local expression, Lph =

∫
d3x Lph, then the equations of motion

become

∂μ
[
∂μφ

J
∂Lph

∂BIJ

]
= 0. (14.90)

These are satisfied by any configuration for which φI is linear in xi (such as (14.86)
in particular). Stability of the ground state then imposes positivity conditions on the
second derivatives of the action around this particular solution, as usual.

More detailed calculations of the two-derivative low-energy lagrangian depend on
how many spacetime symmetries remain unbroken. Consider for simplicity the case
of gelatin, where the lagrangian must be invariant under both translations and the full
O(3) group of rotations. In this case, the part of Lph involving only single derivatives
of φI must be built out of rotationally invariant combinations of BIJ, which can be
taken to be its three eigenvalues. Equivalently, one might use tr B, tr B2 and tr B3, or
trade any one of these for

14 This construction closely parallels the treatment of spin in curved spacetime. The action is invariant
under independent local Lorentz transformations, such as δψ(x) = i

2 ω
ab (x)Γabψ(x) for a spinor

field, and local coordinate transformations (diffeomorphisms), δψ(x) = ξμ (x)∂μψ(x), and these are
broken down to an unbroken subset acting in both spin-space and real space by the ‘expectation value’
of the vierbein fields, eaμ (x), that is related to the metric by gμν = ηab eaμe

b
ν (see e.g. [396–398]).
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det B =
1
6
[
(tr B)3 − 3(tr B)(tr B2) + 2 tr B3

]
. (14.91)

A conventional basis of invariants is

X :=
1
3

tr B , Y :=
3 tr B2

(tr B)2 and Z :=
9 tr B3

(tr B)3 , (14.92)

since these all approach unity in the ground state, for which (14.86) holds. In terms
of these, the part of the lagrangian density involving only single derivatives can be
written

Lph[∂φ] = −F (X ,Y , Z ) (SO(3) invariant case), (14.93)

for some function F (with the overall sign in Lph chosen for later convenience).

Fluctuation Spectrum

Continuing with the case of gelatin, (14.93), to examine the spectrum of phonons,
expand about the ground-state background,

φI(xi , t) = xi + πI(xi , t), (14.94)

and keep that part of Lph that is quadratic in the fluctuation fields πI(x, t). Using

BIJ = δIJ + ∂ IπJ + ∂JπI + ∂μπ
I∂μπJ, (14.95)

then gives

X = 1 +
2
3

(∂iπ
i) − 1

3
(∂t �π)2 +

1
3

(∂iπ j∂
iπ j ) + · · ·

Y = 1 +
2
3

(∂iπ j∂
iπ j ) +

2
9

(∂iπ
i)2 + · · · (14.96)

Z = 1 + 2(∂iπ j∂
iπ j ) +

2
3

(∂iπ
i)2 + · · · (14.97)

and so, after integrating by parts and dropping boundary terms, the quadratic
action is

L2 =

(
1
3

FX

)
0
δi j ∂tπ

i∂tπ
j −

(
1
3

FX +
2
3

FY + 2 FZ

)
0
∂iπ j ∂iπ j

−
(

2
9

FXX +
2
9

FY +
2
3

FZ

)
0

(∂iπ
i)2, (14.98)

in which FX := ∂F/∂X and so on. The subscript ‘0’ here denotes evaluation at the
background configuration φI = xI, for which BIJ is the unit matrix and X0 = Y0 =

Z0 = 1.
Dividing the fluctuation field into longitudinal and transverse components,

�π = �πT + �πL, with ∇ × �πL = ∇ · �πT = 0 then reveals that the linear field equations
obtained from (14.98) become wave equations, so admit wave solutions (i.e. sound)
that propagate with a linear dispersion relation at low energy. That is, if πi (r, t) =
εi (p) exp[−iEt + ip · r] then solutions require

E(p) = c |p|, (14.99)
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with differing phase velocities for transverse and longitudinal polarizations: c = cT if
p · ε(p) = 0 and c = cL if p and ε are parallel. Long-wavelength modes indeed lie in
the low-energy theory, as required by Goldstone’s theorem, and for sufficiently long
wavelengths the locality assumption made for the action is justified.

The propagation speeds are calculable in terms of the parameters in the
action, with

c2
T = 1 + 2

(
FY + 3FZ

FX

)
0

c2
L = 1 +

2
3

(
FXX

FX

)
0
+

8
3

(
FY + 3FZ

FX

)
0

. (14.100)

Positive kinetic energy in (14.98) evidently requires the parameters to satisfy FX0 > 0
and having 0 < c2

L,T < 1 requires −FX0 < 2(FY + 3FZ)0 < 0 (with a similar argument
in the longitudinal sector constraining FXX0/FX0).

Self-interactions amongst the phonons are straightforwardly (and tediously) iden-
tified by continuing the expansion of the action to higher orders in πI(x).

14.3.3 Perfect Fluids

Perfect fluids provide a special case of the previous discussion, for which the internal
symmetry is very large since energies are unchanged by arbitrary volume-preserving
transformations. In this case, the internal symmetry group acting on BIJ is larger than
O(3), corresponding to the group of transformations

φI → ξI(φ) with det

(
∂ξI

∂φJ

)
= 1. (14.101)

In this case, the above construction still goes through, with the lagrangian more
restricted because of the larger set of symmetry conditions. In particular, requiring
invariance under (14.101) implies that any local term involving only first derivatives
of φI has the general form

Lfl = −
∫

d3x G(B), (14.102)

where B := det B.
To verify that this describes a fluid, check its stress-energy. This is most sim-

ply found by making the replacements ημν → gμν in (14.89) and d3x →
d3x

√−g in (14.102), where g = det gμν , and varying the metric using Tμν =

(2/
√−g)(δSfl/δgμν ), with Sfl =

∫
dt Lfl. The result is

Tμν = 2B
(
∂G
∂B

)
BIJ∂μφ

I∂νφ
J − G ημν , (14.103)

where gμν → ημν is used at the end and the determinant identity εIJK BIL BJM BKN

= B εLMN (for completely antisymmetric Levi-Civita tensor εIJK) shows that

BIJ =
1

2B εIKRεJMN BKM BRN (14.104)

satisfies BIJ BJK = δK
I and so is the inverse matrix to BIJ.
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This stress-energy tensor has the perfect-fluid form

Tμν = (ρ + p)UμUν + p ημν , (14.105)

where the fluid pressure, p, energy density, ρ, and local rest-frame 4-velocity, Uμ

(with UμUμ = −1), are given by

ρ := G(B) , p := 2B
(
∂G
∂B

)
− G(B), (14.106)

and

Uμ :=
1

6
√
B
εμνλρεIJK∂νφ

I ∂λφ
J ∂ρφ

K. (14.107)

Both the pressure and the energy density are determined purely by B, and so
once G is known the one can use it to infer p given ρ, say. The functional form
of G(B) therefore builds in an equation of state p = p(ρ). Furthermore, as shown in
more detail in §16.1.2, conservation of stress-energy, ∂μTμν = 0, for a stress-energy
tensor of the form (14.105) implies that the fluid satisfies the proper Navier–Stokes
equations for a perfect fluid. §16.1.2 also shows why finding a perfect fluid makes
sense in the present instance, since at face value the use of lagrangian methods at all
(without introducing additional degrees of freedom as in [399], for instance) typically
requires dissipation to be negligible.

Fluctuation Spectrum

The fluctuation spectrum for sound in a fluid is found by following precisely the
same steps as for solids, by writing φI(xi , t) = xi + πI(xi , t) in the field equations
and expanding in powers of πI.

Indeed, rather than working this through from scratch it is quicker to simply
recognize that the fluid case is already contained in the gelatin example worked
earlier. To see this, combine Eqs. (14.91) and (14.92), which shows that

B = X3
[

9
2

(1 − Y ) + Z

]
, (14.108)

and so the fluid lagrangian (14.102) corresponds to the special instance of (14.93)
where

F (X ,Y , Z ) = G
[
B(X ,Y , Z )

]
. (14.109)

Consequently, the derivatives FX, FY and FZ are related to one another, with

FY = −
9
2

X3GB(B) , FZ = X3GB(B). (14.110)

and

FX = 3X2
[

9
2

(1 − Y ) + Z

]
GB(B), (14.111)

where GB := ∂G/∂B.
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For perfect fluids the quadratic term in powers of πI that governs the properties
of linearized propagation is again given by (14.98). The corresponding sound-
propagation speeds for the longitudinal and transverse fields similarly are given by
(14.100):

c2
L = 1 +

(
2GBB

GB

)
0

and c2
T = 0, (14.112)

which uses (
FXX

FX

)
0
= 2 + 3

(
GBB

GB

)
0

and

(
FY + 3FZ

FX

)
0
= −1

2
(14.113)

once evaluated at X0 = Y0 = Z0 = 1 (and so B0 = 1).
The vanishing of cT reflects how fluids only support compressional waves. It

manifests itself by the absence of a restoring force for �πT in the quadratic lagrangian,
which shows how the absence of restoring forces for some kinds of deformations
can make the understanding of fluid motions intrinsically more complicated than for
solids.

14.4 Summary

Goldstone bosons are revisited in this chapter, with a view to seeing how their description changes relative
to the discussion in Chapter 4 for practical non relativistic many-body applications. Much (but not all) of
the earlier description goes through unchanged; in particular, their dominant low-energy behaviour can
be robustly derived knowing only general properties of the system’s symmetry-breaking pattern G → H.

Three types of applications are briefly described. Of these, the first application describes spin waves –
or magnons – in magnetic systems, deriving their properties using only the information that they arise as
the Goldstone bosons for the breaking of rotational symmetry in spin space. The properties of spin waves
are described separately for ferromagnets and antiferromagnets because these differ significantly due
to their differing transformation properties under time-reversal invariance. It is the low-energy magnon
spectrum for antiferromagnets that more resembles relativistic dispersion relations, with E2 = v2p2. By
contrast, time-reversal breaking implies that the spectrum for ferromagnets is instead E = k p2, making
the quantization of these modes more similar to Schrödinger than Klein–Gordon field theory.

The second application examines Goldstone behaviour for broken gauge symmetries, using supercon-
ductors as the practical example. Mixing with the gauge boson gives the would-be Goldstone boson a mass
through the Anderson–Higgs mechanism (the mother of all Higgs mechanisms). Much can nonetheless be
learned by studying the Goldstone mode (i.e. by not working in unitary gauge), and it is shown in particular
how the symmetry-breaking pattern in this case robustly bakes in many classic low-energy features of
superconductors. Having such a model-independent derivation is useful when using the accuracy of these
predictions for fundamental tests (such as when using Josephson-junction properties to infer values of the
fine-structure constant [400]).

The third application summarizes why phonons arise as Goldstone bosons for the breaking of spacetime
symmetries by many-body systems. The main interest in this section is conceptual, partly due to the great
generality with which their properties can be determined. Phonons also illustrate (as do magnons for
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ferromagnets) through concrete examples how the counting of Goldstone modes can be more subtle than
for relativistic internal-symmetry applications when it is spacetime symmetries that are broken by the
medium (be these rotations, translations, boosts or time-reversal).

Exercises

Exercise 14.1 Use the standard nonlinear realization given in §4.2.2 to derive the
two-derivative action appropriate for the Goldstone bosons of the symmetry-
breaking pattern G/H = SU (2)/U (1). Show that this agrees with the
lagrangian given in (14.8) for antiferromagnets for its predictions for low-
energy 2 → 2 scattering amongst the Goldstone bosons. (Assume invariance
under spatial rotations, so Zab ∝ δab .)

Exercise 14.2 Show that for an interaction Hint = −�μ1 · B(x1) − �μ2 · B(x2) inte-
grating out the instantaneous electromagnetic field leads to the dipole–dipole
interaction

Hdd = −�μ1 ·
{
∇ ×
[
∇ ×

(
�μ2

r

)]}
= −�μ2 ·

{
∇ ×
[
∇ ×

(
�μ1

r

)]}
where r := x1 − x2 and r = |r|. Show that an equivalent way of writing this
dipole–dipole interaction is

Hdd = −
[

8π
3

(
�μ1 · �μ2

)
δ3(r) −

�μ1 · �μ2

r3 +
3(�μ1 · r)(�μ2 · r)

r5

]
.

Use this expression with �μ1 = mn Ψ
†σ Ψ and �μ2 = μ �ρ in Fermi’s Golden

Rule – c.f. Eq. (B.45) – to derive the scattering cross section given in (14.40)
for neutron scattering, assuming only the neutron’s final momentum and energy
are measured.

Exercise 14.3 Assuming a local Landau–Ginzburg description near (but below) a
critical point – i.e. Eq. (14.68) with V (ψ∗ψ) = −m2ψ∗ψ + g (ψ∗ψ)2 with
m2(T ) > 0 for T < Tc – compute the Goldstone-boson lagrangian by
integrating out the massive state (or matching) perturbatively in powers of
g � 1.

Exercise 14.4 The London equations for a superconductor can be found by
specializing the effective action of §14.2 by assuming it is local in space:
i.e. ci (x − y) → c̃i δ3(x − y). Write down the lowest-dimension terms in the
low-energy superconducting action (or free energy) for φ and Aμ assuming the
action is local. Use this to derive the field equations and repeat the derivation
given in §14.2 of the classic properties of superconductors.

Exercise 14.5 Use the ansatz (14.73) to minimize the local form (14.70) of the
Landau–Ginzburg energy functional and derive the coupled ordinary differ-
ential equations that must be satisfied by the fields Aθ (r) and χ(r) of a vortex
solution. What boundary conditions must these fields satisfy as r → 0 in order
to ensure they are nonsingular there? Linearize the equations for large r and
derive expressions (14.76) for the length scales λ and ξ.
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Solve for and plot the profiles Aθ (r) and χ(r) numerically. In the special
case ξ � λ show that the magnetic field for radii r � ξ is given to a good
approximation by the analytic formula [408]

B(r) =
Φ0

2πλ2 K0(r/λ),

where the flux quantum is Φ0 = π/e and K0(x) is a Hankel function of
imaginary argument.

Exercise 14.6 Explicitly solve the Killing equation (14.82) for the Minkowski metric,
gμν = ημν , and thereby derive the Poincaré group of transformations δxμ =
ξμ (x). Do the same for the conformal Killing equation in Minkowski space,
which modifies the right-hand-side of (14.82) so that δgμν ∝ gμν , and thereby
derive the 15-parameter conformal group for flat space.

Compute the 10 Killing vectors for de Sitter space in four spacetime dimen-
sions (which is a maximally symmetric spacetime with nonzero curvature).
This is most simply done if de Sitter space is regarded as a surface

−t2 +

4∑
i=1

(xi)2 = +L2

for constant L, embedded in five-dimensional Minkowski space.
Exercise 14.7 Compute the leading low-energy interactions for phonons in gelatin –

for which the leading description of the dispersion relations is given surround-
ing Eq. (14.98). Use these to compute the temperature-dependence of the
scattering length, l where 1/l := 〈 σn 〉, for low-energy phonons, assuming
only 2 → 2 scattering and the phonons to be thermally distributed. Here σ is
the leading phonon-phonon scattering cross section and n is the thermal density
of phonons.

Exercise 14.8 Repeat the exercise of 14.7 for magnons in a ferromagnet and compute
the leading temperature-dependence of the 2 → 2 magnon scattering length.
Compare your result to [366].
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The systems considered in this chapter involve fermions that are statistically
degenerate, inasmuch as they display a Fermi surface (a short reminder of whose
properties appears below). These arise often in practical problems, such as for
electrons in materials at room temperature or for nucleons in nuclear matter. What
is at face value surprising about such systems is that they are often well-described
even at a quantitative level in terms of a liquid of weakly interacting fermions. This
despite the presence in the microscopic system of strong forces, like Coulomb or
nuclear interactions.

This chapter provides the EFT version of the argument as to why the low-
energy fermions can be weakly interacting despite the presence of strong forces at
a fundamental level. The core idea relies on ‘Pauli blocking’: that is, the fact that
Fermi statistics prevents two particles from sharing the same state. Because of this,
statistical degeneracy (the presence of enough particles to ensure that many low-
energy states are already occupied) effectively reduces the strength of interactions
because reactions cannot proceed if the final states to which they would lead are
already occupied by other fermions.

As usual, an advantage of bringing EFT arguments to bear on these issues is the
robustness they bring to the conclusions: helping understand why relatively weak
interactions for degenerate fermions are generic rather than accidental consequences
of special simple-to-analyze situations. A weak-coupling description of the low-
energy effective theory is possible given only a few qualitative assumptions con-
cerning the spectrum and symmetries relevant at low energies.

Besides showing why the presence of a Fermi surface makes most interactions
irrelevant at low energies, the EFT analysis also cleanly identifies possible exceptions
to this statement. Later sections in this chapter describe how these excep-
tions can lead to the instability believed responsible for physical phenomena like
superconductivity.

Statistical Degeneracy

First a brief refresher about statistical degeneracy. Consider, to start, a system
consisting of N � 1 non-interacting fermions for whom the single-particle energy
levels – states |n〉 with energies En – are labelled by some quantum numbers
collectively denoted by n. The label is chosen so that n1 < n2 implies that En1 ≤ En2 .
Because Fermi-Dirac statistics forbid more than one particle from occupying any
given state, the lowest-energy multiple-fermion state is obtained by adding particles
one at a time to the lowest available unoccupied level.

The Fermi energy, EF, for this system is defined to be the energy of the state
occupied by the last fermion to be added (see Fig. 15.1). It can be regarded as a423
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Fig. 15.1 A cartoon of energy levels with each line representing a state, whose energy is portrayed by its vertical
position. Dots indicate which levels are populated to produce the ground state of a system of
non-interacting fermions. The arrow indicates the Fermi energy.

function of both the level spacing and of the number of particles present, as would
be found by eliminating the variable nmax from the two equations

nmax∑
n=1

1 = N and EF = Enmax . (15.1)

For states labelled by continuous momenta, |p〉, the Fermi energy is determined
by the total particle density, N/V with V the system’s spatial volume, rather than its
total particle number N . To see why, notice that the density of states in momentum
space for such particles is given by (see Appendix B.1)

dN

d3p
=

V

(2π)3 f (p), (15.2)

where the function f (p) counts the number of states for each momentum, and so is
2s + 1 for free spin-s particles in flat space.

The continuum analog of (15.1) relates EF to N/V by eliminating the Fermi
momentum, pF, between the equations EF = E(pF) and

N =
∫ pF

0

dN

d3p
d3p = V

∫ pF

0
f (p)

d3p

(2π)3 . (15.3)

The upper limit of integration here is written as if f (p) is a function only of |p| and
not also direction in momentum space, though this is often not true in condensed
matter systems due to the breakdown of rotational invariance. When this happens
the definition of the Fermi energy is conceptually the same, but calculationally more
complicated.

In the simplest instance, where f (p) = 2 (the number of spin states per particle)
and E(p) = p2/2m the above formulae give

N
V
=

p3
F

3π2 and EF =
p2

F

2m
=

1
2m

(
3π2 N

V

)2/3

. (15.4)

Of course, real electrons and nucleons are not free particles, so why is this
definition of EF useful? Strictly speaking it is not, but it is related (though not
equivalent) to the Fermi level (as opposed to Fermi energy), defined for equilibrium
systems as the hypothetical energy for which the probability of finding a fermion
becomes precisely one half.

Equivalently, the Fermi level for an equilibrium system is equal to its chemical
potential since in thermal equilibrium the probability of finding a fermion at energy E
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is given in terms of the system’s temperature, T , and chemical potential, μ, by the
Fermi-Dirac distribution,

g(E) =
1

exp[(E − μ)/T] + 1
, (15.5)

which satisfies g(E) = 1
2 when E = μ. As T → 0 the distribution (15.5) satisfies

g(E) → 1 if E < μ and g(E) → 0 if E > μ, showing how μ → EF for
zero-temperature noninteracting particles. Fermions are statistically degenerate when
μ � T .

Degenerate fermions add a qualitatively new feature to the story of low-energy
effective-theories. Although the interest in effective theories is always in small
energies (and small time derivatives), for degenerate systems small energies mean
energies near the Fermi level. This generically does not also mean momenta and
space derivatives are also small.1 That is, it is often convenient to define the Fermi
level as the zero of energy, since these are the energies that dominate at zero
temperature. But then the low-energy limit involves the limit E → 0 with p ∼ pF

fixed and not small. This is in contrast with the limit studied to this point in the book,
where E, p → 0 together.

Scales Relevant for Conduction Electrons

With later applications to superconductivity in mind, conduction electrons are used
as the vehicle for discussing EFTs for statistically degenerate systems. So it is useful
to identify what the important energy scales are in this case, since these provide
benchmarks relative to which one can judge whether dynamics fits within a low-
energy approximation.

As discussed at some length in §12, the basic length scale relevant to atomic
energy levels is the Bohr radius: aB ∼ (αme)−1 (where me ∼ 0.5 MeV is the electron
mass and again α = e2/4π � 1/137 denotes the fine-structure constant). According
to the uncertainty principle, electrons localized to within this size acquire atomic
momenta of order

momenta: patom ∼ 1/aB ∼ αme and kinetic energy: Eatom ∼ α2me, (15.6)

making patom ∼ few keV and Eatom ∼ 10 eV, while typical electron speeds are of
order vatom ∼ patom/me ∼ α ∼ 10−2. The scale mα2 is also of order a typical atomic
binding energy because kinetic and potential energies are comparable in the ground
state while aB also characterizes interatomic spacings, at least for closely packed
materials like solids.

These scales can be similar to the size of the Fermi level for conducting electrons
in a material if atoms are separated by distances of order aB and if each atom
donates a single electron to a particular conduction band and if the dispersion
relation for this band is2 E(p) � p2/(2me). Such assumptions imply a density of

1 Having large momenta associated with small energies is also a generic property of particles in a periodic
lattice, due to the periodicity this also implies in momentum space, but these are not the kinematic states
of interest in what follows.

2 None of these assumptions need be true; even the effective mass defined by a conduction band energy,
E (p) � p2/(2meff), need not agree with me .
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N/V ∼ 1/a3
B ∼ (αme)3, and as a consequence, equations like (15.4) give a typical

Fermi momentum, Fermi level and Fermi velocity of order pF ∼ αme ∼ keV,
EF ∼ μ ∼ α2me ∼ 10 eV and vF ∼ pF/me ∼ α ∼ 10−2.

In order for thermal energies to compete with EF ∼ 10 eV, the temperature would
have to be of order T ∼ 105 K; much higher than the temperatures of interest here
(room temperature, T ∼ 300 K, and lower). The system’s electrons should therefore
be very degenerate, with temperature relevant only for states within order 10 meV or
so of the Fermi level.

For comparison, the energy εsc , associated with the superconducting transition in
a conventional superconductor may be estimated from the measured temperatures of
the superconducting phase transitions, Tc , and are typically of order a few K, making
the energy scale εsc ∼ 10−4 eV.

The upshot is this: the electronic energies associated with conductivity measure-
ments in general, and superconducting systems in particular, are much lower than the
characteristic atomic scales, putting their description well within the domain of EFT
methods.

15.1 Fermi Liquids ♦

As a first application of EFT methods to degenerate fermions, following [402, 403],
this section uses EFT methods to justify why low-energy states very close to the
Fermi level often interact much more weakly than expected based on the strength of
the microscopic interactions that are in play. The thrust of the argument is to show
that should a fermionic particle (or quasiparticle) ever become sufficiently weakly
coupled that its low-energy scaling can be analyzed using perturbative methods,
then these methods imply that almost all interactions just become even weaker as
one moves to lower and lower energies (closer and closer to the Fermi surface).
So (apart from a few marginal interactions – more about which below) the weak-
coupling approximation just gets better and better closer and closer to the Fermi
level. Systems with degenerate fermions in this kind of weakly coupled regime are
called Fermi liquids [401].

The assumption, then, is that there is an energy regime for which the electronic
system’s low-energy behaviour is well-approximated by weakly interacting quasipar-
ticles with the same quantum numbers as electrons: electric charge −e, spin 1

2 , and
fermion and lepton number unity. As discussed above, for the interaction energies
and temperatures of interest these particles should be statistically degenerate. The
rest of this section explores the low-energy interactions of such particles using an
effective field theory that contains the most general interactions consistent with these
conservation laws, plus parity, time-reversal and charge-conjugation invariance,
SU (2) spin rotations, plus whatever discrete symmetries characterize the underlying
lattice structure of the atomic nuclei.

15.1.1 EFT Near a Fermi Surface

For notational simplicity it is convenient to choose the zero of energy to lie at the
Fermi level, which can be regarded as a surface in momentum space once a dispersion
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relation ε(p) for the quasiparticle single-particle states is known. In this language
the Fermi surface becomes the surface satisfying ε(p) = 0, and in what follows all
momenta satisfying this condition are denoted by {k}.

As seen above, these momenta are typically not negligible compared to the inverse
inter-atomic spacings: pF ∼ 1/aB. As a result, there is no particular advantage to be
gained by working in position space and expanding in powers of spatial derivatives.
Consequently, the EFT below is defined directly in momentum space and no appeal
is made to locality in position space.

Free Propagation

The assumption of weak interactions states that there is a range of energies for which
the effective action can be written S = Sfree + Sint, with Sfree dominating the path
integral. The Wilson action can be computed in this energy interval by successively
integrating out modes of the quasi-electron, ultimately leaving only those sufficiently
close to the Fermi surface, with Sfree assumed to dominate, at least initially.

The first step is to write down the most general form for Sfree, describing the free
propagation of the assumed low-energy quasiparticle. This has the form

Sfree =

∫
dt d3p

[
iψ†(p)∂tψ(−p) − ε(p)ψ†(p)ψ(−p)

]
. (15.7)

where ε(p) gives the quasiparticle dispersion relation, E = ε(p). This form for Sfree

assumes momentum can be used to label single-particle energy eigenstates (as is true
for systems with approximate translation invariance) and uses the freedom to rescale
the fields, ψ(p), to normalize the time-derivative term.

The simplest way to integrate out modes of the quasi-electron is to adapt the
scaling arguments made in §2.4.2, similar to what was also done for nonrelativistic
particles in §11.3.1. The first step is to quantify the notion of proximity to this
surface. For momenta near the Fermi surface it is useful to expand the electron
dispersion relation about p = k, writing

p = k + l, (15.8)

where the vector k lies on the Fermi surface and l is perpendicular to it (see
Fig. 15.2).

Expanding the single-particle energy in powers of l in this way gives:

ε(p) = l · vF + O(l2) = ± l vF(k) + O(l2), (15.9)

where l = |l| is the magnitude of l, and

vF := ∇p ε
���FS

, (15.10)

with the subscript ‘FS ’ denoting evaluation of the result at the Fermi surface: p = k.
The dot product in Eq. (15.9) is simple to evaluate because the Fermi surface is by
definition one along which ε(p) is constant, so vF must be orthogonal to it and point
towards increasing energy. Consequently, vF is parallel to l if p lies above the Fermi
surface, and antiparallel to it if p is below – corresponding to the sign ± in Eq. (15.9).
The l-independent term in Eq. (15.9) vanishes because of the convention that of the
Fermi surface is the zero of energy: ε(k) ≡ 0.
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Fig. 15.2 A sketch illustrating the decomposition, p = k + l, of a momentum vector into a part, k, on the Fermi
surface plus a piece, l, perpendicular to it.

To obtain the near–Fermi-surface Wilson action requires integrating out small
frequencies (the shortest times, t) and largest transverse momenta, l. To this end,
imagine introducing cutoffs 1/λt and λl on the t and l integrations appearing in
Sfree. Following the logic of §2.4.2, integrating out modes near the cutoff causes
them to shrink, but also causes all couplings to evolve so that physical processes do
not change. The simplest way to compute these effects is to rescale t → t ′ = t/st
and l → l ′ = sll, so that the cutoffs for the new variables remain unchanged at 1/λt

and λl .
Since the path integral is assumed to be dominated in the energy range of interest

by Sfree, these scalings should be done in a way that preserves its form. Inspection
of (15.7) using (15.9) and d3p = d2k dl shows this requires st = sl =: s, so that the
low-energy limit that preserves Sfree is

k → k , l → s l , E → s E and ψ(p) → s−1/2 ψ(p) (15.11)

as s → 0.
With these choices the scaling of higher terms in the expansion of ε(p) in powers

of l is determined. A term in S(n)
free proportional to ln in this expansion, scales like

S(n)
free → sn−1 S(n)

free, and so (as expected) becomes less important as s → 0.

15.1.2 Irrelevance of Fermion Self-Interactions

With scaling properties in hand, it becomes possible to classify how interactions
in Sint scale as s → 0. This section computes this scaling for arbitrary fermion
self-interactions, and shows that the kinematics of scaling near the Fermi surface
makes almost all self-interactions scale to zero as s → 0. This shows that these
interactions are irrelevant in the weakly coupled fermion theory, and so their effects
at low energies are necessarily suppressed by powers of E divided by a UV scale
(like EF). The weak-coupling assumption is self-consistent: if it ever becomes valid
in the flow towards low energies, then it becomes ever more valid the lower in energy
one goes.

To demonstrate why these conclusions are true, consider first terms in Sint that
involve four powers of the field ψ that describe two-body electron scattering.
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The most general form such an interaction can take consistent with the underlying
symmetries is:

S(4)
int =

∫
dt

4∏
i=1

d3pi Vabcd (p1, p2, p3, p4) δ3(p1 + p2 − p3 − p4)

× ψ∗d (p4) ψ∗c (p3) ψb (p2) ψa (p1), (15.12)

where there is an implied sum over the indices, a, b, c, d = ± 1
2 , that label the two

components of the electron field in spin space. The coefficients, Vabcd (p1, p2, p3, p4),
must preserve all of the symmetries of the problem, and are generally otherwise
arbitrary smooth functions.3 The only 4-fermion terms omitted in Eq. (15.12) are
those involving time derivatives of the electron fields. These are ignored because
each additional time derivative suppresses the result by another power of s, making
it even more irrelevant than the interactions of Eq. (15.12) turn out to be.

To determine how the interaction of Eq. (15.12) scales as s → 0 as before
write d3pi = d2ki dli and expand the function Vabcd (p1, p2, p3, p4) about the Fermi
surface:

Vabcd (p1, p2, p3, p4) = Vabcd (k1, k2, k3, k4) + O(l). (15.13)

This expansion is useful because each successive term in it scales by a higher power
of s (and so is more irrelevant at low energies) than its predecessor. The dominant
effect at low energies therefore ignores all of the l-dependent terms.

The determination of the scaling of S(4)
int is now a straightforward application of the

previously defined scaling rules, apart from one exception. The exception concerns
the question as to how the momentum-conserving delta function in Eq. (15.12)
should scale. Since each factor of dli in the integration measure supplies a power
of s while the factors of d2k do not, the issue is whether the delta function can be
used to eliminate just d2k integrals, or whether it is required also to perform one of
the dl integrals.

As is justified below, generically the delta function can be used to perform only
d2k integrals, in which case it contributes nothing to the scaling of S(4)

int . There
are, however, a few exceptional cases of special kinematics where this is not true.
Because the momentum-conserving δ-function in these special cases removes one of
the integrations over dli , for them the interaction scales with an additional factor of
1/s relative to the generic situation.

Scaling: Generic Kinematics

Consider first the generic case where δ3(p1 + p2 − p3 − p4) does not scale. Applying
the transformations of (15.11) implies that S(4)

int scales as

S(4)
int → s S(4)

int (generic kinematics), (15.14)

with a factor of s4 coming from the four factors of dl and 1/s3 coming from
dt (ψ∗ψ)2. For generic kinematics a general two-body interaction is therefore

3 Although not crucial to the argument being made, smoothness ultimately reflects cluster decomposition
[404]: the property that probabilities for states widely separated in position space must factorize. The
role of cluster decomposition in quantum field theory is outlined in a delightful essay [405], with details
in the book [406].
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irrelevant. It follows that all other interactions involving more powers of li or ∂t
are even more irrelevant.

What happens when additional powers of the fields, ψ(p), are included, to create
three- and higher-body interactions? The answer is that these are even more irrelevant
than the two-body ones, despite the fact that the fields themselves scale with the
negative power: ψ → s−1/2ψ. The reason these higher-body interactions nonetheless
are irrelevant is because each additional factor of ψ(p) also involves an addition
integration measure, d2k dl, and the suppression due to the dl integration overwhelms
the enhancement due to the additional power of ψ(p). Furthermore, the symmetries
of the theory imply that each factor of ψ is accompanied by a factor of ψ∗, so higher-
body interactions are suppressed by at least one additional power of s relative to the
generic two-body case just discussed.

The assumption of weakly interacting degenerate fermions is evidently a robust
one near the Fermi surface – apart possibly from the cases with special kinematics
to be discussed next. All of the possible interactions are irrelevant, and so become
less and less important at lower energies. Once a system enters into a low-energy
regime that is dominated by just this type of quasiparticle, the description in terms
of almost free fermions just improves for lower- and lower-energy observables. This
is the EFT’s way of expressing the suppression of interactions by Pauli blocking that
underlies the formalism developed in [401].

Scaling: Exceptional Kinematics

As alluded to above, there are exceptions4 to the scalings just derived, for which the
momentum-conserving delta-function removes one of the dli integrations and so the
interaction scales with one fewer power of s. Which is to say

S(4)
int → S(4)

int (exceptional kinematics), (15.15)

making these interactions marginal. In a world of irrelevant interactions marginal
interactions are king, and so these special cases are of particular interest in the low-
energy limit.

Which Kinematics Are Special?

When does the special kinematics with marginal interactions occur? Several common
situations are identified in this section. Identifying them requires asking whether or
not the momentum-conserving delta function can be used to exclusively perform d2k
integrals.

Consider, therefore, the elastic two-body scattering of two electrons mediated
by the interaction S(4)

int of (15.12). In a two-body collision the initial momenta, p1
and p2, can be regarded as given, and momentum-conservation thought of as three
constraints that determine three of the six components of the two final momenta, p3
and p4. Energy conservation then provides a fourth constraint, reducing the number
of free components of final momenta to two.

4 The description here is is for d = 3 spatial dimensions, but would apply equally well to any d ≥ 2.
d = 1 is different because in this case there are no ki ’s and only li ’s, and so the 4-fermi interaction is
marginal even for generic kinematics.
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Fig. 15.3 A sketch illustrating the allowed final momenta for 2-body scattering on a Fermi surface.

For momenta near the Fermi surface, the six components of the final momenta are
the four components given by k3 and k4, plus the two components l3 and l4. If all
three components of momentum-conservation can be used to perform d2k integrals,
then the three undetermined parameters in the final state are l3 and l4, in addition to
one combination of the four ki .

On the other hand, if it should happen that momentum-conservation determines
one combination of l3 and l4 then the three unconstrained components of final
momentum are the other combination of the li , plus two components of the
final ki’s.

The strategy to see if it is possible to use the delta-function to perform only ki

integrals is therefore to solve the conditions

k1 + k2 = k3 + k4, (15.16)

using momenta lying purely on the Fermi surface. If it should happen that there
is at most a one-parameter family of solutions to these equations, then all three
momentum-conservation conditions can be fulfilled using only the ki’s. If, however,
a two-parameter family of solutions to Eq. (15.16) exists, then one of the li’s must be
constrained by momentum-conservation.

It is simplest to solve Eq. (15.16) graphically. Momentum-conservation is most
simply expressed in the CM frame, in which both the initial pair and the final pair
of momenta must be equal and opposite. In a general frame pi ≡ PCM + p′i with
p′1 = −p′2 and p′3 = −p′4. Pictorially, this means that the set of allowed final-state
momenta given an initial pair of momenta, p1 and p2, consist of all possible pairs of
equal and opposite momenta centred at the point PCM .

If all four momenta are required to lie on the Fermi surface, in addition to
satisfying momentum-conservation, then the space of solutions for k3 and k4 consists
of those pairs of points on the Fermi surface connected by a chord that is bisected by
the point PCM (see Fig. 15.3).

As the figure shows, one solution to this condition always exists: choose k3 = k1

and k4 = k2 (or interchange 1 ↔ 2). If l3 and l4 are also nonzero then this solution for
p3 and p4 need not be precisely identical to the initial momenta on the Fermi surface.
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For a Fermi surface with generic shape the solution obtained in this way may be
the only one.

For this solution all three components of the momentum-conservation condition
are used to determine three components of the final ki , so the momentum-conserving
delta function does not affect the scaling of S(4)

int at all. This is the generic situation.
This generic situation need not apply for Fermi surfaces with more specific shapes,

however, particularly if the surface is very symmetric. The most extreme example of
this type arises when single-particle energies are rotation invariant: ε(p) = ε(p) for
p = |p|. In this case, the Fermi surface is a sphere, and so is invariant under rotations
about the axis defined by an initial PCM .

This symmetry allows a one-parameter family of solutions to Eq. (15.16), for
which both final momenta are on the Fermi surface. The solutions are obtained by
rotating the solution k3 = k1 and k4 = k2 about the axis PCM , inscribing a circle of
allowed final-state momenta on the spherical Fermi surface. Because only a single
parameter remains free of the four potentially independent components of k3 and k4,
it remains true in this case that all three of the momentum-conservation conditions
are saturated using only d2ki integrations.

In order for momentum-conservation not to constrain three of the components of
the final-state ki’s there must be at least a two-parameter family of solutions to Eq.
(15.16). That is, there must locally be a region within momentum space for which
an entire patch of the Fermi surface always satisfies the momentum-conservation
condition.

BCS Kinematics

The most important example of this type arises whenever the single-particle energies
are even or odd functions under momentum reflection:

ε(−p) = ±ε(p). (15.17)

This is not a hypothetical or fine-tuned possibility; for example, it would follow
if the underlying system were time-reversal invariant. What matters is that (15.17)
ensures that ε(k) = 0 implies that ε(−k) = 0. When this is true the entire Fermi
surface solves the momentum-conservation condition so long as the initial momenta
are chosen to be equal and opposite: k1 + k2 = 0. In this case, for any choice for
k3, its opposite k4 = −k3 also lives on the Fermi surface while still satisfying the
momentum-conservation condition. The two-parameter family of final ki’s satisfying
momentum-conservation consists of the Fermi-surface itself. Consequently, one of
the components of the momentum-conservation condition must constrain the off-
surface momenta, li , changing the low-energy scaling of this type of two-body
interaction in the way found earlier.

Within the theory of superconductivity devised by Bardeen, Cooper and Schrieffer
(BCS) [380] it is marginal interactions of this type that play an important role in trig-
gering superconductivity for many materials (as is explored in more detail in §15.2).

Other Special Kinematics

Other instances can also give two-parameter solutions to Eq. (15.16), provided the
Fermi surface has particular properties. Two examples of this arise when the Fermi
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Fig. 15.4 A sketch of a cubic Fermi surface, illustrating two special configurations with marginal scaling. In one the
sum 1

2 (k1 + k2) lies on a planar part of the Fermi surface. The other special configuration arises when
two regions of the Fermi surface (which in general need not be planar) are related by a ‘nesting’ vector, n.

surface is a cube, such as shown in Fig. 15.4. From this point of view a cubic Fermi
surface has two special features: (i) it has faces that are planes, and (ii) it has opposite
faces that are nested, inasmuch as one is the translation of the other by a fixed vector,
n. Either of these two properties suffices to allow a two-parameter family of solutions
to (15.16).

For instance, suppose a region P of the Fermi surface is planar. Then if the initial
momenta are chosen (as illustrated in Fig. 15.4) so that PCM =

1
2 (k1 + k2) lies in

this plane, P, then the two-parameter family of allowed final momenta consists of
the (2-dimensional) span of all vectors, k3 and k4, that lie in P and sum to PCM .

Nesting works somewhat similarly. The nesting assumption states that two (possi-
bly curved) 2-dimensional regions of the Fermi surface are related by translating by
n, so for p in these regions ε(p) = 0 implies5 ε(p+n) = 0. In this case, choose initial
momenta satisfying k1 + k2 = n, where n is the nesting vector relating two regions
of the Fermi surface. If ε(−p) = ε(p) then the two-parameter class of solutions
to (15.16) is parameterized by an arbitrary k3 lying in the nested region, since for
any such choice k4 = n − k3 automatically also lies on the Fermi surface since
ε(k4) = ε(−k3) = 0.

15.1.3 Marginal Interactions

The above sections show that the scalings inferred from the free lagrangian imply
that all interactions are irrelevant, apart from a few marginal 4-fermion interactions
at a few specific places in momentum space. Fermi liquids describe essentially free
particles at very low energies, and this is basically why free-electron (or weakly
interacting nucleon) models often work so well.

But the marginal interactions actually do contribute in several specific ways, and
this section outlines some of them, using marginal interactions of the BCS type,
for which p1 + p2 � 0. Because there are only very specific types of marginal

5 Repeated shifts do not generate more and more nested regions because lattice symmetries make ε(p) a
periodic function in momentum space, and 2n is typically commensurate with its period.
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Fig. 15.5 Feynman graphs that renormalize the density operatorψ∗(p)ψ(p′) (represented by the cross) but only
in the limit where p′ → p within the effective theory of Fermi liquids. The four-point interaction is a
marginal two-body coupling, as described in the text.
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Fig. 15.6 The Feynman graph giving the leading perturbative correction to the marginal two-body interaction
strength within the low-energy theory of Fermi liquids.

interactions – i.e. 4-fermi interactions with p1 � −p2 and p3 � −p4 – they contribute
to observables in very specific ways. For instance, many physical processes involve
the density of electrons, ψ∗(p)ψ(p′), and for generic momenta this operator behaves
as if the fermion is a free particle inasmuch as it is not renormalized by the marginal
interactions.6

For position-independent quantities like expectation values, however, the limit
p′ → p is required, and in this regime the marginal interaction does renormalize
the matrix elements of the density operator, through graphs of the form given
in Fig. 15.5. Furthermore, because the interaction is marginal only when negli-
gible momentum flows from loop to loop, iterations of these corrections can be
re-summed.

For later purposes the most interesting corrections due to marginal interactions
are the corrections they make to their own scaling. That is, although scaling inferred
using the Sfree implies that these interactions are marginal, the scaling properties
themselves receive perturbative corrections which cause the effective couplings to
run. Such corrections make the most difference precisely for marginal interactions
because they can cause S(4)

int to scale nontrivially; potentially tipping it to become
marginally relevant or marginally irrelevant rather than exactly marginal.

The graph to compute to determine this is shown in Fig. 15.6, in which the vertices
represent the marginal interaction, and this is reflected in the choice of external
momenta. In this graph the integration is over modes for which l > λ, where λ is a
floating cutoff that tracks the effects of integrating out successive modes à la Wilson.
Crossed versions of this graph need not be computed because for these the required
interactions are irrelevant except for specific values of the internal momenta. As a
result, they do not give a divergent dependence on λ and so do not contribute to
λd/dλ of the result.

6 This argument, as applied to the electron-phonon vertex for generic momentum transfers p′ � p, is at
the root of Migdal’s theorem [407], which says the electron-phonon vertex is not dressed by low-energy
interactions.



435 15.1 Fermi Liquids

Evaluating Fig. 15.6 using the propagator constructed from (15.7) gives the
following correction

δVabcd (p,−p, q,−q)

= 2i
∫

d2k dl dω

(2π)4

Vabef (p,−p,−k, k) Ve f cd (k,−k, q,−q)[
(E − ω) − vF(k) l + iε

] [
(E + ω) − vF(k) l + iε

] ,
= −

∫
d2k dl

(2π)3

Vabef Ve f cd���vF(k) l − E��� , (15.18)

in which E = ε(p) is the energy of the external line and ε is the usual infinitesimal
parameter used to choose the contour in the complex ω plane. For the internal lines
ε(k, l) � vF(k)l is used.

For the purposes of seeing how the potential runs, all that matters in (15.18) is
that the dl integration diverges logarithmically in the UV. Because the divergence
is logarithmic it doesn’t really matter much how it is regulated; the formulae below
simply cut the divergence off at l = λ. This suffices for the Wilsonian purpose of
identifying the λ-dependence acquired by the potential to compensate for the loss of
modes with l > λ. Neglecting terms O (1/λ), the result is:

λ
∂

∂λ
Vabcd (p,−p, q,−q) =

∫
d2k

(2π)3 vF(k)
Vabef (p,−p,−k, k) Ve f cd (k,−k, q,−q).

(15.19)

To get a feel for what this means, approximate the interaction potentials as being
ndependent of momenta and take only the spin-singlet combination,

Vabcd (p,−p,−k, k) � V
2
(
δacδbd − δadδbc

)
, (15.20)

in which case, (15.19) simplifies to

λ
∂V
∂λ
= NFV

2, (15.21)

where the positive quantity

NF :=
∫

d2k
(2π)3 vF(k)

, (15.22)

gives the density of states on the Fermi surface. Eq. (15.21) emphasizes that it is
ultimately the dimensionless product NFV that controls whether the interaction is
weak or strong.

Eq. (15.21) integrates to give one of the main results: how V (μ) evolves with
scale:

V (μ) =
V (μ0)

1 +NFV (μ0) ln
(
μ0/μ

) . (15.23)

This result contains a lot of information. For repulsive interactions – for which
V (μ0) > 0 – it implies that V (μ) < V (μ0) for μ < μ0, making the interaction weaker
at lower energies. It is therefore marginally irrelevant. As energies are lowered, the
running logarithmically suppresses the strength of repulsive interactions.

For attractive interactions – for which V (μ0) < 0 – Eq. (15.23) instead implies
that |V (μ) | > |V (μ0) | for μ < μ0, making the interaction more important at lower
energies; it is marginally relevant.
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Growth in the infrared represents an instability of the low-energy theory (similar to
what happens in QCD) because at sufficiently low energies the attractive interaction
becomes strong enough to leave the perturbative regime, and to qualitatively change
what are the important degrees of freedom and how they scale. For the marginal
interaction experienced by electron pairs having opposite momenta this is known as
the BCS instability [380].

15.2 Superconductivity and Fermion Pairing ♠

The previous discussion indicates a low-energy instability generic to weakly coupled
degenerate fermions experiencing an attractive interaction, regardless of how weak
this attraction might happen to be at high-energies. The existence of such an
instability is very suggestive for the understanding of superconductors, for which
pairs of electrons combine into Cooper pairs whose strong interactions ensure
a doubly charged order parameter like 〈ψ(p)ψ(−p)〉 becomes nonzero, thereby
spontaneously breaking electromagnetic gauge invariance (with all the consequences
described in §14.2). It seems compelling to understand this pairing as due to the
BCS instability among low-energy electrons, but how might these electrons come
to experience a net attractive interaction in the first place given their underlying
Coulomb repulsion?

In conventional superconductors the answer is at first sight surprising: Coulomb
repulsion is ultimately swamped by relatively feeble electron-electron interactions
caused by phonon exchange [380]. To understand this in the low-energy effective
theory requires a detour to see how phonons behave and interact with electrons near
the Fermi level.

15.2.1 Phonon Scaling

The phonons in question are the same phonons described in §14.3, though we meet
them here in a different guise. As Fig. 15.7 shows, in order to participate significantly
in electron interactions near the Fermi surface, the phonons of interest should have
momenta, q, comparable to the Fermi momentum pF. The regime of interest is low
energies but not necessarily long wavelengths: potentially far from the extremely
long-wavelength limit discussed in §14.3. The rest of this section explores how
phonons behave in this large-q regime.

Free Propagation

Like any Goldstone mode, phonon interactions must taper off at long wavelengths,
but how strong can they interact when q is not so small?

In real solids there are good reasons why phonon interactions are expected to be
weak. Phonons in solids describe the vibrations of the atoms or ions making up the
lattice itself, since these are the quantities whose ordering is ultimately responsible
for breaking the spacetime symmetries. Because phonons are associated with atomic
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Fig. 15.7 A typical electron-phonon interaction in which emission or absorption of a phonon of momentum
q = p′ − p causes a transition between two low-energy electrons near the Fermi surface.

motion their properties depend on the mass, M , of the moving atoms, which is
enormous compared to the mass, m, of the quasi-electrons whose motion governs
electromagnetic response.

For an elemental solid with atomic number A, this mass ratio is M/m ∼ 103 A. For
A ∼ 100 – as is reasonable for many elements – M/m can be as large as 105. Since
it costs an infinite amount of energy to start the ions vibrating when M/m → ∞,
phonon modes should decouple in this limit. It is therefore important to follow the
M-dependence of phonon couplings, particularly if these m/M-suppressed couplings
are to be compared in strength to something so strong as the Coulomb force.

To this end, consider first a generic quadratic action describing freely propagating
phonons, keeping as usual only the fewest time derivatives:

Sph

free =
1
2

∫
dt d3q

{
M Zi j (q) u̇i (q) u̇ j (−q) (15.24)

− m
[
Z 1

2Ω2Z 1
2
]
i j

(q) ui (q) u j (−q)
}
,

where ui physically represents a measure of local lattice displacement, and the
quantities Z and Ω2 are matrices of medium-dependent coefficients whose details
are not crucial in what follows. There is no point writing this in position space given
that the momenta of interest are not so different from the inverse lattice separations.

The factor of M in front of the kinetic term reflects the underlying origin of this
term as the kinetic energy of the lattice ions, and a factor of the quasi-electron mass,
m, premultiplies the second term for dimensional reasons. m is a natural scale to use
since the restoring force between ions arises due to their electronic interactions.

As usual, canonical normalization for the kinetic term is achieved by redefining
fields,

Di (q) ≡
[
M Z(q)

] 1
2

i j
u j (q), (15.25)

in terms of which

Sph

free =
1
2

∫
dt d3q

[
�̇D(q) · �̇D(−q) − m

M
Ω2

i j (q) Di (q) D j (−q)
]

. (15.26)
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This action describes the propagation of three phonon modes with dispersion
relations related to the eigenvalues, ωa (q), of the three-by-three matrixΩi j (q). Since
these are Goldstone modes we know from previous sections that they are gapless:
limq→0Ωi j (q) = 0 with linear dispersion ω2

a ∝ c2
a q2 as q → 0.

The explicit factor of m/M shows that the propagation speed, ca, for all three
modes is small: ca ∝

√
m/M � 1. The transformation (15.25) also generates a

similar factor of
√

m/M for each power of �D appearing in a phonon interaction.

Scaling and the Debye Frequency

The next question asks how phonon interactions scale in the low-energy limit,
assuming their interactions are initially weak at high energies. But how should the
phonon momentum scale while the phonon energy scales to zero: Eph → s Eph?

The answer to this question depends on the nature of the low-energy physics which
is to be studied. For example, when studying the propagation of low-energy sound
waves, as in §14.3, the appropriate scaling limit would be Eph → s Eph with q → s q,
since this preserves the phonon dispersion relation at long wavelengths.

For understanding how phonons influence low-energy electron properties, how-
ever, a different limit is required. In this case, our interest is in the phonons whose
exchange influences electron scattering at low energies. Although the energy transfer
available for low-energy electron scattering scales like s, the relevant momentum
transfers remain of order pF, as in Fig. 15.7 which sketches the relevant low-energy
kinematics.

The low-energy scaling appropriate to phonons relevant to electron scattering near
the Fermi surface is therefore

Eph (q) → s Eph (q), q → q. (15.27)

With this choice, the phonon kinetic energy, ∂t �D ·∂t �D, is scale-independent provided
that the phonon field scales as �D → s−1/2 �D. Notice that this scaling does not also
preserve the size of the second term of the free action, Eq. (15.26), because of the
choice (15.27) not to scale q. But it is reasonable to treat this term perturbatively
given that it comes with the very small factor m/M .

Under these rescalings the second, ‘restoring’, term in Eq. (15.26) scales to s−2

times itself, and so is relevant. So even though it starts off suppressed by m/M at
the underlying electronic scale, Eatom, its relevance means that it grows to become
O(1) – and so of the same size as the phonon kinetic term – at an energy, ωD, defined
by (ωD/Eatom)2 ∼ (m/M). The resulting scale,

ωD ∼
( m

M

)1/2
Eatom, (15.28)

is called the Debye energy. For solids having an atomic number A ∼ 100, one expects
in order of magnitude ωD ∼ 10−3 Eatom ∼ 10−2 eV, corresponding to temperatures in
the hundreds of K .

Having both terms in (15.26) similar in size at this scale indicates that this is the
phonon energy for which phonons of momentum q ∼ pF are on shell, in the sense
that they satisfy the phonon dispersion relation: Eph (q) = c q, with c ∝ (m/M)1/2

the appropriate sound speed.
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Scaling below the Debye Scale

At energies below the Debye scale, it is the second term of Eq. (15.26) that dominates
in the weak-coupling path integral, instead of the kinetic term (which is simply the
RG way of saying that for energies ω � ωD and |q| ∼ pF the 4-momentum of an
off-shell phonon is dominantly spacelike rather than timelike). As a result, it is this
term rather than the kinetic term that controls the size of the fluctuations in �D below
the Debye scale.

The scaling law for �D in this regime therefore becomes �D → s+1/2 �D, making the
total scaling law for phonons

Eph → s Eph; q → q;
�D → s−1/2 �D for Eph > ωD, (15.29)

�D → s+1/2 �D for Eph < ωD .

These scaling rules determine how interactions for these phonons scale. For instance,
a term, Sd, f , in the phonon action involving d time derivatives and f powers of �D
therefore scales according to

Sd, f → s−1+d− f /2 Sd, f , for Eph > ωD,
Sd, f → s−1+d+ f /2 Sd, f , for Eph > ωD, (15.30)

showing that the dominant terms have no time derivatives (d = 0). These dominant
self-interactions clearly grow when scaling down from E ∼ Eatom to E ∼ ωD, but
then (because f > 2 for any self-interaction term) shrink at energies below this
(eventually decoupling as s → 0).

How big do these interactions become at their largest (i.e. at the Debye scale)?
Keeping in mind that a typical coupling at high energies involving f phonon fields
is suppressed by κ f (Eatom) ∝ (m/M) f /2, the scaling rules given in (15.30) imply the
maximum strength attained by these couplings is (for d = 0):

κ f (ωD) ∼
(

Eatom

ωD

)1+ f /2

κ f (Eatom) ∼
( m

M

) ( f−2)/4
. (15.31)

Because f > 2 for any interaction term, these interactions remain suppressed by
m/M even at their maximum, at the Debye scale, justifying continued treatment of
phonons using perturbative methods.

Phonon-Electron Interactions

This is all very nice, but what matters for low-energy electronic properties is how
phonon-electron interactions scale at low energies. The simplest such interaction,
involving the fewest possible electron and phonon fields (and no time derivatives),
describes phonon emission and absorption and has the form

Se−ph
int =

√
m
M

∫
dt d3q d3p d3p′ giab (q; p, p′) δ3(p − p′ − q)Di (q) ψ∗a (p)ψb (p′),

(15.32)

where the overall factor of (m/M)1/2 comes from the canonical redefinition (15.25).
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It is straightforward to read off how such interactions scale, by simply applying the
scaling transformations of the previous sections. As usual, the dominant contribution
at low energies comes from the leading term in the expansion of electron momenta
about the Fermi surface,

giab (q; p1, p2) � giab (q; k1, k2) + O(l). (15.33)

Furthermore, for (15.32) the momentum-conserving delta function can always be
used to perform the nonscaling d3q integration, and so never contributes to overall
scaling. The result therefore is

Se−ph
int → s−1/2 Se−ph

int , for Eph > ωD,

Se−ph
int → s+1/2 Se−ph

int , for Eph < ωD, (15.34)

which shows relevant scaling for energies above the Debye scale and irrelevant
scaling below it. More complicated interactions scale with higher powers of s than
these.

The maximum strength attained by this interaction is acquired at E ∼ ωD, and is
given by

giab (ωD) ∼
(

Eatom

ωD

)1/2

giab (Eatom) ∼
( m

M

)1/4
, (15.35)

and so remains suppressed by a positive power of m/M .
The upshot so far is this: phonons complicate the low-energy Fermi-liquid picture

of electrons, but only by adding perturbatively small interactions suppressed by
positive powers of m/M . Not too surprisingly, the phonons whose couplings matter
the most for electron scattering are those whose momenta and energies allow them to
be on-shell when interacting with Fermi-surface electrons: |q| ∼ pF and Eph ∼ ωD ∼√

m/M EF.
Because phonon interactions are relevant between Eatom and ωD the powers of

m/M suppressing interactions at E ∼ ωD are systematically lower than those
appearing at E ∼ Eatom, but in all cases the power is positive. Phonons therefore
do not destroy the overall Fermi-liquid picture in which the low-energy response
involves weakly interacting quasi-electrons. These quasi-electrons just end up also
coupled to a gas of weakly interacting phonons at low energies.

The validity of this picture can be tested for real materials by comparing the
predictions implied for measurable quantities, such as specific heat, thermal and
electrical conductivity and so on. For example, a thermal gas of phonons with
dispersion relation E(p) = cp has thermal energy density(

U
V

)
ph

= g
ph
�

∫
d3p

(2π)3
E(p)

eE (p)/T − 1
, (15.36)

where g
ph
� = 3 counts the number of internal (spin) states. Differentiating gives a

specific heat that agrees well with measurements for many solids when evaluated
with the integration cut off at Emax = ωD. In particular, it predicts dU/dT ∝ T3 for
T � ωD.
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Degenerate electrons similarly contribute at low energies an amount(
U
V

)
el

= gel
�

∫
d2kdl

(2π)3
vF(k)l

evFl/T + 1
, (15.37)

where now gel
� = 2. Scaling l → l/T shows this predicts dU/dT ∝ T at low energies

(and so falls there more slowly than does the phonon contribution). The success of
predictions like these (and others) gives an a posteriori justification for the Landau
Fermi-liquid description of electrons in many materials.

15.2.2 Phonon-Coulomb Competition

This is all still very nice, but does not yet help see how phonon-mediated processes
can compete with repulsive Coulomb interactions. To see how this comes about,
consider computing phonon exchange to see how this looks as an electron self-
interaction.

For instance, single-phonon exchange using the interaction (15.32) in general
leads to an interaction that is nonlocal in time, with terms of the form∫

dt dt ′
2∏

r=1

d3qr

4∏
j=s

d3ps g
i
ab (q1; p3, p1) g j

cd
(q2; p4, p2) 〈Di (q1, t)Dj (q2, t ′)〉

× ψ∗a (p3, t)ψb (p1, t)ψ∗c (p4, t ′)ψd (p2, t ′) δ3(q1 − p4 + p2) δ3(q2 − p3 + p1),
(15.38)

where 〈Di (q1, t)Dj (q2, t ′)〉 denotes the relevant phonon propagator.
Only for very late times, in the regime where the phonons involve energies

E < ωD, can this be regarded as a contribution to a fermion self-interaction like
(15.12), since the propagator is then local in time,

〈Di (q1, t)Dj (q2, t ′)〉 = Di j (q1, q2)δ(t − t ′), (15.39)

because the phonon free action is here dominated by the restoring force term
Ω2

i jD
iD j . In this regime 〈Di (t)Dj (t)〉 scales like s〈Di (t)Dj (t)〉, and so Di j (q1, q2)

in this part of the propagator does not scale.
By contrast, contributions to 〈Di (t)Dj (t)〉 have more time structure for shorter

separations that receive contributions from the regime E > ωD, because here the
kinetic term in the phonon free action dominates. In this regime 〈Di (t)Dj (t)〉 instead
has time-dependence consistent with it scaling like s−1〈Di (t)Dj (t)〉.

For the purposes of following factors of m/M , the overall strength of the phonon-
induced electron self-interaction (local in time or not) can be written as

Vabcd ∼
∫

dt ′ giab (q1; p3, p1) g j

cd
(q2; p4, p2)〈Di (q1, t)Dj (q2, t ′)〉. (15.40)

At the scale ωD phonon exchange begins to look like a potential interaction, and
at energies below this inherits the same scaling from the scaling of the gi

ab
’s as

was previously inferred directly for instantaneous 4-electron self-interactions. That
is, Vabcd → sVabcd for generic momenta, and Vabcd → s0Vabcd for the special
momentum configurations like p1 = −p2.

The same distinction between generic momenta and special momentum configu-
rations also changes the scaling of phonon exchange with energies larger than ωD,
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for the same reason. When momentum-conserving delta functions are combined in
expressions like (15.38) it remains true that for the special configurations one of them
removes a dl integral, thereby raising the scaling of the interaction by a factor of 1/s.

The upshot is this: the strength of the effective phonon-mediated coupling always
goes like the square of the scaling of the underlying electron-phonon couplings, gi

ab
.

Consequently,

Se−ph−e
int → s−1 Se−ph−e

int for Eph > ωD (generic case) (15.41)

Se−ph−e
int → s+1 Se−ph−e

int for Eph < ωD (generic case)

and

Se−ph−e
int → s−2 Se−ph−e

int for Eph > ωD (special config.) (15.42)

Se−ph−e
int → s0 Se−ph−e

int for Eph < ωD (special config.).

What does this mean for the powers of m/M in Vabcd? In the generic case at high
energies the phonon-electron couplings are g(Eatom) ∼ (m/M)1/2 and so phonon
exchange leads to electron interactions that are of order V (Eatom) ∼ m/M . At the
Debye scale, the phonon couplings grow to be of order g(ωD) ∼ (m/M)1/4 and the
phonon-mediated interaction there is of size Vabcd ∼ (m/M)1/2. This same result is
also found from the scaling (15.41) using Vabcd → s−1Vabcd with s ∼ ωD/Eatom ∼
(m/M)1/2. Not surprisingly, in the generic case interactions never become large.

More interesting is the case of the special kinematics for which the initial and
final electrons are equal and opposite. It is still true in this case that at high energies
the phonon-electron couplings are g(Eatom) ∼ (m/M)1/2 and so phonon-mediated
electron interactions are of order V (Eatom) ∼ m/M . In this case, though, the fermion
self-interaction gets enhanced relatively to g2 by the running of (15.42). Whereas
phonon self-interactions at the Debye scale are still g(ωD) ∼ (m/M)1/4 in size, the
phonon-mediated electron self-interaction at the Debye scale is instead enhanced by
an additional power of 1/s to be

V (ωD) ∼ [g(ωD)]2
(

Eatom

ωD

)
∼

( m
M

)1/2 (
M
m

)1/2

∼ O(1). (15.43)

All suppression by powers of m/M cancel, though only for the special BCS
kinematics. But for these kinematics the result can compete with other electron-
electron interactions.

Just below the Debye scale the dominant implications of phonon exchange for
electron scattering can be summarized as an effective attractive two-body interaction,
and so the strength of these interactions can be analyzed to lower energies using the
purely electron theory discussed in previous sections, using a total interaction of the
form

V tot
abcd (k,−k, k′,−k′) = V ph

abcd
(k,−k, k′,−k′) + V el

abcd (k,−k, k′,−k′), (15.44)

where V el
abcd

(k1, k2, k3, k4) describes all other two-body electron interactions aris-
ing from all sources other than through phonon exchange. This includes the
residual screened Coulomb inter-electron interactions and typically represents a
repulsive force.
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Assuming the total interaction to be weak enough to apply perturbative methods
allows the use of the results of §15.1.3 to see how the interaction scales to much
lower energies. For simplicity the evolution is here stated assuming all potentials to
be momentum-independent constants on the Fermi surface, as in Eq. (15.20). In this
case, it is useful to absorb the density of states on the Fermi surface,NF – defined by
Eq. (15.22) – to define the dimensionless quantities

μ := NFV
el (E = Eatom), μ� := NFV

el (E = ωD), (15.45)

characterizing the electronic interactions at both high energies and ωD, as well as the
phonon-potential strength at ωD,

ν := −NFV
ph (E = ωD). (15.46)

The sign in this expression is chosen so that ν > 0 when phonon-mediated inter-
electron forces are attractive. In the end, phonon exchange provides an attractive
inter-electron force because it describes how the Coulomb electron-ion attraction
slightly distorts the ionic lattice about one electron, thereby providing a small local
over-density of positive charge towards which the second electron is attracted.

Assuming V el is repulsive, Eq. (15.23) implies that μ and μ� are related by

μ� =
μ

1 + μ ln (Eel/ωD)
=

μ

1 + 1
2 μ ln (M/m)

. (15.47)

The total electron interaction at energies E � ωD then becomes (again using
Eq. (15.23))

V tot (E) =
V tot (ωD)

1 − (ν − μ�) ln (ωD/E)
, (15.48)

showing how phonon-mediated attraction competes with the renormalized strength
of the other electronic interactions to control the size of the total potential.

Everything rides on whether or not V ph dominates the renomalized value of V el

at the Debye scale; i.e. whether or not ν > μ�. There are two options:

• If |V el (ωD) | > |V ph (ωD) | then ν < μ�, and so V tot (ωD) starts off repulsive at
E = ωD, and therefore becomes logarithmically weaker at lower energies.

• If, on the other hand, it is V ph that dominates at E = ωD – a real possibility since
V ph (ωD) is not suppressed by powers of m/M – then ν > μ� and the net force
is attractive. As a result, V tot is marginally relevant, becoming more and more
attractive at energies lower than the Debye scale.

At low enough energies perturbation theory in a net-attractive interaction eventu-
ally fails, invalidating expression (15.48) for the running of V tot . At this point, the
quasi-electron pairs experience a strong attractive force, provided their momenta are
equal and opposite since it is only for these configurations that instability applies.
The ground state can respond dramatically to minimize this newly strong interaction
energy, such as by condensing pairs of bound quasi-electrons, giving rise to a
superconducting transition.

The scale, Esc , at which the coupling becomes strong is

Esc = ωD exp

[
−
(

1
ν − μ�

)]
∼ Eatom

( m
M

) 1
2

exp

[
−

(
1

ν − μ�

)]
. (15.49)
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Table 15.1 A comparison of some BCS predictions with experiment

Element Al Cd Hg(α) In Nb Pb Sn Ta Tl V Zn

(2Δ(0)/Tc )exp 3.3 3.2 4.6 3.6 3.8 4.4 3.5 3.6 3.6 3.4 3.2
Tc (K ) 1.14 0.56 4.15 3.40 9.50 7.19 3.72 4.48 2.39 5.38 0.875

This is exponentially small relative to the Debye scale whenever the coupling
ν − μ� is weak. It is exponentially small because the running of a marginal
interaction is logarithmic, and so it takes a long range of energies to make an initially
weak coupling into a strong one. This is the understanding of why conventional
superconductors have transition temperatures that are so small: of order a few K .

There are two independent ways to access the scale Esc experimentally: the
size of the superconducting gap at zero temperature, 2Δ(0), and the value of the
transition temperature, Tc . To compare with measurements requires a more detailed
calculation than given here, to determine more precisely the numerical prefactor of
the exponential for these two observables. The resulting weak-coupling predictions
turn out to be given by [408]

Δ(0) � 2 Esc , and Tc � 1.13 Esc . (15.50)

The theory makes the most accurate predictions for their ratio, 2Δ(0)/Tc � 3.53, in
which Esc cancels. The success of these predictions can be seen by comparing with
the experiment values given in Table 15.1 (taken from [409]).

To the uninitiated, the amazing thing about this comparison is that it works as
quantitatively as it does. An intrinsically feeble force is taken to compete with
the enormous Coulomb repulsion between electrons, with all other interactions
discarded. This sounds at face value like an argument at best trusted to within
an order of magnitude, whereas the quantitative predictions for the properties of
superconductors obtained are in practice quite successful, often working at the 10%
level or better.

The great power of this EFT analysis is its ability to understand this accuracy
by quantifying the errors being made by neglecting other contributions. The EFT
identifies that the accuracy of neglecting all other degrees of freedom besides the
BCS-unstable modes works so well because it is at heart a low-energy approximation,
due to the irrelevant scaling of all self-interactions for Fermi liquids.

Part of the evidence that phonon-mediated attraction lies at the root of the
superconducting story comes from comparing Esc for different materials having
different values for the ion mass M , a dependence known as the isotope effect.
Eq. (15.49) predicts the dominant dependence to arise in two separate ways. First,
M enters through the explicit factor (m/M)

1
2 , and second, it also enters implicitly

through the M-dependence of the renormalized interaction strength, μ�.
This M-dependence is usually characterized by an exponent, with Esc ∝

(m/M)αsc and αsc given in the BCS theory by using (15.49) to evaluate

αsc := − M
Esc

∂Esc

∂M
=

1
2

⎡⎢⎢⎢⎢⎣1 −
(
μ�

ν − μ�

)2⎤⎥⎥⎥⎥⎦ . (15.51)
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Table 15.2 The isotope effect for various superconductors
(Numbers taken from reference [409].)

Element αsc Element αsc Element αsc

Zn 0.45 ± 0.05 Pb 0.49 ± 0.02 Mo 0.33
Cd 0.32 ± 0.07 Tl 0.61 ± 0.10 Nb3Sn 0.08 ± 0.02
Sn 0.47 ± 0.02 Ru 0.00 ± 0.05 Mo3Ir 0.33 ± 0.03
Hg 0.50 ± 0.03 Os 0.15 ± 0.05 Zr 0.00 ± 0.05

For weak-coupling superconductors – those for which μ� � ν – the universal result
is αsc =

1
2 . The index systematically decreases as the relative strength of μ� grows

in comparison with ν. Some experimental values for αsc are given in Table 15.2 –
again taken from [409] – and are seen to be consistent with the prediction that they
should lie at or below the value 0.5, with best agreement being for weak-coupling
superconductors.

15.3 Quantum Hall Systems ♣

Quantum Hall systems provide a second example where interacting degenerate
electrons display a rich and striking phenomenology for which remarkably precise
predictions can be made. This section provides a brief sketch of some properties of
these systems, together with some steps towards seeing how effective field theories
can help understand the robustness of these predictions.

15.3.1 Hall and Ohmic Conductivity

The systems of interest have electronic structure that is very asymmetric and
effectively traps low-energy electrons to move in only two dimensions (for an
introduction to quantum Hall physics, see [411–414]). When a large magnetic field is
applied perpendicular to these two directions and an electric field is applied parallel
to them currents flow and transport properties can be measured. Because of the
magnetic field the current need not flow parallel to the electric field, with Ohm’s
law taking the form

Ji = σi jEj , (15.52)

where Ji denotes the electromagnetic current density, Ei is the applied electric field
and coordinates are chosen so that the electrons move in the x−y plane, so i, j = x, y.
For rotationally invariant systems – which is assumed henceforth – the conductivities
satisfy σyy = σxx and σyx = −σxy , making the two observable quantities the
Ohmic conductivity σxx and the Hall conductivity σxy . Notice that in two spatial
dimensions both Ji and Ei have dimension (mass)2 in fundamental units, and so σi j
is dimensionless.

The resistivity matrix defined by Ei = ρi j Jj is also useful, and is given by the
inverse of σi j . Its components are related to those of the conductivity by
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Fig. 15.8 Traces of longitudinal (or Ohmic) resistivity (ρxx) and Hall resistivity (ρxy) vs applied magnetic field, with
plateaux appearing in the Hall plot. The Ohmic resistivity tends to zero for fields where the Hall resistivity
plateaus. Figure taken from [410]

ρxx =
σxx

σ2
xx + σ2

xy

and ρxy = −
σxy

σ2
xx + σ2

xy

, (15.53)

which can be compactly summarized as ρ = −1/σ for the complex variables σ :=
σxy + iσxx and ρ := ρxy + iρxx . Since, in general, σxx ≥ 0 these complex variables
can be taken to live in the upper half plane. Notice that when σxy � 0 the limit
σxx → 0 is also the limit ρxx → 0.

Fig. 15.8 shows what is found when these resistivities are measured (as a function
of applied magnetic field) for real quantum Hall systems, and reveals a number of
very striking features. In particular, there are regimes of magnetic field for which
neither ρxx nor ρxy change as B is varied (these are called quantum Hall ‘plateaux’).
Even more remarkably, ρxx is consistent with zero on these plateaux while ρxy is
very accurately a ratio of integers q/p when expressed in units of 2π/e2 (= h/e2

once Planck’s constant is put back in).
If electrons behaved as (electrically charged) billiard balls, simple arguments [413]

show that one would expect to find σxy = ν(e2/2π), where the filling factor ν is
defined as the number of electrons present divided by the number of flux quanta in
the magnetic field:7

7 Notice that the flux quantum here is taken as Φ0 = 2π/e, which is twice as large as used for
superconductors in §14.2.1. This difference arises because the charge carriers here are assumed to have
charge ±e (as opposed to charge ±2e for paired electrons in a superconductor).
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ν :=
Ne

NΦ
=

neA
BA/Φ0

=
neΦ0

B
=

2πne

eB
, (15.54)

where A is the sample’s area. For a Hall plateau (assuming for the minute σxx = 0)
this implies that ρxy = −1/σxy is proportional to B. Although the general trend
for the Hall resistivity in Fig. (15.8) is indeed linear in B, this proportionality is
interrupted by the presence of the plateaux. In terms of conductivities, the plateaux
are experimentally characterized by the values

σxx = 0 and σxy =
k e2

2π
, (15.55)

where k = p/q is a rational number. The agreement of k with a fraction holds to
within the experimental accuracy – which is extremely good, better than a part in
109 when k is an integer. The special cases where k is an integer are called ‘integer
Hall plateaux’ and were the first to be discovered [415] while those where k is a
non-integer rational number are ‘fractional Hall plateaux’ [416].

Quantum motion of a free charged particle in a constant magnetic field gives
evenly spaced harmonic oscillator energy levels, En =

(
n + 1

2

)
(eB/m) called

Landau levels, and for a degenerate system of free electrons the quantization of
Landau-level energies describes well the integer quantum Hall states [417]. What
is a puzzle is why this quantization survives so extremely accurately even for
strongly interacting electrons and electrons in disordered environments, why it
persists unchanged as B ranges through a finite interval, and what decides whether
the quantization is an integer or a non-integer fraction. (When k = p/q is a fraction,
it also transpires that the denominator q is almost always odd.)8

There is a microscopic explanation for these effects that shows what the electrons
are doing when these quantum Hall states arise and why their transport properties
are quite robust. The integer effect is understood in this way to depend on free
electron properties in a magnetic field, coupled to some disorder that acts to localize
many electron states (making them not participate in charge transport measurements)
[413]. The fractional states are instead understood to arise due to the effects of
Coulomb interactions for these electrons [421]. In this picture Coulomb interactions
cause dramatic effects because of the enormous degeneracy of states these systems
enjoy. Two dimensional electrons in magnetic fields can have Landau levels that
are occupied by macroscopically large numbers of electrons (like 1011 electrons
or more). Such an enormous degeneracy amongst non-interacting states allows the
interacting ground state to be very sensitive to electron interactions, leading to
strongly correlated ground states.

The remainder of this section explores – following [418–420] – the extent with
which this microscopic understanding can be translated into an EFT language,
along the lines so successfully done for superconductivity. The use of EFT methods
seems appropriate since transport properties (like resistivity or conductivity) near
the plateaux take place at very low temperatures and at energies much smaller than
generic electronic scales. One can hope for robust properties to arise at low energies

8 The key word here is ‘almost’, since plateaux with even denominators also sometimes occur (like k =

5/2). But these are the exceptions that prove the rule (and, of course, both types must ultimately be
explained).
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as simple consequences of the low-energy theory, and not depend on many of the
details of the underlying electrons.

15.3.2 Integer Quantum Hall Systems

At very low energies, the effective theory obtained by integrating out all of the
higher energy excitations is a function purely of the electromagnetic field, Aμ,
used to explore the electromagnetic transport. What is interesting about two spatial
dimensions is that this effective theory allows an effective interaction that is more
important at low energies than is the usual Maxwell action. This effective coupling –
called the Chern-Simons term [335] – has the form

SCS =
k e2

4π

∫
M

d3x εμνλAμ∂νAλ, (15.56)

where M denotes the 2+1 dimensions of space and time containing the quantum
Hall electrons and k is the effective coupling constant (after the factor e2/4π
is extracted). Here, εμνλ is the completely antisymmetric Levi–Civita tensor (see
Appendix A.2.1), conventionally chosen so that ε012 = +1. It is because SCS involves
only three powers of fields and derivatives that it can dominate at low energies the
Maxwell term (which has four).

The electromagnetic current arising from a system described by Eq. (15.56) is
inferred by differentiating with respect to Aμ, giving

〈Jμ〉 = δSCS

δAμ
=

ke2

4π
εμνλFνλ, (15.57)

which when evaluated as a function of a perturbing electric field Ea = Fa0 and
magnetic field B = F12 gives

Ja =
ke2

2π
εabEb and J0 =

ke2

2π
B. (15.58)

Comparing the first of these with Ohm’s law – in the form Ja = σabEb – implies the
conductivities

σxx = 0 and σxy =
ke2

2π
. (15.59)

This shows that k can be interpreted as the Hall conductivity in units of e2/2π and
so should be an integer for integer quantum Hall systems and take fractional values
in fractional quantum Hall systems. The second equation in (15.58) also gives the
number-density of charge carriers because ne = |J0 |/e, and comparing the resulting
prediction for the ratio 2πne/eB with (15.54) reproduces the expectation that

|k | = ν, (15.60)

also gives the quantum Hall system’s proper filling fraction.
The action (15.56) has several novel properties that tell an interesting story

about the role that anomalies, topology and boundary physics can play in an
effective theory. This story centres on the transformation properties of (15.56) under
electromagnetic gauge transformations – c.f. Eq. (7.11) – for which Aμ → Aμ + ∂μζ
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with arbitrary ζ(x). These are not a symmetry of the lagrangian density in (15.56),
which varies into a total derivative:

εμνλAμ∂νAλ → εμνλAμ∂νAλ + ∂μ
(
ζ εμνλ∂νAλ

)
, (15.61)

a result that uses the antisymmetry of εμνλ to conclude εμνλ∂μ∂νAλ = 0. As the
next few sections show, this transformation property makes the physics of (15.56)
sensitive both to the topology of the Hall sample and to its boundaries.

Quantization of k

Up until this point, the parameter k defined in (15.56) could be any real number.
This section now argues that gauge invariance requires that k must be an integer,9

thereby providing a very robust explanation for the quantization of integer quantum
Hall levels. The argument that it is ultimately gauge invariance that is responsible
for the precise value of the filling fractions found for integer quantum Hall systems
was first made in [422], and is the reason why the quantization of these values is so
robust.

Why must k be an integer? The argument is topological, and so to make it it is
useful to imagine applying (15.56) in a topologically interesting situation: where
the two-dimensional sample is a 2-sphere. For the same reason it is useful also to
work at finite temperature (which for the purposes of topology simply means working
in Euclidean-signature metric with Euclidean time, τE, periodically identified (see
Appendix A.2.2): τE = τE + β – where β := 1/T is the inverse temperature). Notice
that it is sufficient that one could work in this topology to draw conclusions about k;
it is not necessary that every particular quantum Hall application use this topology.

The significance of making the spatial directions be a two-sphere is that this
quantizes the value of any homogeneous applied magnetic field, F12. After all, a
homogeneous magnetic field on a 2-sphere is the field of a magnetic monopole
situated at its centre, and this was shown in another context in §14.1.2 to require∫

S2

d2x F12 =
2πn

e
, (15.62)

where e is the smallest unit of free charge and n is an integer.
The significance of making time a Euclidean circle is that it allows a topological

class of ‘large’ U (1) gauge transformations, g = exp[ieζ(τE)], that are single-valued
on the circle

g(τE + β) = g(τE) by having ζ(τE + β) = ζ(τE) +
2πm

e
, (15.63)

where m is an integer. This can be achieved through the explicit choice ζ =
(2πm/e)(τE/β), for example. What is important is that the gauge potential also
transforms under these large transformations, with

Aτ → Aτ +
2πm
eβ

. (15.64)

The quantization condition for k follows from the requirement that (15.56) is
invariant under these large gauge transformations of Aτ. To see why, evaluate (15.56)

9 The changes required for fractional quantum Hall systems are discussed in §15.3.3.
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with F12 given by a time-independent magnetic monopole configuration and Aτ a
constant. With these choices

SCS =
ke2

4π

∫ β

0
dτE

∫
S2

d2x εμνλAμ∂νAλ =
ke2β

2π
Aτ

∫
S2

d2x F12 = nkeβAτ ,

(15.65)

which performs several spatial integrations by parts to isolate the Aτ as an overall
coefficient, and the last equality uses (15.62) where n is the magnetic monopole
quantum. Performing the transformation (15.64) to (15.65) then shows that SCS is
not invariant since

SCS → SCS + 2πk nm. (15.66)

What matters is not whether SCS is invariant, but whether eiSCS is, since this is what
appears in the path integral,10 and (15.66) shows that eiSCS remains invariant if k is
an integer (as are n and m).

This argument gives a very robust topological reason why both the filling fraction
and the Hall conductivity are rigidly quantized at integer values; all that is required
is that the lowest-dimension interaction, SCS, dominate at low energies, since the
above argument shows that its coefficient k must be quantized on very general
grounds whose roots lie in gauge invariance. It also captures the low-energy limit
of a more microscopic understanding of the underlying electron system’s response to
the topology of its environment [423]. Finally, this argument explains why quantities
like σxy and ν are so robust to adiabatic changes to system parameters in integer
quantum Hall systems. Because k is quantized, it generically cannot change in a
continuous way as other parameters slowly vary.

Surface Currents and Anomaly Matching

Another remarkable consequence of (15.61) can be seen for situations where the
quantum Hall sample has a spatial boundary. In the presence of boundaries Eq.
(15.61) implies that the action (15.56) cannot be the entire low-energy story. This
is because any quantum Hall system that is dominated by SCS at low energies must
also contain mobile charge-carrying degrees of freedom localized on its boundaries.

To see why, consider the transformation properties of (15.56) under the transfor-
mation Aμ → Aμ + ∂μζ. IfM has a boundary (as real quantum Hall systems usually
do) then SCS is not gauge invariant, and instead transforms as

SCS → SCS +
k e2

4π

∫
∂M

d2x ζ εμνλnμFνλ, (15.67)

where nμ is (as usual) the outward-pointing normal on the boundary, ∂M, of the
bulk Hall system.

In real systems the failure of gauge invariance implied by (15.67) must be can-
celled by a related failure coming from degrees of freedom, ψ, that live exclusively
on the boundary. Recall that the boundary in this case is 1+1 dimensional: consisting

10 Notice that the factor of i remains in the exponential eiSCS even in Euclidean signature because the
factor of i cancels between the transformations dt → −idτE and At → iAτ .
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of a single spatial dimension plus time. (For concreteness’ sake it is useful to imagine
the quantum Hall sample being a disc, with the boundary being its circumference.)

Degrees of freedom moving in the single spatial dimension of the boundary can be
chiral, inasmuch as their motion might be only clockwise or only counterclockwise
around the disc. This kind of uni-directional motion, with e.g. ψ = ψ(x − vt), is
possible when there is only a single spatial direction. What is important is that this
kind of chirality for an electrically charged degree of freedom implies a failure of
gauge invariance that can be just what is needed to cancel (15.67).

A 2D Dirac fermion is an example of a kind of charge carrier that could be
localized on the boundary. In this case, direction of motion is related to the spin
of the fermion, as can be seen from the form of the 2D Dirac equation/

∂ψ =
(
γ0∂0 + γ

1∂1
)
ψ = γ0

(
∂t + γ3∂x

)
ψ = 0, (15.68)

where γ0 = iσ1 and γ1 = σ2 are representations of the 2D gamma matrices in terms
of Pauli matrices, and γ3 := −γ0γ1 = σ3 is the matrix whose eigenvalues give the
spin handedness of the fermion field: γ3ψ± = ±ψ±. The Dirac equation then shows
that these fields satisfy the equations(

∂0 ± ∂1
)
ψ± = 0 with solutions ψ± = ψ±(x ∓ t), (15.69)

which shows how states of definite chirality move in specific directions along the
boundary.

For these types of fermions the chiral anomaly implies (see Exercise 15.3) that the
currents satisfy

∂μ〈ie ψ±γ
μψ±〉 =

1
2
∂μ〈ie ψγμ (1 ± γ3)ψ〉 = ± e2

4π
εabFab . (15.70)

This means that their quantum action, Γb , transforms anomalously, with [210]

δΓb = (N+ − N−)
e2

4π

∫
∂M

d2x ζ εabFab . (15.71)

This has precisely the form needed to cancel (15.67) provided the integer k agrees
with the mismatch between the number of left- and right-moving charge-carrying
species on the boundary. A similar construction can also be made using charge-
carrying bosons on the boundary. Although the electromagnetic Chern–Simons
action requires the presence of such boundary charge-carriers, it is relatively mute
about their detailed properties.11

This is a practical example of the phenomenon of anomaly matching described
in §4.3. The underlying theory in this case involves electrons interacting in four
spacetime dimensions with photons and lattice ions and is gauge invariant (including
having no anomalies). This must therefore also be true of the low-energy effective
description, and so any presence of a term like (15.56) – such as indicated by
a nonzero Hall conductivity – necessarily requires the existence of some other
boundary degree of freedom to ensure the low-energy description of the whole
system remains gauge invariant.

By doing so the effective theory correctly reproduces what happens in more
microscopic understandings of integer quantum Hall states, since these also indicate

11 Indeed, in 1+1 dimensions bosons and fermions can even be equivalent to one another [487–489]; for
a simple argument explaining why see [490].
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Fig. 15.9 Cartoon of semiclassical Landau motion in a magnetic field, showing how orbits in the interior do not carry
charge across a sample’s length while surface orbits can if they bounce repeatedly off the sample’s edge.
Notice that the motion is chiral inasmuch as the circulation goes around the sample in a specific direction.
This is a specific mechanism for the origin of surface currents in quantum Hall systems, as are required on
general grounds for the low-energy EFT by anomaly matching.

that boundary degrees of freedom play a prominent role transporting charge in
quantum Hall systems. Real systems are typically not homogeneous on macroscopic
scales and instead often come with the electron fluid dispersed into a collection
of quantum Hall domains, along which current percolates through the sample
largely moving along domain boundaries. Because of disorder within the samples,
electrons experience random potentials that keep many of them from participating in
macroscopic charge transport, but this cannot block the mobility of charges moving
along the surfaces of the domains. The microscopic origin of these surface currents
can already be seen within a semi-classical cartoon of electron motion, for which
Landau levels can be regarded as billiard-ball electrons moving in gyromagnetic
circles under the influence of the applied magnetic field. This circular motion
transports no net charge across the sample, but the same need not be true for electrons
near the sample’s edge which can move through longer distances by repeatedly
reflecting from the surface (as sketched in Fig. 15.9).

15.3.3 Fractional Quantum Hall Systems

So far, the arguments for quantizing k are almost too good: by quantizing k as an
integer they seem to preclude the possibility of having fractional quantum Hall states.
How do the fractional states arise in the low-energy EFT?

Fractional quantum Hall states change the above arguments by involving new
degrees of freedom in the low-energy theory. The required new degrees of freedom
turns out to be one or more abelian gauge field, aμ. This degree of freedom is
‘emergent’ at low energies inasmuch as it is more indirectly related to the properties
of weakly coupled electrons. It also expresses what is called ‘topological order’ in
the sample, inasmuch as the properties of the low-energy field aμ allow the material
to respond to different sample topologies in a way that captures topological features
of the underlying electron dynamics (such as how the number of degenerate ground
states available depends on sample topology).

The low-energy properties of a gauge field like aμ should be described by the
lowest-dimension interaction terms, and for aμ in 2+1 dimensions these are again
given by the Chern–Simons interaction plus the Maxwell lagrangian plus higher and
higher dimensions. Taking the leading terms to be
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Sa =

∫
d3x

[
k

4π
εμνλaμ∂νaλ −

1
4g2 fμν f μν + · · ·

]
, (15.72)

where fμν := ∂μaν − ∂νaμ is the abelian field strength for aμ. This leads to classical
equations of motion that predict (see Exercise 15.4) an energy gap

Egap =
kg2

π
, (15.73)

showing that no bulk gapless mode is predicted. At energies much lower than the gap,
the Maxwell term may be neglected and the action is simply dominated by the Chern–
Simons coupling. Because this coupling is topological it does not affect the system
energy (again see Exercise 15.4) or predict new propagating bulk modes.

One must also ask about the invariance of Sa under the new gauge
transformations

aμ → aμ + ∂μω, (15.74)

and for this the topological character of the Chern–Simons action again plays an
informative role. In particular, evaluating the action in a topologically nontrivial
background and repeating verbatim the arguments made above for electromagnetism
now shows that the coefficient k of the Chern–Simons term in Sa must be an integer.

To see why the introduction of aμ allows fractional Hall conductivities requires
adding the coupling between aμ and the electromagnetic field. The lowest-dimension
action with which this can be done in this case is through a Chern-Simons mixing
term. Adopting this coupling – and rescaling a factor of e out of aμ – replaces
(15.56) with

S′CS =
e2

2π

∫
M

d3x

[
εμνλaμ∂νAλ +

k
2
εμνλaμ∂νaλ

]
, (15.75)

where the first term coupling aμ to the electromagnetic field Aμ is chosen to ensure
invariance under electromagnetic gauge transformations, δAμ = ∂μζ.

Performing the gaussian integration over aμ is equivalent to evaluating at the
saddle point, aμ = ac

μ, where

f cμν = −
1
k

Fμν , (15.76)

obtained by solving δS′CS/δaμ = 0, leading to the following generator of electromag-
netic response

ΓCS = −
e2

4πk

∫
M

d3x εμνλAμ∂νAλ. (15.77)

The same arguments that gave (15.59) from (15.56) in the integer quantum Hall case
now imply that on a Hall plateau dominated by (15.75) one expects to find

σxx = 0 and σxy = −
e2

2πk
, (15.78)

showing, in particular, a fractional Hall conductivity. For reasons that become clearer
below the integer k must be odd for Hall systems built using fermionic charge
carriers, but can be even for Hall systems built from bosons. Both options are allowed
at this point because the effective theory cannot tell in itself which of these appears
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in the underlying theory. More complicated fractions σxy = (p/q)(e2/2π) may also
arise, and are obtained by adding additional emergent gauge fields – e.g. aμ and bμ –
beyond the single one considered here (see, for example, Exercise 15.5).

One might worry that something has gone wrong in this calculation, since the final
result (15.77) has the same form as (15.56) but with the coefficient of e2/4π not
quantized to be an integer; a quantization that was argued earlier to be a mandatory
result. Strictly speaking, this worry is a legitimate one: the saddle-point configuration
(15.76) is inconsistent with the boundary conditions for Fμν and fμν in cases with
nontrivial topology. This emphasizes that it is in general wrong to integrate out
aμ at low energies, despite it not describing propagating bulk degrees of freedom.
The topological gauge field aμ must be included in the low-energy theory since it
expresses the topological order of the microscopic theory. That is to say: aμ brings the
news to low energies of how the underlying electrons respond to a sample’s topology.
However, the conductivity (15.78) is nonetheless the correct result (despite its naive
derivation), since the saddle-point integration can be computed for topologically
trivial samples for which boundary conditions do not obstruct the use of (15.76).

Edge States

Besides encoding topological information, the Chern–Simons action also carries
useful information about boundary behaviour for samples with boundaries. To see
what this information is, consider first the action Sa for aμ without its coupling to
electromagnetic fields:

Sa =
ke2

4π

∫
M

d3x εμνλaμ∂νaλ, (15.79)

where M denotes the 2+1 dimensional quantum Hall bulk. At the classical level the
variation of Sa with respect to δaμ has the form

δSa =
ke2

2π

∫
M

d3x εμνλδaμ∂νaλ +
ke2

4π

∮
∂M

d2x εμνλaμnνδaλ, (15.80)

and so requiring δSa = 0 for variations in the bulk M that vanish on the boundary
implies that fμν = 0 throughout the bulk (and so, locally, aμ = ∂μϕ for some
ϕ). Similarly, requiring δSa = 0 for variations on the boundary ∂M implies
εμνλaμnνδaλ = 0, which says that the components of aμ and δaμ that are tangent
to the boundary should be parallel to one another. Choosing coordinates {t, x, y}
throughout the bulk and coordinate {t, x} on the boundary, stationarity with respect
to variations at the boundary is therefore ensured if

at + v ax = 0 (on ∂M) (15.81)

for any value of the parameter v.
The action Sa is only invariant under the gauge transformation δaμ = ∂μω if ω

vanishes on ∂M. More generally, one finds

δSa =
ke2

4π

∮
∂M

d2x εμνλω nμ∂νaλ. (15.82)

Because of this failure of gauge invariance, some of the would-be gauge modes of
aμ become physical, but only on the boundary. As mentioned above, these modes
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locally have the form aμ = ∂μϕ for a Stueckelberg scalar degree of freedom, ϕ,
whose dynamics is localized on the boundary. The classical equations of motion for
the boundary mode ϕ can be read off from (15.81), which implies that

(∂t + v ∂x )ϕ = 0, (15.83)

whose chiral solutions describe wave motion only in a single direction along the
boundary: ϕ = ϕ(x − vt), with speed v.

An action that reproduces this equation of motion for such a field has the
form [424]

Sϕ =
ke2

4π

∫
∂M

dt dx
[
∂tϕ ∂xϕ + v (∂xϕ)2

]
. (15.84)

These arguments show how the failure of Sa to be gauge invariant under the
emergent gauge transformations of the field aμ again implies the existence of
chiral edge modes for fractional quantum Hall states, though in a somewhat more
constructive way.

Turning on now the coupling of aμ to electromagnetic fields – using (15.75) –
reveals the role of these edge states in transporting electric charge. In particular, the
electromagnetic coupling term in (15.75) does not change the boundary condition
(15.81) for aμ, and so also does not modify the chiral evolution equation (15.83).
Varying (15.75) with respect to Aμ gives

δS′CS =
e2

2π

∫
M

d3x εμνλ∂νaλ δAμ +
e2

2π

∮
∂M

d2x εμνλnνaλ δAμ, (15.85)

which reveals both the bulk and the boundary contributions to the electric current:

Jμ =
e2

4π
εμνλ fνλ (bulk) and jμ =

e2

2π
εμνλnνaλ (boundary), (15.86)

and so, in particular, the boundary electromagnetic current is related to ϕ by

j t = − e2

2π
ax = −

e2

2π
∂xϕ and jx =

e2

2π
a0 =

e2

2π
∂tϕ = −

e2v

2π
∂xϕ, (15.87)

and the last equality uses the equation of motion (15.83). Notice that the chiral nature
of ϕ evolution guarantees that jx = v j t .

Bulk Quasiparticles

A final topic in quantum Hall physics explores the implications of the emergent
gauge field aμ for the behaviour of charged quasiparticle excitations. To this end,
imagine introducing a first quantized version of a quasiparticle in the quantum Hall
fluid that couples to aμ through an interaction of the form

Lint = aμJ μ, (15.88)

where for a quasiparticle localized at rest within the bulk we have

J 0(x) = e δ2(x) and J 1 = J 2 = 0, (15.89)

and so, in particular, ∂μJ μ = 0.
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Combining this with the Chern–Simons action, (15.79), for aμ, leads to the
classical saddle-point configuration

ke2

2π
fμν + εμνλJ λ = 0, (15.90)

which, using (15.89), implies that fa0 = 0 and (recalling ε012 = −1 –
c.f. Appendix A.2.1)

f12 =
2π
ke2 J

0 =
2π
ek

δ2(x). (15.91)

This shows that the effect of coupling a quasiparticle to the Chern–Simons gauge
field aμ is to attach a flux line – containing 2π/(ek) units of flux – to the position
of the quasiparticle. This combination of a particle with flux for the Chern–Simons
field is sometimes called a ‘composite’ particle.

What is important is that the flux of aμ gives the quasiparticle fractional electric
charge and fractional statistics. For instance, using the bulk electromagnetic current
given in (15.86) shows the quasiparticle’s electric charge density is

J0 =
e2

2π
f12 =

e
k
δ2(x) (filling fraction ν = 1/k), (15.92)

indicating it carries 1/k units of charge in the filling fraction ν = 1/k state. The
fractional statistics is similarly obtained using the Aharonov–Bohm effect [425],
which states that moving a point charge eq in a large circle, C, around (but well
outside) a flux tube carrying magnetic flux Φ, gives the wave-function a phase

P = exp

[
ieq

∮
C

dxμAμ

]
= exp

[
ieqΦ(C)

]
. (15.93)

For the present case the point source itself carries aμ charge eq = e – c.f.
Eq. (15.89) – and aμ flux Φ = 2π/(ek) – c.f. Eq. (15.91) – so this argument
shows that moving the point-charge of one quasiparticle in a large circle about the
flux of another quasiparticle brings the state a total phase P = exp[ie(2π/ek)] =
exp[2πi/k]. The statistics phase is just half of this because exchanging the position
of two particles means only moving them half of the way around the circle. The
upshot is the quasiparticle acquires a statistics phase

Ps = exp[iπ/k] (filling fraction ν = 1/k), (15.94)

making them behave like anyons having fractional statistics [426]: in this case, the
statistics phase of 1/k of a fermion.12

Both (15.92) and (15.94) agree with microscopic calculations of the charge and
statistics of the low-lying excitations about a fractional quantum Hall state with
filling fraction ν = 1/k. In the microscopic theory there is a hierarchical framework
[427, 428] for understanding the many quantum Hall fractions ν = p/q in real
systems. In this picture the principle Laughlin series of plateaux with ν = 1/k
(and k = 2n + 1 odd) are regarded as arising due to the condensation of the

12 Interchanging two identical particles in a quantum state gives it a phase |12〉 = eiθ |21〉, with bosons
and fermions corresponding to the cases eiθ = ±1. If this phase is not ±1 the particle statistics is said
to be fractional. Fractional statistics is possible in two spatial dimensions (but not in d ≥ 3 spatial
dimensions).
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underlying electrons into a strongly correlated state. The low-energy quasiparticles
are then vortices in the resulting quantum Hall fluid and this turns out to give them
the fractional charge and statistics computed above. In this language quantum Hall
plateaux are plateaux precisely because the effect of adding more magnetic field is to
spawn more vortices in the fluid rather than to change its filling fraction. Much like
for the Type II superconductors described in §14.2.2, this process continues until
eventually there are so many vortices that these vortices themselves condense. The
resulting condensed fluid corresponds to a fractional quantum Hall state with filling
fraction p/q with p � 1. Its excitations will also contain vortices with different
statistics and charges, which can themselves condense and so on and so on.

Notice that in 2+1 dimensions particles and vortices have the same first-quantized
kinematical description since they are both characterized by their two-dimensional
centre-of-mass coordinates, plus their charge and their statistics. This suggests the
possiblity that the various quantum Hall phases might all resemble one another, with
each one being obtainable from the others through a ‘duality’ transformation that
swaps out one sort of particle/vortex charge carrier and replaces it with another (with
an associated calculable relationship between their conductivities [420, 429]). The
existence of such symmetries – initially proposed for real systems on phenomeno-
logical grounds [430, 431] – appears to be borne out theoretically by more and more
robust understandings of how duality can arise in 2+1 dimensional conformal field
theories [432], and to be supported by some observational evidence [433].

15.4 Summary

This chapter describes two types of EFT descriptions for many-body non-relativistic systems involving
degenerate fermions.

The first system studied involves the physics of a Fermi liquid: the phenomenon whereby the mutual
interactions of statistically degenerate fermions become less and less important at lower energies. Physi-
cally, the interactions become weak at low energies because of ‘Pauli blocking’: scattering by interactions
is reduced because of the presence of fermions blocking access to would-be final states. Within the EFT
language the same information gets expressed by the fact that generic interactions are irrelevant once the
kinematics of proximity to a Fermi surface is included. As a result, interactions scale to zero at low energies
and become less and less important. This phenomenon is what underlies the utility of free-fermion models
of electronic transport in materials, and of independent nucleon models in nuclei.

The classification of the scaling of low-energy interactions near a Fermi surface also identifies a few
exceptions to the generic irrelevance of low-energy interactions. These exceptions are important, and
ultimately lead to instabilities at low energies that underly many interesting many-body phenomena
like charge- or spin-density waves and superconductivity. The case of the superconducting BCS instability
is explored in more detail and in particular the issue of why feeble phonon-mediated interactions can
compete successfully with Coulomb interactions is assessed using EFT methods, which provide a simple
understanding of why the predictions of these theories can be so robust.

Quantum Hall systems are the second system to be studied using EFT methods. The use of Chern–
Simons theories as low-energy approximations to these systems is shown to capture the robustness of
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many novel features of both integer and fractional quantum Hall materials. The appearance of emergent
gauge fields is shown to play an important role, in particular by providing the mechanism whereby the
low-energy theory incorporates some novel physical properties, like topological order, in these systems.

Exercises

Exercise 15.1 For continuum normalized momentum eigenstates show that the follow-
ing matrix element evaluates to

〈N + 1|a� |N〉 =
√

1 ± f ,

where f (p)/(2π)3 is the phase-space density of particles, and the upper
(lower) sign corresponds to bosons (fermions).

Consider a scattering process A(p) + B(q) → A(p̃) + B(q̃), mediated by a
Hamiltonian H = Hfree + Hint with

Hfree = E0 +

∫
d3p
[
εA(p) a�pap + εB(p) b�pbp

]
and Hint =

∫
d3p d3q d3 p̃ d3q̃

[
h(p, q, p̃, q̃) a�

p̃ap b�q̃bq

+ h∗(p, q, p̃, q̃)a�pap̃ b�qbq̃
]
δ3(p + q − p̃ − q̃).

Suppose this two-body scattering process, A + B → A + B, occurs when
NA particles of type A encounter NB particles of type B. Compute the rate
predicted by Fermi’s Golden Rule (see Eq. (B.45)) for the transition for
the differential transition to final-state particles within a small momentum-
space volume d3 p̃ and d3q̃ of two specific momenta p̃ and q̃. Show that this
result is proportional to the system volume, V , so it is the transition rate
per unit volume that is well-behaved in the V → ∞ limit. The result for
dR := dΓ/V is

dR[A + B → A + B] =
1

(2π)2 |h(p, q, p̃, q̃) |2 δ4(p + q − p̃ − q̃)

× fA(p) fB(q)[1 ± fA(p̃)][1 ± fB(q̃)] d3p d3q d3 p̃ d3q̃,

with the upper (lower) sign applying for bosons (fermions).
As an application of the previous problem’s result, take the special case of

fermions where h = h0 is momentum-independent, and the single-particle
energies are εA(p) = p2/(2m) and εB(q) = q2/(2m). Suppose a single A
particle is scattered from a collection of NB B particles who singly occupy all of
the energy levels up to the minimum required to contain all the particles. Show
that this gives a spherical Fermi sea for B particles whose radius in momentum
space, pF, satisfies

nB :=
NB

V =
∫ pF

0

d3p

(2π)3 =
p3

F

6π2 ,

and so the phase-space distribution is a step function,

fB(p) = Θ(pF − |p|),
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where Θ(x) = 0 if x < 0 and Θ(x) = 1 if x > 0, and so 1 − Θ(x) = Θ(−x).
The rate-per-A-particle, dRA, is found by dividing the rate-per-unit-volume

dR by the number density nA = fA/(2π)3. Use this to show that the scattering
rate for the incident A particle of momentum p then is

dRA[A + B → A + B] = 2π |h0 |2 δ4(p + q − p̃ − q̃)

× Θ(pF − |q|)Θ( |q̃| − pF) d3q d3 p̃ d3q̃.

The momenta in this problem must satisfy the four conditions

p + q = p̃ + q̃ , p2 + q2 = p̃2 + q̃2

|q| < pF and |q̃| > pF,

of which the first two express energy and momentum-conservation and the
second two are the constraints of Pauli blocking. The total rate is obtained by
integrating over the initial and final momenta, though this integration can be
tricky due to the interlacing constraints of conservation and Pauli blocking.
Derive the following approximate result in the particular limit |p| � pF,

RA[A + B → A + B] � 16π3m
15

|h0 |2 p4,

for p � pF. Notice this is much smaller than the naive result in the absence of
Pauli blocking, for which one expects RA ∼ m |h0 |2p4

F .
Exercise 15.2 Evaluate the Feynman graph of Fig. 15.6 using the Feynman rules

corresponding to the free action (15.7) and interaction (15.12) and (15.13).
Use your result to derive (15.19). Specialize your result to the special case
(15.20) and thereby derive the running formula (15.23).

Exercise 15.3 Use dimensional regularization to compute the momentum-space vac-
uum polarization caused by a Dirac fermion in 1+1 dimensions, and use this
to show that the axial current, J

μ
A = iψγ3γμψ, satisfies the axial anomaly

equation

∂μ J
μ
A =

1
2π

εabFab ,

in the presence of a background electromagnetic field. Show also that the
vector current, J

μ
V = iψγμψ, satisfies ∂μ J

μ
V = 0. Use these results to show

that the chiral currents J
μ
± := 1

2

(
J
μ
V ± J

μ
A

)
satisfy

∂μ J
μ
± = ±

1
4π

εabFab .

Exercise 15.4 Consider the Cherns–Simons/Maxwell system in 2+1 dimensions for an
abelian gauge potential aμ. Propagation of aμ waves is governed by the action

Sa =

∫
d3x

[
k

4π
εμνλaμ∂νaλ −

1
4g2 fμν f μν

]
,

where fμν := ∂μaν−∂νaμ. Assuming k is dimensionless what is the dimension
of the field aμ and of the coupling g in powers of energy? Show that the
spectrum of waves predicted for this lagrangian exhibits an energy gap of size

Egap =
kg2

π
.
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Show that the Chern–Simons action (just the first term of Sa given above)
makes no contribution to the system Hamiltonian. One way to do this is to
identify where the metric must go in the action to make it generally covariant
and then differentiating the result with respect to gμν to learn its contribution
to the stress energy Tμν .

Exercise 15.5 Consider the following Chern–Simons coupling between the electro-
magnetic potential Aμ and two emergent potentials aμ and bμ:

S = −
∫

d3x

[
1

2π
εμνλaμ∂νAλ +

1
2π
εμνλbμ∂νaλ

+
r

4π
εμνλaμ∂νaλ +

s
4π
εμνλbμ∂νbλ

]
and show that in topologically trivial configurations it predicts a filling fraction

ν =
1

r + 1
s

=
s

rs + 1
. (15.95)

This provides a concrete example of how the low-energy EFT can capture
quantum Hall states with filling fraction ν = p/q with p � 1.
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A common situation in physics involves measurements that sample only a subset
of a system’s degrees of freedom. Indeed, having measurements restricted only to a
relatively restricted set of variables is typically the rule rather than the exception in
physics. A broad class of examples of this type describes the properties of particles
moving through almost any type of medium – e.g. visible light moving through
transparent materials; X-rays irradiating flesh; or neutrinos passing through the Sun
or Earth. The focus is often on the properties of the moving particle and less interest
in the medium’s response to the particle (though not always, as in the example of
charged particles moving through the interior of a particle detector). Although the
explicit examples given below are usually of this particle-in-a-medium type, the
division of systems into a measured subsystem and an unmeasured ‘environment’
is much more general.

Such problems lend themselves to effective descriptions that describe the proper-
ties of the measured subsystem (e.g. the moving particle) after coarse-graining over
the properties of the unmeasured environment. Although the resulting description
shares many features with the Wilsonian effective action used in previous sections,
it is not identical and the differences are instructive. This chapter describes the
framework within which these types of systems are efficiently described.

The main qualitative difference between these kinds of effective descriptions and
the Wilsonian formulation of previous chapters lies in the criteria used to distinguish
the part of the system on which measurements are performed (call it system A) from
the unmeasured environment (system B). On one hand, in Wilsonian treatments the
measured subsystem consists of all low-energy degrees of freedom (or perhaps all
low-energy degrees of freedom also carrying a given amount of a conserved quantum
number, like charge or baryon number). For more general ‘open’ systems, on the
other hand, the division between the measured system and its environment is not
defined in terms of conserved quantities.

For Wilsonian systems the restriction to states defined in terms of conserved things
like energy largely ensures that degrees of freedom do not over time cross back and
forth1 between systems A and B. Energy conservation ensures that the time evolution
of states restricted to the low-energy sector agrees with the time evolution of the full
system. And there is no doubt that this evolution is described by a Hamiltonian,
since a Hamiltonian description exists in the full theory. The only question is what
the effective Hamiltonian (or effective action) looks like once expressed purely in
terms of low-energy fields.

1 As described in §6, this argument is more subtle when applied to time-dependent backgrounds because
of the breaking of energy conservation that such backgrounds allow, and this lies at the root of the
requirement, for Wilsonian treatments, that the evolution is adiabatic.461
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The reasoning is different for open systems, because information can flow between
systems A and B and their quantum entanglement can evolve with time. In general,
this makes tracking the evolution of system A much more difficult without also track-
ing how system B evolves, and there is no adiabatic theorem at work ensuring that
sector-B evolution is comparatively simple. As a result, the properties of a state at
any given time might depend on the entire history of its interactions with B in the
past. In particular, time evolution restricted just to system A need not be described
in terms of a simple effective Hamiltonian, for instance leading to non-Hamiltonian
phenomena such as thermalization or decoherence.2

The Good News from this section is this: hierarchies of scale can simplify open
systems just as they do in the Wilsonian case, but this simplification might not be
usefully expressed in terms of an effective action (or effective Hamiltonian). Open
EFTs as described in this section capture some of the ways in which this additional
simplicity can occur, and how it can be efficiently exploited.

16.1 Thermal Fluids

A good place to start in this story is (in retrospect) probably also the earliest historical
example where EFT methods were used: the thermodynamic description of the
macroscopic features of statistical systems of mobile atoms, and its generalization to
thermal fluids when these properties vary in space and time. Although the discussion
of fluids lies somewhat outside this book’s main line of development, it provides an
important and relatively familiar example of how dissipative and open systems can be
treated in a way that does not pre-assume the existence of a macroscopic Hamiltonian
or an action formalism.

Everyday fluids can contain enormous numbers of particles, usually making it
prohibitively complicated to describe their dynamics in detail. Things simplify,
however, when one takes it slow: asking only how coarse-grained quantities evolve
over times t � τ, where τ is the typical time between collisions for particles
in the fluid.

Conserved quantities play a special role when asking such long-time questions
because conservation itself prevents the conserved quantity from changing locally
due to collisions of the underlying atoms. In order to change a locally conserved
quantity over a macroscopic distance in a fluid requires physically moving something
through that distance; an inherently slow process that occurs for times T ∼ L/v,
where L is the distance of interest and v is a typical system speed.

Effective theories always profit by exploiting hierarchies of scale. For fluids (and
open systems more generally) a natural hierarchy to exploit is this ratio of time-
scales: T/τ.

2 The absence of Hamiltonian evolution need not also preclude the existence of generalized actions,
such as thermodynamic potentials or generating functionals for 1PI (and other) graphs. It also does
not preclude there being a Hamiltonian description once sufficient numbers of additional degrees of
freedom are ‘integrated in’ (usually without requiring the extreme case of including back all of the
degrees of freedom in sector B).
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16.1.1 Statistical Framework♥

The first step is to systematize the intuition that a focus on late times is best organized
in terms of conservation laws. This section recaps two ways in which conserved
quantities enter into the late-time description of thermal fluids.

The first argument is the one based on detailed balance that identifies the
equilibrium distribution functions as being special because they allow reactions to
run equally efficiently in both directions, regardless of the details of the form of the
underlying microscopic interactions. This identifies these states as being of particular
interest for describing situations that remain unchanged over times much longer
than the frequency of microscopic collisions. The special role played by conserved
quantities in the resulting distribution functions is what identifies the thermodynamic
and geometrical variables whose time evolution can be usefully used to characterize
the system’s late-time coarse-grained behaviour.

The second role played by conservation laws comes from the differential equations
that express their local conservation, since these are the equations that govern how
the above thermodynamic variables can vary over long distances in space and time.

Equilibrium Distribution Functions

Consider first the constraints on the equilibrium phase-space single-particle dis-
tribution functions, f (k, x), that can be obtained by demanding detailed balance
between all possible microscopic scattering processes. It is often the case that the
joint distribution functions for multiple particles are products of single-particle dis-
tribution functions, and when this is so the rate of change of the single-particle
distributions is controlled by the difference between the rates for scattering into and
out of the relevant state.

For simplicity, consider a gas containing only one species of particle, with single-
particle phase-space probability distribution function f (k, x) that satisfies∫

d3k
(2π)3 f (k, x) = n(x), (16.1)

where n(x) is the particle density. This distribution is initially imagined to be
independent of position, though this assumption is re-examined in the next section.
The rate of change of this distribution function due to particle collisions is

∂t f (k) =
∫

dαdβ̂
[
Rin(α → β) − Rout(β → α)

]
, (16.2)

where |β〉 is some many-particle state that includes a particle with the given particle
momentum, k, and Rin is the differential rate for producing this state from another
state |α〉 (with Rout similarly being the differential rate for scattering out of |β〉 to
another state). Eq. (16.2) uses the notation dα =

∏
i d3pi for α = {p1, · · · , pNα

}
and similarly for the final state writes dβ̂ =

∏
j d3ki , where β = {k, k2, · · · , kNβ }.

The caret on dβ̂ indicates that the product runs only over j ≥ 2 and leaves out the
momentum k.

The differential rates Rin and Rout themselves depend on the distribution functions
f (k), with
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R(α → β) ∝ |M (α → β) |2
∏
i∈α

f (pi)
∏
j∈β

[1 ± f (kj )], (16.3)

which includes a factor of f for each particle in the initial state and a factor of
[1 ± f ] for each particle in the final state (with upper sign for bosons and lower sign
for fermions). These factors arise from the action of creation/destruction operators
on multiply-occupied states:

a |N〉 =
√

N |N − 1〉 and a∗ |N〉 =
√

1 ± N |N + 1〉, (16.4)

with N = 0, 1 for fermions and N = 0, 1, 2, · · · for bosons (see Appendices C.1
and B).

Now comes the main point. The equilibrium state we seek is the one for which the
right-hand side of (16.2) vanishes for all momenta and general choices for the matrix-
elements Min(α → β) and Mout(β → α). Unitarity of the S-matrix implies [406] that
the quantity |Min(α → β) |2 = |Mout(β → α) |2 can be extracted as a common factor
in (16.2), and once this is done the right-hand side generically vanishes if the f ’s
satisfy the condition∏

i∈α
f (pi)

∏
j∈β

[1 ± f (kj )] =
∏
i∈α

[1 ± f (pi)]
∏
j∈β

f (kj ), (16.5)

for all choices of states |α〉 and |β〉.
This last condition is easiest to solve if regrouped as∏

i∈α

f (pi)
[1 ± f (pi)]

=
∏
i∈β

f (ki)
[1 ± f (ki)]

, (16.6)

since this says that the quantity
∏

i[ f i
/
(1 ± f i)] is conserved during all collisions.

Consequently, its logarithm, the quantity χ :=
∑

i ln[ f i/(1 ± f i)], is both conserved
and additive (that is, when evaluated for many-particle states it is given by the sum
over the value it has for each particle separately: χ =

∑
i χi). A generic solution to

(16.6) takes χ to be a linear combination of all of the system’s additive conserved
charges, such as energy, momentum, electric charge and any others. This gives

χ = βμPμ +
∑
a

ξaQa = −βE + β · P +
∑
a

βμaQa, (16.7)

for some coefficients βμ and ξa, where the second equality follows standard
convention to write ξa = βμa where β := β0 = −β0.

Working in the fluid’s rest frame, defined as the frame where the spatial compo-
nents of βμ satisfy β = 0, and solving for f in terms of χ then gives the familiar
equilibrium result:

f (ki) =
1

exp[β(Ei − μaqai)] ∓ 1
, (16.8)

where the upper sign is for bosons and the lower sign is for fermions while Ei =

E(ki) and qai are the single-particle eigenvalues of the energy and charge Qa for
particle ‘i’.

The coefficient β = 1/T defines the equilibrium system’s temperature, while the
μa are its chemical potentials. Notice that, strictly speaking, chemical potentials
are only defined in this way for conserved charges, which for relativistic systems
count the difference between particles and antiparticles carrying a given charge.
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It is a special feature of the nonrelativistic limit that conserved charges can effectively
count particle number, since at low energies it can happen that there are no
antiparticles present.3

Macroscopic Observables

The above derivation of the statistical distribution functions identifies those proper-
ties of the fluid state that remain unchanged by microscopic collisions, and so provide
useful macroscopic state labels when tracking the evolution over time frames much
longer than typical collision times. This suggests promoting the quantities β(x, t),
β(x, t) and μa (x, t) to functions of position and time when tracking macroscopic
fluid evolution. It is often convenient when doing so to define a local fluid 4-velocity,
Uμ, satisfying UμUμ = −1, such that βμ =: βUμ.

To this end, it is useful to coarse-grain the underlying microscopic theory by
dividing the original fluid up into mutually exclusive cells, of size � [434]. Since
particles can move from cell to cell, each can separately be treated as a grand-
canonical ensemble, within which conserved quantities like net charge and energy
can fluctuate.

On one hand, the size � must be chosen to be large enough that each cell contains
sufficiently many particles that it is reasonably close to the thermodynamic limit
(for which fluctuations of thermodynamic quantities can be neglected). This allows
the state of the fluid within any given cell to be well-described by thermodynamic
averages.

On the other hand, � must be chosen small enough that the various thermodynamic
quantities can be regarded as being constant across any given cell. This implies
that all thermodynamic relations, such as equations of state and so on, are local in
that they do not involve derivatives of thermodynamic quantities. For instance, the
equation of state for an ideal gas is p = nT , which in local equilibrium can be taken
to hold point-wise for all x and for all times, once coarse-grained over scales much
smaller than �.

The existence of a range for � satisfying both criteria is possible precisely because
of the existence of a hierarchy of scales; by assumption these tools are only to be
used to study fluid evolution over very long times and distances compared with
microscopic collision lengths and times.

16.1.2 Evolution through Conservation

The above argument identifies the relevant macroscopic fluid variables, but what
governs how these variables evolve in space and time? As motivated above, their
macroscopic evolution is governed by local conservation laws [434, 435].

Key conservation laws for these purposes are the conservation of energy and
momentum. At a local level these are expressed (courtesy of Noether’s theo-
rem) through stress-energy conservation, which states ∂μTμν = 0, for the fluid’s
stress-energy tensor Tμν = T νμ. Current conservation for any internal symmetries,

3 Chemical potentials are also sometimes used for charges that are only approximately conserved,
assuming the symmetry-breaking interactions are weak enough that their equilibration time is much
longer than the time scales of interest.
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∂μ J
μ
a = 0, is also useful for systems blessed with additional conserved charges (and

so possibly also chemical potentials, μa).
In order to use conservation laws like these one must first express the currents in

terms of the macroscopic variables, β, μa and Uμ. Keeping in mind that applications
are restricted to long distances and late times this expression is usefully organized
into a derivative expansion, with derivative-free terms being dominant.

The most general forms allowed by spacetime symmetries in the absence of
derivative terms are

Tμν = p ημν + (p + ρ)UμUν and J
μ
a = na Uμ, (16.9)

where p = p(β, μa), ρ = ρ(β, μa) and nb (β, μa) are as-yet unspecified functions of
the scalar variables β and μa (or, equivalently, T = 1/β and μa).

To interpret their physical meaning it is useful to define the local fluid velocity by
writing Uμ =: {γ, γ v}, where γ := (1 − v2)−1/2 is chosen to ensure UμUμ = −1.
Then the components of Tμν and J

μ
a become

T00 =
ρ + p v2

1 − v2 , T0i =
(p + ρ)vi

1 − v2 , T i j = p δi j +
(p + ρ)viv j

1 − v2 ,

J0
a =

na√
1 − v2

and Ji
a =

na v
i

√
1 − v2

. (16.10)

Evaluated in the fluid rest frame, these reveal ρ to be the energy density, p is the
pressure and na is the charge density for the conserved quantity associated with
chemical potential μa.

Conservation of these currents – i.e. the conditions ∂μTμν = ∂μ J
μ
a = 0 – then

provides a set of evolution equations for the macroscopic variables. In particular, the
vanishing of ∂μTμi − vi∂μTμ0 implies that

Dtv = −
1 − v2

p + ρ
[∇p + ∂tp v] , (16.11)

where Dt := ∂t + v · ∇ is the ‘convective’ time derivative. Similarly, conservation of
J
μ
a gives

∂μ (naUμ) = ∂t

[
na√

1 − v2

]
+ ∇ ·

[
na v
√

1 − v2

]
= 0 (16.12)

and Uν∂μTμν = 0 is equivalent to

Uμ∂μρ + (p + ρ)∂μUμ = 0. (16.13)

Using (16.12) to eliminate ∂μUμ from (16.13) then gives, after a bit of manipulation,
the ultimately more useful formula

na

[
p Dt

(
1
na

)
+ Dt

(
ρ

na

)]
= 0. (16.14)

Navier-Stokes Equations

These expression become very familiar in the nonrelativistic limit, for which na → n
often goes over to the total particle number density, and where the overall fluid speed
is small, v2 � 1, as is the speed of individual particles. Slow particle speeds ensure
ρ−nm ∼ nm〈v2〉, in order of magnitude, since particle kinetic energies are dominated
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by their rest mass. Similarly, p ∼ nm〈v2
i 〉, since pressure is of order the average

internal atomic kinetic energies. As a result, p/ρ ∼ O(〈v2
i 〉) � 1 in this limit.

If so, (16.11) and (16.12) are recognizable as old friends. First, (16.11) reduces
to the familiar Navier–Stokes equation [435] (with no viscosity – more about which
below), which governs the fluid’s nonrelativistic momentum flow:

∂tv + (v · ∇)v � − 1
ρ
∇p. (16.15)

Eq. (16.12) similarly becomes the continuity equation describing conservation of
particle number,

∂tn + ∇ · (n v) � 0. (16.16)

Eq. (16.14) also invites emotional involvement when na → n. In this case, u :=
ρ/n can be regarded as the energy per particle while v := 1/n is the volume per
particle, and both are the thermodynamic quantities relevant for a fluid region that
follows a fixed number of fluid particles (whose volume typically varies due to the
fluid motion). Since (by construction) such a volume has a fixed number of particles,
the entropy included in it (s = s/n, if s is the entropy per unit volume) then satisfies
Tds = du + p dv, and so

Tds = p d

(
1
n

)
+ d

(ρ
n

)
. (16.17)

Comparing this with (16.14) then shows

Dts := ∂ts + v · ∇s = 0, (16.18)

indicating that conservation of the stress-energy given in (16.9) and (16.10) implies
that entropy remains constant for fluid regions that follow particles in the flow.

These arguments show why conservation of the non-derivative part of Tμν
describes a perfect fluid [435]. Perfect fluids can also be captured using an action
formalism [436–441], along the lines described in §14.3.3. (See also [399] for a
discussion of imperfect fluids.)

Although it goes beyond the scope of this book, imperfect fluids can be included
in the above treatment by extending Eqs. (16.9) or (16.10) to include terms involving
derivatives of the fields, showing there to be no fundamental obstacle to including
dissipation along these lines [397, 442]. Robustness of description is a great virtue
of this kind of treatment, which bases the long-distance description on the minimal
number of physical degrees of freedom and conservation laws (as opposed, say, to
adding new fields in search of an action formalism).

Rather than pursuing these issues further for fluids in the hydrodynamic regime,
the remainder of this chapter instead focusses on setting up a more general and
systematic EFT-like description for open quantum systems.

16.2 Open Systems

This section describes the underlying framework for splitting a quantum system into
sectors A and B. To keep applications general (and approximations explicit) this split
is first formulated in its most general context [443].
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To that end, suppose the quantum system of interest consists of two sectors,
A and B, but with measurements only performed in sector A while sector B remains
unmeasured. In the spirit of EFT methods the goal is to describe purely within sector
A how measurement results evolve for such systems, removing sector B at the outset
once and for all in terms of a few appropriately defined effective interactions. In
general, such an approach might be prohibitively complicated, but experience with
effective theories suggests that it could dramatically simplify in the presence of some
sort of hierarchy of scale (more about which below). To keep things concrete in
the examples that follow sector A might describe the momentum and/or flavour of
a particle moving through a medium, whilst sector B describes all the degrees of
freedom of the medium itself.

In practice, it is sometimes useful to consider a slightly more general case where a
partial measurement is made on sector B, in addition to the measurements performed
in sector A. This can be useful because sometimes it is desirable to focus in sector A
on a particle’s spin or flavour degrees of freedom (such as for neutrino oscillations)
and to lump its momentum in with all of the other environmental degrees of
freedom. Yet, clearly, flavour measurements are actually done at specific locations
(for instance on Earth) so some implicit momentum information is also included in
real measurements (and sometimes neglecting this partial information can lead to
misleading conclusions). The slightly more general formulation required to analyze
this situation is described in reference [444].

For most later applications it suffices to consider the case where states in the full
system’s Hilbert space can be written as sums of products of states in sectors A and
B, so a basis of states in the full system can be decomposed as

|a, b〉 = |a〉 ⊗ |b〉. (16.19)

As ever in quantum mechanics, observables are Hermitian operators, and in this
case observables involving only sector A can be written4 OA = OA ⊗ IB, with matrix
elements 〈a, b|OA |a′, b′〉 = 〈a |OA |a′〉 δbb′ .

16.2.1 Density Matrices ♥

Returning to the problem of describing how measurements evolve when performed
only in sector A, it is useful first to recall the distinction between pure and mixed
states, since this is important in what follows. Here is a brief review of what these
are, and how time-evolution works for both.

Imperfect knowledge means that the exact state of a system cannot be precisely
pinned down, and when this is true the system is described by a density matrix,
ρ(t). For instance, suppose the system’s state is |ψ〉 = |I〉 with probability pI, where
I = {a, b}, provides labels for a complete basis in the full Hilbert space. Then the
density matrix describing these probabilities is the operator5

ρ̂ :=
∑
I

pI |I〉〈I | :=
∑
ab

pab |a, b〉〈a, b|. (16.20)

4 Here, and in what follows, IA (or IB) denotes the unit operator acting in sector A (or B).
5 Hats are temporarily added here to Schrödinger-picture operators, to distinguish them from the

interaction-picture quantities of most interest in later sections.
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In this language the requirement that mutually exclusive probabilities sum to unity,∑
I pI = 1, becomes Tr ρ̂ = 1.
In the special case where the state |ψ〉 is exactly known (i.e. when the system is in

a ‘pure’ state) it follows that

ρ̂ = |ψ〉 〈ψ | (pure state). (16.21)

Whenever (16.21) holds for some |ψ〉 it implies that ρ̂2 = ρ̂. Because the eigenvalues
of ρ̂ are non-negative probabilities that sum to unity, whenever ρ̂2 = ρ̂ there must
exist a state for which (16.21) holds. When ρ̂2 � ρ̂ the state is said to be ‘mixed’ and
there is no |ψ〉 for which (16.21) is true.

As usual in quantum mechanics, observables are hermitian operators, Ô = Ô∗, and
for a system in a definite state, |ψ〉, the mean outcome of a series of measurements
of O is given by 〈Ô〉 = 〈ψ |Ô |ψ〉. For the more general mixed state one must
also average over the probability of being in any particular state, so the expectation
becomes

〈Ô〉 =
∑

I

pI〈I |Ô |I〉 = Tr (ρ̂ Ô), (16.22)

where ρ̂ is the system’s density matrix.
Next consider how observables like (16.22) evolve in time. This is described here

in the Schrödinger picture, at least to start with, though a transition is made to the
(often more practical) interaction picture in later sections. For systems prepared in a
specific state, |ψ(t)〉, time evolution is given in the Schrödinger picture by

i ∂t |ψ(t)〉 = H |ψ(t)〉, (16.23)

where H is the system’s Hamiltonian.6 In this picture, operators describing observ-
ables are time-independent.

Since observables do not depend on time in the Schrödinger picture, when a
system’s quantum state is imperfectly known its time evolution is given by knowing
how its density matrix, ρ̂, evolves with time. Once this is known, it completely
specifies how all measurement outcomes – such as (16.22) – change over time.

The time-evolution that ρ̂ inherits from (16.23) is called the Liouville equa-
tion [445]

i ∂t ρ̂ =
[
H , ρ̂

]
, (16.24)

and is the starting point for all later discussions about how evolution looks once
restricted to sector A. Eq. (16.24) is formally solved by

ρ̂(t) = Û (t, t0) ρ̂0 Û∗(t, t0), (16.25)

where hermiticity of H ensures Û (t, t0) = exp[−iH (t− t0)] is unitary, and so satisfies
Û (t, t0)Û∗(t, t0) = 1. Furthermore, Û (t, t1)Û (t1, t0) = Û (t, t0), while

i ∂tÛ (t, t0) = H Û (t, t0). (16.26)

Regarded as a differential equation for U (t, t0) this equation should be solved subject
to the initial condition Û (t0, t0) = I.

6 No hats are used here since H is both the Schrödinger-picture and the Heisenberg-picture Hamiltonian.
It need not agree with the interaction-picture Hamiltonian.
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Reduced Density Matrix

The next step is to explore how to understand measurements restricted to sector A
in a way that refers as much as possible only to the measured sector A. A key tool
to this end is the ‘reduced’ density matrix, defined by tracing the full density matrix
over the unmeasured sector B:

ρ̂A := tr
B
ρ̂ so 〈a | ρ̂A |a′〉 =

∑
b

〈a, b| ρ̂ |a′, b〉, (16.27)

which defines tr B as the trace restricted to sector B. The point of this definition is that
the matrix ρ̂A captures the information in the full state relevant to measurements in
sector A.

The reduced density matrix, in particular, controls the time-dependence of mea-
surements for any observable, ÔA := ÔA ⊗ IB, that acts only in sector A. Since, in
Schrödinger picture, the burden of time evolution lies with the state, the evolution of
the expectation value of a measurement is

〈ÔA〉 := Tr
[
ρ̂(t) ÔA

]
=

∑
aa′

∑
bb′

〈a, b| ρ̂ |a′, b′〉 〈a′, b′ | ÔA |a, b〉

=
∑
aa′

∑
b

〈a, b| ρ̂ |a′, b〉 〈a′ | ÔA |a〉 = tr
A

[
ρ̂A(t) ÔA

]
. (16.28)

Here, the first line inserts a complete set of states and the second line uses
〈a′, b′ |ÔA |a, b〉 = 〈a′ |ÔA |a〉 δbb′ .

16.2.2 Reduced Time Evolution♦

The previous section shows how the time-evolution of any measurement restricted to
A is determined purely in terms of operators acting only in sector A if the evolution
of ρ̂A(t) is known. This puts a premium on understanding how ρ̂A(t) evolves, and in
particular on its sensitivity to any interaction that couples sector A to sector B.

In practice, explicit progress often relies on perturbative methods, and in this
section it is the interaction between sectors A and B that is treated perturbatively.
Suppose, therefore, that the Hamiltonian for the full system has the form

H = H0 + Ĥint = HA +HB + Ĥint, (16.29)

where H0 = HA +HB describes the separate evolution of sectors A and B,

HA = HA ⊗ IB and HB = IA ⊗ HB, (16.30)

and Ĥint is the interaction that couples the two sectors together. The goal is to
integrate the Liouville equation, (16.24), in powers of Ĥint.

Interaction Picture

Integration is conveniently done in the interaction picture, defined by performing the
unitary transformation U0 = exp[iH0t] on all states and operators. In particular, the
interaction-picture interaction Hamiltonian is denoted V and given by

V (t) := eiH0t Ĥint e−iH0t , (16.31)
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and the interaction-picture density matrix becomes

ρ(t) := eiH0t ρ̂(t) e−iH0t , (16.32)

which, together with the Liouville equation (16.24) implies that

∂t ρ = −i
[
V (t), ρ

]
. (16.33)

This integrates to give the useful integral form

ρ(t) = ρ(t0) − i
∫ t

t0

dτ
[
V (τ) , ρ(τ)

]
, (16.34)

showing how an iterative solution can be generated in powers of V (t). Equivalently,
the evolution operator U (t, t0) is defined in the interaction picture by ρ(t) =
U (t, t0) ρ(t0) U∗(t, t0), and so satisfies

∂tU (t, t0) = −iV (t) U (t, t0), (16.35)

with initial condition U (t0, t0) = 1. This integrates to give

U (t, t0) = 1 − i
∫ t

t0

dτV (τ) U (τ, t0), (16.36)

which when solved iteratively generates the usual perturbative series solution

U (t, t0) =
∞∑
n=0

(−i)n
∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τn−1

t0

dτn V (τ1) · · ·V (τn). (16.37)

Evolution of ρA

The above formalism for the evolution of ρ(t) can be used to see how the reduced
density matrix, ρA(t), evolves in time. Direct insertion of (16.34) into the definition
(16.27) gives

ρA(t) = ρA(t0) − i
∫ t

t0

dτ tr
B

[
V (τ) , ρ(τ)

]
. (16.38)

Alternatively, tracing over B after using (16.37) in ρ(t) = U (t, t0)ρ(t0)U∗(t, t0) gives

ρA(t) = ρA(t0) − i
∫ t

t0

dτ tr
B

[
V (τ) , ρ(t0)

]
+ (−i)2

∫ t

t0

dτ

×
∫ τ

t0

dτ′ tr
B

[
V (τ) ,

[
V (τ′) , ρ(t0)

] ]
+ · · · . (16.39)

For instance, suppose the system starts off initially uncorrelated

ρ(t = t0) = �A ⊗ �B, (16.40)

with tr A �A = tr B �B = 1. Then ρA(t0) = �A at initial times and in the absence
of V (t) (16.39) predicts that ρA remains fixed at �A in the interaction picture. In
the Schrödinger picture this means that ρ̂A evolves only through the action of the
Hamiltonian HA for sector A. If [HA, �A] = 0, as is usually chosen, then ρ̂A remains
time-independent also in the Schrödinger picture in the absence of the interaction
with sector B.
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Eq. (16.39) has equally simple implications at linear order in V (t). At this order,
the difference between ρA(t) and �A can be neglected (since it is order V ). Then
(16.39) implies that ρA evolves in the same way as it would if it satisfied a Liouville
equation,

i∂t ρA =
[
V (t), ρA

]
, (16.41)

with an interaction Hamiltonian obtained by averaging7 V (t) over sector B:

V (t) := 〈〈V (t) 〉〉 := tr
B

[
V (t) �B

]
. (16.42)

This is the regime appropriate for particles that interact very weakly with their
environment, such as discussed in §16.3.2 for neutrinos moving through the interior
of the Sun.

Beyond linear order (16.39) begins to differ in its implications from what one
would obtain from a Liouville equation like (16.41), regardless of the choice for
V (t). For instance, Eq. (16.39) predicts that

∂t
(
ρ2

A − ρA

)
= −i

{
ρA tr

B

[
V (t), ρ

]
+ tr

B

[
V (t), ρ

]
(ρA − IA)

}
(16.43)

which uses (16.38) in its differential form

∂t ρA(t) = −i tr
B

[
V (t) , ρ(t)

]
. (16.44)

Whenever tr B[V (t), ρ(t)] = [V (t), ρA(t)] for some effective interaction V (t), the
right-hand side of Eq. (16.43) is proportional to [V (t), ρ2

A − ρA] and so vanishes
for states that initially satisfy ρ2

A = ρA. So in this special case an initially pure
state, ρA(t0) = |ψ〉 〈ψ |, remains pure for all later times, with the pure state evolving
through an effective Schrödinger equation of the form i∂t |ψ〉 = V |ψ〉.

In general the right-hand side of (16.43) does not vanish and so the quadratic
term of (16.39) evolves initially pure states into mixed states. This shows that, in
general, there need not exist an effective interaction V acting within sector A whose
commutator with ρA agrees with tr B[V (t), ρ(t)] for all times. An initially pure state
that does not remain pure at later times is said to decohere.

These considerations show that understanding the evolution of ρA for open systems
need not be as simple as just finding some effective Hamiltonian with which to
evolve the initial state |ψ〉 through an effective Schrödinger (or Liouville) equation.
Starting at second order in V (t), the time evolution predicted by (16.39) can be
complicated and history-dependent; introducing correlations between sectors A and
B in the sense that it doesn’t preserve the factorized form of Eq. (16.40) to later times.
The remainder of this chapter explicitly displays examples of these, and other, non-
Wilsonian effects that in general arise as sector A evolves in the presence of sector B.

16.3 Mean Fields and Fluctuations

Because open systems can evolve in ways inconsistent with Hamiltonian evolution –
such as when they thermalize, or exhibit decoherence – the basic utility of an

7 Eq. (16.42) introduces the double-bracket notation, for averaging any operator over sector B.
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effective Hamiltonian seems up for grabs. However, experience shows that particles
moving through complicated aggregates of atoms are often well-described by motion
through a relatively simple effective average environment, characterized by a few
collective properties like index of refraction or an effective mass and so on. This
section outlines when and why this occurs, arguing that for some systems the effects
of an environment can sometimes be captured by an effective hamiltonian, called
the mean-field approximation, even for open systems. The initial focus is on what
characterizes the effective average description for an arbitrary sector B, as well as
how to characterize fluctuations about this average. The question of when an average
description is a good approximation, and if so what small parameter controls the size
of fluctuations, is then addressed in later sections.

16.3.1 The Mean/Fluctuation Split♦

The guiding principle when splitting the time evolution of ρA(t) into a mean-field
and a fluctuation piece is to demand that time-evolved probabilities can be written as
a non-interfering sum of mean-field and fluctuation contributions.

To this end – for systems that are initially uncorrelated, so ρ(t0) = �A ⊗ �B as in
(16.40) – define the mean evolution operator for sector A as the average of U (t, t ′)
over sector B,

U (t, t0) := 〈〈U (t, t0) 〉〉 = tr
B

[
�B U (t, t0)

]
. (16.45)

Similarly, define the difference

ΔU (t, t0) := U (t, t0) −U (t, t0), (16.46)

which necessarily satisfies

〈〈ΔU 〉〉 = tr
B

[
�B ΔU

]
= 0. (16.47)

The point of these definitions is that all expectation values in sector A can be
written as the sum of a mean-field piece plus a fluctuation piece (with no interference
between these two). That is, for any OA = OA ⊗ IB, Eqs. (16.45) and (16.46)
imply that

〈OA〉 = Tr
[
ρ(t) OA

]
= Tr

[
U (t, t0) ρ(t0)U∗(t, t0)OA

]
(16.48)

= tr
A

[
U (t, t0) �AU

∗
(t, t0)OA

]
+ Tr

[
ΔU (t, t0) ρ(t0)ΔU∗(t, t0) OA

]
,

where the second line writes U = U + ΔU , with all cross terms involving both
U (t, t0) and ΔU (t, t0) vanishing by virtue of the identity (16.47). Eq. (16.48) is an
exact statement, and defines the mean-field and fluctuation parts of any expectation:
〈OA〉 = 〈OA〉m + 〈OA〉f.

This distinction between mean-field and fluctuation parts of the time evolution can
also be made directly for the reduced density matrix itself, with ρA(t) = ρm

A (t)+ρf
A(t),

where

ρm
A (t) := U (t, t0) �AU

∗
(t, t0) and ρf

A(t) := Tr
B

[
ΔU (t, t0) ρ(t0)ΔU∗(t, t0)

]
,

(16.49)
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so that

〈OA〉 = tr
A

[
ρm

A OA

]
+ tr

A

[
ρf

A OA

]
. (16.50)

Several features about the distinction between mean-field and fluctuation parts of
the time evolution bear emphasis. First, this division does not rely on perturbing in
powers of V . Second, the mean-field Hamiltonian, Vm, is naturally defined as the
generator of U,

Vm(t) := i ∂tU U
−1

, (16.51)

and this differs from the average V once one works beyond linear order in V .
Explicitly, the leading terms in an expansion of Vm and ΔU in powers of V are

ΔU (t, t0) = −i
∫ t

t0

dτ δV (τ) + O(V 2), (16.52)

and

Vm(t) = V (t) − i
∫ t

t0

dτ 〈〈 δV (t) δV (τ) 〉〉 + O
(
V 3

)
, (16.53)

with δV (t) := V (t) − V (t) and 〈〈 (· · · ) 〉〉 := tr B[�B(· · · )] as before.

Unitarity

The differential evolution of ρm
A (t) is given in terms of Vm(t) by differentiating

(16.49), leading to a Liouville-like equation,

∂ρm
A

∂t
= −i
[
Vm(t) ρm

A (t) − ρm
A (t)V ∗

m(t)
]
. (16.54)

In this equation Vm(t) is not assumed to be hermitian, since the expression (16.53)
implies that

1
2
(
Vm + V ∗

m

)
= V − i

2

∫ t

t0

dτ 〈〈 [δV (t), δV (τ)
] 〉〉 + O (

V 3
)

,

− i
2
(
Vm − V ∗

m

)
= − 1

2

∫ t

t0

dτ 〈〈 {δV (t), δV (τ)
} 〉〉 + O (

V 3
)

, (16.55)

where as usual [A, B] = AB − BA, while {A, B} = AB + BA. The rate of change of
ρf

A is:

∂ρf
A

∂t
=

∫ t

t0

dτ tr
B

[(
δV (t) ρ(t0) δV (τ) + δV (τ) ρ(t0) δV (t)

)]
+O

(
V 3

)
. (16.56)

Vm need not be hermitian because U need not be unitary, which occurs because
probability lost from ρm

A is gained by ρf
A (or vice versa). In the examples to follow,

where system A describes a beam of particles (e.g. photons) moving within a medium
B (e.g. glass), transfer of probability from �m

A to �f
A might correspond to the diffuse

scattering of some particles out of an initially coherent beam, for example. To see
the implications of conservation of probability for such a transfer, use the condition
Tr ρ = 1 for the full system, which implies that the same is true for the reduced
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density matrix for sector A: tr A ρA = Tr ρ = 1. Consequently, the differential
expression for conservation of total probability is expressed by

0 = ∂t tr
A
ρA = −i tr

A

{
ρm

A (t)
[
Vm(t) − V ∗

m(t)
]}
+ tr

A
(∂t ρ

f
A). (16.57)

Eq. (16.57) is a generalization to open systems of the optical theorem for scattering
processes – which as usually formulated relates the imaginary part of the amplitude
for forward-scattering to the total scattering cross section. The connection between
(16.57) and scattering becomes explicit if system A is restricted to only the initial
momentum state for a beam of particles, with all other momentum states for the
beam lumped into B together with the environment, since this makes the trace over
A appearing on the right-hand side restrict to forward scattering (for more details see
§16.3.4).

Recursiveness

Notice that the split between mean-field and fluctuations is recursive, in the following
sense. Suppose that sector A is itself divided into independent subsectors, A′ and B′,
with observables only measured if they act in subsector A′. Suppose also that the
initial state has no correlations between these two new subsectors: ρA(t0) = �A =

�A′ ⊗ �B′ . Then the reduced description of sector A can be further reduced to describe
only subsector A′, with

ρA′ (t) := tr
B′

[
ρA(t)

]
= tr

B′∪B

[
ρ(t)
]
. (16.58)

The mean-field part of the evolution in sector A′ is then equally well defined in
terms of either the mean-field evolution in sector A or the full evolution, regardless
of whether the trace over sectors B and B′ are performed separately or all at once.
That is, defining

UA := tr
B

[
�BU
]

and UA′ := tr
B′

[
�B′UA

]
= tr

B∪B′

[
(�B′ ⊗ �B)U

]
, (16.59)

and

ΔUA := U −UA and ΔUA′ ≡ U −UA′ , (16.60)

implies that tr B

[
�BΔUA

]
= tr B∪B′

[
(�B′ ⊗ �B)ΔUA′

]
= 0. Consequently, the expectation

of any observable, OA′ = OA′ ⊗ IB′ ⊗ IB, restricted to subsector A′ is

〈OA′〉 := Tr
[
ρ(t)OA′

]
= tr

A

[
UA(t, t0)�AU

∗
A (t, t0)OA′

]
+ Tr

[
ΔUA(t, t0)ρ(t0)ΔU∗

A (t, t0)OA′
]

(16.61)

= tr
A′

[
UA′ (t, t0)�A′U

∗
A′ (t, t0)OA′

]
+ Tr

[
ΔUA′ (t, t0)ρ(t0)ΔU∗

A′ (t, t0)OA′
]
,

and so on.
The effective mean-field hamiltonians, VA m(t) and VA′ m(t), are then defined, as

usual, in terms of UA(t, t0) and UA′ (t, t0), using Eq. (16.51). Using the notation
〈〈 (· · · ) 〉〉 B′ := tr B′[(· · · )�B′] – and similarly for 〈〈 (· · · ) 〉〉 B – then leads to the following
perturbative expressions
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VB′m(t) � 〈〈VB m(t) 〉〉 B′ − i
∫ t

t0

dτ
{[
〈〈VB m(t)VB m(τ) 〉〉 B′ − 〈〈VB m(t) 〉〉 B′ 〈〈VB m(τ) 〉〉 B′

]
� 〈〈V (t) 〉〉 B′∪B − i

∫ t

t0

dτ
{[
〈〈 〈〈V (t)V (τ) 〉〉 B − 〈〈V (t) 〉〉 B 〈〈V (τ) 〉〉 B 〉〉 B′

]
(16.62)

+
[
〈〈 〈〈V (t) 〉〉 B 〈〈V (τ) 〉〉 B 〉〉 B′ − 〈〈V (t) 〉〉 B′∪B 〈〈V (τ) 〉〉 B′∪B

]}
,

� 〈〈V (t) 〉〉 B′∪B − i
∫ t

t0

dτ
{
〈〈V (t)V (τ) 〉〉 B′∪B − 〈〈V (t) 〉〉 B′∪B 〈〈V (τ) 〉〉 B′∪B

}
,

which drop O(V 3) contributions.
The recursive nature of these definitions resembles the recursiveness of the

definition of the Wilsonian effective action, and so lends itself to a renormalization-
group-like analysis of the effects of a medium on particle propagation in which
fluctuations on successively larger distance scales are successively integrated out.

What is missing so far from this discussion of the mean-field limit and fluctuations
around it is a quantification of when it is a good approximation to neglect the
fluctuations. This is returned to in later sections once some intuition is developed
through the exploration of a few practical examples.

The Wilsonian Special Case

Before exploring practical examples of the mean-field/fluctuation split in open
systems, it is worth remarking in passing that the simplest example of such a split
arises already with the Wilsonian effective theory with which this book started. In a
Wilsonian system the observed part of the system (what is called here sector A) is
defined relative to the unobserved sector (sector B) in terms of a conserved quantity:
energy. Because of this the interaction Hamiltonian V does not have any off-diagonal
components that link sector A (low-energy states) to sector B (high-energy states).
By definition, the Hamiltonian is diagonal in the energy eigenbasis.

Because V vanishes in this special case, it is clear that ΔU also vanishes, although
the entire formulation in terms of the interaction picture is also overkill. Because
H = HA + HB there is no need to perturb in V to find the time evolution, which
within the low-energy sector is simply generated by the low-energy part of the
Hamiltonian: UA = exp[−iHA(t − t0)]. This is the simplest way to see how simple
Hamiltonian evolution necessarily emerges in the special case that the system
is divided up using conserved quantities. (Though it does not in itself directly
express HA in terms of low-energy fields only, which is also required for a useful
low-energy limit.)

16.3.2 Neutrinos in Matter

Neutrinos passing through matter provide a simple practical application of the mean-
field/fluctuation formalism just described. Neutrino interactions with an environment
are particularly simple because the interactions involved are incredibly weak,
with typical scattering lengths being longer than a light-year in ordinary matter
[446]. Neutrino propagation through matter is also simple because the absence of
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neutrinos in most types of matter makes the distinction between sectors A and B
particularly clean.8

Because neutrino interactions are so incredibly weak, first-order perturbation
theory usually is all that is required, and as a consequence the fluctuations residing in
ΔU are negligible and the mean-field approximation usually suffices for all practical
applications [444].

Mean-Field Neutrino Evolution

At first order in the interaction Hamiltonian the mean contribution of the medium to
neutrino propagation has the simple form Vm � 〈〈V 〉〉 , where V is the neutrino-medium
interaction, so the first step in its evaluation is to characterize what is known about V .

As we understand them today, neutrinos are described by three majorana neutrino
fields, νi , i = 1, 2, 3, who couple to any medium through the weak interactions.
These consist of the charged-current weak interactions, described in §7.1.2, plus
the neutral-current weak interactions mediated by Z-boson exchange. The relevant
part of these for neutrinos interacting at energies well below the W -boson mass,
MW � 80 GeV, is

Lνwk = i (ν̄iγμγL ν j ) g
a
ij J

μ
a , (16.63)

where γL and γR project onto left- and right-handed spinors, J
μ
a are a set of operators

involving the degrees of freedom of the medium (i.e. electrons, protons and neutrons)
and gaij are 3× 3 coupling matrices whose coefficients are predicted9 by the Standard
Model.

For neutrino couplings to charged leptons, {�m, m = 1, 2, 3} = {e, μ, τ}, the
currents J

μ
a are given by (c.f. Eq. (7.60) of §7.3.3):

(J
μ
± )mn = i[�mγ

μ (1 ± γ5) �n] , (16.64)

and the coupling matrices are

(gmn
+ )i j =

√
2GF

[
UmjU

∗
ni + δmnδi j

(
− 1

2
+ sin2 θw

)]
, (16.65)

(gmn
− )i j =

√
2GF δmnδi j sin2 θw , (16.66)

where sin θw denotes, as usual, the weak mixing angle and Umi are the charged-
current PMNS matrix elements described in §7.1.1 in the presence of nonzero
neutrino masses, mi � 0 while the remaining terms come from the neutral-current
interactions.

Two-neutrino interactions with protons and neutrons arise purely through neutral-
current Z-boson exchange with their quark content, leading to currents

(J
μ
± )a = iqaγ

μ (1 ± γ5) qa, (16.67)

8 Extreme environments like supernovae are more complicated inasmuch as the extreme densities make
interactions more important, and make neutrinos themselves part of the environment.

9 Strictly speaking, the inclusion of neutrino masses implies generalizing the Standard Model, such as
through the inclusion of the SMEFT effective mass term discussed in §9.
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with coupling matrices

(ga+ )i j =
√

2 GF δi j
(
T3a −Qa sin2 θw

)
,

(ga− )i j =
√

2 GF δi j
(
−Qa sin2 θw

)
, (16.68)

where T3a and Qa are the third component of weak isospin and electric charge (in
units of e) of the corresponding quark.

For quarks contained within protons and neutrons what matters are the up- and
down-type quark contributions, for which T3u =

1
2 , Qu =

2
3 , T3d = − 1

2 and
Qd = − 1

3 . The contribution of these quarks to the combination (ga+ )i j (J
μ
+ )a +

(ga− )i j (J
μ
− )a therefore evaluates to

GF√
2
δi j

[(
1 − 8

3
sin2 θw

)
i(uγμu) +

(
−1 +

4
3

sin2 θw

)
i(dγμd)

+ i(uγμγ5u) − i(dγμγ5d)

]
=
√

2 GF δi j
[
j
μ
3V
+ j

μ
3A
− 2 sin2 θw j

μ
em

]
(16.69)

where

j
μ
3V
=

i
2

(ūγμu − d̄γμd) , j
μ
3A
=

i
2

(ūγμγ5u − d̄γμγ5d) (16.70)

are Noether currents for vector and axial SU (2) transformations, while

j
μ
em =

i
3

(2ūγμu − d̄γμd) (16.71)

is the contribution of u and d quarks to the electromagnetic current.
For practical applications over scales larger than a fm or so, it is more useful to

know these currents in the effective theory built using protons and neutrons than for
quarks. As discussed in more detail in §8, the form for these currents can in general
be complicated, although it simplifies if the current in question is conserved. Happily
enough, both j

μ
3V

and j
μ
em are conserved (to good approximation, for j

μ
3V

, and exactly,
for electromagnetism) in this way if the Hamiltonian for the medium is dominated by
the strong and electromagnetic interactions. In this case, the corresponding effective
‘macroscopic’ currents can immediately be written in the effective theory involving
protons and neutron fields simply by constructing the Noether currents for them in
the usual way, starting from the action of these symmetries in the effective theory.
This leads to the following expression for the parity-even part of the hadronic weak
currents,

[(ga+ )i j (J
μ
+ )a + (ga− )i j (J

μ
− )a]even �

GF√
2
δi j
[(

1 − 4 sin2 θw
)

i(pγμp) − i(nγμn)
]
,

(16.72)

up to terms involving higher derivatives (that turn out not to be required in the
applications considered later). The axial terms are not quite so simple because of
the breaking of axial SU (2) symmetries by quantum chromodynamics, as is also
sketched in §8, but these axial terms are also not required in what follows.

Returning now to neutrinos propagating through a material, consider sector A to
comprise the neutrino sector while sector B consists of some sort of ordinary matter
built from protons, neutrons and electrons. To first order in the weak interactions the
mean-field Hamiltonian acting on the neutrinos is given by
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Vm � 〈〈V 〉〉 = −
∫

d3x gaij

(
i ν̄iγμγL ν j

)
〈〈 J
μ
a 〉〉 , (16.73)

showing that it is obtained simply by replacing the interaction current, J
μ
a , with its

mean, 〈〈 J
μ
a 〉〉 , evaluated in the medium.

These expectation values can be evaluated relatively simply for materials built
from electrons, protons and neutrons dominantly interacting through the strong
and electromagnetic interactions. There are two reasons why this evaluation is
straightforward. First, as discussed in §8, parity invariance implies that the average of
all axial vectors in the medium vanish, meaning that it is only the expectation values
of the two currents j

μ
3V

and j
μ
em that are required.

Second, as also discussed above, the approximate conservation of SUV(2) – and
exact conservation of Uem(1) – allow use of (16.72) for the vector currents j

μ
3V

and j
μ
em

in terms of protons and neutrons. Including the contributions of electrons, protons
and neutrons then gives

〈〈 gaij J
μ
a 〉〉 ≈

GF√
2

{
2Uje U∗

ie j
μ
e (x) − δi j j

μ
n (x) + δi j (1 − 4 sin2 θw ) [ j

μ
p (x) − j

μ
e (x)]

}
,

(16.74)

where j
μ
e = 〈〈 iēγμe 〉〉 , j

μ
p = 〈〈 ip̄γμp 〉〉 and j

μ
n = 〈〈 in̄γμn 〉〉 are shorthands for the local

mean electron, proton and neutron current densities, respectively.
For nonrelativistic particles the neglect of terms proportional to particle speed

v gives a further simplification, since all of the spatial components of the mean
currents, j

μ
e , j

μ
n and j

μ
p , vanish as v → 0. This leaves 〈〈 j

μ
a 〉〉 ≈ n̄aδ

μ
0 for a = e, p, n,

as the dominant contribution, where n̄a is simply the average number density in the
medium for each particle type. Furthermore, for systems that are locally electrically
neutral over the scales of interest it is also true that n̄e (x, t) � n̄p (x, t), allowing
the last term of (16.74) to be dropped. (This last term is also suppressed because
of the numerical coincidence that the experimental value sin2 θw � 0.23 makes
1 − 4 sin2 θw � 0.08.)

Matter-Induced Neutrino Mixing

Using the approximations described above allows the leading form of the effective
Hamiltonian, Vm � 〈〈V 〉〉 , to be expressed in terms of the medium’s electron and
neutron densities, n̄e and n̄n. The result is what would have been obtained from an
effective interaction lagrangian of the form

Lmed � 〈〈Lνwk 〉〉 =
GF√

2
i(ν̄iγ0γL ν j )

(
2Uje U∗

ie n̄e − δi j n̄n

)
. (16.75)

For observational purposes the important term in (16.75) is the charged-current
interaction, which distinguishes amongst neutrino flavours. It does so because of
the assumption that the medium contains only hadrons and electrons (and no
muons or tau leptons, say), since this implies that only electron-type neutrinos
experience charged-current interactions with the medium. This matters because the
resulting flavour-dependence can mediate neutrino oscillations in matter that differ
in character from those that occur in vacuum [448].

To explore the nature of these matter-dependent oscillation parameters it is useful
to switch from interaction picture to Heisenberg picture, for which the fields carry
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the burden of time evolution. In the Heisenberg picture flavour evolution is found by
combining (16.75) with the lagrangian L0 for free propagation (including neutrino
masses, mi). In an arbitrary flavour basis, the free-propagation lagrangian is

L0 = −ν̄i
(
δi j

/
∂ + mi jγL + m∗

i jγR
)
ν j , (16.76)

where m is the left-handed neutrino mass matrix in flavour space, which, in general,
is a 3 × 3 complex symmetric matrix.

If n̄e and n̄n are independent of spacetime position then the field equation for
the neutrino fields coming from L0 + Lmed is satisfied by modes ui eik ·x where the
4-momentum, kμ, and the flavour-vector, ui , satisfy the matrix equation(

i
/
k + m γL + m∗γR + iγ0μ

)
u = 0, (16.77)

where

μ =
√

2 GF (ge n̄e + gn n̄n) (16.78)

with gn = − 1
2 I and ge = w w† being matrices in flavour space, where w is the vector

w =
����

U1e

U2e

U3e

���� . (16.79)

In particular, w = (1, 0, 0)T in a weak-interaction basis (which is defined as the basis
for which Uia = δia, for i, a = e, μ, τ).

In vacuum, where n̄e = n̄n = 0 (so μ = 0), Eq. (16.77) implies that kμkμ+m2
i = 0,

where m2
i is an eigenvalue of the non-negative hermitian matrix m†m, and neutrino

propagation eigenstates are the eigenvectors of the matrix m†m. For neutrinos
moving through matter the propagation eigenstates typically differ from those found
in vacuum because the matrices m†m and μ in general do not commute. Furthermore,
the rotation from vacuum eigenstate to matter eigenstate need not be small if the
eigenvalues of m†m and μ are both small compared to k := |k|, particularly when
m†m/(2k) is similar in size to μ. Exercise 16.2 makes this explicit, showing (for
two neutrino species) that the probability of a neutrino of energy E � m being
produced in one of the weak-interaction eigenstates and then being detected in the
other eigenstate after travelling a distance L is

Peμ (E, L) � sin2 2θm sin2
(
δm2L

4E

)
, (16.80)

where δm2 = m2
2 − m2

1 > 0 is the difference between the neutrino squared-masses in
vacuum and the matter mixing angle is given by

sin 2θm =

(
δm2

4kμ0

)
sin 2θv (16.81)

with θv the mixing angle that relates flavour and propagation eigenstates in vacuum
and

μ0 :=
⎡⎢⎢⎢⎢⎣
(

GFn̄e√
2

)2
−

(
GFn̄e√

2

)
δm2 cos 2θv

2k
+

(
δm2

4k

)2⎤⎥⎥⎥⎥⎦
1/2

. (16.82)
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Fig. 16.1 A plot of neutrino mass eigenvalues, m2
i , (for two species of neutrinos) as a function of radius, r, within the

Sun (solid lines) as well as what these masses would be in the absence of vacuum mixing:θv = 0 (dashed
lines). The plot falls with r for electron neutrinos, since it is proportional to the density n̄e of electrons
within the Sun. Resonance occurs where the dotted lines cross. A neutrino evolving adiabatically through
the resonance follows a solid line and so completely converts from one unmixed species to another.
Nonadiabatic evolution has a probability PJ of jumping from one branch to the other when passing
through the resonance.

MSW Oscillations

Notice that matter oscillations can be maximal (i.e. sin 2θm = 1) for some k,
regardless of the size of θv , and this has important practical implications when
neutrinos pass through environments with position-dependent electron densities,
n̄e = n̄e (x). Position-dependent densities arise, for instance, for neutrinos produced
by nuclear reactions deep within the Sun, which encounter a monotonically falling
spherically symmetric distribution, n̄e (r), that eventually vanishes at the solar
surface.

In particular, if it should happen that the electron density, n̄e (0), at the solar centre
should satisfy GFn̄e (0)/

√
2 > δm2 cos 2θv/(4E), then the oscillations become

maximal when the resonance condition

GFn̄e√
2
=

(
δm2

4k

)
cos 2θv , (16.83)

is eventually satisfied somewhere within the solar interior. If passage through this
region takes a sufficiently long time, conversion of neutrino flavour can be extremely
efficient even if vacuum oscillations are comparatively small – see Exercise 16.3 and
Fig. 16.1 – a phenomenon called the Mikheyev–Smirnov–Wolfenstein (or ‘MSW’)
effect [448]. What is important is that this conversion can be large even though both
GFn̄e and δm2/k are small compared with k, and so vacuum masses and matter
couplings remain treatable as extremely tiny linear perturbations to neutrino energies.

16.3.3 Photons: Mean-Field Evolution♠

Interactions with matter are more complicated for photons than for neutrinos. The
previous section argues that neutrinos interact so weakly with the solar environment
that working to first order in V suffices for practical applications. Since the effects
of fluctuations first arise at second order in V , mean-field methods are justified for
neutrinos in the Sun simply because their interactions are so weak [449].
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The mean-field approximation also often applies for photons moving through
transparent materials, but its justification is not simply because photon interactions
are weak. The argument is more complicated both because electric fields play an
important role within the material itself and because the leading mean-field and
fluctuation effects both first arise at second order in V . Because both arise at the
same order any neglect of fluctuations relative to a mean-field description requires
an explanation that goes beyond the small size of V . For photons the puzzle is why
materials can have interesting mean-field properties – such as an index of refraction
significantly different from unity – and yet remain transparent (due to negligible
scattering from fluctuations).

Explanations of these properties usually rely on the coherence of photon scatter-
ing, which in turn amounts to an expansion in powers of 1/N where N � 1 is
the number of scattering sites within what is called a coherence volume. The next
two sections explore these issues through the use of some simple examples. The
present section starts by recounting the mean-field description, while the next section
describes the contributions of fluctuations and why they can sometimes be neglected.

Photons in Polarizable Media

A starting point is the open-system description of photons coupled to a material
built from electrically neutral but polarizable atoms. To this end, sector A consists
of the Hilbert space of the photons while sector B consists of the states spanned by
the medium itself. A second-quantized approach is useful because the materials of
interest typically involve many atoms, through which many photons typically pass.
Following the developments of this chapter’s previous sections, the interactions of
main interest are those that couple these two sectors to one another.

The EFT describing light interacting with nonrelativistic neutral particles is
discussed in §12.3.1, with L = L0 + Lint. Here, L0 describes the free propagation
of atoms and photons through the usual kinetic terms as well as any internal inter-
atom interactions – such as those related to Coulomb forces – that do not involve
photon propagation

L0 =
1
2

(E2 − B2) + iΨ∗∂tΨ +
1

2M
Ψ∗∇2Ψ + Latom−atom, (16.84)

where Latom−atom describes the inter-atomic interactions. The leading photon-atom
interactions are given by (12.90) and (12.91), reproduced here for convenience:

Lint = g Ψ
∗Ψ∇ · E + 1

2
Ψ∗Ψ

(
pE E2 − pB B2

)
+ · · · . (16.85)

This drops terms in Eqs. (12.90) and (12.91) that do not involve both Ψ and
electromagnetic fields simultaneously. In fundamental units the effective coupling g
has dimensions (length)2 while pE and pB are dimension (length)3, though for nonrela-
tivistic systems these scales can arise either as small lengths or short times. For many
systems the relevant scale for these couplings is set by atomic sizes and energies.

For long-wavelength low-energy photon propagation in neutral media the first term
in (16.85) proves to be redundant – in the sense of §2.5 – making the remaining
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terms of most direct interest. At leading order, these contribute to the mean-field
description an amount

〈〈Lint 〉〉 �
n̄
2
(
pE E2 − pB B2

)
, (16.86)

where n̄ = 〈〈Ψ∗Ψ 〉〉 is the medium’s mean atomic density. This shows how pE and pB,
respectively, contribute to the medium’s bulk dielectric permittivity and permeability
as electric and magnetic polarizabilities.

Wave Propagation

To see the implications for photon propagation within the medium consider first a
translation-invariant material, for which n̄ is independent of x and t. At face value,10

using the lagrangian L0 + Lint and switching to the Heisenberg picture leads to
the following evolution equations for the radiation part of the Maxwell field in the
presence of the medium,

(1 + n̄pE)∇ · E = 0 and (1 + n̄pB)∇ × B − (1 + n̄pE) ∂tE = 0, (16.87)

together with the Bianchi identities

∇ · B = ∇ × E + ∂tB = 0. (16.88)

Taking the curl of the two vector Maxwell equations, using the identity ∇× (∇×E) =
∇(∇ · E) − ∇2E, gives (in the usual way) the wave equation

∂2
t E − c2

m∇2E = 0, (16.89)

and similarly for B.
Plane-wave mode solutions to these equations, proportional to eik ·x , therefore

satisfy the dispersion relation

ω(k) := k0 = cm |k|, (16.90)

with wave-propagation phase speed given by

cm =

√
1 + n̄pB

1 + n̄pE

=:
1
nm

. (16.91)

This last equality (recalling this book’s convention that the speed of light in vacuum
is c = 1) defines the medium’s index of refraction, nm. Notice nm = cm = 1 for a
Lorentz-invariant medium, for which pE = pB.

Expression (16.91) simplifies to cm � 1− 1
2 n̄(pE −pB) and nm � 1+ 1

2 n̄(pE −pB), if
one works to linear order in the interaction with the environment, with perturbation
theory requiring |n̄pE | , |n̄pB | � 1. Extensions of the domain of validity of the above
formulae to larger values of nm − 1 (as appropriate for many ordinary transparent
materials, like glass or water) is explored in §16.3.5.

10 The ‘face value’ qualifier is here because the argument to follow treats the interaction with the medium,
Lint, on an equal footing with the kinetic terms in L0, whereas identifying the mean-field limit simply
by averaging Lint over sector B has to this point been derived only at linear order in the interactions. As
it turns out, the arguments to follow have a broader domain of validity than linear-order perturbation
theory, a point returned to in §16.3.5 and §16.4.
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Reflection and Refraction

Mean quantities need not be translation invariant, and when they are not they
generically cause scattering to occur. The simplest example of this arises at the
boundary between two media, on each side of which nm differs, as is now explored
in more detail. Suppose, for instance, this boundary is a plane with Cartesian
coordinates adapted so that it lies at z = 0, and denote the index of refraction in
the regions on either side by n±, where n+ applies for z > 0 while n− applies for
z < 0.

If n+ � n− then translation invariance breaks at z = 0, implying momentum need
not be conserved there and so incident photons are scattered. For planar surfaces this
scattering is particularly simple because unbroken translation invariance in the x and
y directions ensures only the component of momentum in the z direction can change
at the surface. This suffices to derive the familiar ‘equal-angle’ law (for reflection)
and Snell’s law (for refraction).

To see why, suppose a plane wave approaches the surface from the z > 0 side with
initial momentum k+, and coordinates are chosen so that k+ = kxex−kzez lies within
the x–z plane. (Here, ei denote three mutually orthogonal unit vectors pointing along
each coordinate axis.) After encountering the surface, a photon either passes through
to the region z < 0 (refracts) with momentum k′− or reflects back to z > 0 with
momentum k′+.

Momentum conservation in the x-y plane ensures these final momenta satisfy k′± =
kxex + k ′z±ez , with components k ′z± determined by energy conservation: ω+(k+) =
ω±(k′±). Using (16.90) and (16.91) for the dispersion relation implies that

|k+ |
n+
=
|k′± |
n±

, (16.92)

with the upper sign for reflection and the lower sign for refraction.
For reflection, (16.92) implies that |k′+ | = |k+ |, which together with momentum

conservation in the x-direction requires k ′z+ = −kz+, showing that the normal
component of momentum is simply reversed. This becomes the ‘equal-angle’ law for
reflection once expressed in terms of the angle θ between the photon’s momentum
and the direction of the normal to the surface (which in this example is simply the z
axis), because trigonometry gives the initial and final values of θ as

sin θ′ =
|k ′x+ |
|k′+ |

=
|kx |
|k+ |
= sin θ (reflection). (16.93)

Similarly for refraction, for which conservation of momentum in the x direction
and energy conservation (16.92), together imply

sin θ′ =
|k ′x−|
|k′− |

=

(
n+

n−

)
|kx |
|k+ |
=

(
n+

n−

)
sin θ (refraction). (16.94)

This is recognizable as Snell’s law [450], which is often quoted in the special
case where n+ = 1 (as appropriate when the initial wave is incident from
outside any medium). Refraction cannot occur – i.e. reflection is total – when
|(n+/n−) sin θ | > 1.
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A More Microscopic Picture

For neutral atoms polarizability has its roots in how the atom’s electrically charged
constituents respond to applied fields. This section sketches how this more micro-
scopic picture of polarizability can also be understood using a mean-field open-
system description of photons coupled to these underlying slowly moving charges.
Doing so allows an estimate for whether quantities like n̄pE can be expected to be
large, and shows why they can reasonably be order unity despite all interactions
involving factors of the relatively weak electromagnetic coupling e. It is the fact that
n̄pE need not be small that explains why many materials have an index of refraction
satisfying nm − 1 � O(1).

To this end, the idea is to exploit the recursiveness of EFT methods to drill
down so that the theory of the underlying ‘full’ system is the effective theory of
nonrelativistic electrons and nuclei from which the polarizable atoms are made.
These are described by an effective lagrangian like the one used in Eqs. (12.37)–
(12.40) (plus higher orders), regarded as an expansion in powers of microscopic
length scales. For simplicity the relevant nucleus is assumed to be spinless.

Denoting the electron field as Ψ, the nuclear field by Φ, the terms unsuppressed
by mass in the Schrödinger effective theory are given by (12.37), reproduced for
convenience here:

L0,0 = iΨ†DtΨ + iΦ∗DtΦ +
1
2

(E2 − B2) (16.95)

= iΨ†∂tΨ + iΦ∗∂tΦ + eA0
(
Z Φ∗Φ − Ψ†Ψ

)
+

1
2

(E2 − B2),

where (as before) DμΨ = (∂μ+ieAμ)Ψ and DμΦ = (∂μ−iZeAμ)Φ. As above, system
A consists of a sector describing a beam of incident photons, say while system B (the
environment, or medium) consists of the dynamics of the electrons and nuclei (and
any electromagnetic fields that happen to appear there).

Of course, the system described by the lagrangian of (12.37) through (12.40) is
broad enough to include a great variety of materials with many kinds of possible
electromagnetic response, including conductors, dielectrics, plasmas and so on.
Many interactions become unimportant, however, once restricted to sufficiently
slowly varying probes, with electrons remaining localized in individual atoms. When
this is so, for instance, the material remains locally electrically neutral, and so
Z 〈〈Φ†Φ 〉〉 � 〈〈Ψ†Ψ 〉〉 , over the scales of interest.

To describe how electromagnetic waves interact with media requires those terms
in L that involve the field A. The lowest-dimension terms of this sort are given by
(12.38) and (12.39), reproduced here as

L1,0 =
1

2m
Ψ†D2Ψ − e

2m
cF B · (Ψ†σ Ψ) +

1
2M
Φ∗D2Φ. (16.96)

No nuclear magnetic moment here couples Φ to A because the nucleus is assumed to
be spinless. Of these terms it is the interactions involving electrons that dominate at
low energies, due to the relatively small size of the electron mass, m � M . Having
a smaller mass allows electrons to move more quickly than do nuclei, given similar
applied forces, making their response the dominant effect.



486 EFTs and Open Systems

The terms contained in (16.96) governing electronic response to A are

L1,0 ⊃ −
ie

2m
A ·
[
(∇Ψ†)Ψ − Ψ†∇Ψ

]
− e2

2m
A2(Ψ†Ψ) − e

2m
cF B · (Ψ†σΨ) + · · · ,

(16.97)

and the polarizabilities are found by computing the mean-field evolution Hamilto-
nian, Vm (or, equivalently, the corresponding lagrangian density), for photons using
these interactions, and matching the result to what is obtained using (16.86).

For non-magnetic materials the leading contribution that gives a term proportional
to E2 in the mean-field action arises at second order in the first interaction11 of
(16.97). To compute the polarizabilities requires evaluating the second-order part
of (16.53) using the interaction linear in A appearing in (16.97).

An Atomic Model

Rather than attempting a full calculation of this type for atomic electrons, it is
instructive instead to explore what is found using a relatively simple model for
electrons within an atom. To this end, model the atom’s electronic states as having
two energy levels: an S-wave ground state, |g〉, plus a P-wave excited state, |e, �z〉,
with L3 |e, �z〉 = �z |e, �z〉, where �z = −1, 0, 1 labels the excited state’s component of
angular momentum.

In this model the atomic Hamiltonian for a single atom simplifies to

Hi |g〉 = Eg |g〉 and Hi |e, �z〉 = Ee |e, �z〉, (16.98)

with ωeg := Ee − Eg > 0. For a medium involving N atoms the full Hamiltonian for
system B then is

HB =

N∑
i=1

Hi . (16.99)

As discussed above, the interaction V between systems A and B is in principle
given by matrix elements within the atoms of the term A ·

[
(∇Ψ†)Ψ − Ψ†∇Ψ

]
from

(16.97). As applied to the simple atomic model it is useful to specialize to photons
with wavelengths much longer than atomic sizes, for which the dipole approximation
of §12.2.2 applies (in particular, see the discussion surrounding Eq. (12.57)). This
suggests modelling the photon-atom coupling as

V (t) = −
N∑
i=1

Di (t) · E(xi , t), (16.100)

where E is the electric field evaluated at the atomic position and D(t) is the dipole
moment operator for the two-level atomic system, given explicitly (in interaction
picture) for each atom by

11 For some systems quadratic terms in A can arise at first order in the photon-electron interaction, of
the form Lm1 � −(e2n̄e/2m)A2 where n̄e is the mean local electron density. These describe the
appearance of a plasma mass for systems with mobile electrons, rather than the polarizabilities of
interest here.
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D(t) =

(
0 d eiωeg t

d e−iωeg t 0

)
. (16.101)

This encodes the requirements of rotational invariance, which implies that
〈e, �z |D|e, �z〉 = 〈g |D|g〉 = 0 while 〈e, �z |D|g〉 = d(�z ) eiωeg t and 〈g |D|e, �z〉 =
d(�z ) e−iωeg t .

Mean-Field Action

The goal now is to evaluate the second-order expression, (16.53), reproduced here as

Vm(t) = V (t) − i
∫ t

t0

dτ 〈〈 δV (t) δV (τ) 〉〉 + O
(
V 3

)
, (16.102)

for the photon’s mean-field Hamiltonian in an environment of these simple two-
level atoms. The main interest is in slowly varying electric fields compared with
the timescale set by ωeg, and so takes E to be time-independent.

For sector B assume a time-independent density matrix

�B =

N∏
i=1

⊗
(

pe I3/3 0
0 pg

)
, (16.103)

where I3 is the 3 × 3 unit matrix and the two universal numbers pe and pg are the
same for all atoms. This commutes with the sector B Hamiltonian given in (16.98)
and (16.99), and is general enough to include, for example, a thermal state. Clearly,
pe + pg = 1 ensures tr B �B = 1. Physically, pe gives the fraction of excited atoms in
this environment.

With these assumptions the first-order contribution to Vm vanishes, because
〈〈V 〉〉 = 0. The second-order term in (16.102) requires computing the autocorrelation
function for Di , which is

〈〈Da
i (t)Db

j (s) 〉〉 =
⎡⎢⎢⎢⎢⎢⎣pg 〈g |Da (t)Db (s) |g〉 + pe

3

∑
�z=−1,0,1

〈e, �z |Da (t)Db (s) |e, �z〉
⎤⎥⎥⎥⎥⎥⎦ δi j

=

[
pg e−iωeg (t−s) +

pe
3

eiωeg (t−s)
] D

3
δab δi j , (16.104)

where the last line uses the assumed rotational invariance of �B and defines the non-
negative fluctuation coefficient,

D :=
∑

�z=0,±1

d(�z ) · d(�z ) ≥ 0. (16.105)

Neglecting the t-dependence of E allows the time integration in Eq. (16.102) to be
performed explicitly to obtain Vm, giving12

12 An oscillatory term proportional to e−iωeg (t−t0 ) is dropped when evaluating the integral, assuming
Ee has a small negative imaginary part due to the excited state’s instability to photon emission through
the process |e〉 → |g〉 + γ described in §12.2.2.
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Vm(t) � −i
N∑

i j=1

Ea Eb

∫ t

t0

ds 〈〈Da
i (t)Db

j (s) 〉〉

= −i
N∑
i=1

E2

3

∫ t

t0

ds D
[
pg e−iωeg (t−s) +

pe
3

eiωeg (t−s)
]

(16.106)

= − D
3ωeg

(
Ng −

Ne

3

)
E2,

where Ne = peN and Ng = pgN are, respectively, the total number of atoms in
the excited and ground states. The overall negative sign here indicates that the atom
reduces its energy by polarizing in the presence of a local electric field.

In order of magnitude ωeg ∼ e2/aB (where aB is the Bohr radius) is a typical
atomic energy scale, which is a UV quantity for the effective description of photon
propagation. This makes it reasonable to have it appear in the denominator of the
effective coupling strength. Furthermore, on dimensional grounds one also expects
D ∼ dd ∼ (eaB)2 where −e is the electron’s charge, leading to the estimate

D
ωeg

∼ a3
B . (16.107)

To read off the polarizabilities this should be matched to the internal electrostatic
energy density for dielectrics in macroscopic electromagnetic fields, as computed
for the Maxwell action coupled to (16.86). For isotropic systems, when the energy
density is computed for given external charges specified then this has the familiar
positive form [451]

HA(D) :=
HA

Ω
=

D2

2 ε
, (16.108)

where Ω is the volume of the region of space of interest in the above calculation,
D = εE is the macroscopic electric displacement field in the long-wavelength
theory, and

ε = 1 + n̄pE (16.109)

is the medium’s dielectric permittivity.
By contrast, when the energy density is determined by specifying the electrostatic

potentials (or electric fields) it instead is given (for isotropic media) by the Legendre
transform, H̃A = HA − E · D and so is [451]

H̃A(E) :=
H̃A

Ω
= − εE2

2
. (16.110)

Eqs. (16.108) and (16.110) differ in their overall sign because they measure different
things. In particular, to fix external electric potentials when changing fields a charge
reservoir is required, from which charges flow in or out as required by the condition
that potentials remain fixed. It is the latter of these two energies that is relevant when
comparing to (16.106) because by taking the external electric fields to be given it
implicitly specifies the external potentials rather than charges.

Comparing (16.110) with (16.106) then gives pB � 0 (because magnetic response
vanishes at the order studied for the two-level model) and
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pE =
2D

3ωeg

(
pg −

pe
3

)
=

2D
3ωeg

(
1 − 4pe

3

)
, (16.111)

where the second equality uses pe + pg = 1. Using the estimate (16.107) then gives
pE ∼ O(a3

B ) with pE positive in the absence of a significant population inversion
(i.e. unless more than 3

4 of the atoms present happen to be in the metastable excited
state).

The predicted index of refraction becomes

nm =
√

1 + n̄pE � 1 +
n̄D

3ωeg

(
1 − 4pe

3

)
, (16.112)

where the approximate equality assumes a dilute system for which n̄D/ωeg ∼
n̄ a3

B � 1 (in which case nm − 1 � 1 as well, such as is true for air at standard
temperatures and pressures). It is clear, however, that systems exist for which average
inter-particle separations are of order atomic sizes, and so for which n̄ ∼ 1/a3

B . When
this is true (16.112) predicts that nm − 1 can easily be of order unity (such as is
measured to be true for everyday materials like glass or water, for which nm � 1.5
or 1.3, respectively). The reliability of predictions like (16.112) in the regime where
n̄pE is not small is a topic returned to in §16.3.5.

16.3.4 Photons: Scattering and Fluctuations♠

So far, the treatment of both neutrino and photon examples of particle propagation
within a medium has been done exclusively within the mean-field approximation.
Before quantifying what controls this approximation (particularly for photons, where
the weakness of the underlying particle-environment couplings is insufficient in
itself) it is useful to examine some implications of the fluctuation part of evolution.
As a bonus, this examination makes more explicit the connection between the general
open-system formalism and standard scattering results.

To this end, consider the situation where sector A describes the single-particle
properties (momentum, spin etc) of a particle moving through some sort of medium,
with sector B describing all of the unmeasured properties of the medium. In this
language scattering consists of anything that changes the sector-A momentum. The
advantage of framing scattering in terms of the general open-system framework is
the robustness with which it identifies precisely what properties of the medium are
responsible for particle scattering.

It is not unusual (but also not inevitable) for the mean-field limit of the medium
to be translation invariant, at least when coarse-grained on macroscopic scales. If so,
the mean-field part of the evolution conserves particle momentum and so cannot
contribute to scattering. Scattering then arises (if it does at all) purely because
of interactions with the medium’s fluctuations about its mean. Scattering from
fluctuations is the topic now studied in more detail.

It should be emphasized that the recursive nature of the open-system framework
implies that a study of scattering from fluctuations can also capture situations
where scattering comes from inhomogeneities in the mean properties. That is,
it sometimes happens that mean properties are not translation invariant on some
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scales, but become so on larger scales.13 So fluctuations in this section can cover
a diverse range of phenomena, starting from fluctuations in particle properties
when describing scattering from individual atoms in the medium, and continuing
to coherent processes (like refraction and reflection) at larger distances from more
complicated position dependence in mean particle properties.

Scattering from Fluctuations

To set up scattering problems using the formalism of open systems, imagine that
sector A consists of the single-particle sector corresponding to a particle traversing
the medium, and for simplicity assume these to be spanned simply by momentum
eigenstates, |p〉. Sector B collectively includes all degrees of freedom of the medium.
Things are conceptually simplest if the medium does not consist of particles of
the type passing through – such as neutrinos or muons (as opposed to electrons,
say) passing through ordinary solids or gasses – but this assumption is not strictly
necessary.

The initial state is taken to be uncorrelated, ρA(t0) = �A ⊗ �B, with

�B =
∑
b

pB(b) |b〉〈b| and �A =
∑
a

pA(a) |a〉〈a | (16.113)

describing the initial state of the environment and the initial particle beam.14

A fundamental assertion of quantum mechanics states that the probability for
measuring the system to be in a range of final states, Af := {|a′〉}, at time t is
then captured by evolving ρ from t0 to t and computing the expectation value for
the hermitian observable OA f

= OA f
⊗ IB, where IB is the unit matrix in sector B while

OA f
=

∑
a′ ∈ A f

|a′〉〈a′ | (16.114)

is the projection matrix onto the final states of interest in sector A. The validity of
this assertion may be seen by explicit evaluation, since

Tr
[
ρ(t) OA f

]
= tr

A

[
ρA(t) OA f

]
=

∑
a∈ Ai
a′∈ Af

∑
bb′

pA(a)pB(b)��〈a′, b′ |U (t, t0) |a, b〉��2.

(16.115)

With later applications in mind, suppose that 〈a′ |U (t, t0) |a〉 = 0 for all a′ � a, so
the mean-field contribution does not contribute to scattering (such as is true when |a〉
are momentum eigenstates and U is translation invariant). Then all scattering comes
from fluctuations, ΔU , for which the leading expression in powers of V is

ΔU (t, t0) � −i
∫ t

t0

ds
[
V (s) − 〈〈

V (s)
〉〉

B

]
= −i

∫ t

t0

ds δV (s). (16.116)

13 Clouds furnish a concrete example of this type, for which the water-density profile varies in space –
i.e. from droplet to droplet – when examined on scales large compared with atomic fluctuations but
small compared to droplet sizes. The mean density becomes homogeneous, however, once coarse-
grained to scales larger than the droplets, in which case light-scattering by droplets becomes described
as scattering from fluctuations.

14 The discussion starts using discrete states (such as if momenta were normalized within a large but
finite-sized box), with the transition to continuum normalization taken later.
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The transition probability from states Ai = {|a〉} to states Af = {|a′〉} (where for
simplicity Ai and Af are taken to be disjoint) in this case becomes

Pt (Ai → Af ) :=
∑
a∈ Ai
a′∈ Af

∑
bb′

pA(a)pB(b)��〈a′, b′ |ΔU (t, t0) |a, b〉��2. (16.117)

In the limit, t − t0 → ∞, the transition amplitude, 〈a′, b′ |ΔU (t, t0) |a, b〉, between
eigenstates of H0 = HA + HB goes to

−i
∫ ∞

−∞
ds 〈a′, b′ |δV (s) |a, b〉 = −2πi 〈a′, b′ |δV (0) |a, b〉 δ(E − E ′). (16.118)

Squaring this last expression and inserting the result into (16.117) to obtain
Pt (Ai → Af ) gives a well-known ill-defined factor δ(E = 0). For the present
purposes, this issue can be side-stepped15 by instead differentiating to compute the
transition rate, Γ(Ai → Af ) = ∂tPt (Ai → Af ). Doing so using the lowest-order
expression (16.116) gives

Γ(Ai → Af )

=
∑
a∈ Ai
a′∈ Af

∑
bb′

pA(a)pB(b)

[
〈a′, b′ |δV (t) |a, b〉

∫ t

t0

ds 〈a′, b′ |δV (s) |a, b〉∗ + c.c.

]
,

(16.119)

which in the long-time limit, t − t0 → ∞, approaches the well-defined result

Γ(Ai → Af ) → 2π
∑
a∈Ai
a′∈A f

∑
bb′

pA(a)pB(b)��〈a′, b′ |δV (0) |a, b〉��2δ(E − E ′), (16.120)

which is Fermi’s golden rule for lowest-order scattering from fluctuations.

Thomson Scattering

To make the above manipulations concrete it is useful to have a simple illustrative
application in mind. To this end, consider photons (described by the electromagnetic
vector potential A) moving through a medium consisting of massive charged particles
(with charge eq and mass m, represented by a Schrödinger field Ψ). As discussed
in §12.1.3, at low energies photon scattering from such particles is described by
Thomson scattering, via the leading low-energy effective coupling

V =
e2
q

2m

∫
d3x A2(Ψ†Ψ). (16.121)

The goal is to evaluate the above expressions in this example to compute the rate
with which photons scatter from such a medium.

To leading order, the mean-field Hamiltonian for Thomson scattering therefore is

Vm � 〈〈V 〉〉 =
e2
q

2m

∫
d3x A2 n̄(x), (16.122)

15 This little dance is a special case of a more general argument; as is further explored in §16.4.1.
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where the mean heavy-particle density, n̄ := tr B[Ψ†Ψ �B], is position-independent if
the environment is translation-invariant.

Assuming the mean-field limit of the medium is translation invariant – so U
does not scatter the photons – and switching to continuum normalized momentum
eigenstates when using (16.121) in Eq. (16.120) gives the leading contribution to the
unpolarized scattering rate as

dΓ[γ(k) → γ(k′)] � 2π ��2 ×
e2
q

2m
��

2 [
1

2ωk (2π)3

]2 1
2

∑
λλ̃

|ε̃ · ε |2δ(ωk − ωk′ )

× GB(k − k′) fA(k)[1 + fA(k′)] d3k d3k′

=
1

8(2π)5
��
e2
q

m
��

2∑
λλ̃

|ε̃ · ε |2 GB(k−k′) fA(k)[1+ fA(k′)] d3k dΩ′,

(16.123)

where in the continuum, pA(a) → fA(k) is the dimensionless phase-space density
of initial photons of momentum k, with the Bose-Einstein statistics of photons used
when evaluating the matrix element of V . In the final line dΩ′ is the element of solid
angle for the final photon’s direction while ωk = |k| and

GB(k − k′) :=
∑
bb′

pB(b)
∫

d3x d3y ei(k−k′) ·(x−y)〈b′ |δn(x) |b〉〈b|δn(y) |b′〉

=

∫
d3x d3y ei(k−k′) ·(x−y)〈〈 δn(x)δn(y) 〉〉 . (16.124)

Here n(x) := Ψ†Ψ(x) is the density operator for the field Ψ(x), while δn(x) =
n(x) − 〈〈 n(x) 〉〉 and 〈〈 δn(x)δn(y) 〉〉 = tr B[δn(x)�Bδn(y)].

For translation-invariant media the correlation function 〈〈 δn(x)δn(y) 〉〉 is a func-
tion only of s := x − y, and so is completely independent of r := 1

2 (x + y).
Consequently, GB(k − k′) =

∫
d3r GB(k − k′) with

GB(k − k′) :=
∫

d3s ei(k−k′) ·s 〈〈 δn(s)δn(0) 〉〉. (16.125)

This shows that dΓ =
∫

d3r dλ(r), where for translation-invariant systems the
differential scattering rate per unit volume, dλ(r), is both position-independent and
well-defined in the large-volume limit:

dλ
dΩ′

[γ(k) → γ(k′)] � 1
8
��

e2
q

m
��

2
1

(2π)5

∑
λλ̃

|ε̃ · ε |2 GB(k − k′) fA(k)[1 + fA(k′)] d3k

= fA(1 + f ′A )

(
dσth

dΩ′

)
GB(k − k′)

d3k
(2π)3 , (16.126)

with dσth/dΩ′ the Thomson cross section of (12.34).
In the particular case where B is a fluid of independent nonrelativistic charged

fermions, using continuum-normalized momentum eigenstates as a basis shows that
〈p′ |δn(x) |p〉 � (2π)−3 exp[i(p − p′) · x], and so (16.125) reduces to

G(k − k′) �
∫

d3p d3p′

(2π)3 fB(p)[1 − fB(p′)] δ3(p + k − p′ − k′). (16.127)



493 16.3 Mean Fields and Fluctuations

For dilute systems (defined by fB � 1) this becomes

G(k − k′) �
∫

d3p

(2π)3 fB(p) = n̄, (16.128)

and so using this in (16.126) reproduces the differential scattering rate expected from
independent Thomson scattering from a bath of charged particles with total density n̄.

Scattering from a dilute thermal distribution corresponds to the special case

fA,B =
1

e(E−μ)/T ± 1
(16.129)

where μ and T are the chemical potential and temperature (with the upper sign
corresponding to Fermi–Dirac statistics and the lower sign to Bose–Einstein statis-
tics). But scattering from more general thermal fluids is also easily captured by this
formalism. As shown in Exercise 16.4, scattering from a thermal bath is equally
well encoded as a special case of scattering from density fluctuations, where the
fluctuations are those of the grand canonical ensemble.

The scattering rate is more usefully expressed in terms of the extinction coefficient,
h, defined16 as the rate for scattering photons into all directions divided by the
incident photon flux F := fA(k) d3k/(2π)3. For (16.126) this becomes

h :=
1
F

∫ (
dλ
dΩ′

)
dΩ′ � 1

8
��

e2
q

m
��

2
1

(2π)2

∑
λλ̃

∫
dΩ′ |ε̃ · ε |2 GB(k − k′)[1 + fA(k′)]

� n̄ σth, (16.130)

where the approximate equality neglects fA(k′) and specializes to dilute systems with
ideal-gas fluctuations.

Macroscopic Fluctuations

The above example shows why particles moving through translation-invariant media
are scattered dominantly by the medium’s fluctuations. The fluctuations in the
medium that matter for this scattering are those of the interaction Hamiltonian, V (t),
itself. For interactions that couple to the density of particles in the medium it is
density fluctuations that control the scattering rate.

The previous example also shows that when the important fluctuations are thermal
and the system is dilute (and so described thermodynamically as an ideal gas, say)
then scattering from density fluctuations reproduces the same result as obtained by
computing scattering from individual particles in the medium and summing these
incoherently to obtain a rate proportional to the mean density of scatterers, n̄.

But the power of the open-system derivation is its generality, and nothing
requires the fluctuations responsible for scattering to be as simple as thermal. More
generically, fluctuations also arise when environments are mixtures of materials of
different kinds, or when particles scatter from more complex collective properties.
These other cases are often equally well captured by the fluctuation formalism

16 Extinction is sometimes expressed in terms of scattered intensity (or energy) rather than rate for photon
scattering, but the difference is immaterial for the elastic scattering considered here.
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given above, with the quantities like 〈〈 δn(x)δn(y) 〉〉 (or its analog for other scattering
processes) instead computed by averaging over these alternate fluctuations.

As mentioned earlier, clouds provide a concrete example of this type. Indeed,
if microscopic thermal fluctuations of the underlying atoms were the whole story
one would conclude that clouds must be transparent because they are made of
air and water and these are separately transparent. What this simplistic argument
misses are the droplets, through which light rays refract and from which they reflect.
From a microscopic point of view (smaller than the droplets) this is an example of
scattering within the mean-field sector, because the mean properties like density are
not translation invariant. But when examined on scales much larger than the droplet
sizes the scattering is again from density fluctuations; it is just that it is the drops
themselves that furnish the properties of these fluctuations (see Exercise 16.6).

16.3.5 Domain of Validity of Mean-Field Theory

It is now time to return to the question of what controls the validity of mean-
field theory: i.e. what is the small parameter that controls the size of ΔU evolution
relative to U? In particular, is there a nontrivial regime described using only U while
neglecting ΔU completely? (One thinks the answer to this should be ‘yes’, given
experience with light in the geometrical optics regime for which rays can undergo
multiple refractions and reflections with negligible degradation in intensity.)

For neutrinos the answer appears relatively straightforward, and is rooted in the
feebleness of the weak interactions. Since for neutrinos it suffices to work to linear
order in V , ΔU plays no role since its first contribution arises at O(V 2). This
reasoning is basically correct, although there is a late-time complication that must
be dealt with when discussing oscillations (described in §16.4).

The situation is not quite as simple for photons in dielectrics, for which both U and
ΔU typically receive their leading contributions at order V 2. If the size of V were the
only relevant quantity why would it ever be true that photons could propagate far
enough to be refracted or reflected (for which only U is relevant) without having also
been scattered out of the initial beam (through the scattering in ΔU)?

This section argues that for photons there is a second small parameter in the
problem that suppresses ΔU relative to U at any fixed order in V . This second
parameter is 1/Ncoh, where Ncoh � 1 is the number of scattering sites within a
coherence volume, defined as the volume from which a given photon can scatter
coherently.

To see what is involved, imagine a photon scattering with amplitude Ai , i =
1, · · · , N from N distinct scattering sites, with N � 1. These sites might be different
atoms within a medium, or perhaps different droplets in a more complicated mixture.
The total probability for scattering then is

P =
������
N∑
i=1
Ai

������
2

=

N∑
i=1
|Ai |2 +

N∑
i> j=1

(A∗
iA j +AiA∗

j ). (16.131)

Denoting the modulus and phase of each scattering amplitude by Ai = A eiai , with
the modulus assumed to be the same for all i, compare the following two extreme
situations. First, suppose that the phases, ai , are also the same for all i. Then the
scattering probability would be
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P → Pcoh := A2 N2 (16.132)

which, for this ‘coherent’ case, scales quadratically with N .
Alternatively, imagine that the N scattering amplitudes carry different and random

phases, ai . Then

P → Pinc := A2
⎡⎢⎢⎢⎢⎢⎣N + 2

N∑
i> j=1

cos(ai − a j )
⎤⎥⎥⎥⎥⎥⎦ , (16.133)

in which the final sum remains much smaller than N for large N because the phases
cancel as often as reinforce one another. In this (‘incoherent’) case, P instead scales
linearly with N , for large N , rather than quadratically. Clearly, Pcoh � Pinc when
N � 1. Because scattering amplitudes include phase factors like ei(k−k′) ·x, where k
and k′ are the initial and final photon momenta, coherent scattering usually17 occurs
in the forward direction (for which k′ = k).

The large-N enhancement associated with coherent scattering can be a justification
for working nontrivially with U while dropping ΔU . It can do so because it is U
that typically contains the coherent part of a process while ΔU contains only the
incoherent part. This distinction can be seen explicitly in the examples examined
above. For instance, (16.106) and (16.122) predict Vm ∝ N and so also predict
any order-V 2

m contribution in U to be proportional to N2. By contrast, formulae like
(16.126) – together with (16.128) – or expression (16.130) are constructed using ΔU
at second order in V and are instead proportional to N (through the factor n̄).

How large is Ncoh in specific systems? What counts is the number of scatterers for
which the scattering phase remains approximately equal, as in (16.132). Since real
materials are usually characterized by a particle density, n̄, the number of particles
sharing the same scattering phase is normally called the coherence volume, Ωcoh,
with Ncoh = n̄Ωcoh.

Usually, the coherence volume is at minimum of order Ωcoh >∼ λ3, where λ is the
wavelength of the scattering photon. But Ωcoh can be made larger than this, such as
by ensuring that the relative phases of the initial photon state remain fixed over many
wavelengths (such as by preparing the photons using a laser). For atoms in a material
with density n̄ ∼ 1/a3

B the typical inter-atomic separation is of order 0.1 nm, so for
visible light (with λ ∼ 500 nm) Ncoh = n̄λ3 >∼ (5000)3 = 1.25 × 1011 can easily be
enormous.18

16.4 Late Times and Perturbation Theory ♣

Up to this point, the discussion of open EFTs has been entirely cast in perturbation
theory: the influence of the unmeasured sector B on the evolution of observables
in sector A is treated in powers of the interaction V (t) that couples them to one
another. But there is an important regime where this kind of perturbative reasoning
generically breaks down: at very late times. This is potentially dangerous for any

17 Bragg scattering [452] shows that coherence can sometimes also occur for non-forward scattering.
18 By contrast: for MeV neutrinos λ ∼ 100 fm and so n̄λ3 � 1 for materials right up to near-nuclear

densities. This is why coherence is usually not the relevant issue for use of mean-field methods in
neutrino physics.
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EFT description, given that effective theories are typically aimed at slow processes
that act over long distances.

A simple example of this breakdown is already seen in the above examples, in
particular in the transition from Eq. (16.117) to (16.120). In that discussion a problem
arose because of the divergence of the time integrals appearing in the scattering
probability once (16.117) is evaluated in powers of V . But this is really just the tip of
the proverbial iceberg; when interacting with an environment, it is ultimately generic
that exp[−iVt] eventually differs significantly from 1 − iVt, regardless of how small
the matrix elements of V might be.

Experience with particles interacting with matter also shows that problems
predicting perturbatively at late times are not esoteric or hypothetical. Consider, for
example, the example of photons passing through a transparent material like glass or
water. In this case, interactions are weak inasmuch as the likelihood of any particular
photon interacting with any particular atom is reasonably small. Perturbation theory
essentially predicts that to leading approximation nothing happens, so photons
dominantly continue on relatively unchanged by the presence of the medium.
Although this starts off as a good description, eventually – e.g. once one reaches
the geometrical optics regime – essentially 100% of photons either refract or reflect
and none remain unperturbed in their original trajectories. Evidently, perturbation
theory in V must be a bad approximation in this late-time regime.

A similar issue arises with neutrino oscillations. If neutrino interactions really are
so weak that going beyond linear order in V is unnecessary, it should never be true
that small interaction-induced phase shifts can be reliably exponentiated, as they must
to provide the interference inherent in the time-dependence e−iΔEt characteristic of
oscillations.

The goal of this section is to explore how to make reliable predictions in these
kinds of late-time limits. Happily, success making predictions need not require access
to any sort of complete non-perturbative understanding (something that is rarely
possible in quantum field theory). Instead, robust resummation techniques often exist
that allow inference of late-time behaviour without a full solution of the entire theory.
This section starts with the simplest examples of this type, and progresses on to more
comprehensive techniques.

16.4.1 Late-Time Resummation

To start, it is useful to think through relatively well-understood examples of how
nominally failing perturbation theory at late times can be resummed so as to restore
the ability to predict. These simple examples are useful since they contain the essence
of the core argument that also works in more general settings.

Exponential Decays

Radioactive decay provides perhaps the very simplest example of the apparent
breakdown of perturbation theory at late times. In this case, a parent particle
spontaneously decays, P → D1 +D2 + · · · (perhaps through the weak interactions)
into a collection of daughter particles.
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In the simplest examples this occurs due to the existence of a nonzero matrix
element 〈D1,D2, · · · |V |P〉, and the absence of any conservation laws that forbid
the transition P → D1,D2, · · · . Standard expressions like Fermi’s golden rule – c.f.
Eq. (16.120) – then give the decay rate Γ in terms of |〈D1,D2, · · · |V |P〉|2, and are
therefore second-order in the weak interaction responsible.

The late-time issue arises once one asks for the survival probability for a given
atom as a function of time. This probability is given by the well-known exponential
decay law,19

P(t) := P[P (t0) → P (t)] = e−Γ(t−t0) , (16.134)

which is experimentally verified to be true for times (t − t0) � τ = 1/Γ, where τ
is the decay’s mean lifetime. But how can this exponential be trusted given that Γ is
computed only to order V 2? Why is it not compulsory always to write (16.134) as

P(t) � 1 − Γ(t − t0) + · · · , (16.135)

with only unreliable predictions once t−t0 >∼ τ? Indeed, the first-principles derivation
of the transition probability (as opposed to the rate) actually leads to (16.117), whose
failure to converge at large t (at lowest order) corresponds precisely to the linear
growth of (16.135).

The argument underlying the validity of the exponential decay law rests on two
pillars: (i) the decay rate Γ can be computed perturbatively and gives a result that
is independent of time and (ii) for any initial time, t0, there is a finite (and possibly
short) window of times t for which P(t) satisfies

dP
dt
= −Γ P, (16.136)

which relies only on the likelihood of having a decay in any short time window being
independent of the likelihood of there being a decay in any other time windows.
(This last property can break down in some specific situations, leading then to non-
exponential evolution [453]).

Now comes the main point: even though the time windows used to derive (16.136)
have a finite size there is often an unending overlapping set of such windows since
Eq. (16.136) itself makes no direct reference to time, and in its derivation t0 is
arbitrary. As a result, the domain of validity of (16.136) – and hence also of its
solutions like (16.134) – is actually the union over all t0 of all overlapping domains
on which it can be derived.

At first sight, this seems an odd type of argument. After all, Eq. (16.136)
is ultimately derived by differentiating (16.135), and dropping terms higher than
quadratic in V . So, normally both equations would be expected to have precisely the
same domain of validity. But because (16.135) leads to (16.136) for any choice of t0,
this latter equation actually can remain valid for arbitrarily large times. By contrast,
(16.135) itself explicitly depends on t0 and so is not equally extendable without first
passing through (16.136). It is because (16.136) has this extended domain of validity
that its solution – the exponential decay law, (16.134) – can be valid over times much
longer than τ = 1/Γ.

19 There can also be deviations from exponential decay, under circumstances made clearer below.
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The astute reader will notice a similarity between this argument and the
renormalization-group argument made when transitioning between Eq. (7.28) and
(7.32) in earlier chapters. The basic logic is the same: although differentiation
followed by integration seems as if it should not provide new information, it
sometimes can if the differential version of a result has a broader domain of validity.

This is a very powerful line of argument, and when it works it allows working to
all orders in Γt without having to understand all observables at all orders in V . When
applied using the leading-order expression for Γ, use of (16.134) when integrating
(16.136) amounts to resumming all orders in Γt while dropping terms that involve
extra powers of the interaction V without the corresponding extra powers of t (much
like summing the ‘leading logs’ in a renormalization-group argument).

The remainder of this section sketches how this reasoning also works in a second
important class of examples: the propagation of particles through matter, for which
interaction phases generated by mean-field evolution U are often exponentiated
when following the interference of states as they evolve in time (such as for
matter-induced neutrino oscillations and the coherent scattering and interference of
electromagnetic waves). The following section then frames the argument in an even
more general context.

Neutrino Oscillations

As always, the first step in understanding why mean-field interaction phases can
be exponentiated consistently lies in recalling why the fluctuation evolution, ΔU , is
suppressed relative to U in the first place. Previous sections argue that for neutrinos
(in environments like the solar interior) this suppression relies only on the weakness
of the weak interactions.

To pin this down more precisely, recall that at first order in V mean-field inter-
actions introduce single-particle energy shifts to neutrinos – see e.g. the discussion
following Eq. (16.77) – of order V1 = 〈〈V 〉〉 ∼ GFn̄, where GF is Fermi’s constant and
n̄ = 〈〈 n 〉〉 is the density of scatterers (in practice, the density of neutrons or electrons).

By contrast, the leading contributions to ΔU are given by the rate of scattering
from fluctuations, and taking these to be given by microscopic particle-by-particle
fluctuations leads to a depletion of probability from the mean-field sector that is of
order Γ ∼ n̄ σ, where σ is the neutrino interaction cross section. An estimate of the
cross section at the energies of practical interest is σ ∼ G2

F mE, with E the neutrino
energy and m the scatterer mass, for scatterers assumed to be approximately at rest.20

Fluctuations are therefore negligible relative to mean-field evolution to the extent that
Γ/V1 remains small, i.e. when

GFmE � 1.2 × 10−8
( m

GeV

) (
E

MeV

)
� 1. (16.137)

This is clearly satisfied for MeV neutrinos scattering from electrons or nucleons, say.
What of the validity of exponentiating matter-dependent phase-shifts of the form

δm ∼ GFn̄ t when computing interference between the evolution of neutrino eigen-
states? Such evolution is required when computing oscillation patterns sensitive to

20 More precisely, this estimate applies at energies low enough for the Fermi theory of §7.1 to apply
(i.e. well below 100 GeV).
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time-dependent interference terms like e−i(E1−E2)t (see, for example, Exercise 16.2),
where Ei are the energies of two species of neutrino. Neutrino oscillations require
these factors be evaluated with |E2 − E1 | ∼ δm2/E, which by assumption is similar
to GFn̄e for resonant oscillations.

The argument for this very much follows the logic of exponential decays. For
single-particle neutrino states the differential version of the evolution is given by the
Liouville (or Schrödinger) equation itself, (16.41). This equation is the differential
version of the mean-field evolution given in terms of U in (16.49), and although U
can only be computed in powers of V over a finite range, (t − t0), this can be done
for any value of t0. Consequently, (16.41) has a broader domain of validity, and so its
solutions can be trusted even when t − t0 is so large that

∫ t

t0
ds V (s) is not small and

U is not arbitrarily close to the unit operator.

Photons

A very similar story also holds for electromagnetic fields within dielectrics, although
with different details due to the requirement, discussed above, for coherence when
neglecting scatterings from fluctuations.

In more detail, recall that the leading mean-field interaction Hamiltonian arises
in this case at second order in the underlying interactions – c.f. for example,
Eq. (16.106) – and gives single-photon states energy shifts of the form δω(k) �
(cm − 1)k, where the photon propagation speed within the medium is related to its
index of refraction by cm = n−1

m .
The validity of keeping only mean-field evolution and dropping ΔU relies on

this energy shift being much larger than the extinction rate, which Exercise 16.6
shows is given in the same regime by the Rayleigh scattering expression
h � n̄ σR ∼ ω4(nm − 1)2/n̄, and so (writing ω = 2π/λ) requires

ω3(1 − cm)
n̄ c2

m

=
(2π)3

λ3n̄

(
1 − cm

c2
m

)
� 1. (16.138)

Clearly, this allows 1−cm to be order unity provided that λ3n̄ is large;21 i.e. there are
a large number of scatterers within the volume set by a cubic wavelength. Neglect
of fluctuations is valid when the number of coherent scatterers – Ncoh defined in the
discussion below Eq. (16.133) – is large.

What justifies working beyond linear order in δω t when computing the late-time
interference of photons propagating in such a medium? Just like for the previous
examples, this is justified because the differential mean-field evolution equation for
photon states,

i ∂tρA =
[
Vm(t) , ρA

]
, (16.139)

can be derived with a broader domain of validity than can the direct expression
for U as a function of V (t). And it is this differential equation that ensures photon
propagation eigenstates evolve proportional to e−iωt with ω � cmk = k/nm included
in the phase.

21 Of course, having λ much larger than inter-particle spacings is also part of the limit that allows the
medium to be coarse-grained in the first place; it is because the photon interacts with many atoms that
its multiple interactions can be well-described in terms of a few medium properties.
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16.4.2 Master Equations

The previous sections describe several situations for which late-time behaviour of a
reduced state can be computed perturbatively, despite there being generic problems
in this regime due to the systematic appearance of powers of the evolution time, t−t0,
together with powers of the interaction Hamiltonian, V .

This section closes out the book by exploring more generally how this can happen,
in particular extending its treatment to cases where mean-field methods need not play
such a central role. This is done through the development of a series of (quantum)
master equations, defined as evolution equations22 for the density matrix ρA(t),
defined by (16.27).

Nakajima–Zwanzig Equation

The first master equation derived is obtained by returning to first principles, starting
from the Liouville equation, (16.33), for the full system. The problem with directly
tracing the Liouville equation – such as in (16.44) – is that the right-hand side
depends on the full density matrix ρ rather than just the reduced matrix ρA. Formally,
the problem of identifying the evolution of the reduced density matrix, ρA, in terms of
itself is solved by projecting the Liouville time-evolution of the full density matrix,
ρ, onto the subspace A using an appropriate projection operator.

To see how this works, consider the real vector space consisting of hermitian
operators acting within the quantum-mechanical Hilbert space. Density matrices live
in this vector space and any linear transformation – like time evolution – acting
on a density matrix can be regarded as a ‘super-operator’ acting on this space (as
opposed to an ‘operator’, like ρ, that acts directly on the quantum mechanical Hilbert
space) [454].

In particular, when computing the evolution of ρA(t) a special role is played by the
projection super-operator P, defined to act on a general hermitian operator O by

P (O) := tr
B

(O) ⊗ �B. (16.140)

Here, �B is a density matrix that characterizes sector B (the environment). In practice,
it is chosen equal to the initial B state, ρ0 = ρ(t0) = �A ⊗ �B, that arises if the initial
state is assumed to be uncorrelated. Because tr B �B = 1 this definition defines a
projection operator, inasmuch as P2 = P. It also satisfies P (OA ⊗ �B) = OA ⊗ �B, and
so P (ρ0) = ρ0 for uncorrelated initial states. More generally, P[ρ(t)] = ρA(t) ⊗ �B,
where ρA(t) = tr B ρ is the reduced density matrix whose time-evolution is sought.

Because P is a projection operator, it follows that Q = 1 − P is also a projection
operator (i.e. also satisfies Q2 = Q) and that PQ = Q P = 0. The idea is to compute
the evolution of P (ρ) as a proxy for �A. The evolution of P (ρ) is not quite the
same as that of ρ because for P (ρ) = ρA ⊗ �B the environment (sector B) does not
evolve. However, ρ and P (ρ) agree with one another (by construction) once sector
B is traced out, which suffices to make their predictions agree when restricted to
observables that act only in sector A.

22 More than one type of master equation is derived here because some are only approximate.



501 16.4 Late Times and Perturbation Theory

In this same language time evolution is also a linear operation, given in the
interaction picture by ∂t ρ = Lt (ρ), where

Lt (O) := −i
[
V (t),O

]
. (16.141)

The problem of solving for the evolution of ρA(t) is then solved by combining Lt

with P and Q, inasmuch as [∂tρA(t)] ⊗ �B = P (∂t ρ) = ∂tP (ρ) can be computed
using the pair of equations

∂tP (ρ) = P (∂tρ) = PLt (ρ) = PLtP (ρ) + PLtQ(ρ) (16.142)

and ∂tQ(ρ) = Q(∂tρ) = QLt (ρ) = QLtP (ρ) + QLtQ(ρ),

where the last equality on each line uses P + Q = 1. The idea is to use the second
of these equations to eliminate Q(ρ) from the right-hand side of the first equation,
thereby obtaining an evolution equation that involves only P (ρ).

Because the equations are linear, they can be formally solved by successive
integrations, as follows. Define G(t, s) as the solution to ∂tG(t, s) = QLtG(t, s)
with initial condition G(t, t) = 1. Then G(t, s) is given explicitly by

G(t, s) = 1 +
∞∑
n=1

∫ t

s

ds1 · · ·
∫ sn−1

s

dsn QLs1 · · · QLsn

= 1 +
∞∑
n=1

1
n!

∫ t

s

ds1 · · ·
∫ t

s

dsnP
[
QLs1 · · · QLsn

]
, (16.143)

where P denotes path-ordering (or time-ordering) of the QLsi .
In terms of this the formal solution for Q[ρ(t)] with initial condition Q[ρ(t0)] =

Q(ρ0) is given by

Q[ρ(t)] = G(t, t0)Q(ρ0) +
∫ t

t0

ds G(t, s) QLsP[ρ(s)], (16.144)

as can be verified by explicit differentiation, using ∂tG(t, s) = QLtG(t, s). Once
this solution is inserted into the first of Eqs. (16.142) one obtains the exact integro-
differential equation [455]

∂tP[ρ(t)] = PLtP[ρ(t)] + PLtG(t, t0)Q(ρ0) +
∫ t

t0

dsK (t, s)[ρ(s)], (16.145)

which defines the kernelK (t, s) = PLtG(t, s)QLsP. The second term on the right-
hand side vanishes for uncorrelated initial conditions, ρ0 = �A⊗�B, since these imply
P (ρ0) = ρ0 and so Q(ρ0) = 0.

Eq. (16.145) is called the Nakajima–Zwanzig equation and is an exact conse-
quence of (and so is typically no easier to solve than) the original Liouville equation
for ρ(t). Its main virtues are two-fold: first, because a factor of P stands to the far
left of every term, it has the structure (· · · ) ⊗ �B and so only carries content in sector
A. Second, because ρ(t) only appears in it through the combination P[ρ(t)] = ρA(t)
it really is the equation giving ∂tρA directly in terms of ρA itself.

Eq. (16.145) is made more explicit by writing it out order-by-order in V using the
definitions of Lt , P and Q. It is convenient when doing so to expand V in a basis of
operators in product form,

V (t) =
∑
n

An(t) ⊗ Bn(t), (16.146)
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and keep only terms out to second order in V . To this order, it suffices to approximate
the kernel by its leading (second-order in V ) part, K � K2 = PLtQLsP.

Choosing an uncorrelated initial condition, ρ(t0) = �A ⊗ �B, Eq. (16.145) reduces
to the following approximate expression

∂t ρA(t) = −i
∑
n

[
An(t), ρA(t)

]
〈〈 Bn(t) 〉〉 + (−i)2

∑
mn

∫ t

t0

ds

{ [
Am(t), An(s) ρA(s)

]
× 〈〈 δBm(t) δBn(s) 〉〉 −

[
Am(t), ρA(s) An(s)

]
〈〈 δBn(s) δBm(t) 〉〉

}
+ O(V 3),

(16.147)

where, as usual, 〈〈 (· · · ) 〉〉 = tr B[(· · · ) �B]. This is a central result whose consequences
are more fully explored in the following sections.

Notice that if ρA(t) is re-expressed in terms of its initial value, again dropping
all terms beyond V 2, then (16.147) agrees with the B-sector trace of the differential
version of Eq. (16.39),

∂tρA(t) = −i
[
V (t) , ρA(t0)

]
+ (−i)2

∫ t

t0

dτ tr
B

[
V (t) ,

[
V (τ) , ρ(t0)

] ]
, (16.148)

where V := 〈〈V 〉〉 . In what follows it is Eq. (16.147) that is used, and not (16.148), and
this is ultimately the source of any late-time resummation that is found.

Returning now to the problem of making late-time predictions, does Eq. (16.147)
help? That is, does this equation have a broader domain of validity than does the
direct evaluation of ρA(t) – such as Eq. (16.39) – from which Eqs. (16.147) and
(16.148) can be derived? At face value the answer is ‘no’, due to the presence in
(16.147) of the nonlocal convolution over the region t0 ≤ s ≤ t. This integration
obstructs using the arguments of previous sections to extend the domain of validity of
the differential evolution, because of its explicit dependence on the entire evolution
history between t0 and t.

Lindblad Equation

It is perhaps not a surprise that (16.147) does not in itself provide a handle on late-
time evolution, given that to this point very little has been used about the properties
of �B describing the initial state of sector B. As is typically the case for EFT methods,
simplicity does not come until there is a hierarchy of scales to exploit.

In the present instance a simplifying hierarchy arises if sector B includes the ‘fast’
degrees of freedom relative to a slower sector A. (Exploiting such hierarchies of
time-scales is a venerable tradition that goes back to the Born–Oppenheimer approx-
imation [312].) Such a hierarchy occurs if the correlation functions 〈〈 δBn(t) δBm(s) 〉〉
fall off to zero for t − s much larger than a characteristic time-scale, τc . Then a
useful hierarchy arises if τc is much smaller than the times over which the evolution
of ρA(t) is sought.

In such a circumstance the reduced density matrix �A(s) can be Taylor expanded
about s = t, with the logic that it varies more slowly than does the rest of the
integrand because of the assumption that 〈〈 δBn(t) δBm(s) 〉〉 is sharply peaked about
s = t. Once this is done �A(t) (and its derivatives) can be factored out of the integral.
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For instance, suppose the sector-B correlation function appearing in (16.147) is
approximately local in time,

〈〈 δBm(t) δBn(s) 〉〉 � Cmn(t) δ(t − s), (16.149)

where hermiticity of the Bn’s implies that C∗
mn = Cnm. In this case, the integral over

s in (16.147) collapses so that ∂t ρA(t) is given directly by

∂t ρA � −i
∑
n

[
An, ρA

]
〈〈 Bn 〉〉 +

1
2

(−i)2
∑
mn

Cmn

[
AmAn ρA + ρA AmAn − 2An ρA Am

]
,

(16.150)

where the coefficients and operators on the right-hand side all depend on a common
time, t. A master equation of this type is called a Lindblad – or GKSL (Gorini,
Kossakowski, Sudarshan, Lindblad) – equation [458], and is much easier to work
with because it is Markovian (in the sense that ∂t �A(t) depends only on variables at
time t and not on the history of evolution prior to this time.

An equation like (16.150) sometimes also allows an inference of late-time
behaviour that would normally lie beyond the reach of perturbation theory, much as
the exponential decay law (16.134) is ultimately justified by the differential evolution
(16.136). An example of where this happens is when the coefficients Cmn and
operators Am do not themselves depend explicitly on time, because then (16.150) can
have a broader domain of validity than its perturbative derivation would naively seem
to allow. The extended domain of validity arises because (16.150) then holds equally
well for a sequence of overlapping windows of time, in which case its solutions are
valid over the union of these overlapping domains, thereby giving ρA(t) at late times.
For example, in the system considered below perturbation in V is justified by the
small size, g � 1, of a coupling parameter, and for large t the integration of (16.150)
resums all orders in g2t while neglecting corrections of order g4t.

Although the An and Bn are hermitian in the above derivation, this is not strictly
required to be true for a Lindblad equation, which can be more generally written

∂t ρA � −i
[
H , ρA

]
+

1
2

(−i)2
∑
mn

Cmn

[
A∗mAn ρA + ρA A∗mAn − 2An ρA A∗m

]
, (16.151)

where H = H∗ but the same need not be so for the An. When the coefficients Cmn

are hermitian and positive semi-definite,23 Eq. (16.151) can be shown [458] to be the
most general equation of this type that is linear in ρA and preserves its hermiticity,
positivity and its normalization condition (i.e. the condition tr A ρA = 1).

Approach to Equilibrium

To make the above discussion more explicit, it is useful to think through an explicit
example for which a Lindblad-type equation emerges to describe late-time behaviour.

23 As the example considered below shows in detail, the derivation of the Lindblad equation from the
Nakajima-Zwanzig equation can appear to produce a matrix Cmn that is not hermitian and positive
semi-definite. This is sometimes dealt with by coarse-graining over any fast oscillations on the right-
hand side (often called the ‘rotating wave approximation’) if such fast oscillations should be present
[456]. Strictly speaking, though, such ‘sick’ values for Cmn only arise when applied beyond the
domain of validity of the Lindblad derivation, making coarse-graining superfluous (see [457] for
further discussion).
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To this end, consider the approach to equilibrium of a two-level system (an atom or
qubit) coupled to an environment [459] (taken here to be a relativistic real scalar
field – meant as a proxy, say, for an electromagnetic field).

The free Hamiltonian is taken to be H0 = HA ⊗ IB + IA ⊗ HB, where for the qubit

HA =
ω
2

(
1 0
0 −1

)
, (16.152)

and sector-B has the field Hamiltonian

HB =
1
2

∫
d3x
[
(∂tφ)2 + (∇φ)2 + m2φ2

]
. (16.153)

These are coupled to one another through the interaction-picture interaction

V (t) = g(A ⊗ B + A† ⊗ B∗) (16.154)

with the coupling g � 1 assumed small enough to justify perturbative methods,
while

A =

(
0 0
1 0

)
e−iωt and A† =

(
0 1
0 0

)
eiωt , (16.155)

and

B(t) = φ[x0, t], (16.156)

where the field is evaluated at the atom’s (static) position x(t) = x0. Eq. (16.152)
identifies ω = E↑ − E↓ as the energy difference between the two qubit states, and
putting ω into H0 rather than V (and working with non-degenerate perturbation
theory) assumes ω to be much larger than any perturbative field-induced shift in
qubit energies.

The field φ is imagined prepared in an initial state �B, chosen to be a thermal state

�B =
1
Z

exp
[−βHB

]
, (16.157)

with temperature T = 1/β. Here, Z = tr B[exp(−βHB)] using the sector-B
Hamiltonian given in (16.153).

As is shown in Exercise 16.7, choosing the field to be in a thermal state implies
that its Wightman function

W (x, x ′) := 〈〈φ(x)φ(x ′) 〉〉 = tr
B

[
�B φ(x) φ(x ′)

]
, (16.158)

satisfies the KMS condition [460]

W (τ − iβ) = W (−τ), (16.159)

where τ = t− t ′. For instance, explicit evaluation of W (x, x ′) for a free massless field
in a thermal state at coincident spatial points, x = x′, gives (see Exercise 16.7)

W (τ) := W (x0, t + τ; x0, t) → − 1
4β2 [ sinh(πτ/β) − iε

]2 (massless limit),

(16.160)

which satisfies (16.159). Notice the exponential falloff in W (τ) for τ � β.
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Property (16.159) expresses detailed balance in sector B, and (as shall be seen)
ensures that the late-time limit of �A is also thermal:

�A∞ =

⎡⎢⎢⎢⎢⎣
1

1+eβω 0
0 1

1+e−βω

⎤⎥⎥⎥⎥⎦ =
[
e−βω 0

0 1

]
1

1 + e−βω
, (16.161)

with temperature T = 1/β. The goal is to reliably calculate the asymptotic relaxation
rate towards this state.

Substituting these expressions into the definitions allows the Nakajima–Zwanzig
equation (16.147) for the qubit’s interaction-picture density matrix to be written (at
second order in the coupling g) as

∂�↑↑
∂t
= g2

∫ t

−t
ds W (s) e−iωs − 4g2

∫ t

0
ds Re[W (s)] cos(ωs) �↑↑(t − s)

∂�↑↓
∂t
= −4ig2 eiωt

∫ t

0
ds Re[W (s)] Im[e−iω(t−s)�↑↓(t − s)]

= −2g2
∫ t

0
ds Re[W (s)] eiωs�↑↓(t − s)

+ 2g2 e2iωt
∫ t

0
ds Re[W (s)] e−iωs�∗↑↓(t − s),

(16.162)

showing how the diagonal and off-diagonal components of �A evolve independent of
one another. The derivation of (16.162) uses the relations �↓↓ = 1−�↑↑ and �↓↑ = �∗↑↓
to eliminate �↓↓ and �↓↑.

Notice also that the initial choice �A = |↓〉 〈↓|, together with a strict interpretation
of perturbation theory, would imply dropping all but the first term on the right-
hand side of the first of Eqs. (16.162) if one stops at O(g2). Keeping only this
term reproduces the perturbative (small-time) excitation rate of the qubit due to the
presence of the field [464]. It is by keeping the other terms that one obtains the
information needed to resum perturbation theory at late times, providing at large t
information to all orders in g2t.

Now comes the main point. Late-time behaviour for t ∼ O(1/g2) can be reliably
inferred if �ab evolves sufficiently slowly compared with thermal time-scales. In
particular, if �ab does not change appreciably over the O(β) interval over which
W (t) remains nonzero, one can simplify Eqs. (16.162) by expanding �ab (t − s) in
powers of s,

�ab (t − s) � �ab (t) − s

(
∂�ab
∂t

)
t

+ · · · , (16.163)

and integrating the result term by term.
For instance, dropping all but the first term in this expansion completely removes

the convolution over the qubit’s past history, and for �↑↑ this leads to an evolution
equation of the Markovian form,

∂�↑↑
∂t

� g2R − 2g2C �↑↑(t), (16.164)

with coefficients given by

R (ω) :=
∫ ∞

−∞
dτW (τ) e−iωτ → 1

2π
ω

eβω − 1
(thermal, massless limit),

(16.165)
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and

C(ω) :=
∫ ∞

−∞
dτ Re[W (τ)] cos(ωτ) → ω

4π
coth

(
βω

2

)
(thermal, massless limit).

(16.166)

Because (16.164) makes no reference to the initial time, its solutions can be
trusted for much later times than can straight-up perturbation theory, using the same
arguments that justify the exponential decay law (16.134) starting from (16.136).
Integrating leads to the prediction

�↑↑(t) =
1

eβω + 1
+

[
�↑↑(0) − 1

eβω + 1

]
e−t/ξT , (16.167)

with

ξT =
1

2g2C(ω)
→ 2π

g2ω
tanh

(
βω

2

)
(thermal, massless limit). (16.168)

For large t this solution can be trusted to all orders in g2t but neglects effects
that are of order g4t and smaller. The solution (16.167) also allows an ex post facto
quantification of when the Markovian expansion of (16.163) is justified, since it
shows that the neglect of subdominant terms requires

ξT � β or g2C � T , (16.169)

a condition that gets better and better the smaller g is. To these must be added the
condition

g2C � ω, (16.170)

that is required by the assumption that V (t) is perturbatively small relative to HA.
A similar story goes through for �↑↓ but with an important complication. Although

Taylor expanding �↑↓(t − s) also removes the history-dependence of Eq. (16.162),
the result does refer directly to the initial time because of the last term of the last line,
and its explicit dependence on e2iωt . This dependence appears to obstruct being able
to trust the solutions obtained by integrating for very long times, and furthermore
oscillates very rapidly compared with the late-time evolution of interest because of
condition (16.170).

This problematic rapidly-varying term should be dropped from the evolution equa-
tion, however, because it only contributes to the solution by an amount suppressed by
g2C/ω (as may be seen, for instance, by direct integration), making it subdominant24

by virtue of condition (16.170).
The resulting evolution equation then has the Lindblad form, (16.150), which

(converting back to the Schrödinger picture) becomes

∂�↑↓
∂t

� −i(ω + g2Δ)�↑↓(τ) − g2C �↑↓(τ), (16.171)

where the coefficients are given by (16.165), (16.166) and

Δ(ω) := 2
∫ ∞

0
ds Re[W (s)] sin(ωs). (16.172)

24 In the literature this term is often dropped by appealing to the ‘rotating wave approximation’ [456],
which coarse-grains the evolution equation over times much longer than ω−1 but smaller than the
relaxation times of interest.
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Although the new function Δ diverges25 in the s → 0 limit, this divergence is
renormalized into the atomic frequency: ωR = ω + g2Δ.

Eq. (16.171) now has the form that can be integrated to late times, so its solution

�↑↓(t) = �↑↓(0) e−t/ξD e−iωRt , (16.173)

provides a reliable description of late-time behaviour. The relaxation time-scale
appearing here is ξD = 2ξT, and so describes slower relaxation than found above
for �↑↑.

The thermal state (16.161) provides the unique static solution to (16.164) and
(16.171) and so is the late-time state to which the above solutions relax. Notice that
the late-time relaxation rates ξD and ξT both differ from the timescale, ξR := 1/(g2R),
that describes the early-time perturbative excitation rate [464] out of the ground state
caused by the field φ.

The lesson is this: hierarchies of scale can provide simplifications even for open
systems. For the qubit example straight-up perturbation in g fails at late times, but
this failure can be reliably resummed for large t to obtain predictions to all orders in
g2t. This happens because the full Nakajima–Zwanzig evolution is well-described by
an approximate Lindblad equation for evolution that is very slow compared with the
environment’s typical correlation time. Solutions to the resulting Lindblad equation
can be trusted at late times if its perturbative derivation works equally well in any
small time interval.

16.5 Summary

This final chapter explores how EFT methods work for systems that are open and so not Wilsonian,
inasmuch as measurements are restricted to a sector that is not isolated (as opposed to the low-energy
limit, whose isolation is enforced by conservation laws like energy conservation).

Such systems can exchange information with other, unobserved, degrees of freedom, and, in general,
this can lead to qualitatively new phenomena like thermalization or decoherence. Since thermalization and
decoherence can evolve pure states into mixed ones, they, in general, need not have a simple description
in terms of an effective Hamiltonian.

This section argues that EFT methods can nonetheless apply, in the special case that the ignored degrees
of freedom have a characteristic time-scale after which correlations tend to die out. If one’s interest is only
in very late-time evolution compared with this scale, then the description simplifies making the late-time
limit the analog for these systems of the low-energy limit for Wilsonian effective theories.

As the examples in this section illustrate, although, in general, late-time evolution need not be
Hamiltonian, it can happen that an effective Hamiltonian is nonetheless possible to construct. Systems that
are dominated by average mean-field properties of their environment provide a broad class of situations
for which this is true, of which thermal fluids provide perhaps the historically earliest examples of EFT
reasoning.

25 Notice that (surprisingly) the function C does not similarly diverge, due to the presence of the iε factor
in the denominator of the Wightman function seen in Eq. (16.160).
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In these cases, the breakdown of the mean-field approximation is driven by interactions with fluc-
tuations in the environment, and some effort is made here to quantify when these may be neglected.
This is done initially for several practical examples of particles moving through an ambient environment
(like neutrinos in the solar interior or photons within transparent media), and then more generally by
introducing the quantum master equation and some of its late-time approximations.

Exercises

Problem 16.1 An important role is played by interactions for which the interaction is
V (t) = VA(t) ⊗ VB(t), where fluctuations of VB(t) in the environment have a
short correlation time, τ, for which〈〈

VB(t)VB(s)
〉〉 − 〈〈

VB(t)
〉〉〈〈

VB(s)
〉〉 ≈ τ σ2

V δ(t − s),

where σ2
V > 0 is a measure of the instantaneous variance of V in the

environment. Working to second order in V , use unitarity to show that
interactions with these properties contribute to the growth of tr A(ρf

A) with time
according to

∂t tr
A

(ρf
A) = τσ2

V tr
A

[
�A(t)V 2

A (t)
]
≥ 0.

For a local interaction Hamiltonian, V (t) =
∫

d3x V (x, t), where V (x, t) =
VA(x, t) ⊗ VB(x, t) with local autocorrelations of VB in both space and time

〈〈 δVB(x, t) δVB(x′, t ′) 〉〉 = τ�3σ2
V δ

3(x − x′)δ(t − t ′),

show that at second order in V the growth of tr A(ρf
A) with time is extensive,

with

∂t tr
A

(ρf
A) =

∫
d3x τ�3σ2

V tr
A

[
�A(t)V2

A (x, t)
]
≥ 0.

Problem 16.2 Consider two species of neutrinos, ν±, for which U−e = cos θv and
U+e = sin θv , where θv is the vacuum PMNS mixing angle. Show that in
the ultra-relativistic regime relevant to neutrino-oscillation experiments, the
evolution equation is given by (16.77) and so the energy k0 = E to linear order
in μ satisfies

E � k +
m†m
2k
+ μ,

where μ is defined in (16.78). In the weak interaction basis show that when the
symmetric left-handed vacuum neutrino mass matrix m is real it can be written
in terms of the mass eigenvalues, m2

± = m2
0 ±

1
2 δm2, and the vacuum mixing

angle, θv , by

m†m = m2
0

(
1 0
0 1

)
+
δm2

2

(
−cos 2θv sin 2θv
sin 2θv cos 2θv

)
.
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In the same basis, the matrices appearing in the matter-dependent term is given
by

ge =

(
1 0
0 0

)
, and gn =

(
− 1

2 0
0 − 1

2

)
.

Show that E is diagonalized by propagation eigenstates ν− = (cos θm, sin θm)T

and ν+ = (− sin θm, cos θm), where

sin 2θm =

(
δm2

4kμ0

)
sin 2θv

with

μ0 :=
⎡⎢⎢⎢⎢⎣
(

GFn̄e√
2

)2
−

(
GFn̄e√

2

)
δm2 cos 2θv

2k
+

(
δm2

4k

)2⎤⎥⎥⎥⎥⎦
1/2

.

Show that the probability of a neutrino of energy E � m being produced in
one of the weak-interaction eigenstates and then being detected in the other
eigenstate after travelling a distance L is

Peμ (E, L) � sin2 2θm sin2
(
δm2L

4E

)
.

Prove that the medium-dependent mixing is maximal, sin 2θm = 1, when

GFn̄e√
2
=

(
δm2

4k

)
cos 2θv ,

in which case the matter oscillations are called ‘resonant’.
Problem 16.3 For the two species of neutrinos considered in Exercise 16.2, suppose

a neutrino is produced as an electron-type eigenstate at t = t0 by nuclear
reactions deep within the Sun, and then passes through the regime of resonant
oscillation while escaping the Sun through an exponentially falling electron
density, n̄e (t) = n̄e (0) e−(t−t0)/h , with scale-height h (the neutrino moves at
essentially the speed of light). Suppose that θv � 1 and so ν− � νe and
ν+ � νμ with m2

+ > m2
− outside the Sun.

Resonant oscillations occur if GFn̄e (0)/
√

2 � δm2/(4k). Show that in this
case the matter mixing angle starts deep within the Sun with sin 2θm(t0) �
sin 2θv very small and cos 2θm(t0) � −1. Show also that sin 2θm(t) → sin 2θv
(and so is also small when θv is small) with cos 2θm(t) → cos 2θv � +1 at
the solar surface (defined as the place where n̄e (t) → 0).

Use the Landau–Zener formalism describing level crossing in ordinary
quantum mechanics to derive the Parke formula for the survival probability
that a later measurement (after resonance crossing) at time t also measures the
neutrino to be electron-like,

Pe (t) � 1
2
+

(
1
2
− PJ

)
cos 2θm(t0) cos 2θm(t),

once averaged over quickly oscillating factors. Here,

PJ := exp

[
− π

2

(
sin2 2θv
cos 2θv

) (
δm2 h

2k

)]
,
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is the ‘jump’ probability for making a non-adiabatic transition when passing
through the resonance regime. Use this result to show that the survival proba-
bility after passage through the Sun can be written Pe � sin2 θv + PJ cos 2θv
for resonant oscillations, which can be very small for adiabatic transitions (for
which PJ = 0).

Problem 16.4 Consider a medium in local equilibrium, divided into cells of volume
Ω� := �3 that are small enough that thermodynamic quantities are effectively
constant within any one cell, but large enough that fluctuations away from the
thermodynamic limit are small. Because particles can move from one cell to
another, each such cell can be regarded as being described by a grand canonical
ensemble.

Prove that for a grand canonical ensemble the thermal fluctuation in the total
number of particles in any one cell is given by

〈〈 δNδN 〉〉 = TΩ�

(
∂2p

∂μ2

)
TΩ�

=
κT N

2
T

Ω�

where N := 〈〈 N 〉〉 is the mean number of particles in the cell, p is the pressure,
μ is the chemical potential, T is the temperature and26

κT :=
1

n̄ (∂p/∂n̄)T

,

is the isothermal compressibility, with n̄ := N/Ω� .
Assuming each cell to be uncorrelated with the others, for distances much

larger than � the density-density autocorrelation function for such a fluid
becomes approximately local: 〈〈 δn(x)δn(y) 〉〉 = 〈〈 δn(x)δn(x) 〉〉 Ω�δ3(x−y). Use
this to show that

〈〈 δn(x)δn(y) 〉〉 = κTn̄2T δ3(x − y).

Evaluate this last expression for an ideal gas (for which the equation of state is
p = n̄T) and show that in this case it implies that Eq. (16.125) evaluates to

G(k − k′) = n̄,

in agreement with (16.128).
Problem 16.5 Unitarity – in the form of Eq. (16.57) – provides another handle on the

size of scattering by fluctuations, and directly yields the net loss of mean-field
evolution in terms of the imaginary part of the mean-field Hamiltonian. Show
that for Thomson scattering in environments for which the correlation times,
τ, and correlation distances, �, are small

〈〈 δn(x, t)δn(y, s) 〉〉 � τΩ� 〈〈 δn(x, t)δn(x, t) 〉〉 δ3(x − y)δ(t − s)

the net transfer of probability from mean-field to ‘diffuse’ scattering at second
order is given by (16.57), in the form

∂t tr
A

(ρf
A) �

e4
q

8m2

∫
d3x τΩ� tr

A

[
�AA4(x, t)

]
〈〈 δn(x, t)δn(x, t) 〉〉,

26 Recall that fundamental units are used, for which Boltzmann’s constant is kB = 1.
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again showing how it is the medium’s density fluctuations that control this
scattering rate. Evaluate this expression for Thomson scattering of individual
photons from a dilute medium and verify that it reproduces the extinction
coefficient given in (16.130).

Problem 16.6 Consider a dielectric medium in local equilibrium, divided into cells of
volume Ω� := �3 that are small enough that thermodynamic quantities are
effectively constant within any one cell, but large enough that fluctuations
away from the thermodynamic limit are small. Imagine that the dielectric
permittivity varies from cell to cell, such as would occur if some cells were
droplets full of water while others were full of air.

Imagine the interaction-picture interaction Hamiltonian for photons in such
a medium is

δV (t) = −1
2

∫
d3x δε(x) E2(x, t),

where δε(x) is taken to be a gaussian random variable from cell to cell, with
translationally invariant mean ε̄ and variance σ2

ε, where

〈〈 δε(x)δε(y) 〉〉 = Ω� 〈〈 δε(x)δε(x) 〉〉 δ3(x − y) = σ2
ε δ

3(x − y).

Compute the scattering rate per unit volume for individual photons –
i.e. fA(k′) � 1 – as a function of � and σ2

ε, and show that it predicts an
extinction coefficient of the Rayleigh-scattering form

h � ω4

6π
σ2
ε.

For media where fluctuations in ε arise from thermal fluctuations use

δε =

(
∂ε
∂n

)
T

δn +

(
∂ε
∂T

)
n

δT ,

to relate σ2
ε to 〈〈 δT2 〉〉 and 〈〈 δn2 〉〉 . Compute these fluctuations as functions of

thermodynamic variables – and show 〈〈 δTδn 〉〉 = 0 – and use these to derive
Einstein’s 1910 formula [461]

h =
ω4

6π

⎡⎢⎢⎢⎢⎣n̄ T

(
∂n̄
∂p

)
T

(
∂ε

∂n

)2

T

+
T2

ncV

(
∂ε

∂T

)2

n

⎤⎥⎥⎥⎥⎦ ,

where cV is the heat capacity. This expression shows that photon scattering
can become very large near a critical point (a phenomenon called critical
opalescence), where the isothermal compressibility (∂n̄/∂p)T can grow with-
out bound.

Specialize your result to media for which (∂ε/∂T )n � 0 and for which ε− 1
is proportional to particle density n̄ to derive n̄ (∂ε/∂n̄)T � ε − 1 � 2(nm − 1),
where nm =

√
ε is the medium’s index of refraction. Hence, derive Rayleigh’s

original 1881 formula [462]

h � 2ω4

3πn̄
(nm − 1)2 .

Show that this agrees with h � n̄ σR, where σR is the Rayleigh cross section of
(12.95), after using (16.91) in the form nm � 1 + 1

2 n̄pE.
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Problem 16.7 This exercise works through the transition from Nakajima–Zwanzig
equation to Lindblad equation for the simple system defined by Eqs. (16.154)
through (16.153). Without using the explicit form of HB show that when the
scalar field is chosen to be in a thermal state its correlation functions satisfy
the KMS condition (16.159). Compute the form of W (τ) explicitly and show
that

W (τ) =
m

4iπβ
1[

sinh(πτ/β) − iε
] K1

(
βmi
π

[
sinh(πτ/β) − iε

] )
where K1(z) is a Bessel function. Use this to derive the m → 0 limit given in
(16.160).

Derive the second-order Nakajima–Zwanzig equation for this system and
show that it is given by (16.162). Show that in the late-time limit your result
goes over the Markovian form (16.164), doing so keeping a nonzero scalar-
field mass, m. Verify that your expressions go over to Eqs. (16.164) through
(16.168) in the massless limit.

Problem 16.8 Repeat Exercise 16.7 but this time choose the two-level atom to move
along a uniformly accelerated world-line within Minkowski space. Choose
the field to be prepared in the standard Minkowski vacuum for a free scalar
field. This system describes the response of an accelerating ‘Unruh detector’
[463, 464].

Prove that all of the results of Exercise 16.7 go through for this system with
the replacement T = 1/β → a/2π, where a is the atom’s proper acceleration
(for details of this calculation using the formalism described here see [457]).
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Adieu

This chapter also brings this book to a close. The book starts in Part I by exploring
a variety of low-energy issues, and using these to develop the tools of Wilsonian
effective field theory using a particular simple toy model as the vehicle for doing so.
The remaining parts of the book apply and extend these principles to a wider class
of examples, with the goal of underlining how the same tools are so widely used by
so many areas of physics.

Part II starts off this process using examples of EFT reasoning in traditional
relativistic systems, such as to low-energy QED, QCD, the Standard Model and
General Relativity. The first of these examples is one where the underlying UV theory
is completely known and calculable. For such systems EFT methods provide an
efficient way to organize and simplify calculations that could have been done in other
ways. The second example is a system where the UV theory is known but strongly
interacting, making it not known how to explicitly compute many things from first
principles. The utility of this example is that it shows that such complications need
not obstruct the use of EFT methods, which are indeed very successful in describing
low-energy hadron phenomenology. The last two examples are to theories whose
UV completion is not known, and so for which EFT methods help identify the
kinds of physics that might be expected to arise at low energies for a broad class
of completions.

Part III extends the discussion to nonrelativistic systems, which are often the ones
of most practical interest in many real-world applications. This part of the book
explores how the nonrelativistic expansion in powers of v/c can be regarded as a low-
energy limit, and how nonrelativistic Schrödinger effective theories can emerge once
antiparticles are integrated out without also doing so for their particle partners. Much
of this section is devoted to applications in atomic physics, both using a second-
quantized framework and a first-quantized one (for which matching to bulk degrees
of freedom can be regarded as the imposition of boundary conditions on the bulk
fields).

The book closes out, with Part IV, describing new issues that arise for many-
body applications, for which one almost never follows all of the low-energy degrees
of freedom. For some questions – such as Goldstone boson dynamics or electrons
moving near the Fermi surface – this need not matter, and ordinary effective
lagrangians can be found that capture aspects of the collective behaviour of the more
complicated underlying many-body system. But for other questions the choice to
neglect some low-energy modes can be crucial, leading to qualitatively new non-
Hamiltonian phenomena like decoherence and thermalization.

As these diverse examples show, the power of low-energy, late-time methods is in
the ubiquity of the arguments used. As such, they provide a unifying thread that is
deeply woven into the rich tapestry of physics.



A Appendix A Conventions and Units

Conventions and units should be one’s friend in physics, in that they should both
make an analysis more transparent and they should nudge people away from, rather
than towards, common mistakes. They are also often acquired without much thought
as one grows up.

This section is meant to explain the ones used in this book. The focus here is to
list conventional choices for aficionados, with little effort made explaining the field
theories involved. A reader seeking more detailed (though still cursory) background
information should try their luck with Appendix B (for the quantum mechanics of
scattering) and Appendix C (for quantum field theory).

A.1 Fundamental Units

It is common to use specific units adapted to specific problems so that numerical
values are not too far from one (such as using the Angstrom – or Rydberg – for
atomic electrons, fm for nuclear processes, astronomical units for the solar system
or megaparsecs in cosmology). Such choices are mostly not made here, since one of
the points of this book is to emphasize the broad utility of EFT methods in many
different areas in physics.

Instead, this book uses fundamental units, for which the fundamental constants �,
c and kB (Planck’s constant, the speed of light and Boltzmann’s constant) equal 1. For
instance, c = 1 is ensured by measuring time and distances both in seconds (where
a second of distance means a light-second; the distance light travels in a second).
Similarly, � = 1 if (energy)−1 and time are both measured in seconds – where
an inverse-second of energy means the amount �/(1sec) = 6.58211 × 10−16 eV –
and so on.

In this book usually the basic unit is taken to be energy, given in eV or multiples
thereof. The utility of this choice is that the proton and neutron rest masses in these
units are (respectively) 0.938 GeV and 0.940 GeV (which is to say, the energy tied
up in the rest mass of a nucleon is just shy of 1 GeV). This is useful because once
told that the mass of the earth is M⊕ � 3.35 × 1051 GeV you also know roughly
how many nucleons are in it, since the biggest contributor to an object’s mass usually
comes from the mass of each nucleon residing in its constituent nuclei.

Fundamental units have the very useful benefit of boiling equations down to
relations between physical quantities without cluttering them up with symbols purely
to do with units. This is a particularly good virtue when identifying which scales
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are relevant to any given problem, as is central to the utility of EFT methods.
Electromagnetic units are set by using the proton charge e as the unit of charge rather
than the Coulomb.

Ordinary units may always be retrieved by putting in any missing factors of �, c or
kB as required by dimensional analysis. Useful rules of thumb for this purpose are:

1 fm � (0.2 GeV)−1 � 3 × 10−24 sec and 1 K � 9 × 10−5 eV. (A.1)

The conversions of other units into powers of eV and to powers of metres are given
below.

Length and Time

1/Mp (= GN/�c)
1
2 = 8.1897 × 10−29 c2/eV = 1.6161 × 10−35 mc/�

1/mp = 1.0658 × 10−9 c2/eV = 2.1031 × 10−16 mc/�
1 fm = 5.06773 × 10−9

�c/eV = 10−15 m
1/me = 1.957 × 10−6 c2/eV = 3.8616 × 10−13 mc/�
a0 (= 1/αme) = 2.6818 × 10−4 c2/eV = 5.2918 × 10−11 mc/�
1 A = 5.06773 × 10−4

�c/eV = 10−10 m
1 nm = 5.06773 × 10−3

�c/eV = 10−9 m
1 μm = 5.06773 �c/eV = 10−6 m
1 cm = 5.06773 × 104

�c/eV = 0.01 m
1 m = 5.06773 × 106

�c/eV = 1 m
1 km = 5.06773 × 109

�c/eV = 103 m
1 sec = 1.51927 × 1015

�/eV = 2.99792 × 108 m/c
1 min = 9.11562 × 1016

�/eV = 1.79875 × 1010 m/c
1 hr = 5.46937 × 1018

�/eV = 1.07925 × 1012 m/c
1 day = 1.31265 × 1020

�/eV = 2.59020 × 1013 m/c
1 yr = 4.795 × 1022

�/eV = 9.461 × 1015 m/c
1 pc = 1.564 × 1023

�c/eV = 3.08568 × 1016 m
1 kpc = 1.564 × 1026

�c/eV = 3.08568 × 1019 m
1 Mpc = 1.564 × 1029

�c/eV = 3.08568 × 1022 m

Microscopic Energy and Mass

1 eV = 10−9 GeV = 5.06773 × 106
�c/m

1 keV = 10−6 GeV = 5.06773 × 109
�c/m

1 MeV = 10−3 GeV = 5.06773 × 1012
�c/m

1 GeV = 1 GeV = 5.06773 × 1015
�c/m

αme = 3.7289 × 10−6 GeV/c2 = 1.8897 × 1010
�/mc

me = 5.10999 × 10−4 GeV/c2 = 2.5896 × 1012
�/mc

= 9.10939 × 10−28 g
mp = 0.938272 GeV/c2 = 4.75491 × 1015

�/mc
= 1.67262 × 10−24 g
= 1.83615 × 103 me



516 Conventions and Units

Mp = (�c/GN)
1
2 = 1.22105 × 1019 GeV/c2 = 6.1879 × 1034

�/mc
= 2.17671 × 10−5 g
= 1.30138 × 1019 mp

M̂p = (�c/8πGN)
1
2 = 2.43564 × 1018 GeV/c2 = 1.23431 × 1034

�/mc
= 4.34191 × 10−6 g
= 2.59588 × 1018 mp

Ordinary Units Expressed Microscopically

1 g = 5.60959 × 1023 GeV/c2 = 2.84279 × 1039
�/mc

1 kg = 5.60959 × 1026 GeV/c2 = 2.84279 × 1042
�/mc

1 Joule = 1 kg m2/s2 = 6.24151 × 109 GeV = 3.16303 × 1025
�c/m

1 erg = 1 g cm2/s2 = 6.24151 × 102 GeV = 3.16303 × 1018
�c/m

= 10−7 J
1 Newton = 1 kg m/s2 = 1.23162 × 10−6 GeV2/�c = 3.16303 × 1025

�c/m2

= 1.23162 × 1012 eV2/�c
1 dyne = 1 g cm/s2 = 1.23162 × 10−11 GeV2/�c = 3.16303 × 1020

�c/m2

= 10−5 N = 1.23162 × 107 eV2/�c
1 Watt = 1 J/s = 4.10824 × 10−15 GeV2/� = 1.05507 × 1017

�c2/m2

= 4.10824 × 103 eV2/�

1 Hz = 1/s = 6.5821 × 10−25 GeV/� = 3.3356 × 10−9 c/m
1 Kelvin = 8.61742 × 10−14 GeV/kB = 4.36707 × 102

�c/mkB

= 8.61742 × 10−5 eV/kB = 1/11604.4 eV/kB

Electromagnetic Units

1 Coulomb = 6.24151 × 1018 e
1 Volt = 1 J/C = 1 eV/e = 5.06773 × 106

�c/me
= 10−9 GeV/e

1 Farad = 1 C/V = 6.24151 × 1018 e2/eV = 1.23162 × 1012 me2/�c
1 Ampere = 1 C/s = 4.10824 × 103 eVe/� = 2.08194 × 1010 ec/m
1 Ohm = 1 V/A = 2.43413 × 10−4

�/e2

1 Mho = 1/Ohm = 4.10824 × 103 e2/�

1 Weber = 1 V s = 1.51927 × 1015
�/e

1 Tesla = 1 Weber/m2 = 59.1572 eV2/�ec2 = 1.51927 × 1015
�/em2

1 Gauss = 10−4 Tesla = 5.91572 × 10−3 eV2/�ec2 = 1.51927 × 1011
�/em2

φ0 = 2π�/e = 6.28319 �/e = 4.13567 × 10−15 Weber
= 1/(2.418 × 1014 ) Weber

ε0 = 8.854 × 10−12 F/m = 10.905 e2/�c
μ0 = 4π × 10−7 N/A2 = 0.0917012 �/ce2 ε0μ0 = 1/c2

α = e2/(4πε0�c) = 7.2974 × 10−3 1/α = 137.036

In these tables me denotes the electron mass, mp is the proton mass and α is the
electromagnetic fine-structure constant (evaluated at low energies, μ ∼ me).
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A.2 Conventions

Like religion and politics, conventions are a subject normally avoided in polite
company for fear of provoking strong words or fisticuffs. Any practising physicist
should usually adopt a set of conventions and stick to them, and (as is the case for
many) the ones used here are largely the ones I learned as a student. (Because of
this they usually agree with those used in Steven Weinberg’s many textbooks.) This
section explains my rationale for the main choices made.

A.2.1 Geometrical Conventions

The conventions for vectors are such that Greek indices represent spacetime coor-
dinates in 3+1 dimensions, with xμ = {x0, x1, x2, x3} = {t, x, y, z} a contravariant
vector built from Cartesian coordinates. Spatial indices are denoted by latin letters,
such as xa = {x, y, z} or xi = {x, y, z}, with letters chosen early or later in the
alphabet in a way that distinguishes them from any other indices present (such as
those describing internal symmetries, or spacetime spinors, etc.).

The Einstein summation convention is used throughout the book, unless explicitly
stated otherwise. In this convention any repeated appearance of an index represents a
summation of that index over its entire range. So aμaμ = a0a0 + a1a1 + a2a2 + a3a3

while aiai = a1a1 + a2a2 + a3a3, and so on.

Metric Conventions

The spacetime metric is denoted gμν (x) and defines the invariant line-element
by ds2 = gμν (x) dxμ dxν , that gives the square of the distance ds between two
infinitesimally separated points: xμ and xμ + dxμ. The signature of the metric is
(− + ++), so the Minkowski metric that describes the flat space of special relativity
in Cartesian coordinates is given explicitly by

ds2 = ημν dxμ dxν = −dt2 + δi j dxi dx j = −dt2 + dx2 + dy2 + dz2. (A.2)

This is one of the choices that generates the most heat when discussed, since half
the world learns this choice (often called the ‘east-coast’ or ‘mostly plus’ or ‘right’
metric) while the other half adopts the opposite sign for ημν (called the ‘west-coast’
or ‘mostly minus’ or ‘wrong’ metric). Normally, much heat (and not much light)
is spent on whether it is more sensible for time intervals or space intervals to be
negative. With (A.2) time-like vectors have negative length, while vectors in the three
space-like directions have positive length.

A more compelling reason for using the convention (A.2) comes once Wick
rotations are made to Euclidean space, such as is often done when discussing thermal
systems (for which temperature can often be conveniently regarded as periodicity in
imaginary time – see e.g. §A.2.2). In this case, τ = it and so dt2 = −dτ2. With the
above choice the metric becomes positive definite, as do the lengths of all vectors,
like a2 := ημν aμaν . With the ‘mostly-minus’ metric convention all such squares
become negative when Euclideanized (and when quantities like a2 are negative it
can be a nightmare finding sign mistakes). As mentioned earlier, your conventions
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should be your friend, and should nudge you towards making fewer errors rather than
more errors.

Since notation is part of language, part of the thinking behind metric conventions
is also the practice of the community with which one wishes to communicate.
Broadly speaking, most relativists, cosmologists and string theorists use the (−+++)
metric used here, while particle physicists are more split, though with a majority of
phenomenologists using mostly-minus conventions.

With the above metric choice the action for scalars and gauge bosons (see
Appendix B) have negative coefficients, since this is required to have positive kinetic
energies. That is

L = −1
2
ημν∂μφ ∂νφ =

1
2
[
(∂tφ)2 − (∇φ)2

]
(A.3)

while

L = −1
4

FμνFμν =
1
2
(
E2 − B2

)
. (A.4)

Curvature Conventions

A natural convention is to define the curvature so that the same sign also applies
to the action for the metric in General relativity, which is given – see, for example,
(10.1) – by

L
√−g

= − R
16πGN

. (A.5)

This is ensured if one adopts the curvature conventions R := gμνRμν with Ricci
tensor defined by Rμν := Rλμλν and Riemann curvature tensor given by

Rμνλρ = ∂ρΓ
μ
νλ + Γ

μ
ρσΓ

σ
νλ − (ρ ↔ λ). (A.6)

Here,

Γ
μ
νλ =

1
2
gμα[∂νgαλ + ∂λgαν − ∂αgνλ] (A.7)

is the Christoffel symbol (of the second kind) built from derivatives of the metric,
and its inverse gμν defined by gμνgνλ = δ

μ
λ.

The above definitions are the same as used in the well-known book [397], and
are also almost the same as a very popular choice (often called the ‘MTW’ – or
‘geometrical’ – choice, with MTW representing the authors Misner, Thorne and
Wheeler, of an influential relativity textbook [396]). ‘Almost the same’ here means
the only difference relative to MTW conventions is the overall sign of the definition
(A.6). The motivation for the MTW choice is that it gives a positive curvature for
spheres in euclidean space (and negative curvatures to hyperbolae), though at the
expense of introducing an unusual gravity-specific sign in the action.

Levi-Civita Conventions

Finally, another useful geometrical tensor (in four spacetime dimensions) is the four-
index Levi–Civita completely antisymmetric tensor εμνλρ. In flat space this is defined
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to be completely antisymmetric under the interchange of any two indices (and so to
vanish whenever two indices take the same values); to have elements ±1 when all
indices are different. The convention used here takes ε0123 = +1 and then all other
components are dictated by the antisymmetry condition.

On curved space it is worth working with a vierbein (or tetrad): defined as a
basis of four vector fields, eaμ (x), with a = 0, 1, 2, 3. The basis is chosen to be
orthonormal and complete in the sense that

gμνeaμebν = η
ab and ηab eaμebν = gμν , (A.8)

with the Einstein summation convention in full force, and where ηab is the signature-
(− + ++) Minkowski tensor, and gμν is the inverse of the spacetime metric gμν , so
gμνgνλ = δ

μ
λ. Evidently, the matrix eaμ is morally the square root of the metric gμν .

The above orthogonality and completeness relations allow the definition of the
inverse eaμ, defined to satisfy eaμebμ = δba and eaμeaν = δ

μ
ν . Any tensor can

then be described by its world-index components, like Tμν , or its tangent-frame
components, like Tab = eaμebνTμν , and so on. The basis vectors in the vierbein are
not unique, with the freedom to do local Lorentz transformations, eaμ → Λa

bebμ,
where the position-dependent matrices Λa

b satisfy the Lorentz-group definition:
ηacΛa

bΛ
c
d = ηbd . These definitions ensure it is consistent to raise and lower indices

with either ηab or gμν (or their inverses) in arbitrary order, so T ab = eaμebνTμν =

ηacηbdTcd and so on.
With these definitions in mind the Minkowski flat-space conventions for the Levi–

Civita tensor apply to the tangent-frame components. That is, εabcd = +1 when
a = 0, b = 1, c = 2 and d = 3, and so εabcd = −1 for the same choices for a, b, c
and d. The value for all other choices of indices is then determined by complete
antisymmetry under permutations of any pair of indices. With this choice then the
world-index versions are defined by

ε μνλρ := ea
μeb

νec
λed

ρεabcd , (A.9)

and the also completely antisymmetric

ε μνλρ := eaμebνecλedρεabcd = gμαgνβgλσgρζε
αβσζ, (A.10)

which satisfy ε μνλρ = det[eaμ] = det1/2[−gμν] = det−1/2[−gμν] when μ = 0, ν = 1,
λ = 2 and ρ = 3. It is conventional to introduce the notation g := det[gμν], which
is negative given the Lorentzian signature shared by gμν and ηab . In terms of this
εμνλρ = − det[eaμ] = −√−g when μ = 0, ν = 1, λ = 2 and ρ = 3, with all other
entries defined by antisymmetry.

As Eq. (A.9) makes clear, the quantity ε μνλρ transforms as a rank-4 contravariant
tensor under coordinate transformations (or diffeomorphisms) and is invariant under
local Lorentz transformations, since the tangent-frame quantity εabcd transforms as
a scalar under diffeomorphisms (and is a rank-4 contravariant tensor under local
Lorentz transformations). One sometimes encounters in the literature (but never else-
where in this book) a related tensor, ε μνλρ :=

√−g ε μνλρ whose components equal
±1 when all indices are different (or its covariant version ε μνλρ := ε μνλρ/

√−g),
whose nonzero components are also ±1. Although these quantities have simple
components, they transform differently under diffeomorphisms, transforming as a
tensor density (of weight ± 1

2 ) due to the additional factor of
√−g that is present.
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Useful identities use the fact that two Levi–Civitas make a metric, since both are
invariant tensors under proper Lorentz transformations (more about which below)
while Levi–Civita changes sign under parity and time-reversal (and the metric does
not). More precisely,

εμνλρε
αβσζ = −δαμ δ

β
ν δ

σ
λ δ

ζ
ρ ± (23 other permutations of α, β, σ and ζ)

εμνλρε
αβσρ = −(δαμ δ

β
ν δ

σ
λ + δ

β
μ δ

σ
ν δ

α
λ + δ

σ
μ δ

α
ν δ

β
λ − δ

β
μ δ

α
ν δ

σ
λ − δ

σ
μ δ

β
ν δ

α
λ − δ

α
μ δ

σ
ν δ

β
λ)

εμνλρε
αβλρ = −2(δαμ δ

β
ν − δ

β
μ δ

α
ν ) (A.11)

εμνλρε
ανλρ = −3! δαμ

εμνλρε
μνλρ = −4! .

The right-hand sides of these identities are the most general possible tensors built
only out of the Kronecker delta and the metric with the same symmetries as the left-
hand side. The numerical coefficients are most easily determined by evaluating both
sides using explicit values for the open indices.

A.2.2 Finite Temperature and Euclidean Signature

It is often useful to work with a Euclidean-signature metric, for which all of the
eigenvalues of gμν are positive – also called the (+ + ++) metric. For instance, the
metric in rectangular coordinates for 4D flat Euclidean space is

ds2 = gmn dxm dxn = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2. (A.12)

One of the great virtues of using a (− + ++) metric in Lorentzian signature is that
the positive Euclidean metric is obtained simply by replacing x0 = t → −iτE,
where τE = x4 is the corresponding Euclidean coordinate. The choice of sign in
this transformation ensures that terms in the action transform as

exp

{
i
2

∫
dt d3x

[
(∂tφ)2 − (∇φ)2

]}
→ exp

{
−1

2

∫
dτEd3x

[
(∂τEφ)2 + (∇φ)2

]}
(A.13)

and so the oscillatory factor eiS(φ) in the path integral suppresses large gradients.
Equilibrium calculations at finite temperature provide a concrete situation where

Euclidean methods are particularly useful. They are useful because of the resem-
blance between the thermal density matrix, ρ ∝ e−βH = e−H/T , and the time-
evolution operator, U (t, 0) = exp[−iHt]. This resemblance makes it look as if a
thermal density matrix enters into calculations in the same way as would the time-
evolution operator for a shift in imaginary time through a distance Δt = −iΔτE = −i β
and so

exp
[
−iHΔt

]
= exp

[
−HΔτE

]
= exp

[
−βH

]
. (A.14)

Furthermore, in this language thermal averages, like the partition function

Z = Tr
[
e−βH

]
=

∑
N

〈
N ���e−βH ��� N〉

, (A.15)

correspond to an evolution of a state |N〉 through a time interval −iβ and then
identifying the state obtained with the initial state (and summing). This makes
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plausible (and can be turned into a proof) that thermal expectation values can be
rewritten in terms of field theories in a Euclidean-signature space for which the
Euclidean time direction is a circle with circumference β.

Once time becomes a circular direction, boundary conditions must be imposed on
the fields in this direction. Standard thermal behaviour is reproduced if integer-spin
bosons are chosen to be periodic, φ(τE+β) = φ(τE), and half-integral spin fermions
are chosen to be anti-periodic, ψ(τE + β) = −ψ(τE).

A.2.3 Dirac Conventions

For fermions the metric conventions drive related conventional choices for the Dirac
matrices, γμ, since essentially everyone agrees these should be defined to satisfy
the algebra {γμ, γν } = 2ημν (in Minkowski space). In curved spaces one instead
demands

{γa, γb } = 2ηab , (A.16)

in the tangent frame (defined by the tetrad eaμ of the previous section) and then
converts to world indices using γ μ := eaμ γa. With these definitions the world-index
Dirac matrices satisfy the generally covariant Clifford algebra

{γμ, γν } = 2gμν (A.17)

where gμν is the inverse metric.
In Minkowski space (or in the tangent frame of a curved space) the use of the

(− + ++) metric implies (γ0)2 = −1 while (γi)2 = +1 for i = x, y, z. Because this
makes γ0 imaginary (when diagonal) it is useful to define β := iγ0 so that β2 = 1.

A convenient choice of basis for the Dirac matrices (which diagonalizes γ5 =

−iγ0γ1γ2γ3) which satisfies (A.16) is given by

γ0 = −γ0 =

(
0 i
i 0

)
, γk =

(
0 −iσk

iσk 0

)
(A.18)

where σk are the usual 2 × 2 Pauli matrices for k = 1, 2, 3. In this basis

β =

(
0 I
I 0

)
and γ5 =

(
I 0
0 −I

)
, (A.19)

where I is the 2 × 2 unit matrix.
The Lorentz generators in this representation are given by Jμν = − i

4 [γμ, γν], and
so defining rotations, Jk , and boosts, Kk , by J0k = Kk and Ji j = εi jk Jk allows
these generators to be written explicitly as

Jk =
1
2

(
σk 0

0 σk

)
, Kk =

i
2

(
−σk 0

0 σk

)
. (A.20)

Because these are block-diagonal they show that [γ5,Jμν] = 0, and so the
4-dimensional spinor representation is reducible: the two 2-dimensional eigenspaces
of γ5 each furnish separate representations of the Lorentz group. Furthermore,
although these two representations agree on their representation of the Jk (both are
spin-half), their representations of theKk are conjugates of one another in the precise
sense that the Pauli-matrix identity σk = −σ2σ∗kσ2 implies
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Kk± = σ2K ∗
k∓ σ2, (A.21)

where the sign in the subscript denotes the eigenvalue of γ5.
Using this representation for Lorentz boosts allows explicit construction of the

spinors u(p, σ) and v(p, σ) appearing in the field expansion of (C.30), reproduced
again here:

Ψ(x) =
∑
σ=± 1

2

∫
d3p√

(2π)32Ep

[
u(p, σ) cpσ eip ·x + v(p, σ) c̄∗pσ e−ip ·x

]
, (A.22)

where Ep =
√

p2 + m2 and m is the particle mass.
These spinors satisfy1 (i

/
p + m)u = (i

/
p − m)v = 0, where as usual the slash

denotes contraction with a 4-vector, as in
/
p := pμγμ. In the rest frame . . .

u(p, σ) =
1
√

2

( √
Ep + m − σ · p̂

√
Ep − m 0

0
√

Ep + m + σ · p̂
√

Ep − m

) (
χ(σ)
χ(σ)

)
,

(A.23)

where p̂ = p/|p|. Here, χ(σ) is a 2-component spinor encoding the spin of the
particle in its rest frame. If defined as eigenstates of J3 these become

χ(σ = +1/2) =

(
1
0

)
and χ(σ = −1/2) =

(
0
1

)
. (A.24)

The spinor v is found by a similar exercise, or by the action of charge conjugation
(see below). A short calculation shows that these spinors satisfy the useful complete-
ness relations∑

σ=± 1
2

u(p, σ)u(p, σ) = −i
/
p + m and

∑
σ=± 1

2

v(p, σ)v(p, σ) = −i
/
p − m, (A.25)

whose right-hand sides reduce in the rest frame to m(β ± 1), projecting onto the
appropriate eigenspace of β, as expected.

Weyl and Majorana Spinors

There are two natural ways to reduce the 4-dimensional Dirac spinor to two
components in a Lorentz-invariant way. Since left-handed spinors satisfy γ5ψL = ψL

and right-handed spinors satisfy γ5ψR = −ψR a general Dirac spinor can be written
in this basis as

Ψ =

(
ψL

ψR

)
. (A.26)

The conditions ψR = 0 or ψL = 0 are clearly Lorentz-invariant. Dirac spinors
satisfying one of these conditions are called (left- or right-handed) Weyl spinors.

The other Lorentz-invariant way to constrain a Dirac spinor is to demand that ψR

be the complex conjugate of ψL – up to multiplication by σ2 as in condition (A.21).
A spinor satisfying this type of reality condition is called a Majorana spinor,

1 This follows purely from the consistency of the Poincaré transformation properties of Ψ and apσ , but
can equivalently be regarded as a consequence of the field equation (

/
∂ +m)Ψ = 0.
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ΨM =

(
ψL

−ε ψ∗L

)
= C Ψ∗M, (A.27)

where ε = iσ2 =

(
0 1
−1 0

)
is the real 2 × 2 antisymmetric matrix. The matrix C is

called the charge-conjugation matrix, and is given explicitly in this basis by

C =

(
0 ε
−ε 0

)
= −γ2. (A.28)

A final convention involves the definition of the Dirac conjugate, which here is
given by

Ψ := Ψ†β = iΨ†γ0. (A.29)

(Keep in mind the factor of i here when comparing with conventions using the
opposite signature for the metric.) When applied to Majorana spinors (A.27)
becomes

ΨM := Ψ†M β = ΨT
M Cβ = ΨT

M γ5ε, (A.30)

where the superscript ‘T’ denotes the transpose in spinor space, in the same way that
‘†’ denotes hermitian conjugation in this space. The matrix ε defined here is called
the time-reversal matrix, given explicitly in this basis by

ε =

(
ε 0
0 ε

)
, (A.31)

in terms of which C = γ5εβ.
The matrices β, ε and γ5 provide a very useful set inasmuch as they characterize a

spinor’s transformation properties under parity, time-reversal and charge conjugation
(more about the definition of these is given in §C.4.3). Chasing through the
definitions shows that these symmetries get realized on Dirac spinors as follows:

P Ψ(x) P−1 = ηp βΨ(xP)

C Ψ(x) C−1 = ηc C Ψ∗(x) (A.32)

T Ψ(x) T −1 = ηt εΨ(xT),

where ηp, ηc and ηt are arbitrary phases while x
μ
P := Pμνxν and x

μ
T := Tμ

ν xν are
the parity and time-reversal transforms of the point xμ (with the matrices Pμν and
Tμ

ν defined in Eq. (C.64)). In particular, an individual Majorana spinor represents a
spin-half particle that is its own antiparticle (in much the same way that a real scalar
represents a spin-zero particle that is its own antiparticle).

Spinor Bilinears

Since local lagrangian densities are scalars they are built from combinations of
fermion bilinears of the form Ψ1 MΨ2 for two fields Ψ1 and Ψ2. It is useful to expand
the arbitrary 4 × 4 matrix M in terms of a standard basis that transforms covariantly
under Lorentz transformations. This basis is conveniently chosen to be the sixteen
matrices

1 , γ5 , γμ , γ5γ
μ and γμν =

1
2
[
γμ, γν

]
. (A.33)
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Table A.1 The signs appearing in (A.34) and (A.35) for M one
of the basis (A.33) of Dirac matrices

1 γμ γμν γ5γμ γ5

ξ − − + + −
ζ + − − − −
η + − + − +

ξζ − + − − +

λ + − − + +

χ + + + − −

These satisfy useful symmetry and hermiticity relations together with the parity and
time-reversal matrices β and ε. In addition to γ5 = γT

5 = γ†5 , β = βT = β† and
−ε = ε† = ε−1 = εT, one has the identities

MT = ξ(εMε) , M† = ζ(βMβ) M∗ = ξζ(εβMεβ) and M = η(γ5 Mγ5),
(A.34)

with the signs ξ, ζ and η given for each member of the basis (A.33) in Table A.1.
These identities are useful in that they dictate the reality and symmetry properties

of bilinears built from Majorana fermions. That is, ifΨ1 andΨ2 both satisfy condition
(A.27), then

Ψ1 MΨ2 = λ(Ψ2 MΨ1) and Ψ1 MΨ2 = χ(Ψ1 MΨ2)∗, (A.35)

with signs λ and χ also given in Table A.1.

Standard-Model Fermions

It is often useful to use real fields when writing down the most general effective
couplings, and for spin-half fields this means using Majorana spinors. This section
develops the notation for writing a generation of Standard Model fermions in terms
of Majorana spinors, following [194].

The types of spin-half 2-component Weyl fermions in a Standard Model genera-
tion are (

uL

dL

)
,

(
νL

eL

)
, uR, dR, eR. (A.36)

A 4-component Majorana field for each right-handed particle is then defined by

γRU = uR , γR D = dR and γRE = eR. (A.37)

The left-handed components of these spinors are simply given by the conjugate fields,
so

γLU = uc
L = ε u∗R , γL D = dc

L = ε d∗R and γLE = ecL = ε e∗R , (A.38)

with the matrix ε defined below Eq. (A.27).
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The same construction applies to the SUL(2) doublets, starting with the definitions

γLQ =

(
uL

dL

)
and γL L =

(
νL

eL

)
, (A.39)

and so the right-handed components become

γRQ =

(
uc

R

dc
R

)
and γR L =

(
νcR
ecR

)
, (A.40)

where dc
R = −ε d∗L and so on.

A.2.4 Dimensional Regularization

Dimensional regularization is usually the regularization of choice for practical calcu-
lations, both because of its comparative simplicity and because it treats symmetries
relatively benignly. This section collects some of the useful formulae associated with
this regularization used in the main text.

The fundamental formula used in the main text involves a single loop integral of
the form

J (q) :=
∫

d4p

(2π)4

[
(p2)A

(p2 + q2)B

]
, (A.41)

where p2 = pμpμ and q2 is a Lorentz-invariant function of qμqμ, and possible low-
energy masses. The squares of all 4-momenta are taken in Lorentzian signature, so
J (q) is a Lorentz-invariant function of qμ. At face value, this integral diverges in the
ultraviolet for 2A + 4 ≥ 2B, and the goal is to define the integral so as to be able
sensibly to evaluate physical quantities before the divergence is ultimately eliminated
by absorbing it into the value of a bare parameter when renormalizing.

The denominator of the integrand usually has an implicit iε factor that tells how
to navigate around any poles in the energy integrations, and the result is the same
as what is obtained from Wick rotating the energy to imaginary values, using2

p0 = ip4, so pμpμ = −(p0)2 + p2 = (p4)2 + p2 ≥ 0, while d4p = id4pE, where
d4pE := dp4d3p is the Euclidean integration measure. The rotation occurs because p4

is integrated through real values rather than imaginary ones. Once this is done, the
angular integration over the direction of pm can be done by inspection, leaving only
a divergent one-dimensional integral to be regularized.

The idea of dimensional regularization is to consider the same expression in D
dimensions,

ID(q) :=
∫

dDpE

(2π)D

[
p2A

(p2 + q2)B

]
, (A.42)

with the desired answer formally obtained by J = limD→4 iID. The virtue of
introducing D as a variable is that the integral converges in the ultraviolet for
D < 2(B − A), with the finite result obtained by explicit integration being

2 The sign here is chosen by the requirement that the rotation from the real to the imaginary axis avoids

the poles at p0 =
√

p2 +m2 − iε.
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ID(q) =

[
SD−1

2(2π)D

] (
q2

)A−B+D/2
∫ ∞

0
dx

[
xA+(D−2)/2

(x + 1)B

]
=

⎡⎢⎢⎢⎢⎢⎣
πD/2

(2π)DΓ
(
D
2

) ⎤⎥⎥⎥⎥⎥⎦
Γ
(
A + D

2

)
Γ
(
B − A − D

2

)
Γ(B)

(
q2

)A−B+D/2
, (A.43)

where Sn is the area of the n-dimensional unit sphere and Γ(z) is Euler’s Gamma
function, defined by analytically continuing the defining relation Γ(z + 1) = z Γ(z)
to the complex plane.

The last equality here extends the definition of ID to any complex D except for
the poles of Γ

(
A + D

2

)
Γ
(
B − A − D

2

)
, which occur whenever the argument of a

Γ-function is a non-positive integer (and so includes the case of real interest where
D = 4). The regularization is performed by evaluating the result at D = 4 − 2ε
for 0 < ε � 1, with the limit ε → 0 taken after renormalization has removed the
divergence. The incipient divergence in this limit appears as a pole, arising from
asymptotic formulae for the Gamma function like

Γ[ε] =
1
ε
− γ + O(ε), (A.44)

where the Euler–Mascheroni constant, γ, is defined by the limit

γ := lim
n→∞

⎡⎢⎢⎢⎢⎣
n∑

k=1

1
k
− ln n

⎤⎥⎥⎥⎥⎦ � 0.577215664901532860606512090082402431042 . . . .

(A.45)

Poles near negative integers are found by repeatedly using Γ(z + 1) = z Γ(z). For
instance, choosing z = −1 + ε implies that

Γ[−1 + ε] =
Γ[ε]
−1 + ε

� −1
ε
+ (γ − 1) + O(ε), (A.46)

and so on.

Renormalization Schemes

The pole in this expression expresses the divergence that the integral possesses when
D = 4, which (if ultraviolet3 in origin) is usually absorbed into the renormalization
of a bare coupling. This is possible because the full expression for a physical quantity
depends on both this bare coupling and the loop integral. Although it is unambiguous
to say that the bare coupling cancels the divergent part of a loop integral, there is an
ambiguity associated with how much of the finite parts of a loop are also subtracted in
the same way. A precise statement about how much of the finite part to absorb when
cancelling divergences defines what is called the renormalization ‘scheme’. There
is nothing unique about any scheme, with different choices simply corresponding to
different ways for precisely defining the meaning of the coupling in question.

To see how this works in practice, consider the divergences associated with the
vacuum polarization of the electromagnetic field. In quantum electrodynamics the

3 Poles as D → 4 can also arise due to infra-red divergences, and these should not be renormalized (as
may be seen from the discussion following Eq. (12.19) in the main text).
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Fourier transform of the propagator, 〈T Aμ (x)Aν (y)〉, for non-interacting photons is
(in a Lorentz-covariant gauge)

Δ
(0)
μν (p) =

1
p2 − iε

[
ημν + CA

pμpν
p2

]
, (A.47)

where ε is a small positive infinitesimal (not the ε from D = 4 − 2ε) and CA is a
quantity whose precise value depends on the gauge being used (e.g. with CA = 0
in Feynman gauge or CA = −1 in Landau gauge). The precise form of CA is not
important since it does not appear in any physical predictions. This propagator has a
pole at p2 = 0 that defines the photon’s energy-momentum dispersion relation: εp =
p0 = |p|. The freedom to rescale fields, Aμ → λAμ, is used when writing (A.47) to
ensure the ημν term has unit residue at this pole (this is an automatic consequence of
canonical normalization).

Once interactions are included, the propagator does not remain as simple as in
(A.47), but it turns out that Lorentz-covariance and gauge invariance require that its
most general form must be

Δμν (p) =
1

(p2 − iε)[1 − Π(p2)]

[
ημν − Π(p2)

pμpν
p2

]
+ CA

pμpν
p2

=
ημν

(p2 − iε)[1 − Π(p2)]
+ C̃A

pμpν
p2 , (A.48)

where the function, Π(p2), is known as the vacuum polarization (and the second
line defines the quantity C̃A, whose gauge-dependent value still does not matter for
physical predictions).

AlthoughΠ(p2) vanishes for non-interacting photons, it is nonzero once couplings
to charged particles are included. If Π(p2) were also to have a pole at p2 = 0, such
as if Π(p2) = A/p2 + B + · · · , then the propagator’s pole gets moved to p2 = A
(which, provided A is negative, would imply that the interactions give the photon a
nonzero mass). So long as Π(p2) is less singular than this near p2 = 0 the pole in
Δμν survives, indicating that no mass gets developed.

In quantum electrodynamics (QED) – the theory of interacting electrons and
photons – Π(p2) is obtained by evaluating 1-particle irreducible graphs with two
external photon legs (see Fig. 7.4). The absence of reducible photon lines in these
graphs precludes them from introducing a pole, and this ensures that loops of virtual
electrons do not shift the photon mass. The one-loop vacuum polarization graph with
an electron in the loop contributes

Π(p2)1−loop

= − 8e2

(4π)D/2 Γ

(
2 − D

2

) ∫ 1

0
du u(1 − u)

[
m2 + p2u(1 − u)

μ2

] (D−4)/2

(A.49)

=
e2

2π2

∫ 1

0
du u(1 − u)

{
1

(D/2) − 2
+ γ + ln

[
m2 + p2u(1 − u)

4πμ2

]
+ O(D − 4)

}
,

once regularized in dimensional regularization. Here, −e is the electron charge and m
is the electron mass, and μ is an arbitrary scale introduced by replacing e2 → e2 μ4−D

so that e remains dimensionless in D spacetime dimensions.
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Although this expression has no pole at p2 = 0, neither does it vanish there since

Π(0)1−loop =
e2

12π2

[
1

(D/2) − 2
+ γ + ln

(
m2

4πμ2

)
+ O(D − 4)

]
. (A.50)

Consequently, the propagator’s residue at p2 = 0 is no longer unity. To fix this, the
field must be rescaled once more – that is to say: ‘renormalized’ – to ensure unit
residue, by taking Aμ →

√
Z3 Aμ, after which the propagator rescales to Δ(0)

μν (p) →
Z3 Δ

(0)
μν (p). In perturbation theory writing Z3 = 1+δZ , with δZ ∼ O(e2), then shows

that the renormalized vacuum polarization becomes

Π(p2)ren = Π(p2)1−loop − (Z3 − 1). (A.51)

Now comes the main point regarding convenient renormalization schemes. The
physical renormalization choice (or ‘on-shell’ scheme) for Z3 requires Π(0)ren = 0
since this guarantees unit residue at the propagator’s pole at p2 = 0. This gives

Zphys
3 − 1 � Π(0)1−loop =

e2

12π2

[
1

(D/2) − 2
+ γ + ln

(
m2

4πμ2

)
+ O(D − 4)

]
,

(A.52)

after which the limit D → 4 can be taken to give

Π(p2)phys
ren =

e2

2π2

∫ 1

0
du u(1 − u) ln

[
1 +

p2u(1 − u)
m2

]
. (A.53)

But if the only goal is to subtract off divergences, the minimalist choice – called
the minimal subtraction or MS scheme – merely subtracts the pole at D = 4, so

ZMS
3 − 1 � e2

6π2

(
1

D − 4

)
, (A.54)

and so (again taking D → 4)

Π(p2)MS
ren =

e2

12π2

[
γ + ln

(
m2

4πμ2

)]
+ Π(p2)phys

ren . (A.55)

A slightly more convenient and equally minimal choice [35–37], called the modified
minimal subtraction (or MS) scheme, subtracts the universal factors γ and ln 4π as
well as the divergent pole, leading to

ZMS
3 − 1 � e2

6π2

[
1

(D/2) − 2
+ γ − ln(4π)

]
, (A.56)

and so

Π(p2)MS
ren =

e2

12π2 ln

(
m2

μ2

)
+ Π(p2)phys

ren . (A.57)

Although these last two renormalization schemes do not use canonically
normalized fields, they trade this against the advantage of simplicity for other
types of calculations. In particular, they allow more simple direct integration of
the renormalization-group evolution of couplings with scale and so simplify the
resummation of leading logarithms (such as described in the main text in §7.2.1).



B Appendix B Momentum Eigenstates
and Scattering

This appendix collects (often only with telegraphic derivation) some useful relations
for computing scattering and decay rates. Since some subtleties of continuum
normalization for momenta are dealt with by appealing to discrete normaliza-
tion, this discussion starts with a summary of conventions regarding momentum
eigenstates.

B.1 Momentum Eigenstates

There are three different conventions often used: discrete normalization, continuum
normalization and relativistic continuum normalization. All three types arise in this
book, so this section furnishes a brief reminder of how to convert from one to another.
For simplicity this is done here for one spatial dimension, though identical arguments
also work in other choices for the number of dimensions.

Discrete normalization corresponds to situations where momentum takes a denu-
merably infinite set of values, such as occurs if spatial dimensions have finite length,
L say, perhaps satisfying periodic boundary conditions so fields satisfy ψ(x + L) =
ψ(x) for any x. For momentum eigenstates, ψ(x) ∝ exp[ipx], this condition implies
that p = 2πn/L for integer n, making p denumerable as required. Normalization and
completeness relations for states then take the usual quantum form, such as

(p | q) = δpq and
∑
p

| p)(p | = 1, (B.1)

where the sum over p is really a sum over the integer n. Here the ‘rounded
ket’ notation, | p), is used to distinguish states normalized this way from non-
denumerable situations normalized in the continuum.

Inserting a complete set of position eigenstates and using the wavefunction
〈x | p) ∝ eipx shows that the orthonormality condition of (B.1) becomes

(p | q) =
∫ L

0
dx (p |x〉 〈x | q) = δpq , (B.2)

and so 〈x | p) = L−1/2 eipx . This normalization then implies that completeness takes
the usual form

〈x | y〉 =
∑
p

〈x | p)(p | y〉 = 1
L

∞∑
n=−∞

e2iπn(x−y)/L = δ(x − y). (B.3)
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Continuum Normalization

Continuum-normalized states |p〉 are obtained from discrete-normalized states in the
infinite-volume limit L → ∞. In this limit the spacing, 2π/L, between adjacent levels
goes to zero, so the denumerable label p goes over to a continuum one. For L very
large but still finite there are dN = dp/(2π/L) states in a small continuous interval
dp, and so the density of states is dN/dp = L/(2π). Therefore any sum over p goes
over to an integral according to the rule∑

p

F (p) =
∫

dp F (p)
dN
dp
= L

∫
dp
2π

F (p). (B.4)

Using this conversion, for very large L the completeness relation for |p) becomes

1 =
∑
p

|p)(p | = L
∫

dp
2π

|p)(p| =:
∫

dp |p〉〈p |, (B.5)

where the last equality suggests the definition of the continuum-normalized state

|p〉 :=
√

L
2π

|p). (B.6)

Multiplying (B.5) through on the right by |q〉 shows that consistency requires that the
continuum state must satisfy the normalization condition

〈p | q〉 = δ(p − q), (B.7)

which can also be inferred directly from the definitions using

〈p | q〉 = L
2π

(p | q) = lim
L→∞

L
2π

δpq . (B.8)

The right-hand side of this expression is zero if p � q and if p = q it goes to infinity
as L → ∞. This suggests it is a Dirac delta function, δ(p−q), up to normalization. To
get the normalization notice that the integral over p of (B.8) in this limit is given by∫

dp 〈p | q〉 = 2π
L

∑
p

〈p | q〉 =
∑
p

(p | q) = 1, (B.9)

and so the right-hand side of (B.8) goes to δ(p − q) as L → ∞, as claimed.
A useful relation when converting between discrete and continuum normaliza-

tions is ∑
p

|p)(p | = 2π
L

∑
p

[
L

2π
|p)(p |

]
→

∫
dp |p〉〈p |, (B.10)

showing that completeness sums are the same, regardless of whether momenta are
normalized discretely or in the continuum. Often these kinds of sums arise weighted
by quantities like an initial probability distribution for P(p), and when this is so P(p)
goes over in the continuum limit to a phase-space distribution, f (p), as follows. If
P(p) is the probability of having any one value for p, and varies slowly enough to
be regarded as being constant in a short interval dp, then the density of probability,
dP (p), for finding the particle in dp is:

dP (p) =
dN
dp

P(p) dp =
L

2π
P(p) dp, (B.11)
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and so the differential probability per-unit-spatial-volume of finding the particle in
this momentum region (i.e. the phase-space probability density) becomes

f (p)
2π

:=
1
L

(
dP
dp

)
=

P(p)
2π

. (B.12)

The 2π in the left-hand side’s denominator is conventional, and ensures that for a
thermal distribution (say) for which the position-space probability density is

p :=
∫

dp
2π

1
eE/T ± 1

, (B.13)

one has f (p) = (eE/T ± 1)−1 with no additional factors of 2π. In the L → ∞ limit
one therefore has ∑

p

P(p) |p)(p | →
∫

dp f (p) |p〉〈p |. (B.14)

For three spatial dimensions identical arguments show that the density of states
is dN/d3p = V/(2π)3, where V := L3 is the system’s large spatial volume. This
means discrete sums go over into 3D integrals according to∑

p

→V
∫

d3p

(2π)3 = V
∫

dpxdpydpz
(2π)3 , (B.15)

so if |p〉 = [V/(2π)3]1/2 |p) then as V → ∞ the completeness formula (B.10)
becomes

1 =
∑

p

|p)(p| →
∫

d3p |p〉〈p|, (B.16)

while orthogonality goes over to

〈p|q〉 = δ3(p − q) = δ(px − qx ) δ(py − qy ) δ(pz − qz ). (B.17)

A sum weighted by an initial probability distribution similarly goes over to∑
p

P(p) |p)(p | →
∫

d3p f (p) |p〉〈p |. (B.18)

Covariant Normalization

An additional normalization change is often made for relativistic theories, since for
these it can be inconvenient that |p〉 satisfies a Lorentz non-invariant condition like
(B.7) and (B.9). In particular, (B.9) implies 〈p|q〉 transform inversely to the way the
measure dp transforms.

It happens, however, that the combination dp/Ep is invariant if Ep =
√

p2 + m2 is
the energy associated with a given momentum p. This makes it useful to define the
covariantly normalized state |p 〉r :=

√
2Ep |p〉, which satisfies a Lorentz-invariant

completeness condition∫
dp

2Ep
|p 〉r r 〈 p | =

∫
dp |p〉〈p| = 1, (B.19)
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and orthogonality relation

r 〈 p | q 〉r =
√

4EpEq 〈p | q〉 = 2Ep δ(p − q) = 2Eq δ(p − q). (B.20)

For three spatial dimensions the relativistic normalization is again defined by
|p 〉r :=

√
2E(p) |p〉, which satisfies a Lorentz-invariant completeness condition∫

d3p
2E(p)

|p 〉r r 〈p | =
∫

dp |p〉〈p| = 1, (B.21)

and orthogonality relation

r 〈p | q 〉r = 2E(p) δ3(p − q) = 2E(q) δ3(p − q). (B.22)

B.2 Basics of Scattering Theory

Scattering describes interactions for which the particles involved start off as widely
separated wave-packets, then approach one another and interact briefly as their wave-
packets overlap, and then separate to great distances again. Theoretical simplicity
arises because many details are not required, with only the total change in energy
and momentum due to the scattering being measured (rather than, say, their detailed
trajectories for all times).

In principle, in quantum mechanics a particle moving in an initial (or final) wave-
packet cannot be exact momentum (or energy) eigenstates because the uncertainty
principle ensures that such eigenstates are not localized in space or time at all. It
is nonetheless often possible to approximate the real states using a class of energy
eigenstate, since scattering results are often largely insensitive to the details of the
wave packets describing the initial states. The idealized energy eigenstates used for
this purpose (described below) are called scattering states.

The goal is to compute scattering perturbatively in the interaction that dominates
when the scattering wave-packets overlap. To this end, suppose the complete
Hamiltonian, H , can be written H = H0 + V , where H0 describes the evolution of
the initial and final wave packets before and after the scattering. A key assumption is
that the full set of energy eigenvalues for H contains (but need not be identical with)
the spectrum of energy eigenstates for H0. For instance, eigenstates of both H and
H0 can be labelled by their asymptotic momentum in the remote past, or the remote
future. States in the spectrum of H but not in H0 might include bound states whose
existence relies on the presence of the interaction V .

Denote the energy eigenstates of H0 by |α〉, with α collectively denoting all of the
labels required to describe single- and many-particle states and H0 |α〉 = Eα | α〉. A
wave packet of such states can be schematically written

| φ f 〉 :=
∫

dα f (α) |α〉, (B.23)

where f (α) defines a normalizable packet. The label α is treated as continuous
because it contains continuum-normalized momentum states (possibly among other
labels). Because the spectrum of H0 lies within the spectrum of H the same labels,
α, and energies, Eα, also describe some of the eigenstates of the full system,
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H |α〉〉 = Eα |α〉〉 (where – in this Appendix only – a double ket |(· · · )〉〉 denotes an
eigenstate of H).

In the Schrödinger picture the burden of time evolution is carried by the state of
the system, and for scattering the time evolution of states prepared in appropriate
wave packets, | φ f 〉, have essentially the same evolution in the remote past and the
remote future when evolved by either H or H0 (because the particle wave-packets no
longer overlap). That is, at very late times there is a state of the full system for which

lim
t�T

e−iHt | φ f 〉〉o = lim
t�T

e−iH0t | φ f 〉, (B.24)

and a similar state, | φ f 〉〉i, – in general different than | φ f 〉〉o if scattering actually
occurs – whose evolution under H agrees with the evolution of a packet | φ f 〉 under
H0 in the remote past:

lim
t�−T

e−iHt | φ f 〉〉i = lim
t�−T

e−iH0t | φ f 〉. (B.25)

Taking the limiting case of appropriately peaked wave packets, f (α), allows the
definition of idealized ‘in’ and ‘out’ scattering eigenstates of the full Hamiltonian,
|α〉〉o,i, that satisfy

lim
t�T

e−iHt |α〉〉o = lim
t�T

e−iH0t |α〉 and lim
t�−T

e−iHt |α〉〉i = lim
t�−T

e−iH0t |α〉. (B.26)

Scattering asks only for transition amplitudes between states that evolve like an
eigenstate of H0 in the remote past to similar states that evolve like eigenstates of H0

in the remote future. Any such a scattering amplitude can be reconstructed from the
matrix of all possible amplitudes between scattering energy eigenstates,

Sβα := o〈〈β |α〉〉i. (B.27)

This quantity is called the S-matrix. The scattering operator, S, is defined as
that operator whose matrix elements between H0 eigenstates, |α〉, reproduce the
amplitudes (B.27):

〈β |S|α〉 := Sβα. (B.28)

Formally, S can be computed in terms of the Møller wave operators

Ω(t) := eiHt e−iH0t , (B.29)

because

| α〉〉o = lim
t�T
Ω(t) | α〉 and | α〉〉i = lim

t�−T
Ω(t) | α〉. (B.30)

The operators Ω± = limt→±∞Ω(t) are isometric operators, but strictly speaking are
not unitary in the presence of ‘bound states’ that are contained in the spectrum of H
but not in the spectrum of H0. The S-matrix is then given by

S = lim
t→∞

lim
t′→−∞

Ω∗(t)Ω(t ′) = (Ω+)∗Ω−, (B.31)

in which the limit t → ∓∞ must be defined with some care (which is where the
appropriately normalized wave packets come in).
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B.2.1 Time-Dependent Perturbation Theory

An approximate expression for S in powers of V = H − H0 can be obtained
using standard steps of time-dependent perturbation theory. To this end, notice that
Ω∗(t)Ω(t ′) = eiH0t e−iH (t−t′) e−iH0t

′
satisfies the differential equation

i
d
dt

[Ω∗(t)Ω(t ′)] = eiH0t (H − H0) e−iH (t−t′) e−iH0t
′
= V (t)Ω∗(t)Ω(t ′), (B.32)

where this last equality defines the interaction picture operator V (t) := eiH0tV e−iH0t .
This can be solved iteratively, leading to the following expression for S =

lim
t→+∞
t′→−∞

Ω∗(t)Ω(t ′):

S =
∞∑
n=0

(−i)n
∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2 · · ·

∫ τn−1

−∞
dτn V (τ1)V (τ2) · · ·V (τn)

=

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · ·

∫ ∞

−∞
d4xn T[H(x1) · · ·H(xn)] , (B.33)

which uses V (t) =
∫

d3x H(x) and introduces the time-ordering operation T[O1(t)
O2(t ′)] = Θ(t − t ′)O1(t)O2(t ′) + Θ(t ′ − t)O2(t ′)O1(t) (where Θ denotes a step
function).

Using momentum eigenstates, for which 〈β |O(x) |α〉 = ei(pα−pβ ) ·x〈β |O(0) |α〉, the
S-matrix can therefore be written

Sβα = δβα − iMβα (2π)4δ4(pβ − pα) (B.34)

with

Mβα = 〈β |HI(0) |α〉 − i
2!

∫
d4x〈β |T [HI(x)HI(0)] |α〉 + · · · . (B.35)

B.2.2 Transition Rates

The expressions for the S-matrix are proportional to an energy-conserving (and
often momentum-conserving) delta function when expressed in terms of energy
eigenstates rather than wave packets. This means that the square of S-matrix
elements – what should be the transition probabilities – are proportional to [δ(E)]2 =

δ(E) δ(0) and so must diverge. Physically, this divergence arises because energy
eigenstates are an idealization of the wave packets that scattering really involves.
The convenience of using scattering energy eigenstates to compute the S-matrix has
as its price the necessity to more carefully sort out the relationship between physical
quantities and S-matrix elements.

Going back to the wave-packet description, | φ f 〉〉i =
∫

dα f (α) |α〉〉i, the proba-
bility of finding the system in the final state labeled by β becomes

Pf (β) = |o〈〈β |φ f 〉〉i |2 =
∫

dα dα′ f ∗(α′) f (α) o〈〈β |α〉〉i i〈〈α′ |β〉〉o. (B.36)

In practice, the packet f (α) is peaked about some value α with a width about
this value that is small compared with experimental resolutions but not so small as
to run into trouble from the uncertainty relations. It is also usually true that Sβα
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does not have a strong dependence on α in the regime over which f (α) has its
support. Concretely, the energy width of a wave packet is usually small compared
with the energy dependence of the scattering cross section. (If this were not true the
experiment would do a poor job measuring the S-matrix.)

Under these circumstances – and assuming β is distinguishable from all of the α
in the support of f (α), so Sβα � −iMβα (2π)4δ4(pβ − pα) – then (B.36) factorizes,

Pf (β) ≈ |Mβα |2
∫

[dα] [dα′] f ∗(α′) f (α), (B.37)

where dα (2π)4δ4(pα − pβ) = [dα], and similarly for [dα′]. The delta functions
enforcing energy-momentum conservation are no longer a problem because they are
used to perform part of the integration over α and α′.

The Finite-Volume/Finite-Time Trick

What is important about (B.37) is its factorization of reaction probabilities into an
interaction part, |Mβα |2, and a part involving precisely how the initial wave-packet is
set up. Given this factorization, it would be useful to identify the interaction part as
efficiently as possible without having to set up the wave-packets in detail each time.

A trick for doing so is to directly compute Sβα with the system imagined to be
inside a box with large but finite volume V , and allowing the interactions to last
only over a large but finite time interval, T . When this is true, probabilities can
be computed as in ordinary quantum mechanics by squaring the relevant transition
amplitude, and the result’s dependence on V and T can then be studied to identify
what remains physical in the limit V , T → ∞. Once such a quantity is identified, the
temporary theoretical contrivance of the box and interval can be dropped.

Conventions for discrete and continuum normalizations for momentum eigenstates
are summarized in §B.1. Following the discussion there, states using discrete
normalization for momenta, (p|q) = δpq, are denoted | α), those using nonrelativistic
continuum normalization, 〈p|q〉 = δ3(p − q), are denoted | α〉, while those using
relativistic normalization, r 〈p|q〉r = 2Ep δ3(p − q), are denoted | α〉r .

For a state involving Nα particles in a large but finite box of volume, V , these
states have the relative normalization

| α〉 =
[
V

(2π)3

]Nα/2

| α] and | α〉r =
⎡⎢⎢⎢⎢⎣ 2EV

(2π)3

⎤⎥⎥⎥⎥⎦
Nα/2

| α], (B.38)

where (2E)Nα/2 is shorthand for the product
∏Nα

i=1
√

2Ei . The corresponding S-
matrix elements, Scont

βα = 〈β |S| α〉, Sdisc
βα = (β |S| α) and Srel

βα = r 〈β |S| α〉r , are
therefore related by

Scont
βα =

[
V

(2π)3

] (Nα+Nβ )/2

Sdisc
βα and Srel

βα =

⎡⎢⎢⎢⎢⎣ 2EV
(2π)3

⎤⎥⎥⎥⎥⎦
(Nα+Nβ )/2

Sdisc
βα . (B.39)

For translationally invariant theories the S-matrix in each case differs from
unity by

Sβα = δβα − iMβα (2π)4δ4
VT (pβ − pα), (B.40)
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where the finite-volume delta functions arise when evaluating in the form,

(2π)4δ4
VT (pα − pβ) :=

∫
VT

d4x ei(pα−pβ ) ·x , (B.41)

with the spatial integration over the volume, V , and the time integration runs from
−T/2 to +T/2. As VT → ∞ the quantity δVT goes to the standard delta-function
that enforces energy-momentum conservation.

Now comes the main point. Transition probabilities involve |Sβα |2 and so neces-
sarily also contain a factor of δ4

VT
(0). But direct evaluation of (B.41) shows that for

finite T and V this factor is (2π)4δVT (0) = VT . The δVT (0) divergence in |Sβα |2
is thereby seen to have a physical origin. In a system invariant under translations
in space and time (i.e. precisely those that generate energy-momentum conserving
delta functions), the instantaneous transition probability is the same everywhere
and at every instant, making the total rate scale with the volume and time interval
over which the initial wave-packets overlap. But this volume and time interval are
infinite if the states involved are chosen for convenience to be momentum and energy
eigenstates.

This diagnosis suggests a remedy:1 it is the transition rate per unit volume per
unit time that is well-behaved as V , T → ∞, so this is what should be computed
in the continuum limit. Suppose the initial particles have some probability, P(α),
to be in a particular region of phase space containing Δα states and small enough
that P(α) is approximately constant within it. Using discrete normalization, the total
transition probability for scattering from Δα to a similar small region of final-state
particles, Δβ, is then simply P (α → β) = |Sdisc

βα |
2P(α)ΔαΔβ. Since the density

of states in momentum space is V/(2π)3, the total number of states in an interval

dβ =
∏Nβ

i=1 d3pi for an Nβ-particle state is Δβ = [V/(2π)3]Nβ dβ, and similarly for
Δα. The differential transition rate per-unit-time then becomes

dΓ(α → β) :=
dP (α → β)

T
=
|Sdisc
βα |

2

T
P(α) ΔαΔβ

=
f (α)

T

⎡⎢⎢⎢⎢⎣|Scont
βα |

2
(
V

(2π)3

)−(Nα+Nβ )⎤⎥⎥⎥⎥⎦
(
V

(2π)3

) (Nβ+Nα )

dα dβ

= V f (α) |Mcont
βα |

2 (2π)4δ4
VT (pβ−pα) dα dβ (B.42)

= V f (α) |M̂cont
βα |

2 (2π)4δ4
VT (pβ−pα) dα̂ dβ̂

= V f (α) |M̂rel
βα |

2 (2π)4δ4
VT (pβ−pα) dα̂r dβ̂r ,

where the replacement P(α) → f (α) follows the argument leading to (B.14) – where

f (α) =
∏
j∈α

f j (α), (B.43)

is the joint phase-space probability density of initial particles, assumed to be
independent of one another. The new notation is

1 §16.4 provides a more sophisticated version of this same remedy, at least for the growth with T . See
also the discussion leading to (16.120).
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dα̂ :=
∏
j∈α

d3pj

(2π)3 , dα̂r :=
∏
j∈α

d3pj

(2π)32Ej

, dβ̂ :=
∏
j∈β

d3pj

(2π)3 , dβ̂r :=
∏
j∈β

d3pj

(2π)32Ej

,

(B.44)

and M̂βα := (2π)3(Nα+Nβ )/2Mβα. M̂βα is a natural quantity to define because the
factor of (2π)3/2 for each particle cancels the (2π)−3/2 appearing in the expansion
of all fields in terms of creation and annihilation operators – see, for instance, Eqs.
(C.28), (C.30), (C.33) or (C.39) – since these appear systematically when evaluating
matrix elements like those appearing in (B.35).

Fermi’s Golden Rule

The special case where only the leading term of the transition amplitude of (B.35)
dominates the rate of (B.42) leads to the very useful formula

dΓ(α → β) = V f (α) |〈β |HI(0) |α〉|2 (2π)4δ4
VT (pβ−pα) dα dβ, (B.45)

known as Fermi’s Golden Rule.

Decays: Nα = 1

Expression (B.42) can be directly used – right out of the box, so to speak – in
the special case Nα = 1, since in this case V f (α) dα̂ = V f (p) d3p/(2π)3 is the
probability of the initial particle being in the initial momentum region d3p, making
the limit V , T → ∞ a trivial one. The resulting expression for the decay rate of a
single particle then is

dΓ(α → β) =
1

2Eα
|M̂rel

βα |
2(2π)4δ4(pα − pβ) dβ̂r . (B.46)

This result is not quite Lorentz-invariant, because of the 1/(2Eα) in front. This factor
is just what is needed to provide the time-dilation of a fast-moving particle’s decay
lifetime.

Scattering: Nα ≥ 2

More generally, for Nα ≥ 2 the scattering rate per-unit-volume in the large-volume,
late-time limit for initially uncorrelated particles is

dΓ(α → β)

V =

⎡⎢⎢⎢⎢⎣
∏
k∈α

fk (pk )
d3pk
(2π)3

⎤⎥⎥⎥⎥⎦ |M̂cont
βα |

2 (2π)4δ4(pβ−pα)
∏
j∈β

d3pj

(2π)3 (B.47)

=

⎡⎢⎢⎢⎢⎣
∏
k∈α

fk (pk )
d3pk

(2π)32Ek

⎤⎥⎥⎥⎥⎦ |M̂rel
βα |

2 (2π)4δ4(pβ−pα)
∏
j∈β

d3pj

(2π)32Ej

,

which (reasonably) is proportional to the phase-space density of each particle in the
initial state. The second line makes the Lorentz-transformation properties of this rate
manifest.
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Using again that V f (α) dα̂ = V f (p) d3p/(2π)3 is the probability of an initial
particle being in the initial momentum region d3p, expression (B.47) states that the
interaction rate per particle, for particle ‘B’ (for ‘beam’), is

dΓB = (2π)3 dΓ(α → β)

V fB d3pB

(B.48)

=
1

2EB

⎡⎢⎢⎢⎢⎢⎢⎣
∏
k∈α
k�B

fk (pk )
d3pk

(2π)32Ek

⎤⎥⎥⎥⎥⎥⎥⎦ |M̂
rel
βα |

2 (2π)4δ4(pβ−pα)
∏
j∈β

d3pj

(2π)32Ej

.

Two-Body Scattering: Nα = 2

In the special case of two-particle scattering, Nα = 2, the product over initial particles
just involves the ‘other’ (non-beam) particle, denoted ‘T’ (for ‘target’):

dΓB =
fT(pT)

(2π)3

[
d3pT

4EBET

]
|M̂rel

βα |
2 (2π)4δ4(pβ−pα)

∏
j∈β

d3pj

(2π)32Ej

, (B.49)

and so depends explicitly on the density of target particles. It is conventional to
normalize out the target-dependent factors and define the cross section by dσ =
dΓB/F, where F satisfies two conditions. First, the Lorentz-transformation properties
of F are fixed by requiring dσ to be Lorentz invariant. Inspection of (B.49) shows
this implies that

F =

(
fT(pT)

(2π)3

)
F d3pT

4ETEB

, (B.50)

where F is a Lorentz-invariant quantity. Second, F should evaluate to the particle
flux (as seen by the beam particle), dnTvrel, when evaluated in the target-particle rest
frame. Here, dnT = fT d3pT/(2π)3 is the target’s ordinary-space particle density and
vrel is the (Lorentz-invariant) relative velocity of the initial two particles,

vrel =

√
1 − m2

B m2
T

(pB · pT)2 , (B.51)

where p
μ
B and p

μ
T are the 4-momenta of the two initial particles. The resulting two-

body cross section becomes

dσ(α → β) =
|M̂rel

βα |
2

F (2π)4δ4(pα − pβ)
∏
j∈β

d3pj

(2π)32Ej

(B.52)

with F := (−4pB · pT)vrel = 4
√

(pB · pT)2 − m2
B m2

T .



C Appendix C Quantum Field Theory: A Cartoon

Quantum field theory (QFT) plays a central role in most areas of theoretical physics,
but this is not really a deep statement. At one level quantum field theory is merely
ordinary quantum mechanics applied to processes that change the total number
of particles present, and this makes it particularly useful for relativistic systems
since fundamental principles (the consistency of quantum mechanics and special
relativity) forbid relativistic interactions from ever leaving the total number of
particles unchanged.

But the utility of QFT methods are not restricted to processes that change the
total number of particles. It is also useful when framing quantum systems with a
fixed number of particles, largely because its main feature – the language of creation
and annihilation operators – lends itself to efficiently expressing natural laws in
such a way that ensures the validity of a few fundamental principles right from the
start. The principles that get baked in in this way include ‘unitarity’ (which is to
say, conservation of probability in quantum evolution) and ‘cluster decomposition’
(which means the factorization of probabilities for independent events when these
events are causally separated from one another in spacetime).

Although this book is not meant as a textbook on quantum field theory, QFT
tools are nonetheless often used within these pages. Consequently, this Appendix
is offered, both as a quick refresher on some elements of quantum theory of fields, as
well as a way to collect together some of the main useful formulae used elsewhere.
Although this summary possibly provides a useful reminder for those already with
some QFT background, it has insufficient detail to teach the subject to a complete
newbie.

C.1 Creation and Annihilation Operators

The goal in quantum field theory is to set up a quantum mechanical framework in
which the total number of particles can change. The first step when doing so is to
identify the Hilbert space within which quantum operators act.

In elementary single-particle quantum mechanics a basis of states, |i〉, for the
single-particle Hilbert space, H1 = {|i〉}, can be chosen consisting of eigenstates
of the complete set of commuting observables that label single-particle states. In
concrete examples these labels are often chosen to be momentum and any internal
quantum numbers, like total spin, s, and its third component, σ: so |i〉 = |p, s, σ, · · · 〉.

Ordinary quantum mechanics involving N particles similarly involves a Hilbert
space, HN = {|i1, i2, · · · iN〉}, built as products of N copies of the single-particle
basis states. For bosons these states are defined to be completely symmetric in539
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the interchange of any two pairs of labels for identical particles, while the states
are antisymmetric under this interchange for fermions. For example, for a two-
particle state

|i1, i2〉 = ±|i2, i1〉 (C.1)

where the upper (lower) sign corresponds to the particles being bosons (fermions).
The Hilbert space for quantum field theory, H , combines the Hilbert spaces H0,

H1 andH2 and so on, up toHN and beyond, with N arbitrarily large. HereH0 = {|0〉}
is the one-dimensional space spanned by the zero-particle state, |0〉, while HN for
N ≥ 1 is defined as above. A Hilbert space constructed in this way is called a
Fock space.

When dealing with different kinds of particles it is useful to label states using the
occupation-number representation. Instead of listing the single-particle labels for
all particles in the state, this representation lists the number of independent particle
labels, together with the number of particles present in the state that carry these
labels. For instance, in the occupation-number representation a state containing two
particles with momentum p, is denoted |p(2)〉 rather than |p, p〉. For general labels ‘i’,
the occupation-number representation for a five-particle state contining two particles
having single-particle quantum number i1 and three particles with quantum number
i2 is similarly |i(2)

1 , i(3)
2 〉 rather than |i1, i1, i2, i2, i2〉.

A very convenient basis of operators acting within the Fock space of quantum
field theory is given by creation and annihilation operators in the following way.
The annihilation operator, ai , is defined as the operator that removes a particle with
quantum number i from a given state. If the state on which ai acts does not contain
the particle in question then the operator is defined to give zero. That is,

ai |0〉 = 0 , ai | j〉 = δi j |0〉 , ai | j, k〉 = δi j |k〉 + (−)i jδik | jl〉, (C.2)

and so on, where the sign (−)i j is −1 if both particles ‘i’ and ‘ j’ are fermions and is
+1 otherwise.

This definition implies that the Hermitian conjugate, a∗i , is a creation operator for
the same particle type, that satisfies

a∗i |0〉 = |i〉 , a∗i | j〉 = |i; j〉, (C.3)

and so on. Together with the normalization convention, 〈i | j〉 = δi j , these definitions
imply the following properties. For bosons |i, j〉 = | j, i〉, and so[

ai , a j
]
=
[
a∗i , a∗j

]
= 0 and

[
ai , a∗j

]
= δi j . (C.4)

For fermions |i, j〉 = −| j, i〉, and so

{ai , a j } = {a∗i , a∗j } = 0 and {ai , a∗j } = δi j , (C.5)

in which [A, B] = AB − BA and {A, B} = AB + BA, as usual.
In the occupation-number representation the above rules are captured by

ai |i(n1)
1 , · · · , i(nr )

r 〉 =
r∑
j=1

si jδii j
√

n j |i(n1)
1 , · · · , i

(n j−1)
j , · · · , i(nr )

r 〉. (C.6)
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where si j = (−)i(n1i1+· · ·n j−1i j−1) , and

a∗i |i
(n1)
1 , · · · , i(nr )

r 〉 = |i(1) , i(n1)
1 , · · · , i(ni+1) , · · · , i(nr )

r 〉 if i � i j for any j

=
√

ni j + 1 si j |i(n1)
1 , · · · , i(ni+1)

j , · · · , i(nr )
r 〉 if i = i j . (C.7)

In particular, a∗i ai counts the number of particles with quantum number ‘i’,
because the previous two formulae imply

a∗i ai |i
(n1)
1 , · · · , i(nr )

r 〉 = ���
r∑
j=1
δii j n j

��� |i(n1)
1 , · · · , i(nr )

r 〉. (C.8)

What is important about the creation and annihilation operators is that they make a
very convenient basis, in terms of which any operator acting onH can be expanded:1

O = A0,0 +
∑
i

[
A0,1(i) ai + A1,0(i) a∗i

]
+
∑
i j

[
A0,2(i, j) aia j + A1,1(i, j)a∗i a j + A2,0(i, j) a∗i a

∗
j

]
+ · · · . (C.9)

To see that this is so, it suffices to argue that the coefficient functions {A0,0, A1,0(i),
A0,1(i), . . .} can be solved for in terms of the matrix elements: 〈ψ |O| φ〉, for all
choices for 〈ψ | and | φ〉. (This can be shown by induction, starting with 〈0|O|0〉 =
A0,0 (because ai |0〉 = 〈0|a∗i = 0) and continuing with 〈 j |O|0〉 = A1,0( j), 〈0|O| j〉 =
A0,1( j) and so on.)

A system’s hamiltonian is an important special case of an operator that can be
expanded in this way, and part of the reason creation and annihilation operators are
so useful is that this particular expansion is usually an efficient one. For instance,
non-interacting particles are ones for which the energy cost of adding N particles is
just N times the energy of adding one particle (i.e. there is no interaction energy).
With (C.8) in mind the hamiltonian for a collection of non-interacting particles is
therefore

Hfree = E0 +
∑
i

εi a
∗
i ai , (C.10)

where the single-particle labels ‘i’ appearing in the sum are a complete set of
mutually commuting labels for single-particle energy eigenstates.

As is easily verified by explicit evaluation, the hamiltonian Hfree has the
occupation-number states as eigenstates, with eigenvalues given by

Hfree |i(n1)
1 , · · · , i(nr )

r 〉 = ���E0 +
∑
j

n jε j
��� |i(n1)

1 , · · · , i(nr )
r 〉. (C.11)

This reveals E0 to be the energy of the zero-particle state (or vacuum), |0〉, while εi is
the energy associated with the addition of a single particle having quantum number
‘i’. For momentum eigenstates (using standard non-relativistic normalization) this
expression for Hfree becomes

1 Notice that all instances of a∗ here stand to the left of all instances of a in this expression; something
that can be arranged without loss of generality by changing, if needed, the order of operators using the
commutation relations (C.4) or (C.5) (a process called ‘normal ordering’).
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Hfree = E0 +
∑
k

∫
d3p εk (p) a∗p,kap,k , (C.12)

where k represents all non-momentum single-particle labels (like spin or particle
type) and εk (p) is the single-particle dispersion relation (i.e. single-particle energy
as a function of momentum). In the special case of relativistic systems Lorentz
covariance requires that p and p0 = ε(p) must be components of a single

4-momentum vector, pμ, so εk (p) =
√

p2 + m2
k

where mk is the corresponding

particle’s rest mass.
Interactions have similar representations. For instance, a term in Hint describing

the emission or absorption of a photon by a charged particle, f (p, σ) + γ(k, λ) →
f (q, ζ), could be written

Hint !
∑
λσζ

∫
d3p d3q d3k

[
hλσζ (p, q, k) c∗pσ cqζ akλ + h.c.

]
δ3(p − q − k), (C.13)

where ‘h.c.’ denotes the hermitian conjugate, while cpσ denotes the annihilation
operator for a charged particle with momentum p and spin component σ, while akλ

is the same for the photon of momentum k and helicity λ.
The above expression can mediate processes like photon absorption (or, from the

‘h.c.’ term, emission) because it gives a nonzero matrix element

〈p, σ |Hint |q, ζ; k, λ〉 = hλσζ (p, q, p) δ3(p − q − k), (C.14)

which, when used in expressions like Fermi’s golden rule (B.45), can contribute a
nonzero transition rate. Eq. (C.14) evaluates the matrix element using (continuum-
normalized version of) expressions (C.6) and (C.7) defining the action of creation
and annihilation operators.

C.2 Nonrelativistic Free Fields

An important condition satisfied by most physical systems is cluster decomposition:
the factorization of probabilities for events that are widely separated in space at a
given time.2 A physical property demanded of H is that this clustering property
should be preserved by time evolution.

What is convenient about the creation- and annihilation-operator formalism is that
the requirements of cluster decomposition are automatically satisfied if the (possibly
complex) coefficient functions in H – like hλσζ (p, q, k) in (C.13), for example – are
sufficiently smooth functions of their momentum arguments (e.g. admitting a Taylor
expansion in powers of momenta) once the delta-function is extracted that enforces
momentum conservation (if this is conserved). These are the momentum-space ways
of saying that in position space the hamiltonian is local:

H =
∫

d3x H(x), (C.15)

2 This property assumes the system to have started without initial correlations between the particles
involved in these events. For relativistic systems the requirement of ‘large’ spatial separation means
events that are sufficiently outside each other’s light cones (large spacelike separations). For thermal
fluids cluster decomposition is included in the condition of local equilibrium.
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for some hamiltonian density H(x). Locality is related to cluster decomposition
because the time-evolution operator, U (t, t0) = exp[−iH (t − t0)], should schemati-
cally be a product over positions (and so should preserve factorization of amplitudes
for spatially separated events) when H is a sum over positions.

This suggests that interactions should often simplify when expressed in position
space, using the Fourier-transforms of the creation and annihilation operators. For
spinless particles this leads to defining position-space fields, Φ(x), of the form

Φ(x) :=
∫

d3p

(2π)3/2 ap eip·x. (C.16)

Such a position-space quantum field can similarly be defined for the destruction
operator of each separate type of particle. This last equation is written in Schrödinger
representation (for which operators do not evolve in time), but it is often more
usefully written in the Interaction representation (for which the operators evolve in
time using the free field equations). In interaction picture (C.16) becomes

Φ(x, t) :=
∫

d3p

(2π)3/2 ap e−iEp t+ip·x, (C.17)

where Ep is the single-particle energy.
The point of expressing H in terms of Φ(x) and Φ∗(x) rather than apσ and a∗pσ

is that the condition of cluster-decomposition – i.e. smoothness of coefficients like
hσλζ (p, q, k) in (C.13) – is ensured by the locality requirement, (C.15), where H(x)
is built from sums of local monomials of Φ(x), Φ∗(x) and their derivatives, all
evaluated at the same spatial point.

For example, rather than using (C.12) for a system of non-interacting spinless
particles with dispersion relation ε(p) = p2/2m, its Hamiltonian could equally well
be written

H =
1

2m

∫
d3x ∇Φ∗(x) · ∇Φ(x). (C.18)

Because this hamiltonian is invariant under rephasing, Φ(x) → eiωΦ(x), Noether’s
theorem implies that it necessarily commutes with total particle number, measured
by the operator

N =
∫

d3x Φ∗(x)Φ(x) =
∫

d3p a∗pap. (C.19)

Sometimes momentum is not a good single-particle label for energy eigenstates,
such as for particles that interact with an external potential, V (x). For example, a
system of such particles interacting only with the potential (which do not mutually
interact with one another) can be written

H =
∫

d3x

[
1

2m
∇Φ∗(x) · ∇Φ(x) + V (x)Φ∗(x)Φ(x)

]
. (C.20)

As is easy to verify the hamiltonian of Eq. (C.20) can be written in the diagonal form
(C.11) by generalizing (C.16) to

Φ(x) :=
∑
i

ai ϕi (x), (C.21)
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where the mode-function ϕi (x) is defined as an eigenstate satisfying the single-
particle Schrödinger equation,[

− 1
2m

∇2 + V (x)

]
ϕi (x) = εiϕi (x). (C.22)

Using (C.21) and (C.22) in (C.20) then puts it into diagonal form

H = E0 +
∑
i

a∗i ai εi . (C.23)

An example of a system for which interactions are not local, and so do not cluster,
is the case where particles interact through long-range forces, such as in

H =
∫

d3x

[
1

2m
∇Φ∗(x) · ∇Φ(x) +

∫
d3y U (x − y) Φ∗(x)Φ(x) Φ∗(y)Φ(y)

]
.

(C.24)

Examples like this are not normally regarded as counter-examples of the requirement
that physical systems cluster, since the long-range interaction U (x−y) usually arises
once a massless (or very light) degree of freedom is integrated out. A famous exam-
ple is the generation of the Coulomb potential once electromagnetic interactions are
integrated out. In all such cases, however, the Wilson action for the relevant effective
theory (from which massless or light particles are not integrated out) is local, and so
does cluster.

C.2.1 Nonrelativistic Fields with Spin

Position-space fields can also incorporate spin, by requiring them to transform
under rotations, such as by using a spinor field, a vector field or some other finite-
dimensional representation of the rotation group. Generalizing (C.16) to a field Ψa

transforming in one such a representation leads to

Ψa (x) :=
s∑

σ=−s

∫
d3p

(2π)3/2 ua (σ) apσ eip·x, (C.25)

where the sum is over the 3rd-component-of-spin quantum number, σ, of the
particle state (assumed to have spin s). Here the ‘polarization tensor’ ua (σ) is the
Clebsch–Gordan coefficient required to ensure consistency between the assumed
transformation properties under rotations of the field and of the particle states.

For spin-half particles s = 1
2 and Ψa (with a = 1, 2) can be a two-component

spinor, which under rotations with infinitesimal parameter ωk transform as δΨ =
i
2 ω

kσk Ψ (in addition to its action on x), where σk are the usual 2×2 Pauli matrices.
In this case, the spin sum runs over σ = ± 1

2 , with

u(+1/2) =

(
1
0

)
and u(−1/2) =

(
0
1

)
. (C.26)

A spin-one particle has s = 1 and can similarly be represented by a vector field,
Vk , with k = x, y, z. In this case, rotations act as δVk = εklmωlVm (in addition
to their action on x), and σ = 0,±1. In this case, uk (σ) becomes the polarization
vector appropriate for each of the three choices for σ. For instance, for a particle
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with momentum parallel to the z axis, p = ez , one finds u(0) = ez and u(±1) =
1√
2

(ex ± iey ), so

V(x) =
1∑

σ=−1

∫
d3p

(2π)3/2 u(σ) apσ eip·x. (C.27)

C.3 Relativistic Free Fields

A similar story goes through for position-space fields in relativistic theories, but with
two important differences. The simplest difference simply recognizes that the fields
must transform in finite-dimensional representations of the Lorentz group rather than
just rotations. The more subtle difference is that all position-space fields must come
with both destruction and creation parts, in a way that is elaborated below.

It is this second condition that underlies many of the profound consequences –
like the existence of antiparticles, the spin-statistics theorem, the CPT theorem
and crossing symmetry – of combining quantum mechanics with special relativity.
Although it goes beyond this summary to derive these consequences in detail, both
types of differences are illustrated in the low-spin examples below.

C.3.1 Relativistic Spin-0 Fields

Scalar fields can be used for spin-zero particles3 and in this case the expansion in
terms of creation and annihilation operators generalizes the nonrelativistic result
(C.17) to

φ(x) =
∫

d3p√
(2π)32Ep

[
ap eip ·x + ā∗p e−ip ·x

]
, (C.28)

where p · x is short for pμxμ = −Ept + p · x, where Ep =
√

p2 + m2 is
the relativistic particle energy and m its rest mass. This expression normalizes
momentum eigenstates in the same way as does (C.17) – i.e. using the nonrelativistic
normalization 〈p|q〉 = δ3(p − q), where |p〉 = a∗p |0〉 – and so the factor of

√
Ep in

the denominator is precisely what is required to make the left-hand side transform as
a Lorentz scalar. (If a∗p |0〉 = |p〉r were instead normalized covariantly, as in (B.20),
then the measure appearing in (C.28) would be the Lorentz-invariant combination
d3p/Ep, as expected.)

It is the term involving ā∗p that is the new ‘creation part’ of the field alluded
to above. Here āp is the destruction operator for the antiparticle for the particle
destroyed by ap, whose properties are dictated by the requirement that the com-
mutator [φ(x),φ(y)] vanish for all spacelike separations, (x − y)2 > 0. If this
commutator would not vanish, then neither would the same commutator built using

3 The choice of field representation is not unique for any given spin, with the general condition known
since the 1960s [14, 51, 465, 466]. Different choices of representation typically do not define physically
different theories. For instance, a 4-vector field – instead of a scalar field – can represent a spinless
particle, but the 4-vector in this case is simply the gradient of the scalar: Vμ = ∂μφ.
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the hamiltonian density, [H(x),H(y)], and if this does not vanish then the time-
orderings of H appearing in the S-matrix (see §B.2) become problematic given that
different observers can disagree on the time-ordering of x0 and y0 for spacelike-
separated points.

In particular, this condition requires that the antiparticle have precisely the same
mass as does the particle, and it must carry precisely the opposite charge for any
symmetry that multiplies the field φ(x) by a phase: φ(x) → eiωφ(x). A particle can
be its own antiparticle if ap is used instead of āp in (C.28). But φ(x) is then real,
and so particle and antiparticle can only be the same in that they carry no additive
conserved charges. (The photon is an example of a particle of this type that is the
same as its antiparticle.)

Cluster decomposition is ensured if local interactions are built as before from
powers of fields and their derivatives at a single point, and for relativistic systems this
is more conveniently done using the action, S =

∫
d4x L, than with the Hamiltonian,

H =
∫

d3x H, because the action is Lorentz invariant while the energy is not. For free
charged fields this action is quadratic and the fields can always be defined in such a
way that the action becomes

Sfree
spin 0 = −

∫
d4x
[
∂μφ

∗ ∂μφ + m2φ∗φ
]
, (C.29)

where m is the rest mass appearing in the dispersion relation: ε(p) = Ep =√
p2 + m2. The fields in this action – and in (C.28) – are chosen to be ‘canonical’

inasmuch as the canonical equal-time commutation relation, [Π(x, t),φ(y, t)] =
−iδ3(x− y), agrees with the creation/annihilation algebra [ap, a∗q] = δ3(p− q) when
Π = δS/δ(∂tφ) is the canonical momentum. (The numerical factors in (C.28) are
also chosen to ensure that canonical commutation relations agree with the ap, a∗p
algebra.) Unlike in nonrelativistic systems, relativity makes it necessary to quantize
spinless particles using bose statistics – a consequence of the spin-statistics theorem:
all integer-spin particles must be bosons and all half-odd spin particles must be
fermions.

Interactions are similarly built using non-quadratic (but local) terms in φ and its
derivatives. It is the requirement that all interactions be built from φ(x) ∝ a + ā∗ that
implies that relativistic interactions never preserve particle number, in contrast with
the interactions written above for the nonrelativistic case.

C.3.2 Relativistic Spin-1/2 Fields

Spin-half particles are represented using Lorentz-spinor fields, ψa (x), which are
taken to be distinct from their antiparticles and so represented by 4-component Dirac
spinors (a = 1, · · · , 4; see the discussion above Eq. (A.27) (or Appendix §A.2.3) for
the distinction between these and Majorana or Weyl spinors).

ψa (x) =
∑
σ=± 1

2

∫
d3p√

(2π)32Ep

[
ua (p, σ) cpσ eip ·x + va (p, σ) c̄∗pσ e−ip ·x

]
, (C.30)

where the destruction operator is labelled c to distinguish it from the spinless
destruction operator described above. For spin-half particles consistency requires
these operators to anti-commute,
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{c∗pσ, cqζ} = δ3(p − q) δσζ, (C.31)

to ensure that the hamiltonian density, H(x), can continue to commute with itself
when evaluated at spacelike-separated points in spacetime. u(p, σ) and v(p, σ) are
spinors that are chosen to ensure that both sides of (C.30) transform the same
way under Lorentz transformations. This implies they satisfy the Dirac conditions
(i

/
p + m)u(p, σ) = (i

/
q − m)v(p, σ) = 0. Here, the ‘slash’ notation denotes/

p = pμγμ, where the Dirac conventions used for the gamma matrices γμ are
outlined in §A.2.3. Notice that in the particle rest frame these conditions become the
projections iγ0u = +u for particles and iγ0v = −v for antiparticles, and in any other
frame they are found by applying the appropriate Lorentz boost to these conditions.

The action that captures these conditions for free fields is

Sfree
spin 1/2 = −

∫
d4x ψ(

/
∂ + m)ψ, (C.32)

where again fields are chosen to be canonically normalized, and m is the particle rest
mass that enters its dispersion relation ε(p) = Ep =

√
p2 + m2.

C.3.3 Relativistic Spin-1 Fields

For spin one and higher the field content needed to treat massive and massless states
differs. This is because a massive spin-s state contains 2s + 1 spin components, σ =
−s,−s + 1, · · · , s − 1, s, while a minimal massless spin-s state usually contains only
two helicities: λ = ±s. Although these two options have the same number of states
for s = 0 and s = 1

2 , they differ from one another for s ≥ 1.

Massive Spin-1 Fields

Consider first the massive case. The smallest fields that can be used for massive
spin-one particles are vector fields, Vμ (x), and consistency of the 4-vector Lorentz-
transformation rule with the transformations of creation and annihilation operators
for massive spin-one particles implies

Vμ (x) =
1∑

λ=−1

∫
d3p√

(2π)32Ep

[
εμ (p, λ) apλ eip ·x + ε∗μ (p, λ) ā∗pλ e−ip ·x

]
, (C.33)

where, as before, Ep =
√

p2 + m2 with m the particle’s rest mass. This form is also
only consistent with [H(x),H(y)] = 0 for spacelike separations if the particles are
bosons, so [ap, a∗q] = [āp, ā∗q] = δ3(p − q).

The polarization vector εμ (p, λ) satisfies pμεμ = 0, and so for momentum
pointing up the z axis, the polarization vector’s spatial part can be chosen to be

εμ (λ = ±1) =
1
√

2

(
0

ex ± i ey

)
, εμ (λ = 0) =

(
p

Ep ez

)
when pμ =

(
Ep

p ez

)
.

(C.34)

One rationale for the condition pμεμ (p, λ) = 0 is that if Vμ = ∂μφ were a gradient,
it would actually represent a spin-0 particle, and this option must be projected out
(as the condition ∂μVμ = 0 indeed does).
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A free lagrangian for this type of particle is

Sfree
spin 1 = −

∫
d4x

[
1
2

F∗μνFμν + m2V μV ∗
μ

]
, (C.35)

where Fμν := ∂μVν − ∂νVμ. Notice that the field equation obtained from this by
varying V ∗

μ is

∂μFμν − m2V ν = ( − m2)V ν − ∂ν (∂μV μ) = 0, (C.36)

which, when acted on again by ∂ν implies m2∂μV μ = 0. When m � 0 these field
equations both project out the spinless part (i.e. ensure ∂ · V = 0) and – once this is
used in (C.36) – ensure pμpμ + m2 = −E2

p + p2 + m2 = 0, thereby identifying m as
the particle’s rest mass.

Massless Spin-1 Fields

Next consider the massless case. It happens that the absence of the longitudinal
mode, λ = 0, precludes also using a 4-vector field like Vμ (x) to represent a massless
spin-one particle. In this case, the smallest finite-dimension representation of the
Lorentz group that can be used to represent the two helicity states of a massless spin-
one field turns out to be an antisymmetric tensor, Fμν = −Fνμ. The two separate
helicities are represented by the self-dual and anti-self-dual parts, F±μν = Fμν ± i F̃μν ,
where the ‘dual’ field strength is defined by

F̃μν =
1
2
εμνλρ Fλρ, (C.37)

for εμνλρ the completely antisymmetric Levi-Civita tensor of Eq. (A.10).
The mode functions that ensure the consistency of the transformation rule for Fμν

and for a massless spin-one particle turn out to imply [51, 54]

Fμν = ∂μAν − ∂νAμ, (C.38)

with

Aμ (x) =
∑
λ=±1

∫
d3p√

(2π)32Ep

[
εμ (p, λ) ap eip ·x + ε∗μ (p, λ) a∗p e−ip ·x

]
, (C.39)

where Ep = |p| is the relativistic particle energy for massless particles (and, with
photons in mind, the antiparticle is chosen to be identical to the particle). This looks
a lot like (C.33), but with the important omission of the λ = 0 polarization.

At this point, the astute reader asks: ‘How can (C.38) and (C.39) be consistent
with the earlier statement that Fμν is the smallest field whose Lorentz-transformation
properties are consistent with representing a massless spin-one particle? Why not
simply use the 4-vector Aμ instead?’ From this point of view what is important about
Eqs. (C.38) and (C.39) is this: performing a Lorentz transformation on the creation
and annihilation operators to accomplish a Lorentz transformation that takes pμ →
Λμνpν indeed implies the field Fμν transforms into Λμ

λΛν
ρFλρ, as should a rank-

two tensor.
But the field Aμ does not transform as a 4-vector, because of the omission of the

λ = 0 mode. It instead satisfies

Aμ → Λνμ Aν + ∂μΩ (C.40)
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for some scalar function Ω. Although the first term on the right-hand side corre-
sponds to the transformation of a covariant 4-vector, the second term does not.
Lorentz-invariant actions for massless spin-one particles can only be built using
Aμ (x) instead of Fμν (x) if they are also chosen to be gauge invariant, that is,
invariant under the shift Aμ → Aμ + ∂μΩ, for general Ω. It is the freedom to do
just such a transformation that allows the λ = 0 spin-state to be removed, as required
for a massless spin-one state.

C.3.4 Massless Spin-2 Fields

A similar story holds for massless spin-two particles for which there are only two
spin states, with helicities λ = ±2. A field that can represent this kind of particle is
a tensor Cμνλρ with the same symmetries as the Riemann tensor: Cμνλρ = Cλρμν =
−Cνμλρ = −Cμνρλ, and in addition a trace-free condition, ηλρCλμρν = 0.

Requiring the transformation properties of this field to be consistent with what is
obtained once expanded in terms of creation and annihilation operators for a massless
spin-two field implies [51] Cμνλρ is obtained as two derivatives of a field

hμν (x) =
∑
λ=±2

∫
d3p√

(2π)32Ep

[
εμν (p, λ) ap eip ·x + ε∗μν (p, λ) a∗p e−ip ·x

]
,

(C.41)

where Ep = |p| is the relativistic particle energy for massless particles and (as for
photons) antiparticle is identified with the particle.

When a Lorentz transformation is performed on the particle creation and annihi-
lation operators such that their 4-momentum transforms as pμ → Λμνpν , then hμν
does not transform as a tensor. It only does so up to a gauge transformation of the
form

hμν → ∂μΩν + ∂νΩμ, (C.42)

for some field Ωμ. This gauge symmetry must be preserved if interactions are to be
built directly using hμν rather than Cμνλρ.

Precisely this kind of structure is obtained when the field equations of General
Relativity are expanded about a flat background spacetime. In this case, the metric
is written gμν = ημν + 2κ hμν with κ2 = 8πGN related to Newton’s constant,
and under coordinate transformations δxμ = ξμ (x) the fluctuation field hμν
transforms as δhμν = ∂μξν + ∂νξμ, as above. The field Cμνλρ is then the linearized
Weyl tensor, defined as the completely trace-free part of the Riemann tensor built
from gμν .

C.4 Global Symmetries

Symmetries play an important role in quantum mechanics, just as they do in classical
mechanics. Symmetries are special because their existence allows exact statements
to be made about transition probabilities and about energy eigenstates.
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In quantum mechanics it is a theorem [41] that transformations that do not change
any transition probabilities can always be represented in terms of unitary operators.4

Being represented by a unitary operator means that the action of the symmetry on
any state can be written as

| ψ〉 → | ψ̃〉 = U | ψ〉, (C.43)

where U∗U = UU∗ = I, with I being the identity operator in the Hilbert space.
Probabilities remain unchanged, because 〈ψ̃1 | ψ̃2〉 → 〈ψ1 |U∗U | ψ2〉 = 〈ψ1 | ψ2〉.
Matrix elements of operators, A, remain unchanged under such transformations
because A → Ã = U AU∗, and so its matrix elements become: 〈ψ̃1 | Ã| ψ̃2〉 =
〈ψ1 |U∗U AU∗U |ψ2〉 = 〈ψ1 |A| ψ2〉.

The complete set of transformations, {ga}, that preserve all matrix elements in
this way forms a group, where group multiplication, g1g2, consists of convolution
(i.e. successive performance of the two individual transformations). Furthermore,
there can be (but need not be) an independent operator U (g) for each such transfor-
mation. These operators form a unitary representation inasmuch as U (g1)U (g2) =
U (g1g2).

A symmetry is defined to be any transformation of this type that does not change
the system’s hamiltonian:

H̃ = UHU∗ = H , (C.44)

and so [U , H] = 0. These form a subgroup of the group of matrix-element-preserving
transformations. Two classic consequences follow immediately from Eq. (C.44).

• Conservation: Writing each unitary symmetry as U = exp[iQ] defines a hermitian
charge, Q, whose quantum numbers for any state are conserved in time. This
follows because [U , H] = 0 implies [Q, H] = 0 and so – because the time-evolution
operator is U (t, t0) = exp[−iH (t − t0)] – then [Q, U (t, t0)] = 0 as well. Therefore,
if Q | ψ(t = t0)〉 = q | ψ(t0)〉 then (in Schrödinger picture)

Q | ψ(t)〉 = QU (t, t0) | ψ(t0)〉 = U (t, t0)Q | ψ(t0)〉 = q | ψ(t)〉. (C.45)

This expresses conservation in the usual sense that once a state is prepared to have
a particular value of Q then it has this same value for all later times.

• Spectrum degeneracy: It also follows from (C.44) that if two energy eigenstates
are related by a symmetry then they must have the same energy. That is, because
[U , H] = 0 if | ψ2〉 = U | ψ2〉 and H | ψi〉 = Ei | ψi〉, then

E2 | ψ2〉 = H | ψ2〉 = HU | ψ1〉 = UH | ψ1〉 = E1(U | ψ1〉) = E1 | ψ2〉, (C.46)

and because | ψ2〉 � 0 this means E1 = E2. Physically, this says that if a
transformation is a symmetry it should not affect energies; e.g. in a rotationally
invariant world a ruler has the same total energy regardless of whether it is laid
along the x, y or z axes.

For relativistic systems, it is usually true that symmetries commute with momen-
tum as well as energy, [U , Pμ] = 0. If so, then because E2

i (p) = p2 + m2
i it follows

that any two states related by U must have the same rest mass.

4 Or anti-unitary operators, as is the case for time-reversal (more about which in §C.4.3).
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All of these statements go over for quantum field theories as well, although for
some conclusions (like spectral degeneracy) it matters whether the system’s ground
state is invariant under the symmetry or not (that is, whether the symmetry is
spontaneously broken).

Just as for ordinary quantum mechanics the action of symmetries (besides time-
reversal) on states and operators is given by a unitary operator U , with | ψ̃〉 = U | ψ〉
and Õ = UOU∗. In particular, for creation and annihilation operators ãp = U apU∗

and ã∗p = U a∗pU∗, and so field operators transform as φ̃ = UφU∗ and so on.
If U |0〉 = |0〉 (which multiplying through by U∗ shows also implies U∗ |0〉 = |0〉)

then these transformations amongst creation operators also imply that the corre-
sponding particle states – call them | ψ(p)〉 = a∗p |0〉 and | ψ̃(p)〉 = ã∗p |0〉 – are related
by the action of U , since

| ψ̃(p)〉 = ã∗p |0〉 = Ua∗pU∗ |0〉 = Ua∗p |0〉 = U | ψ(p)〉. (C.47)

When this is true (C.46) implies these particles share the same energy. The above
argument shows why this implication also generally fails when U |0〉 � |0〉 (i.e. when
the symmetry is spontaneously broken). In this case, particles need not align into
degenerate multiples for a spontaneously broken symmetry, and the symmetry
instead partially acts to shift the vacuum itself (which by assumption is not
invariant).5

When a symmetry is not spontaneously broken then it can be linearly realized on
the fields themselves, as described in the main text in §4.2.1, with

φi → φ̃i := U (g) φiU∗(g) = φ j Gj
i . (C.48)

Applying two transformations in succession and using U (g1g2) = U (g2)U (g2) then
shows that the matrices Gi

j satisfy Gi
j (g1g2) = Gi

k (g1) Gk
j (g2).

It is not always true that symmetries can be realized linearly in this linear way,
with the general case being a nonlinear realization

φi → φ̃i = U (g) φiU∗(g) = ξi (φ, g), (C.49)

where ξi (φ, g) is potentially a nonlinear function of the φi . This is the case to which
one is led when a symmetry is spontaneously broken, as described in §4.2.2 (with
more details given in Appendix C.6).

C.4.1 Lie Algebra Summary

Many of the symmetries of practical interest are enumerated using continuous
parameters (like translations, rotations, chiral symmetries and isospin or gauge
transformations), making them Lie groups from the mathematical point of view. This
section steps back from the main line of development to summarize a few facts about
these groups, together with their related Lie algebras.

Of particular interest in physical applications are often explicit representations of
Lie groups and algebras in terms of matrices (that are often important in specific
physical applications). For the present purposes representations are simply examples

5 For translation-invariant ground states the very definitions of Q and U become delicate for sponta-
neously broken symmetries, at least for field theories in the infinite-volume limit – c.f. Eq. (C.82).
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of matrices or operators in a physical problem whose matrix multiplication rules
furnish examples of the underlying group multiplication rule. Eq. (C.48) provides
an example of this, with U (g1g2) = U (g1)U (g2) providing a unitary representation
of the group in the quantum Hilbert space, while the N × N matrices G(g1g2) =
G(g1)G(g2) provide a finite-dimensional representation of the group on the space
of N fields φi . Although (C.48) leaves ambiguous where the fields φi and φ̃i are
evaluated, for simplicity in what follows they are taken to be evaluated at the same
spacetime point (making the symmetry an ‘internal’ symmetry, as opposed to a
‘spacetime’ symmetry – see §C.4.2).

For Lie groups the abstract group elements and their explicit realizations are
labelled by continuous real parameters, ωa, with a = 1, · · · , Ng, and both U (ω) and
G(ω) are infinitely differentiable. (For instance, for rotations in three dimensions the
ωa could correspond to the angles of rotation about three orthogonal axes.)

Continuous symmetries are often efficiently characterized by their generators,
ta, defined by examining transformations arbitrarily close to the identity element:
g(ω) = I + iωata + O(ω2). It can be shown that the parameters ωa can be defined
in such a way that any group element that is continuously deformable to the identity
element can be written as an exponential of the generators: g(ω) = exp[iωata]. The
statement that a group is closed under multiplication implies that these generators
satisfy a set of commutation relations of the form

[ta, tb] = icdab td. (C.50)

The span of all linear combinations of such generators is called the Lie algebra
associated with the Lie group. The coefficients cdab = −cdba appearing here are
called ‘structure constants’, whose form encodes the multiplication law that defines
the underlying group.

Explicit representations of the Lie group also provide representations for the
corresponding Lie algebra. For infinitesimal transformations, g = 1 + iωata, the
unitary operator in the quantum Hilbert space becomes U (g) = I + iωaTa and
the representation matrices for the fields become G = I + iωaTa. These act on the
fields so that δφi = φ̃i − φi has the form

δφi (x) = iωa[Ta ,φi (x)] = iωa (Ta)j
i φ j (x). (C.51)

Because the operators U and the matrices G satisfy the same group multiplication
rule as do the group elements g, the operators Ta and the matrices Ta satisfy the
same commutation relations as do the generators ta: that is, [Ta, Tb] = icdabTd and
[Ta,Tb] = icdabTd, with the same structure constants as in (C.50).

Conjugate and Adjoint Representations

Any explicit representation of a Lie algebra, {Ta} say, satisfying

[Ta,Tb] = icdab Td, (C.52)

can be used to define two other representations. The first of these is found by
taking the transpose of (C.52), which shows that the operators Sa = −T T

a (where
the superscript ‘T’ denotes taking the transpose) also satisfy (C.52). For unitary
representations (those for which the matrices G are unitary) the Ta are Hermitian
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matrices and so Sa = −T T
a = −T ∗

a are also related by complex conjugation (not
Hermitian conjugation) to the Ta’s.

A second related representation can be built from the cdab’s themselves (and so
is more an intrinsic property of the group than of its specific representation in terms
of the Ta. To see why, notice that the associative property of matrix multiplication
ensures that the quantity [A, [B, C]] + [B, [C, A]] + [C, [A, B]] identically vanishes
for any three matrices A, B and C. Applying this Jacobi identity to three generators
of the Lie algebra then implies that

0 = [Ta, [Tb,Tc]] + [Tb, [Tc ,Ta]] + [Tc , [Ta,Tb]]

= −
(
cdbccead + cdcacebd + cdabcecd

)
Te. (C.53)

The bracket on the right-hand side of this equation therefore vanishes for any set
of structure constants. One way to read this identity is to say that the matrices Aa

with components (Aa)bc := icbac satisfy the commutation relation [Aa,Ab] =
icdabAd, with precisely the same structure constants as in (C.52), and so therefore
furnish another representation – called the adjoint representation – of the same Lie
algebra.

Finite-Dimensional Unitary Representations

In physical situations continuous symmetry groups often arise as explicit finite-
dimensional unitary matrices, such as for the 3 × 3 orthogonal matrices – i.e. O(3)
transformations – describing rotations in space, or more generally the internal N ×N
unitary matrices – i.e. U (N ) transformations – amongst N complex fields, ψi . This
turns out to mean that a special role is often played in physics by compact groups,
for which the parameter space of the group is a compact set.

Compact groups play a special role because it is a theorem that only compact
groups have finite-dimensional, unitary and faithful matrix representations.6 (The
Lorentz group, for instance, is not compact although its subgroup of spatial rotations
is. Consequently, as found explicitly in §A.2.3 say, although rotations can be
represented using finite-dimensional unitary transformations, any finite-dimensional
representations of boosts cannot be unitary.)

This section summarizes some useful properties satisfied by representations built
from finite-dimensional unitary matrices, for which G† = G−1 and so T †

a = Ta if
G(ω) = exp[iωaTa]. Because the generators are finite-dimensional and hermitian,
the quantity

γab = Tr (TaTb), (C.54)

is both symmetric and positive definite (and so can be regarded as a metric, called the
group’s Killing metric). Linear combinations of the generators can always be chosen
to ensure that

γab = δab (C.55)

6 A representation is faithful if there is a one-to-one correspondence between the group elements and the
matrices which represent them. If the group of interest is defined by a finite-dimensional and unitary
representation, this representation is by definition faithful.
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(such as is true for the standard Pauli-matrix representation of SU (2) – i.e. 2 × 2
unitary matrices with unit determinant – for which Ta = 1

2 σa for a = 1, 2, 3). This
convention for the generators of compact groups is usually assumed to have been
made throughout this book.

The metric γab can be used to build a completely covariant version of the structure
constants:

cbca := cdbc γda. (C.56)

Its definition automatically implies that cabd = −cbad , but when the generators are
chosen so that γab = δab it turns out that cabd is completely antisymmetric under
the interchange of any two of its indices.

Real Unitary Representations

There is also no loss of generality in assuming representation matrices to be real:
g = g∗, because any complex representation can always be decomposed into its real
and imaginary parts. Although this can always be done, the resulting representation
need not be irreducible. For reducible representations there is a basis in which all
group elements can be written in a block-diagonal form:

G =
�����
G(1)

. . .
G(n)

����� . (C.57)

The unitarity and reality of the group elements, G, then imply the matrices Ta are
antisymmetric and imaginary:

Ta = T †
a = −T ∗

a = −T T
a . (C.58)

Subgroups and Subalgebras

When describing a symmetry-breaking pattern where G breaks to H ⊂ G it is
convenient to choose a basis of generators, Ta, for G that includes the generators,
ti , of H as a subset. To this end, decompose the generators Ta, a = 1, · · · , NG into
the subset ti , i = 1, · · · , NH and Xα, α = NH + 1, · · · , NG, so the Xα’s constitute a
basis of generators not included in the unbroken subalgebra. Here NG = dim G is the
number of linearly independent generators of the Lie algebra of G and NH = dim H
is its counterpart for H . Since H is itself a group, its closure under multiplication –
i.e. the statement that h1, h2 ∈ H implies h1h2 ∈ H – ensures that

ti t j − t j ti = i ci jk tk , (C.59)

with no Xα’s on the right-hand-side, or (schematically) ci jα = 0.
The Xα are not contained in the algebra of H and need not themselves generate

a group. Instead, they are said to generate the space, G/H , of cosets. A coset is an
equivalence class defined to contain all of the elements of G that are related by the
multiplication by an element of H . In the applications of §C.6, the Xα’s represent
those generators of the symmetry group, G, that are spontaneously broken, and (in
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relativistic applications for internal symmetries) a Goldstone mode is expected for
each independent choice of α.

When the generators of G are chosen to ensure the complete antisymmetry of the
cabd’s then the group property of H (summarized above as ci jα = 0) also implies that
ciα j = 0. This says

[ti , Xα] = i ciαβXβ, (C.60)

with no t j’s on the right-hand side. Equivalently, this states that the Xα’s form a
(possibly reducible) representation of H . Once exponentiated into a statement about
group multiplication, the condition [t, X] ∼ X implies that for any h ∈ H

hXαh−1 = LβαXβ. (C.61)

where the coefficients, Lβα (h), form a representation of H .
By contrast, the commutator [Xα, Xβ] need not have a particularly simple form,

and can be proportional to both Xγ’s and ti’s. (The special case of a coset G/H for
which [Xα, Xβ] does not contain any Xγ’s is called a symmetric space.)

C.4.2 Internal vs Spacetime Symmetries

Notice that the above discussion distinguishes unitary transformations (those that
preserve matrix elements) from symmetries (those unitary transformations that
commute with the hamiltonian). This notion of symmetry is adequate for internal
symmetries – i.e. those that do not act on spatial position or time, so Uφ(x)U∗ =

φ̃(x) with both sides evaluated at the same position.
A broader definition is needed for spacetime symmetries, for which the transfor-

mations act both on the fields and the spacetime point: Uφ(x)U∗ = φ̃( x̃), with
x̃ μ � xμ. Lorentz transformations are simple examples where this matters, since for
these H generally is not invariant, since it is part of a 4-vector: UPμU∗ = ΛνμPν ,
with P0 = H . In this case a symmetry is defined instead by the invariance of the
action, S =

∫
dt L, rather than of H . For scattering problems transformations that are

symmetries in this sense also commute with the S-matrix.
The Coleman–Mandula theorem provides an important constraint on the kinds of

continuous spacetime symmetries that can be present within interacting relativistic
quantum field theories. The Coleman–Mandula theorem [315] states that the most
general possible non-Grassman7 transformations that commute with a (nontrivial –
i.e. S � I) S-matrix are:

U = exp

[
i
2
ωμν Jμν + iaμPμ + iωaQa

]
(C.62)

with generators Pμ, Jμν = −Jνμ, and Qa.
Ten of these are no surprise in a relativistic theory: the six generators Jμν satisfy

the commutation relations appropriate to the Lorentz group and the four Pμ generate
spacetime translations and so mutually commute (and fill out the usual 4-momentum
operator). The commutation relations between Jμν and Pμ fill out the algebra of

7 This is the assumption that supersymmetric theories violate; see [467] for the generalization to this case.
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the Poincaré group of Lorentz transformations and translations, making these the
defining symmetries of special relativity.8

The power of the Coleman–Mandula theorem is what it says about the remaining
generators: the Qa’s. These must be internal symmetries, and although they can fail
to commute quietly amongst themselves, [Qa, Qb] = icdabTd , the theorem states
that they must always commute with the spacetime symmetries (i.e. the Poincaré
generators): [Pμ, Qa] = 0 and [Jμν , Qa] = 0. The theorem is proven by assuming it
to be false, and then showing that the additional conservation laws for the spacetime
symmetries are so strong that they generically force the scattering matrix to be
trivial: S = I.

C.4.3 Discrete Symmetries

Discrete symmetries (those that are not described by continuous parameters) are
also important for physics. Some of these can be internal symmetries, such as an
example like φ(x) → −φ(x), which defines a discrete Z2 symmetry in field space.
Such symmetries constrain the kinds of interactions that can arise (forbidding, in the
Z2 example, terms involving odd powers of fields). Their representations can also
be used to classify states (in the Z2 case states can be chosen to either change sign or
be invariant under the group’s action).

Spacetime discrete symmetries are also important. These are defined to be those
Poincaré transformations that cannot be continuously deformed to the unit element.
There are two such discrete transformations within the Lorentz group. To see why,
recall that the general Lorentz transformation is defined by the condition

ΛμνΛ
ρ
λημρ = ηνλ. (C.63)

This condition throws up two obstructions to being able to deformΛμν to the identity
transformation. One of these arises because (C.63) implies that the determinant of
the matrix Λμν must be ±1, but only those with determinant +1 can be continuously
connected to the identity matrix. Similarly, (C.63) requires |Λ0

0 | ≥ 1 and so any
matrix with Λ0

0 < −1 also cannot be continuously related to the identity matrix.
A general solution Λμν to (C.63) can be written as a combination of a matrix

continuously connected to the identity, Λμν = (eω)μν (called a ‘proper’ Lorentz
transformation) times a product of one or both of the two specific matrices

Pμν :=
������

1
−1

−1
−1

������
and Tμ

ν :=
������
−1

1
1

1

������
, (C.64)

where P (parity) acts to reflect all spatial coordinates while T (time-reversal) flips
the sign of time.

These matrices show why time reversal is the lone symmetry that cannot be
represented by a unitary operator. Denoting by U (Λ, a) the representation of the

8 For theories involving only massless particles this symmetry group is sometimes a bit larger; comprising
the conformal group that also includes rescalings, xμ → sxμ , and conformal boosts.
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Lorentz transformation Λμν and spacetime translation aμ, the group multiplication
law for the Poincaré group implies

U (Λ1, a1)U (Λ2, a2) = U (Λ1Λ2,Λ1a2 + a1). (C.65)

Denoting the operator that represents time-reversal by T = U (T , 0), this implies that

TU (Λ, a)T −1 = U (TΛT−1, Ta), (C.66)

and so for Λ = I and infinitesimal aμ this says T (iPμ) T −1 = T ν
μiPν and so

T iH T −1 = −iH and T iPT −1 = iP.
Now comes the main point. If T were unitary then it would satisfy T H T −1 =

−H , which is inconsistent with H being bounded from below (as it typically is for
stable systems). But if it is antiunitary then T iH T −1 = −iT H T −1, allowing T to
commute with H . For antiunitary T it then follows that T PT −1 = −P.

A third important discrete symmetry interchanges particles with antiparticles
(with momenta and spins held fixed). This acts on creation and destruction operators
by C ai C−1 = ηc āi , an operation called charge-conjugation. Here ηc is a phase that
can differ for different particle types. The action of charge conjugation on fields is
found by applying the definition to the expansion of fields in terms of creation and
annihilation operators. For example, for a scalar field this leads to

C φ(x) C−1 =

∫
d3p√

(2π)32Ep

[
C ap C−1eip ·x + C ā∗p C−1e−ip ·x

]
= ηc

∫
d3p√

(2π)32Ep

[
āp eip ·x + a∗p e−ip ·x

]
= ηcφ

∗(x), (C.67)

and so acts as complex conjugation.
The three discrete symmetries, C, P and T , are individually symmetries of

electromagnetism, gravity and the strong interactions, but all three are separately
broken by the weak interactions. The action of each of these three symmetries on
various familiar physical quantities is summarized in Table C.1. (For Aμ the signs
given in this table include the phases – like ηc in (C.67) – appearing in the parity,
time-reversal and charge-conjugation transformations of the electromagnetic field.)

For relativisitic systems it turns out to be a theorem that any real and local action,
S =

∫
d4x L, turns out to be always invariant under the combined combination of all

three symmetries: CPT (not surprisingly, a result called the CPT theorem). There is a

Table C.1 The transformation properties of common quantities under parity (P), time-reversal (T )
and charge-conjugation (C)

Quantity P T C Quantity P T C

Position x − + + Momentum p − − +

Spin s + − + Helicity p · s − + +

Current j − − − Charge density j 0 + + −
Vector potential A − − − Scalar potential A0 + + −
Electric field E − + − Magnetic field B + − −
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simple reason for this. The action of C complex conjugates all the fields in L and the
anti-unitary nature of time-reversal complex conjugates all couplings in L, so their
combined effect takes L → L∗. But the lagrangian is hermitian so this has no effect.
Time reversal and parity also together act to reverse the sign of all components of any
4-vector, (PT ) μνV ν = −V μ. But this also has no effect because there are always an
even number of such 4-vectors because this must be true if L is to be a Lorentz scalar.

C.5 Gauge Interactions

Consider next a collection of quantum fields, φi , that transform under linearly
realized infinitesimal internal symmetries of the form φi (x) → φ̃i (x) with

δφi (x) := φ̃i (x) − φi (x) = iωa (Ta)i j φ
j (x). (C.68)

This is a global (or rigid) symmetry when the transformation parameter ωa is
independent of spacetime position.9 But an important role is also played by local
symmetries, for which ωa = ωa (x) is a function of spacetime [468].

Since global symmetries are special cases of local ones, it is more difficult to make
a theory invariant under a local symmetry than for a global one. To see this explicitly,
consider an action for a collection of fields, φi , where L = L(φ, ∂φ) is a function of
both the fields and their first derivatives. The variation of L under (C.68) is

δL =

(
∂L

∂φi

)
iωa (Ta)i j φ

j +

(
∂L

∂(∂μφi)

)
∂μ
[
iωa (Ta)i j φ

j
]

(C.69)

=

(
∂L

∂φi
iωa (Ta)i j φ

j +
∂L

∂(∂μφi)
iωa (Ta)i j ∂μφ

j

)
+

(
∂L

∂(∂μφi)

)
i∂μω

a (Ta)i j φ
j .

The first two terms on the right-hand side vanish whenever L is invariant under a
global symmetry like (C.68), but with the parameter ωa spacetime independent.

Eq. (C.69) shows that even if a lagrangian is arranged to be invariant under
global transformations, it need not be invariant under local ones, transforming in
a universal way

δL =

(
∂L

∂(∂μφi)

)
i∂μω

a (Ta)i j φ
j = j

μ
a ∂μω

a, (C.70)

where j
μ
a = [∂L/∂(∂μφi)]i(Ta)i jφ j is the Noether current for the global symmetry,

as defined by Eq. (4.7) in §4.1.1. The universal form of this transformation suggests a
way to build a locally invariant lagrangian. Juxtaposing the fact that (C.70) involves
∂μωa and that massless spin-one particles can only be represented by a field Aμ
if it transforms as δAμ = ∂μω, as in Eq. (C.40), suggests that a locally invariant
lagrangian might be constructed by adding a new term, Lj = − j

μ
a Aa

μ, in whose
variation the transformation δAa

μ = ∂μω
a would cancel (C.70).

Adding Lj need not be the whole story, because, in general, the current j
μ
a

also transforms under the transformation (C.68). This transformation can also be
inferred universally since the symmetry generators, Ta, themselves are obtained by

9 The attentive reader will notice that the matrix Ta used in (C.68) is the transpose of the one used in
(C.51). This is done so that the signs found in this section agree with those widely used in the literature.
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integrating j0
a over all space. Since the generators satisfy [Ta, Tb] = icdab Td , the

currents must transform (up to terms that vanish when integrated over space) as

δ j
μ
a = iωb

[
Tb , j

μ
a

]
= cdab ω

b j
μ
d

. (C.71)

This suggests modifying the transformation rule for Aa
μ to also transform in the

adjoint representation:

δAa
μ = ∂μω

a + cabc ω
b Ac

μ. (C.72)

so that δ( j
μ
a Aa

μ) = j
μ
a ∂μωa.

To see whether this works, start with a more general lagrangian density L =
L(φ, ∂φ, A, ∂A) and ask whether it can be invariant under the transformations (C.68)
and (C.72). The variation of L then is

δL =

(
∂L

∂φi

)
iωa (Ta)i j φ

j +

(
∂L

∂(∂μφi)

)
∂μ
[
iωa (Ta)i j φ

j
]

(C.73)

+

(
∂L

∂Aa
μ

) (
∂μω

a + cabc ω
b Ac

μ

)
+

(
∂L

∂(∂νAa
μ)

)
∂ν

(
∂μω

a + cabc ω
b Ac

μ

)
,

and for this to vanish for arbitrary local functions ωa (x) the coefficients in it of ωa,
∂μωa and ∂μ∂νωa must separately vanish. The coefficient of ∂μ∂νωa vanishes if

∂L

∂(∂μAa
ν )
= − ∂L

∂(∂νAa
μ)

, (C.74)

which means that Aa
μ appears differentiated in L only through the antisymmetric

combination f aμν := ∂μAa
ν − ∂νAa

μ.
Changing independent variable from ∂μAa

ν to f aμν , the coefficient of ∂μωa vanishes
when (

∂L

∂(∂μφi)

)
i(Ta)i j φ

j +
∂L

∂Aa
μ
+ 2 �� ∂L∂ f bμν

�� cbac Ac
ν = 0. (C.75)

To extract the implications of this condition, consider first terms in L that do not
depend on φi or its derivative at all. In this case, (C.75) states that f aμν and Aa

μ can
only appear together in L, though the one combination

Fa
μν = f aμν + cabc Ab

μAc
ν = ∂μAa

ν − ∂νAa
μ + cabc Ab

μAc
ν . (C.76)

What is special about this quantity is that the dependence on ∂μωa cancels when it
is transformed using (C.72), leaving δFa

μν = cabcωbFc
μν .

Re-introducing a dependence on φi and trading ∂L/∂Aa
μ for (∂L/∂Aa

μ)F (with the
subscript indicating the derivative is taken at fixed Fa

μν instead of fixed ∂μAa
ν or f aμν),

condition (C.75) becomes(
∂L

∂(∂μφi)

)
i(Ta)i j φ

j +

(
∂L

∂Aa
μ

)
F

= 0, (C.77)

which implies ∂μφi must always appear together with Aa
μ through the covariant-

derivative combination

(Dμφ)i := ∂μφi − i(Ta)i j A
a
μφ

j . (C.78)
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As is easily verified, ∂μωa also cancels in the transformation rule δ(Dμφ)i =
iωa (Ta)i j (Dμφ) j . The lesson from the ∂μωa term is that Aa

μ only appears in L as
part of (Dμφ)i or Fa

μν , and never on its own. Notice that the covariant derivative and
field strength are related by the following easily proven identity

[Dμ, Dν]φ = −i(Taφ) Fa
μν . (C.79)

Finally, setting the coefficient of undifferentiated ωa to zero gives(
∂L

∂φi

)
i(Ta)i j φ

j +

(
∂L

∂(Dμφi)

)
i(Ta)i j (Dμφ) j + �� ∂L∂Fb

μν

�� cbac Fc
μν = 0, (C.80)

which simply states that L should be built from φi , (Dμφ)i and Fa
μν in a way that is

invariant under global transformations (for which ωa is a constant).
Here is the point: a global internal symmetry can be promoted to a local internal

symmetry by introducing a new massless spin-one particle for each symmetry
generator, and then building the lagrangian out of undifferentiated fields like φi ,
covariant derivatives like (Dμφ)i and covariant field strengths like Fa

μν .

C.5.1 Higgs Mechanism

Historically, when promoting global to local symmetries the need for massless spin-
one particles was seen as a handicap. Although it worked splendidly for the massless
photon in quantum electrodynamics, the prospects for applications elsewhere seemed
limited (the phenomenon of confinement prevented the discovery of massless gluons
until later).

The modern understanding wherein all fundamental spin-one particles, massless
or not, are gauge bosons had to await the discovery (by Brout and Englert [55],
Guralnik, Hagan and Kibble [56, 57], Higgs [58, 59] and others, building on earlier
work by Anderson [60] for nonrelativistic systems) of what is widely called the
Higgs mechanism. This mechanism shows why the spin-one particles can be massive,
provided they are associated with local symmetries that are spontaneously broken.

It is fundamental that systems with spontaneously broken symmetries do not have
unique ground states, because by assumption the action of U (g) on one ground
state gives a different state, |0̃〉 := U |0〉 � |0〉. But because a symmetry satisfies
UH = HU the state |0̃〉 has precisely the same energy as does |0〉, making it a
second ‘ground’ state.

Related to this, the operators U (g) = exp[iQ], and their generators Q, are
less useful when dealing with spontaneously broken symmetries in field theories,
particularly in situations where the spatial directions are infinitely large and the
ground state is translation invariant [43]. This is because in a field theory Noether’s
theorem ensures that

Q =
∫

d3x j0(x), (C.81)

arises as the integral over a local current density. It follows then that the state Q |0〉 is
not normalizable (and so does not lie within the Fock space built apon |0〉), because

| |Q |0〉| |2 = 〈0|QQ |0〉 =
∫

d3x 〈0|Q j0(x) |0〉 =
∫

d3x 〈0 |Q j0(0) |0〉, (C.82)
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where the first equality uses Q∗ = Q, the second equality uses (C.81) and the
last equality uses the representation of translation symmetries to write j0(x) =
eiP ·x j0(0)e−iP ·x , together with the translation invariance of Q and the ground state:
[Q, Pμ] = 0 and Pμ |0〉 = 0. The final result diverges like the volume of space because
the integrand does not depend at all on xμ.

Because of this it is preferable to have a more useful proxy for spontaneous
symmetry-breaking than the evaluation of U (g) |0〉 or Q |0〉. The existence of a
nonzero order parameter fills this role, by providing a simpler-to-use criterion for
the non-invariance of the vacuum. For example, imagine two fields that are related
by a symmetry, such as if10

ψ(x) = i[Q,φ(x)]. (C.83)

Then ψ(x) is an order parameter for the symmetry generated by Q if its vacuum
expectation value (vev) is nonzero: v := 〈0| ψ(x) |0〉 � 0. A nonzero vev is a proxy for
spontaneous symmetry-breaking because an unbroken symmetry implies Q |0〉 = 0 –
and its conjugate 〈0|Q = 0 – and both of these arise in the right-hand side of (C.83)
once its vacuum expectation-value is taken. Since unbroken symmetry implies that
v = 0, it follows that nonzero v implies that the symmetry must be broken.

In order not to break any spacetime symmetries the order-parameter field must be
a Lorentz-scalar and independent of xμ. To see how this works at weak couplings,
where semiclassical reasoning is valid, consider then a collection of scalar fields,
φi , i = 1, · · · , N , which without loss of generality can be chosen to be real. Suppose
the particles represented by these fields couple to a collection of spin-one particles
represented by Aa

μ, with local symmetry group δφi = iωa (Ta)i j φ
j and δAa

μ =

∂μωa + cabcωb Ac
μ. A lagrangian density for these particles involving only up to two

derivatives is

L = −V (φ) − 1
2

Zi j (Dμφ)i (Dμφ) j − 1
4g2 γabFa

μνFbμν , (C.84)

where Zi j are a collection of numerical coefficients (that can be set to δi j by
appropriately redefining the fields), γab is the Killing metric of Eq. (C.54), the
covariant derivative is Dμφ = ∂μφ − iTa Aa

μφ and Fa
μν is as defined in (C.76) with

cabc the structure constants associated with the generators Ta.
For the present purposes the important feature is to have a potential energy, V (φ),

whose minimum occurs for φi � 0. This is easily arranged following the example
of the toy model of §1.1. For instance, for symmetries that preserve the quantity
φTφ =

∑
i (φ

i)2, the potential

V (φ) =
λ
4

(
φTφ − v2

)2
, (C.85)

does the job. For positive real parameters λ and v2 this potential is strictly non-
negative and vanishes for the minimizing surface φTφ = v2. This does not pick
a unique solution for φi because it contains all configurations related by the

10 Notice that commutators like δφ(x) = i[Q,φ(x)] are usually well-defined even if the action of Q

on |0〉 is not. This is because the equal-time commutators of fields are usually local, such as the
canonical commutation relations Π(x, t),φ(y, t)] = −iδ3 (x− y), for which the delta-function removes
the otherwise diverging spatial integration.
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symmetries that preserve φTφ. Each of these provides an equally good vacuum, and
all are equivalent to the extent that they are related by symmetries.

For concreteness’ sake choose the vacuum to be the one with 〈φ1〉 = v and
all others zero, and expand all quantum fields about this semi-classical vacuum
expectation value: φ1 = v + φ̂1 and φi = φ̂i for i � 1. The leading correction
to the classical limit keeps only terms quadratic in the φ̂i and Aa

μ.
The revealing terms in this expansion are those arising within the scalar kinetic

term,

Lsk = −
1
2

Zi jD
μφiDμφ

j = −1
2

Zi jv
2(Ta)i1(Tb) j1 Aa

μAbμ + iZi jv(Ta)i1 Aa
μ∂

μφ̂ j + · · · .

(C.86)

The second term on the right-hand side is unusual inasmuch as it mixes scalar and
vector degrees of freedom. The good news is that it is always possible to perform
a gauge transformation to completely remove this term (a choice called ‘unitary
gauge’). The gauge transformation required to reach this choice absorbs one scalar
degree of freedom into Aa

μ for each independent symmetry generator that is broken
by the vacuum. It is the addition of these new states that provides the missing
longitudinal spin states required to promote the two spin-states of a massless spin-
one particle to the three spin states of a massive one.

Once this is removed, the first term on the right-hand side is revealed as a spin-
one mass term – compare with (C.35). Canonically normalizing fields (which sets
Zi j = δi j) and computing the particle energies at zero momentum gives the spin-one
mass matrix

μ2
ab = V TTaTbV , (C.87)

where V i = 〈φi〉 denotes the field-vector containing the field vacuum expectation
values. The spin-one particles indeed acquire a mass when their associated gauge
symmetry becomes spontaneously broken.

C.5.2 General Relativity

A short summary of the basics of General Relativity (GR) is also appropriate here,
since gravitational interactions arise at several points within the main text. Although
a proper discussion goes well beyond the scope of this book, this section suffices to
collect some of the main formulae.

There is a strong analogy between GR and gauge theories of massless nonabelian
spin-one particles, like QCD. Both involve massless states (though the gluons of
QCD, unlike the graviton of GR, are prevented from escaping to infinity as massless
states due to the growth of the strong force with distance). Both involve non-abelian
local symmetries: for QCD these are the local SUc (3) colour transformations of the
Standard Model, while for GR these are a combination of local diffeomorphisms (and
local Lorentz transformations, when coupled to fields with spin). Both also involve
nonlinear self-interactions wherein the force carriers themselves carry charges (that
is, gluons carry colour and gravitons carry energy and momentum). This makes
them unlike abelian massless spin-one particles like photons, which do not carry
electric charge.
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The basic field for GR is the spacetime metric itself: gμν (x). The local symmetries
in this case correspond to local diffeomorphisms of the type xμ → xμ+ξμ (x), under
which gμν transforms linearly, like a covariant rank-two tensor,

δgμν = Lξgμν := ξλ∂λgμν + ∂μξλgλν + ∂νξλgμλ, (C.88)

where the right-hand side defines the Lie derivative Lξ of the metric. Other fields,
such as scalar or vector fields, similarly transform under diffeomorphisms as their
index content suggests

δφ = Lξφ := ξλ∂λφ and δVμ = LξVμ = ξ
λ∂λVμ + ∂μξ

λVλ, (C.89)

and so on.

Covariant Derivatives and Curvatures

Just like for local gauge invariance, local lagrangian densities that are invariant under
these transformations can be built by starting with a lagrangian that is invariant under
a global symmetry (in this case, the spacetime symmetry of Poincaré invariance)
with two provisos: all ordinary derivatives get promoted to covariant derivatives,
∂μ → Dμ, and the gauge field itself (in this case gμν) appears through a covariant
field strength – in this case, the Riemann tensor (see below) – and its (covariant)
derivatives.

The covariant derivatives appropriate for scalars and vectors transforming as in
(C.89) are

Dμφ := ∂μφ , DμVν := ∂μVν − ΓλμνVλ and DμV ν := ∂μV ν + ΓνμλV λ, (C.90)

where the Christoffel symbol is defined by (A.7), reproduced for convenience here:

Γ
μ
νλ =

1
2
gμα [∂νgαλ + ∂λgαν − ∂αgνλ] . (C.91)

Here, gμν denotes the inverse metric, defined by the condition gμνgνλ = δ
μ
λ. With

the above definitions the metric is covariantly constant:

Dμgνλ = 0 = Dμg
νλ. (C.92)

Notice that the definitions (C.90) ensure that covariant derivatives satisfy the usual
product rule for derivatives: e.g.

∂μ (VλW λ) = Dμ (VλW λ) = (DμVλ)Wλ + Vλ (DμW λ). (C.93)

Notice also that antisymmetrized ordinary derivatives are already covariant, inas-
much as

DμVν − DνVμ = ∂μVν − ∂νVμ, (C.94)

so (for example) the relation between electromagnetic field strength and vector
potential does not change in the presence of a gravitational field. It is this observation
about how Christoffel symbols cancel in antisymmetric tensors that underlies the
study of differential forms and exterior derivatives: covariant quantities that can be
defined without making reference to a metric.
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The covariant field strength containing derivatives of gμν appropriate for diffeo-
morphisms is the Riemann tensor, Rμνλρ, as defined by (A.6), again reproduced here:

Rμνλρ = ∂ρΓ
μ
νλ + Γ

μ
ρσΓ

σ
νλ − (ρ ↔ λ). (C.95)

This definition implies that the covariant version of this tensor, Rμνλρ = gμσRσνλρ,
has the important symmetry properties Rμνλρ = Rλρμν = −Rνμλρ = −Rμνρλ as well
as satisfying the ‘Bianchi’ identities

Rμνλρ + Rμλρν + Rμρνλ = 0, (C.96)

and

DσRμνλρ + DλRμνρσ + DρRμνσλ = 0. (C.97)

Finally, the Riemann tensor is related to the commutator of two covariant
derivatives; a straightforward use of the definitions implies the gravitational analog
of (C.79),

[Dμ, Dν]V
λ = RλνρμV ρ. (C.98)

Generally Covariant Actions

A local action arises as an integral over a lagrangian density, S =
∫

d4x L. The
lagrangian density cannot be a scalar under diffeomorphisms, however, because L
must transform in such a way as to cancel the transformation of the measure d4x.
This is accomplished if L =

√−g L, where g = det(gμν) < 0 is the determinant of
the metric and L is a scalar under diffeomorphisms (i.e. transforms as a scalar field).

The appearance of
√−g in the lagrangian density makes the following identity

very useful:

∂μ (
√
−g V μ) = Dμ (

√
−g V μ) =

√
−g DμV μ (C.99)

for any 4-vector V μ. This shows that integrals of the form
∫

d4x
√−g DμV μ are

total divergences and so depend only on boundary information.
Because the Riemann tensor already involves two derivatives of the metric, it

should appear linearly in the kinetic term for the metric. Because of the symmetries
there are two types of tensors that can be built by taking traces of the Riemann tensor.
The first is the Ricci tensor, Rμν := Rλμλν = Rνμ, and the second is the Ricci scalar
R = gμνRμν . The Einstein–Hilbert lagrangian for gravity coupled to matter is then
given by

L =
√
−g
[
− 1

2κ2 R + Lm(φ, Aμ)

]
, (C.100)

where κ2 = 8πGN and Lm denotes the generally covariant action for matter fields,
given (for example) for a charged scalar field and electromagnetism by

Lm = −V (φ∗φ) − gμνDμφ
∗ Dνφ −

1
4
gμνgλρFμλFνρ, (C.101)

where Dμφ = (∂μ − iqAμ)φ and Fμν = ∂μAν − ∂νAμ.
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The Einstein equations obtained from varying this action with respect to gμν are

Rμν − 1
2

R gμν + κ2Tμν = 0, (C.102)

where

Tμν :=
2
√−g

(
δSm
δgμν

)
, (C.103)

and so on.

C.5.3 Spacetime Symmetries Reloaded

Once the metric is recognized as being a dynamical field it is worth revisiting the idea
of a spacetime symmetry. Recall that in the bulk of this book spacetime symmetries
are regarded as those transformations

δxμ = ξ μ (x) (C.104)

that leave the Minkowski metric invariant: δ(ημν dxμ dxν) = 0, or

δημν = Lξημν := ξλ∂λημν + ∂μξληλν + ∂νξλημλ = 0 (C.105)

(compare with Eq. (C.88) which defines the transformation for a general metric). The
general solution to this condition led to the Poincaré group: ξμ = aμ +ωμνxν where
aμ and ωμν = −ωνμ (with ωμν = ημλωλν) are constant parameters representing
translations and Lorentz transformations.

Generally covariant theories provide a new context for these transformations,
because for these the action is invariant under a much broader set of transformations:
general diffeomorphisms corresponding to (C.104) and (C.88) for general gμν (x)
and ξμ (x). Within this new context gμν = ημν is a specific solution to the field
equations and so can be regarded as being the analog of a field expectation value:
〈gμν (x)〉 = ημν in much the same way that the field φ acquires a nonzero expectation
value 〈φ(x)〉 = v in the ground state of the toy model of §1.1.

From this point of view Eq. (C.105) simply identifies that subset of symmetry
transformations that leaves the metric’s expectation value unchanged – that is, are
not spontaneously broken by 〈gμν〉 = ημν . More generally, the diffeomorphisms
that leave a generic metric unchanged are called isometries and must satisfy δgμν =
Lξgμν = 0, and so

ξλ∂λgμν + ∂μξ
λgλν + ∂νξ

λgμλ = Dμξν + Dνξμ = 0, (C.106)

where the first equality follows from the definition of the covariant derivative and
uses the definition ξμ := gμλξλ. Any solution ξμ to (C.106) is called a Killing
vector field, and such fields need not exist for arbitrary metrics. From this point of
view (C.105) states that Poincaré transformations are the isometries of Minkowski
spacetime.
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Conserved Currents

These observations provide another way to identify (and count) conserved currents,
at least for gauge symmetries whose transformation parameters are spacetime-
independent.

Consider first (for simplicity) an abelian internal local symmetry that acts only
on some matter fields through a transformation rule, δφi = ω(x) f i (φ), and on the
gauge potential δAμ = ∂μω. The matter action, Sm[φ, Aμ], for the fields φi must
be invariant under the gauge symmetry, and this makes it depend on Aμ through the
covariant derivative Dμφi . Invariance means Sm satisfies

δSm =
∫

d4x

[
δSm
δφi (x)

ω(x) f i +
δSm
δAμ (x)

∂μω(x)

]
= 0 (C.107)

for any field configurations φi (x) and Aμ (x) and for any symmetry parameter ω(x).
If this is specialized to a solution to the φi field equation, δSm/δφi = 0, then the
first term vanishes leaving the result11

0 =
∫

d4x Jμ∂μω = −
∫

d4x ω (∂μ Jμ), (C.108)

where the second equality performs an integration by parts (and discards the surface
term), and defines the current

Jμ :=
δSm
δAμ (x)

. (C.109)

Since (C.108) must vanish for any ω(x) it must be true that Jμ as defined in
(C.109) is conserved, in the sense that the φi equations of motion imply that ∂μ Jμ =
0. It is easy to verify in simple examples that this definition of the current agrees
with the Noether-current derivation for internal symmetries given in §4.1.1.

The same logic also goes through for spacetime symmetries in generally covariant
systems, and provides a more systematic way to count currents. In this case, it is the
metric, gμν , that plays the role of the gauge potential, but otherwise the argument
goes through identically. Consider then a matter action Sm[φi , gμν] that is generally
covariant in the sense that it is unchanged by some transformation δφi = Lξφi and
δgμν = Lξgμν:

δSm =
∫

d4x

[
δSm
δφi (x)

Lξφ
i +

δSm
δgμν (x)

Lξgμν

]
= 0. (C.110)

Specializing to configurations satisfying the φi equations of motion and using the
definition ofLξgμν given in the first equality of (C.106) then allows (after integration
by parts) Eq. (C.110) to be rewritten as

0 =
∫

d4x
√
−g TμνDμξν = −

∫
d4x

√
−g ξν DμTμν , (C.111)

and so (because ξν is arbitrary) the stress-energy tensor, Tμν , defined by (C.103),
must be covariantly conserved, in the sense that

DμTμν = 0. (C.112)

11 The gauge field does not in general satisfy δSm/δAμ = 0 even for classical fields because Sm only

consists of the matter action and does not include, for example, the Maxwell action − 1
4 FμνF

μν .
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This definition of the conserved stress-energy has the enormous advantage that it
is what appears in the Einstein equations, (C.102), and so is precisely what gravity
couples to.

For any specific metric that has an isometry, in the sense that the second equality
of (C.106) is satisfied for some ξμ, a standard conserved current can be defined for
each isometry,

jμ = Tμνξν , (C.113)

that satisfies Dμ jμ = 0 – as can be seen using Eqs. (C.112) and Dμξν + Dνξμ = 0
(i.e. Eq. (C.106)). In the special case of flat Minkowski space these are the conserved
currents for Poincaré invariance, but (C.113) shows that they are all really built from
one basic quantity: the stress-energy tensor, Tμν .

C.6 Nonlinear Realizations

The nonlinear realization used to implement spontaneously broken symmetries in an
effective theory can be less intuitive than is the linear realization used for unbroken
symmetries. But it is worth understanding given the widespread appearance of
Goldstone bosons throughout physics.

This appendix derives the ‘standard’ nonlinear realization for the general case of
an internal symmetry group G spontaneously broken down to a subgroup H ⊂ G.
Following steps initially taken by [12, 13] and using the notation of [107] this is
done by generalizing the arguments used for the abelian broken symmetry presented
in the toy model of the main text. Since half the art of constructing nonlinear
realizations involves choosing variables that transform conveniently, the first steps in
this construction motivate the choices to be made by describing a simple non-abelian
version of the toy model.

C.6.1 A Nonabelian Toy Model

To set up the standard transformation law, consider N real scalar fields, φi , i =
1, . . . , N , arranged for convenience into an N-component column vector, Φ. There is
no loss of generality in using real fields, since any complex fields can be decomposed
into real and imaginary parts.

The non-abelian toy model is defined by the lagrangian density

L = −1
2
∂μΦ

T∂μΦ − V (Φ), (C.114)

where the superscript ‘T’ denotes the transpose, and where V (Φ) is a potential whose
detailed form is not important in what follows. The lagrangian’s kinetic term is
manifestly invariant under the O(N ) group (N × N orthogonal matrices, OTO = 1)
of global rotations: Φ → OΦ, where the O’s are independent of spacetime position,
∂μO = 0. Because the fields are chosen to be real, all generators of these symmetries
are simultaneously hermitian, imaginary and antisymmetric: T†a = Ta = −T T

a = −T∗a .
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In general, the potential V (Φ) need not also be O(N )-invariant, but it is assumed
to preserve a subgroup G ⊂ O(N ), in the sense that

V (gΦ) = V (Φ) for all g ∈ G and all Φ. (C.115)

The potential V is assumed to satisfy two properties. First, its parameters are assumed
to be chosen to allow a weak-coupling semiclassical treatment of the model’s
predictions. Second, it is assumed to be minimized at field values 〈Φ〉 � 0, for which
the symmetry group G is generically spontaneously broken to a subgroup H ⊂ G
defined by: h〈Φ〉 = 〈Φ〉, for all h ∈ H . It is convenient to choose generators, ti , of
H as part of the basis of the Lie algebra of G, writing {Ta} = {ti , Xα} where Ta are
a basis of generators of the algebra of G while Xα are the broken generators of the
coset G/H (for more about the nomenclature see §C.4.1).

A Choice of Variables

The idea is to identify the Goldstone and non-Goldstone degrees of freedom in
this model and to identify how these each realize the model’s symmetries. Within
a semiclassical framework this involves sorting the fields Φ = {φi } into a set of
Goldstone modes, Ξ = {ξα}, plus an orthogonal set of remaining physical fields,
X = {χn}.

As usual, Goldstone modes are obtained by performing symmetry transformations
on the ground state, and for infinitesimal transformations this corresponds to the
directions Xα〈Φ〉 in field space. That is, the components of Φ in this direction,
〈Φ〉T XαΦ, are the ones that create and destroy Goldstone particles. It is straight-
forward to verify that the G-invariance of the potential ensures the masslessness of
these modes in the semiclassical approximation. This gives precisely one Goldstone
mode for each generator of G/H .

Experience with the abelian symmetries of the toy model of §1.1 suggests that the
variables 〈Φ〉T XαΦ need not be the most efficient for making Goldstone properties
manifest, however. In particular, the low-energy decoupling of Goldstone modes are
most manifest if the freedom to redefine fields is used to arrange that they do not
appear at all in the scalar potential. This is most easily arranged by writing

Φ = U (ξ)X, (C.116)

where

U (ξ) = exp[iξα (x)Xα], (C.117)

is a spacetime-dependent symmetry transformation in the direction of the broken
generators, Xα. Since U (ξ) is an element of G, this definition ensures the ξα drop out
of the scalar potential because G-invariance requires that the potential must satisfy
V (UX) = V (X). Consequently, all terms in L involving the Goldstone bosons,
ξα, vanish when ∂μξα = 0, and Eq. (C.116) is the change of variables that makes
manifest low-energy properties of the Goldstone bosons.

In order for Eq. (C.116) not to over-count the N original fields inΦ the variablesX
must satisfy a constraint that keeps them orthogonal (in field space) to the Goldstone
directions, such as:

〈Φ〉T XαX = 0, for all Xα (C.118)
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everywhere in spacetime. As a reality check, notice that this constraint ensures the
vanishing of the cross terms, proportional to ∂μξα∂μχ̂n, in the quadratic part of the

expansion of the kinetic terms about the ground state configuration: X = 〈Φ〉 + X̂.
(Proving this uses the identity 〈Φ〉T Xα〈Φ〉 = 0, that is a consequence of the
antisymmetry of the Xα’s.) It can be shown [107] that it is always possible to change
to variables satisfying (C.118) from any originally smooth configuration for Φ.

C.6.2 The Nonlinear Realization

The next step asks how the variables ξα and χn transform under the group G given
the simple linear representation of G carried by Φ,

Φ→ Φ̃ := gΦ where g = exp[iωaTa] ∈ G. (C.119)

This leads to the standard transformation rules widely used when studying Goldstone
boson properties.

The transformation rule implied for the new variables, ξα → ξ̃α and χn → χ̃n, is
found by writing Φ = U (ξ)X and Φ̃ = U (ξ̃)X̃ in (C.119), and so

gU (ξ)X = U (ξ̃)X̃, (C.120)

for any g ∈ G.
The standard nonlinear transformation law therefore becomes:

ξα → ξ̃α (ξ, g) and χn → χ̃n(ξ, g, χ), (C.121)

where

g eiξαXα = eiξ̃αXα eiui ti and X̃ = eiui ti X. (C.122)

The first of Eqs. (C.122) should be read as defining the nonlinear functions ξ̃α (ξ, g)
and ui (ξ, g). One first finds the element, g eiξ ·X ∈ G, and then defines the functions
ξ̃α and ui by decomposing this matrix into the product of a factor, eiξ̃ ·X , lying in
G/H times an element, eiu ·t , in H . The second of Eqs. (C.122) then defines the
transformation rule for the non-Goldstone fields, χn.

These transformation laws are generically nonlinear in the Goldstone fields, ξα.
They nonetheless realize the symmetry group G in that ξ̃(θ, g1g2) = ξ̃(ξ̃(ξ, g2), g1),
as can be verified using the definitions of Eqs. (C.122) or by noticing that this
property is inherited from the original linear representation of G on Φ.

The transformations (C.121) and (C.122) remain linear in the special case where
g = h lies in the unbroken sector H . In this case, the solution for ui and ξ̃α are
easily seen to be: eiu ·t = h and Ũ = hUh−1 since in this case hU = Ũeiu ·t , as
required. Both χn and ξα therefore transform linearly under the unbroken symmetry
transformations of H , with:

ξ αXα → ξ̃αXα = h(ξαXα)h−1 = ξαLβαXβ,

X → X̃ = hX, (C.123)

where the last equality in the first line uses (C.61).
It is harder to be equally explicit for general g ∈ G/H , but closed forms are

possible for infinitesimal transformations, g = 1 + iωαXα + · · · , if one works with a
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basis of generators that satisfy (C.55). In this case, writing γ = 1+ iui (ξ,ω)ti + · · · ,
and U (ξ̃) = U (ξ)[1 + iΔα (ξ,ω)Xα + · · · ] and using (C.122) implies that ui (ξ,ω)
and Δα (ξ,ω) are given (at linear order in ωa) explicitly by:

Δα = Tr
[
Xαe−iξ ·X (ω · X )eiξ ·X

]
� ωα − cαβγω

βξ γ + O(ω ξ2), (C.124)

and

ui = Tr
[
tie

−iξ ·X (ω · X )eiξ ·X
]
≈ −ciαβω

αξ β + O(ω ξ2). (C.125)

These expressions liberally use the conventional choices Tr (XαXβ) = δαβ,
Tr (tit j ) = δi j and Tr (tiXα) = 0 for the basis of generators of the Lie algbra of
G.

In particular, the transformation rules for the ξ α under broken symmetries implied
by (C.124) are

δξ α = ωα − cαβγ ω
βξγ + O(ω ξ2). (C.126)

This transformation rule is both inhomogeneous (i.e. includes a shift) and acts
nonlinearly on the fields ξα. Inhomogeneous transformations are characteristic of
Goldstone bosons because shifts show that a symmetry necessarily changes the
vacuum (it changes because the vev of the Goldstone boson field – i.e. the relevant
order parameter – changes). It is the shift component of the symmetry that precludes
ξα from appearing undifferentiated in the lagrangian and so enforces the low-energy
decoupling of Goldstone states. The nonlinearity allows low-energy interactions to
arise involving two derivatives; fewer than are possible in the abelian case studied in
the toy model of §1.1.

C.6.3 Invariant Lagrangians

The transformation rules allow the construction of G-invariant Lagrangians built
directly using the ξα and χn fields. The main complication arises from the
construction of the kinetic terms, since the nonlinearity of the transformation rules
for the fields makes them more like local than global transformations due to the
spacetime-dependence of the fields.

Connections and Vielbeins

The toy model provides insight into how to construct G-invariant lagrangians. The
kinetic term of the toy model is proportional to ∂μΦT∂μΦ and so is manifestly G
invariant. This must remain so after performing the change of variables to ξα and
Xn, and it is instructive to see how this comes about.

To this end, notice that the replacement Φ = U (ξ)X implies that ∂μΦ = U (∂μX +
U−1∂μUX). This suggests defining the combination

DμX = ∂μX +U−1∂μUX, (C.127)

as a covariant derivative for X. Applying the transformations (C.121) and (C.122) to
this shows that it transforms covariantly: DμX → hDμX, where h := eiu ·t . It does
so because U−1∂μU transforms like a gauge potential:

U−1∂μU → Ũ−1∂μŨ = h (U−1∂μU) h−1 − (∂μh) h−1. (C.128)
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More information emerges if U−1∂μU is separated into a piece proportional to
Xα plus one proportional to ti since the inhomogeneous term, (∂μh)h−1, is purely
proportional to ti . Defining Ai

μ and eαμ by

U−1∂μU = −iAi
μti + ieαμXα, (C.129)

Eq. (C.128) implies that each of Ai
μ (ξ) and eαμ (ξ) have separate transformation

rules,

Ai
μ (ξ)ti → Ai

μ (ξ̃)ti = h [Ai
μ (ξ)ti] h

−1 − i∂μh h
−1,

and eαμ (ξ)Xα → eαμ (ξ̃)Xα = h [eαμ (ξ)Xα] h−1. (C.130)

The quantity Ai
μ therefore transforms as if it were a gauge potential for local H

transformations. To see this more explicitly, for infinitesimal g � 1 + iωα Xα and
h (ξ, g) � 1 + iui (ξ,ω) ti the above definitions give (compare with12 Eq. (C.72))

δAi
μ (ξ) = ∂μui (ξ,ω) − ci jku j (ξ,ω)Ak

μ (ξ), (C.131)

for structure constants ci jk purely within the Lie algebra of H .
Similarly, eαμ (ξ) transforms covariantly under the transformations, with

δeαμ (ξ) = −cα iβu
i (ξ,ω) e

β
μ (ξ). (C.132)

In this last expression, the structure constants define representation matrices,
(Ti)αβ = icα iβ.

More explicit formulae for Ai
μ and eαμ can be found by first extracting the overall

factor of ∂μξα – so that Ai
μ = Ai

α (ξ) ∂μξα and eαμ = eαβ (ξ) ∂μξβ. Then the useful
identity13

e−iAei(A+B) = 1 + i
∫ 1

0
ds e−isAB eis(A+B) = 1 + i

∫ 1

0
ds e−isAB eisA + O(B2)

(C.133)

for square matrices A and B leads to the following expressions

Ai
α (ξ) = −

∫ 1

0
ds Tr

[
tie−is ξ ·X Xαeis ξ ·X

]
� 1

2
ciαβξ

β +O(ξ2), (C.134)

and

eαβ (ξ) =
∫ 1

0
ds Tr

[
Xαe−is ξ ·X Xβeis ξ ·X

]
� δαβ −

1
2

cαβγξ
γ +O(ξ2), (C.135)

where the approximate equalities expand in powers of ξα.
In the same way that Ai

α is used to build G-covariant derivatives like DμX, the
n-bein eαβ can also be used to build G-invariant self-interactions for the ξα. To see
how, notice that the covariant quantity, eαμ = eαβ ∂μξβ, transforms very simply under
G: eμ · X → h(eμ · X ) h−1. Its covariant derivative is constructed from Ai

μti:

(Dμeν)α = ∂μeαν + cα iβAi
μ e

β
ν , (C.136)

12 The sign mismatch between these equations is to do with representing the group using generators
that are the transpose of those used for matter in (C.72) (regarding which, see also footnote 9 after
Eq. (C.68)).

13 This identity is derived by setting up and solving a first-order differential equation for U (s) :=
e−isAeis (A+B) .
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which transforms in the same way as does eαμ: δ(Dμeν)α = −cα iβui (Dμeν)β.
The most general G-invariant lagrangian then is L(eμ,Dμeν , . . . ), where the

ellipses denote terms involving higher covariant derivatives and the lagrangian is
constrained to be globally H invariant:

L(heμh−1, hDμeνh−1, . . . ) ≡ L(eμ,Dμeν , . . . ). (C.137)

Whenever L satisfies (C.137) for constant h, the definitions of eαβ and Ai
α ensure

it is also automatically invariant under global G transformations of the form of Eqs.
(C.121) and (C.122).

For a Poincaré invariant system, the term involving the fewest derivatives found in
this way is

LGB = −
1
2

fαβ η
μν eαμ e

β
ν = −

1
2
gαβ (ξ) ∂μξα∂μξ

β, (C.138)

where the second equality defines the target-space metric gαβ := fγδ eγαeδβ. Here,
global H-invariance requires that the constant positive-definite matrix fαβ must
satisfy

fλβcλ iα + fαλcλ iβ = 0. (C.139)

Eq. (C.139) can be solved fairly generally. To see how, recall the discussion around
(C.61), where it is pointed out that the matrices Xα fill out a linear representation
of the unbroken subgroup H with representation matrices given by (Ti)αβ = cα iβ.
In terms of these matrices (C.139) states that the commutators, [Ti , f ], vanish in
this representation, for all of the generators, Ti , in the Lie algebra of H . If this
representation of H is irreducible then, by Schur’s lemma, this implies fαβ must be
proportional to the unit matrix, with positive coefficient: fαβ = F2δαβ. Otherwise, if
this representation can be reduced into n irreducible blocks, then fαβ need only be
block-diagonal, with each diagonal element proportional to a unit matrix:

fαβ =
�����

F2
1 δα1β1

. . .
F2
n δαnβn

����� , (C.140)

for n independent positive constants, F2
n .

A similar construction gives the action for the X fields (and for any other fields
that happen to be present at low energies). Because the symmetry H is unbroken,
these fields all transform linearly under H: X → hX, where the constant matrices
{h} form a (possibly reducible) representation of H .

In this case, the general coupling of these fields to the Goldstone bosons
again starts with an arbitrary, globally H-invariant lagrangian: L(X, ∂μX, . . . ) =
L(hX, h∂μX, . . . ), for constant h ∈ H . This lagrangian is automatically promoted to
become G-invariant by appropriately coupling the Goldstone bosons.

The promotion to G invariance proceeds by assigning to χ the nonlinear
G-transformation rule: X → hX, where h = h(ξ, g) = eiu ·t ∈ H is the field-
dependent H matrix which is defined by the nonlinear realization, Eq. (C.122).
An arbitrary globally H-invariant X-lagrangian then becomes G invariant if all
derivatives are replaced by the ξ-dependent covariant derivative: ∂μX → DμX =
∂μX − iAitiX, since this ensures DμX → hDμX and so transforms covariantly
under G transformations.
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Combining all of the above constructions, a general G-invariant lagrangian has the
form L(eμ,X,Dμeν ,DμX, . . . ), provided only that L is constrained to be invariant
under global H transformations:

L(heμh−1, hX, hDμeνh−1, hDμX, . . . ) ≡ L(eμ,X,Dμeν ,DμX, . . . ). (C.141)

In summary, the general statement for nonlinear realizations is this: when a global
internal symmetry group G is broken to a subgroup H then the low-energy action
is found by constructing the most general H-invariant local lagrangian built from
the low-energy field content. This lagrangian is then ‘for free’ promoted to be
G-invariant by coupling the Goldstone bosons in the way dictated by replacing
ordinary derivative by covariant derivatives, ∂μX → DμX and ∂μeαν → Dμeαν .

Uniqueness

Although the above construction defines a G-invariant local lagrangian for the fields
ξα and X, is this the most general way such an action can be built? This section
closes with a proof of uniqueness for the construction.

To prove uniqueness assume the existence of a general lagrangian density of
the form, L(ξ, ∂μξ,X, ∂μX), involving the fields ξα, χn and their derivatives.
(The extension to lagrangians depending on second and higher derivatives is
straightforward.) It is actually more convenient to trade the dependence of L on ∂μξ
for a dependence on the combinations eαμ = eαβ (ξ) ∂μξβ and Ai

μ = Ai
α (ξ) ∂μξα.

There is no loss of generality in doing so, since any function of ξ and ∂μξ can
always be written as a function of ξ, eαμ andAi

μ. This equivalence is most easily seen

in terms of the matrix variable U (ξ) = eiξ ·X since any function of ξ and ∂μξ can
equally well be written as a function of U and ∂μU , or equivalently as a function of
U and U−1∂μU . But expression (C.129) shows that an arbitrary function of U−1∂μU
is equivalent to a general function of eαμ and Ai

μ.
The condition that a general function, L(ξα, eαμ,Ai

μ, χ, ∂μχ), is invariant with
respect to G transformations then is

δL =
∂L

∂ξα
δξα +

∂L

∂eαμ
δeαμ +

∂L

∂Ai
μ
δAi

α +
∂L

∂χn
δχn +

∂L

∂(∂μχn)
δ∂μχ

n = 0.

(C.142)

To see what this means, first specialize to the special case where the symmetry
transformation lies in H: g = eiη ·t ∈ H by using in Eq. (C.142) the transformations:

δξα = −cα iβη
iξβ, δeαμ = −cα iβη

ie
β
μ, δAi

μ = −ci jkη
iAk

μ,

and δχn = iηi (tiχ)n, δ∂μχ
n = iηi (ti∂μχ)n. (C.143)

Requiring δL = 0 for all possible transformation parameters, ηi , then implies that

∂L

∂ξα
cα iβξ

β +
∂L

∂eαμ
cα iβe

β
μ +

∂L

∂A j
μ

c j
ikAk

μ −
∂L

∂χn
i(tiχ)n − ∂L

∂(∂μχn)
i(ti∂μχ)n = 0,

(C.144)

which simply states thatLmust be an H-invariant function of its arguments for global
linear H transformations.
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Next consider transformations that are not in H , g = eiω ·X ∈ G/H , and instead
evaluate Eq. (C.142) using the transformations

δξα = ξαβω
β, δeαμ = −cα iβu

ie
β
μ, δAi

μ = ∂μui − ci jkuiAk
μ,

and δχn = iui (tiχ)n δ∂μχ
n = iui (ti∂μχ)n, (C.145)

where ξα = ξαβ (ξ) ωβ and ui = ui
α (ξ) ωα are the nonlinear functions of ξ defined

by Eq. (C.122), or (C.125) and (C.126). Using these in Eq. (C.142), and simplifying
the resulting expression using Eq. (C.144), leads to the remaining condition for G
invariance:

∂L

∂ξα
(
ξαβ + cα iγui

βξ
γ
)
+
∂L

∂A j
μ

∂μui
β +

∂L

∂(∂μχn)
i∂μui

β (tiχ)n = 0. (C.146)

To see what this means, first specialize to ξα = 0, in which case ∂μui
β = ∂αui

β ∂μξ
α

vanishes. Then since Eq. (C.126) implies that ξαβ (ξ = 0) = δαβ , it follows that

∂L

∂ξα

�����ξ=0
= 0. (C.147)

But since the group transformation law for ξα is inhomogeneous, it is always possible
to perform a symmetry transformation to ensure that ξα = 0 for any point within
G/H , and so Eq. (C.147) also implies the more general result

∂L

∂ξα
≡ 0 for all ξα ∈ G/H . (C.148)

The rest of the information contained in Eq. (C.146) is extracted by simplifying
using ∂L/∂ξα = 0. This leads to

�� ∂L∂A j
μ

+
∂L

∂(∂μχn)
i(tiχ)n�� ∂μui

β = 0, (C.149)

which states that the two variables, Ai
μ and ∂μχn, can only appear in L through the

one combination: (Dμχ)n ≡ ∂μχn − iAi
μ (tiχ)n. That is, X can appear differentiated

in L only through the covariant derivative, DμX.
We see from these arguments that the G-invariance of L is equivalent to the

statement that L must be an H-invariant function constructed from the covariantly
transforming variables eαμ, X and DμX. If higher derivatives of ξ had been
considered, then the vanishing of the terms in δL that are proportional to more than
one derivative of ui would similarly imply that derivatives of eαμ must also only appear
through its covariant derivative, (Dμeν)α, defined by Eq. (C.136).

Since these are the constructions for invariant lagrangians used in earlier sections,
this earlier construction must be unique.

C.7 LSZ Reduction and Bound-State Energies

In §12.2.4 of the main text conclusions are drawn about the size of particular
contributions to bound-state energies for positronium. These conclusions are drawn
using Feynman rules for a correlation function 〈T [Ψ∗i1 (x1)Φ∗i2 (x2) Ψi3 (x3)Φi4 (x4)]〉,
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and this section of the appendix aims to fill in some of the missing steps that relate
the correlation function to bound-state energies.

The main observation is this: the Fourier transform of a time-ordered vacuum
correlation function of a field operator has poles at the positions of the energies of
states that can be created from the vacuum by the operator in question. To see how
this works, consider the vacuum time-ordered correlation function for any local field
operator O(x):

iG(ω, q) :=
1

(2π)3

∫
d4x 〈Ω|T [O(0) O∗(x)

] |Ω〉 e−iωx0+iq·x. (C.150)

Imagine evaluating this by inserting a complete set of momentum eigenstates:

iG(ω, q) =
∫

d4x eiq ·x
∑
N

∫
d3k

(2π)3

[
Θ(x0) 〈Ω|O(0) |N (k)〉 〈N (k) |O∗(x) |Ω〉

+ Θ(−x0) 〈Ω|O∗(x) |N (k)〉 〈N (k) |O(0) |Ω〉
]

=

∫
d4x eiq ·x

∑
N

∫
d3k

(2π)3 Θ(x0) 〈Ω|O(0) |N (k)〉 〈N (k) |O∗(x) |Ω〉,

(C.151)

where N contains all other labels besides momentum, and Θ(u) = {0 if u < 0 and 1
if u > 0} is the usual Heaviside step function. The last equality assumes that
O(x) carries a conserved charge and the quantum numbers are such that it is
〈N (k) |O∗(x) |Ω〉 that is nonzero (and so 〈Ω|O∗(x) |N (k)〉 vanishes). Spacetime
translation invariance implies 〈N (k) |O∗(x) |Ω〉 = 〈N (k) |O∗(0) |Ω〉 e−ikN ·x and so

iG(ω, q) =
∑
N

∫
d3k

(2π)3
��〈Ω|O(0) |N (k)〉��2 ∫ d4x Θ(x0) ei(q−kN) ·x

= i
∑
N

��〈Ω|O(0) |N (q)〉��2
EN(q) − ω + iε

, (C.152)

where qμ = (ω, q) and k
μ
N = [EN(k), k], and the Fourier representation of Θ(u) is

used:

Θ(u) =
∫

dw
2π

(
i

w + iε

)
e−iwu . (C.153)

For the present purposes what is important about (C.152) is the pole it reveals
at ω = EN(q) + iε. This argument as applied to many-field correlation functions is
related to the ‘Lehmann-Symanzik-Zimmermann’ (LSZ) reduction formula [323],
which further argues that the residue at these poles gives S-matrix elements for
transitions amongst states corresponding to the fields involved in the correlation
function.

Notice that nothing in the above derivation assumes O(x) is a particular ‘elemen-
tary’ field for particle type N ; any operator for which 〈Ω|O(0) |N (k)〉 is nonzero –
usually called an ‘interpolating field’ for N – will do. In particular, for applications
to two-body bound states it is usually convenient to focus on interpolating fields that
are bilinears of the ‘fundamental’ fields:

O(x1, x2) = Ψ(x1)Φ(x2), (C.154)
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and choose equal times, x0
1 = x0

2 =: x0, so that O(x1, x2) = O(x0, x X), where
X is the centre-of-mass coordinate for x1 and x2 while x = x1 − x2 is the relative
separation. In this case, the starting point for the above argument would be the
correlation function

iG(ω, q) :=
1

(2π)6

∫
dx0d3x d3X 〈Ω|T [O(0, 0; 0) O∗(x0, x; X)

] |Ω〉 e−iωx0+iq·x,

(C.155)

rather than (C.150), where the integration over X has the effect of projecting onto
zero centre-of-mass momentum.

In practice, the above correlation function is computed by perturbing about an
approximate solution for the bound state, in which case it is useful to write the near-
pole behaviour as

G(ω, q) � |R(ω, q) |2
ω − EN

(C.156)

where R(ω, q) = 〈Ω|O(0) |N (q)〉 has no pole at ω = εN, and expand EN = εN + δEN

and R(ω, q) = R (q) + δR(ω, q). Then

G(ω, q) � |R (q) + δR(ω, q) |2
ω − εN − δEN

(C.157)

� |R (q) |2
ω − εN

+
R∗(q) δR(ω, q) + R (q) δR∗(ω, q)

ω − εN

+
R∗(q)
ω − εN

δEN

R (q)
ω − εN

+ · · · ,

which shows that the leading corrections to δEN can be read off by amputating the
two external bound-state propagators – that is to say, by multiplying by a factor
of (ω − εN)/R and its complex conjugate – and evaluating the result at ω = εN.
In the nonrelativistic applications of Chapter 12 this amounts to evaluating the
amputated graph and taking the expectation value of the result using the zeroeth-
order (Schrödinger–Coulomb) wavefunction.



D Appendix D Further Reading

This book touches only briefly on each of the applications of effective field theories
(EFTs) throughout physics in order to emphasize the great generality of EFT
techniques. But this also means that many readers are likely to be dissatisfied with the
level of detail used to describe each application. This section aims to help with this by
providing some further reading for those interested in quenching a more fundamental
thirst for knowledge in each of the areas touched.

The bibliography given here is not meant to be an exhaustive survey of the
literature, about parts of which I am sure I am relatively poorly informed (and I
apologize in advance for any gems I may have missed). Instead, I list references that
I have found useful myself, and include review articles to which the reader should go
for more detailed referencing in each area.

Many of these papers (at least those published since the development of the
World-Wide Web in the early 1990s) are available for free online. In particular,
references like

[arXiv:hep-ph/9708416] or [arXiv:1704.02751]

are shorthands (respectively) for the links:

https://arxiv.org/abs/hep-ph/9708416

or https://arxiv.org/abs/1704.02751.

D.1 Quantum Field Theory

The main prerequisite for reading this book is an understanding of quantum field
theory (QFT). At face value, QFT is only a convenient formalism for handing many-
particle quantum mechanics, including in particular processes like emission and
absorption, that change the number of particles. But it is also the ubiquitous language
of physics, since it makes it simple to bake in basic properties like unitarity and
cluster decomposition from the get-go when trying to guess a system’s dynamics.
QFT is particularly useful for relativistic applications because it is a basic fact of
relativistic quantum mechanics that all interactions involve components that change
the number of particles (due to the inevitable presence of antiparticles).

For this reason the appendices are largely devoted to providing a very brief
summary of the basic facts of quantum field theory. Inevitably, an interested reader
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will want more, and here are a few suggestions for further reading (organized
roughly by topics).

There are very many good textbooks on quantum field theory, not all of which can
be named here. Some useful textbooks on general-purpose relativistic quantum field
theory that I have used are:

• ‘An Introduction to Quantum Field Theory’, by M. Peskin and D. Schroeder,
Westview, 1995. An excellent and readable book on field theory (though with
an unfortunate choice of metric conventions). The first four chapters of the book
give all required background preparation for this book, and the remaining chapters
give the tools needed to take the material presented in this book to the next level
(renormalization, higher order effects and a more solid theoretical foundation).

• ‘The Quantum Theory of Fields, I–III’, by S. Weinberg, Cambridge Press, 2000.
An original and encyclopedic presentation of quantum field theory from one of the
masters who helped systematize much of it. In particular, Volume I addresses many
of the foundational arguments that underpin quantum field theory, while volumes II
and III are more dedicated to applications. Most of the field theoretical arguments
alluded to in this book are laid out in detail here. You will learn something new
every time you read it, probably for the rest of your life. But it is likely not as good
for novices as is an introductory text like Peskin and Schroeder’s book.

• ‘Quantum Field Theory in a Nutshell’, by A. Zee, Princeton Press, 2010. This
book fits into a special niche in that its emphasis is more on concepts and less on
calculational tools. Not a bad place for a learner to start, but probably also not
enough in itself for someone seeking a practical hands-on calculational ability.

• ‘Quantum Field Theory’, by L. Ryder, Cambridge Press, 1996 (2nd ed). An older
and somewhat more introductory text on field theory, providing more than enough
background material to understand this book.

• ‘Quantum Field Theory’, by L. Brown, Cambridge Press, 1994. A clear intro-
duction to quantum field theory with an interestingly novel choice of topics that
gives an extremely solid underpinning (though does not cover nonabelian gauge
theories).

• ‘Quantum Field Theory’, by G. Sterman, Cambridge Press, 1993. A clear and
systematic exposition of modern field theoretic techniques which includes a
number of topics (like infrared divergences and factorization) not covered in other
texts.

• ‘Advanced Topics in Quantum Field Theory’, by M. Shifman, Cambridge Uni-
versity Press 2010, gives an authoritative discussion of QFT with an emphasis on
non-perturbativee methods. This book covers many topics often not encountered
in QFT textbooks.

• For detailed (but advanced and somewhat more mathematical) discussions of C, P,
and T symmetries, the spin-statistics theorem and related topics, try ‘PCT, Spin
and Statistics, and All That’, by A. Wightman and R. Streater, Princeton University
Press, 2000.

Other books that are more aimed at particle physics are also listed below in the
section devoted to the Standard Model. Many of these books (and those mentioned
later), particularly Weinberg’s, advocate an effective field theory point of view,
though this is usually not their main focus.
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D.2 EFT Framework

In this book Part I develops the main EFT formalism used throughout the rest of the
text. The main logic explored throughout the entire EFT program is largely laid out
in the paper entitled:

• ‘Phenomenological Lagrangians’ [Physica A 96 (1979) 327] by Steven Weinberg
[2]. This paper has held up remarkably well to the passage of time and remains
worth reading as a statement of purpose for those taking up the subject anew.

A book with similar goals to the one you are reading, whose scope directly aims
at EFT methods (but with a complementary choice of topics), is:

• ‘Effective Field Theories’, by Alexei Petrov and Andrew Blechman, World Scien-
tific, 2015. This book aims more directly at high-energy physics and nonrelativistic
applications like NRQED and effective theories of gravity than the one you are now
reading.

Quantum Actions

The framework of generating functionals goes back into the mists of time in the
mid-twentieth century when quantum field theory was relatively young. The specific
use of the 1PI quantum action (often in the old days also called an ‘effective action’
though this term is now normally reserved for the Wilson action) came in the mid-
1960s, where it was introduced within perturbation theory as the formal sum over
1PI graphs [5]. The non-perturbative definition used here came a bit later in [15].

In retrospect, much of the formalism of field theory used today was systematized
in the 1960s. A comprehensive one-stop-shopping source for much of these devel-
opments is:

• ‘The Quantum Theory of Fields, vol I’, by Steven Weinberg, Cambridge Press,
2000. This book (already mentioned above) authoritatively lays out the foundations
of quantum field theory, straight from the proverbial horse’s mouth. Unlike most
books on quantum field theory, this book (‘Vol-I’, for short) does not start off
assuming quantum field theory is the right subject to study. The goal instead is to
study what it means for quantum mechanics to be consistent with special relativity
(Poincaré-invariance), and Vol-I systematically makes the case that this is quantum
field theory.

• ‘Aspects of Symmetry’, by Sidney Coleman, Cambridge Press, 2010. This is a
collection of lectures given by Sidney Coleman over the years at the summer school
in Erice in Sicily. All of these are well-known as masterful expositions of different
topics in field theory, and include a very clear explanation of the generators W [J]
and Γ[ϕ] of connected and 1PI correlation functions.

• ‘What Is Quantum Field Theory, and What Did We Think It Is?’, also by Steven
Weinberg [a contribution to the proceedings of the conference Conceptual foun-
dations of quantum field theory, Boston 1996, pp. 241–251 [405]), also available
online at hep-th/9702027]. This is less of a ‘shut up and calculate’ description
of quantum field theory, and more of a retrospective view of what quantum field
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theory is and how this has changed over the years. In particular, it provides a
chatty and easy to read summary of the modern picture, wherein quantum field
theory is what emerges when you combine special relativity, quantum mechanics
and ‘cluster decomposition’ (the principle that probabilities for independent events
widely separated in space must factorize).

This last article explicitly enunciates the basic modern point of view: quantum field
theory in itself has very little content, in that the most general field theory consistent
with the analyticity properties of scattering amplitudes is the same as the most
general physics that is consistent with these properties (subject to a few motherhood
principles like conservation of probability (i.e. unitarity) and cluster decomposition).
Although largely taken for granted now, this was controversial in the 1960s when it
was felt that quantum field theory could not describe the strong interactions. This
led to a program that based itself only on the analytic properties of the S-matrix, a
summary of which can be found in the review

• ‘Regge Poles and S-matrix Theory’, by Steven Frautschi, New York: W. A.
Benjamin, Inc., 1963,

and which has echoes in more recent lines of research [469].
The formalism of coarse-graining short distances and the related renormalization

group also has a long history. It starts off with the study of renormalization and
scaling in particle physics (and QED in particular) in the early 1950s [470, 471].
A big improvement in generality came with more explicit formulations of how to
split low- and high-energy degrees of freedom (coarse-graining) in the 1960s and
early 70s, starting within condensed-matter physics [472–474] and moving from
there back to particle physics [139, 140]. Extensive reviews of these developments
can be found in these sources:

• ‘The Renormalization group and the epsilon expansion’, by Ken Wilson [Physics
Reports 12 (1974) 75] provides an excellent contemporary survey of these
techniques by an inventor.

• ‘Field Theory, the Renormalization Group and Critical Phenomena’, by Daniel
Amit, World Scientific 1984. This book aims more at condensed matter applica-
tions of renormalization methods, and later editions (with Victor Martin-Mayor)
also include discussions of strong-coupling, lattice models and numerical methods.

• ‘Statistical Field Theory’, by G. Parisi, Addison-Wesley 1988. This book gives a
high-level and influential discussion that is accessible to people with both particle
and condensed matter backgrounds.

• ‘Why the Renormalization Group Is a Good Thing’, published in Asymptotic
Realms Of Physics, 1–19 Cambridge 1981 [40]. This is a contribution to the
proceedings of the festschrift for Francis Low by Steven Weinberg, clearly
summarizing some of the history and ideas. (A bonus is the statement found in
this article of the Three Laws of Theoretical Physics.)

Later progress in formulating and using coarse-grained techniques starts with
Polchinski’s formulation of the exact renormalization group [25], and continuing
with later refinements [26, 27, 475]. In the meantime parallel developments sepa-
rately begin to apply EFT ideas to more and more areas of physics (aspects of which
are largely the subject of this book and so are described below).
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Much of the discussion in this chapter is based on the presentation given in some
review lectures on effective theories

• ‘Introduction to Effective Field Theory’, by C. P. Burgess [Ann.l Rev. Nucl. Part.
Sci. 57 (2007) 329, arXiv:hep-th/0701053]. These are my own lectures and so, not
surprisingly, they overlap in their layout with what is found in this book, including
the development of the 1LPI action and the use of the toy model as a useful vehicle
for illustrating more general features.

• ‘Five Lectures on Effective Field Theory’, by David B. Kaplan (arXiv:nucl-th/
0510023), which is a very clear survey that sets up the framework quite broadly
and then narrows in to applications more focussed on nuclear and nonrelativistic
physics. In particular, the discussion of scaling given here is largely as presented
in these lectures.

Power Counting

Chapter 3 deals with power-counting with effective lagrangians, using dimensional
analysis to estimate the dependence of generic Feynman graphs in terms of the scales
appearing in the couplings of the effective theory. The arguments made parallel the
power counting arguments used when deciding the superficial degree of divergence
of Feynman graphs, such as when proving the renormalizability of a field theory
(like QED) [128, 476]. The dimensional analysis likely comes across as cavalier
inasmuch as the relevant graphs really give multidimensional integrals and one might
worry whether their behaviour is well-captured by naive one-dimensional estimates.
As usual, Weinberg’s textbook (Vol-I ibid) is an invaluable – though fairly compact –
resource for these arguments.

The justifications for these arguments ultimately rely on Weinberg’s theorem [477],
which underpins the proofs of renormalizability, and clarify why naive arguments
properly capture the multidimensional complications. An authoritative summary of
the issues, with historical commentary, can be found in Vol I of Weinberg’s ‘Quantum
Field Theory’ trilogy, cited above. A more recent (though also not that recent) and
exhaustive treatment can also be found in

• ‘Renormalization’, by John Collins, Cambridge Press, 1984. This book provides
a very detailed treatment of renormalization in the post-dimensional regulariza-
tion age.

The spirit of power counting from an EFT framework is already in the ‘Phe-
nomenological Lagrangians’ paper cited above [2], though I follow in this book the
notation and presentation outlined in my own review [24].

The ‘method of regions’ is a very useful technique for identifying how different
scales can enter a calculation when using dimensional regularization. This is
described in some detail in the book

• ‘Introduction to Soft-Collinear Effective Theory’, by Thomas Becher, Alessandro
Broggio and Andrea Ferroglia, Springer, 2015. More generally, this book is a useful
handbook for techniques that arise when using dimensional regularization within
an EFT analysis.
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Symmetries

For some reason physicists tend to pick up much of their group theory on the streets.
Two very useful introductions to the theory of Lie groups for physicists, and a very
useful reference with extensive tables, are

• ‘Lie Algebras in Particle Physics’, by H. Georgi, Perseus, 1999 (2nd ed). This is
a very thorough treatment of group theory for particle physics, essential for those
who find Appendix C.4.1 either too telegraphic or incomplete.

• ‘Semi-Simple Lie Algebras and Their Representations’, by R. N. Cahn, Benjamin-
Cummings, 1984. This book picks up where the previous suggestion leaves off,
presenting more of the properties of groups and their representations.

• ‘Group Theory for Unified Model Building’, R. Slansky, Phys. Rep. 79 (1981) 1–
128. This provides a very useful summary of the properties of the representations
of Lie groups, including detailed tables showing how representations decompose
in terms of representations of subgroups.

The development of the theory of nonlinear realizations starts with the nonlinear
sigma model for pion physics [11], which was then generalized to general groups in
the standard form used today in [12, 13].

An in-depth discussion of nonlinear realizations and their historical development,
as well as a systematic derivation of anomalies both from the point of view of triangle
diagrams and of path integral measure, including also the Wess–Zumino consistency
relations [478, 479] and their solution using descent equations [480], is given in

• ‘The Quantum Theory of Fields, vol II’, by Steven Weinberg, Cambridge Press,
2000. This, the second volume of the Quantum Theory of Fields trilogy (‘Vol-II’
for short), picks up where Vol-I leaves off, touching on most of the higher topics
of quantum field theory. Besides detailed derivations this book has many historical
commentaries from one of the central participants of the time.

A summary of consistency conditions and the descent equations that emphasizes
more geometrical methods is given in the review by Bruno Zumino in ‘Relativity,
Groups and Topology II’, edited by B. S. de Witt and R. Stora, Elsevier, Amsterdam,
1984.

Time-Dependent Backgrounds

The power of making low-energy arguments and the relative simplicity of the low-
energy limit in quantum mechanics has been known for a long time, going back to the
Born–Oppenheimer approximation [312]. Effective theories were first systematically
developed for field theories with applications to particle scattering in mind [48]
(though a parallel line of development was also underway in condensed matter
physics [401]). Because time-dependent backgrounds often do not arise in these
applications, work to develop a formalism for describing classical time evolution
within a Wilsonian effective theory was historically not a priority (so far as I
can see).
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The beginnings of precision cosmology with the measurement of primordial
fluctuations [481] provided a big incentive for having controlled low-energy approx-
imations in time-dependent environments, and most developments trace back to
this. (See the discussion below concerning Chapter 10 for more references to the
cosmology literature.) More recently, the prospect of measuring gravitational waves
also stimulated a Wilsonian reformulation [359] for calculations of time-dependent
classical motion, such as those describing the radiation of inspiraling, nonrelativistic,
gravitating objects like black holes or neutron stars.

The discussion in Chapter 6 follows the logic of my own reviews [24] and [482].
This differs somewhat from much of the cosmology literature, for which EFTs
often zero in more specifically to the study of fluctuations about a cosmological
background along the lines developed in [104]. In particular, the toy model dis-
cussion follows [89], which was itself stimulated by related work on cosmological
fluctuations [483].

The discussion of well-posedness of the initial-value problem is only now starting
to sink in to the EFT community, largely driven by the desire to describe and test
modifications to general relativity in the strong-field regime revealed by gravitational
wave observations. References [98] and [99] quoted in the main text provide good
summaries of these issues both for gravitational and fluid physics.

D.3 Relativistic Applications

Part II begins a discussion of relativistic applications. The Fermi theory of the weak
interactions is the poster child for how effective theories arise in nature, and so is
discussed in a variety of EFT reviews such as:

• ‘Weak Interactions and Modern Particle Theory’, by H. Georgi, Benjamin Cum-
mings, 1984. A very physical discussion of much of the standard model and some
of the techniques used to compute with it, with EFT methods squarely in mind. The
treatment of the weak interactions includes various loop corrections to the Fermi
lagrangian and survives well despite its age.

The notation and description of the weak interactions and QED used in this section
is partly taken from my own book

• ‘The Standard Model: A Modern Primer’, by Guy Moore and me, Cambridge
Press, 2007, post–Higgs-discovery revision 2013 uses the Standard Model as a
vehicle for learning quantum field theory, mostly at the level of tree graphs, but
includes sections on QED, infrared effects, hadrons and chiral perturbation theory.
Modern EFT methods are also included, and used to organize the treatment of
Beyond the Standard Model (BSM) physics.

There are many classic texts on Quantum Electrodynamics, though usually of
a vintage that predates the widespread adoption of EFT reasoning. More modern
discussions can be found in some of the books listed above on quantum field theory.
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A discussion of the UA(1) problem and the role of anomalies in resolving it is
given by [484], as well as in the review ‘Uses of Instantons’, by Coleman in Aspects
of Symmetry [17].

Chiral Perturbation Theory

Chiral perturbation theory was the place where EFT methods, and the low-energy
treatment of Goldstone bosons, were first systematized in the particle-physics
literature. A discussion appears in Weinberg (Quantum Theory of Fields Vol II ibid)
with historical notes. A very comprehensive and instructive book on the subject is

• ‘Dynamics of the Standard Model’, by J. Donoghue, E. Golowich and B. Holstein,
Cambridge Press, 1992. This contains an advanced discussion of the standard
model, with particular emphasis on bound states in QCD, chiral symmetry and
radiative corrections.

Many good review articles also exist on chiral perturbation theory, a selection of
which is listed in reference [485].

Standard Model

There are many books on the Standard Model, which is a well-developed subject. In
addition to the ones listed above, two other noteworthy examples are

• ‘Quarks and Leptons: An Introductory Course in Particle Physics’, by F. Halzen
and A. Martin, Wiley, 1984. This book is an elementary introduction aimed
at developing the computational tools and getting people calculating, with a
minimum of formal baggage. An excellent introduction to utilitarian field theory.

• ‘Quantum Field Theory and the Standard Model’, by Matthew Schwartz,
Cambridge Press 2014, is a more recent and modern treatment of quantum field
theory as applied to the Standard Model, that also draws heavily on EFT methods
to organize calculations.

• ‘The Standard Model and Beyond’, by Paul Langacker, CRC Press 2010, is a
masterful summary of particle physics by one of the field’s masters.

Supersymmetry is a well-developed topic in its own right and there are a number
of books that review its various aspects. Among those aimed at possible implications
for particle phenomenology are

• ‘The Quantum Theory of Fields, vol III’, by S. Weinberg, Cambridge Press, 2000.
This presentation has the nice feature that it builds directly from the tools built
in vols I and II of this sequence. This is particularly nice for supersymmetry,
since many of the other presentations of supersymmetry use completely different
notation for spinors used in supersymmetry compared to spinors used elsewhere
in physics. Weinberg’s vols I–III are uniform in their treatment of spinors in all
aspects of their use.

• ‘Supersymmetry in Particle Physics’, by Ian Aitchison, Cambridge Press, 2007, is
a more recent and modern treatment of supersymmetry as aimed at particle physics
applications.

• ‘Theory and Phenomenology of Sparticles: An Account of Four-Dimensional
N = 1 Supersymmetry in High Energy Physics’, by Manuel Drees, Rohini



585 D.3 Relativistic Applications

Godbole and Probir Roy, World Scientific Press, 2005 provides a phenomenol-
ogist’s eye view of N = 1 supersymmetry in 4 dimensions.

The above are complemented by discussions of supersymmetry that emphasize the
more formal strong-coupling, gravity and string theory connections.

• ‘Modern Supersymmetry, Dynamics and Duality’, by John Terning, Oxford Press,
2006, is a treatment of supersymmetry as aimed at applications to dualities and
many of the modern issues associated with supersymmetric systems.

• ‘Supersymmetry and String Theory, Beyond the Standard Model’, by Michael
Dine, Cambridge Press, 2007, is a treatment of supersymmetry as aimed at more
fundamental applications, such as to string theory.

• ‘Supergravity’, by A. van Proeyen and D. Z. Freedman, Cambridge Press, 2012,
is a modern treatment of supergravity by those that invented much of it, covering
many topics not usually treated.

• ‘Introduction to Supersymmetry and Supergravity’, by Peter West, World Scien-
tific, 1990. This is a treatment that includes a discussion of superspace methods
and extended supergravity, topics often skirted over quickly in textbooks (but
not here).

• ‘Supersymmetry and Supergravity’, by Julius Wess and Jon Bagger, Princeton
Press, 1992. This is one of the standard textbooks by some of the authors who
helped define the subject.

General Relativity and Cosmology

More and more, physicists in all fields are expected to be knowledgeable about
gravitational physics, and the geometrical techniques used in its study. Some useful
texts for these purposes are:

• ‘Gravitation and Cosmology: Principles and Applications of the General Theory
of Relativity’, S. Weinberg, Wiley, 1972. An oldie but a goodie: a very physical
introduction to general relativity and its applications in astrophysics, the solar
system and cosmology.

• ‘Gravitation’, C. W. Misner, K. S. Thorne and J. A. Wheeler, Freeman, 1973. The
classic book with the quirky style, which sets the standard for its comprehensive
and modern treatment of geometrical techniques.

• ‘General Relativity’, R. M. Wald, University of Chicago Press, 1984. A modern
update of the two previous classics, containing more of the modern mathematical
techniques.

• ‘Spacetime and Geometry: An Introduction to General Relativity’, S. Carroll,
Cambridge Press, 2019. A re-release of a modern and very readable book that
is a good place to start.

The last few decades have seen cosmology turn from a very speculative to a data-
rich subject. Much of the evidence that the Standard Model is incomplete comes
from the unified picture of cosmology that this data has spurred, making a good
knowledge of this area also mandatory for many areas of physics. Some of the books
I have learned from myself are
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• ‘Principles of Physical Cosmology’, P. J. E. Peebles, Princeton Press, 1993. This
is a classic written by one of the inventors of the modern picture of physical
cosmology.

• ‘Physical Foundations of Cosmology’, V. Mukhanov, Cambridge Press, 2005. This
is a comprehensive and very clear description of the theory of fluctuations and
structure formation, by one of its inventors.

• ‘Modern Cosmology’, S. Dodelson, Elsevier, 2003. This is a modern textbook on
cosmology including the discussion of fluctuations.

• ‘Cosmology’, S. Weinberg, Oxford, 2008. This is a modern treatment that defini-
tively updates Weinberg’s earlier book on Gravitation and Cosmology.

• ‘Introduction to Cosmology’, B. Ryden, Pearson, 2002. This introductory book is
aimed at undergraduates, and so does not presuppose as much background. Yet it
is also thorough and detailed, so a good place to start for beginners.

The presentation of the effective theory of gravity and cosmology used in
this book follows some of my own review articles on EFTs in cosmology, men-
tioned above [482]. String theory provides a concrete example of what might take
place at the highest energies, and this is partly what makes it interesting. Some
references are

• ‘Superstring Theory, vols I and II’, by M. Green, J. Schwarz and E. Wit-
ten, Cambridge Press, 1987. Strings and superstrings described by the mas-
ters. This book has provided the first exposure to the field for many novice
learners.

• ‘String Theory, vols I and II’, by Joe Polchinski, Cambridge Press, 1998. Strings
and branes (including the origins of the word ‘brane’ for membranes [87]) most
often arise in supergravity and string theory, and this book is the classic textbook
by the discoverer of D-branes [88].

• ‘String Theory and M-Theory’, by K. Becker, M. Becker and J. Schwarz,
Cambridge Press, 2007. A modern update on the subject.

• ‘String Theory and Particle Physics’, by L. E. Ibáñez and A. M. Uranga,
Cambridge Press, 2012. This is a recent and high-level introduction to the
phenomenological aspects of string theory and branes.

• ‘A First Course in String Theory’, by B. Zweibach, Cambridge Press, 2009. This
is an undergraduate level introduction to string theory, aimed at those who do not
already have an exposure to quantum field theory.

D.4 Nonrelativistic Applications

The last two parts of the book are aimed at nonrelativistic applications of EFT
methods, both for collections of just a few slowly moving particles and for full-blown
many body systems. Given here are a selection of references that I have found useful
myself when learning these areas. As the level of detail below (compared with above)
indicates, these topics bring me further from my own area of expertise, making it
inevitable that I have missed many other gems (and my apologies if this is so).
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HQET, NRQED and All That

There are a variety of review articles for heavy-particle EFTs, some of which are
included among the reviews of EFT methods quoted earlier. Some others are

• ‘Review of selected topics in HQET’, A. I. Vainshtein (hep-ph/9512419).
• ‘Heavy-quark effective theory’, M. Neubert, in 20th Johns Hopkins Workshop on

Current Problems in Particle Theory (hep-ph/9610385).
• ‘Heavy-Quark and Soft-collinear Effective Field Theory’, by C. W. Bauer and

M. Neubert, in PDG review K. A. Olive et al., Chin. Phys. C38 (2014) 090001
(http://pdg.lbl.gov).

• ‘An Introduction to the heavy quark effective theory’, F. Hussain and G. Thompson,
(hep-ph/9502241).

• ‘Precision study of positronium: Testing bound state QED theory’,
S. G. Karshenboim, Int. J. Mod. Phys. A19 (2004) 3879 (hep-ph/0310099).

• ‘An Introduction to NRQED’, G. Paz, Mod. Phys. Lett. A30 (2015) 1550128
(arXiv:1503.07216 (hep-ph)).

First-Quantized Methods

There are fewer surveys of first-quantized methods within an effective field theory
context. Discussions of collective coordinates can be found in books on solitons,
such as in Coleman’s ‘Aspects of Symmetry’ mentioned earlier, or (for example)

• ‘Magnetic Monopoles’, by Ja. Schnir, Springer-Verlag, 2005.
• ‘Advanced Topics in Quantum Field Theory’, by M. Shifman, mentioned above,

discusses many aspects of solitons, including collective coordinates for monopoles,
vortices and instantons.

For reviews on the quantum mechanics of the inverse-square potential and the
phenomenon of ‘fall to the centre’, see, for example

• B. Holstein, ‘Anomalies for Pedestrians’, Am. J. Phys. 61 (1993) 142;
• A. M. Essin and D. J. Griffiths, ‘Quantum Mechanics of the 1/x2 Potential’, Am. J.

Phys. 74 (2006) 109.
• M. W. Frank, D. J. Land and R. M. Spector, ‘Singular Potentials’, Rev. Mod. Phys.

43 (1971) 36.

Atomic Physics

A number of books on atomic methods have proven useful over the years, including

• ‘Quantum Mechanics of One- and Two-Electron Atoms’, by H. A. Bethe and
E. E. Salpeter, Springer-Verlag 1957; Plenum Publishing, 1977;

• ‘Rydberg Atoms’, by T. F. Gallagher, Cambridge Press, 1994;
• ‘Many-Body Atomic Physics’, ed. by J. J. Boyle and M. S. Pindzola, Cambridge

Press, 1998.
• ‘Atom-Photon Interactions’, C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg,

Wiley Press, 2004.
• ‘Bose-Einstein Condensation in Dilute Gases’, C. J. Pethick and H. Smith,

Cambridge Press, 2001.



588 Further Reading

Goldstone Bosons in Nonrelativistic Systems

The different types of Goldstone counting for spacetime symmetries in nonrelativis-
tic systems is another one of those things that has long been in the air (since at least
the early 1980s, when I was a graduate student), and because these issues arise more
commonly for condensed matter systems were appreciated there much earlier. See,
for example

• ‘Concepts in Solids: Lectures on the Theory of Solids’, by Philip W. Anderson,
World Scientific, Singapore, 1997.

For particle physicists perhaps the most familiar examples where these issues arise
are spin waves in ferromagnets and antiferromagnets [107] (see also Chapter 14.1),
whose unusual properties eventually became systematized in [105] and [108].

Condensed Matter Surveys

Condensed matter physics is a vast area of research, for which there are a number of
good textbook treatments, including:

• ‘Principles of Condensed Matter Physics’, by Paul Chaikin and Tom Lubensky,
Cambridge Press, 1995. This both gives a thorough treatment of condensed matter
physics, with an emphasis on its ‘soft’ side, and is very accessible to those of the
unwashed who are not professional condensed matter physicists (myself included).
This book includes many instances of topological defects and domain walls of
various types.

• ‘Solid State Physics’, N. W. Ashcroft and N. D. Mermin, Harcourt, 1976. This is a
classic undergraduate textbook on condensed matter physics.

• ‘Introduction to Solid State Physics, 8th Edition’, C. Kittel, Wiley, 2004. This is
the other classic undergraduate textbook.

• ‘Introduction to Superconductivity’, M. Tinkham, McGraw-Hill Press, 1975. This
is a book aimed more explicitly at the phenomenon of superconductivity.

• ‘Quantum Field Theory and Condensed Matter’, R. Shankar, Cambridge Press,
2017. This is a more modern treatment of many of the ideas handled in the older
texts.

• ‘Quantum Field Theory of Many Body Systems’, X. G. Wen, Oxford Press, 2004.
Another modern treatment of quantum field theory for a modern condensed matter
audience.

Degenerate Systems

The treatment of degenerate systems described here follows the wonderful reviews,

• ‘Effective field theory and the Fermi surface’. J. Polchinski, In the proceedings of
the TASI school Recent directions in particle theory (hep-th/9210046) [402].

• ‘Renormalization group approach to interacting fermions’, R. Shankar, Rev. Mod.
Phys. 66 (1994) 129 (cond-mat/9307009) [403].

A classic treatment of Fermi liquids that predates EFT methods is
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• ‘Quantum Theory of Many-Particle Systems’, A. L. Fetter and J. D. Walecka,
McGraw-Hill, 1971 (Dover, 2002).

• ‘Methods of Quantum Field Theory in Statistical Physics’, by A.A. Abrikosov, L.P.
Gorkov and I.P. Dzyaloshinski, Dover Press 1963. A venerable classic applying
QFT methods to condensed matter problems.

• ‘Theory if Interacting Fermi Systems’, by P. Nozières, Addison-Wesley 1964 and
1997, a nicely written and more detailed treatment about degenerate and interacting
systems of fermions.

There are a number of good reviews about Quantum Hall systems, both from the
point of view of EFT methods as well as from a more fundamental point of view.
Some textbook descriptions are in

• ‘Field Theories of Condensed Matter Physics’, E. Fradkin, Cambridge Press, 2013.
• ‘The Quantum Hall Effect’, R. E. Prange and S. M. Girvin, Springer-Verlag, 1987.
• ‘Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-

Dimensional Semiconductor Structures’, S. Das Sarma and A. Pinczuk, John
Wiley & Sons, 2004.

Some lecture notes that I have found very useful are

• ‘The Quantum Hall Effect: Novel Excitations and Broken Symmetries’,
S. M. Girvin, Lectures delivered at École d’Éte des Houches, July 1998
(arXiv:cond-mat/9907002 (cond-mat.mes-hall)).

• ‘Quantum Hall Fluids’, A. Zee, (cond-mat/9501022).
• ‘Topological Orders and Edge Excitations in FQH States’, X. G. Wen (cond-

mat/9506066).
• ‘Introduction to the Physics of the Quantum Hall Regime’, A.H. MacDonald

(cond-mat/9410047).
• ‘Lectures on the Quantum Hall Effect’, D. Tong, (arXiv:1606.06687 (hep-th)).
• ‘Three Lectures on Topological Phases of Matter’, E. Witten. lectures given at the

PITP school 2015. Published in Riv. Nuovo Cim. 39 (2016) 313.

Some other useful references are cited in the main text.

Open Systems

The treatment of fluids goes back to the nineteenth century, and is the birthplace of
many EFT methods. Very useful textbooks are

• ‘An Introduction to Fluid Dynamics’ G. K. Batchelor, Cambridge Press, 1967.
• ‘Fluid mechanics’, L. D. Landau and E. M. Lifshitz, A Course of Theoretical

Physics (2nd revised ed.) Vol 6, Pergamon Press, 1987.

A textbook study of how electromagnetic fields interact with media is [451]:

• ‘Electrodynamics of Continuous Media’, L. D. Landau, and E. M. Lifshitz, in A
Course of Theoretical Physics Vol 8, Pergamon Press, 1960.

The theory of open systems is also a well-studied field, and some textbook
treatments are given by
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• ‘The Theory of Open Quantum Systems’, H. P. Breuer and F. Petruccione, Oxford
Press, 2002. This is a book from which I have learned some of the open-system
techniques described in this book. It is very user-friendly to those not in the area.

Two other good textbooks for this area are

• ‘An Open Systems Approach to Quantum Optics’, H. Carmichael, Springer-Verlag,
1991.

• Quantum Dynamical Semigroups and Applications’, R. Alicki and K. Lendi,
Springer, 2007.
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Zum Unitätsproblem in der Physik.
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
Berlin (Math. Phys.) 966972.
Klein, O. 1926.
Quantentheorie und funfdimensionale Relativittstheorie.
Zeitschrift für Physik A37 895906.
Klein, O. 1926.
The Atomicity of Electricity as a Quantum Theory Law.
Nature 118 516.
Witten, E. 1981.
Search for a Realistic Kaluza–Klein Theory.
Nuclear Physics B186 (1981) 412.

[277] Cremmer, E. and Scherk, J. 1976.
Spontaneous Compactification of Space in an Einstein Yang–Mills Higgs
Model.
Nuclear Physics B108 (1976) 409.
Freund P. G. O. and Rubin M. A. 1980.
Dynamics of Dimensional Reduction.
Physics Letters 97B (1980) 233.
Candelas P. and Weinberg S. 1984.
Calculation of Gauge Couplings and Compact Circumferences
from Self-Consistent Dimensional Reduction.
Nuclear Physics B237 (1984) 397.
Salam A. and Sezgin E. 1984.
Chiral Compactification on Minkowski × S2 of N = 2
Einstein-Maxwell Supergravity in Six-Dimensions.
Physics Letters 147B (1984) 47.

[278] Christensen, S. M. and Duff, M. J. 1979.
New Gravitational Index Theorems and Supertheorems.
Nuclear Physics B154 (1979) 301.
Hoover D. and Burgess, C. P. 2005.
Ultraviolet Sensitivity in Higher Dimensions.
Journal of High Energy Physics 0601 (2006) 058 (hep-th/0507293).

[279] Burgess, C. P. and Hoover, D. 2005.
UV Sensitivity in Supersymmetric Large Extra Dimensions: The Ricci-Flat
Case.
Nuclear Physics B772 (2007) 175 (hep-th/0504004).

[280] Kaloper, N., March-Russell, J., Starkman, G. D. and Trodden, M. 2000.
Compact Hyperbolic Extra Dimensions: Branes, Kaluza–Klein Modes and



614 References

Cosmology.
Physical Review Letters 85 (2000) 928 (hep-ph/0002001).

[281] Einstein, A. 1916.
Näherungsweise Integration der Feldgleichungen der Gravitation.
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
Berlin
part 1: 688–696.
Einstein, A. 1918.
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