


i
i

i
i

i
i

i
i

The Art of
Image Processing

with Java



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

The Art of
Image Processing

with Java

Kenny A. Hunt

�

A K Peters, Ltd.
Natick, Massachusetts



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130905

International Standard Book Number-13: 978-1-4398-6559-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but 
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to 
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. 
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, 
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without 
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright 
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a 
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to 
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



i
i

i
i

i
i

i
i

�

Contents

1 Introduction 1
1.1 What Is Digital Image Processing? . . . . . . . . . . . . . . . 1
1.2 Why Digital Image Processing? . . . . . . . . . . . . . . . . . 5

2 Optics and Human Vision 13
2.1 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Camera Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Human Visual System . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Digital Images 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Digital Images in Java 51
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Image Structure . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Java’s Imaging Library . . . . . . . . . . . . . . . . . . . . . 62
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Point Processing Techniques 81
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Rescaling (Contrast and Brightness) . . . . . . . . . . . . . . 82
5.3 Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Gamma Correction . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Pseudo Coloring . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Histogram Equalization . . . . . . . . . . . . . . . . . . . . . 99
5.7 Arithmetic Image Operations . . . . . . . . . . . . . . . . . . 107

v



i
i

i
i

i
i

i
i

vi CONTENTS

5.8 Logical Image Operations . . . . . . . . . . . . . . . . . . . . 113
5.9 Alpha Blending . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.10 Other Blending Modes . . . . . . . . . . . . . . . . . . . . . 116
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Regional Processing Techniques 123
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.5 Edge Enhancement . . . . . . . . . . . . . . . . . . . . . . . 155
6.6 Rank Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.7 Template Matching and Correlation . . . . . . . . . . . . . . 166
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Geometric Operations 173
7.1 Affine Transformations . . . . . . . . . . . . . . . . . . . . . 174
7.2 Custom Implementation . . . . . . . . . . . . . . . . . . . . 186
7.3 Nonlinear Transformations . . . . . . . . . . . . . . . . . . . 191
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8 Image Printing and Display 197
8.1 Halftoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.2 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3 Patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.4 Random Dithering . . . . . . . . . . . . . . . . . . . . . . . 204
8.5 Dithering Matrices . . . . . . . . . . . . . . . . . . . . . . . 205
8.6 Error Diffusion Dithering . . . . . . . . . . . . . . . . . . . . 207
8.7 Color Dithering . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9 Frequency Domain 217
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.2 Image Frequency . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3 Discrete Cosine Transform . . . . . . . . . . . . . . . . . . . 222
9.4 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . 228
9.5 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

10 Image Compression 255
10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.2 Run Length Coding . . . . . . . . . . . . . . . . . . . . . . . 259
10.3 Hierarchical Coding . . . . . . . . . . . . . . . . . . . . . . . 268



i
i

i
i

i
i

i
i

CONTENTS vii

10.4 Predictive Coding . . . . . . . . . . . . . . . . . . . . . . . . 275
10.5 JPEG Case Study . . . . . . . . . . . . . . . . . . . . . . . . 280
10.6 GIF Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 284
10.7 Digital Data Embedding . . . . . . . . . . . . . . . . . . . . 286
10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

11 Morphological Image Processing 297
11.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
11.2 Component Labeling . . . . . . . . . . . . . . . . . . . . . . 300
11.3 Dilation and Erosion . . . . . . . . . . . . . . . . . . . . . . 306
11.4 Opening and Closing . . . . . . . . . . . . . . . . . . . . . . 309
11.5 Component Representation . . . . . . . . . . . . . . . . . . . 310
11.6 Component Features . . . . . . . . . . . . . . . . . . . . . . 313
11.7 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 317
11.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

12 Advanced Programming 321
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.2 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.3 JAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

A Floating Point Rasters 331

B Scanners 333

References 337

Index 339



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

�

Introduction 1
1.1 What Is Digital Image Processing?
We must begin our journey by taking issue with the philosophical adage that “a
picture is worth a thousand words.” It is my belief that a picture cannot begin to
convey the depth of human experience and wisdom embedded in the words of
Shakespeare, Dostoevsky, Dante, or Moses. A picture cannot convey with due
precision the mathematical underpinnings of the discoveries of Galileo or Pas-
cal nor can a picture give expression to the philosophy of Augustine, Plato, or
Edwards. Nonetheless, while pictures do not carry the precision of written lan-
guage, they do contain a wealth of information and have been used throughout
the centuries as an important and useful means of communication. An image is
a picture representing visual information. A digital image is an image that can be
stored in digital form.

Prior to the advent of computation, images were rendered on papyrus, paper,
film, or canvas using ink or paint or photosensitive chemicals. These non-digital
images are prone to fading and hence suffer loss of image quality due to exposure
to light or temperature extremes. Also, since non-digital images are fixed in
some physical medium it is not possible to precisely copy a non-digital image.
Throughout the annals of art history, forgers have attempted to copy paintings of
well-known masters but usually fail due to their inability to precisely duplicate
either a style or an original work. Han van Meegeren is one of the best known
art forgers of the 20th century. His technique so closely mimicked the style and
colors of the art masters that he was able to deceive even the most expert art
critics of his time. His most famous forgery, The Disciples at Emmaus, was created
in 1936 and was purportedly created by the well-known Dutch artist Johannes
Vermeer. His work was finally exposed as fraudulent, however, at least in part
by a chemical analysis of the paint, which showed traces of a plastic compound
that was not manufactured until the 20th century!

Digital images, however, are pictures that are stored in digital form and that
are viewable on some computing system. Since digital images are stored as bi-
nary data, the digital image never fades or degrades over time and the only way

1



i
i

i
i

i
i

i
i

2 1. Introduction

to destroy a digital image is to delete or corrupt the file itself. In addition, a dig-
ital image can be transmitted across the globe in seconds and can be efficiently
and precisely copied without any loss of quality.

Digital image processing is a field of study that seeks to analyze, process, or
enhance a digital image to achieve some desired outcome. More formally, digital
image processing can be defined as the study of techniques for transforming a
digital image into another (improved) digital image or for analyzing a digital
image to obtain specific information about the image.

From the cradle to the grave we are accustomed to viewing life through dig-
ital images. A parent’s first portrait of their child is often taken before they are
even born through the use of sophisticated ultrasound imaging technology. As
the child grows, the parents capture developmental milestones using palm-sized
digital video cameras. Portraits are sent over email to relatives and friends and
short video clips are posted on the family’s website. When the child breaks an
arm playing soccer, the emergency-room physician orders an x-ray image and
transmits it over the Internet to a specialist hundreds of miles away for immedi-
ate advice. During his lifetime the child will watch television images that have
been digitally transmitted to the dish on top of his house, view weather satellite
images on the Internet to determine whether or not to travel, and see images of
war where smart bombs find their target by “seeing” the enemy.

Computer graphics is a closely related field but has a different goal than im-
age processing. While the primary goal of computer graphics is the efficient
generation of digital images, the input to a graphics system is generally a geo-
metric model specifying the shape, texture, and color of all objects in the virtual
scene. Image processing, by contrast, begins with a digital image as input and
generates, typically, a digital image as output.

Computer vision, or machine vision, is another increasingly important rel-
ative of image processing where an input image is analyzed in order to deter-
mine its content. The primary goal of computer vision systems is the inverse of

Figure 1.1. Disciplines related to image processing.



i
i

i
i

i
i

i
i

1.1. What Is Digital Image Processing? 3

Figure 1.2. Image processing pipeline.

computer graphics: to analyze a digital image and infer meaningful information
about the scene depicted by the image. Figure 1.1 illustrates the roles and rela-
tionships between each of these three disciplines where boxes represent a type of
data while the connecting arrows show the typical input and output for a field of
study.

A complete digital image processing system is able to service every aspect
of digital image handling. Figure 1.2 shows the five typical stages in an image
processing pipeline: image acquisition, image processing, image archival, image
transmission, and image display. Image acquisition is the process by which digi-
tal images are obtained or generated. Image processing is the stage where a digi-
tal image is enhanced or analyzed. Image archival is concerned with how digital
images are represented in memory. Image transmission is likewise concerned
with data representation but places added emphasis on the robust reconstruc-
tion of potentially corrupted data due to transmission noise. Image display deals
with the visual display of digital image data whether on a computer monitor,
television screen, or printed page.

A visual example of the pipeline stages is given in Figure 1.3. During the
image acquisition stage, an approximation of a continuous tone or analog scene
is recorded. Since the captured image is an approximation, it includes some
error which is introduced through sampling and quantization. During archival, a
further degradation of quality may occur as the concern to conserve memory and
hence conserve transmission bandwidth competes with the desire to maintain a
high quality image. When the image is displayed, in this case through printing
in black and white, image quality may be compromised if the output display is
unable to reproduce the image with sufficient resolution or depth of color.

Construction of a complete image processing system requires specialized
knowledge of how hardware architecture, the physical properties of light, the
workings of the human visual system, and the structure of computational tech-
niques affects each stage in the pipeline. Table 1.1 summarizes the most impor-
tant topics of study as they correspond to each of the five primary stages in an
image processing system. Of course a deep understanding of each of the listed
areas of study is required to construct an efficient and effective processing mod-
ule within any stage of the pipeline. Nevertheless, each stage of the processing
pipeline raises unique concerns regarding memory requirements, computational
efficiency, and image quality. A thorough understanding of the affects of each
stage on image processing is required in order to achieve the best possible balance
among memory, computation time, and image quality.



i
i

i
i

i
i

i
i

4 1. Introduction

(a) Scene. (b) Acquired.

(c) Archived. (d) Displayed.

Figure 1.3. Effects of image processing stages on a processed image.



i
i

i
i

i
i

i
i

1.2. Why Digital Image Processing? 5

Processing Stage Topic of Study

acquisition
physical properties of light
human perception
mathematical models of color

processing
software architecture
data representation
algorithm design

archival
compression techniques
data representation

transmission
data representation
transmission protocols

display
digital halftoning
color models
human perception

Table 1.1. Topics of study in image processing.

These five stages serve as a general outline for the remainder of this text. The
image processing topics associated with each stage of the processing pipeline will
be discussed with an emphasis on the processing stage which lies at the heart of
image processing. By contrast, little coverage will be allocated to transmission
issues in particular.

1.2 Why Digital Image Processing?
Digital images are used across an exceptionally wide spectrum of modern life.
Ranging from digital cameras and cell phones to medical scans and web tech-
nology, digital image processing plays a central role in modern culture. This sec-
tion provides examples of practical applications of image processing techniques.
A general overview of these applications suffices to illustrate the importance,
power, and pervasiveness of image processing techniques.

1.2.1 Medicine
Digital imaging is beginning to supplant film within the medical field. Computed
tomography (CT) is a noninvasive imaging technique used to diagnose various
ailments such as cancers, trauma, and musculoskeletal disorders. Magnetic reso-
nance imaging (MRI) is a similarly noninvasive method for imaging the internal
structure and function of the body. MRI scans are more amenable to diagnosing
neurological and cardiovascular function than CT scans due to their greater con-
trast among soft tissue volumes. Figure 1.4 gives an example of both MRI and
CT images where the MRI highlights contrast in the internal soft-tissue organs
of a human pelvis while the CT image captures the internal skeletal structure of
a human skull.



i
i

i
i

i
i

i
i

6 1. Introduction

(a) MRI. (b) CT.

Figure 1.4. Medical images.

Since errors in the acquisition, processing, archival, or display of medical im-
ages could lead to serious health risks for patients, rigorous standards have been
developed to ensure that digital images for medical use are properly archived and
displayed. The Digital Imaging and Communications in Medicine (DICOM) is
one such standard and has become the de facto standard for image processing in
the health professions.

1.2.2 Biology

Biology is a natural science that studies living organisms and how they inter-
act with the environment. Biological research covers a vast array of specialized
subdisciplines such as botany, zoology, cell biology, microbiology, and biochem-
istry. Each of these disciplines relies to some degree on sophisticated computing
systems to acquire and analyze large amounts of image-based data. These mea-
surements ultimately provide information required for tasks such as deciphering
complex cellular processes and identifying the structure and behavior of DNA.

Since image-based measurement is becoming increasingly vital to biological
research, biologists must have basic knowledge in image processing to correctly
interpret and process their results. Part (a) of Figure 1.5 shows a scanning elec-
tron microscope (SEM) image of a rust mite where the length of the mite is on
the order of 60 µm. Part (b) shows the structure of the eye of a fruit fly where
each spherical sensor is on the order of 10 µm in diameter.



i
i

i
i

i
i

i
i

1.2. Why Digital Image Processing? 7

(a) A rust mite (Aceria anthocoptes). (b) The eye of a fruit fly (Drosophilidae).

Figure 1.5. Images in biology.

1.2.3 Biometrics
The security of national, corporate, and individual assets has become a topic
of great importance in the modern global economy as terrorists, con men, and
white-collar criminals pose an ongoing threat to society. When a person boards
an airplane, enters credit card information over the Internet, or attempts to ac-
cess medical records for a hospital patient, it is desirable to verify that the person
actually is who they claim to be. The field of biometrics seeks to verify the iden-
tity of individuals by measuring and analyzing biological characteristics such as
fingerprints, voice patterns, gait, facial appearance, or retinal scans. In most of
these techniques, with the exception of voice recognition, the biological traits are
obtained by the analysis of a digital image.

Biometrics has been used for decades in law enforcement to identify criminals
from fingerprint images. Highly trained experts have traditionally performed fin-
gerprint identification manually by comparing fingerprints of criminal suspects
with fingerprints obtained from a crime scene. Systems are now commonly used
to match fingerprints against large databases of suspects or known criminals.
Specialized hardware is used to first acquire a digital image of an individual’s
fingerprint. Software is then used to analyze the image and compare it with a
large database of known fingerprint images. Since the process is automated, it
is possible to quickly search a very large database and quickly obtain accurate
verification.

The use of palm scans is proving increasingly effective in the field of biomet-
rics. A palm scanner is used to acquire an image of the blood flow through the
veins of the hand in a completely noninvasive and contact-free fashion. Since the
veins form a complex three-dimensional structure within a person’s palm, indi-
viduals can be identified with extremely high accuracy, and forgery is extremely
difficult.



i
i

i
i

i
i

i
i

8 1. Introduction

1.2.4 Environmental Science
All life depends upon a healthy environment and the environmental sciences
seek to understand the forces that affect our natural world. Environmental sci-
ence is a broad and interdisciplinary field that includes the study of weather pat-
terns (meteorology), oceans (oceanography), pollution as it affects life (ecology),
and the study of the earth itself (the geosciences).

Data acquisition and analysis plays a key role in each of these fields since
monitoring oceans, forests, farms, rivers, and even cities is critical to proper stew-
ardship. Computer and imaging systems play an increasingly active and central
role in these tasks. Satellite imaging is used to monitor and assess all types of en-
vironmental phenomena, including the effects of wildfires, hurricanes, drought,
and volcanic eruptions. Motion-sensitive cameras have been installed in remote
regions to monitor wildlife population densities. In recent years, these systems
have discovered many new species and have even taken photographs of animals
long believed extinct.

Figure 1.6 shows two enhanced satellite images of St. Louis, Missouri. The
image in Figure 1.6(a) was taken during the great flood of 1993 while the image
in Figure 1.6(b) was taken the following year. Environmental scientists tracked
and measured the extent of the flood and the effect of the flood on terrain, vege-
tation, and city structures through sophisticated imaging systems and software.

(a) Satellite image in 1993.

(b) Satellite image in 1994.

Figure 1.6. Satellite images of the St. Louis flood. (Image courtesy of NASA/Goddard
Space Flight Center Scientific Visualization Studio.)



i
i

i
i

i
i

i
i

1.2. Why Digital Image Processing? 9

1.2.5 Robotics

The field of robotics has made astounding progress in recent years. Robots now
appear on the shelves of commercial toy stores, in industrial manufacturing lines,
and in search and rescue missions. At the heart of most intelligent robots is
a set of image processing routines that is able to process images gathered by
the robot’s “eyes” and determine how the robots should respond to their visu-
ally perceived environment. A team of robotics experts from the University of
Southern Florida was brought in to assist in the search and rescue mission dur-
ing the days after the World Trade Center collapse. These robots were specif-
ically designed to navigate through dangerous situations looking for signs of
life.

1.2.6 Professional Sports

Most professional sports leagues are developing computer systems to improve
either the sports telecast or to assist umpires and referees throughout the game.
The US Tennis Association, for example, uses specialized image processing sys-
tems to assist in making line calls. Officials were having increased difficulty with
making correct calls as skilled tennis players can now generate 150 mile-per-hour
serves and 100 mile-per-hour backhands.

Major League Baseball has also installed complex image processing systems
to record the trajectory of each pitch made during a baseball game. Two cameras
track the motion of the ball and are able to triangulate the position to within 1/2
inch accuracy over the entire trajectory of the pitch. A third camera is used to
monitor the batter and determine the strike zone by computing the batter’s knee-
to-chest position. While the system is not used during game play it is used to
augment television broadcasts. High-performance image processing algorithms
superimpose the pitch trajectory and strike zone on instant replays. This gives
sports fans an objective way to decide if the pitch was a ball or a strike. Major
League Baseball does use the system to rate the performance of plate umpires
in calling balls and strikes. At the conclusion of each game, the plate umpire is
given a CD-ROM containing the trajectories of every pitch along with a compar-
ison between the computer and umpire calls made.

Other sports have successfully used image-processing techniques for both
decision-making and aesthetic purposes. Most major networks airing National
Football League games superimpose yellow “first down” markers onto the play-
ing field. These yellow stripes are obviously not actually on the field, but are
applied using real-time image processing techniques. With the decreasing cost
of computational power, it is to be expected that image processing will become
more prevalent in all areas of professional sports.



i
i

i
i

i
i

i
i

10 1. Introduction

1.2.7 Astronomy

Astronomers have long used digital images to study deep space over much of
the electromagnetic spectrum: the Compton Gamma Ray Observatory captures
digital images primarily in the gamma ray spectrum; the Chandra X-Ray Ob-
servatory and the Space Infrared Telescope Facility (also known as the Spitzer
Space Telescope) provide coverage of the x-ray and infrared portions of the spec-
trum, respectively. The most well known telescope covering the visible portion
of the spectrum is the Hubble Space Telescope, which was launched in 1990.
The Hubble Telescope orbits the earth with a reflector-style optics system and a
mirror of 2.4 meters in diameter. The focal length is 57.6 meters and it is able
to take infrared images as well as images in the visible spectrum. Of course the
images are digital since they must be transmitted to ground stations for viewing
and analysis. The Hubble has produced some of the most remarkable images
ever taken of created order.

Figure 1.7 is an image of the Antennae galaxies. These two galaxies are
located in the constellation Corvus and are in the process of collapsing into a

Figure 1.7. Hubble Space Telescope image of the Antennae galaxies. (Image courtesy of
NASA, ESA, and the Hubble Heritage Team.)



i
i

i
i

i
i

i
i

1.2. Why Digital Image Processing? 11

single galaxy. These galaxies are approximately 45 million light years away, and
scientists predict that within 400 million years the two galaxies will have merged
to form a single elliptical galaxy.

1.2.8 Conclusion
Ours is an increasingly visual culture and digital imaging is pervasive across
nearly all professions, disciplines, and academic fields of study. The study of
digital image processing will provide a foundation for understanding how best
to acquire digital images, the nature of information contained within a digital
image, and how to best archive and display images for specific purposes or ap-
plications.

Artwork
Figure 1.3. “Migrant Mother” by Dorothea Lange (1895–1965). Dorothea Lange
was born in Hoboken, New Jersey in 1895 and devoted herself to portrait pho-
tography at a young age. After apprenticing with a photographer in New York
City, she moved to San Francisco and worked predominantly with the upper
class. After about 13 years she developed the desire to see things from a different
point of view and Lange began shooting among San Francisco’s unemployed and
documenting the increasing labor unrest. She was eventually hired by the Farm
Security Administration (FSA) as a photographer and photojournalist. She is
best known for her work with the FSA, which put a human face on the tragedy
of the Great Depression and profoundly influenced the field of photojournalism
in subsequent years. She died on October 11, 1965. Her most famous portrait is
entitled “Migrant Mother,” which is shown in Figure 1.3. The image is available
from the United States Library of Congress’s Prints and Photographs Division
using the digital ID fsa.8b29516.



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

�

Optics and
Human Vision 2

This chapter gives an overview of the physical properties of light, optics and
the human visual system. The chapter provides important background for un-
derstanding how image processing mirrors the biological mechanisms of human
perception and how the properties of human perception can be leveraged for
computational advantage.

2.1 Light
In a physical sense light is composed of particles known as photons that act
like waves. The two fundamental properties of light are the amplitude of the
wave and its wavelength. Amplitude is a measure of the strength of the light
wave where higher amplitude light waves are perceived as brighter. Wavelength
measures, as the term itself indicates, the length of the wave and is typically given
in meters. Light waves are also commonly characterized by their frequency,
which is inversely proportional to the wavelength. The relationship between the
wavelength λ and frequency f of a light wave traveling through a vacuum is

λ =
c

f
,

where c is the speed of light, which is equal to 299,792,458 m/s. Since wave-
length is given in meters, frequency is therefore given in units of seconds−1, also
known as hertz. Frequency measures the number of oscillations that a wave gen-
erates over a duration of one second of time. In terms of human perception,
lower frequency (longer wavelength) light is perceived as the so-called warmer
colors (red, yellow) while higher frequency (shorter wavelength) light is per-
ceived as the cooler colors (violet, blue). While wavelength corresponds to color
perception, amplitude corresponds to brightness, since brightness is proportional
to the average energy over some time period. Figure 2.1 depicts a sinusoidal wave
showing the relationship of amplitude and wavelength.

13



i
i

i
i

i
i

i
i

14 2. Optics and Human Vision

In
te

n
si

ty

Distance

Wavelength

A
m

p
li

tu
d
e

Figure 2.1. Diagram of a light wave.

The human eye can only perceive energy waves that have wavelengths within
a very narrow band. Visible light is a relatively small portion of the larger electro-
magnetic spectrum which is composed of energy waves outside of our ability to
perceive. The electromagnetic spectrum includes wavelengths as short as approx-
imately 10−34 meters and as long as the size of the universe itself, although these
are theoretical limits that have never been empirically verified. Electromagnetic
radiation with wavelengths too small for the human eye to see are known, in
decreasing order, as ultraviolet (UV), x-rays, and gamma rays. Electromagnetic
radiation with wavelengths too large for the human eye to see are, in increasing
order, infrared (IR), microwaves, and radio/TV.

Some living creatures are able to detect light outside of the range of wave-
lengths perceptible by humans. Bees, for example, are able to see UV radiation
and pit viper snakes can see into the IR region using sensitive biological sensors
in the pits of their heads. For human perception, however, the visible portion
of the spectrum includes light with wavelengths ranging between about 400 and
700 nanometers. Light that has a wavelength of 650 nm appears red, while light
that has a wavelength of 550 nm appears green; and light with a wavelength of
about 475 nm appears blue. Figure 2.2 depicts the electromagnetic spectrum,
highlighting the relatively narrow band of energy which is visible to the human
eye. This figure depicts the portion of the spectrum spanning gamma rays, which
have wavelengths on the order of 10−14 meters in length, to radio and television
signals, which have wavelengths on the order of 104 meters.



i
i

i
i

i
i

i
i

2.2. Camera Optics 15

Figure 2.2. Electromagnetic spectrum.

2.2 Camera Optics
A lens is a transparent device, usually glass, that allows light to pass through
while causing it to either converge or diverge. Assume that a camera is focused
upon a target object. If the distance from the target to the lens is S1 and the
distance from the lens to the film is S2 then these values are related by the thin
lens equation shown in Equation (2.1), where f is the focal length:

1
S1

+
1
S2

=
1
f
. (2.1)

The focal length is a measure of how strongly a lens converges light and is
defined as the distance from the lens to the point at which parallel rays passing
through the lens converge. According to the thin lens equation, if we assume
that an object is positioned a fixed distance S1 from the lens, then a lens having a
short focal length must produce correspondingly smaller images than a lens with
a larger focal length. This follows since the focal length is directly proportional
to the size of the image. Figure 2.3 illustrates light originating from a real-world
target object, and passing through the lens and onto the imaging plane as a real
image.

The magnification factor m of a lens is another measure of how strongly
a lens converges light and is given by Equation (2.2). This formulation may
initially seem inverted since digital cameras are often characterized by optical
zoom, which is often misunderstood to be the magnification factor. The optical
system of a camera is composed of multiple lenses where the positions of the
lenses can vary and thereby adjust the focal length of a camera within some
narrow range. The amount by which the focal length can be changed, and hence
the resulting image size, is described as the optical zoom. The magnification factor



i
i

i
i

i
i

i
i

16 2. Optics and Human Vision

Figure 2.3. Optical properties of a convex lens.

of a single thin lens is typically less than 1 and should be understood to mean
that an object of size S1 appears to be of size S2 when projected onto the focal
plane:

m =
image size
object size

=
S2

S1
. (2.2)

The aperture of a camera is the opening that determines the amount of light
that is focused onto the imaging plane. The aperture of a camera is typically
controlled by an adjustable diaphragm, which is allowed to expand or contract to
either increase or decrease the amount of light entering the system. Of course the
aperture can be no larger than the lens itself and is generally set smaller than the
lens by the diaphragm. In photography the lens aperture is usually specified as
an f-number, which is the ratio of focal length to the diameter of the aperture and
is denoted as f/#. A lens typically has preset aperture openings named f-stops,
which allow a predetermined amount of light into the camera. These f-stops are
conventionally set such that each successive f-stop either halves or doubles the
total amount of light passing through the lens.

A circle of diameter d has an area of π · (d2 )2, which implies that a halving of
the area requires decreasing the diameter by a factor of

√
2. For this reason, the

conventional f-stop scale is a geometric sequence involving powers of
√

2 as in
the sequence {1, 1.4, 2, 2.8, 4, 5.6, . . .}. Figure 2.4 illustrates how the diaphragm
of the lens controls the amount of light passing through the optical system and
shows the significance of the f-number. The open area of the lens labeled as
f/1.4 is twice the area of the opening labeled as f/2, which is itself twice the
area of the opening labeled as f/2.8.



i
i

i
i

i
i

i
i

2.3. Human Visual System 17

Figure 2.4. F stops.

2.3 Human Visual System

2.3.1 The Human Eye
The human visual system is an exceptionally sophisticated biological imaging
system composed of many interrelated biomechanical and biochemical sub-
components. The eye is, of course, the primary component in this system and is
itself composed of various parts. The eye is spherical in shape, having a diameter
of approximately 20 mm. Figure 2.5 shows a cross section of the human eye and
labels each of the primary structural components.

Figure 2.5. Primary structural elements of the human eye.



i
i

i
i

i
i

i
i

18 2. Optics and Human Vision

The cornea is a tough, transparent, dome-shaped membrane covering the
front of the eye. The cornea is a protective covering over the eye and also func-
tions to roughly focus incoming light. The iris, a diaphragm that expands and
contracts to control the amount of light entering the eye, lies immediately be-
hind the cornea. The central hole of the iris is the pupil, which varies in size
from about 2 to 8 mm.

The lens is a convex and highly malleable disk positioned immediately be-
hind the iris. While the cornea is responsible for most of the overall refraction of
the eye, the curvature of the cornea is fixed, which requires the lens to fine-tune
the focus of the eye. Ciliary muscles are used to adjust the thickness of the lens
which adjusts both the curvature and the degree of refraction of the lens. When
focusing at a distance, the lens flattens and therefore diminishes the degree of
refraction while the lens thickens to focus on nearby objects.

The rear portion of the eye, known as the retina, is analogous to film in
a conventional camera. The retina covers approximately 72% of the interior
surface of the eye and is covered with two types of photoreceptor cells known
as rods and cones. These biological sensors are able to convert light energy into
electrical impulses, which are then transmitted to the brain through the optic
nerve and interpreted as colors and images. There are approximately 6 million
cones and 120 million rods in the human eye [Oyster 99]. The visual axis of
the eye can be defined as a line extending between the center of the lens and the
center of the retina, known as the fovea. The angle between any point on the
retinal surface and the visual axis is given as the perimetric angle. Figure 2.5
shows the visual axis and the perimetric angles of various points on the retinal
surface, spanning approximately −80◦ to +80◦.

Rods and cones are types of sensors that serve different purposes. Rods are
able to function in relatively low light environments while cones function in rela-
tively bright light environments. A single rod cell is able to detect a single photon
of light and is about 100 times more sensitive than a cone cell. Scotopic vision,
also known as night vision, is produced exclusively through rod cells since cone
cells are not responsive to low light levels. Photopic vision is the normal vi-
sion of the eye under well-lit environments and is produced through the cone
cells.

The rods and cones are also distributed throughout the retina in different
ways. The 120 million rods of the human eye are concentrated around the outer
edges of the retina and are therefore used in peripheral vision, while the 6 million
cones in the retina are concentrated near the center of the retina, becoming less
dense near the outer ring. This implies that in dark conditions the eye can more
easily see objects by focusing slightly off-center of the object of interest, while in
well-lit conditions the eye can more easily see by focusing directly on the target.
Figure 2.6 plots the distribution of the rods and cones as a function of perimetric
angle. Whereas the cones are clustered near the fovea (at a perimetric angle
of 0◦), there are essentially no rods. As the perimetric angle moves away from



i
i

i
i

i
i

i
i

2.3. Human Visual System 19

Figure 2.6. Photoreceptor density in the human eye as a function of perimetric angle.

the visual axis, however, the density of cones decreases sharply while the rod
density increases sharply, peaking at approximately ±35◦.

The optic nerve is responsible for carrying signals from the photoreceptors of
the retina to the brain for analysis and interpretation. The optic nerve is com-
posed of 1.2 million synaptic fibers and introduces a blind spot in the human eye
since there are no photoreceptors in that area of the retina. Figure 2.6 indicates
that the blind spot is at a perimetric angle of about 15◦ on the nasal periphery
(the hemisphere of the eye oriented toward the nose).

Perhaps the most important distinction to make between the rods and cones
is the role each has in discerning color. The rods, which are operative in scotopic
vision, have no ability to discern color and hence see only in shades of gray. The
primary reason that objects look washed out in dim light is that only the rods are
active and can only detect differences in light intensity, not differences in color.
Cones, by contrast, are able to discern differences in both intensity and color.
The ability to see color derives from the fact that there are three separate types
of cones. The three cone types respond differently to different light wavelengths
such that one cone is sensitive to red, another to green, and another to blue
wavelengths of light. These three types of cone are known as L, M, and S since
they respond to long, medium and short wavelengths of light, respectively. The
L type cone has a peak sensitivity at wavelengths near 564–580 nm (red) while
the M type peaks at 534–545 nm (green) and the S type peaks at 420–440 nm
(blue). Color perception is thus gained by combining the sensory information
of the three cone types. Roughly 65% of all cones are L type while 30% are M
and 5% are S [Roorda et al. 01]. Table 2.1 is derived from [Kandel et al. 00] and
summarizes the differences between the rods and cones.



i
i

i
i

i
i

i
i

20 2. Optics and Human Vision

Rods Cones
Used for night vision Used for day vision
Loss causes night blindness Loss causes legal blindness
Low spatial resolution with higher noise High spatial resolution with lower noise
Not present in the fovea Concentrated in the fovea
Slower response to light Quicker response to light
One type of photosensitive pigment Three types of photosensitive pigment
Emphasis on detecting motion Emphasis on detecting fine details

Table 2.1. Comparison between rods and cones.

2.3.2 Log Compression
Experimental results show that the relationship between the perceived amount of
light and the actual amount of light in a scene are generally related logarithmi-
cally. The human visual system perceives brightness as the logarithm of the ac-
tual light intensity and interprets the image accordingly. Consider, for example,
a bright light source that is approximately six times brighter than another. The
eye will perceive the brighter light as being approximately twice the brightness
of the darker. Log compression helps to explain how the human visual system is
able to sense light across an exceptionally broad range of intensity levels.

2.3.3 Brightness Adaptation
The human visual system has the remarkable capacity of seeing light over a
tremendously large range of intensities. The difference between the least amount
of light needed to see (the scotopic threshold) and the maximum amount of light
that we can see (the glare limit) is on the order of 1010. The key to understand-
ing how it is possible to perceive images across such a vast range of light levels
is to understand that we cannot perceive light at both the low and upper limits
simultaneously. At any particular instant we can discriminate among a very small
portion of our full dynamic range. The sensitivity of the eye changes, or adapts,
to the average brightness of the region on which it is focused. The eye calibrates
itself to the average intensity of the region on which the eye is focused; it is then
able to discriminate among a few dozen light levels which are centered about
the calibration point. The range of intensities that the eye can see at one point
in time is known as the instantaneous range of vision, while the calibration or
adjustment to ambient lighting conditions is known as brightness adaptation.

Figure 2.7 shows that perceived brightness is a nonlinear function of the ac-
tual light intensity. The eye can perceive light across the full adaptive range but
at any point in time can see only within the much narrower instantaneous range.
The adaptive range is on the order of 1010 units and hence the graph vertical axis
is shown using a log-compressed scale.



i
i

i
i

i
i

i
i

2.3. Human Visual System 21

Figure 2.7. Brightness adaptation.

Consider taking a walk around noon on a cloudless and bright summer day.
While the light is bright you are nonetheless able to discern with clarity your
surroundings and make out details of the flowers and faces that you encounter.
As you return home, however, and step through the doorway into a dark hallway
entrance, the image is dull and dark. For a few moments the eye perceives almost
pure darkness but as your visual system adapts to the overall brightness of the
interior room, the sensitivity increases and more details become clear and visible.
After some time it may even appear as if the interior room is as well lit as the
sunny outdoors. While brightness adaptation allows us to see in extreme lighting
conditions it has the disadvantage that we are unable to accurately estimate the
actual intensity of light in our environment.

High dynamic range imaging (HDR) is an image processing technique that
gives a displayed image the appearance of greater contrast than is actually dis-
played. HDR works by taking advantage of local brightness adaptation to fool
the eye into thinking that it is seeing a much larger range of values than it really is.



i
i

i
i

i
i

i
i

22 2. Optics and Human Vision

2.3.4 Mach Banding
When viewing any scene the eye rapidly scans across the field of view while
coming to momentary rest at each point of particular interest. At each of these
points the eye adapts to the average brightness of the local region immediately
surrounding the point of interest. This phenomena is known as local brightness
adaptation. Mach banding is a visual effect that results, in part, from local bright-
ness adaptation.

Figure 2.8 gives a popular illustration of Mach banding. While the figure of
part (a) contains 10 bands of solid intensity the eye perceives each band as being
either brighter or darker near the band edges. These changes in brightness are due
to the eye scanning across the edge boundary, thus causing local adaptation to
occur; this results in a changing perception of light intensity in that region when
compared to the centers of the bands. The graph of part (b) is an approximation
to perceived brightness as the visual system sharpens edges by increasing the
contrast at object boundaries.

(a) Mach banding. (b) Row profile of perceived brightness.

Figure 2.8. Mach banding effect.

2.3.5 Simultaneous Contrast
Simultaneous contrast refers to the way in which two adjacent intensities (or
colors) affect each other. The image of Figure 2.9 is a common way of illustrating
that the perceived intensity of a region is dependent upon the contrast of the
region with its local background. In this figure, the four inner squares are of

Figure 2.9. Simultaneous contrast.



i
i

i
i

i
i

i
i

2.4. Exercises 23

identical intensity but are contextualized by the four surrounding squares, and
thus the perceived intensity of the inner squares varies from bright on the left to
dark on the right. This phenomena can be intuitively explained by noting that a
blank sheet of paper may appear white when placed on a desktop but may appear
black when used to shield the eyes against the sun [Gonzalez and Woods 92].

2.4 Exercises
1. A professional baseball league intends to save money and increase ac-

curacy by replacing all umpires by automated computer vision systems.
Miller Park will participate in a test run of the system and is purchasing a
set of digital cameras that will serve as the front-end to the system. Each
camera must be able to view a baseball at a resolution of at least 75 pix-
els per inch (75 digital pixels per inch of actual baseball) from a distance
of at most 90 feet. Specify the minimum magnification and focal length
required if the camera uses a CCD chip having 2048 × 2048 square pixels
in an active sensor area of 3.55× 3.55 mm. Clearly state any assumptions
that you make concerning your design.

2. Section 2.3.2 states that perception of light intensity is logarithmically re-
lated to the actual light intensity. Empirical studies have shown that a
logarithmic base of approximately 2.5 should be used to model this loga-
rithmic compression when viewing a point light source. Using this model,
what is the perceived intensity of a point light source emitting 120 units of
light intensity?

3. A graphic artist wants to construct an image similar to that shown in Fig-
ure 2.8(a) but which contains no Mach banding. Discuss how such an
image could be constructed and provide a convincing argument that your
image minimizes the Mach banding effect.



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

�

Digital Images 3
3.1 Introduction
A digital image is visual information that is represented in digital form. This
chapter describes common mathematical models of color and also gives various
techniques for representing visual information in digital form.

3.2 Color
As described earlier, the human visual system perceives color through three types
of biological photo-sensors known as cones. Each cone is attuned to one of three
wavelengths that correspond roughly to red, green, or blue light. The L-cone, or
long wavelength cone, responds to red light, the M-cone, or medium wavelength
cone, responds to green light, and the S-cone, or short wavelength cone, responds
to blue light. The individual responses of all cones within a small region of the
retina are then combined to form the perception of a single color at a single point
within the field of view. The design of this biological system suggests that color
is a three-dimensional entity.

A color model is an abstract mathematical system for representing colors.
Since color is a three dimensional entity, a color model defines three primary
colors (corresponding to three dimensions or axes) from which all possible colors
are derived by mixing together various amounts of these primaries. Color models
are typically limited in the range of colors they can produce and hence represent
only a portion of the visible spectrum. The range of colors covered by a color
model is referred to as either the gamut or the color space.

Color models can be classified as either an additive or subtractive. Additive
color models assume that light is used to generate colors for display. In an ad-
ditive color model, the color black represents a complete lack of the primary
colors while the color white corresponds to maximal and equal amounts of each

25



i
i

i
i

i
i

i
i

26 3. Digital Images

of the primaries. Additive color models assume that the individual primaries
sum together into a single color. Human perception is an additive system since
the perception of black is caused by the complete absence of light while white
is perceived when large and equal amounts of red, green, and blue are present.
Human perception is often described as a tristimulus color space, since it is based
on an additive color model composed of three primaries. Computer monitors
and LCD projectors are light-emitting devices that are naturally modeled using
an additive color model.

Subtractive color models assume that pigment will be used to create colors
such that a complete absence of any pigment corresponds to the color white
while combining the three primaries in maximal and equal amounts yields the
color black. Subtractive color models tend to be the more intuitive of these two
ways of defining color since people are generally accustomed to this mode; since
they tend to use pencil, ink, or paint pigments to create images. Subtractive color
models assume that when white light is projected onto pigment, the pigment
will absorb power from certain wavelengths and reflect power at other wave-
lengths. This absorption is described as subtraction since certain wavelengths
are subtracted from any light that is projected onto the pigment. In terms of
electronic systems, images rendered with ink-based printers are most naturally
described using a subtractive color model.

Numerous color models are in common use, each having qualities that are
well suited for a certain class of applications. These include the RGB, CMY,
CMYK, HSB, and NTSC (or YIQ) models. Since matching the characteristics
of a particular color model to the requirements of a particular application is
an important task in the design of an image processing system, it is important
to understand how color models are designed along with their properties. The
following subsections discuss the most commonly used color models for image
processing applications and describe their basic properties in greater detail.

3.2.1 RGB Color Model

The RGB color model is the most common way of representing color in image
processing systems. The RGB model is additive and uses red, green, and blue as
the primary colors or primary axes such that any color can be obtained by com-
bining different amounts of these three primaries. By way of example, consider
a flashlight that has a slider allowing one to choose the strength of light emitted.
In setting the slider to zero, the flashlight is turned completely off and generates
no light; in setting the slider to one, the flashlight generates as much light as it is
capable of generating. Now consider three such flashlights: the first emits purely
red light, the second emits purely green light, and the third emits purely blue
light. If all three flashlights are aimed at the same spot on a white wall any color
can be projected onto the wall by adjusting the slider values on the three lights



i
i

i
i

i
i

i
i

3.2. Color 27

(a) RGB (additive). (b) CMY (subtractive).

Figure 3.1. Additive and subtractive models.

in different ways. If all sliders are set to zero, black is projected onto the wall. If
all sliders are set to one, white is projected onto the wall, and if all sliders are set
to 0.5, then gray is projected.

Figure 3.1 illustrates the RGB color model with three lights projecting onto
a white wall in an otherwise black room. The location at which they overlap
indicates the sum of all three lights which is seen as white. The secondary colors
are produced by the overlap of only two of the three primaries. Figure 3.1 also
shows the CMY model which is described in the following subsection.

The system of three flashlights is a precise analog of the RGB color model. A
color within the RGB color space is defined by three numeric values (a tuple) that
specify the amount of red, green, and blue that comprise the specified color. A
color specified using the RGB model is said to lie within the RGB color space. In
this text we adopt the convention that an RGB color specification is specified in
normalized coordinates such that the value 0 indicates that none of the specified
primary is present and the value 1 indicates that the maximum amount of the
specified primary is present. For example, the color red is specified in RGB
space as the tuple 〈1, 0, 0〉, the color cyan is specified as 〈0, 1, 1〉, and middle
gray is specified as 〈.5, .5, .5〉.

The RGB color space can be visualized as the unit cube shown in Figure 3.2.
All colors representable in RGB space lie within the volume defined by the three
primary axes corresponding to pure red, green, and blue. The origin lies at
〈0, 0, 0〉 (black) while the opposite corner lies at 〈1, 1, 1〉 and corresponds to the
color white. Each point within the RGB color space corresponds to a unique
color as illustrated in Figure 3.2(b). Note that the line connecting pure black and
pure white within the RGB color space is known as the gray scale, as shown in
Figure 3.2(c) since any point lying on that line is a shade of gray.



i
i

i
i

i
i

i
i

28 3. Digital Images

(a) (b)

(c) (d)

Figure 3.2. RGB and CMY color space.

Since RGB is an additive color model, the most common use of this model
is for the display of images on computer monitors or projectors. A computer
monitor is comprised of tightly packed red, green, or blue lights with varying
degrees of intensity. Three such dots constitute a single point of color when
viewed at a reasonable distance and hence the use of the additive RGB model is
a natural choice for representing color in such a system. Also, since most digital
images are meant to be displayed on a monitor, the RGB model is often used
throughout the image processing pipeline as the data moves from acquisition to
display.

3.2.2 CMY Color Model
Just as red, green, and blue are the primary colors of light, cyan, magenta and
yellow are the primary colors of pigment. The CMY color space can, like RGB,
be viewed as a cube where a CMY color is designated by a normalized tuple
of values. Unlike RGB, however, the CMY model is subtractive. By way of
example, consider an artist who paints landscapes using oil-based paint on a
white canvas. Perhaps the artist is poor and can only afford to purchase three
different pigments of oil paint. The artist wisely decides to purchase cyan, ma-
genta, and yellow. The artist can still create any visible color by mixing together
these three pigments in various proportions such that black can be created by



i
i

i
i

i
i

i
i

3.2. Color 29

mixing together equal amounts of all three colors while white can be created by
mixing none of them together (i.e., leaving the white canvas empty). The CMY
color model is illustrated in Figure 3.2(d) and is inversely related to the RGB
color model. Given a color in RGB space as the tuple 〈R,G,B〉, the same color
would be given in CMY space as the tuple 〈C,M, Y 〉, where each of the three
values are computed as shown in Equation (3.1).

C = 1−R,
M = 1−G,
Y = 1−B.

(3.1)

The three formulae of Equation (3.1) are typically written using matrix nota-
tion as  C

M
Y

 =

 1−R
1−G
1−B

 .
The CMY color model is most commonly used in the print industry since it
directly corresponds to the use of pigment (ink) as a medium. Printers can gen-
erate color images from only three inks by mixing together various amounts of
cyan, magenta, and yellow primaries at each point on the paper. The process of
converting a color image into CMY layers is known as color separation.

The CMYK color model is an extension of the CMY. The CMYK model
augments the CMY by including a fourth primary component that corresponds
to the amount of black in a color. Even though the CMYK color space has an
extra “axis,” it does not contain more colors than CMY. In technical parlance we
say that CMY and CMYK are equally expressive and hence mathematically equiv-
alent. While CMYK is not more expressive than CMY, the additional parameter
is nonetheless beneficial since it allows for the

� Conservation of ink. Many images have large black areas and it is wasteful
to mix three pigments (CMY) together to form one black pixel.

� Creation of black pixels. According to the CMY model, mixing maximal
amounts of cyan, magenta, and yellow will produce pure black. In actual
practice, however, the result is a color that is muddy and dark but not truly
black.

� Creation of crisp black edges. Mixing three colors to create black will not only
yield a color not truly black, but will also result in dots and lines having
blurred edges since the individual CMY color samples will not be precisely
aligned with each other.

Conversion from CMY to CMYK is a nonlinear process. Assume that
〈C ′,M ′, Y ′〉 is the CMY color that we wish to convert to CMYK. The CMYK



i
i

i
i

i
i

i
i

30 3. Digital Images

values are then defined, as shown in Equation (3.2).

〈C,M, Y,K〉 =

{
〈0, 0, 0, 1〉 if min(C ′,M ′, Y ′) = 1,
〈C
′−K

1−K , M
′−K

1−K , Y
′−K

1−K ,K〉 otherwise where K = min(C ′,M ′, Y ′).
(3.2)

In order to convert from RGB to CMYK, first convert the RGB coordinates
into CMY space using Equation (3.2.2) and then apply Equation (3.2).

3.2.3 HSB Color Model
The HSB color model decomposes color according to how it is perceived rather
than, as is the case with RGB, with how it is physically sensed. Since HSB seeks to
mirror the perception of color, the three dimensions of the HSB color space are
aligned with a more intuitive understanding of color than either RGB or CMY.
A point within the HSB gamut is defined by hue (the chromaticity or pure color),
saturation (the vividness or dullness of the color) and brightness (the intensity of
the color). The HSB color space can be visualized as a cylinder, as shown in
Figure 3.3. The central vertical axis ranges from black at the bottom to white
at the top. The most vivid colors lie on the external surface of the cones while
duller colors occupy the interior portion where the central vertical axis of the
cylinder is equivalent to grayscale. HSB is also known as HSI or HSL, using the
terms intensity and luminance as synonyms for brightness. The HSV color model
is also closely related to HSB but differs somewhat in the brightness band.

Hue is specified as an angular measure where red corresponds to 0◦, green
corresponds to 120 degrees, and blue corresponds to 240◦. Hue is therefore cycli-
cal and is well defined for any real value. If hue is normalized, as is most often
the case, the value zero corresponds to 0 degrees (red) while the value 1 corre-
sponds to 360◦ (and hence is equivalent to 0 since 0◦ and 360◦ are equivalent).
Brightness is a normalized amount where 0 indicates no intensity (black) and 1
represents full intensity (white). The brightness setting selects a color wheel slice

Figure 3.3. HSB color space.



i
i

i
i

i
i

i
i

3.2. Color 31

perpendicular to the central vertical axis. Since saturation is an indication of
vividness or colorfulness, saturation is defined as a percentage measure from the
central vertical axis to the exterior shell of the cylinder. From this it should be
clear that a saturation of 0 indicates a completely de-saturated or non-colorful
grayscale value at the center of the cylinder while a saturation of 1 (or 100%)
indicates a completely saturated and hence completely vivid color.

The color red is represented in HSB space as 〈0, 1, 1〉 and middle gray is rep-
resented as 〈0, 0, .5〉. The HSB model is degenerate at B = 0 since where there
is no brightness the color must be black regardless of the hue and saturation. In
other words, when the brightness value is set to 0 the values of H and S are irrel-
evant. The HSB model is also degenerate at S = 0 since the Hue value is then
irrelevant.

Manipulating colors in HSB space tends to be more intuitive to artists than
working with either the RGB or CMY models. In order to darken a color in HSB
only the brightness value is reduced while darkening a color in RGB involves
scaling each of the three primary components proportionally. The complement
of a color in HSB is easily found by crossing to the opposite side of the HSB
cylinder, computationally achieved by shifting the hue band by 180◦.

The HSB color model is often used in image processing since it provides a
way to separate color information (HS) from intensity (B). This is useful since
image processing applications often operate only on the intensity of an image
while leaving the color unaltered. Many of the image processing operations in
this text that are defined on grayscale images can be performed on color images
by first converting the image to HSB, applying the grayscale operation to the
brightness band only, and then converting back to the original color space.

HSB is a nonlinear transformation of the RGB color space. Let 〈R,G,B〉 be
a normalized RGB color that is to be converted into HSB space. Let Max =
max(R,G,B) and Min = min(R,G,B). Equation (3.3) then shows how to
convert from normalized RGB space into normalized HSB space:

H =



undefined if max = min,

60× G−B
max−min if max = R and G ≥ B,

60× G−B
max−min + 360 if max = R and G < B,

60× B−R
max−min + 120 if max = G,

60× R−G
max−min + 240 if max = B;

S =

0 if max = 0,

1− min
max otherwise;

B = max .

(3.3)



i
i

i
i

i
i

i
i

32 3. Digital Images

3.2.4 YIQ Color Model
Much like the HSB color model, the YIQ color model possesses a single grayscale
axis and two axes that relate to color. The Y axis contains intensity information
(grayscale values) while chromatic information is packed into the I and Q chan-
nels. The YIQ model can be thought of as a rotation and distortion of the RGB
space such that the Y axis lies along the RGB grayscale diagonal. The two color
axes then correspond roughly to red-green (I) and blue-yellow (Q).

The YIQ color model is of interest due largely to the way it has been adopted
by broadcasters and audio/video electronics manufacturers. In the United States,
for example, black and white television broadcasts during the mid 1900s used a
single grayscale channel for image transmission. When the National Television
Standards Committee (NTSC) developed the standard for color television broad-
casts, they chose YIQ as the color model to allow backward compatibility with
black and white television sets. Since the Y channel of the color standard is
equivalent to the grayscale of the black and white standard, black and white
television sets were able to tune into the Y channel of a color broadcast while
discarding the I and Q channels. In addition, since human perception is far
more sensitive to brightness than color, separation of color and brightness bands
allows more information to be packed into the Y channel than the I and Q chan-
nels. The NTSC standard allocates 4 megahertz (MHz) to the Y channel, 1.5
MHz to the I channel, and 0.6 MHz to the Q channel where a MHz is a measure
of the amount of information that can be carried on a channel. The standard
essentially allocates 66% of a television signal for intensity, 25% for red/green,
and the remaining 9% for blue/yellow.

An RGB color can be converted to YIQ space using the transformation of
Equation (3.4). Note that the elements of the first row in the conversion matrix
sum to 1 while the elements of the other rows sum to zero. Since all chromatic in-
formation is packed into the I and Q channels, we would expect that a grayscale
RGB value would reduce to zero in both the I and Q dimensions. Since each of
the R, G, and B samples of an RGB grayscale color are identical, it follows that
the coefficients must themselves sum to zero. Also note, that while normalized
RGB coordinates are in the range [0, 1], the range of values for the I and Q bands
includes negative values: Y

I
Q

 =

 0.299 0.587 0.114
0.596 −0.274 −0.321
0.211 −0.523 0.312

 R
G
B

 . (3.4)

3.2.5 YCbCr Color Model
The YCbCr color model possesses many of the same qualities as YIQ and is the
color model used in the JPEG image file format as well as in component video



i
i

i
i

i
i

i
i

3.2. Color 33

systems. YCbCr is often confused with the YUV color model and it is most often
the case that YUV should be understood as YCbCr. As in the YIQ space, lumi-
nance is isolated in the Y band while the Cb and Cr axes represent chromaticity.
The Cb band is the difference between the blue component and a reference point
while the Cr band is the difference between the red component and a reference
point. The YCbCr coordinates can be computed from normalized RGB values,
as shown in Equation (3.5). Y

Cb
Cr

 =

 16
128
128

+

 65.481 128.553 24.966
−37.797 −74.203 112.000
112.000 −93.786 −18.214

 R
G
B

 . (3.5)

Note that the YCbCr coordinates are in 8-bit precision according to the transfor-
mation of Equation (3.5) and that the range of the various components does not
fully cover 8 bits. The Y band is in the range [16, 235] while the Cb and Cr bands
are in the range [16, 240]. In image processing applications these bands may then
need to be stretched (scaled) into the full 8-bit dynamic range.

3.2.6 Color Similarity
In many image processing applications it is necessary to determine how differ-
ent one color is from another. Since colors are given as points in some three-
dimensional color space, the difference between two colors can be defined as
the distance between the two points. As the distance between two colors grows
smaller, the two colors are more similar and of course as the distance increases
the two colors are more dissimilar. Consider as an example the two RGB colors
C1 = (r1, g1, b1) and C2 = (r2, g2, b2). We wish to compute the distance be-
tween C1 and C2 as a way of measuring their similarity. The distance between
two three-dimensional points can be computed in different ways; the two most
common metrics are known as the L1 distance (also known as the Manhattan or
taxi cab distance) and the L2 distance (also known as the Euclidean distance).
These two ways of measuring distance are defined is Equation (3.6).

L1 = |r2 − r1|+ |g2 − g1|+ |b2 − b1|,

L2 =
√

(r2 − r1)2 + (g2 − g1)2 + (b2 − b1)2.
(3.6)

The taxi cab metric derives its name from the notion that a taxi cab in any
large metropolitan city must travel from point to point by navigating streets that
are aligned on some grid. The Euclidean distance measures the straight-line
distance between two points. Figure 3.4 gives a visual illustration of the taxi cab
metric as applied to the RGB color space.

Distances between colors must often be normalized for computational pur-
poses. The normalized distance between two colors C1 and C2 is determined by



i
i

i
i

i
i

i
i

34 3. Digital Images

Figure 3.4. Taxi cab and Euclidean distance metrics.

first computing the distance between C1 and C2 and then dividing that distance
by the maximum possible distance between any two colors in the given color
space. The maximum distance between any two colors in RGB space, for exam-
ple, occurs when the two colors are at diagonally opposite corners of the color
cube. The color pairs black/white, red/cyan, green/magenta, and blue/yellow
have maximal distances which are given as 3 for the L1 metric and

√
3 for L2.

As an example of color similarity, consider the normalized RGB colors
(.5, .4, .2) and (.3, .7, .1). The taxicab distance between these colors is .6 and
the Euclidean distance is .374, as shown in Equation (3.6). The normalized taxi-
cab distance between these two colors is .6/3 = .2 and the normalized Euclidean
distance is .374/

√
3 = .216.

L1 = |.5− .3|+ |.4− .7|+ |.2− .1|
= .2 + .3 + .1

= .6,

L2 =
√

(.5− .3)2 + (.4− .7)2 + (.2− .1)2

=
√

(.04 + .09 + .01)

=
√
.14

= .374.

Note that the L1 and L2 distance can only be directly applied to those color
models that are represented in some Cartesian coordinate space. RGB, CMY,
YIQ, and YUV color models fall into this category while the HSB model does
not. The HSB color model uses a cylindrical model space rather than Cartesian
since hue is given as an angular measure and saturation as a radial distance from
the center. In order to determine the distance between two HSB colors we must
first convert them into some Cartesian space after which one of the metrics given
in Equation (3.6) can be applied.



i
i

i
i

i
i

i
i

3.2. Color 35

Given a normalized HSB color C = (h, s, b) we can convert into a Carte-
sian coordinate space where the x-axis is aligned along the red direction of the
HSB cylinder, the z-axis is aligned with brightness and the y-axis is perpendic-
ular to both x and z. Projection of the HSB values onto these axes is given by
Equation (3.7):

x = s cos(2πh),
y = s sin(2πh),
z = b.

The distances between two HSB colors (h1, s1, b1) and (h2, s2, b2) can then
be computed by applying Equations (3.7) to obtain (x1, y1, z1) and (x2, y2, z2)
after which Equation (3.6) can be directly applied, as shown in Equation (3.7).
Note that the maximum distance between two colors in normalized HSB space
is given as 1 + 2

√
2 for the L1 metric and

√
5 for L2. Also note that the L1

metric in HSB space is not consistent since the L1 distance between two fully
saturated complementary colors having the same brightness will range between 2
and 2 ∗

√
2 :

L1 = |s1 cos(2πh1)− s2 cos(2πh2)|+ |s1 sin(2πh1)− s2 sin(2πh2)|+ |b1 − b2|,

L2 =
√

(s1 cos(2πh1)− s2 cos(2πh2))2 + (s1 sin(2πh1)− s2 sin(2πh2))2 + (b1 − b2)2 .

3.2.7 Representing Color in Java
As the previous sections have indicated, color is a three dimensional entity. The
three dimensions of color form a volumetric space wherein each point represents
a color. Any representation of color must then include the storage of three values
along with some indication of the color space used. The Java graphics library,
java.awt, contains a class that does precisely this. The Color class represents a
color by storing three numeric values along with an indication of the color space
used. While the Color class is flexible enough to represent colors in any color
space, Java is primarily used to create images for display on computer monitors
and hence RGB is the default color space. A partial listing of methods in the
Color class is given in Figure 3.5.

The Color class supports two constructors. A Color object can be con-
structed by providing a normalized RGB tuple (each floating point value is in
the range [0, 1]) or an 8-bit tuple (each integer is in the range [0, 255]). While the
two constructors listed above use the default RGB color space, there are addi-
tional methods not listed here that allow clients to specify and manipulate colors
in alternative color spaces. Care should be taken, however, when using alterna-
tive color spaces since image display is optimized for images in RGB space and
using other spaces may significantly degrade system performance. Regardless



i
i

i
i

i
i

i
i

36 3. Digital Images

Color

Color(float r, float g, float b)
Color(int r, int g, int b)
int getRed()
int getGreen()
int getBlue()

Figure 3.5. Color class methods (partial listing).

of the color space used, all Color objects are internally able to convert them-
selves into 8-bit RGB space and provide the corresponding values through the
getRed(), getGreen(), and getBlue() methods.

Java does not provide any support for computing the similarity between two
Color objects. As a result, we must author customized methods to compute the
distance between any two colors. Consider the development of a class named
ColorUtilities that contains a collection of static methods for performing ba-
sic color operations and transformations. Listing 3.1 gives a partial implemen-
tation of this class, including pairs of overloaded Java functions to compute the

1 p u b l i c c l a s s C o l o r U t i l i t i e s {
2 p u b l i c s t a t i c f l o a t e u c l i d e a n D i s t a n c e ( f l o a t s01 , f l o a t s11 , f l o a t s12 ,
3 f l o a t s02 , f l o a t s12 , f l o a t s22 ) {
4 f l o a t db0 = ( s01−s02 ) ;
5 f l o a t db1 = ( s11−s12 ) ;
6 f l o a t db2 = ( s21−s22 ) ;
7 r e t u r n Math . s q r t ( db0∗db0 + db1∗db1 + db2∗db2 ) ;
8 }
9

10 p u b l i c s t a t i c f l o a t e u c l i d e a n D i s t a n c e ( Color c1 , Color c2 ) {
11 r e t u r n e u c l i d e a n D i s t a n c e ( c1 . getRed ( ) , c1 . getGreen ( ) , c1 . g e t B l u e ( ) ,
12 c2 . getRed ( ) , c2 . getGreen ( ) , c2 . g e t B l u e ( ) ) ;
13 }
14

15 p u b l i c s t a t i c f l o a t t ax iCabDis tance ( f l o a t s01 , f l o a t s11 , f l o a t s12 ,
16 f l o a t s02 , f l o a t s12 , f l o a t s22 ) {
17 r e t u r n Math . abs ( s01−s02 ) + Math . abs ( s11−s12 ) + Math . abs ( s21−s22 ) ;
18 }
19

20 p u b l i c s t a t i c f l o a t t ax iCabDis tance ( Color c1 , Color c2 ) {
21 r e t u r n t ax iCabDis tance ( c1 . getRed ( ) , c1 . getGreen ( ) , c1 . g e tB l u e ( ) ,
22 c2 . getRed ( ) , c2 . getGreen ( ) , c2 . g e t B l u e ( ) ) ;
23 }
24 }

Listing 3.1. The ColorUtilities class.



i
i

i
i

i
i

i
i

3.3. Digital Images 37

L1 and L2 distance between any two colors. In each pair of methods, a color
can be given as either a Color object or by three separate floats that represent a
normalized color in some Cartesian color space.

Having described the fundamental properties of color along with Java’s built-
in manner of representing color through the Color class, we now seek to repre-
sent a digital image. Given our understanding of color it is tempting to conclude
that an image should be represented as a two-dimensional array of Color objects
such as given in Listing 3.2.

1 Color [ ] [ ] image = new Color [ 6 0 0 ] [ 4 0 0 ] ;

Listing 3.2. Naive image representation.

As we will see in the following section, however, there are a number of impor-
tant reasons for not using this approach. In fact, when writing image processing
applications the Color class should be used sparingly. Although it may at times
present a convenient representation for color there are faster and more memory
efficient techniques that are elaborated in the following section.

3.3 Digital Images
3.3.1 Image Types
Although all images can be thought of as full color images (even black and white
are colors), it is useful to have a clear definition of terms that are commonly used
to describe image types. The pixels of a color image are allowed to range over the
full color space of some color model. In RGB, for example, a color image may
contain pixels that fall anywhere within the color cube. The colors present in a
grayscale image are restricted, however, to only those colors that lie on the black-
white diagonal of the RGB color cube or, equivalently, on the central vertical axis
of the YIQ or HSB color spaces. A grayscale image therefore has only intensity
information and no chromaticity. Binary images, as the name implies, contain
exactly two colors that are typically, but not necessarily, black and white. In
this text, we recognize only three types or classes of image: color, grayscale, and
binary. Figure 3.6 gives a visual example of these three image types.

Two other terms are commonly used to describe image types but they are
often misused. A black and white image, for example, must contain exactly
two colors (black and white) but is often incorrectly used to refer to a grayscale
image. In addition, a monochromatic image must, by implication, be composed
of a single color but is commonly used to refer to a binary image containing
black pixels (the monochrome) on top of a white background.



i
i

i
i

i
i

i
i

38 3. Digital Images

(a) Color image. (b) Grayscale image. (c) Binary image.

Figure 3.6. Image types.

Since a digital image attempts to accurately represent an image in digital
form, a conceptual model of the structure of an image is first required. The most
common conceptual model of a digital image is that of a two-dimensional grid of
colored picture elements or pixels. Each pixel corresponds to a small rectangular
region of an image that has been filled with a single color. Each pixel therefore
has an implicit width, height, and location within the digital image in addition
to the color. When the grid of pixels is viewed at an appropriate distance, the
individual pixels recede from view while collectively appearing as a continuously
colored whole. Each pixel, since it is a color, is itself composed of one or more
samples. A single pixel in an RGB image, for example, contains a red sample, a
green sample and a blue sample. A band is a grid of samples where the number
of bands in the image is equivalent to the number of samples in a single pixel. In
a grayscale image, for example, there is only one band while in an RGB image
there are three bands (the grid of red samples, green samples, and blue samples)
and in a CMYK image there are four bands. The term band is synonymous with
the term channel used in many textbooks. Since, however, Java uses the term
band this text also adopts that usage in order to avoid conflict or confusion.

In order to adequately present these concepts throughout the text we will
now define a concise notation for describing images, bands, pixels and samples.
Given an image I, we denote an individual pixel of this image by I(x, y) where x
corresponds to the column and y corresponds to the row of the pixel in the image.
In image processing it is very important to note that the top row of an image is
row zero and row numbers increase from top to bottom. Since a pixel may be



i
i

i
i

i
i

i
i

3.3. Digital Images 39

I1 I I(x, y) I(x, y)1

Figure 3.7. Structure of an RGB image.

composed of multiple samples, we denote the sample on band b of pixel I(x, y)
as I(x, y)b. To access a single sample of an image then requires the use of three
indices: two of which specify the pixel by column and row and one index which
specifies the band. Figure 3.7 gives an example of the structure of an image in the
RGB color space. The image I is composed of three bands: the red (top), green
(middle), and blue (bottom). The green band is denoted as I1 and is composed
of all green samples of the the image. A single pixel is given by I(x, y) while the
green sample of that pixel is given by I(x, y)1.

3.3.2 Color Depth
The color depth of an image describes the ability of the digital image to accurately
reproduce colors. Color depth is given as the number of bits consumed by a
single pixel of an image. A binary image for example, will have a color depth
of 1 bit per pixel, or 1 bpp, since there are only two colors in the entire image
and a single bit is sufficient to distinguish between them. A grayscale image will
usually possess a color depth of 8 bpp and a color image 24 bpp. In a 24 bpp
RGB color image, 8 bits of each pixel are allocated to each of the red, green,
and blue bands. Each pixel is therefore able to represent one of 224 colors (or
28 · 28 · 28) or 16, 777, 216 separate colors.

In terms of computation there is always a tradeoff between the color fidelity
of an image and the resources required. While images with greater color depth
are able to more accurately reproduce colors across the full spectrum they con-
sume more bits (memory) than images of lesser color depth. A color depth of
24 bpp suffices for the vast majority of image processing applications since hu-
man visual perception is unable to distinguish between color changes that are
smaller than what the 24 bpp depth supports. While images having a color depth
exceeding 24 bpp are rare, certain specialized applications require higher color
resolution. High quality scanners, medical imaging systems, and specialized sci-
entific instruments often store images using color depths of 30 bpp. Figure 3.8
illustrates the effect of color depth on the quality of a digital image.



i
i

i
i

i
i

i
i

40 3. Digital Images

(a) 1 bpp color depth. (b) 2 bpp color depth.

(c) 5 bpp color depth. (d) 24 bpp color depth.

Figure 3.8. The effect of color depth on image quality.



i
i

i
i

i
i

i
i

3.3. Digital Images 41

(a) 4× 5 resolution. (b) 20× 25 resolution.

(c) 100× 125 resolution. (d) 360× 450 resolution.

Figure 3.9. The effect of resolution on image quality.



i
i

i
i

i
i

i
i

42 3. Digital Images

3.3.3 Resolution and Aspect Ratio
The pixel resolution of an image measures the amount of visual detail that an
image holds where higher resolution means a greater capacity for visual detail.
Image resolution in digital imaging is conventionally given by the number of
columns and rows in the image. If, for example, an image has a resolution of
640 × 480 (read as 640 by 480) the image has 640 columns and 480 rows for a
total of 307,200 pixels. It is also popular to cite resolution by giving only the
total pixel count, usually specified in terms of megapixels.

Pixel resolution often includes some notion of the physical size of the image
when either acquired or displayed. When physical size is considered, the pixel
resolution is given in terms of pixels per unit of length or pixels per unit of area.
Printers, for example, may be characterized as 600 dots (pixels) per inch and
geographic information systems often give pixel resolution as the ground sample
distance (GSD), which is a measure of how much of the earth’s surface area is
covered by a single pixel of a satellite image.

The aspect ratio is a measure of the relative height and width of a digital image
and is defined as the width of the image divided by the height of the image.
The aspect ratio is often given in simplified terms so that for an image having a
resolution of 640 × 480 the aspect ratio can be given as either 4:3 (read “four to
three”) or as 1.33:1 or as merely 1.33. Also, when a digital image is sampled the
individual photosites have a width and a height which implies that individual
pixels may have an aspect ratio. The pixel-level aspect ratio is usually assumed
to be 1, but if the pixels of an image are not square then the actual aspect ratio
of the image must be adjusted by multiplication with the pixel aspect. Figure 3.9
illustrates the effect of image resolution on image quality by allowing the pixel
resolution to vary while holding other image attributes constant.

3.3.4 Frequency
The pixels within an image form patterns of varying intensities that are often
described in terms of frequency. The frequency of an image is a measure of the
amount of change in color that occurs over spatial distance, which is usually
measured in terms of pixels. Regions of an image that contain large color change
over a small distance are characterized as high frequency regions. Regions that
have low color variance over large spatial distances are characterized as low fre-
quency regions. The concepts of image frequency and resolution are directly
related. High resolution images are able to capture high frequency details while
low resolution images cannot adequately capture fast changes in color over short
spatial distances.

Most images contain both high and low frequency regions as illustrated in
Figure 3.10. In this figure, the region labeled A is a very low frequency region
since the color varies very little across the pixels within the region. Region B is



i
i

i
i

i
i

i
i

3.4. Acquisition 43

Figure 3.10. Image frequency.

characterized by relatively moderate frequency since the color variance is mod-
erate over a smaller number of pixels, while region C can be characterized as a
relatively high frequency region of the image. Analyzing image content in terms
of frequencies is fundamental to much of image processing and is further detailed
in Chapter 9.

In summary then, a digital image can be characterized by its resolution, color
depth, and color model in addition to frequency content. Since each of these
attributes affects image quality, careful selection of resolution, color depth, and
color model are crucial when developing an image processing system.

3.4 Acquisition
3.4.1 Grayscale Images
Digital images can be acquired directly through the use of imaging hardware or
they may be synthesized by software applications that allow a user to “draw”
a digital image directly on a computer monitor. In the case of hardware-based
acquisition systems, a real-world object or environment, referred to here as a
continuous tone natural scene, is converted into a digital image through sampling



i
i

i
i

i
i

i
i

44 3. Digital Images

and quantization. Sampling a continuous tone scene partitions the scene spatially
into a grid of rectangular regions (the pixels) while quantizing the scene parti-
tions the continuous range of light intensity levels into a discrete set of values.

Hardware-based acquisition systems such as digital cameras, digital scanners,
and digital copy machines, rely on an electronic device known as an image sen-
sor to perform both sampling and quantization. The two most common types
of image sensors are based on two different technologies. While the charge cou-
pled device (CCD) and the complementary metal oxide semiconductor (CMOS)
sensors have slightly different approaches to image sensing, they are roughly
equivalent in terms of function and produce images of comparable quality.

In either case, an image sensor is an electronic circuit with a grid of small,
usually rectangular, photocells mounted on an electronic chip. The optical lenses
of the system focus a scene onto the surface of the photo-sensors such that when
an image is acquired, each photocell measures the total amount of light that falls
within its boundaries. The light intensity of each sensor is recorded and, when
viewed as a collective whole, the records represent a digital image.

When acquiring an image via an image sensor, the resulting digital image
is of course an approximation to the continuous tone natural scene which has
been sampled and quantized by the sensor. Sampling refers to the notion that a
single pixel reduces an area of light into a point of light and hence a pixel should
be understood as the amount of light present at a singular point within a scene.
Quantization refers to how finely a sensor is able to measure the intensity of light.
Quantization measures a continuous value, light intensity, and maps it into one
of several possible digital values through a process known as analog-to-digital
(A/D) conversion. Image sampling is directly related to image resolution where
a higher sampling rate implies a greater image resolution. Image quantization is
directly related to color depth such that better quantization implies greater color
depth.

It is important to recognize that a sample represents a geometric point in the
image plane and hence has no shape or size. Although the sample was likely ac-
quired by a rectangular photo-sensor with nonzero width and height, the sample
value itself represents the amount of light striking at the center of the photosite.

Image sampling and quantization are illustrated in Figure 3.11. In this ex-
ample the continuous tone scene of part (a) is projected onto a CCD containing
a 15 column by 17 row grid of photo-sensors. The physical size and shape of the
photo-sensors serve to sample the source image and produce the digital image of
part (b) which has a resolution of 15× 17. The sampled image is then quantized
by the CCD photo-sensors using an 8 bit color depth to produce the digital im-
age of part (c). Since each pixel outputs a single numeric value, the output of the
CCD is best understood as a grayscale image, even if the source image is color.

In this text, a real-world scene will be denoted as a continuous tone image.
A continuous tone image can be modeled as a continuous function f(x, y) over
a two-dimensional space known as the image plane. The parameters x and y



i
i

i
i

i
i

i
i

3.4. Acquisition 45

(a) Continuous tone scene. (b) Sampled. (c) Sampled and quantized.

Figure 3.11. Image sampling and quantization.

are Cartesian coordinates that specify a point in the image plane and the value
of the function represents the amount of light present at the specified location.
In human vision, the image plane corresponds roughly to the retina, the x-y co-
ordinates locate points on the retina and the function f specifies the color and
intensity of the light at the specified location. Modeling images as two dimen-
sional functions of light is of interest to theoreticians since such a model is precise
and subject to functional and symbolic analysis. Continuous models are rarely
used in practice, however, due to the inherent difficulty of specifying and manip-
ulating equations that correspond to visual data. As a result, digital images are
almost always modeled as discrete approximations to some continuous analog
image.

An individual pixel value corresponds to the total amount of light that strikes
the rectangular area represented by the pixel itself. Consider, for example, a
scenario where a digital camera in a dark cavern is aimed at a weak flashlight.
Figure 3.12 gives a mathematical illustration of this scenario and highlights in
more mathematical terms the process of sampling and quantization. In this
figure, part (a) shows a plot of the continuous Gaussian distribution function
f(x, y) = e(x ∗ x + y ∗ y) over the interval [−5, 5] in the x-y image plane. The
image sensor lies in the x-y plane and the height of the function corresponds to
the amount of light falling across the image sensor. The image of part (b) shows
a projection of the individual photo sensors onto the plot and indicates how the
function will be sampled. For this example, the pixel elements are 1

2 ×
1
2 unit

squares in size. The image of part (c) shows the effects of quantization where
the light intensity values have been partitioned into eight possible values corre-
sponding to a 3-bit color depth. The resulting digital image is shown in part (d),
where white pixels correspond to regions of high light level while darker pixels
correspond to regions of low light levels.



i
i

i
i

i
i

i
i

46 3. Digital Images

(a) Plot of a continuous Gaussian distribution function. (b) Projection of individual photo-sensors.

(c) Effects of quantization. (d) Digital image.

Figure 3.12. Sampling and quantization.



i
i

i
i

i
i

i
i

3.4. Acquisition 47

3.4.2 Acquisition of Color Images

The most common technique for acquiring color images uses a single image
sensor where each pixel site is filtered to sense either red, green, or blue light.
The specific arrangement of red, blue and green elements is determined by a
color filtering scheme. Since human vision is more sensitive to green wavelengths
than red or blue, the most popular color filtering scheme is the Bayer filter, a
patented technique named after its discoverer, Dr. Bryce E. Bayer. Every 2 × 2
sub-region of a Bayer filtered CCD contains one red, one blue, and two green
pixels that roughly mimics the relative sensitivity of cones in human perception.

When an image is acquired using a Bayer-filtered sensor, the unprocessed
result is a set of three images corresponding to the red, green, and blue bands
such that each of the bands contains gaps. This data is commonly known as the
RAW output. The RAW data must be processed by combining the three partially
complete bands in such a way as to produce a seamless true-color image. The
process of combining the three bands of RAW data is known as demosaicing.
This process is illustrated in Figure 3.13, where the Bayer filtered CCD of part
(a) is used to acquire the three bands shown in part (b). The RAW data of part
(b) must then be demosaiced to form a color image that typically has a lower
resolution than that of the image sensor itself. Bayer filtering generally reduces
the resolution of the sensor in order to gain color depth.

An alternative to color imaging with Bayer filters is known as 3CCD, a tech-
nique that, as the name implies, uses three separate image sensors. The optics
in a 3CCD system split the incoming scene into three separate filtered paths,
each of which falls incident onto one of the three sensors where each sensor ac-
quires a single, complete band of the output image. The acquisition system then
combines the three separate bands to form a single color image. The benefit of
this technique is that sensor resolution is not sacrificed since the sensor resolu-
tion is identical to the resolution of the acquired image. These systems are more

(a) Bayer-filtered sensor. (b) Resulting bands.

Figure 3.13. Demosaicing with the Bayer filter.



i
i

i
i

i
i

i
i

48 3. Digital Images

expensive, however, since more hardware is required and the optics must be pre-
cisely aligned in order to accurately register the three bands into a single com-
posite output image.

Another new alternative involves a sophisticated image sensor developed by
Foveon, Inc. Their sensor is based on photosites that are able to simultaneously
detect the amount of red, green, and blue light. In this case, each sensor produces
three separate light intensity readings and hence there is no need to sacrifice res-
olution for color depth. In addition, since there is a single image sensor, there is
no need for multiple optical paths nor is there any need to register three separate
images.

3.5 Display
Images are typically rendered on computer monitors, television screens, or printed
media and each type of output device imposes constraints on how an image
should be processed for display. Variations in the physical size and geometry
of the display pixels and the total number of colors that an output is capable of
displaying can greatly affect the quality of the displayed image.

As mentioned in the previous section, samples are dimensionless points im-
plying that they cannot be viewed since they have neither width nor height. In
order to make a digital image viewable, a reconstruction filter is applied that
maps the samples of an image onto a display device. The reconstruction fil-
ter converts the collection of discrete samples into a continuous space which is
amenable for display. Most cathode ray tube (CRT) monitors and most printers
produce pixels that are circular in shape while other types of monitors produce
rectangular pixels.

3.6 Exercises
1. Use Pixel Jelly to construct a checkerboard image (Edit → Create). The

image should have a resolution of 250 × 250 and alternate between red
and blue. Predict the result if the image is converted into one of RGB,
CMY, YIQ, or HSB and a single band of the result is then displayed as a
grayscale image. Justify your predictions and then use Pixel Jelly to check
your prediction (Image Operations→ Band Extract).

2. Equation (3.4) gives the transformation matrix for converting from the
RGB to YIQ color space. The inverse of this matrix yields the transfor-
mation that converts from the YIQ color space to the RGB color space.
Give the transformation matrix for converting from the YIQ to RGB color
space and comment on the results.



i
i

i
i

i
i

i
i

3.6. Exercises 49

3. Use Pixel Jelly to simulate Bayer filtering an image. Apply the Bayer filter
operation to a color image of your choice and describe the visual result.
Then convert the Bayer filtered image to grayscale and compare this to the
grayscale version of the prefiltered color image. Explain the result.

4. Consider a 800×600 image that has been acquired by a system where each
pixel has a 1.5:1 aspect ratio. Give the aspect ratio of the image.

5. Describe a demosaicing algorithm. Your procedure should accept aM×N
2D array of integers which are arranged in a Bayer filtered pattern and it
should produce a W ×H 2D array of colors. Indicate the relationship be-
tween M and W, N and H and be precise about how the colors are formed
from the Bayer-filtered values. Discuss the strengths and weaknesses of
your approach.

6. ? The text claims on page 35 that the maximum L1 distance between two
points in HSB space is 1+2

√
2 and that the maximum L2 distance between

two points in HSB space is
√

5. Give a proof that this claim is correct.
Also give two colors C1 and C2 such that the L1 distance between them is
1 + 2

√
2 and the L2 distance is

√
5.

Artwork
Figure 3.6. Jeremiah by Michelangelo di Lodovico Buonnicoti Simoni (1475–
1564). Construction of the Sistine Chapel was completed in 1483 after nine
years of construction and it is the best known place of worship in Vatican City.
It took decades of further work to complete the interior decoration, which in-
cludes frescoes by some of the most talented and well-known Renaissance artists
including Michelangelo, Raphael, and Botticelli. The decorative scheme of the
chapel serves to depict, in visual form, the doctrine of the Catholic church from
the creation narrative to the birth, life, and death of Christ, and then to the final
day of judgment.

The image of Jeremiah was completed in approximately 1512 as part of a
large fresco atop the ceiling. Jeremiah is one of the major prophets of Old Tes-
tament literature, who powerfully foretells of the destruction of Jerusalem due
to the residents rebellion against God. Jeremiah is often known as the “weeping
prophet” due to his great anguish over the people’s refusal to repent and it is this
posture of sorrow that is reflected here. Over time the chapel ceiling began to
deteriorate and has since been restored. Although the image shown in this text is
derived from the original fresco, it has been digitally enhanced for presentation.

Figure 3.8. Napoleon at the Saint-Bernard Pass by Jacques-Louis David (1748–1825).
Jacques-Louis David was a well-known and influential French artist whose



i
i

i
i

i
i

i
i

50 3. Digital Images

historical paintings were well suited to the political and moral climate of his
time. David maintained a very strong following of students and his predominant
style is known as academic Salon painting. He was an active proponent of the
French Revolution and became something of the artistic censor of the French
Republic. He was imprisoned after the fall of Robespierre but was eventually
released with the regime change brought about by Napoleon I.

Napoleon commissioned David to commemorate his daring crossing of the
Alps at St. Bernard Pass. This march had allowed the French to overcome the
Austrian army and claim victory at the Battle of Marengo on June 14, 1800. Al-
though Napoleon had crossed the Alps on a mule, he asked David to portray him
mounting a fiery steed. The images shown in Figures 3.8 and 3.9 are enhanced
reproductions of David’s original, which was completed in 1801.

Figure 3.9. Napoleon at the Saint-Bernard Pass by Jacques-Louis David (1748–1825).
See the description of Figure 3.8.

Figure 3.10. The Gulf Stream by Winslow Homer (1836–1910). Winslow Homer
was born in Boston, Massachusetts, as the second of three sons and lived in
Maine, close to the ocean, for most of his life. He first learned to paint from his
mother, Henrietta, who was herself a skilled artist. Homer furthered his skills
by working as a commercial illustrator, primarily for sheet music covers before
finding later success and renown as an independent freelance artist.

Homer is best known for his vivid portraits of marine life involving ships,
sailors, and the sea. The image of Figure 3.10 was inspired by trips made to
the Bahamas in 1884–85 and 1898–99. The image is largely one of despair as
it portrays a black sailor adrift and alone. The sailor apparently set out from
Key West, Florida; the strong currents of the Gulf Stream push him into the
Atlantic and a violent storm has snapped the mast and cut the rudder free from
the ship. The boat is encircled with sharks where specks of red suggest that other
sailors may have been lost overboard, and the threatening storm on the horizon
insinuates that the worst is yet to come.

Figure 3.11. “Furman Owens” by Lewis Hine (1874–1940). Lewis Hine was an
American photographer who used photography as a means of social reform by
documenting and publicizing abuses within the child labor industry. His own
words best summarize his view on child labor as it was practiced during his
time: “There is work that profits children, and there is work that brings profit
only to employers. The object of employing children is not to train them, but to
get high profits from their work.” Figure 3.11 is an image of Furman Owens.
Hine’s full title is “Furman Owens, 12 years old. Can’t read. Doesn’t know his
A, B, C’s. Said, ‘Yes I want to learn but can’t when I work all the time.’ Been in
the mills 4 years, 3 years in the Olympia Mill, Columbia, S.C.”



i
i

i
i

i
i

i
i

�

Digital Images
in Java 4

4.1 Overview
The standard Java distribution includes support for loading images from files,
writing images to files, viewing digital images as part of a graphical interface,
and creating and editing digital images. This chapter provides an overview of
commonly used image processing classes in Java and describes the fundamental
concepts behind image data structures.

4.2 Image Structure
The central task of writing object-oriented image processing software is to gen-
erate data structures and methods flexible enough to represent images having
different color and data models while still providing a uniform and efficient
way of manipulating them. In order to understand Java’s image processing class
structure, we first examine the structure and essential nature of images in broad
object-oriented terms. This section introduces a series of simple but illustrative
image classes that are used to illuminate the design decisions behind Java’s more
sophisticated image processing library.

At the most basic design level, a digital image should be considered a three-
dimensional structure having read and write support for both pixels and samples
as well as methods for obtaining information about the dimensions of the image.
Listing 4.1 shows a complete Java specification for the DigitalImage interface
that supports these methods. This interface serves only to illustrate fundamental
issues regarding Java’s image processing library. This class is not used in Java’s
image processing library nor is it used throughout the remaining chapters of this
text.

51



i
i

i
i

i
i

i
i

52 4. Digital Images in Java

1 p u b l i c i n t e r f a c e Dig i ta l Image {
2 p u b l i c i n t getWidth ( ) ;
3 p u b l i c i n t ge tHe igh t ( ) ;
4 p u b l i c i n t getNumberOfBands ( ) ;
5

6 p u b l i c i n t [ ] g e t P i x e l ( i n t x , i n t y ) ;
7 p u b l i c void s e t P i x e l ( i n t x , i n t y , i n t [ ] p i x e l ) ;
8 p u b l i c i n t getSample ( i n t x , i n t y , i n t band ) ;
9 p u b l i c void se tSample ( i n t x , i n t y , i n t band , i n t sample ) ;

10 }

Listing 4.1. DigitalImage interface.

In Java, an interface is a collection of related methods without any bodies or
code. An interface thus describes functionality without any restrictions on the
way that the methods are implemented. Any class that implements an interface
must provide the method bodies that are not given in the interface. Class imple-
mentation is similar to subclassing since classes that implement an interface are
said to conform to the interface that they implement.

The DigitalImage interface defines seven methods that describe how clients
are able to programmatically interact with and manipulate a digital image object.
While the DigitalImage class places as few restrictions as practically possible
on the way in which data is represented, the interface nonetheless makes a num-
ber of assumptions about how data is actually stored. For example, this interface
defines a sample as an int while a pixel is represented as an array of samples.

While the interface requires information to flow between the client and sup-
plier using particular data types, the interface does not make any assumptions
about the way in which these operations are actually implemented. The next
section highlights the various ways that this interface can be implemented and
the performance implications of each technique.

4.2.1 Implementation Issues
In order to use the DigitalImage interface, implementing classes must be de-
signed and implemented. It seems likely that most concrete classes will im-
plement the get routines of the interface in precisely the same fashion. As a
result, an abstract base class is presented in Listing 4.2, where the getWidth,
getHeight, and getNumberOfBands methods of the AbstractDigitalImage
class are completely implemented while leaving the others incomplete. This class
is abstract as indicated by the class modifier, which simply means that the class
is only partially implemented. The AbstractDigitalImage will serve as a base
class for implementing classes that are themselves free to represent the image
data and the sample processing functions in any way the designer chooses.



i
i

i
i

i
i

i
i

4.2. Image Structure 53

1 p u b l i c a b s t r a c t c l a s s A b s t r a c t D i g i t a l I m a g e implements Dig i ta l Image {
2 p r o t e c t e d i n t width , he igh t , bands ;
3

4 p u b l i c A b s t r a c t D i g i t a l I m a g e ( i n t w, i n t h , i n t b ) {
5 width = w;
6 h e i g h t = h ;
7 bands = b ;
8 }
9

10 p u b l i c i n t getWidth ( ) { r e t u r n width ; }
11 p u b l i c i n t ge tHe igh t ( ) { r e t u r n h e i g h t ; }
12 p u b l i c i n t getNumberOfBands ( ) { r e t u r n bands ; }
13 }

Listing 4.2. AbstractDigitalImage class.

Listing 4.3 shows a complete implementation of the DigitalImage interface.
Since the term raster is used in image processing to denote a rectangular grid of
pixels, the ArrayDigitalImage class uses a variable named raster in which to
store the pixel data. The raster variable is a three-dimensional array where the

1 p u b l i c c l a s s ArrayDig i ta l Image extends A b s t r a c t D i g i t a l I m a g e {
2 p r i v a t e i n t [ ] [ ] [ ] r a s t e r ;
3

4 p u b l i c ArrayDig i ta l Image ( i n t width , i n t he igh t , i n t bands ) {
5 super ( width , he igh t , bands ) ;
6 r a s t e r = new i n t [ h e i g h t ] [ width ] [ bands ] ;
7 }
8 p u b l i c i n t getSample ( i n t x , i n t y , i n t b ) {
9 r e t u r n r a s t e r [ y ] [ x ] [ b ] ;

10 }
11 p u b l i c void se tSample ( i n t x , i n t y , i n t b , i n t s ) {
12 r a s t e r [ y ] [ x ] [ b ] = s ;
13 }
14 p u b l i c i n t [ ] g e t P i x e l ( i n t x , i n t y ) {
15 i n t [ ] r e s u l t = new i n t [ bands ] ;
16 System . ar raycopy ( r a s t e r [ y ] [ x ] , 0 , r e s u l t , 0 , bands ) ;
17 r e t u r n r e s u l t ;
18 }
19 p u b l i c void s e t P i x e l ( i n t x , i n t y , i n t [ ] p i x e l ) {
20 System . ar raycopy ( p i x e l , 0 , r a s t e r [ y ] [ x ] , 0 , bands ) ;
21 }
22 }

Listing 4.3. The ArrayDigitalImage implementation of the DigitalImage interface.



i
i

i
i

i
i

i
i

54 4. Digital Images in Java

first index corresponds to the row, the second index corresponds to the column,
and the third index corresponds to the band. The getSample method must then
take the indices given by the client and map them into the proper cell location
of the raster. Note that since in Java arrays are indexed by row first and then
by column, the getSample method switches the order of parameters x and y
to match conventional array usage in Java. Also, since multidimensional arrays
are implemented in Java as arrays of arrays, pixel-level access is exceptionally
efficient and easily implemented as indicated by the brevity of the getPixel
method.

The System.arraycopy method is a standard Java method that efficiently
copies data from a source array, given as the first parameter, into a destination
array, given as the third parameter. The index of the first source element is given
as the second parameter while its corresponding location in the destination array
is given as the fourth parameter. The number of elements to copy is given by the
final parameter.

We will briefly analyze the performance of the ArrayDigitalImage class in
terms of the speed of the individual methods and the amount of memory con-
sumed by the object as a whole. Since there are a total of W ·H ·B samples in a
W ×H × B image we would expect that an efficient implementation would re-
quire at mostW ·H ·B bytes of memory. An analysis of the ArrayDigitalImage
class shows that while there is efficient run-time support for the basic read and
writes, the class consumes an excessive amount of memory. One source of un-
necessary memory usage results from the fact that multidimensional arrays are
implemented as arrays of arrays in Java.

Figure 4.1 illustrates the internal structure of the three-dimensional raster ar-
ray for a W × H × B digital image. Each arrow in the illustration is a
reference (i.e., a pointer) to an array object and most likely, depending upon
the specific platform, consumes 4 bytes of memory in the Java virtual machine

Figure 4.1. Structure of the three-dimensional array implementation of the
DigitalImage.



i
i

i
i

i
i

i
i

4.2. Image Structure 55

(JVM). In the ArrayDigitalImage class, the raster array can be understood as
a one-dimensional array of length H, where each array element is a reference
to a one-dimensional array of length W , each element of which is a reference to
a one-dimensional array of length B. In a W × H × B image there are then
H +WH references that consume a total of 4(H +WH) bytes.

In addition, all array objects in Java contain a length attribute which is a
4-byte integer value. Since there are a total of (1 + H + WH) arrays, an ad-
ditional 4(1 + H + WH) bytes are consumed by these length attributes. Since
the array references and length attributes are used only to support the internal
structure of the implementation rather than directly representing image data, the
memory consumed by these items is entirely redundant and can be considered
as unnecessary overhead. The total amount of unnecessary memory consumed
by this representation is given by

Moverhead = 4(H +WH) + 4(1 +H +WH)
= 8WH + 8H + 4
' 8WH.

The use of multidimensional arrays therefore consumes approximately
8 bytes per pixel in structural overhead alone and inflates the total memory re-
quirements of a three-band image by a factor of approximately 2.5. Consider
for example a 24 bpp RGB image that is 1000 pixels wide and tall. While we
would expect that the image could be stored in approximately 24 · 1000 · 1000
bits or 3,000,000 bytes, an ArrayDigitalImage object will consume well over
8 · 1000 · 1000 or 8,000,000 bytes.

4.2.2 Linearization
The above shortcomings in terms of memory management can be overcome by
forgoing the use of multidimensional arrays. We first change the type of the

Image Sample Raster Index
I(0, 0)0 0
I(0, 0)1 1
I(0, 0)2 2
I(1, 0)0 3
I(1, 0)1 4
I(1, 0)2 5
I(2, 0)0 6

...
...

I(x, y)b B(x+ y ·W ) + b

Table 4.1. Raster layout of a W ×H ×B digital image.



i
i

i
i

i
i

i
i

56 4. Digital Images in Java

raster from a three-dimensional array to a single one-dimensional array. Since
the raster must still contain all of the image samples, the length of the raster
array must be equal to WHB. All image samples are then packed into the array
by linearizing the indices in raster scan order. A raster scan is an ordered list of
all pixels in an image starting at I(0, 0) and finishing at I(W − 1, H − 1)B−1

proceeding in left-to-right, top-to-bottom fashion.
While the sample data is physically stored in a one-dimensional array the

data actually represents a two-dimensional table. Since the samples of an image
are accessed by their column, row, and band indices, we must develop a mapping
between three indices, the column, row, and band indices, and the corresponding
index in the one-dimensional raster array. Table 4.1 illustrates how the pixels
of a digital image are packed into the raster. Given a W × H × B image the
raster element containing I(x, y)b is given by the last entry in Table 4.1. In other
words, a request for sample I(x, y)b can be filled by returning the element at
index B(x+ yW ) + b of the raster.

1 p u b l i c c l a s s LinearArrayDig i ta l Image extends A b s t r a c t D i g i t a l I m a g e {
2 p r i v a t e i n t [ ] r a s t e r ;
3

4 p u b l i c LinearArrayDig i ta l Image ( i n t width , i n t he igh t , i n t bands ) {
5 super ( width , he igh t , bands ) ;
6 r a s t e r = new i n t [ bands ∗ width ∗ h e i g h t ] ;
7 }
8

9 p u b l i c i n t getSample ( i n t x , i n t y , i n t b ) {
10 r e t u r n r a s t e r [ bands ∗ ( x+y∗width )+b ] ;
11 }
12

13 p u b l i c void se tSample ( i n t x , i n t y , i n t b , i n t s ) {
14 r a s t e r [ bands ∗ ( x+y∗width )+b ] = s ;
15 }
16

17 p u b l i c i n t [ ] g e t P i x e l ( i n t x , i n t y ) {
18 i n t [ ] r e s u l t = new i n t [ bands ] ;
19 System . ar raycopy ( r a s t e r , bands ∗ ( x+y∗width ) ,
20 r e s u l t , 0 , bands ) ;
21 r e t u r n r e s u l t ;
22 }
23

24 p u b l i c void s e t P i x e l ( i n t x , i n t y , i n t [ ] p i x e l ) {
25 System . ar raycopy ( p i x e l , 0 ,
26 r a s t e r , bands ∗ ( x+y∗width ) , bands ) ;
27 }
28 }

Listing 4.4. Implementation of the DigitalImage interface using a one-dimensional array.



i
i

i
i

i
i

i
i

4.2. Image Structure 57

Using this technique, a linear array-based implementation of the Digital
Image interface can be created, as shown in Listing 4.4, where the overhead
of maintaining a multidimensional array has been eliminated by using a one-
dimensional raster. Clients of the LinearArrayDigitalImage continue to ac-
cess pixels by column and row even though the pixel values are stored in a one-
dimensional raster. The run-time performance is comparable with that of the
multidimensional implementation as little penalty is incurred by dynamically
computing array indices from column, row, and band values.

4.2.3 Packing Samples into Pixels
While most image processing applications require a color depth of at most 24 bits
per pixel, the LinearArrayDigitalImage still supports an excessive 96 bits per
pixel since each pixel is composed of three 4-byte integers. Memory consump-
tion can be further reduced by choosing a different implementation strategy for
individual samples.

A more conservative choice is to implement each sample as a single byte
rather than an int. While this solution may seem straightforward, a number of
difficulties must be overcome. First of all, bytes are signed values in Java and
represent values in the range −128 to +127, which doesn’t correspond to the
conventional image processing notion that an 8 bit sample should range in value
between 0 (black) and 255 (white). In addition, the interface requires that ints be
used externally, if not internally, as the native representation of a sample. Hence,
some conversion must be performed for clients accessing samples through the
DigitalImage interface.

Rather than making the raster a linear array of bytes, a more common tech-
nique is to pack an entire pixel into a single int value. Since an individual
sample requires a single byte, it follows that a 4-byte integer has the capacity of
holding four samples. Table 4.2 illustrates the idea behind packing four samples
into a single int value. The table shows the standard Java RGB color represen-
tation, where the blue sample is encoded by bits 0 through 7, the green sample
is encoded by bits 8 through 15, the red sample is encoded by bits 16 through 23
and the alpha (transparency) setting is encoded by bits 24 through 31.

A Java int is a single entity that is always interpreted as a signed integer.
In this example, however, that value is not meaningful since the int is actu-
ally meant to represent four separate samples. Specialized functions must be

Byte 3
(Alpha)

Byte 2
(Red)

Byte 1
(Green)

Byte 0
(Blue)

11111111 01100001 00000111 11100001

Table 4.2. Example of a packed implementation. A single 4-byte integer value can store
up to four 8-bit samples.



i
i

i
i

i
i

i
i

58 4. Digital Images in Java

Decimal Binary
A 23523 0101101111100011

A >> 3 2940 0000101101111100
A << 5 31840 0111110001100000

Table 4.3. Illustration of Java’s bit shifting operators.

written in order to access and interpret the individual samples of the pixel for
reading or writing. Combining four samples into a single 32-bit int is known
as packing while accessing a single sample is known as unpacking. Table 4.2
shows the packed RGB representation, which is Java’s default technique for rep-
resenting image data. Packing and unpacking rely on the use of Java’s relatively
obscure bit-level operators that allow the programmer to manipulate the individ-
ual bit patterns of an int. We will briefly review the bit-level operators in Java
and then indicate how these operators are used to perform pixel packing and
unpacking.

In the expression A>>B the right-shift operator, denoted as >>, shifts each bit
of A to the right by B bits. The left-shift operator, as used in A<<B, shifts each bit of
A to the left by B bits while zero filling from the least significant (rightmost) bit.
The behavior of these operators is illustrated in Table 4.3, where the operand A
is shown as a 16-bit value for the sake of presentation rather than its actual 32-bit
value.

Java also supports bitwise logical operators (see Table 4.4), where the bit 1
is understood as true and the bit 0 is understood as false. In the expression A&B
the bitwise logical and operator, denoted as & produces a bit that is the logical
conjunction of its two operands. Bitwise logical or is denoted as | and bitwise
logical exclusive or is denoted as ^. Logical negation is a unary operator
denoted as ˜, which flips all of the bits of its operand.

These operators can be used to pack and unpack pixels into a 32-byte int.
Listing 4.5 gives methods that pack and unpack samples.

The getSampleFromPixel method unpacks a sample from a packed pixel.
This method accepts a packed pixel and which band of the pixel (in the range
[0,3]) to extract. This method first moves the desired band into the least signifi-
cant 8 bits by right-shifting by either 0, 8, 16, or 24 bits. The method then returns
the the bits 0 through 7 through bitwise conjunction. The 8-bit sample is then

Decimal Binary
A 23523 0101101111100011
B 65280 1111111100000000

A & B 23296 0101101100000000

Decimal Binary
A 23523 0101101111100011
B 65280 1111111100000000

A | B 65507 1111111111100011

Table 4.4. An illustration of Java’s bitwise logical operators.



i
i

i
i

i
i

i
i

4.2. Image Structure 59

1 i n t getSampleFromPixel ( i n t p i x e l , i n t band ) {
2 r e t u r n ( p i x e l >> band ∗8) & 0xFF ;
3 }
4

5 i n t se tSampleOfPixe l ( i n t p i x e l , i n t band , i n t sample ) {
6 r e t u r n ( ( 0 xFF&sample)<<band ∗8) | ( p i x e l & ˜ ( 0 xFF<<band ∗ 8 ) ) ;
7 }

Listing 4.5. The get and set methods for manipulating samples in packed pixels.

1 p u b l i c c l a s s PackedPixelImage extends A b s t r a c t D i g i t a l I m a g e {
2 p r i v a t e i n t [ ] r a s t e r ;
3 p u b l i c PackedPixelImage ( i n t width , i n t he igh t , i n t bands ) {
4 super ( width , he igh t , bands ) ;
5 r a s t e r = new i n t [ width ∗ h e i g h t ] ;
6 }
7

8 p u b l i c i n t getSample ( i n t col , i n t row , i n t band ) {
9 r e t u r n ( r a s t e r [ c o l + row ∗ width ] >> ( band ∗ 8 ) ) & 0xFF ;

10 }
11

12 p u b l i c void se tSample ( i n t col , i n t row , i n t band , i n t s ) {
13 i n t p i x e l I n d e x = row ∗ width + c o l ;
14 i n t p i x e l = r a s t e r [ p i x e l I n d e x ] ;
15 i n t mask = 0xFF << ( band ∗ 8 ) ;
16 s = s << ( band ∗ 8 ) ;
17

18 r a s t e r [ p i x e l I n d e x ] = ( p i x e l ˆ ( ( p i x e l ˆ s ) & mask ) ) ;
19 }
20

21 p u b l i c i n t [ ] g e t P i x e l ( i n t col , i n t row ) {
22 i n t [ ] r e s u l t = new i n t [ bands ] ;
23 f o r ( i n t b = 0 ; b < bands ; b++) {
24 r e s u l t [ b ] = getSample ( col , row , b ) ;
25 }
26 r e t u r n r e s u l t ;
27 }
28

29 p u b l i c void s e t P i x e l ( i n t col , i n t row , i n t [ ] p i x e l ) {
30 f o r ( i n t b = 0 ; b < bands ; b++) {
31 se tSample ( col , row , b , p i x e l [ b ] ) ;
32 }
33 }
34 }

Listing 4.6. PackedPixelImage implementation of DigitalImage.



i
i

i
i

i
i

i
i

60 4. Digital Images in Java

returned in the least significant 8 bits of the resulting integer. Note that 0 × FF
represents the value 255 in hexadecimal notation, which is conventionally used
when performing bitwise operations.

The setSampleOfPixel method accepts a pixel, the band of which should
be modified, and the sample that should be written into the specified band. The
method then copies the least significant 8 bits of the specified sample into the
appropriate location of the pixel and returns the modified pixel value.

Using this pixel packing technique, a PackedPixelArrayImage class can be
developed, which efficiently implements the DigitalImage interface. This class
uses a one-dimensional array to store the pixel data and each pixel is represented
by a packed int. The implementation is given in its entirety in Listing 4.6.

The PackedPixelImage provides the most compact memory footprint of
the implemented images. Since, however, the DigitalImage interface defines
a pixel as an array of sample values, the samples must be converted between
bytes of a four-byte integer and elements of an array of integers when moving
between external and internal representations. This conversion incurs a slight
performance penalty when performing pixel-level read and writes due to the bit
shifting overhead.

4.2.4 Indexing

While the packed array representation is memory efficient for any color image,
an even more efficient representation can be used for a certain subset of color
images. Consider a high-resolution image containing only a handful of colors: an
image of the Olympic flag (containing only the colors blue, yellow, black, green,
red, and white) or the image in Figure 4.2, which contains exactly 6 colors:
black, white, gray, red, blue, and off-yellow. It seems extravagant to require 24
bits of memory per pixel for the image of Figure 4.2 since there are only six
colors used in the entire image.

An indexed image uses a palette to assign each color in the image a unique
number. The palette can be thought of as an array of colors where the number
assigned to a color is its index in the array. An entire pixel can then be repre-
sented as the index of its color in the palette. Since the palette size is generally
256 or less, the result is to store entire pixels using 1 byte of memory rather than
the 4 bytes required by the packed pixel representation. This technique is known
as indexing since the pixel values are actually indices into an array of colors.

For example, consider that the image of Figure 4.2 uses an RGB palette con-
sisting of only six colors. Since an RGB color consumes 3 bytes and there are
six colors in the image, the palette itself will consume about 18 bytes of memory
and have 0, 1, 2, 3, 4, 5 as the set of indices. Since each pixel of the image is
an index into the palette, each pixel need only consume 3 bits of memory, which
is smaller by a factor of eight over representations that require 24 bits per pixel.



i
i

i
i

i
i

i
i

4.2. Image Structure 61

(a) Source image. (b) Indexed representation.

Figure 4.2. Indexed image example.

The samples contained in the raster are only colors indirectly since the samples
are actually indices into the palette. The raster shown in part (b) of Figure 4.2 de-
picts the samples that occur in the small subregion surrounding the intersection
of the white, gray, and off-yellow elements in the source image.

It is important to note that modifying samples directly is not meaningful
apart from the palette. Indexing also allows all samples of a particular color
within a source image to be changed by simply replacing the old palette color
with the new palette color. In order to change the blue region of Figure 4.2 to
green, for example, we only need to replace the last color of the palette with
green. None of the individual samples in the raster would need to be altered.

The amount of memory savings obtained by using indexing is dependent
upon the number of colors in the image. Given a palette P , we denote the size
of the palette by |P |. The number of bits per pixel is then given by dlog2(|P |)e.
The GIF image file format, for example, uses this type of representation where
the size of the palette is typically 256 and the size of each pixel is therefore 1
byte. In most cases the use of a palette will reduce the memory footprint to
approximately 1/3 of the memory footprint of the original image. Palettes do
not typically exceed 256 colors since the memory savings in such cases are not
substantial.

In addition to memory considerations, the indexing technique supports ex-
tremely efficient color modification. Changing all yellow pixels in the image to
green, for example, is accomplished by making a single change in the palette
where the color at index two is changed from yellow to green.

4.2.5 Summary
This section has presented three complete implementations of the DigitalImage
interface and given an overview of an indexing implementation. Since each im-
plementation conforms to the DigitalImage interface there is a uniform way of



i
i

i
i

i
i

i
i

62 4. Digital Images in Java

Multi-
Dimensional

Array

Linear
Array

Packed
Array

Indexed

Maximum bits
per sample

32 32 8 unbounded

Maximum number
of bands

unbounded unbounded 4 unbounded

Memory footprint
in bytes

4WH(B + 2) 4WHB 4WH WHlog2(|P |)
8

Table 4.5. A comparison of the four DigitalImage implementations described in this
section for a W ×H ×B image.

manipulating each type of image, even though the internal representations vary
in significant ways. Table 4.5 summarizes the features of each implementation.
The multidimensional array implementation has no real advantage over the lin-
ear array and should not be used for any application. The linear array implemen-
tation supports 32 bits per sample and may be useful for applications that require
more than eight bit depth. For most purposes, the packed array implementation
is sufficient and makes a good choice. Color images rarely require more than 4
bands or 8 bits per pixel and for such images the packed array representation is
concise and efficient. For the special class of images that contain few colors or
where memory consumption must be minimized, indexing is appropriate.

4.3 Java’s Imaging Library
The image processing library included with Java provides classes for represent-
ing images, processing images, and displaying images in a user interface. This
library includes sophisticated classes that supports the kind of asynchronous im-
age processing demanded by networked applications requiring responsive user
interfaces. Since this text is not concerned with the development of sophisti-
cated user interfaces, only the synchronous, also known as immediate mode im-
age processing classes, will be covered.

The UML class diagram of Figure 4.3 depicts the immediate mode imaging
classes covered in this text. The most important class is the BufferedImage.
A BufferedImage object represents a digital image and is flexible enough to
use different color models and different data representations similar those de-
scribed in Section 4.2. Each BufferedImage contains a WritableRaster and a
ColorModel object. A WritableRaster represents a rectangular array of pixels
and a ColorModel defines the color space used by the image and a set of methods
for translating between its native color space and the standard RGB color space.



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 63

Figure 4.3. UML class diagram of the BufferedImage and associated classes.

Image processing operations are represented by the BufferedImageOp class,
which is the standard class for single source image processing filters. Finally, the
ImageIO class provides a few convenient methods for creating BufferedImages
from image files and for writing BufferedImages to image files. Image pro-
cessing applications will generally load a BufferedImage into memory through
the ImageIO class, use a BufferedImageOp to process the image, and create an
output image that is then saved to a file using the ImageIO class. These classes
constitute the essential core of Java’s image processing library and hence each of
these classes is overviewed in the sections that follow.

4.3.1 BufferedImage

The BufferedImage class is similar to the AbstractDigitalImage presented
in Section 4.2 since the primary ability of the class is to provide the height and
width of the image in addition to getting or setting pixels in the image. Figure 4.4
lists the most important BufferedImage methods.

As expected, the BufferedImage getHeight and getWidth method pro-
vide the size of the image. The getRGB method returns the pixel at location
(x, y), where the representation is an RGB packed-pixel integer regardless of the
way the data is represented internally. In other words, the getRGB method may

java.awt.image.BufferedImage

BufferedImage(int width, int height, int type)

int getHeight()

int getWidth()

int getRGB(int x, int y)

void setRGB(int x, int y, int rgb)

WritableRaster getRaster()

ColorModel getColorModel()

Figure 4.4. BufferedImage methods (partial listing).



i
i

i
i

i
i

i
i

64 4. Digital Images in Java

BufferedImage Constant Description
TYPE BYTE BINARY A packed 1, 2, or 4 bpp image
TYPE BYTE GRAY An unsigned byte grayscale image
TYPE BYTE INDEXED A byte valued indexed image
TYPE INT ARGB An 8-bit packed sample RGB image with transparency
TYPE INT RGB An 8-bit packed sample RGB image

Table 4.6. BufferedImage constants. Common choices of color model and raster.

convert the image data into standard form when providing the resulting pixel
value. The setRGB method is symmetric to the getRGB method by overwriting
the pixel at location (x, y) with the specified RGB value.

Since the BufferedImage class is extremely flexible in terms of its internal
representation, constructing a BufferedImage can be a somewhat complex task.
The width, height, number of bands, color model (RGB, grayscale, binary), color
depth, and internal representation (indexed, packed, component) must be deter-
mined and provided to the constructor. Fortunately, the constructor shown in
Figure 4.4 simplifies this task by giving predefined constants for the most com-
mon combinations of color model, color depth, and representation. This con-
structor requires only that the width and height of the image be given and a
reference to a predefined constant that takes care of the remaining details.

Table 4.6 lists the predefined image types supported by the BufferedImage.
The image types are simply static integer-valued constants of the BufferedImage
class, where each constant begins with the prefix “TYPE” followed by a choice of
representation (e.g., BYTE, INT) followed by the color model (e.g., BINARY, GRAY,
INDEXED, ARGB). An image can then be programmatically construc-
ted by supplying only three integer-valued parameters: the width, the height,
and the static constant corresponding to the desired combination of color model
and underlying type.

By way of example, the first line of Listing 4.7 constructs a 250-pixel wide
by 300-pixel tall image using a grayscale color model where each sample is rep-
resented by a single byte. The second line constructs a 400 × 100 image using
an RGB color model and packed sample representation. All BufferedImages
constructed in this fashion are initially all black.

1 new BufferedImage (250 , 300 , Buf feredImage .TYPE BYTE GRAY)
2 new BufferedImage (400 , 100 , Buf feredImage . TYPE INT RGB)

Listing 4.7. Creating a black BufferedImage.



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 65

We now take note of what information a BufferedImage cannot provide. A
BufferedImage cannot provide information about color depth or the number
of bands, nor is it able to provide or process individual image samples. Even
though the BufferedImage methods for reading and writing pixel data adopt the
view that color is an 8 bit packed RGB, clients often require the ability to read
and write individual samples of a pixel using color models and bit depths other
than packed RGB. While sample-level processing is not directly supported by
BufferedImages, the samples of an image can be processed by use of the images
ColorModel and WritableRaster, which are obtained by the getColorModel
and getWritableRaster methods.

4.3.2 ColorModel
The primary task of the ColorModel is to analyze a pixel and extract the individ-
ual color components: red, green, and blue, for example. ColorModel is an ab-
stract class with subclasses that support packed pixel data (PackedColorModel),
indexed pixel data (IndexColorModel), and direct representation of samples
(ComponentColorModel). Since the RGB color space is the most common in
general computing systems, RGB serves as a default and all ColorModels are
able to convert from their native format to packed int RGB format.

4.3.3 WritableRaster
The WritableRaster represents, at a conceptual level, a two-dimensional array
of pixels. Table 4.7 lists the most commonly used raster methods. Since a raster
is a two dimensional table of pixels, it supports accessor methods to obtain the
width and height of the table in addition to the number of bands in the image.
Although clients are able to read and write pixels through the BufferedImage
getRGB and setRGB methods, reading and writing samples must be done through
the getSample and setSample methods of the WritableRaster class. These
methods make no assumption about the color space nor the sample representa-
tion and hence provide a more general interface to pixel data than the methods
provided by the BufferedImage.

java.awt.image.WritableRaster

int getWidth()

int getHeight()

int getNumBands()

int getSample(int x, int y, int b)

void setSample(int x, int y, int b, int sample)

Table 4.7. Raster methods (partial listing).



i
i

i
i

i
i

i
i

66 4. Digital Images in Java

4.3.4 ImageIO
The most convenient way of creating a BufferedImage is by loading data from
an image file. The ImageIO class, defined in the javax.image.io package, con-
tains a collection of convenient methods to read BufferedImages from a file
and to save them into a file. Table 4.8 shows the two primary methods of the
ImageIO class.

javax.imageio.ImageIO

BufferedImage read(File f)

BufferedImage write(BufferedImage im, String format, File file)

Table 4.8. ImageIO read and write methods.

The read method accepts a File object that must be an image file in any of
the BMP, GIF, PNG, or JPEG file formats. The read method will open the file
and construct a BufferedImage object corresponding to the information in the
file. It is important to understand that once the file is read and a BufferedImage
constructed, there is no longer any connection between the BufferedImage and
file. While the BufferedImage that is created by the read method is an accurate
depiction of the image file, there is no correlation between the representation of
the BufferedImage and the file itself. The file, for example, may use an indexed
color model given in YCbCr color space while the BufferedImage may use a
direct color model given in RGB space.

The write method is symmetric with the read. This method takes a
BufferedImage, a string that identifies the file format to use for encoding, and
a file in which to store the encoded image. The ImageIO class provides an ex-
tremely useful and simple method for reading images from disk and can also
read images directly from networks through URLs. The code fragment shown in
Listing 4.8 shows how to use the ImageIO class to convert an image from PNG
to GIF format.

1 BufferedImage image=ImageIO . read (new F i l e ( "Filename.png" ) ) ;
2 ImageIO . w r i t e ( image , "GIF" , new F i l e ( "Filename.gif" ) ) ;

Listing 4.8. Loading and saving a BufferedImage with ImageIO.

4.3.5 BufferedImageOp
Once an image is constructed by either reading data from an image file or calling
a constructor, image processing methods typically take a BufferedImage object



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 67

1 BufferedImage source = ImageIO . read (new F i l e ( "filename.png" ) ) ;
2 BufferedImage d e s t i n a t i o n = new BufferedImage ( source . getWidth ( ) ,
3 source . ge tHe igh t ( ) ,
4 source . getType ( ) ) ;
5

6 W r i t a b l e R a s t e r s r c R a s t e r = source . g e t R a s t e r ( ) ;
7 W r i t a b l e R a s t e r d e s t R a s t e r = d e s t i n a t i o n . g e t R a s t e r ( ) ;
8 f o r ( i n t row=0; row<s r c R a s t e r . ge tHe igh t ( ) ; row++) {
9 f o r ( i n t c o l =0; col<s r c R a s t e r . getWidth ( ) ; c o l ++){

10 f o r ( i n t band =0; band<s r c R a s t e r . getNumBands ( ) ; band++) {
11 i n t sample = s r c R a s t e r . getSample ( col , row , band ) ;
12 d e s t R a s t e r . se tSample ( col , row , band ,255− sample ) ;
13 }
14 }
15 }
16

17 ImageIO . w r i t e ( d e s t i n a t i o n , "JPEG" , new F i l e ( "output.jpg" ) ) ;

Listing 4.9. Loading and inverting an image.

and construct a new image by applying some some pixel processing algorithm. A
single source image filter is one that accepts a single image as input and produces
a singe image as output. The input image is known as the source and the output
image is known as the destination.

The code fragment of Listing 4.9 loads a PNG image and creates its negative.
The negative of an image is one where all bright pixels become correspondingly
dark and all dark pixels become correspondingly bright. In formal terms, the
inverse of a sample S is defined as Sinverse = 255 − S for an 8-bit sample. In
Listing 4.9 the source image is read from a file and the destination image is
programmatically constructed such that it has the same width, height, and color
model as the source image. Since the destination image after construction is
fully black, the destination samples are then set to their proper values by iterating
over every sample of the source and writing their inverse into the corresponding
destination locations.

The code fragment in Listing 4.9 illustrates the basic pattern of the vast ma-
jority of single-source image processing algorithms. Since single-source algo-
rithms represent a such a large and important class of image processing oper-
ations, Java uses the BufferedImageOp interface to formalize and standardize
this process. Table 4.9 gives the methods of the BufferedImageOp interface.

The central method is filter, which performs a single source image process-
ing operation whereas all of the other methods serve supportive roles. The source
and destination images are passed as input parameters to the filter method and



i
i

i
i

i
i

i
i

68 4. Digital Images in Java

java.awt.image.BufferedImageOp

BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel destCM)

BufferedImage filter(BufferedImage src, BufferedImage dest)

Rectangle2D getBounds(BufferedImage src)

Point2D getPoint2D(Point2D srcPt, Point2D destPt)

RenderingHints getRenderingHints()

Table 4.9. Methods of the BufferedImageOp interface.

the destination image is then returned. If the destination image is not provided
(i.e., if it is null) the filter method constructs a BufferedImage object, which
is designated as the destination, fills in its samples appropriately, and returns
it as a result. Construction of the destination image is the responsibility of the
createCompatibleDestImage method.

It is important to note that the filter method should never modify the source image
since it is implicitly understood as a read-only input parameter while the desti-
nation is a read-write output parameter. While this design principle is always
followed by BufferedImageOp implementations, it can be skirted by clients that
call the filter method and pass in the same object as both the source and desti-
nation. Under such a scenario the source image is modified by the filter since
the source image is also the destination. Many filters will not function correctly

Figure 4.5. Illustration of the BufferedImageOp.



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 69

if the client passes in the same image object as both the source and destination,
but the class of filters that does function properly under such a scenario is known
as in place filters. Clients must be careful to avoid using the same object as both
source and destination unless the filter is described as an in place operation.

Figure 4.5 illustrates the BufferedImageOp filtering process for a filter that
negates the source. Prior to the filtering operation, the destination image is black
and possesses the same dimensions and color space as the source. The filter
method scans the source image without modifying it and updates the pixels of
the destination to create an image that is the negative of the source.

The getPoint2D, getRenderingHints, and getBounds methods will be dis-
cussed later in the text and are largely unused in this text.

4.3.6 Custom Filters with the Imaging Package
Throughout this text, we develop a set of customized image processing classes
that are well integrated with Java’s standard image processing library. These
classes are meant to simplify the development of image processing applications
while maintaining solid software engineering principles. The classes are con-
tained in the imaging package, which has subpackages named features, gui,
utilities, ops, io, and scanners. Figure 4.6 shows the package structure of
this customized code presented in this text. In this section we describe a handful
of the core classes in the imaging package.

First we note that iterating through each sample of an image is an exception-
ally common task that can be accomplished by nested loops as was illustrated in
Listing 4.9. The process of visiting each sample of an image is known as scanning.
Listing 4.10 shows how each sample of an image can be processed by traversing

Figure 4.6. The imaging package structure.



i
i

i
i

i
i

i
i

70 4. Digital Images in Java

1 f o r ( i n t row=0; row<s r c R a s t e r . ge tHe igh t ( ) ; row++) {
2 f o r ( i n t c o l =0; col<s r c R a s t e r . getWidth ( ) ; c o l ++){
3 f o r ( i n t band =0; band<s r c R a s t e r . getNumBands ( ) ; band++) {
4 i n t sample = s r c R a s t e r . getSample ( col , row , band ) ;
5 // p r o c e s s the sample . . .
6 }
7 }
8 }

Listing 4.10. Pattern for iterating over every image sample.

the samples in top-to-bottom, left-to-right fashion using nested loops. The struc-
ture of this code fragment lends itself to two common errors that are addressed
by the Location and Scanner classes described in the following sections.

Location. One of the most common mistakes made when developing custom-
ized image processing filters is to incorrectly scan the image by mistaking the
row index for the column or the column index for the row. I have spent many
hours myself debugging otherwise well-written code that inadvertently swapped
the row with the column indices. In order to minimize this common error and
to shorten the amount of code needed to iterate over image samples, we develop
two collaborating classes, Location and RasterScanner, that allow clients to
more easily traverse the samples of an image. Both of these classes are found
within the pixeljelly.scanners package.

1 p u b l i c c l a s s Locat ion {
2 p u b l i c i n t row , col , band ;
3

4 p u b l i c Locat ion ( i n t col , i n t row , i n t band ) {
5 t h i s . c o l = c o l ;
6 t h i s . row = row ;
7 t h i s . band = band ;
8 }
9

10 p u b l i c Locat ion ( ) {
11 t h i s ( 0 , 0 , 0 ) ;
12 }
13 }

Listing 4.11. Partial listing of the Location.



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 71

The Location is a very simple class representing a single object containing
the three separate indices needed to access an image sample. In other words, a
single Location object can be used to identify a sample rather than using three
separate index values. The Location class is partially shown in Listing 4.11.
Note that the attributes row, col, and band are public and hence directly acces-
sible by any client.

RasterScanner. The second class, RasterScanner, is a class that serves as an
iterator by producing Location objects one after the other. In Java, an iterator is
used to explicitly traverse the elements of a sequence and in this case the elements
are the indices of image samples. Since iterators underlie the ability of loops
to traverse the elements of a Collection, we can use the RasterScanner in
the context of Java’s specialized for-each loops. While the implementation of
RasterScanner is not listed due to its rather sophisticated class structure and
reliance on generics, it is straightforward to use. A full description of this class is
included in Appendix B.

A RasterScanner object is constructed by supplying a BufferedImage and
a Boolean flag indicating whether the samples of the image or the pixels are to
be visited. If individual samples are to be iterated then the flag is set to true;
otherwise, when set to false, the band is always zero while the column and row
indices scan over the image. By using these two classes together, we can now
simplify the code of Listing 4.10 to that of Listing 4.12. Listing 4.12 should be
understood as meaning for every sample s in image src, process s and place it in the
destination.

1 f o r ( Locat ion pt : new Ras te rScanner ( s rc , t r u e ) ) {
2 i n t s = s r c R a s t e r . getSample ( p t . col , p t . row , p t . band ) ;
3 // p r o c e s s the sample . . .
4 d s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , p t . band , s ) ;
5 }

Listing 4.12. Improved pattern for iterating over every image sample.

NullOp. Since image processing operations in Java are implementations of the
BufferedImageOp interface, we must provide a concrete implementation for
each custom filter that we write. Towards this end we introduce a general base
class implementation that can be easily subclassed to provide specific image pro-
cessing functions. The NullOp is a custom filter defined in the pixeljelly.ops
package that simply copies each source sample to the destination (see
Listing 4.13). The NullOp class is a complete implementation of Buffered
ImageOp and is meant to be subclassed by overriding the filter method.



i
i

i
i

i
i

i
i

72 4. Digital Images in Java

1 p u b l i c c l a s s NullOp implements BufferedImageOp {
2

3 p u b l i c BufferedImage createCompat ib leDest Image ( Buf feredImage s rc ,
4 ColorModel destCM ) {
5 r e t u r n new BufferedImage (
6 destCM ,
7 destCM . c r e a t e C o m p a t i b l e W r i t a b l e R a s t e r ( s r c . getWidth ( ) , s r c . ge tHe igh t ( ) ) ,
8 destCM . i s A l p h a P r e m u l t i p l i e d ,
9 n u l l ) ;

10 }
11

12 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
13 i f ( d e s t == n u l l ) {
14 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
15 }
16

17 W r i t a b l e R a s t e r s r c R a s t e r = s r c . g e t R a s t e r ( ) ;
18 W r i t a b l e R a s t e r d e s t R a s t e r = d e s t . g e t R a s t e r ( ) ;
19 f o r ( Locat ion pt : new Ras te rScanner ( s rc , t r u e ) ) {
20 i n t sample = s r c R a s t e r . getSample ( p t . col , p t . row , p t . band ) ;
21 d e s t R a s t e r . se tSample ( p t . col , p t . row , p t . band , sample ) ;
22 }
23

24 r e t u r n d e s t ;
25 }
26

27 p u b l i c Rectangle2D getBounds2D ( Buf feredImage s r c ) {
28 r e t u r n s r c . g e t R a s t e r ( ) . getBounds ( ) ;
29 }
30

31 p u b l i c Point2D getPoint2D ( Point2D s r c P t , Point2D d s t P t ) {
32 i f ( d s t P t == n u l l ) {
33 d s t P t = ( Point2D ) s r c P t . c lone ( ) ;
34 } e l s e {
35 d s t P t . s e t L o c a t i o n ( s r c P t ) ;
36 }
37

38 r e t u r n d s t P t ;
39 }
40

41 p u b l i c Render ingHints ge tRender ingHin t s ( ) {
42 r e t u r n n u l l ;
43 }
44 }

Listing 4.13. NullOp.

As mentioned earlier, the createCompatibleDestImage method is responsi-
ble for programmatically constructing a destination image whenever the
destination given to the filter method is null. In our implementation, the



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 73

destination will be structurally identical to the source image since it will use the
same color model, representation, and dimension. For many types of filters,
however, the destination image will be of a different kind than the source and
hence this method must occasionally be overridden in subclasses.

The getRenderingHints method can be trivial to implement since the
method is intended only to allow systems to optimize rendering performance
for specific platforms when possible. Our implementation provides no hints for
optimized rendering. The getBounds2D and getPoint2D methods do not have
any real significance for this example (nor indeed for many types of filtering op-
erations) and are also not discussed further in this text. These methods may be
safely ignored throughout the remainder of this text.

InvertOp. The InvertOp class of Listing 4.14 rewrites the code of Listing 4.9 us-
ing the BufferedImageOp and scanner classes. While the earlier code fragment
for image negation was correct, it was not integrated into Java’s image process-
ing library but was an isolated method. Note how the earlier code fragment is
now placed into the filter method of a BufferedImageOp class. When used in
this form, the source image must be created by the client and then passed in as a
parameter while the destination may be created by the client; otherwise it will be
created via the createCompatibleDestImage of the BufferedImageOp.

Listing 4.15 finally gives a code fragment showing how a client may use the
InvertOp class to filter a BufferedImage. In this example, a BufferedImage
is created by loading data from a PNG file while the destination is not provided

1 c l a s s InvertOp extends NullOp {
2 p u b l i c BufferedImage f i l t e r ( Buf feredImage source , Buf feredImage d e s t ) {
3 i f ( d e s t == n u l l ) {
4 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
5 }
6

7 W r i t a b l e R a s t e r s r c R a s t e r = source . g e t R a s t e r ( ) ;
8 W r i t a b l e R a s t e r d e s t R a s t e r = d e s t . g e t R a s t e r ( ) ;
9 f o r ( Locat ion pt : new Ras te rScanner ( s rc , t r u e ) ) {

10 i n t sample = s r c R a s t e r . getSample ( p t . col , p t . row , p t . band ) ;
11 d e s t R a s t e r . se tSample ( col , row , band ,255− sample ) ;
12 }
13 r e t u r n d e s t ;
14 }
15 }

Listing 4.14. InvertOp.



i
i

i
i

i
i

i
i

74 4. Digital Images in Java

1 BufferedImage s r c=ImageIO . read (new F i l e ( "Filename.png" ) ) ;
2 BufferedImageOp op = new InvertOp ( ) ;
3 BufferedImage r e s u l t = op . f i l t e r ( s r c , n u l l ) ;
4 ImageIO . w r i t e ( r e s u l t , "PNG" , new F i l e ( "Inverted.png" ) ) ;

Listing 4.15. Applying the NegativeOp to a source image.

and hence is nulled. The filter method of the InvertOp is then invoked, passing
in references to the source and destination images. Since the destination value
is null, the filter method constructs an image of the proper size and color model
and inverts each sample of the source into the destination, which is then returned
as the result.

As with all interfaces, the BufferedImageOp describes the expected behav-
ior of its methods while providing no information about how these methods
are actually implemented. Concrete implementations provide specific code ap-
propriate for the specific operation that they perform. AffineTransformOp,
ColorConvertOp, ConvolveOp, LookupOp, and RescaleOp classes are
BufferedImageOp implementations bundled with Java’s image processing li-
brary. Programmers may also create their own customized filters by implement-
ing the interface as we have done with the InvertOp class.

4.3.7 Image Display Classes

Most image processing applications must, of course, be able to display images.
Java provides a collection of classes that are useful for constructing graphical
interfaces and supplying a modicum of support for displaying images. Since
the intent of this text is to explain fundamental image processing techniques,
coverage of these classes will only extend as far as necessary for constructing the
simplest type of graphical applications.

Graphics Methods and Description
void drawLine(int x1, int y1, int x2, int y2)

draws a line between points (x1,y1) and (x2,y2)
void drawOval(int x, int y, int width, int height)

draws an oval at location (x,y) of the specified width and height
void drawRect(int x, int y, int width, int height)

draws a rectangle at location (x,y) of the specified width and height
void drawImage(Image im, int x, int y, ImageObserver obs)

the image is drawn with the upper-left corner at location (x,y)

Table 4.10. The most commonly used methods of the Graphics class.



i
i

i
i

i
i

i
i

4.3. Java’s Imaging Library 75

1 p u b l i c c l a s s ImageComponent extends JComponent {
2 p r o t e c t e d BufferedImage image ;
3

4 p u b l i c BufferedImage getImage ( ) {
5 r e t u r n image ;
6 }
7

8 p u b l i c ImageComponent ( Buf feredImage image ) {
9 se t Image ( image ) ;

10 }
11

12 p u b l i c void se t Image ( Buf feredImage image ) {
13 t h i s . image = image ;
14 Dimension dim ;
15 i f ( image != n u l l ){
16 dim =new Dimension ( image . getWidth ( ) , image . ge tHe igh t ( ) ) ;
17 } e l s e {
18 dim = new Dimension ( 5 0 , 5 0 ) ;
19 }
20

21 s e t P r e f e r r e d S i z e ( dim ) ;
22 setMinimumSize ( dim ) ;
23 r e v a l i d a t e ( ) ;
24 r e p a i n t ( ) ;
25 }
26

27 p u b l i c void paintComponent ( Graphics g in ) {
28 g in . s e t C o l o r ( getBackground ( ) ) ;
29 g in . f i l l R e c t ( 0 , 0 , getWidth ( ) , ge tHe igh t ( ) ) ;
30 i f ( image != n u l l ) {
31 I n s e t s i n s = g e t I n s e t s ( ) ;
32 i n t x = ( getWidth ( ) − image . getWidth ( ) ) / 2 − i n s . l e f t ;
33 i n t y = ( ge tHe igh t ( ) − image . ge tHe igh t ( ) ) / 2 − i n s . top ;
34 g in . drawImage ( image , x , y , t h i s ) ;
35 }
36 }
37

38 p u b l i c s t a t i c showInFrame ( S t r i n g t i t l e , Buf feredImage s r c ) {
39 JFrame win = new JFrame ( t i t l e ) ;
40 win . add (new J S c r o l l P a n e (new ImageComponent ( s r c ) ) , BorderLayout .CENTER) ;
41 win . pack ( ) ;
42 win . s e t V i s i b l e ( t r u e ) ;
43 }
44 }

Listing 4.16. A class for displaying a BufferedImage.

Java provides a suite of classes that are designed for developing interactive
graphical applications. This suite, known collectively as the Swing library, con-
tains graphical components such as text fields, buttons, panels, borders, and the



i
i

i
i

i
i

i
i

76 4. Digital Images in Java

like. The base class for all Swing components is the JComponent that represents,
in an abstract sense, a rectangular region of the output device. The location of
a JComponent is given as the Cartesian coordinate of its upper-left-hand corner
while the size is given as integer-valued width and height. In addition to these
geometric properties, the JComponent is responsible for painting itself onto the
computer screen when requested.

Whenever the Swing framework determines that a component must be drawn
onto the computer screen (as a result of resizing a window or uncovering a
window, for example), the framework calls the JComponent’s paintComponent
method. This method is given a Graphics object which can be used to draw
lines, ovals, and other graphical elements onto the output device. The Graphics
object is an abstraction that may represent a computer screen, a printer, or any
other type of output device. A JComponent need only utilize the drawing com-
mands supplied by the Graphics object in order to draw itself onto the output
device. Table 4.10 summarizes the most commonly used drawing commands of
the Graphics class.

Customized components can be integrated into the Swing library by sub-
classing existing JComponents and providing, at a minimum, a paintComponent
method. The ImageComponent of Listing 4.16 gives a complete implementation
of a customized Swing component that directly subclasses JComponent.

As required, the class provides a paintComponent method that simply com-
mands the Graphics object to draw an image onto the component. Listing 4.17
gives a code fragment that reads an image from a file, copies the image using the
NullOp, and displays both the source and destination in separate windows.

1 BufferedImage s r c = ImageIO . read (new F i l e ( "annunciation.jpg" ) ) ;
2 ImageComponent . showInFrame ( "source" , s r c ) ;
3 BufferedImage d e s t = new NullOp ( ) . f i l t e r ( s r c , n u l l ) ;
4 ImageComponent . showInFrame ( "example" , d e s t ) ;

Listing 4.17. Loading and displaying an image in a window.

4.3.8 Pixel Jelly

This text is supported by an image processing application named Pixel Jelly. The
application is written using many of the classes that are developed throughout
this text and is also designed to be extensible so that external filters can be used
for experimentation. Any class that implements both the BufferedImageOp and
PluggableImageOp interfaces can be loaded into the Pixel Jelly application and
used as though it were a native part of the software. The PluggableImageOp



i
i

i
i

i
i

i
i

4.4. Exercises 77

PluggableImageOp

BufferedImageOp getDefault(BufferedImage src)

String getAuthorName()

Table 4.11. PluggableImageOp interface.

interface is defined in the pixeljelly.ops package, as shown in the UML class
diagram of Table 4.11.

The getAuthorName method allows Pixel Jelly to display the name of the
plugin author. The body of this method will typically be a single line of code
returning your name. The getDefault method is responsible for construct-
ing a default instance of the BufferedImageOp for use on the provided source
image. The Pixel Jelly application uses this method to obtain an instance of
your BufferedImageOp whenever a plugin is used. Listing 4.18 shows how the
InvertOp class can be made into a plugin by implementing the pluggable inter-
face and providing the authors name and the default operation for the
InvertOp.

1 c l a s s InvertOp extends NullOp implements PluggableImageOp {
2 p u b l i c BufferedImage f i l t e r ( Buf feredImage source , Buf feredImage d e s t ) {
3 // code not shown
4 }
5

6 p u b l i c S t r i n g getAuthorName ( ) {
7 r e t u r n "Kenny Hunt" ;
8 }
9

10 p u b l i c BufferedImageOp g e t D e f a u l t ( Buf feredImage s r c ) {
11 r e t u r n new InvertOp ( ) ;
12 }
13 }

Listing 4.18. InvertOp as a PluggableImageOp.

4.4 Exercises
1. Implement the DigitalImage interface of Listing 4.1 using a palette-based

indexing technique. Your class should conform to the UML class diagram
listed below and should not consume more than 8 bits per pixel.



i
i

i
i

i
i

i
i

78 4. Digital Images in Java

� implements DigitalImage�
IndexedDigitalImage

+IndexedDigitalImage(width:int, height:int)
+IndexedDigitalImage(width:int, int height:int, palette:Color[])
+setPaletteColor(paletteIndex:int, color:Color) : void
+getPaletteColor(paletteIndex:int) : Color

2. Complete the DigitalImageIO class that is outlined below. The central
purpose of this class is to allow DigitalImages to be loaded from and
saved as ASCII-encoded PPM. The kind of digital image constructed by
the load method should be either an IndexedDigitalImage (see prob-
lem 1 above), PackedPixelImage, LinearArrayDigitalImage or an
ArrayDigitalImage depending upon the value of the imageType param-
eter supplied by the client. A specification of the PPM file format can be
found at http://netpbm.sourceforge.net/doc/ppm.html. If the imageType
is INDEXED then the PPM file must consist of at most 256 unique colors in
order for the load method to succeed.

1 import j a v a . io . ∗ ;
2

3 p u b l i c c l a s s Digi ta l ImageIO {
4 enumerat ion ImageType {INDEXED, PACKED, LINEAR ARRAY, MULTI DIM ARRAY} ;
5 p u b l i c s t a t i c Dig i ta l Image read ( F i l e f i l e , ImageType type )
6 throws IOException { . . . }
7 p u b l i c s t a t i c void w r i t e ( F i l e f i l e , Dig i t a l Image image )
8 throws IOException { . . . }
9 }

3. Write a class that contains two static methods. The first method is named
toBufferedImage. This method accepts a DigitalImage object and pro-
duces an equivalent BufferedImage. The second method is named
toDigitalImage. This method accepts a BufferedImage object and pro-
duces an equivalent DigitalImage object. An outline of the class is pro-
vided below.

1 import j a v a . awt . image . ∗ ;
2

3 p u b l i c c l a s s ImageConvertor {
4 p u b l i c s t a t i c BufferedImage toBuf fe redImage ( Dig i t a l Image s r c ) { . . . }
5 p u b l i c s t a t i c Dig i ta l Image t o D i g i t a l I m a g e ( Buf feredImage s r c ) { . . . }
6 }



i
i

i
i

i
i

i
i

4.4. Exercises 79

4. Implement the BufferedImageOp interface by authoring a TopBottom
FlipOp. The filter method should support in place performance and sim-
ply flip the source image about the horizontal axis.

5. Implement the BufferedImageOp interface by authoring a LeftRight
FlipOp. The filter method should support in place performance and sim-
ply flip the source image about the vertical axis.

6. Implement the BufferedImageOp interface by authoring a RotateOp. The
filter method should support in place performance and rotate an image
by either 90◦ clockwise, 90◦ counterclockwise, or by 180◦. Note that
the destination image may have different dimensions than the source and
hence the createCompatibleDestImage method must be overridden in
the RotateOp.

7. Implement the BufferedImageOp interface by authoring a Transpose
FlipOp. The filter transpose the rows and columns of the image. Note
that the destination image will have different dimensions than the source
and hence the createCompatibleDestImage method must be overridden
in the DiagonalFlipOp.

8. Implement the BufferedImageOp interface by authoring a CenterFlipOp.
The filter method should support in-place performance and reflect the
source image about the center point of the source image. HINT: You may
wish to make use of the HorizontalFlipOp and the VerticalFlipOp
from problems 4 and 5.

9. Write a program that has a graphical user interface. The program will al-
low users to select an image file in PNG, GIF, or JPEG format and then
view the image on the computer screen. In addition, the program should
contain a way to display the properties of the image; including width,
height, number of bands, and the type of SampleModel.

Artwork
Figure 4.2. Simultaneous Counter-Composition by Theo van Doesburg (1883–
1931). Theo van Doesburg was a Dutch painter who explored a variety of genres
during his career but is most closely associated with the De Stiljl art movement
of which he was the founder. He collaborated closely with Piet Mondrian to ad-
vance non-representational geometric abstractions created of strong vertical and
horizontal lines and primary colors. They were close collaborators until about
1924 at which time a debate over the legitimacy of diagonal lines caused a rift
between the two. The image of Figure 4.2 is a simplified rendition of his original



i
i

i
i

i
i

i
i

80 4. Digital Images in Java

work and is illustrative of the fact that van Doesburg argued for the the use of
diagonal lines while Mondrian renounced them altogether.

Figure 4.5. Portrait of Barbara Dürer, born Holper by Albrecht Dürer (1471–1528).
Albrecht Dürer was a German artist proficient in engraving, painting, and print-
making. He was born in 1471 and died in 1528 at the age of 56. His work was
strongly rooted in mathematical theories of perspective and proportion. Fig-
ure 4.5 is a portrait of his mother and was completed around 1491. Barbara gave
birth to 18 children over her 25 years of marriage, but only three of these survived
beyond infancy. Amid this tragic situation, she was nonetheless blessed to give
birth to one of the greatest Renaissance artists in Northern Europe.



i
i

i
i

i
i

i
i

�

Point Processing
Techniques 5

5.1 Overview
The goal of image enhancement is to improve the quality of an image with re-
spect to a particular application. Image enhancement, for example, may be used
to brighten an underexposed digital photo for viewing in a photo album or to
stretch the contrast of an image to compensate for defective acquisition hard-
ware. Since the objective of image enhancement can only be defined with respect
to a specific application, this chapter presents the underlying techniques of image
enhancement and provides examples that illustrate how these techniques can be
applied to solve particular image enhancement problems.

Two fundamentally distinct types of image enhancement techniques exist:
those that operate within the spatial domain and those that operate in the fre-
quency domain. While these terms are more clearly delineated in Chapter 9 we
informally define the spatial domain as a way of representing an image by spa-
tially arranging pixels (colors) to form a complete whole. The frequency domain
is an alternate way of representing visual information by describing patterns of
global fluctuation in images. This chapter focuses exclusively on spatial domain
techniques, leaving the more difficult frequency domain issues for Chapter 9.

Spatial domain techniques can be further classified as either point or regional
processing. Under point processing a single input sample is processed to produce
a single output sample even though many point processing operations allow for
limited regional pre-processing. In regional processing the value of the output
sample is dependent on the values of samples within close proximity to the input
sample. Exactly how the region is selected and how samples within the region
affect the output depends upon the desired effect. Chapters 5 through 8 focus
exclusively on spatial domain techniques, leaving the more difficult frequency
domain issues for Chapter 9.

To summarize then, we see that image enhancement techniques are done in
either the frequency or spatial domain. Within the spatial domain we note that
a technique can be classified as either a point processing or regional technique.
Figure 5.1 shows this classification scheme.

81



i
i

i
i

i
i

i
i

82 5. Point Processing Techniques

Figure 5.1. Taxonomy of image processing techniques.

5.2 Rescaling (Contrast and Brightness)
Rescaling is a point processing technique that alters the contrast and/or bright-
ness of an image. In digital imaging, exposure is a measure of how much light
is projected onto the imaging sensor. An image is said to be overexposed if details
of the image are lost because more light is projected onto the sensor than what
the sensor can measure. An image is said to be underexposed if details of the im-
age are lost because the sensor is unable to detect the amount of projected light.
Images which are underexposed or overexposed can frequently be improved by
brightening or darkening them. In addition, the overall contrast of an image can
be altered to improve the aesthetic appeal or to bring out the internal structure of
the image. Even nonvisual scientific data can be converted into an image through
adjusting the contrast and brightness of the data.

5.2.1 Definition
Given an input sample Sinput a linear scaling function can be used to generate
an output sample value Soutput. The value of the output sample is determined
by linearly scaling the input, as shown in Equation (5.1):

Soutput = α · Sinput + β. (5.1)

In this equation, α is a real-valued scaling factor known as the gain and β is a
real-valued offset known as the bias. While Equation (5.1) shows how to rescale
a single sample, it is apparent that an entire image is rescaled by applying this
linear scaling function to every sample in the source image.

To determine the effect of bias on the rescaling function, let’s assume that
α = 1. When the bias is greater than 0 the output image is brightened by the
amount β since every sample increases by the same amount. When the bias is
less than 0 the output image will be darkened by the amount of offset, and if the
offset is 0 then the output image is a copy of the input.

To determine the effect of the gain on the rescaling function, let’s assume
that β = 0. When the gain is less than 1 the image is darkened since all output



i
i

i
i

i
i

i
i

5.2. Rescaling (Contrast and Brightness) 83

sample values are smaller than the input samples. When the gain exceeds 1
the image is brightened since all output sample values are increased and when
the gain is equal to 1 the image is unaltered. More importantly, however, the
gain affects the contrast of the image. The term contrast refers to the amount of
difference between various regions of an image. High-contrast images possess a
larger variation in luminosity than low contrast images. In high-contrast images,
different-colored regions are clearly distinguishable while in low-contrast images,
different-colored regions are more difficult to identify.

The effect of gain and bias on contrast can be seen by considering two sam-
ples of an input image which we will refer to as S1 and S2. The rescaled samples
are obtained from Equation (5.1):

S′1 = αS1 + β,
S′2 = αS2 + β.

(5.2)

Since contrast deals with the difference between two samples, we here define
contrast as the magnitude of the difference between them. The magnitude of
the difference between the two input samples is denoted as 4S and the magni-
tude of the difference between the two rescaled samples is denoted as4S′. The
differences are given by Equation (5.3):

4S′ = |S′1 − S′2|,
4S = |S1 − S2|.

(5.3)

The relative change in contrast between the two samples in the source image
and the corresponding rescaled samples is then given by Equation (5.4):

4S′

4S
=
|S′1 − S′2|
|S1 − S2|

. (5.4)

Substitution of Equation (5.2) into Equation (5.4) yields

4S′

4S
=
|(αS1 + β)− (αS2 + β)|

|S1 − S2|

=
|α| · |S1 − S2|
|S1 − S2|

= |α|.

From this we see that gain controls the overall contrast of an image while
the bias has no effect on the contrast. The bias, however, controls the overall
intensity or brightness of the rescaled image. When the bias is a positive value,
rescaling serves to brighten the output image; when the bias is negative the image
is darkened, and a zero bias will have no effect on the intensity of the output.



i
i

i
i

i
i

i
i

84 5. Point Processing Techniques

S β = 0 β = 50

α = .25 α = 1 α = 1.5 α = .25 α = 1 α = 1.5

0 0 0 0 50 50 50
1 0 1 1 50 51 51
2 0 2 3 50 52 53
3 0 3 4 50 53 54
4 1 4 6 51 54 56
...

...
...

...
...

...
...

253 63 253 379 113 303 429
254 63 254 381 113 304 431
255 63 255 382 113 305 432

Table 5.1. The effect of various gain and offsets as applied to 8-bit samples.

The effect of gain and bias is shown numerically in Table 5.1. For the input
samples given in the column labeled S, the resulting output value for six differ-
ent gain/bias combinations are shown in the remaining columns. Note that for
(α = 1, β = 0), the input samples are unchanged while for (α = 1.5, β = 0) the
contrast increases by 50%. Also note that the output samples are truncated to
integer values.

5.2.2 Clamping

Table 5.1 also shows that, depending on the gain and bias values, rescaling may
produce samples that lie outside of the output image’s 8-bit dynamic range. A
clamp function is typically used to ensure that the resulting samples remain
within an appropriate interval. The clamp function truncates values that are
either too small or too large for a specified interval. The clamp function accepts
the value to be truncated and an interval, [min, max], to which the input value
will be clamped. The clamp function is defined mathematically1 as

clamp(x,min,max) =

 min if bxc ≤ min,
max if bxc ≥ max,
bxc otherwise.

The clamp function is straightforward to implement in Java, as shown in
Listing 5.1. Casting the double valued parameter sample to an integer effectively
computes the floor since this narrowing conversion is equivalent to truncation.

1The notation bXc denotes the floor of X, which is defined as the largest integer that is smaller
than or equal to X.



i
i

i
i

i
i

i
i

5.2. Rescaling (Contrast and Brightness) 85

1 p u b l i c c l a s s I m a g i n g U t i l i t i e s {
2 p u b l i c s t a t i c i n t clamp ( double sample , i n t min , i n t max) {
3 i n t f loorOfSample = ( i n t ) sample ;
4

5 i f ( f loorOfSample <= min ) {
6 r e t u r n min ;
7 } e l s e i f ( f loorOfSample >= max) {
8 r e t u r n max ;
9 } e l s e {

10 r e t u r n f loorOfSample ;
11 }
12 }
13 }

Listing 5.1. The clamp function.

For an 8-bit image the sample values will typically be clamped to the interval
[min=0, max=255] although clients are able to choose the desired range.

The ImagingUtilities class is a collection of static methods commonly
used in image processing applications. Since the clamp method is used by many
image processing classes we choose to place this static method in the
ImagingUtilities class as part of the pixeljelly.utilities package.

The data of Table 5.1 is often depicted graphically as a mapping between
input and output values, as shown in the graphs of Figure 5.2. The linear scal-
ing function used for rescaling is a specific type of relation known as a trans-
fer function. A transfer function is any function that relates an input value
to an output value in a filtering operation. These graphs illustrate how a lin-
ear scaling function relates the input sample, shown on the horizontal axis, to
the output sample, which is shown on the vertical axis. The value of the gain
determines the slope of the line and hence the contrast of the image. Com-
pare, for example, the upper-left graph with a gain of .25 to the bottom-left,
which has a gain of 1.5. If an input image having samples in the range of
[0, 150] is processed by these two filters, the output samples would fall into
the intervals [0, 37] and [0, 225], respectively. Contrast is controlled by the
gain value as seen when comparing the top and bottom rows. Relative bright-
ness is controlled by the bias value as seen by comparing the left and right
columns.

Rescaling is perhaps more powerful than might first be apparent. In addition
to brightening and darkening an image, rescaling can also invert an image. It is
interesting to note that the InvertOp of Listing 4.14 could easily be generalized
as a rescaling operation with α = −1 and β = 255.



i
i

i
i

i
i

i
i

86 5. Point Processing Techniques

Figure 5.2. Graph of the linear scaling function with various gain and bias settings.

5.2.3 Rescaling Scientific Data for Visualization

Linear scaling is often used to map data that is not essentially visual in nature
into an appropriate form for visual analysis. A thermal imaging system, for
example, essentially detects temperatures by sensing the infrared spectrum. The
system may produce a two-dimensional table of temperature readings that indi-
rectly correspond to a visual image but are in the wrong form for rendering on
most systems.

Consider a thermal imaging system that takes temperature readings of a black
Labrador retriever on a hot summer evening. The imaging system produces,



i
i

i
i

i
i

i
i

5.2. Rescaling (Contrast and Brightness) 87

(a) Original thermal image. (b) Rescaled image and legend.

Figure 5.3. A thermal imaging system captures temperature readings. (Images courtesy
of Jason McAdoo.)

in this example, a two-dimensional table of values that correspond to degrees
Fahrenheit and range in value from 71.5, the ambient air temperature of the
surrounding background, to 99.3, the highest body temperature on the surface
of the dog as seen near the eyes and nose of the subject. If these temperatures
are directly converted to integer values by rounding they can be treated as a
grayscale image, as shown in Figure 5.3(a). The resulting image has very poor
contrast and much detail has been lost due to rounding the original data. Instead
of transforming the thermal data into an image through rounding, the acquired
data should be rescaled in such a way as to make full use of the 8-bit dynamic
range so that 71◦ corresponds to black and 99.3◦ corresponds to white, as seen
in Figure 5.3(b). Rescaling in this way maximizes the contrast of the resulting
image and hence preserves as much of the detail as is possible for an 8-bit image.

Contrast Stetching. If the goal of rescaling is to maximize the contrast of an
image then a precise selection of the gain and bias parameters is required. Given
a two-dimensional data set in the interval [a, b] the optimal gain and bias values
for an 8-bit system are given by Equation (5.5). For color depths other than
8 the value 255 should be replaced by the largest sample value allowed in the
destination image.

α = 255
b−a ,

β = −α ·min .
(5.5)

When the formulae of Equation (5.5) are applied to the data of the thermal
imaging system example, the contrast will be optimized for an 8-bit display when
rescaling with the gain and bias values given in Equation (5.6). In this case, the
source image is composed of real-valued samples in the range [71.5, 99.3], which



i
i

i
i

i
i

i
i

88 5. Point Processing Techniques

are mapped onto the grayscale palette shown to the right of Figure 5.3(b):

α =
255

99.3− 71.5
= 9.17,

β = −α · a
= −9.17 · 71.5
= −655.85. (5.6)

The contrast stretching presented in Equation (5.5) is problematic when the
source image has even a single sample that is either much lower or higher than
any other. Rogue samples exert control of the gain in such a way as to seriously
diminish the effectiveness of contrast stretching. Alternative techniques seek to
reduce the influence of rogue samples by changing the way in which the param-
eters a and b are chosen. Consider choosing a such that exactly 5% of the source
samples are below a and choosing b such that exactly 5% of the source samples
are above b. This approach is based on the histogram of an image as defined
later in this chapter and serves to significantly reduce the influence of outliers in
the source.

5.2.4 Rescaling Color Images

When discussing rescaling we have so far limited ourselves to grayscale images.
This process can be naturally extended to color images by rescaling every band
of the source using the same gain and bias settings. It is, however, often desirable
to apply different gain and bias values to each band of a color image separately.

Consider, for example, a color image that utilizes the HSB color model. Since
all color information is contained in the H and S bands, it may be useful to adjust
the brightness, encoded in band B, without altering the color of the image in any
way. Alternately, consider an RGB image that has, in the process of acquisition,
become unbalanced in the color domain. It may be desirable to adjust the relative
RGB colors by scaling each band independently of the others. Rescaling the
bands of a color image in a nonuniform manner is a straightforward extension
to the uniform approach where each band is treated as a single grayscale image.

Examples of both uniform and nonuniform rescaling are shown in Figure 5.4.
In part (b) the contrast of the RGB source has been decreased by 70% while in (c)
the contrast has increased by 120% (at least prior to clamping) and the brightness
increased. In (e) the red band has been kept while the green and blue bands have
been effectively turned off by setting the gain of those bands to zero. In (f) the
red band has been inverted while the green and blue bands are left unchanged.



i
i

i
i

i
i

i
i

5.2. Rescaling (Contrast and Brightness) 89

(a) Original. (b) Gain = .7, bias = 0.

(c) Gain = 1.2, bias = 40. (d) Gain = −1, bias = 255.

(e) Gain = (1,0,0), bias = (0,0,0). (f) Gain = (−1,1,1), bias = (255,0,0).

Figure 5.4. Illustration of rescaling.



i
i

i
i

i
i

i
i

90 5. Point Processing Techniques

5.2.5 The RescaleOp
Linear scaling is so common in image processing that the Java library contains
the RescaleOp class for this purpose. This class is a BufferedImageOp imple-
mentation of the linear scaling function. The RescaleOp can be constructed by
providing two parameters: a float-valued gain and a float-valued bias setting. A
third “rendering hints” parameter must be provided and it is sufficient to specify
a null value. The code of Listing 5.2 shows how to load an image and filter it
with a rescale operator having a gain of 1.6 and a bias of 45. The gain and bias
settings are then uniformly applied to each band of the source.

1 BufferedImage s r c=ImageIO . read (new F i l e ( "image.png" ) ) ;
2 BufferedImageOp r e s c a l e = new RescaleOp ( 1 . 6 f , 45 f , n u l l ) ;
3 BufferedImage r e s u l t = r e s c a l e . f i l t e r ( s r c , n u l l ) ;

Listing 5.2. RescaleOp code fragment for uniform scaling.

The RescaleOp can also be constructed by providing a separate gain and bias
value for each band of the source image. These gain/bias values are packaged
into float arrays, where the length of each array must be equal to the number of
bands in the source image. The code of Listing 5.3 illustrates how to invert the
red band of a color image while brightening the blue band and increasing the
contrast of the green band.

1 BufferedImage s r c=ImageIO . read (new F i l e ( "image.png" ) ) ;
2 f l o a t [ ] g a i n s = {−1f , 0 f , 1 .1 f } ;
3 f l o a t [ ] b i a s e s = {255 f , 35 f , 0 f } ;
4 BufferedImageOp r e s c a l e = new RescaleOp ( ga ins , b i a s e s , s r c ) ;
5 BufferedImage r e s u l t = r e s c a l e . f i l t e r ( s r c , n u l l ) ;

Listing 5.3. RescaleOp code fragment for nonuniform scaling.

5.3 Lookup Tables
Rescaling can be performed with great efficiency through the use of lookup ta-
bles, assuming that the color depth of the source is sufficiently small. Consider,
for example, rescaling an 8-bit image. Without using lookup tables we compute
the value clamp(α ·S+β, 0, 255) for every sample S in the input. For an W ×H
image there are WH samples in the input and each of the corresponding output
samples requires one multiplication, one addition, and one function call.



i
i

i
i

i
i

i
i

5.3. Lookup Tables 91

1 a l go r i t hm resca leOp ( Image input , Image output , f l o a t gain , f l o a t b i a s )
2 i n t [ ] lookupTable = new i n t [ 2 5 6 ] ;
3 f o r S = 0 to 255
4 lookupTable [ S ] = clamp ( ga in ∗ S + bias , 0 , 2 5 5 ) ;
5

6 f o r every sample S in the i n p u t
7 s e t the cor re spond ing d e s t i n a t i o n sample to lookupTable [ S ]

Listing 5.4. Informal description of lookup tables and rescaling.

But note that since every sample in the source must be in the range [0, 255] we
need only compute the 256 possible outputs exactly once and then refer to those
precomputed outputs as we scan the image. In other words, computational effort
can be reduced by computing the output for each possible input sample rather
than each actual input sample. In an 8-bit image, for example, each sample will
be in the range [0, 255]. Since there are only 256 possible sample values for which
the quantity clamp(α · S + β, 0, 255) must be computed, time can be saved by
precomputing each of these values, rather than repeatedly computing the scaled
output for each of the WH actual input samples.

The precomputed mapping between input and output samples can be rep-
resented as an array known as a lookup table. In a lookup table, the indices
represent the input sample values and each array cell stores the corresponding
output value. Listing 5.4 presents pseudocode that rescales an image by utilizing
a lookup table assuming the output image uses 8-bit samples.

In order to illustrate the computational savings that lookup tables provide,
consider that for an 8-bit grayscale image the number of floating point arithmetic
operations (a single multiplication and addition excluding consideration of the
clamping function) is reduced from 2 ·W · H to 2 · 256. The total number of
arithmetic operations saved by using a lookup table to rescale an 8-bit grayscale
image that is 640 pixels wide by 480 pixels high is then (2 · 640 · 480− 2 · 256) or
613,888 arithmetic operations!

While lookup tables will generally improve the computational efficiency of
rescaling,2 they are also more flexible. The rescaling operation represents a linear
relationship between input and output sample values but a lookup table is able
to represent both linear and nonlinear relationships of arbitrary complexity.

The LookupOp class contained in Java’s image processing library efficiently
supports linear and nonlinear point-processing operations. The LookupOp is a
BufferedImageOp that must be constructed by providing a LookupTable object

2Some image processing filters may not benefit from lookup tables if the operations are computa-
tionally simple. Integer-based arithmetic operations may outperform lookup tables.



i
i

i
i

i
i

i
i

92 5. Point Processing Techniques

1 // d e f i n e the lookup t a b l e
2 byte [ ] t a b l e = new byte [ 2 5 6 ] ;
3 f o r ( i n t i =0; i<t a b l e . l e n g t h ; i ++) {
4 t a b l e [ i ] = ( byte ) clamp ( ga in∗ i+b ias , 0 , 2 5 5 ) ;
5 }
6

7 BufferedImageOp lookup = new LookupOp (new ByteLookupTable ( 0 , t a b l e ) , n u l l ) ;
8 BufferedImage s r c=ImageIO . read (new F i l e ( "image.png" ) ) ;
9 BufferedImage r e s u l t = lookup . f i l t e r ( s r c , n u l l ) ;

Listing 5.5. Code fragment using LookupOp and LookupTable.

as a parameter. The ByteLookupTable is a LookupTable that is constructed by
passing in an array of bytes and an offset value that is subtracted from all entries
in the table. The code of Listing 5.5 shows how to construct a LookupOp that is
functionally equivalent to the RescaleOp discussed earlier.

5.4 Gamma Correction
Gamma correction is an image enhancement operation that seeks to maintain
perceptually uniform sample values throughout an entire imaging pipeline. In
general terms, an image is processed by (1) acquiring an image with a camera,
(2) compressing the image into digital form, (3) transmitting the data, (4) decod-
ing the compressed data, and (5) displaying it on an output device. Images in
such a process should ideally be displayed on the output device exactly as they
appear to the camera. Since each phase of the process described above may in-
troduce distortions of the image, however, it can be difficult to achieve precise
uniformity.

Gamma correction seeks to eliminate distortions introduced by the first and
the final phases of the image processing pipeline. Both cameras and displays
(e.g., computer monitors, projectors) possess intrinsic electronic properties that
introduce nonlinear distortions in the images that they produce. For a display,
this nonlinearity is best described as a power-law relationship between the level
of light that is actually produced by the display and the amount of signal that
controls the display. Stated another way, we might say that there is a power-law
relationship between the level of light that is actually produced and the amount
of light that is intended for display. The power-law relationship between the dis-
played and intended light levels is given by Equation (5.7):

Ŝdisplayed = (Ŝintended)γ . (5.7)



i
i

i
i

i
i

i
i

5.4. Gamma Correction 93

This formulation assumes all samples are normalized into the interval [0, 1]
as indicated by the hat (a.k.a. “circumflex”) notation. Additionally, note that
gamma, the Greek symbol γ, is an exponent that determines the amount of
distortion produced by a particular output device, where a gamma value of 1
indicates that no distortion is introduced and all others indicate some degree
of distortion. Computer monitors and televisions typically have gamma values
ranging from 1.2 to 2.5. Output devices are often characterized by their gamma
values, which are usually supplied by the device manufacturer.

When applied to image processing applications, this power-law states that
the amount of light actually displayed for a sample is a slight distortion of the
amount of light intended for display. Since most output devices distort an image
according to this power-law, it is necessary to remove this distortion by a pro-
cess called gamma correction. Since the output device intrinsically introduces
some distortion, the distortion must be corrected via software. Given a displays
gamma value, intended sample values are raised to the power of 1/γ prior to
display which cancels any distortion caused by the output device. Gamma cor-
rection is shown in Equation (5.8):

Ŝcorrected = (Ŝintended)1/γ . (5.8)

Once the intended sample is gamma-corrected it is then displayed on the
output device. Substitution of the gamma corrected sample from Equation (5.8)
into the output device of Equation (5.7) shows how gamma correction eliminates
the distortion caused by the display hardware. This substitution and the ensuing
simplification is shown in Equation (5.9):

Ŝdisplayed = (Ŝcorrected)γ , (5.9)

Ŝdisplayed =
(

(Ŝintended)1/γ
)γ
,

Ŝdisplayed = Ŝintended.

Gamma correction is often explicitly encoded in image file formats. The
PNG specification, for example, defines a gAMA3 chunk (a portion of the im-
age data) that “specifies the relationship between the image samples and the
desired display output intensity.” This is important because an image that is cre-
ated or edited using an image processing application on one computer system
may not look the same when viewed on another system if the displays have dif-
fering gamma values. PNG encodes the gamma value of the display on which
the image was initially created and this value can then be used by PNG-aware
software to adjust the decoded image for display on output devices having differ-
ent display properties.

3Although the name appears improperly capitalized, gAMA is the correct name for the gamma
information in a PNG file.



i
i

i
i

i
i

i
i

94 5. Point Processing Techniques

Figure 5.5. Gamma correction, as shown in the middle of the column on the right.



i
i

i
i

i
i

i
i

5.5. Pseudo Coloring 95

Figure 5.5 illustrates how gamma correction negates the distortions (typically
over- darkening) introduced by a display device. Two separate pipelines are il-
lustrated, where the leftmost pipeline does not gamma correct but the rightmost
pipeline is properly gamma corrected. In each case, the uppermost image rep-
resents a source as it should appear on the display. The center portion of the
pipeline allows for gamma correction that is omitted in the leftmost system but
corrected in the rightmost pipeline, where the display is known to have a gamma
value of 2.5. The bottom row reflects how the source image is overly darkened
by the leftmost display since it is not corrected, while the rightmost image is
accurately rendered.

Gamma correction is a nonlinear transformation that can be implemented
by subclassing the LookupOp, as shown in Listing 5.6. The constructor accepts
a gamma value and a Boolean flag indicating whether to apply gamma correction
or to simulate gamma distortion. The constructor calls a static method that builds
the lookup table that is then passed to the superclasse’s constructor. This imple-
mentation works exclusively on 8-bit images since the lookup table contains only
256 entries. It should also be noted that indexed color models are not supported.

1 p u b l i c c l a s s GammaOp extends LookupOp {
2 p r i v a t e s t a t i c ByteLookupTable g e t T a b l e ( double gamma, boolean i n v e r t ) {
3 i f ( i n v e r t ) gamma = 1/gamma ;
4 byte [ ] t a b l e = new byte [ 2 5 6 ] ;
5 f o r ( i n t i =0; i<t a b l e . l e n g t h ; i ++) {
6 t a b l e [ i ] = ( byte ) ( 2 5 5 ∗ Math . pow ( i /255 .0 , gamma ) ) ;
7 }
8

9 r e t u r n new ByteLookupTable ( 0 , t a b l e ) ;
10 }
11

12 p u b l i c GammaOp( double gamma, boolean i n v e r t ) {
13 super ( g e t T a b l e (gamma, i n v e r t ) , n u l l ) ;
14 }
15 }

Listing 5.6. The GammaOp class.

5.5 Pseudo Coloring
A pseudo-colored image is one that renders its subject using a coloring scheme
that differs from the way the subject is naturally perceived. While the term pseudo
signifies false or counterfeit, a pseudo-colored image should not be understood
as an image that is defective or misleading but as an image that is colored in an
unnatural way. Pseudo coloring is a point-processing technique that generates a
pseudo-colored image from a typically grayscale source.



i
i

i
i

i
i

i
i

96 5. Point Processing Techniques

Many scientific instruments take spatial measurements of nonvisual data that
are then rendered for visual interpretation and analysis. Pseudo-colored images
are often used to visualize information gathered by instruments measuring data
outside of the visible spectrum. Satellite measurements of rainfall amount or
earth surface temperature readings are, for example, spatially distributed scalar
measures that can be rendered as an image. The data is typically scalar (i.e.,
grayscale) and, since it is not intrinsically visual, may possess poor qualities
when directly rendered as an image.

While rescaling is able to maximize grayscale contrast, it is often desirable to
render the image using a color scheme that further enhances the visual interpre-
tation of the data. A thermal imaging system may, for example, record surface
temperatures of a subject and produce data over a range of degrees Fahrenheit.
This data can be rescaled, following the process described in the previous section
to maximize the grayscale contrast, as shown in image (a) of Figure 5.6. The vi-
sual contrast can, however, be further augmented by artificially applying colors
to specific temperature values. Since blue is generally associated with cooler
temperatures and yellow with hotter temperatures, a color scheme that ranges
from blue to yellow can be artificially applied to the temperature data, as il-
lustrated in image (b) of Figure 5.6. The correspondence between measured
data (temperature values) and colors is given in the color bar to the right of the
images.

The pseudo-coloring operation can best be implemented by building a cus-
tomized BufferedImageOp, where the filter method accepts a grayscale image
and produces a color image having an IndexColorModel. Recall that the sam-
ples of an indexed image represent indices into a color palette and the
IndexColorModel is a good way of representing the palette.

(a) Original thermal image. (b) Pseudo colored to indicate temperature.

Figure 5.6. False coloring example.



i
i

i
i

i
i

i
i

5.5. Pseudo Coloring 97

1 byte [ ] reds , b lues , g r e e n s ;
2 // I n i t i a l i z a t i o n of t h e s e a r r a y s i s not shown but i s assumed .
3 // Al l t h r e e a r r a y s a re equa l l e n g t h .
4

5 IndexColorModel model = new IndexColorModel ( 8 , r e d s . l eng th , reds , greens , b l u e s ) ;
6 BufferedImage image =
7 new BufferedImage (640 , 480 , Buf feredImage .TYPE BYTE INDEXED, model ) ;

Listing 5.7. Code fragment of the IndexColorModel.

1 p u b l i c c l a s s FalseColorOp extends NullOp {
2 p r o t e c t e d byte [ ] reds , greens , b l u e s ;
3

4 p u b l i c FalseColorOp ( Color [ ] p a l l e t t e ) {
5 r e d s = new byte [ p a l l e t t e . l e n g t h ] ;
6 g r e e n s = new byte [ p a l l e t t e . l e n g t h ] ;
7 b l u e s = new byte [ p a l l e t t e . l e n g t h ] ;
8

9 f o r ( i n t i =0; i<r e d s . l e n g t h ; i ++){
10 r e d s [ i ] = ( byte ) p a l l e t t e [ i ] . getRed ( ) ;
11 g r e e n s [ i ] = ( byte ) p a l l e t t e [ i ] . getGreen ( ) ;
12 b l u e s [ i ] = ( byte ) p a l l e t t e [ i ] . g e t B l u e ( ) ;
13 }
14 }
15

16 p r i v a t e IndexColorModel getColorModel ( ) {
17 r e t u r n new IndexColorModel ( 8 , r e d s . l eng th , reds , greens , b l u e s ) ;
18 }
19

20 p u b l i c BufferedImage createCompat ib leDest Image ( Buf feredImage s rc ,
21 ColorModel destCM ) {
22 r e t u r n new BufferedImage ( s r c . getWidth ( ) ,
23 s r c . ge tHe igh t ( ) ,
24 BufferedImage .TYPE BYTE INDEXED,
25 getColorModel ( ) ) ;
26 }
27

28 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
29 i f ( d e s t == n u l l ) d e s t = createCompat ib leDest Image ( s rc , n u l l ) ;
30

31 r e t u r n super . f i l t e r ( s r c , d e s t ) ;
32 }
33 }

Listing 5.8. Implementation of the FalseColorOp.



i
i

i
i

i
i

i
i

98 5. Point Processing Techniques

An IndexColorModel object can be constructed by specifying three byte-
valued arrays containing the red, green, and blue bands of the color palette,
respectively. In addition, the number of bits per band (typically 8) and the
number of colors in the palette (typically 256) must also be supplied. Once the
IndexColorModel has been constructed, it can be used to generate a Buffered
Image. The code fragment of Listing 5.7 shows how to construct a true-color
640 by 480 pixel image using this technique.

An implementation of the pseudo-coloring operation is shown in Listing 5.8.
Note that the FalseColorOp constructor accepts an array of Color objects cor-
responding to the colors in the palette and splits the array into its respective red,
green, and blue bands. The createCompatibleDestImage method is overrid-
den to construct a BufferedImage that contains the appropriate indexed color
model and uses byte-valued samples that are treated as indices into the color
palette. Data from the grayscale source is then directly copied into the destina-
tion raster by the default NullOp filter method.

Pixel Jelly supports pseudo coloring. The colorizing operation allows users
to construct a pallette, which is often referred to as gradient, by dragging and
dropping colors onto the gradient editor. The gradient is then applied to the
source image in order to colorize the source. If the source image is a color image
the application first converts the source to grayscale after which the gradient is
applied. Figure 5.7 shows a screenshot of this operation, where the color source
image is given in part (a) and the false-colored result is shown in part (b).

(a) Original. (b) Pseudo coloring.

Figure 5.7. False coloring example.



i
i

i
i

i
i

i
i

5.6. Histogram Equalization 99

5.6 Histogram Equalization
Histogram equalization is a powerful point processing enhancement tech-
nique that seeks to optimize the contrast of an image. As the name of this
technique suggests, histogram equalization seeks to improve image contrast by
flattening, or equalizing, the histogram of an image.

A histogram is a table that simply counts the number of times a value appears
in some data set. In image processing, a histogram is a histogram of sample
values. For an 8-bit image there will be 256 possible samples in the image and
the histogram will simply count the number of times that each sample actually
occurs in the image.

Consider, for example, an 8-bitW×H grayscale image. There are 256 distinct
sample values that could occur in the image. The histogram of the image is a table
of 256 values where the ith entry in the histogram table contains the number of
times a sample of value i occurs in the image. If the image were entirely black,
for example, the 0th entry in the table would contain a value of W ×H (since all
the image pixels are black) and all other table entries would be zero. In general,
for an N -bit W ×H grayscale image where the ith sample is known to occur ni
times, the histogram h is formally defined by Equation (5.10):

h(i) = ni i ∈ 0, 1, . . . , 2N (5.10)

Histograms are typically normalized such that the histogram values sum to 1.
In Equation (5.10) the histogram is not normalized since the sum of the his-
togram values is WH. The normalized histogram is given in Equation (5.11),
where ĥ(i) represents the probability that a randomly selected sample of the im-
age that will have a value of i:

ĥ(i) = h(i)/(WH) = ni/(WH), i ∈ 0, 1, . . . , 2N . (5.11)

A histogram is typically plotted as a bar chart where the horizontal axis corre-
sponds to the dynamic range of the image and the height of each bar corresponds
to the sample count or the probability. Generally, the overall shape of a his-
togram doesn’t convey much useful information but there are several key insights
that can be gained. The spread of the histogram relates directly to image contrast
where narrow histogram distributions are representative of low contrast images
while wide distributions are representative of higher contrast images. Generally,
the histogram of an underexposed image will have a relatively narrow distribu-
tion with a peak that is significantly shifted to the left while the histogram of an
overexposed image will have a relatively narrow distribution with a peak that is
significantly shifted to the right.

Figure 5.8 shows a relatively dark grayscale image and its corresponding his-
togram. The histogram is shifted to the left and has a relatively narrow distribu-
tion since most of the samples fall within the narrow range of approximately 25



i
i

i
i

i
i

i
i

100 5. Point Processing Techniques

(a) (b)

Figure 5.8. An example histogram: (a) an 8-bit grayscale image and (b) its histogram.

to 80, while relatively few of the images samples are brighter than 128. The
histogram for this example is indicative of an underexposed image—one that
may be improved through histogram equalization.

Histogram equalization is a way of improving the local contrast of an image
without altering the global contrast to a significant degree. This method is es-
pecially useful in images having large regions of similar tone such as an image
with a very light background and dark foreground. Histogram equalization can
expose hidden details in an image by stretching out the contrast of local regions
and hence making the differences in the region more pronounced and visible.

Equalization is a nonlinear point processing technique that attempts to map
the input samples to output samples in such a way that there are equal amounts
of each sample in the output. Since equalization is a point processing technique
it is typically implemented through the use of a lookup table. For a source im-
age, equalization computes the histogram of the source and then constructs a
discrete cumulative distribution function (CDF) which is used as the lookup ta-
ble. Given an N-bit image having histogram h, the normalized CDF Ĉ is defined
in Equation (5.12):

Ĉj =
j∑
i=0

ĥi, j ∈ {0, 1, . . . , 255} . (5.12)

The cumulative distribution function essentially answers the question, “What
percentage of the samples in an image are equal to or less than value J in the im-
age?” Since the resulting CDF lies in the interval [0 . . . 1] it can’t be directly used
as a lookup table since the output samples must lie in the 8-bit range of [0 . . . 255].
The CDF is therefore scaled to the dynamic range of the output image. For an
8-bit image, each entry of the CDF is multiplied by 255 and rounded to obtain



i
i

i
i

i
i

i
i

5.6. Histogram Equalization 101

0 1 3 4
1 2 2 3
1 3 4 4
3 2 5 2

i ĥi Ĉi 7Ĉi

0 1/16 1/16 0
1 3/16 4/16 2
2 4/16 8/16 4
3 4/16 12/16 5
4 3/16 15/16 7
5 1/16 16/16 7
6 0/16 16/16 7
7 0/16 16/16 7

0 2 5 7
2 4 4 5
2 5 7 7
5 4 7 4

i ĥi

0 1/16
1 0/16
2 3/16
3 0/16
4 4/16
5 4/16
6 0/16
7 4/16

(a) (b) (c) (d)

Figure 5.9. Numerical example of histogram equalization: (a) a 3-bit image, (b) normal-
ized histogram and CDF, (c) the equalized image, and (d) histogram of the result.

the lookup table used in histogram equalization. In summary then, histogram
equalization works by (1) computing the histogram of the source image, (2) gen-
erating the CDF of the source image, (3) scaling the CDF to the dynamic range
of the output and (4) using the scaled CDF as a lookup table.

Figure 5.9 gives a numeric example of an underexposed image that is equal-
ized to improve the local contrast. In this figure the 3-bit grayscale image shown
in (a) is used to generate the normalized histogram and CDF shown in (b). Since
the source is a 3 bit image, the CDF is scaled by a factor of seven, the dynamic
range of the 3-bit output, to produce the lookup table used for equalization. In
this example, then, every 0 in the input remains 0 in the output while every 1 in
the input becomes a 2 in the output and so on. The resulting equalized image is
shown in (c) and the histogram of the output is shown in (d). While the result-
ing histogram is not exactly equal at every index, the resulting histogram spreads
the samples across the full dynamic range of the result and does increase local
contrast in the image.

Figure 5.10 shows an underexposed grayscale image in (a) that has the his-
togram shown in (b). The underexposed image is histogram-equalized in (c) such
that the samples are nearly uniformly distributed across the 8-bit range. The his-
togram of the equalized image is shown in (d). The net effect of equalization in
this case is to shift the darker regions upwards in tone thus brightening much of
the image.

Images with poor overall contrast can also be corrected using histogram
equalization, as shown in Figure 5.11. In this case, the image 8-bit source image
of (a) is neither overly dark nor overly bright but has a washed-out look since
most of the samples are in a narrow range of middle gray tone. There are no
strong bright or dark regions in the image as indicated by the histogram in (b).
The equalized image of (c) presents more stark edges (i.e., differences between
sample values are increased) and the histogram of the resulting image has been
generally flattened, as shown in (d).



i
i

i
i

i
i

i
i

102 5. Point Processing Techniques

0 50 100 150 200 250
Sample Value

0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

0 50 100 150 200 250
Sample Value

0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

(a) Underexposed image. (b) Histogram of the underexposed image.

0 50 100 150 200 250
Sample Value

550

600

650

700

750

800

850

900

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

0 50 100 150 200 250
Sample Value

550

600

650

700

750

800

850

900

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

(c) Histogram-equalized image. (d) Histogram of the equalized image.

Figure 5.10. Histogram equalization of an underexposed image.



i
i

i
i

i
i

i
i

5.6. Histogram Equalization 103

0 50 100 150 200 250
Sample Value

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

0 50 100 150 200 250
Sample Value

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

(a) Low-contrast image. (b) Histogram of the low-contrast image.

0 50 100 150 200 250
Sample Value

400

500

600

700

800

900

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

0 50 100 150 200 250
Sample Value

400

500

600

700

800

900

N
um

be
r

of
O

cc
ur

re
nc

es

Histogram of Grayscale Image

(c) Histogram equalized image. (d) Histogram of the equalized image.

Figure 5.11. Histogram equalization of a low-contrast image.



i
i

i
i

i
i

i
i

104 5. Point Processing Techniques

(a) Source. (b) Equalized RGB. (c) Equalized intensity.

Figure 5.12. Equalizing a color image.

Histogram equalization can also be done on color images by performing the
grayscale technique on each separate band of the image. Care should be taken
when doing this, however, since the colors will likely be dramatically altered
as a result. If the tonal distributions are different among the red, green, and
blue channels of an image, for example, the lookup tables for each channel will
be vastly different and equalization will alter the color patterns present in the
source. Histogram equalization of a color image is best performed on the in-
tensity channel only, which implies that the equalization should be done on the
brightness band of an image using the HSB or YIQ color spaces, for example.

Figure 5.12 demonstrates how equalization may alter the color balance of a
source image. In this figure, the source image has a largely reddish tint. The
histogram of the red channel is shifted to the high end while the histogram of the
green channel is shifted to the low. When equalization is done on each of the
red, green, and blue channels independently, the color balance is dramatically
altered as seen in (b). When equalization is done on the intensity channel only,
the chromaticity is retained but the brightness levels are altered, as shown in (c).

Since image histograms are so useful in image processing it is advisable
to develop a Histogram class for the purpose of creating and processing his-
togram data. Listing 5.9 shows such a class, where the constructor accepts a
BufferedImage source and the band from which to extract the histogram. The
constructor then determines the maximum possible sample value and allocates a
table of the proper size. The table is filled in by scanning the source and counting
each sample that occurs in the image.

A histogram object can convert itself to an array via the getCounts meth-
ods, it can produce a cumulative distribution function as an array of doubles
via the getCDF method, and it can produce a normalized histogram via the
getNormalizedHistogram method. The histogram class can be used to im-
plement a HistogramEqualizationOp, which is left as a programming exercise.



i
i

i
i

i
i

i
i

5.6. Histogram Equalization 105

1 p u b l i c c l a s s Histogram {
2 p r i v a t e i n t [ ] counts ;
3 p r i v a t e i n t to ta lSample s , maxPossibleSampleValue ;
4

5 p u b l i c Histogram ( Buf feredImage s rc , i n t band ) {
6 maxPossibleSampleValue = getMaxSampleValue ( s rc , band ) ;
7 counts = new i n t [ maxPossibleSampleValue + 1 ] ;
8 t o t a l S a m p l e s = s r c . getWidth ( ) ∗ s r c . ge tHe igh t ( ) ;
9

10 f o r ( Locat ion pt : new Ras te rScanner ( s rc , f a l s e ) ) {
11 i n t sample = s r c . g e t R a s t e r ( ) . getSample ( p t . col , p t . row , band ) ;
12 counts [ sample ]++;
13 }
14 }
15

16 p u b l i c i n t getNumberOfBins ( ) {
17 r e t u r n counts . l e n g t h ;
18 }
19

20 p u b l i c i n t ge tVa lue ( i n t index ){
21 r e t u r n counts [ index ] ;
22 }
23

24 p u b l i c i n t [ ] getCounts ( ) {
25 i n t [ ] r e s u l t = new i n t [ counts . l e n g t h ] ;
26 System . ar raycopy ( counts , 0 , r e s u l t , 0 , counts . l e n g t h ) ;
27 r e t u r n r e s u l t ;
28 }
29

30 p u b l i c double [ ] getCDF ( ) {
31 double [ ] cd f = getNormalizedHistogram ( ) ;
32 f o r ( i n t i =1; i<cd f . l e n g t h ; i ++){
33 cd f [ i ] = cd f [ i −1] + cd f [ i ] ;
34 }
35 r e t u r n cd f ;
36 }
37

38 p u b l i c double [ ] getNormalizedHistogram ( ) {
39 double [ ] r e s u l t = new double [ counts . l e n g t h ] ;
40 f o r ( i n t i =0; i<counts . l e n g t h ; i ++){
41 r e s u l t [ i ] = counts [ i ] / ( double ) t o t a l S a m p l e s ;
42 }
43 r e t u r n r e s u l t ;
44 }
45

46 p r i v a t e i n t getMaxSampleValue ( Buf feredImage s rc , i n t band ) {
47 r e t u r n ( i n t ) Math . pow ( 2 , s r c . getSampleModel ( ) . ge tSampleS ize ( band ) ) − 1 ;
48 }
49 }

Listing 5.9. Histogram class.



i
i

i
i

i
i

i
i

106 5. Point Processing Techniques

Histograms have thus far been presented as one-dimensional constructs that
process each channel of an image independently. Color histograms, by contrast,
are three dimensional constructs that divide the images color space into volu-
metric bins. Each bin encloses a rectangular volume of colors in the space and
the corresponding bin entry is a count of the number of pixels that are enclosed
by the bin. A color histogram correctly links the individual samples of a pixel
together in a dependent fashion.

The size of the bins determines the resolution of the histogram, where smaller
bins correspond to a greater resolution and larger bin sizes correspond to a
lower resolution. While higher resolution histograms provide more accuracy
in terms of characterizing the color distribution of an image, higher resolutions
also lead to larger memory consumption and a corresponding lack of compu-
tational efficiency. Consider, for example, an 8-bit RGB color image such that
each axis is divided into 256 bins. The color histogram has an impractical total
of 256 × 256 × 256 = 16, 777, 216 bins. The resolution of the histogram can be
reduced by dividing each axis into only 5 bins such that the color histogram then
has a computationally effective total of 5 × 5 × 5 = 125 bins. Each axis of the
color space may be given a resolution independently of the others such that the
Y axis of the YCbCr color space may be given a higher resolution than either the
Cb or Cr color spaces. Consider, for example, an 8-bit YCbCr image such that
the Y axis is divided into 10 bins while each of the Cb and Cr axes are divided
into 5 bins. The corresponding color histogram has a total of 10 × 5 × 5 = 250
bins and has superior resolution in the intensity channel than the two chroma
channels.

Figure 5.13 shows the RGB color histogram for two source images. The
12 × 12 × 12 color histogram of part (a) is shown in (b) where the diameter of
the spheres is directly proportional to the count of each volumetric bin and the
color of each sphere corresponds to the color at the center of each bin. The
12×12×12 color histogram of the source image shown in part (c) is given in (d).
The large density of dark and red pixels of the source image in (a) is reflected in
the distribution of data in the color histogram of (b) while the large density of
light blue pixels is reflected in the distribution of the color histogram of part (d).

Since a color histogram provides a relatively coarse but concise characteri-
zation of an image, a color histogram can be used as a computationally effec-
tive means for comparing the similarity of two images. Color histograms are
often used in content-based image retrieval (CBIR) systems to support efficient
searches of large image databases. A CBIR system maintains a database of im-
ages that can be queried for similarity to a target image. A CBIR system allows
users to find images in the database that are similar to the target image rather
than searching the image database using metadata such as keywords. While two
visually different images may have similar color histograms, the color histograms
can be used as a coarse measure of similarity and serve as a preprocessing step
in a CBIR query.



i
i

i
i

i
i

i
i

5.7. Arithmetic Image Operations 107

(a) Source image. (b) RGB color histogram.

(c) Source image. (d) RGB color histogram.

Figure 5.13. The color distribution of two source images as given by their 12 × 12 × 12 RGB
color histograms.

5.7 Arithmetic Image Operations

Two source images can be added, multiplied, one subtracted from the other or
one divided by the other to produce a single destination. These operations are
known as image arithmetic or image blending. Each of these methods is a point
processing operation where corresponding samples from the two source im-
ages are combined into the destination. Image addition, for example, works by



i
i

i
i

i
i

i
i

108 5. Point Processing Techniques

summing corresponding samples from both source images to produce the result-
ing sample. Image addition is the basis for many blending modes used in image
processing software as well as in computer graphics rendering pipelines. Both
graphic designers and software engineers are well advised to understand the un-
derlying principles of image addition presented in this section.

It is important to note that since the operations presented in this section com-
bine multiple source images into a single destination, these operations are not
single source filters. Since Java’s BufferedImageOp interface is designed for sin-
gle source operations, the implementation of the arithmetic operations, although
straightforward, is somewhat awkward when integrated into the single source
framework of the BufferedImageOp.

Before looking at implementation, however, we will discuss two complica-
tions that arise when performing image arithmetic. The first relates to the color
depth of the destination and the second relates to the dimension of the destina-
tion. Consider that when adding two 8-bit grayscale images, for example, the
sum of the two input samples may exceed 8 bits. If two white samples are added
together the result will be 255 + 255 = 510, which is a 9-bit quantity. This would
imply that color depth of the destination will generally be larger than the color
depth of the source. Rather than increasing the color depth of the destination,
however, most implementations will simply rescale the destination into an 8-bit
range by taking the average of the two inputs. Another alternative is to simply
clamp the result to an 8-bit range; although this approach will often truncate so
much information that it is not often used.

The second complication arises if the source images are not of the same width
and height. Given this scenario, image addition is carefully defined to either
forbid the operation or to modify the sources such that they are of identical di-
mension. Given source images Ia and Ib of dimension Wa ×Ha and Wb ×Hb,
respectively, the sum Ia+Ib produces destination image Idst, which is as wide as
the narrowest of the two sources and as high as the shortest of the two sources.
Addition with scaling is formally given as

Idst(x, y) =
1
2
· (Ia(x, y) + Ib(x, y)), (5.13)

where the dimensions of Ic are min(Wa,Wb)×min(Ha, Hb) and variables x and
y range over all column and row indices. To simplify our presentation we define
s1 as the sample given by Ia(x, y), s2 as Ib(x, y) and finally sdst as the destination
sample, Ic(x, y). Making these substitutions into Equation (5.13) yields the more
convenient

sdst =
1
2
· (s1 + s2), (5.14)

where the destination sample is computed over all samples of the two sources.



i
i

i
i

i
i

i
i

5.7. Arithmetic Image Operations 109

(a) Ia. (b) Ib. (c) Ia + Ib.

Figure 5.14. Image addition.

Addition with clamping is given as

sdst = clamp(s1 + s2, 0, 255).

Figure 5.14 shows an example of image addition. In this example an 8-
bit grayscale image is duplicated and horizontally flipped. The original and
flipped sources are then added to form the result. The destination image has
been rescaled into an 8-bit color depth rather than clipped.

Consider multiplying a full color source with an image having only white and
black. The binary image is known as a mask where the white pixels simply pass
the source image through to the output unaltered while the black pixels erase the
corresponding source images pixels. Image multiplication is a good technique
for either adding color to a line drawing or for emphasizing edges in a full color
image. Figure 5.15 illustrates image multiplication. In part (a) of this figure, a
source image is multiplied by the mask of (b) to obtain the output of (c). Many
image processing applications use image multiplication to create artistic filters
for digital artists.

Image subtraction operates on two sources by subtracting corresponding sam-
ple values. The dimensions of the resulting image are determined in precisely the
same fashion as image addition, where the resulting dimensions represent the
smallest region common to both source images. The color depth of the resulting
image is also problematic since the resulting image may contain both positive
and negative values. The color depth problem can be resolved using the same
techniques employed in image addition or, as is more commonly done, through
taking the absolute value of the output. Image subtraction is typically defined as

sdst = |s1 − s2|.



i
i

i
i

i
i

i
i

110 5. Point Processing Techniques

(a) Ia. (b) Ib. (c) Ia · Ib.

Figure 5.15. Image multiplication.

Image subtraction is useful for visualizing the difference between two images.
One way of telling whether two images are identical is to subtract one from the
other and if the maximum sample value of the result is zero then the images
are identical. Also, the destination image gives a visualization of the differences
such that areas of difference can be clearly seen. Figure 5.16 shows a source

(a) Ia. (b) Ib. (c) Ia − Ib.

Figure 5.16. Image subtraction.



i
i

i
i

i
i

i
i

5.7. Arithmetic Image Operations 111

image (a) that has been histogram equalized on the intensity channel to obtain
the result shown in (b). In order to visualize how equalization affected various
parts of the source we can subtract the equalized image from the source to obtain
the image of (c), which has been rescaled to maximize the image contrast. In this
example, the brighter regions correspond to areas of greater difference while the
darker regions correspond to areas where equalization had little effect.

5.7.1 BinaryImageOp Class

The BufferedImageOp class is not well designed to represent the arithmetic op-
erations since there are two source images. Nonetheless we can implement im-
age arithmetic as a single source operation by currying. Currying refers to the
transformation of a function that has multiple arguments into a function that
has only a single argument. For our implementation, we develop an abstract
base class called BinaryImageOp that is partially shown in Listing 5.10. In this
class, the filter method iterates over corresponding samples of the two sources
and blends them using the abstract combine function. This function accepts the
two source samples and combines them using either the arithmetic or logic oper-
ators. It is also very straightforward to combine the two inputs in nonlinear ways
such as computing the maximum or minimum value. The combine method as
given in this class is left abstract, however, since the specific operation that will
be applied is known only by the implementing subclass.

In order to construct a binary image operation the client must provide the
first or leftmost image of the two images to be combined. This image is then saved
as an instance variable and is used by the filter method whenever the operation
is applied to the second source. The filter method should then be understood
as meaning combine the leftmost image with the rightmost image that is now supplied
as the source. By caching the leftmost source image we have essentially created
a curried version of the filter method that allows us to support multiple source
operations via the otherwise single-source BufferedImageOp interface.

The implementation of the filter method involves some overhead to ade-
quately deal with source images that may be of differing dimensions or color
depths. The initial lines of the filter method determine the dimensions of the
destination. The Rectangle class is part of the standard Java distribution and
provides a convenient way for computing the smallest of two rectangles, the
boundaries of the two source images, through the intersection method. In
addition, the createCompatibleDestination method is rewritten to accept the
desired bounding Rectangle of the destination and the desired color model of
the destination and create a suitable destination image. The number of bands
of the destination will be the minimum of the number of bands of the two
sources.



i
i

i
i

i
i

i
i

112 5. Point Processing Techniques

1 p u b l i c a b s t r a c t c l a s s BinaryImageOp extends NullOp {
2 p r o t e c t e d BufferedImage l e f t ;
3

4 p u b l i c BinaryImageOp ( Buf feredImage l e f t ) {
5 t h i s ( l e f t ) ;
6 }
7

8 p u b l i c a b s t r a c t i n t combine ( i n t s1 , i n t s2 ) ;
9

10 p u b l i c BufferedImage createCompat ib leDest Image ( Rec tang le bounds ,
11 ColorModel destCM ) {
12 r e t u r n new BufferedImage (
13 destCM ,
14 destCM . c r e a t e C o m p a t i b l e W r i t a b l e R a s t e r ( bounds . width , bounds . h e i g h t ) ,
15 destCM . i s A l p h a P r e m u l t i p l i e d ( ) ,
16 n u l l ) ;
17 }
18

19 p u b l i c BufferedImage f i l t e r ( Buf feredImage r i g h t , Buf feredImage d e s t ) {
20 Rectang le l e f t B o u n d s = l e f t . g e t R a s t e r ( ) . getBounds ( ) ;
21 Rectang le r ightBounds = r i g h t . g e t R a s t e r ( ) . getBounds ( ) ;
22 Rectang le i n t e r s e c t i o n = l e f t B o u n d s . i n t e r s e c t i o n ( r ightBounds ) ;
23

24 i f ( d e s t == n u l l ) {
25 i f ( l e f t . g e t R a s t e r ( ) . getNumBands ( ) < r i g h t . g e t R a s t e r ( ) . getNumBands ( ) ) {
26 d e s t = createCompat ib leDest Image ( i n t e r s e c t i o n , l e f t . getColorModel ( ) ) ;
27 } e l s e {
28 d e s t = createCompat ib leDest Image ( i n t e r s e c t i o n , r i g h t . getColorModel ( ) ) ;
29 }
30 }
31

32 f o r ( Locat ion pt : new Ras te rScanner ( des t , t r u e ) ) {
33 i n t s1 = l e f t . g e t R a s t e r ( ) . getSample ( p t . col , p t . row , p t . band ) ;
34 i n t s2 = r i g h t . g e t R a s t e r ( ) . getSample ( p t . col , p t . row , p t . band ) ;
35 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , p t . band , combine ( s1 , s2 ) ) ;
36 }
37 r e t u r n d e s t ;
38 }
39 }

Listing 5.10. BinaryImageOp.

The BufferedImageOp is abstract since we define a combine method that
takes two sample values and combines them in a way that known only by the im-
plementing subclass. Implementing the various arithmetic ops becomes a very
simple matter of writing a concrete subclass and providing an implementation
of the combine method. Listing 5.11 shows a complete implementation of the
BinaryImageOp that supports image addition. The combine method takes the



i
i

i
i

i
i

i
i

5.8. Logical Image Operations 113

two source samples given by s1 and s2 and adds them together, rescales them by
dividing by 2, and then clamps them to an 8-bit value. This class can be followed
as a pattern for implementing the various other binary image operations de-
scribed. In order to create an image subtraction operation, a SubtractBinaryOp
class should be developed that provides a constructor and a combine method
similar to the one shown here for addition.

1 p u b l i c c l a s s AddBinaryOp extends BinaryImageOp {
2 p u b l i c AddBinaryOp ( Buf feredImage l e f t ){
3 super ( l e f t ) ;
4 }
5

6 p u b l i c i n t combine ( i n t s1 , i n t s2 ){
7 r e t u r n I m a g i n g U t i l i t i e s . clamp ( ( s1 + s2 ) / 2 . 0 , 0 , 2 5 5 ) ;
8 }
9 }

Listing 5.11. AddBinaryOp.

5.8 Logical Image Operations
Binary images can also be combined using logical operators known as conjunc-
tion (AND), disjunction (OR), negation (NOT), or exclusive or (XOR). Under
these logical operations, each sample is implicitly understood as either True
(white) or False (black). Logical negation is a unary operator having a single
binary source image that is inverted; meaning that all white pixels become black
and all black pixels become white. The remaining logical operators operate on
precisely two binary sources and hence are not single source filters.

Given two binary input samples as input there are only four cases that these
operators need to consider: namely (black, black), (black, white), (white, black),
and (white, white). Table 5.2 gives each of these cases and defines the output

S1 S2 And Or XOr

Table 5.2. Truth table for logical operators on binary images.



i
i

i
i

i
i

i
i

114 5. Point Processing Techniques

(a) Binary Source 1. (c) Conjunction. (e) Disjunction.

(b) Binary Source 2. (d) Exclusive or. (f) Negation.

Figure 5.17. Logical image operations.

under each operator. Columns S1 and S2 represent the two source samples while
the columns to the right show the output of each of the three logical operators.
The logical conjunction of two black samples, for instance, results in a black out-
put while the logical conjunction of two white samples results in a white output.

Figure 5.17 illustrates the logical operations as applied on two binary sources.
The white circle on black background serves as a mask that either copies every-
thing inside of its boundary setting all else to black (conjunction), copies ev-
erything outside of its boundary, setting all else to white (disjunction), copies
everything outside of its boundary while inverting all interior samples (exclusive
or), or inverts the single source image (negation).

These logical operators can also be extended to grayscale and color images.
Corresponding bits of the two source samples serve as logical values where a 1
bit represents true and a 0 bit represents false. Each of the two sources must
use the same color model, color depth and dimension. The logical operations
are rarely used in color image processing but are nonetheless useful in certain
applications.



i
i

i
i

i
i

i
i

5.9. Alpha Blending 115

5.8.1 Implementing the Logical Operations
The logical image operations are implemented by writing concrete subclasses of
the BinaryImageOp as was done with the arithmetic operations. Listing 5.12 is a
complete implementation of disjunction. The combine method uses the bitwise-
or operator, which is denoted by the vertical bar of line 7. This image operation
will work correctly for color, grayscale, and binary images.

1 p u b l i c c l a s s OrBinaryOp extends BinaryImageOp {
2 p u b l i c OrBinaryOp ( Buf feredImage l e f t ){
3 super ( l e f t ) ;
4 }
5

6 p u b l i c i n t combine ( i n t s1 , i n t s2 ) {
7 r e t u r n s1 | s2 ;
8 }
9 }

Listing 5.12. OrBinaryOp.

5.9 Alpha Blending
Alpha blending is closely related to the notion of image arithmetic. In alpha
blending two sources are added together after being proportionally scaled with
an α value. Alpha blending is defined as

sdst = α · s1 + (1− α) · s2,

where α is a scalar value between 0 and 1. When α = 0 the output image is
identical to Ib since Ia is weighted to zero. When α = 1 the output image is
identical to Ia since Ib is weighted to zero. When α = .5 the output image is the
average of the two sources and is equivalent to image addition with rescaling.
Alpha blending supports the notion of transparency where an alpha value of
zero corresponds to complete transparency and a value of 1 corresponds to a
completely opaque image.

While alpha blending allows an entire image to have a transparency setting,
alpha compositing is a more sophisticated process that allows image processing
and computer graphics pipelines to support transparency at the pixel level. Al-
pha compositing is heavily used in the computer graphics rendering pipeline to
combine multiple layers into a single frame. In Java, the BufferedImage class
supports an RGBA color model, where the fourth channel is an α channel that
determines the per-pixel transparency values.



i
i

i
i

i
i

i
i

116 5. Point Processing Techniques

5.10 Other Blending Modes
The binary image operations presented in this chapter include the arithmetic
and logical operations in addition to alpha blending. Other blending modes are
in common use for more specialized effects.

The darken only blending mode returns the minimum of the two source sam-
ples while the lighten only mode returns the maximum of the two source samples.

Diffusion is where two samples are combined by selecting one of the two
samples at random as the result. It is somewhat inaccurate to describe this as
a combination of samples since one of the samples is always ignored and con-
tributes nothing to the result. If the first source sample has an alpha channel,
that alpha value can be taken as the likelihood of taking that sample over the
second source sample. If, for example, the alpha value of s1 is 1 then that sample
will always be taken over s2, whereas if s1 has an alpha of .5 then there is a 50%
chance of taking either sample. In the absence of an alpha channel the client can
be allowed to select the global odds of taking one source over the other.

Screen blending is defined in Equation (5.15), where the samples are assumed
to be normalized. In this mode, the two source images are inverted, then multi-
plied and finally inverted again to produce the result. Screen blending tends to
increase the brightness of an image such that dark areas are brightened more than
light areas. Screen blending an image with itself is an effective way of correcting
an underexposed image and increasing the detail of dark areas of an image.

sdst = 1− ((1− s1) · (1− s2)). (5.15)

Equation (5.16) defines hard light blending where the image samples are again
assumed to be normalized. Hard light blending lightens or darkens an image
depending on the brightness of the rightmost image. Blend colors in the right
image that are more than 50% brightness will lighten the base image in the same
way as the screen blending mode. Blend colors that are less than 50% brightness
in the right image will darken the image in the same way as the multiply blending
mode. If the rightmost image is all black, the result will be black, if the rightmost
image is all white, the result will be white, and if the rightmost image is mid
gray, the destination will remain unchanged. Hard light blending is effective for
adding shadows to an image or for adding a glow around objects in an image.

sdst =

{
2 · s1 · s2 s2 < .5,
1− 2 · (1− s1) · (1− s2)) s2 ≥ .5.

(5.16)

5.11 Exercises
1. Since human perception logarithmically compresses light, brightness ad-

justment is sometimes expressed as a variant of the rescaling technique



i
i

i
i

i
i

i
i

5.11. Exercises 117

described in this chapter. Write a class named BrightnessAdjustOp that
applies the following relationship between a source sample S and a desti-
nation sample S′. In this formulation, we can use a base 10 logarithm and
understand that β controls the brightness adjustment:

logS′ = logS + β.

2. Write a class named CustomRescaleOp that implements BufferedImageOp
and duplicates the behavior of the native RescaleOp. The class must use
lookup tables. Make sure to include a test routine that applies a RescaleOp
and a CustomRescaleOp to a source image and ensures that the resulting
images are identical. You should test your class on a variety of images
including grayscale, binary, and true color images.

3. Write a class named SlowRescaleOp that implements BufferedImageOp
and duplicates the behavior of the native RescaleOp but does not use
lookup tables. Apply this filter to some source images and compare the
length of time the SlowRescaleOp filter takes to complete with the length
of time taken by the CustomRescaleOp of the previous problem.

4.? Write a class named BandExtractOp that implements BufferedImageOp.
The filter method must take a source image and return one band of the
source as a grayscale image. When the op is constructed, the band to
extract must be specified. The BandExtractOp must allow the following
bands to be extracted from any source image regardless of the color model
of the source: R, G, B, C, M, Y, K, Y, I Q, H, S, B.

5. Write a program that applies pseudo coloring to a grayscale image. The
program must allow users to

(a) select an image file,

(b) view the grayscale source image,

(c) select a palette file,

(d) and apply the selected palette to the grayscale score and display the
result.

The palette file contains exactly 256 lines of text. The ith line of the
file contains three whitespace-separated integer numbers that represent the
RGB values of the ith color of the palette.

6. Write a program to perform histogram equalization on a user-selected im-
age and display the result.



i
i

i
i

i
i

i
i

118 5. Point Processing Techniques

7. Write a program to characterize a grayscale image as dark, light, or gray
and poor contrast or good contrast. An image should be designated as dark
if 80% of its pixels fall below the threshold of 100. An image should be des-
ignated as light if 80% of its pixels fall above the threshold of 155 and an
image should otherwise be designated as gray. In addition, an image occu-
pies less than 65% of the dynamic range then the image is characterized as
poor contrast while an image that covers at least 90% of the dynamic range
is characterized as good contrast.

8. Write a program to perform local histogram equalization on a user-selected
image and display the result. Local histogram equalization is achieved by

(a) selecting a pixel p,

(b) computing the cumulative distribution function of the N ×N region
centered on p,

(c) converting the CDF into a lookup table,

(d) transforming pixel p according to the generated lookup table.

These steps should be performed for every pixel in the image in order to
perform local equalization. When the region extends beyond the image
boundaries the output value is simply set to be zero.

9. Write concrete subclasses of the BinaryImageOp that perform image mul-
tiplication, subtraction, and division.

Artwork
Figure 5.4. Vincent’s Bedroom in Arles by Vincent Willem van Gogh (1853–1890).
Vincent van Gogh was a Dutch Impressionist painter who has since become one
of the most popular artists of all time. Van Gogh is well known for his use of
strong, vivid colors and unique undulating style. He was a prolific artist who
produced thousands of pieces during his life. The image of Figure 5.4 is one of
five works depicting this scene and is among the best of his works in terms of style
and maturity. In a letter to his brother, van Gogh writes of this work that “My
eyes are still tired by then I had a new idea in my head [sic] and here is the sketch
of it. This time it’s just simply my bedroom, only here color is to do everything,
and giving by its simplification a grander style to things, is to be suggestive here
of rest or of sleep in general. In a word, looking at the picture ought to rest
the brain, or rather the imagination. And that is all—there is nothing in this
room with its closed shutters. I shall work on it again all day, but you see how
simple the conception is. The shadows and the cast shadows are suppressed; it
is painted in free flat tints like the Japanese prints.”



i
i

i
i

i
i

i
i

5.11. Exercises 119

Figure 5.5. Portrait of Dr. Gachet by Vincent Willem van Gogh (1853–1890). See
previous entry for a brief biography of the artist. Dr. Paul Gachet was a physician
who cared for van Gogh during his last months of life. Van Gogh painted two
distinct portraits of Dr. Gachet which both show him sitting at a table leaning on
his right arm. The surrounding scening elements, however, are visibly different
and hence it is easy to distinguish between the two versions. While the portrait
of Figure 5.5 was, at the time of this writing, owned by the Musée d’Orsay, the
other version sold in 1990 for US$82.5 million, which, at the time, made it the
most expensive painting in the world.

Figure 5.7. The Girl with a Pearl Earring by Johannes Vermeer (1632–1675). Jo-
hannes Vermeer or Jan Vermeer was a Dutch Baroque painter of the 17th cen-
tury. He lived his entire life in the town of Delft from which his inspiration for
his portraits of ordinary domestic life was drawn. Although Vermeer was not
well known in his time, he is today considered to be one of the greatest painters
of the Dutch Golden Age. Figure 5.7 is one of his masterworks and is sometimes
referred to as “the Mona Lisa of the North” or “the Dutch Mona Lisa.”

Figure 5.8. “Ivey Mill” by Lewis Hine. See page 50 for a brief biography of the
artist. Figure 5.8 is an image of young Ivey Mill. Hine’s full title is “Ivey Mill.
Little one, 3 years old, who visits and plays in the mill. Daughter of the overseer.
Hickory, N.C.” The image is available from the Library of Congress Prints and
Photographs Division under the digital ID cph 3a48537.

Figure 5.10. “George Sand” by Gaspard-Felix Tournachon (1820–1910).
Gaspard-Felix Tournachon was born in Paris and during his professional life
went by the pseudonym of Nadar. He was a caricaturist who discovered portrait
photography and was instrumental in the developing years of impressionism.
He photographed many of the emerging artists and writers of his time including
the likes of Charles Baudelaire, Camille Corot, Eugene Delacroix, Franz Liszt,
Victor Hugo, and, as shown in Figure 5.10, George Sand. Please note that the
image has been artificially underexposed to suite the purposes of this text and
that the original image taken by Tournachon possesses no such defect.

Figure 5.11. “Breaker Boys in #9 Breaker” by Lewis Hine (1874–1940). See page
50 for a brief biography. Figure 5.11 is fully titled “Breaker Boys in #9 Breaker,
Hughestown Borough, PA. Coal Co. Smallest boy is Angelo Ross.” The image
is available from the Library of Congress Prints and Photographs Division under
the digital ID cph 3a24720.

Figure 5.12. Portrait of Jeanne Sammary by Pierre-Auguste Renoir (1841–1919).
Renoir was a French Impressionist painter. In 1862 he began studying art in
Paris, where he befriended Alfred Sisley, Frédéric Bazille, and Claude Monet.



i
i

i
i

i
i

i
i

120 5. Point Processing Techniques

Renoir lived in near poverty during the early part of his career due in part to the
upheaval of the Fanco-Prussian War. Renoir’s paintings use soft but vibrant light
and highly saturated color to capture casual snapshots of daily life. The source
image of Figure 5.12 is representative of his use of color and his impressionistic
style.

Figure 5.13(a). The Sacrifice of Isaac by Michelangelo Merisi da Caravaggio (1571–
1610). Caravaggio was born in Milan, Italy and was exposed at an early age to
some of history’s finest works of art, including Leonardo da Vinci’s Last Sup-
per. Caravaggio led an extremely tumultuous life and, as a youth, fled Milan
to Rome due to ongoing conflicts with acquaintances and brawls with the po-
lice. In Rome, he secured a series of valuable commissions and became one of
the most famous painters in all of Europe. While his style is extremely realistic
and emotive it was his tendency towards realism that brought controversy. While
most artists of his time depicted Biblical characters and secular heros in idealized
form, Caravaggio depicted them as real men with all the ensuing imperfections
of body. Figure 5.13 is illustrative of his style as the artist depicts Abraham as an
aged and balding man.

Figure 5.13(b). The Appearance of Christ to the People by Alexander Andreyevich
Ivanov (1806–1858). Ivanov was a Russian painter of the Neoclassical tradition
who was raised in St. Petersburg but spent most of his adult life in Rome. His
subject matter focused largely on Biblical themes as the detail of Figure 5.13
reflects. Ivanov labored for 20 years on his solitary masterpiece entitled The
Appearance of Christ to the People which measures an impressive 18 × 25 feet in
dimension. The painting depicts John the Baptist announcing the arrival of Jesus
in fulfillment of Old Testament prophecy.

Figure 5.14. “Salvador Dali” by Carl Van Vechten (1880–1964). Carl Van
Vechten was born in Cedar Rapids, Iowa, where he developed a keen interest
in music and theater, which eventually drew him to attend the University of
Chicago to study the arts. He was introduced to photography in the early 1930s
and became a prolific portrait photographer. Some of his well-known subjects
include F. Scott Fitzgerald, Langston Hughes, Alfred A. Knopf, Bessie Smith,
Gertrude Stein, and Salvador Dali, who is shown in Figure 5.14. The Dali por-
trait is available from the Library of Congress Prints and Photographs Division
under the digital ID cph 3c16608.

Figures 5.15 and 5.16. Portrait of Lunia Czechowska by Amedo Modigliani (1884–
1920). Amedo Modigliani was an Italian painter and sculptor of Jewish heritage.
Modigliani’s style is unique and difficult to categorize since it draws on elements
of many genres and art movements. Modigliani was a prolific artist whose in-
tensely energetic pace and overuse of alcohol likely contributed to his early death



i
i

i
i

i
i

i
i

5.11. Exercises 121

at the age of 35. His portrait as shown in Figures 5.15 and 5.16 show his unique
style and exhibit the influences of both primitive and impressionistic styles.

Figure 5.17. The Fall of Satan by Gustave Doré (1832–1883). Gustave Doré was
born in Strasbourg and is well known for his work as a literary illustrator work-
ing primarily as an engraver. He is best known for his illustrations of the English
Bible but also produced excellent illustrations for Don Quixote, “The Raven,”
“Rime of the Ancient Mariner,” The Divine Comedy, and, as shown in Figure 5.17,
Paradise Lost.



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

�

Regional Processing
Techniques 6

6.1 Overview
Two fundamentally distinct types of image enhancement techniques exist: those
that operate within the spatial domain and those that operate in the frequency
domain. While these terms are more clearly delineated in Chapter 9 we infor-
mally define the spatial domain as a way of representing an image by spatially
arranging pixels (colors) to form a complete whole. The frequency domain is an
alternate way of representing visual information by describing patterns of global
fluctuation in images. This chapter focuses exclusively on spatial domain tech-
niques, leaving the more difficult frequency domain issues for Chapter 9.

Spatial domain techniques can be further classified as either point or regional
processing. This classification scheme was given in Chapter 5 and is repeated
in Figure 6.1 for the reader’s convenience. This chapter focuses exclusively on
spatial-domain regional processing techniques.

Under point processing a single input sample is processed to produce a single
output sample. In regional processing the value of the output sample is depen-
dent on the values of samples within close proximity to the input sample. Exactly
how the region is selected and how samples within the region affect the output
depends upon the desired effect.

Figure 6.1. Taxonomy of image processing techniques.

123



i
i

i
i

i
i

i
i

124 6. Regional Processing Techniques

6.2 Convolution
The most important regional processing technique is known as convolution.
Convolution establishes a strong connection between the spatial and frequency
domains and can be used to achieve a wide variety of effects. Convolution em-
ploys a rectangular grid of coefficients, known as a kernel, to determine which
elements of an image are in the neighborhood of a particular pixel; and the ker-
nel also dictates how these neighborhood elements affect the result.

Figure 6.2 gives an example of a 3× 3 kernel, where the center of the kernel,
also known as the key element is designated as element K(0, 0). For a kernel to
possess a center element, both the width and height of a kernel must be of odd
dimension. While the most frequently used kernels have odd dimension, there
are a handful of kernels in popular use that are of even dimension. Each of the
kernel elements is a real-valued number and may be either positive or negative.
The size of the kernel corresponds to the size of the region while the values of
the kernel dictate the effect that regional samples have on the destination.

Figure 6.2 shows an image I where a single sample, I(x, y), is processed by
convolution with K. Since the kernel dimension is 3× 3, those pixels that affect
the result are located in the 3 × 3 rectangular region centered on I(x, y). Con-
volving I(x, y) with K produces an output sample I ′(x, y), which is obtained by
the process illustrated in Figure 6.3. The output sample I(x, y) is obtained by
reflecting the kernel about the key element in both the horizontal and vertical
axes; placing the kernel over the source sample I(x, y) such that the key element
overlays I(x, y); multiplying each of the kernel coefficients by the correspond-
ing source sample; and finally summing these nine products to obtain the output
sample I ′(x, y).

Each output sample of convolution is a weighted combination of the samples
in the surrounding neighborhood. Convolution is a linear process since addition
and multiplication are the only arithmetic operations involved when combining

Figure 6.2. A 3× 3 kernel is centered over sample I(x, y).



i
i

i
i

i
i

i
i

6.2. Convolution 125

Figure 6.3. Convolution steps.

regional samples. While Figure 6.3 gives an informal description of convolution,
we now provide a formal definition. Given a W ×H grayscale image I and an
M ×N kernel K where both M and N are odd, the convolution of I with K is
denoted as I ⊗ K and is defined in Equation (6.1), where x ∈ [0,W − 1] and
y ∈ [0, H − 1]:

(I ⊗K)(x, y) = I ′(x, y) =
bM/2c∑

j=−bM/2c

bN/2c∑
k=−bN/2c

K(j, k) · I(x− j, y − k). (6.1)

The kernel is not literally rotated by copying data from one element to another
within some two dimensional data structure but is achieved through careful def-
inition of index values. Specifically, the term I(x − j, y − k) effectively rotates
the kernel by multiplying a kernel element K(j, k) with the source element at
I(x − j, y − k) rather than the source element at I(x + j, y + k). When Equa-
tion (6.1) is applied to the kernel and image of Figure 6.2 the output sample is
obtained as

I ′(x, y) = K(−1,−1) · I(x+ 1, y + 1) +K(+0,−1) · I(x, y + 1) +K(1,−1) · I(x− 1, y + 1)
+K(−1,+0) · I(x+ 1, y + 0) +K(+0,+0) · I(x, y + 0) +K(1,+0) · I(x− 1, y + 0)
+K(−1,+1) · I(x+ 1, y − 1) +K(+0,+1) · I(x, y − 1) +K(1,+1) · I(x− 1, y − 1).

Substituting actual coefficients and samples into the above relation yields

I ′(x, y) = −1 · 56 + 0 · 65 + 1 · 50
+− 1 · 49 + 0 · 55 + 1 · 54
+− 1 · 46 + 0 · 59 + 1 · 41

= −6.

6.2.1 Computation
Equation (6.1) can be directly translated into Java code in a naive fashion. The
kernel can be represented as a two-dimensional array of floats, the summations
are converted into for loops, the formula of Equation (6.1) is applied to every
sample I(x, y), and careful handling of the kernel indices allows us to implicitly



i
i

i
i

i
i

i
i

126 6. Regional Processing Techniques

set the kernel center to be at location K(0, 0). Listing 6.1 gives the straightfor-
ward and naive implementation of convolution where the kernel is represented
as a two-dimensional array of floats and is assumed to be accessible within the
getSumOfTerms method.

1 p u b l i c c l a s s SimpleConvolveOp extends NullOp {
2 p r i v a t e i n t width , h e i g h t ;
3 p r i v a t e f l o a t [ ] [ ] k e r n e l ;
4

5 p u b l i c SimpleConvolveOp ( i n t width , i n t he igh t , f l o a t [ ] [ ] k ) {
6 k e r n e l = k ;
7 t h i s . width = width ;
8 t h i s . h e i g h t = h e i g h t ;
9 }

10

11 p r i v a t e double convo lvePoin t ( Buf feredImage s rc , Locat ion pt ) {
12 i n t mLow = width / 2 ;
13 i n t nLow = h e i g h t / 2 ;
14 i n t mHigh = width % 2 == 1 ? mLow : width − mLow − 1 ;
15 i n t nHigh = h e i g h t % 2 == 1 ? nLow : h e i g h t − nLow − 1 ;
16

17 f l o a t sum = 0 ;
18 f o r ( i n t k = −nLow ; k <= nHigh ; k++) {
19 f o r ( i n t j = −mLow; j <= mHigh ; j ++) {
20 t r y {
21 sum += k e r n e l [ k + nLow ] [ j + mLow] ∗
22 s r c . g e t R a s t e r ( ) . getSample ( p t . c o l − j , p t . row − k , p t . band ) ;
23 } catch ( ArrayIndexOutOfBoundsException e ) {
24 }
25 }
26 }
27

28 r e t u r n sum ;
29 }
30

31 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
32 i f ( d e s t == n u l l ) {
33 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
34 }
35 f o r ( Locat ion pt : new Ras te rScanner ( s rc , t r u e ) ) {
36 i n t output = C o l o r U t i l i t i e s . clamp ( convo lvePoin t ( s r c , p t ) ) ;
37 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , p t . band , output ) ;
38 }
39 r e t u r n d e s t ;
40 }
41 }

Listing 6.1. SimpleConvolutionOp.



i
i

i
i

i
i

i
i

6.2. Convolution 127

In this implementation, the filter method iterates over every source sam-
ple and obtains the point-wise convolution from the convolvePoint method.
Within the convolvePoint method, the kernel indices are computed such that
the kernel indices range over [nLow, nHigh] in height and [mLow, mHigh] in
width. Properly computing these boundaries is dependent upon whether the
kernel dimensions are odd or even, as shown in lines 14 and 15. In addition,
the convolvePoint method is problematic at the image boundaries since the
getSample method of line 22 will generate invalid indices if the column or row
index is smaller than the corresponding kernel dimension. While the implemen-
tation of Listing 6.1 is correct, it is inefficient and inflexible for practical use. The
issues of flexibility and efficiency are discussed in the following sections.

Edge handling. Two important implementation issues must be addressed when
performing convolution. The first relates to how the edges of a source image
are processed, and the second concerns the color depth of the output. Edge
handling is problematic since, when centering a kernel over every element of a
source image, the kernel will extend beyond the source image boundaries near
the image edge. This situation was noted in line 22 of Listing 6.1 and is visually
illustrated in part (a) of Figure 6.4, where a 3 × 3 kernel is centered on sample
I(0, 0) of a 6× 4 source image. Since there are no source samples corresponding
to the top row and left edge of the kernel, Equation (6.1) is ill-defined. Kernels
larger than the source image present an extreme situation where convolution
is ill-defined for all of the source samples since the kernel extends beyond the
image boundaries wherever it is placed. This situation is illustrated in part (b) of
Figure 6.4, where a 5× 5 kernel is convolved with a 5× 2 source image.

The edge problem exhibits itself as an ArrayOutOfBounds exception in List-
ing 6.1. Consider, for example, the getSample method nested within the interior
for loop on line 22. When x = 0, y = 0, j = 1, and k = 1 getSample is called as
getSample(-1,-1,0) and throws an exception since the image indices (−1,−1)
are invalid.

(a) Kernel at I(0, 0). (b) Kernel larger than the source.

Figure 6.4. Illustration of the edge handling problem.



i
i

i
i

i
i

i
i

128 6. Regional Processing Techniques

Solutions to the edge problem work by either (1) eliminating edges from the
image or (2) redefining convolution at boundary samples. Although it may seem
difficult to eliminate edges from an image, this technique is the most common
and is generally simple to implement. In order to remove edges we must treat the
source image as if it were infinitely wide and tall. This is done through some type
of image padding. The following list summarizes the most common approaches
to solving the edge handling problem.

� Convolution is redefined to produce zero when the kernel falls off of the boundary.
If the kernel extends beyond the source image when centered on a sample
I(x, y) then the output sample is set to zero. This effectively ignores the
boundary pixels and creates a black border around the convolved image.

� Convolution is redefined to produce I(x, y) when the kernel falls off the boundary.
If the kernel extends beyond the source image when centered on a sample
I(x, y) then the output sample is defined as I(x, y). This effectively copies
the input to the convolved output at the boundaries.

� Extend the source image with a color border. The source image is infinitely
extended in all directions by adding zero-valued samples so that samples
exist off the edge of the source. This is often referred to as zero padding.
Since the source image is infinite in extent, convolution is well defined at
all points within the bounds of the unpadded source.

� Extend the source image by circular indexing. The source image is infinitely
extended in all directions by tiling the source image so that samples exist
off the edge of the source. Again, since the source image is infinite in extent,
convolution is well defined at all points within the bounds of the unpadded
source. Tiling is achieved through the use of circular indexing.

� Extend the source image by reflective indexing. The source image is infinitely
extended in all directions by mirroring the source image so that samples
exist off the edge of the source. This mirroring is achieved through the use
of reflective indexing.

Zero padding, circular indexing, and reflected indexing effectively create an
infinitely large image as illustrated in Figure 6.5. Each of these techniques should
be understood to pad the source image infinitely in both the horizontal and ver-
tical dimension and thus solve the edge problem since there is no longer any
edge.

Of course creating an infinitely large data structure is not possible, so padding
must be done by writing methods that produce correct sample values if the in-
dices extend beyond the boundaries of the image that is to be padded. This can
be achieved by intercepting the getSample method of the Raster class and aug-
menting it with a customized getSample method.



i
i

i
i

i
i

i
i

6.2. Convolution 129

(a) (b) (c)

Figure 6.5. (a) Zero padding, (b) circular indexing, and (c) reflected indexing.

We will create an ImagePadder interface that represents an image that is
infinite in extent. The interface will contain a single method that will accept a
source image and a set of indices and return the sample at the specified location.
The ImagePadder interface is placed in the pixeljelly.utilities package
and is shown in Listing 6.2.

1 p u b l i c i n t e r f a c e ImagePadder {
2 p u b l i c i n t getSample ( Buf feredImage s rc , i n t col , i n t row , i n t band ) ;
3 }

Listing 6.2. ImagePadder.

We will now create three ImagePadder classes that correspond to zero
padding, tiling, and circular indexing. Listing 6.3 gives a complete implemen-
tation of an ImagePadder for zero padding an image. The getSample simply

1 p u b l i c c l a s s ZeroPadder implements ImagePadder {
2 p u b l i c i n t getSample ( Buf feredImage s rc , i n t col , i n t row , i n t band ) {
3 i f ( c o l < 0 | | c o l >= s r c . getWidth ( ) | | row < 0 | | row >= s r c . ge tHe igh t ( ) ) {
4 r e t u r n 0 ;
5 } e l s e {
6 r e t u r n s r c . g e t R a s t e r ( ) . getSample ( col , row , band ) ;
7 }
8 }
9 }

Listing 6.3. ZeroPadder.



i
i

i
i

i
i

i
i

130 6. Regional Processing Techniques

checks the row and column indices for validity and if the indices extend beyond
the image boundaries the value 0 is returned. If the row and column indices are
valid, the corresponding sample in the source image is returned.

We will next develop a class for tiling an image. When tiling an image we
need to use circular indexing such that the getSample method will treat all in-
dices as though they are repeating sequences that wrap around at the boundaries
of the source image. If, for example, sample I(W, 0) is accessed in a W × H
source image, the sample corresponding to that location will be found at I(0, 0)
of the source. Implementation is straightforward since the remainder operator
can be employed to correctly transform all indices into valid locations on the
source image. Listing 6.4 gives a complete solution for circular indexing; where
note care must be taken to properly handle negative index values, as shown in
lines 6 and 9.

1 p u b l i c c l a s s Ti ledPadder implements ImagePadder {
2 p u b l i c i n t getSample ( Buf feredImage s rc , i n t col , i n t row , i n t band ) {
3 c o l = c o l % r a s t e r . getWidth ( ) ;
4 row = row % r a s t e r . ge tHe igh t ( ) ;
5 i f ( c o l < 0) {
6 c o l += r a s t e r . getWidth ( ) ;
7 }
8 i f ( row < 0) {
9 row += r a s t e r . ge tHe igh t ( ) ;

10 }
11 r e t u r n s r c . g e t R a s t e r ( ) . getSample ( col , row , band ) ;
12 }
13 }

Listing 6.4. TiledPadder.

When using reflective indexing, the customized code for accessing a sample
should treat all indices as though they are reflected back onto the source image.
The source image is essentially treated as though surrounded by mirrors on all
four sides and hence if an index wanders off of the edge, it is reflected back onto
a valid sample of the source image. If, for example, sample I(W, 0) is accessed
in a W × H source image, the sample corresponding to that location will be
found at I(W − 1, 0) of the source. Listing 6.5 gives an implementation of re-
flective indexing. Most textbook implementations either give incorrect solutions
for reflective indexing or place constraints on the index values for which their
solution will function correctly. The implementation in Listing 6.5 is a general
and constraint-free solution for reflection.



i
i

i
i

i
i

i
i

6.2. Convolution 131

1 p u b l i c c l a s s R e f l e c t i v e P a d d e r implements ImagePadder {
2 p r i v a t e s t a t i c R e f l e c t i v e P a d d e r s i n g l e t o n = new R e f l e c t i v e P a d d e r ( ) ;
3 p r i v a t e R e f l e c t i v e P a d d e r ( ) { }
4

5 p u b l i c s t a t i c R e f l e c t i v e P a d d e r g e t I n s t a n c e ( ) {
6 r e t u r n s i n g l e t o n ;
7 }
8

9 p u b l i c i n t getSample ( Buf feredImage s rc , i n t col , i n t row , i n t band ) {
10 i f ( c o l < 0) c o l = −1 − c o l ;
11 i f ( ( c o l / s r c . getWidth ( ) ) % 2 == 0) {
12 c o l %= s r c . getWidth ( ) ;
13 } e l s e {
14 c o l = s r c . getWidth ( ) − 1 − c o l % s r c . getWidth ( ) ;
15 }
16

17 i f ( row < 0) row = −1 − row ;
18 i f ( ( row / s r c . ge tHe igh t ( ) ) % 2 == 0) {
19 row %= s r c . ge tHe igh t ( ) ;
20 } e l s e {
21 row = s r c . ge tHe igh t ( ) − 1 − row % s r c . ge tHe igh t ( ) ;
22 }
23

24 r e t u r n s r c . g e t R a s t e r ( ) . getSample ( col , row , band ) ;
25 }

Listing 6.5. ReflectivePadder.

From a software engineering perspective we note that each of the three
ImagePadder classes above is a stateless object consisting of a single method.
In addition, the source image is not modified throughout the body of the code
(i.e., it is a read-only parameter) and hence is intrinsically thread safe. These ob-
servations lead to the conclusion that a single instance of any of these classes is
sufficient for any application. Towards that end we will refactor the code to en-
force the notion that only a single instance is ever created in an application and
that instance is made available through a static accessor. This refactored design
is shown in Listing 6.6.

The singleton pattern is implemented by making the default constructor pri-
vate so that external classes are prevented from constructing a ZeroPadder. A
ZeroPadder object is created as a class-level member, as shown in line 2 and the
getInstance class method allows access to that singleton. The ImagePadder
classes provide a flexible and elegant solution to the border handling problem
and will be used to create an exceptionally adaptable convolution operation that
is presented later in this section.



i
i

i
i

i
i

i
i

132 6. Regional Processing Techniques

1 p u b l i c c l a s s ZeroPadder implements ImagePadder {
2 p r i v a t e s t a t i c ZeroPadder s i n g l e t o n = new ZeroPadder ( ) ;
3 p r i v a t e ZeroPadder ( ) { }
4

5 p u b l i c s t a t i c ZeroPadder g e t I n s t a n c e ( ) {
6 r e t u r n s i n g l e t o n ;
7 }
8

9 p u b l i c i n t getSample ( Buf feredImage s rc , i n t col , i n t row , i n t band ) {
10 i f ( c o l < 0 | | c o l >= s r c . getWidth ( ) | |
11 row < 0 | | row >= s r c . ge tHe igh t ( ) ) {
12 r e t u r n 0 ;
13 } e l s e {
14 r e t u r n s r c . g e t R a s t e r ( ) . getSample ( col , row , band ) ;
15 }
16 }
17 }

Listing 6.6. ZeroPadder as singleton.

Transfer type. The second issue relating to convolution deals with the transfer
type and color depth of the resulting image. Since kernel weights are real values1

and since there are no limits on the values of the weights, both the type and
color depth of the output image are determined by the kernel and may be vastly
different than the source.

Consider, for example, an 8-bit grayscale source image that is convolved with
a 3× 3 kernel where all coefficients have a value of 1/4 or .25. Each output sam-
ple will be real valued since multiplication of an integer (the 8-bit input sample)
and a real (the kernel coefficient) produces a real (the output sample). In addi-
tion, each output sample will fall within the range [0, 573.75] since when the ker-
nel is convolved with an all-white region of the source, the output is (9× 255)/4.
In this example the transfer type of the output image is float and the color depth
is on the order of 32 bits.

Convolving a source image I having an int transfer type and 8-bit color
depth with a real-valued kernel K produces an output image I ′ having a float
transfer type and a 32-bit color depth. This is problematic since BufferedImage
does not fully support the use of floats as a transfer type.

One solution to the color depth problem is to rescale each sample I ′(x, y)
to the same color depth as the source as convolution is performed. Another
solution is to scale the kernel such that all processed samples will fall within the
desired color depth. When a kernel contains all non-negative coefficients it can
be normalized by scaling the kernel such that the coefficients sum to 1. Any

1In mathematical terms we write that K(x, y) ∈ <∀x, y.



i
i

i
i

i
i

i
i

6.2. Convolution 133

Figure 6.6. Normalizing a kernel.

kernel having all nonnegative coefficients can be easily normalized by dividing
each kernel coefficient by the sum of the non-normalized coefficients.

Consider the non-normalized 3 × 3 kernel of Figure 6.6. The maximum
output that this kernel can produce occurs when all samples in a 3× 3 region of
the source image are maximal. For an 8-bit image the maximum possible value
will by 255× 9 = 2, 541. The kernel can be prescaled, however, by dividing each
coefficient by the sum of all coefficients, as shown in (b). The normalized kernel
will produce a maximum output sample of 255 × .111 = 255, thus preserving
the color depth.

An alternate solution to rescaling the kernel is to clamp the output to 8-
bits regardless of the kernel coefficients. This tactic is often adopted for image
processing applications since it maintains the color depth (8 bits) and transfer
type (integer values) of the source image. The responsibility of providing well-
tuned kernels then falls on the convolution clients.

6.2.2 Analysis

Convolution is a computationally expensive operation when implemented in
straightforward fashion. Consider a W × H single band image and a M × N
kernel. The source image contains W ×H samples, each of which must be con-
volved with the kernel. Since a total of M ×N multiplications and M ×N addi-
tions are required to compute the output for a single sample, the total number of
arithmetic operations required for convolution is on the order ofW×H×M×N .
The computational effort is therefore directly proportional to the size of the ker-
nel and hence large kernels should be used sparingly.

Computational efficiency can be dramatically improved if the kernel is sepa-
rable. A M × N kernel is separable if a M × 1 column vector A and a 1 × N
row vector B can be found such that K = AB. Consider, for example, the 3× 3
kernel given as

K =

 1 2 1
2 4 2
1 2 1

 .



i
i

i
i

i
i

i
i

134 6. Regional Processing Techniques

If a 3× 1 vector A and 1× 3 vector B can be found such that K = AB then K is
shown to be separable. For this example vectors A and B exist and are given by

AB =

 1
2
1

× [ 1 2 1
]

=

 1 2 1
2 4 2
1 2 1

 .
The benefit of separable kernels is obtained by realizing that convolution can

be performed by consecutive application of two separate convolutions using the
smaller vectors as kernels. Convolution with a separable kernel is formally given
in Equation (6.6).

I ⊗K = (I ⊗A)⊗B where K = AB. (6.6)

Recall that approximately W × H × M × N arithmetic operations are re-
quired to perform convolution on a W × H image and a nonseparable M × N
kernel. A 3 × 3 kernel K then requires approximately 9 ×W × H operations.
If, however, the kernel is known to be separable, the computational complexity
is significantly reduced. Since A is a 3 × 1 kernel, the first convolution requires
3×W×H arithmetic operations and sinceB is a 1×3 kernel, the second convolu-
tion requires 3×W ×H additional operations for a total of 6×W ×H arithmetic
operations. The total number of arithmetic operations required for convolving
an image with a separable kernel is on the order of (M +N)×W ×H. If should
be apparent from this formulation that the speedup gained through separability
dramatically increases with larger kernel size.

6.2.3 ConvolveOp
Java directly supports convolution through two specific classes. Kernel is a class
representing a matrix of floating point coefficients. A Kernel is constructed
by giving the width and height of the kernel along with the coefficients. The
coefficients are provided as a single array of floats that are packed in row major
order. ConvolveOp is a BufferedImageOp that is constructed by providing a
Kernel. Listing 6.7 gives a code fragment that convolves a source image with a
kernel of uniform weights.

1 f l o a t [ ] we igh t s = { . 1 f , . 1 f , . 1 f , . 1 f , . 1 f , . 1 f , . 1 f , . 1 f , . 1 f } ;
2 Kernel k e r n e l = new Kernel ( 3 , 3 , we igh t s ) ;
3 ConvolveOp op = new ConvolveOp ( k e r n e l ) ;
4 BufferedImage source = ImageIO . read (new F i l e ( "filename.png" ) ) ;
5 BufferedImage f i l t e r e d = op . f i l t e r ( source , n u l l ) ;

Listing 6.7. ConvolveOp example.



i
i

i
i

i
i

i
i

6.2. Convolution 135

ConvolveOp clients have little control over how the convolution is performed.
The ConvolveOp always clamps the destination image into an 8-bit int and does
not take advantage of separable kernels. The ConvolveOp handles boundary
conditions by either setting the edges to black (zero) or by copying the source
image pixels directly. Zero padding, circular indexing, and reflected indexing are
not supported.

We now present a customized convolution class structure that is far more ro-
bust and flexible than what Java provides. We first develop a set of kernel classes
that represent both separable and nonseparable kernels so that convolution can
be efficiently performed when the kernel is separable. In order to distinguish it
from the Kernel class that is built into Java, we define an abstract kernel class
named Kernel2D, as shown in Listing 6.8.

1 p u b l i c a b s t r a c t c l a s s Kernel2D {
2 p r i v a t e Rectang le bounds ;
3

4 p u b l i c Kernel2D ( i n t width , i n t h e i g h t ) {
5 bounds = new Rectang le (−width /2 , −h e i g h t /2 , width , h e i g h t ) ;
6 }
7

8 p u b l i c Rectang le getBounds ( ) {
9 r e t u r n bounds ;

10 }
11

12 p u b l i c i n t getWidth ( ) {
13 r e t u r n bounds . width ;
14 }
15

16 p u b l i c i n t ge tHe igh t ( ) {
17 r e t u r n bounds . h e i g h t ;
18 }
19

20 p u b l i c a b s t r a c t boolean i s S e p a r a b l e ( ) ;
21 p u b l i c a b s t r a c t f l o a t ge tVa lue ( i n t col , i n t row ) ;
22 p u b l i c a b s t r a c t Kernel2D getRowVector ( ) ;
23 p u b l i c a b s t r a c t Kernel2D ge tCo lVec to r ( ) ;
24 }

Listing 6.8. Kernel2D.

The Kernel2D class is an abstract base class where the main purpose is to
maintain and provide the bounds of the kernel object. The width and height
are stored as a Rectangle in the bounds attribute. The x and y coordinates of
the bounds are given in line 5 as −width/2 and −height/2. Kernel coefficients
are accessible through the getValue method; note that the key element is at
the center of the kernel and hence the column and row indices are allowed to



i
i

i
i

i
i

i
i

136 6. Regional Processing Techniques

be negative. If the Kernel2D is separable, it is able to provide the row and col-
umn vectors as Kernel2D objects through the getRowVector and getColVector
methods.

We now author two concrete subclasses of the Kernel2D that give meaning
to the four abstract methods of the Kernel2D class. Listing 6.9 gives the imple-
mentation for, as the name obviously implies, a kernel that is nonseparable.

1 p u b l i c c l a s s NonSeparableKernel extends Kernel2D {
2 p r i v a t e f l o a t [ ] v a l u e s ;
3

4 p u b l i c NonSeparableKernel ( i n t width , i n t he igh t , f l o a t [ ] v a l u e s ) {
5 super ( width , h e i g h t ) ;
6 t h i s . v a l u e s = v a l u e s ;
7 }
8

9 @Override
10 p u b l i c f l o a t ge tVa lue ( i n t col , i n t row ) {
11 i n t index = ( row − getBounds ( ) . y ) ∗ getWidth ( ) + ( c o l − getBounds ( ) . x ) ;
12 r e t u r n v a l u e s [ index ] ;
13 }
14

15 @Override
16 p u b l i c Kernel2D getRowVector ( ) {
17 throw new UnsupportedOperat ionExcept ion ( "Non seperable kernel." ) ;
18 }
19

20 @Override
21 p u b l i c Kernel2D ge tCo lVec to r ( ) {
22 throw new UnsupportedOperat ionExcept ion ( "Non seperable kernel." ) ;
23 }
24

25 @Override
26 p u b l i c boolean i s S e p a r a b l e ( ) {
27 r e t u r n f a l s e ;
28 }
29 }

Listing 6.9. NonSeparableKernel.

The constructor accepts the coefficients as a linearized array arranged in row
major order and having the specified width and height. The getValue method
first maps the specified indices (which may be negative) into the correct index of
the linearized array and returns the requested array element. Since objects of this
type are not separable, the getRowVector and getColVector methods simply
throw exceptions when called. Of course, the isSeparable method returns false.



i
i

i
i

i
i

i
i

6.2. Convolution 137

Implementation of a SeparableKernel class is equally straightforward, as
shown in Listing 6.10. In this listing, the constructor accepts two arrays that rep-
resent the row vector coefficients and the column vector coefficients. The kernel
is understood to have as many columns as the row vector and as many rows as
the column vector. These two floating point arrays are then transformed into
NonSeparableKernels and are provided to clients via the getRowVector and
getColVector methods. Note that the getValue method simply throws an ex-
ception since it would be computationally inefficient to compute. Development
of this method is left as an exercise for the reader.

1 p u b l i c c l a s s Separab l eKerne l extends Kernel2D {
2 p r i v a t e Kernel2D row , c o l ;
3

4 p u b l i c S e p e r a b l e K e r n e l ( f l o a t [ ] co lVec tor , f l o a t [ ] rowVector ) {
5 super ( rowVector . l eng th , c o l V e c t o r . l e n g t h ) ;
6 row = new NonSeperableKernel ( rowVector . l eng th , 1 , rowVector ) ;
7 c o l = new NonSeperableKernel ( 1 , c o l V e c t o r . l eng th , c o l V e c t o r ) ;
8 }
9

10 @Override
11 p u b l i c boolean i s S e p a r a b l e ( ) {
12 r e t u r n t r u e ;
13 }
14

15 @Override
16 p u b l i c f l o a t ge tVa lue ( i n t col , i n t row ) {
17 throw new UnsupportedOperat ionExcept ion ( "Not supported" ) ;
18 }
19

20 @Override
21 p u b l i c Kernel2D getRowVector ( ) {
22 r e t u r n row ;
23 }
24

25 @Override
26 p u b l i c Kernel2D ge tCo lVec to r ( ) {
27 r e t u r n c o l ;
28 }
29 }

Listing 6.10. SeparableKernel.

Listing 6.11 gives a partial listing of a custom convolution operation. This
class allows any type of image padding to be utilized, including customized im-
plementation of the ImagePadder. Reflective indexing is established as the de-
fault border handling mechanism, as shown in line 3 and is utilized in line 10.



i
i

i
i

i
i

i
i

138 6. Regional Processing Techniques

The most important aspect of this implementation involves leveraging sepa-
rable kernels. When a ConvolutionOp is constructed, a Kernel2D is provided.
If that kernel is separable then two separate convolutions are performed using
the row and column vectors provided by the separable kernel. Also note that
the convolveAtPoint method is made impressively concise through the use of
a RasterScanner and solid design of the Kernel2D class.

1 p u b l i c c l a s s ConvolutionOp extends NullOp {
2 p r i v a t e boolean t akeAbso lu teVa lue ;
3 p r i v a t e ImagePadder padder = R e f l e c t i v e P a d d e r . g e t I n s t a n c e ( ) ;
4 p r i v a t e Kernel2D k e r n e l ;
5

6 p u b l i c f l o a t convolveAtPoint ( Buf feredImage s rc , Locat ion pt ) {
7 f l o a t sum = 0 ;
8 f o r ( Locat ion k e r n e l P o i n t : new Ras te rScanner ( k e r n e l . getBounds ( ) ) ) {
9 sum += k e r n e l . ge tVa lue ( k e r n e l P o i n t . col , k e r n e l P o i n t . row ) ∗

10 padder . getSample ( s rc ,
11 pt . c o l − k e r n e l P o i n t . col ,
12 pt . row − k e r n e l P o i n t . row ,
13 pt . band ) ;
14 }
15 i f ( t akeAbso lu teVa lue ) sum = Math . abs ( sum ) ;
16 r e t u r n I m a g i n g U t i l i t i e s . clamp ( sum , 0 , 2 5 5 ) ;
17 }
18

19 p u b l i c ConvolutionOp ( Kernel2D k , boolean f ) {
20 s e t K e r n e l ( k ) ;
21 se tTakeAbso lu teValue ( f ) ;
22 }
23

24 p u b l i c void se tPadder ( ImagePadder p ) {
25 t h i s . padder = p ;
26 }
27

28 p u b l i c void s e t K e r n e l ( Kernel2D k ) {
29 t h i s . k e r n e l = k ;
30 }
31

32 p u b l i c void se tTakeAbso lu teValue ( boolean f ) {
33 t h i s . t akeAbso lu teVa lue = f ;
34 }
35

36 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
37 i f ( d e s t == n u l l ) {
38 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
39 }
40

41 i f ( k e r n e l . i s S e p a r a b l e ( ) ) {
42 ConvolutionOp f i r s t P a s s =
43 new ConvolutionOp ( k e r n e l . ge tCo lVec to r ( ) , t akeAbso lu teVa lue ) ;



i
i

i
i

i
i

i
i

6.3. Smoothing 139

44

45 ConvolutionOp secondPass =
46 new ConvolutionOp ( k e r n e l . getRowVector ( ) , t akeAbso lu teVa lue ) ;
47 f i r s t P a s s . s e tPadder ( padder ) ;
48 secondPass . s e tPadder ( padder ) ;
49

50 r e t u r n secondPass . f i l t e r ( f i r s t P a s s . f i l t e r ( s r c , n u l l ) , d e s t ) ;
51 } e l s e {
52 f o r ( Locat ion pt : new Ras te rScanner ( s r c , t r u e ) ) {
53 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col ,
54 pt . row ,
55 pt . band ,
56 convolveAtPoint ( s r c , p t ) ) ;
57 }
58 r e t u r n d e s t ;
59 }
60 }
61 }

Listing 6.11. ConvolutionOp (partial listing).

Note that it is often desirable to take the absolute value of the point convolu-
tions prior to clamping. Our implementation allows for this, as shown in line 15,
where the takeAbsoluteValue attribute controls when this feature is enabled.

6.3 Smoothing
Convolution can be used to achieve a variety of effects depending on the kernel.
Smoothing, or blurring, can be achieved through convolution and is often used to
reduce image noise or to prepare an image for further processing stages. Smooth-
ing is accomplished by any kernel where all of the coefficients are nonnegative.
Two important classes of smoothing filters are commonly used.

A uniform filter is based on computing the average of all neighborhood sam-
ples. Any kernel where all of the nonzero coefficients are identical is a uniform
filter. If a uniform filter contains zero-valued coefficients, these pixels are not
part of the averaging computation and exert no influence on the processed out-
put. Uniform filters are typically square and normalized such that the coeffi-
cients sum to unity. A normalized uniform filter produces a true average of all
neighborhood samples while a non-normalized uniform filter yields a scaled av-
erage. Figure 6.7 shows two uniform filters where the box filter is named from
the shape of the neighborhood (a boxed region) and the circular box filter is like-
wise named after the nearly circular shape of its neighborhood.



i
i

i
i

i
i

i
i

140 6. Regional Processing Techniques

1
25
×


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 1
21
×


0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0


(a) Box filter. (b) Circular box filter.

Figure 6.7. Normalized uniform filters.

A weighted smoothing filter uses coefficients that are larger near the cen-
ter and smaller near the periphery of the kernel. Unlike the averaging filter,
which treats all neighborhood pixels as equal with respect to their effect on the
result, a weighted averaging filter gives more importance to those samples that
are near the key element and less importance to those samples that are further
away from the key element. Weighted averaging filters are based on the premise
that samples in close proximity to each other are likely to be similar and that
this likelihood decreases with distance. When the kernel weights are viewed as a
three-dimensional surface the height of the surface at each location indicates the
weight or importance at that kernel location. Weighted blur filters will then typ-
ically appear as either a pyramid, cone, or two-dimensional Gaussian, as shown
in Figure 6.8.

The function for creating a pyramidal surface is given in Equation (6.7). In
this formulation, the height of a point in the pyramid is a function f of location
where the origin is at the very top of the pyramid and the slope of the pyramid
sides is given by α. The pyramid height decreases from zero as the distance from
the center of the pyramid increases. Since pyramids typically appear above ground,
the formula of Equation (6.7) can be rescaled by computing the surface within
some range of values and then adding an offset such that the minimum surface

-2

-1

0

1

2

X

-2

-1

0

1

2

Y

0

0.2

0.4

0.6

0.8

1

-2

-1

0

1X

-2

-1

0

1

2

X

-2

-1

0

1

2

Y

0

0.2

0.4

0.6

0.8

1

-2

-1

0

1X

-2

-1

0

1

2

X

-2

-1

0

1

2

Y

0

0.05

0.1

0.15

-2

-1

0

1

2

X

(a) Pyramid. (b) Cone. (c) Gaussian.

Figure 6.8. Weighted filters.



i
i

i
i

i
i

i
i

6.3. Smoothing 141

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

0 0 1 0 0
0 2 2 2 0
1 2 5 2 1
0 2 2 2 0
0 0 1 0 0

1 4 7 4 1
4 16 28 16 4
7 28 49 28 7
4 16 28 16 4
1 4 7 4 1

(a) Pyramid. (b) Cone. (c) Gaussian.

Table 6.1. Discretized kernels.

is at ground level or zero.

f(x, y) = −α ·max(|x|, |y|) (6.7)

The function for a conical surface is given in Equation (6.8). Again, the
height of the cone is a function f of location, where the origin is at the very top
point of the cone and the height decreases with distance from the center:

f(x, y) = −α ·
√
x2 + y2. (6.8)

The Gaussian of Figure 6.8 has significant advantages over the pyramid and
cone. While the pyramid and cone are both separable functions they are not
smooth, the pyramid at the four edges and the cone at its peak point. Gaus-
sian blurring is a preferred technique that uses the Gaussian function as a kernel
for convolution. The Gaussian kernel is separable, everywhere continuous, and
slopes to zero at the kernel boundaries. This latter feature has significant ad-
vantages that are discussed in Chapter 9. Gaussian blurring generally provides
sufficient smoothing while preserving edges better than the uniform filters or
the conic and pyramidal functions. The continuous two-dimensional Gaussian
function G is given in Equation (6.9):

G(x, y) =
1

2πσ2
e
−(x2+y2)

2σ2 . (6.9)

The surface is smooth and radially symmetric, as shown in part (c) of Fig-
ure 6.8. The function peaks at the center and drops off smoothly at the edges
thereby giving more weight to samples nearer the center and less weight to sam-
ples nearer the edges. The shape of the function, and hence the degree of smooth-
ing, is controlled by the parameter σ which is known as the standard deviation.
Larger σ values spread the weights across more surface area and reduce the cen-
ter peak while smaller σ values form a thinner but taller peak.

The pyramid, cone and Gaussian functions must be imaged in order to be
used as convolution kernels. Examples of discretizing the pyramid, cone, and
Gaussian function using integer weights are shown in Table 6.1.

A discrete Gaussian kernel is obtained by choosing an appropriate σ value
and then imaging the continuous Gaussian function over an appropriate range of



i
i

i
i

i
i

i
i

142 6. Regional Processing Techniques

coordinates. Larger standard deviations require larger kernel dimensions since
the Gaussian is spread over a larger surface.

Since the Gaussian kernel is separable there must exist vectors A and B such
thatK = AB for all Gaussian kernelsK and since the Gaussian kernel is radially
symmetric it follows that A = B. Generating a Gaussian kernel K can then
be done automatically by computing the one-dimensional vector A. Generally
speaking, σ determines the amount of smoothing and should be a user-adjustable
parameter. The size of the kernel should either be automatically derived from σ
or the user should be allowed to also control the size of the kernel independently
of the shape of the kernel.

Equation (6.10) is parameterized on both σ and α such that clients are able
to independently select both the kernel size and the kernel shape. The standard
deviation σ controls the overall shape of the Gaussian and hence the actual val-
ues within the vector while the parameter α indirectly controls the size of the
kernel that will be generated. In this formulation, W is the half-width of the
kernel and is defined as W = dασe. While any value of α can be chosen, val-
ues less than 2 tend to truncate the Gaussian function and hence do not provide
smoothness at the edges of the kernel; while values of α exceeding 5 include por-
tions of the Gaussian that are insignificant and thus unnecessarily increase the
computational load. When Gaussian blurring is supported in commercial image
processing applications, the user is generally able to control a radius that roughly
corresponds to the α value of the Gaussian function:

A(n) = 1
σ·
√

2π
e
−n2

2σ2 n ∈ [−W,−W + 1, . . . ,W − 1,W ]. (6.10)

As an example consider selecting α = 2 and σ = 1. The half-width W
is computed as W = d2 × 1e = 2. The vector A is then known to have five
elements corresponding to values of n in [−2, 2]. Applying equation (6.10) yields

-2

-1

0

1

2

X

-2

-1

0

1

2

Y

0

0.05

0.1

0.15

-2

-1

0

1

2

X

-2

-1

0

1

2
X -2

-1

0

1

2

Y

0

20

40

GHX,YL

-2

-1

0

1

2
X

1 4 7 4 1

4 16 28 16 4

7 28 49 28 7

4 16 28 16 4

1 4 7 4 1

(a) Gaussian function. (b) Imaged Gaussian. (c) Gaussian kernel.

Figure 6.9. Deriving a Gaussian kernel.



i
i

i
i

i
i

i
i

6.3. Smoothing 143

1 f l o a t [ ] g e t G a u s s i a n C o e f f i c i e n t s ( double alpha , double sigma ) {
2 i n t w = ( i n t ) Math . c e i l ( a lpha ∗ sigma ) ;
3 f l o a t r e s u l t [ ] = new f l o a t [w∗2 + 1 ] ;
4 f o r ( i n t n=0; n<=w; n++){
5 double c o e f f i c i e n e t =
6 Math . exp (−(n∗n ) / ( 2∗ sigma∗ sigma ) ) / ( Math . s q r t (2∗Math . PI )∗ sigma ) ;
7 r e s u l t [w + n ] = ( f l o a t ) c o e f f i c i e n t ;
8 r e s u l t [w − n ] = ( f l o a t ) c o e f f i c i e n t ;
9 }

10 r e t u r n r e s u l t ;
11 }

Listing 6.12. Java method for computing a Gaussian kernel.

the 5 element vector

{A(−2), A(−1), A(0), A(1), A(2)} = {0.054, 0.242, 0.399, 0.242, 0.054}.

If integer-valued coefficients are desired, the vector can be rescaled by divid-
ing each term by min(A) and rounding. For this example, each of the elements is
rounded after having been divided by .054 to obtain the approximation given by

A = {1, 4, 7, 4, 1}.

A visual illustration of the derivation of a Gaussian kernel is shown in Fig-
ure 6.9, where the surface corresponding to σ = 1 and α = 2 is imaged by
sampling and quantizing as shown in (b). The resulting non-normalized 5 × 5
integer-valued kernel is shown in (c).

(a) Source image. (b) 17× 17 Box. (c) 17× 17 Gaussian.

Figure 6.10. Smoothing examples.



i
i

i
i

i
i

i
i

144 6. Regional Processing Techniques

Listing 6.12 gives a Java function for computing the row vector A for use in a
separable Gaussian kernel. Note that since the vector is symmetric about its cen-
ter; only one-half of the values need to be computed but are stored in the array
twice as indicated by lines 7 and 8. No attempt is made in this code to normal-
ize the resulting array. While development of a complete class that implements
Gaussian filtering is left as an exercise, the class is very simple to implement as
a subclass of the previously defined ConvolutionOp of Listing 6.11.

Figure 6.10 shows a comparison of box filtering with Gaussian smoothing.
Gaussian smoothing, as compared to box filtering, generally provides sufficient
blurring while simultaneously preserving important edge details. While not evi-
dent from these visual examples, the neighborhood size determines the amount
of smoothing performed.

6.4 Edges
An edge is a rapid transition between dark and light areas of an image. The goal
of edge detection is to identify locations in an image where such transitions are
particularly strong: a large change in light intensity over a short spatial distance.
Strong edges are likely to indicate significant visual features of an image such
as boundaries around scene elements, changes in texture, and changes in scene
depth. While blurring reduces the strength of edges in an image, sharpening is
used to increase the strength of edges in an image. Sharpening and edge detection
are common techniques in image processing and edge detection is an especially
active research area in computer vision.

Edge detection techniques are based on the derivative(s) of an image. The
derivative of a one dimensional function f(x) is denoted as f ′(x) and is a mea-
sure of the amount of change in function f that occurs around location x. Fig-
ure 6.11 illustrates how derivatives can be used to identify image edges. The
grayscale source image of part (a) has two edges of moderate strength: the left-
most edge rising from black to white while the rightmost edge falls from white
to black. A single row of this image is plotted in (b), where the horizontal axis
corresponds to the column index and the vertical axis corresponds to the sam-
ple’s grayscale value. This plot can be understood as a one-dimensional function
where light varies with distance from the leftmost column of the image.

The row profile shows a large transition in intensity (black to white) occurring
over a moderate spatial distance of approximately 30 pixels (the transition begins
near column 40 and levels off near column 70) and thus signals the presence of
a rising edge. An identically large transition in intensity (white to black) occurs
over a moderate spatial distance of approximately 30 pixels (the transition begins
near column 140 and levels off near column 170) and thus signals a descending
edge. The derivative is a measure of change at each location of the row plot and



i
i

i
i

i
i

i
i

6.4. Edges 145

(a)

0 50 100 150 200
Column Index

0

50

100

150

200

250

Sa
m

pl
e

V
al

ue

0 50 100 150 200
Column Index

�10

�5

0

5

10

D
er

iv
at

iv
e

(b) (c)

Figure 6.11. (a) A grayscale image with two edges, (b) row profile, and (c) first derivative.

is shown in (c). There is no change at all in the black region at the beginning
and end of the row profile nor is there any change in the white central portion of
the row profile and hence the derivative is zero at those locations. In the areas of
transition, however, the row profile is changing and the change is maximal at the
center of both the rising and falling edges. Local extrema (both minimum and
maximum values) of the derivative indicate the presence of an edge in the source
image and the sign of the derivative indicates whether the edge is ascending or
descending.

Images are, of course, functions of two variables rather than one, as shown in
the example of Figure 6.11. The derivative of a multi-variate function is known
as the gradient and is a measure of the change that occurs in each dimension of
the function. The gradient of a continuous 2D function I, denoted by the symbol
∇, is given by Equation (6.13), where δI(x, y)/δx denotes the derivative of func-
tion I with respect to variable x and represents the amount of horizontal change
in function I at location (x, y). The second term of the derivate, δI(x, y)/δy,
represents the amount of vertical change in I at location (x, y). It is impor-
tant to note that the gradient at a single point consists of two elements. In other
words, the gradient at a specific location is a two-dimensional vector, which



i
i

i
i

i
i

i
i

146 6. Regional Processing Techniques

implies that the gradient of an entire image is a table of such vectors otherwise
known as a vector field:

∇I(x, y) =
(

δI(x, y)/δx
δI(x, y)/δy

)
. (6.13)

While the gradient of Equation (6.13) is defined in terms of a Cartesian space,
it is often useful to describe the gradient using a polar coordinate system. A
two-dimensional vector defined in polar coordinates is a pair (r,Θ), where r is
the radius or magnitude of the vector and Θ is the orientation of the vector—the
direction in which the vector is pointing. Representation of the gradient in polar
coordinates is convenient since the strength and the orientation of the gradient
directly convey important information about the content of an image.

Conversion between Cartesian and polar coordinates is straightforward. For
conciseness we define dx = δI(x, y)/δx and dy = δI(x, y)/δy. Given this
abbreviation, the gradient can be converted into polar coordinates using Equa-
tion (6.14), where the inverse tangent function accepts two arguments and is thus
able to discriminate among all four quadrants:

r =
√
dx2 + dy2.

Θ = tan−1(dy, dx). (6.14)

In more intuitive terms, the gradient is a measure of the slope, or grade,2 at
all points within the image. Consider a hiker who seeks to climb a hill by tak-
ing the most efficient path upwards. When standing at any point on the hill,
the gradient tells the hiker in which direction to take his next step (this is the
Θ component) and how much higher that step will take him (this is the r, or
magnitude, component). The gradient at a particular location is therefore a two-
dimensional vector that points toward the direction of steepest ascent where the
length (or magnitude) of the vector indicates the amount of change in the direc-
tion of steepest ascent. The orientation of the gradient is therefore perpendicular
to any edge that may be present.

Figure 6.12 gives a visual example of an image gradient. While the gradient
is defined at all points in the image the figure shows, for visual clarity, only a few
of the most significant gradient vectors. Each individual vector within the gradi-
ent field points in the direction of steepest ascent while the length of the vector
indicates the magnitude or grade of the image at that particular point. The most
significant vectors are those that indicate the presence of a strong edge or, in other
words, those vectors having the largest magnitudes. Since only the strongest gra-
dients are portrayed in this figure they are all about the same strength. The
weaker gradients, had they been included, would have been much shorter in
length.

2Steep Grade Ahead is a common road sign in the U.S. warning of steep climbs or descents.



i
i

i
i

i
i

i
i

6.4. Edges 147

Figure 6.12. Image gradient (partial).

6.4.1 Digital Approximation of Gradient

Since digital images are not continuous but discrete, the gradient must be approx-
imated rather than analytically derived. Numerous methods for approximating
the gradient of a discrete data set are in common use, but a simple method is
illustrated by Figure 6.13. Consider a 3 × 3 region of an image having samples
centered at Sc, where the subscript stands for the center, and the surrounding
samples are positioned relative to the center as either up/down or left/right as
indicated by the subscripts. Given this information, we would like to approxi-
mate the amount of change occurring in the horizontal and vertical directions at
location (x, y) of image I.

The amount of change in the horizontal direction can be approximated by
the difference between Sr and Sl, while the amount of change in the vertical

X-1 X X+1
Y-1 Sul Su Sur
Y Sl Sc Sr

Y+1 Sdl Sd Sdr

Figure 6.13. A 3× 3 region centered on sample Sc.



i
i

i
i

i
i

i
i

148 6. Regional Processing Techniques

direction can be approximated by the difference between Sd and Su. In other
words, the gradient can be approximated as

∇I(x, y) =
(

δI(x, y)/δx
δI(x, y)/δy

)
'
(

Sr − Sl
Sd − Su

)
. (6.15)

Equation (6.15) approximates the gradient at a single location by computing
the change in intensity that occurs both horizontally and vertically across the
center sample. When the gradient is approximated in this fashion, we make the
connection that the gradient of the image can be computed via convolution. The
kernel corresponding to the horizontal gradient is given by Gx while the vertical
kernel is given by Gy in Equation (6.17):

Gx = [1, 0,−1] Gy =

 1
0
−1

 ; (6.16)

such that

∇I =
(

δI/δx
δI/δy

)
'
(
I ⊗Gx
I ⊗Gy

)
. (6.17)

Figure 6.14 gives a numeric example of how to compute and interpret an
image gradient. In this example a grayscale source image (a) has a moder-
ately strong edge extending from the upper left to the lower right of the image.
The partial derivatives are computed via convolution by application of Equa-
tion (6.17) using the approximations of Equation (6.15) for the horizontal and
vertical derivatives. The approximation to the horizontal derivative is given in
(b) and the approximation to the vertical derivative is given in (c). The center
sample has a gradient of

∇I(x, y) =
(

74
−110

)
;

or a change of 74 units in the horizontal dimension and of -110 units in the
vertical dimension. This gradient is shown in (d). The entire gradient field is
shown in (e) and the magnitude of the gradient is shown in (f), where it has been
rounded to the nearest integer.

When computing the gradient, the transfer type and color depth of the result-
ing image presents some difficulty. Since the kernel contains negative weights,
the output values for both δI/δx and δI/δy are able to range over the interval
[−255, 255] for an 8-bit source image which implies that the destination has a 9-
bit depth. Depending upon the application, the output image is typically either
rescaled back into an 8-bit image or the sign of the output image samples is ig-
nored. If the output image is rescaled to 8 bits then strong negative edges will be



i
i

i
i

i
i

i
i

6.4. Edges 149

128

76

66

47

41

187

121

91

81

59

210

193

110

83

63

238

225

165

119

75

251

219

205

157

125

117

44

36

104

74

38

26

95

74

−96

−40

−32

−100

−110

−47

−73

−106

−90

(a) Source Image. (b) δI/δx. (c) δI/δy.

74

−
1

1
0

1
3
3

151

59

48

144

133

60

77

142

117

(d) Center sample gradient. (e) Gradient. (f) Magnitude of gradient.

Figure 6.14. Numeric example of an image gradient.

depicted as black, strong positive edges will be depicted as white, and homoge-
neous regions will be depicted as middle gray. If the absolute value of the output
image is taken, then all strong edges will be depicted as white and homogeneous
regions will be depicted as black.

Prewitt operator. The gradient approximation technique of Equation (6.15) is
susceptible to image noise since a single noisy or corrupted sample will exert a
large influence in the gradient at a particular location. In order to increase the
noise immunity, the differences over a 3 × 3 region can be averaged together.
The Prewitt operators are convolution kernels that suppress noise by averaging
the differences in the horizontal and vertical directions. The Prewitt kernels are
given as

Gx = 1
3

 1 0 −1
1 0 −1
1 0 −1

 , Gy = 1
3

 1 1 1
0 0 0
−1 −1 −1

 .
Figure 6.15 shows an image that is convolved with each of these two kernels

and rescaled into an 8-bit image. Black regions show strong negative edges while
white regions indicate strong positive edges and mid-gray regions represent ho-
mogeneous areas having relatively small change in the source image.



i
i

i
i

i
i

i
i

150 6. Regional Processing Techniques

(a) Source image I. (b) I ⊗Gx. (c) I ⊗Gy.

Figure 6.15. Prewitt operators.

Sobel operator. The Sobel operators are similar to the Prewitt operators since
they average the differences and hence suppress noise. The Sobel operators im-
prove edge detection, however, by placing greater emphasis on the difference
spanning the key element. The Sobel operators are a pair of 3 × 3 convolution
kernels given as

Gx =
1
4

 −1 0 +1
−2 0 +2
−1 0 +1

 , Gy =
1
4

 +1 +2 +1
0 0 0
−1 −2 −1

 .
Roberts cross gradient operators. The Roberts cross operators are two 2 × 2
kernels. These operators are different than the Prewitt and Sobel operators since
they are sensitive to differences along diagonal axes of the source image rather
than the horizontal and vertical axes. The Roberts cross operators are given by

G1 =
[

+1 0
0 −1

]
, G2 =

[
0 +1
−1 0

]
,

where the key element is given at the upper-left of each mask.
The Roberts operators, when convolved with an image, measure the amount

of change on the diagonals of an image rather than the horizontal and vertical
change. Since the Roberts gradient utilizes a smaller kernel, it is more compu-
tationally efficient that the Prewitt or Sobel gradients and hence is useful when
computational speed is an important factor. Figure 6.16 illustrates the Roberts
operators. Note how the diagonal hairpiece in the right central portion of the
image is nearly invisible to the G1 kernel while the G2 kernel is barely sensitive
to the diagonal hairpiece in the left central portion of the source.



i
i

i
i

i
i

i
i

6.4. Edges 151

(a) Source image I. (b) I ⊗G1. (c) I ⊗G2.

Figure 6.16. A source image is convolved with the Roberts operators G1 and G2.

6.4.2 Edge Detection

Edge detection algorithms typically key on the magnitude of the gradient (MoG)
since larger magnitudes directly correspond to greater probability of an edge.
Computing the MoG is a fundamental building block in image processing. The
magnitude of the gradient is denoted as |∇I| and has already been defined in
Equation (6.14) for a single point within an image. The MoG of an entire image
is concisely given by Equation (6.18):

|∇I| =
√

(I ⊗Gx)2 + (I ⊗Gy)2. (6.18)

1 p u b l i c c l a s s MagnitudeOfGradientOp extends NullOp {
2 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
3 NonSeperableKernel rowV = NonSeperableKernel ( 3 , 1 , new f l o a t []{−1 , 0 , 1} ) ;
4 NonSeperableKernel colV = NonSeperableKernel ( 1 , 3 , new f l o a t []{−1 , 0 , 1} ) ;
5

6 ConvolutionOp hor izonta lOp = new ConvolutionOp ( rowV , t r u e ) ;
7 ConvolutionOp v e r t i c a l O p = new ConvolutionOp ( colV , t r u e ) ;
8

9 BufferedImage vGradient = v e r t i c a l O p . f i l t e r ( s r c , n u l l ) ;
10 BufferedImage hGradient = hor izonta lOp . f i l t e r ( s r c , n u l l ) ;
11 r e t u r n new AddBinaryOp ( vGradient ) . f i l t e r ( hGradient , n u l l ) ;
12 }
13 }

Listing 6.13. MagnitudeOfGradientOp.



i
i

i
i

i
i

i
i

152 6. Regional Processing Techniques

Calculating the square root is a computationally expensive function and
hence the magnitude is itself often approximated by the more efficient and sim-
pler technique of Equation (6.19):

|∇I| = |I ⊗Gx|+ |I ⊗Gy|. (6.19)

Equation (6.19) yields a surprisingly concise and efficient method for com-
puting the MoG. In this equation, the MoG is given in terms of convolution and
image addition. Listing 6.13 shows a complete implementation for computing
the MoG of a source image. In this implementation, the source image is first
convolved with the horizontal and vertical gradient kernels, as shown in lines
3–10, taking the absolute value in the process. Finally, the two gradients are
added and the result returned.

A very simple approach to edge detection is to compute the MoG and choose
a threshold value such that all magnitudes greater than the threshold are desig-
nated as an edge boundary. Figure 6.17 gives an example where the magnitude
of the gradient is shown as an image. This image is thresholded on the intensity
channel to produce a binary image where white pixels indicate the presence of
an edge and black pixels indicate no edge. While thresholding is easily accom-
plished, choosing the correct threshold is problematic. If the threshold is too
high, significant edges will not be detected and if the threshold is set too low, the
technique will be susceptible to image noise and spurious edges will be identified.

Edge detection is an active field of research in computer vision and image
processing and many different techniques have been developed. Most of these
techniques are either first or second-derivative-based. The first derivative tech-
niques generally compute the MoG and include some consideration of the orien-
tation as well. The second derivative-based techniques search for zero-crossings
of the second derivative of an image. Gaussian noise reduction is usually em-
ployed as a preprocessing step in order to improve the noise immunity. Edge
detection techniques mainly differ in the types of smoothing filters that are ap-
plied and the way the edge strengths are computed. Since many edge detection
methods rely on the image gradients, they also differ in the types of filters used
for computing gradient estimates. The Canny technique is perhaps the most ef-
fective edge-detection filter and is a first-order derivative technique that factors
in the orientation of an image as well as the magnitude of the gradient.

The magnitude of the gradient can be inverted to construct an edge map.
An edge map simply shows edges in an image as dark lines on a generally light
background. Figure 6.18 gives an example of various edge maps for the Roberts
and Prewitt operators.

The magnitude of gradient can be used to create interesting artistic filters.
To create image outlines, for example, an edge map can be generated from a
source image and then combined with the original source by using a minimum
binary op or even by adding. A glow filter results from combining a source image



i
i

i
i

i
i

i
i

6.4. Edges 153

(a) Source image. (b) Magnitude of gradient.

(c) Edge map. (d) Thresholded MOG.

Figure 6.17. Edge detection with MoG.



i
i

i
i

i
i

i
i

154 6. Regional Processing Techniques

(a) Roberts MoG. (c) Roberts G1. (e) Roberts G2.

(b) Prewitt MoG. (d) Prewitt Gx. (f) Prewitt Gy.

Figure 6.18. Edge maps using Prewitt and Roberts kernels.

(a) Source image. (b) Texture. (b) Glow.

Figure 6.19. Artistic effects using edges.



i
i

i
i

i
i

i
i

6.5. Edge Enhancement 155

with its MoG via the maximum binary op. In either case, the edge map or the
MoG can be blurred prior to recombining with the source such that the degree
of blurring controls the strength of the corresponding artistic effect. Figure 6.19
gives an example of this technique.

6.5 Edge Enhancement
Edge enhancement, often referred to as sharpening, is a way of boosting the high
frequency components of an image rather than, as edge detection techniques do,
suppressing the low frequency components. Edge enhancement is often used to
post-process images that have been acquired by scanning a document or painting.

Just as edge detection can be expressed as convolution, edge enhancement
can also be achieved through convolution using an appropriately formed kernel.
The following discussion shows how a suitable kernel can be obtained for sharp-
ening. An image I is comprised of low frequency components, Ilow and high
frequency components Ihigh:

I = Ilow + Ihigh. (6.20)

Since edge enhancement seeks to increase the high frequency components,
an edge enhanced image Isharp can be formed by adding a portion of the high
frequency component Ihigh to the source as in

Isharp = I + αIhigh, (6.21)

where the parameter α is a non-negative scaling factor controlling the overall
degree of sharpening. Equation (6.20) can be solved for Ihigh and substituted
into Equation (6.21) to obtain

Isharp = I + αIhigh

= I + α(I − Ilow)
= (1 + α)I − αIlow. (6.22)

The definition of sharpening given in Equation (6.22) will allow us to con-
struct an appropriate convolution kernel. Consider a 3 × 3 convolution ker-
nel Kidentity such that I = I ⊗ Kidentity and a 3 × 3 kernel Klow such that
Ilow = I ⊗Klow. Equation (6.22) can then be expressed in terms of convolution
with a sharpening kernel.

Isharp = (1 + α)I − αIlow
= (1 + α)(I ⊗Kidentity)− α(I ⊗Klow)
= I ⊗ (1 + α)Kidentity − I ⊗ (αKlow)
= I ⊗ ((1 + α)Kidentity − αKlow). (6.23)



i
i

i
i

i
i

i
i

156 6. Regional Processing Techniques

Equation (6.23) defines a sharpening kernel composed by subtracting a prop-
erly scaled blurring kernel from a scaled identity kernel. For the 3 × 3 case,
the identity kernel contains zero-valued coefficients except for the center, which
is unity. As previously described, a uniform low-pass kernel contains uniform
positive coefficients. These kernels are shown below in normalized form:

Kidentity =
1
9
×

 0 0 0
0 9 0
0 0 0

 ,
Klow =

1
9
×

 1 1 1
1 1 1
1 1 1

 ,
(1 + α)Kidentity − αKlow =

1
9
×

 −α −α −α
−α (9 + 8α) −α
−α −α −α

 .
The parameter α can be considered a gain setting that controls how much of

the source image is passed through to the sharpened image. When α = 0 no
additional high frequency content is passed through to the output such that the
result is the identity kernel. Figure 6.20 gives an example of edge enhancement
showing two different gain values. This image is from a digitally scanned ren-
dition of an oil painting by the renowned artist Eugene Delacroix. The image
edges are enhanced through application of the sharpening filter as are the defects
in the canvas. Higher scaling factors correspond to stronger edges in the output.

(a) Source image. (b) α = .5. (c) α = 2.0.

Figure 6.20. Image sharpening.



i
i

i
i

i
i

i
i

6.6. Rank Filters 157

6.6 Rank Filters
Rank filtering is a nonlinear process that is based on a statistical analysis of neigh-
borhood samples. Rank filtering is typically used, like image blurring, as a pre-
processing step to reduce image noise in a multistage processing pipeline. The
central idea in rank filtering is to make a list of all samples within the neigh-
borhood and sort them in ascending order. The term rank means just this, an
ordering of sample values. The rank filter will then output the sample having the
desired rank.

The most common rank filter is the median filter where the output is the item
having the median rank; the middle item in the sorted list of samples. For an
M × N rectangular neighborhood there are MN samples in the neighborhood.
When sorted, these samples have indices [0,MN − 1] and the median sample
has an index, or rank, of bMN/2c if we assume that that both M and N are odd.

Although median filtering and averaging via a uniform box convolution ap-
pear similar, they are actually very different. When computing the average value
of a data set, every sample affects the resulting average. Samples that are ex-
tremely different than the median, and hence likely to be either an edge or noise,
affect the result. When computing the median of a data set, although there is
a sense in which all samples affect the output, it is also true that rogue samples
have no real effect on the median. Median filtering is hence superior to averag-
ing with respect to the task of eliminating noisy pixels while preserving edges or
other fine image details.

Salt-and-pepper noise occurs when samples of an image are incorrectly set
to either their maximum (salt) or minimum (pepper) values. Median filters are
exceptionally good at reducing this type of noise since they do not smear the
noise across the image as blurring filters do. Salt and pepper noise is common in
imaging systems that use CMOS or CCD based image sensors. Since an image
sensor is composed of millions of photo-sensors packaged within a small form
factor, nearly every image sensor has a few defective photosites that continuously
output either black or white regardless of the scene being imaged. Imaging sys-
tems often correct for such hardware defects by applying a median filter to the
raw image data prior to shipping the image to the end user.

Figure 6.21 shows a numeric example of median filtering and illustrates how
noisy samples are affected. In this example a 3× 3 rectangular neighborhood is
used to filter the sample in the center of the region that is most likely noise since
it deviates significantly from the surrounding values. The nine samples falling
within this region when sorted in ascending order are given as
{50, 52, 53, 55, 59, 60, 61, 65, 253}. While the average of these samples is 78.6,
the element having median rank is 59 which serves as the output as shown by
the center pixel of part (b). In this instance, the value 59 is far more represen-
tative of the 3 × 3 region than the average value of 78.6 and hence is a better
replacement for the noisy value than the average. When the entire source image



i
i

i
i

i
i

i
i

158 6. Regional Processing Techniques

(a) Source image. (b) Median filtered.

Figure 6.21. Numeric example of median filtering.

is median filtered, the process is repeated for every source sample to obtain the
image of part (b).

Figure 6.22 gives an example of using median filtering to correct for impulse
noise in a source image. In this example 60% of an images samples were delib-
erately set to either black or white in a randomly determined fashion in order
to simulate a massive degree of salt-and-pepper noise. After median filtering the
noise is significantly reduced and the image appears visually clean as seen in
part (b). If Gaussian blurring is used to eliminate or reduce the noise, the result
is to simply smear the noise across larger subregions of the image and produce
the effect shown in part (c).

Unlike most other regional processing techniques, rank filtering often uses
non-rectangular regions where the most common of such regions are in the
shape of either a plus (+) or a cross (x). A rectangular mask is used to spec-
ify non-rectangular regions where certain elements in the region are marked as

(a) Noisy source image. (b) Median filtered. (c) Gaussian smoothed.

Figure 6.22. Median filtering.



i
i

i
i

i
i

i
i

6.6. Rank Filters 159

(a) Square. (b) An x mask. (c) A + mask.

Figure 6.23. Rank filtering masks for a 3× 3 square, 3× 3 x, and 3× 3 +.

being included and others excluded from the region. Figure 6.23 gives examples
of masks where the black entries signify that corresponding source samples are
not included in the region while white entries denote source samples that are in-
cluded in the region. If the black entries are understood as opaque blocks and the
white entries as transparent blocks then the neighborhood defined by the mask
includes all samples that visible through the transparent blocks of the mask.

Other rank-based filters include the minimum, maximum, and range filters.
As indicated by their names, the minimum filter outputs the minimum value
of all neighborhood samples, the maximum filter outputs the maximum value,
and the range filter outputs the difference (the range) between the maximum and
minimum values.

6.6.1 Implementation
A general-purpose rank filter can be written that also supports non-rectangular
regions. Such a filter can serve as either a minimum, median, or maximum filter
or a filter of any rank depending on the parameters provided when the filter is
applied. It should be noted that since rank filtering is nonlinear it cannot be
implemented using convolution.

In order to support arbitrarily shaped regions, a Mask class is developed. List-
ing 6.14 implements a mask where a linearized array of booleans in row-major
layout is used to represent an M × N rectangular region of an image. In this
listing, a true value indicates inclusion in the neighborhood and a false value
indicates that the corresponding sample is not included in the neighborhood.
The key element (the center element) is given by coordinate (0, 0) where both
M and N are generally required to be odd valued in order for the mask to have
a properly centered key element. Elements of the mask are accessed via the
isIncluded method, which computes whether an element is within the region
or not. The mask is constructed in similar fashion to that of the Kernel class
where the boolean values are given as a linear array and the dimensions of the
region are given as integer-valued parameters.



i
i

i
i

i
i

i
i

160 6. Regional Processing Techniques

1 p u b l i c c l a s s Mask {
2 p r i v a t e boolean [ ] mask ;
3 p r i v a t e i n t width , h e i g h t ;
4

5 p u b l i c Mask ( i n t width , i n t he igh t , boolean [ ] f l a g s ) {
6 t h i s . width = width ;
7 t h i s . h e i g h t = h e i g h t ;
8 mask = f l a g s . c lone ( ) ;
9 }

10

11 p u b l i c i n t getWidth ( ) { r e t u r n width ; }
12

13 p u b l i c i n t ge tHe igh t ( ) { r e t u r n h e i g h t ; }
14

15 // element ( 0 , 0 ) i s the c e n t e r e lement
16 // and hence i n d i c e s x and y may be n e g a t i v e
17 p u b l i c boolean i s I n c l u d e d ( i n t x , i n t y ) {
18 r e t u r n mask [ ( y+h e i g h t /2)∗width +(x+width / 2 ) ] ;
19 }
20

21 p u b l i c i n t getSample ( i n t x , i n t y ) {
22 r e t u r n mask [ ( y+h e i g h t /2)∗width +(x+width / 2 ) ] ? 255 : 0 ;
23 }
24

25 p u b l i c i n t g e t S i z e ( ) {
26 i n t count = 0 ;
27 f o r ( i n t i =0; i<mask . l e n g t h ; i ++) {
28 i f ( mask [ i ] ) count ++;
29 }
30 r e t u r n count ;
31 }
32

33 p u b l i c Rectang le getBounds ( ) {
34 r e t u r n new Rectang le (−width /2 , −h e i g h t /2 , width , h e i g h t ) ;
35 }
36

37 p u b l i c Mask i n v e r t ( ) {
38 Mask r e s u l t = new Mask ( width , he igh t , mask ) ;
39 f o r ( i n t i =0; i<mask . l e n g t h ; i ++){
40 r e s u l t . mask [ i ] = ! mask [ i ] ;
41 }
42 r e t u r n r e s u l t ;
43 }
44 }

Listing 6.14. Mask.

It is often necessary to know how many samples are actually included in
the mask and hence the getSize method is provided as a way of computing
the number of true values within the region. When using a Mask for rank



i
i

i
i

i
i

i
i

6.6. Rank Filters 161

1 p u b l i c c l a s s RankOp extends NullOp {
2 p r i v a t e Mask mask ;
3 p r i v a t e i n t rank ;
4 p r i v a t e ImagePadder padder = ExtendedBorderPadder . g e t I n s t a n c e ( ) ;
5

6 p u b l i c RankOp ( Mask m, i n t r ) {
7 i f ( r >= m. g e t S i z e ( ) | | r < 0) {
8 throw new I l l ega lArgumentExcep t ion ( "invalid rank: " + r ) ;
9 }

10 rank = r ;
11 mask = m;
12 }
13

14 p u b l i c void setRank ( i n t r ) {
15 rank = r ;
16 }
17

18 p u b l i c void setMask ( Mask m) {
19 mask = m;
20 }
21

22 p r i v a t e i n t getSampleOfRank ( Buf feredImage s rc , Locat ion pt , i n t [ ] l i s t ) {
23 i n t i = 0 ;
24 f o r ( Locat ion mPt : new Ras te rScanner ( mask . getBounds ( ) ) ) {
25 i f ( mask . i s I n c l u d e d ( mPt . col , mPt . row ) ) {
26 l i s t [ i ++] = padder . getSample ( s r c ,
27 pt . c o l + mPt . col ,
28 pt . row + mPt . row ,
29 pt . band ) ;
30 }
31 }
32

33 Arrays . s o r t ( l i s t ) ;
34 r e t u r n l i s t [ rank ] ;
35 }
36

37 @Override
38 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
39 i f ( d e s t == n u l l ) {
40 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
41 }
42 i n t [ ] l i s t = new i n t [ mask . g e t S i z e ( ) ] ;
43 f o r ( Locat ion pt : new Ras te rScanner ( s rc , t r u e ) ) {
44 i n t output = getSampleOfRank ( s rc , pt , l i s t ) ;
45 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , p t . band , output ) ;
46 }
47 r e t u r n d e s t ;
48 }
49 }

Listing 6.15. General purpose rank filter.



i
i

i
i

i
i

i
i

162 6. Regional Processing Techniques

filtering, the rank must then be in the range [0, getMaskSize()-1]. The invert
method creates a new mask that is the logical inverse of the active object.

Listing 6.15 is a complete implementation of a general-purpose rank filter
that uses a Mask to determine the region’s shape. A RankOp is constructed by
passing in a Mask along with a rank value. The class allows clients to change both
the rank and the mask via the setRank method and setMask methods, respec-
tively. The filter method corresponds to the maximum filter when rank=mask.
getMaskSize()-1, to the median filter when rank=mask.getMaskSize()/2,
and to the minimum filter when rank=0.

The filter method iterates over every sample of the source and applies rank
filtering for each sample via the getSampleOfRank method. The getSample
OfRank method applies the mask to a single sample within the source image
where the sample is specified with a Location object. The method also accepts
an array name list. This array does not contain any information but is simply a
reusable data structure that is created once by the client rather than recreating an
array with every call to getSampleOfRank. The array is created on line 42 and
simply passed into the function on line 44. For each sample in the surrounding
region, the mask is queried to determine whether or not the sample is included,

(a) Source image. (b) 7× 7 median.

(c) 7× 7 maximum. (d) 7× 7 minimum.

Figure 6.24. Rank filtering examples.



i
i

i
i

i
i

i
i

6.6. Rank Filters 163

as shown in line 25. If it is, then the sample is added to the list, which is finally
sorted via the standard Arrays class and the proper element is returned.

Figure 6.24 gives examples of rank filtering a source image using various
ranks. The source image of (a) is filtered with a 7× 7 median filter in (b), a 7× 7
maximum rank filter in (c), and a 7× 7 minimum filter in (d).

6.6.2 Analysis

The general purpose rank filter of Listing 6.15 is a computationally slow process
since it requires sorting a list for every sample of a source image. For ease of
analysis assume that the neighborhood is an N ×N rectangular region and that
source image I is aW ×H grayscale image. For each sample of the source image
a list of size N2 must be created and then sorted. If we assume that sorting itself,
as given by the Arrays.sort method call of Listing 6.15, takes time proportional
to N2 log(N2) the brute-force approach to rank filtering takes time proportional
to WH(N2 log(N2)). This implementation is impractically slow since it grows
quadratically with respect to the size of the mask.

Significant savings can be obtained by writing specialized minimum and
maximum filters rather than using the generalized rank filter. Finding the mini-
mum or maximum value of a list does not require sorting; a linear scan through
the region is sufficient. Modifying the operation accordingly will result in a run-
time proportional to WHN2.

Even median filtering can be made more efficient by approximating the me-
dian computation. If the region is a square N × N mask, an approximate
median can be computed by by successive applications of two linear median
filters. When finding the approximate median, a source image I is first median
filtered using a N × 1 mask to produce the median value of each row within the
neighborhood. This intermediate result is then median filtered using a 1 × N
mask to produce an approximate median filtered result. This approximation is

(a) Source image. (b) Row approximation. (c) Final approximation.

Figure 6.25. Numeric example of fast (approximate) median filtering.



i
i

i
i

i
i

i
i

164 6. Regional Processing Techniques

illustrated in Figure 6.25, where a 5 × 5 source image is median filtered using a
3×3 mask. An intermediate image is constructed by median filtering with a 3×1
mask to create the intermediate result shown in (b). This intermediate image is
then median filtered using a 1× 3 mask to generate the final approximation.

The use of separate masks when performing approximate median filtering is
directly analogous to the use of separable kernels when performing convolution
and results in a similar increase in performance. Exact median filtering can be
performed more efficiently, however, by a more sophisticated approach that uses
radix sort in conjunction with the fact that adjacent regions overlap to a large
extent and hence the computation of their respective medians can be shared be-
tween the regions [Huang et al. 79] [Ataman et al. 80].

The algorithm of Listing 6.16 show how fast median filtering can be done
using a histogram to sort the neighborhood samples. A raster scan is performed
and the first sample in each row essentially resets the process. The histogram of
the first sample of each row is created and then used to find the median value.
For a squareN×N region, the median value is given by the smallestm such that∑m
i=0H(i) >= dN2/2e. In other words, the median is the first histogram index

for which the sum of the values to the index reaches dN2/2e. Given the regional
histogram, the median can be found by finding the running sum of histogram
elements until the sum exceeds the specified threshold. While computation of
the median value for the first column in each row is not efficient, each subsequent
sample in the row can be determined with great efficiency by the careful updating
of the histogram.

For every subsequent sample in the row the histogram is updated by subtract-
ing one count for every sample leaving the region and adding a count for every

1 Image a lg o r i th m fas tMedian ( Image s rc , i n t N) {
2 DEST = d e s t i n a t i o n image
3

4 f o r every row R of the s r c ( top−to−bottom )
5 Se t H to be the his togram of the NxN r e g i o n of f i r s t sample
6 f i n d the median va lue MED by examining H
7 w r i t e MED to DEST
8 f o r every remaining column C of R ( l e f t−to−r i g h t )
9 Update H by removing the va lue in the l e f t most column

10 of the p r e v i o u s r e g i o n
11 Update H by adding the v a l u e s in the r i g h t most column
12 of the c u r r e n t r e g i o n
13 f i n d the median va lue MED by scanning h i g h e r or lower depending on
14 the v a l u e s t h a t have been removed/added
15

16 w r i t e MED to DEST

Listing 6.16. Fast median filtering.



i
i

i
i

i
i

i
i

6.6. Rank Filters 165

sample entering the region. After the histogram has been so updated, the me-
dian value can be found by scanning either higher or lower in the new histogram
depending on whether the alteration to the histogram forced the median lower
or higher than the previous value. This process can be further improved by using
a serpentine scan such that resetting the histogram at the beginning of each row
is not necessary.

6.6.3 Other Statistical Filters
Range filtering is related to rank filtering but it is not itself a rank filter and hence
cannot be accomplished directly by the RankOp class. Range filtering produces
the difference between the maximum and minimum values of all samples in the
neighborhood such that it generates large signals where there are large differ-
ences (edges) in the source image and will generate smaller signals where there
is little variation in the source image.

Range filtering can be implemented by a slight modification to the code
of Listing 6.15 or by using the RankOp in conjunction with image subtraction.
Let image I ′max be the result of applying a maximum filter to source image
I and let Imin be the result of applying a minimum filter to the same source

(a) Most common sample. (b) Range filtering.

Figure 6.26. Other statistically-based filters.



i
i

i
i

i
i

i
i

166 6. Regional Processing Techniques

image. The range filtered image can then be computed using image subtraction
as Irange = Imax − Imin. Range filtering is a type of relatively fast but generally
poor performing edge detection filter.

Rather than keying on rank it is possible to select the most common ele-
ment in the neighborhood. This is a histogram-based approach that produces
a distorted image where clusters of color are generated. The resulting image
will generally have the appearance of a mosaic or an oil painting with the size
and shape of the mask determining the precise effect. If two or more elements
are most common the one nearest the average of the region should be selected;
otherwise choose the darker value. It should be noted that performing this fil-
ter in one of the perceptual color spaces produces superior results since smaller
color distortions are introduced. Figure 6.26 gives examples of both range and
histogram-based filtering where the image of (a) has been processed using the
most common sample technique with 17×17 square region and then sharpened,
and the image of (b) has been range filtered with a 5× 5 square mask.

6.7 Template Matching and Correlation
Consider the problem of locating an object in some source image. In the sim-
plest case the object itself can be represented as an image which is known as a
template. A template matching algorithm can then be used to determine where,
if at all, the template image occurs in the source.

One template matching technique is to pass the template image over the
source image and compute the error between the template and the subimage
of the source that is coincident with the template. A match occurs at any loca-
tion where the error falls below a threshold value. Given a source image f and
an M × N template K where both M and N are odd we can compute the root
mean squared (RMS) error at every source location (x, y). Since the RMS er-
ror is computed for every source sample, we obtain an output image where dark
pixels (low error values between the template and the source) signify a strong
likelihood of a match and bright pixels (large error values) signify that there is
no match. The RMS error can be computed as given in Equation (6.24), where
g is the resulting destination image.

g(x, y) =

√√√√√ 1
MN

bM2 c∑
j=−bM2 c

bN2 c∑
k=−bN2 c

[f(x+ j, y + k)−K(j, k)]2, (6.24)

A slightly more sophisticated technique is known as cross correlation which
is given in Equation (6.25). Observant readers will note the similarity between
this formula and that of convolution given in Equation (6.1), where the only dif-
ference is given by the sign preceding offsets j and k. You may recall that under



i
i

i
i

i
i

i
i

6.7. Template Matching and Correlation 167

convolution the kernel (or template) is rotated while Equation (6.1) indicates
that under correlation the kernel is not rotated. The template is generally not
designated as a kernel since a template is generally much larger than a kernel and
is of the same nature as the source, having coefficient values of the same range
and color depth.

g(x, y) =
bM/2c∑

j=−bM/2c

bN/2c∑
k=−bN/2c

K(j, k) · I(x+ j, y + k). (6.25)

Correlation as given in Equation (6.25) is problematic for use in template
matching since it does not take into account the relative intensity of either the
source or the template. Consider searching for an all-black region within an
all-black source image. The resulting cross correlated destination will itself be
all-black, presumably indicating exact matches at every source location. Now
consider searching for an all-white region within an all-white source image. The
resulting cross correlated destination will be all-white, presumably indicating
that no matches exist. This gives rise to the question of how to identify matches
within the output image if a match could be indicated by either dark or bright
regions.

A solution can be obtained by normalizing the output according to the rel-
ative brightness of both the template and the source images. This technique is
known as normalized cross correlation and is given in Equation (6.26), where
offsets j and k range over the entire width and height of the template. K is the
average value of all samples in the template and can be precomputed once while
I(x, y) is the average value of all samples spanning the template at location (x, y)
of the source and must be computed for every location within the source:

g(x, y) =

∑
j

∑
k[K(j, k)−K] · [I(x+ j, y + k)− I(x, y)]√∑

j

∑
k[K(j, k)−K]2

∑
j

∑
k[I(x+ j, y + k)− I(x, y)]2

. (6.26)

Figure 6.27 illustrates how template matching can be used to locate objects
within a source image. In this example we are searching the source image for all
occurrences of a red diamond shape lying on a black background. The template
image itself, shown as an inset within the source image, was taken from the
right thigh of the harlequin figure and is thus an exact match in one location of
the image. The red diamond pattern, however, is also found to be very similar to
other regions of the image as indicated by the dark regions of the RMS technique.
The RMS errors are shown in the grayscale image of part (b) as the average of
the errors over the three color bands. Thresholding part (b) to identify the lowest
RMS regions results in the likely matches shown in part (c).

Template matching is used in many applications to locate image features. Bi-
ologists may use template matching to identify moving cells on a microscopic



i
i

i
i

i
i

i
i

168 6. Regional Processing Techniques

(a) Source with inset. (b) RMS error (gray). (c) Most likely matches.

Figure 6.27. Template matching.

image, meteorologists may track the movement of hurricanes, and optical char-
acter recognition may utilize correlation to identify individual characters on a
binary image of printed text.

Correlation is sensitive to both the scale and rotation of the template. If the
template object is not exactly the same size and orientation as similar objects
in the source, then template matching will not be effective and alternate tech-
niques should be used. In addition, the computational cost of correlation is high
since the template is generally large. Frequency based implementations should
generally be used and are discussed Chapter 9.

6.8 Exercises
1. Convolve a set of test images with the following convolution kernels. You

should first anticipate the visual effect that the kernels will produce and
compare your expectations with the actual result:

1
6 ×

 0 −1 0
−1 10 −1
0 −1 0

 1
3 ×

 −1 0 −1
0 7 0
−1 0 −1

 .

2. Write a class named ImpulseNoiseOp that implements the Buffered
ImageOp. This class should filter an image by adding impulse noise to



i
i

i
i

i
i

i
i

6.8. Exercises 169

the source. The ImpulseNoiseOp is useful for testing noise reduction tech-
niques. In addition to the required methods of the BufferedImageOp the
class should support those methods shown in the UML class diagram be-
low. The amount is a value in the range [0, 1] and is meant to indicate the
percentage of samples that will be corrupted by impulse noise. When filter-
ing a source image this class should generate a random value R in [0, 1] for
every source sample. If R <= amount then the corresponding destination
sample should be randomly set to either black or white. If R > amount
then the source sample is copied to the destination.

� implements BufferedImageOp�
ImpulseNoiseOp

+ImpulseNoiseOp(amount:double)
+void setAmount(amount:double)
+void setAmount(amount:double)
+double getAmount():double

3. Write specialized MinimumOp and MaximumOp filters that perform efficient
minimum and maximum rank filtering as described in Section 6.6.2. Com-
pare the performance of your classes by filtering a large source image with
your specialized filters and the general rank filter of Listing 6.15. Compare
the time taken by each implementation.

4. Write an ApproximateMedianOp filter that performs approximate median
filtering. Compare the efficiency of this implementation with the general
RankOp filter on a number of images having large dimension and plot the
results. Your plot should show the length of time taken on images of vari-
ous sizes using your filter and the RankOp filter of the text.

5. Write a RangeOp filter as described in Section 6.6.3.

6.? Write a FastMedianOp filter that performs median filtering using the
histogram-based method presented in Listing 6.16.

7.? Write a MostCommonRegionalOp that computes the most common sample
in a region as the output of a regional processing operation as described in
Section 6.6.3. Your filter should work in the HSB color space.

8.?? Write an NCCOp that computes the normalized cross correlation of an image
with a template image.



i
i

i
i

i
i

i
i

170 6. Regional Processing Techniques

Artwork
Figure 6.5. Young Italian Woman at a Table by Paul Cézanne (1839–1906). Paul
Cézanne was a French Post-Impressionist painter. His work formed a bridge be-
tween late 19th century Impressionism and the Cubism of the early 20th century.
Cézanne was a master of design, composition, and color using bold strokes of
color to highlight personality and presence. The portrait detail of Figure 6.5 was
completed around 1885–1900 during a period that saw him produce several such
masterful figure studies.

Figure 6.10. Study for the Head of Leda by Leonardo da Vinci (1452–1519).
Leonardo da Vinci has often been described as the most talented Renaissance
man of all ages. He is widely considered to be one of the greatest painters of all
time in addition to his numerous accomplishments as mathematician, physicist,
and engineer. The drawing shown in Figure 6.10 is the only existing evidence
of a painting that was likely completed and subsequently destroyed or lost. The
subject of Leda and the swan is drawn from Greek mythology and was popular
in da Vinci’s day.

Figure 6.12. Still Life with Pomegranates and Pears by Paul Cézanne (1839–1906).
See the entry of Figure 6.5 for a short biographical sketch of the artist. The still
life of Figure 6.12 is representative of his style.

Figure 6.15. Portrait of a Woman Holding a Fan by Katsushika Hokusai (1760–
1849). Katsushika Hokusai was a Japanese artist, ukiyo-e painter, and print-
maker. He is best known for his woodblock prints and is perhaps the most fa-
mous for The Great Wave off Kanagawa, which was produced in the 1820s. Hoku-
sai enjoyed a long career but produced his best work after the age of 60. In
fact, he is reported to have said near the time of his death that “If only Heaven
will give me just another ten years... Just another five more years, then I could
become a real painter.”

Figure 6.16. Portrait of a Woman Holding a Fan by Katsushika Hokusai (1760–
1849). See the entry of Figure 6.15.

Figure 6.17. Lady with an Ermine by Leonardo da Vinci (1452–1519). See the
entry of Figure 6.8 for a short biographic sketch of the artist. The portrait
painting of Figure 6.17 was completed around 1489. The lady of the portrait
is most likely Cecilia Gallerani, the mistress of Lodovico Sforza, the Duke of
Milan. The painting is one of only four female portraits Leonardo painted and
despite sustaining significant damage over time is nonetheless one of the most
well preserved of da Vinci’s paintings. At the time of painting, Ms. Gallerani



i
i

i
i

i
i

i
i

6.8. Exercises 171

was about 17 years old and was a gifted musician and poet. It appears as if the
ermine is actually a white ferret, the significance of which is uncertain.

Figure 6.18. Portrait of a Woman Holding a Fan by Katsushika Hokusai (1760–
1849). See the entry of Figure 6.15.

Figure 6.19. Peasant Woman from Muscel by Nicolae Grigorescu (1838–1907). Grig-
orescu was born in Romania where, as a young man, he became an apprentice
of the painter Anton Chladek creating icons for the church of Baicoi and the
monastery of Caldarusani. He later moved to Paris and became acquainted
with colleagues such as Pierre-August Renoir, Jean-François Millet and Gus-
tave Courbet among others. His later works emphasized pastoral themes and
peasant women of which Figure 6.19 is representative.

Figure 6.20. Orphan Girl at the Cemetery by Ferdinand Victor Eugéne Delacroix
(1798–1863). Delacroix was a French Romantic painter who from early in his
career was viewed as one of the best leaders of the French Romantic school.
Delacroix was also an excellent lithographer and illustrated various literary works
including those of Shakespeare, Goethe, and others. Delacroix was heavily in-
fluenced by the art of Rubens and other Renaissance painters who emphasized
color and movement rather than realism and clarity of form. Figure 6.20 gives a
detail of a portrait that he completed in 1824.

Figure 6.22. Portrait of Henry VIII by Hans Holbein the Younger (1497–1543).
Hans Holbein was a German artist of the Northern Renaissance style. He was
raised by his father, Hans Holbein the Elder, who was himself an accomplished
artist and trained his son in the arts from an early age. Holbein traveled to Lon-
don in 1526 and was eventually commissioned to complete numerous portraits at
the court of Henry VIII. Among his subjects were Anne Boleyn, Jane Seymour,
Anne Cleves, King Edward VI and, as is shown in the detail of Figure 6.24,
Henry VIII. Holbein apparently died of the plague while working to finish an-
other portrait of Henry VIII.

Figure 6.24. Portrait of Henry VIII by Hans Holbein the Younger (1497–1543).
See the entry of Figure 6.20.

Figure 6.26. Orphan Girl at the Cemetery by Ferdinand Victor Eugéne Delacroix
(1798–1863). See the entry of Figure 6.22.

Figure 6.27. Harlequin by Paul Cézanne (1839–1906). See the entry of Figure 6.5
for a short biographical sketch of the artist.



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

�

Geometric
Operations 7

Most of the operations that we have so far discussed process pixels by simply
changing their color. In this chapter we will discuss operations that leave the
color of a pixel intact but change the location of pixels. These operations are
known as geometric operations since they affect change on the spatial structure,
or geometry, of an image.

Image registration is a geometric operation that takes multiple images of a
single scene that are shot at different angles and combines them into a single
coherent whole. The source images may have been acquired by completely dif-
ferent imaging systems or by a single system taking a series of images over time.
It is common in medical imaging, for example, to combine a series of images
from sources such as x-ray, MRI, and NMR scans into a single visual image. The
source images are carefully aligned, or registered, by correlating the geometry of
the subject among the various sources. The resulting composite provides greater
resolution and more thorough detail than any of the source images provides in
isolation.

Image registration has also been used to produce panoramic composites of
the surface of Mars where the individual images were acquired by the same sys-
tem planetary explorer over a series of time by simply rotating the camera across
a certain field of view.

Geometric operations are also able to correct hardware defects or to other-
wise compensate for limitations in the image acquisition system. The Hubble
space telescope, for example, was initially deployed with such a flawed optical
system that scientists feared the satellite would not be able to provide usable data
of any real significance. The flaw was fixed through a combination of replacing
the defective optics and defect-correcting image processing software fine-tuned
for the Hubble system’s defects.

Geometric operations generally operate by shifting pixel locations from their
source positions to more appropriate positions in the destination. Image resam-
pling, rotating, shearing, reflection, and morphing are examples of operations
that directly affect the geometry of an image.

173



i
i

i
i

i
i

i
i

174 7. Geometric Operations

7.1 Affine Transformations
In general, geometric operations take a source pixel at some location (x, y) and
map it to location (x′, y′) in the destination. The mapping between (x, y) and
(x′, y′) can be generalized as defined in Equation (7.1), where both Tx and Ty
are transformation functions that produce output coordinates based on the x and
y coordinates of the input pixel. Both functions produce real values as opposed
to integer coordinates and are assumed to be well defined at all locations in the
image plane. Function Tx outputs the horizontal coordinate of the output pixel
while function Ty outputs the vertical coordinate:

x′ = Tx(x, y),
y′ = Ty(x, y). (7.1)

The simplest category of transformation functions is linear in (x, y) and is
known as affine transformations. In other words, whenever the transformation
functions are linear functions of variables x and y the transform is affine. Equa-
tion (7.2) defines the entire family of affine transformations where the m values
are scalar real-valued coefficients. The central properties of an affine transforma-
tion are that straight lines within the source remain straight lines in the destina-
tion and that parallel lines within the source remain parallel in the destination.

Tx(x, y) = m00x+m01y +m02,
Ty(x, y) = m10x+m11y +m12.

(7.2)

These two equations are often augmented by a third equation that may ini-
tially seem frivolous but allows for convenient and efficient computation. The
validity of the equation 1 = 0x + 0y + 1 is obvious but including it as a third
constraint within our system allows us to write the affine system in the matrix
form of Equation (7.3). The 3 × 3 matrix of coefficients in Equation (7.3) is
known as the homogeneous transformation matrix. Using this augmented system,
a two-dimensional point is represented as a 3 × 1 column vector where the first
two elements correspond to the column and row while the third coordinate is
constant at 1. When a two-dimensional point is represented in this form it is
referred to as a homogenous coordinate. When using homogenous coordinates,
the transformation of a point V with a transformation matrix A is given by the
product AV . In other words, multiplication of a transformation matrix with a
point yields a point: x′

y′

1

 =

 m00 m01 m02

m10 m11 m12

0 0 1

 ·
 x
y
1

 . (7.3)

An affine transformation matrix is a six parameter entity controlling the co-
ordinate mapping between source and destination images. Affine transforma-
tions are capable of performing image translation, rotation, scaling, shearing,



i
i

i
i

i
i

i
i

7.1. Affine Transformations 175

(a) Translation. (b) Rotation. (c) Shearing.

(d) Uniform scaling. (e) Nonuniform scaling. (f) Reflection.

Figure 7.1. Linear geometric transformations.

and reflection by appropriate selection of the six parameters. These geometric
operations are illustrated in Figure 7.1. In each example the destination image
is displayed relative to the bounds of the source image as shown by the dashed
boxes.

Scaling adjusts the size of an image and can be uniform, using the same scal-
ing factor in both the horizontal and vertical dimensions, or nonuniform where
different scaling factors are used in the horizontal and vertical dimensions. Im-
age translation simply repositions the image, or subimage, at a different location.
An image can be rotated around any point; rotation about the image center is
shown in this figure. Shearing can occur with respect to either the horizontal or
vertical axis or both; horizontal shearing is illustrated here. Reflection negates
the coordinates of pixels in an image around any user-specified axis but is typi-
cally performed around either the central horizontal or vertical axis.

Table 7.1 defines how each of the six coefficients of the homogeneous trans-
formation matrix must be chosen to perform these affine operations. Rotation is
parameterized by an angular amount θ; scaling is parameterized on the scaling
factors sx and sy, while reflection is parameterized on the location of either the
horizontal or vertical axes as defined by xc or yc.



i
i

i
i

i
i

i
i

176 7. Geometric Operations

m00 m10 m01 m11 m02 m12

translation 1 0 0 1 δx δy
rotation cos(θ) − sin(θ) sin(θ) cos(θ) 0 0

shear 1 shy shx 1 0 0
scale sx 0 0 sy 0 0

horizontal reflection −1 0 0 1 xc 0
vertical reflection 1 0 0 −1 0 yc

Table 7.1. Coefficient settings for affine operations.

A single homogeneous matrix can also represent a sequence of individual
affine operations. Letting A and B represent affine transformation matrices, the
affine matrix corresponding to the application ofA followed byB is given asBA,
which is itself a homogeneous transformation matrix. Matrix multiplication,
also termed concatenation, therefore corresponds to the sequential composition
of individual affine transformations. Note that the order of multiplication is
both important and opposite to the way the operations are mentally envisioned.
While we speak of transform A followed by transform B, these operations are actu-
ally composed as matrix B multiplied by (or concatenated with) matrix A. Assume,
for example, that matrix A represents a rotation of −30◦ about the origin and
matrix B represents a horizontal shear by a factor of .5; the affine matrix corre-
sponding to the rotation followed by shear is given as BA. This is illustrated in
Equation (7.4), where the leftmost matrix represents the shear matrix B which
is preconcatentated to A to obtain the rightmost matrix BA. The matrix BA is
a single affine transform that embodies in itself a rotation followed by a shear. 1 0.5 0

0 1 0
0 0 1

 ·
 .866 −0.5 0

0.5 .866 0
0 0 1

 =

 1.116 −0.067 0
0.5 .866 0
0 0 1

 . (7.4)

Consider, for example, the question of how to rotate an image by 30◦ clock-
wise (or by −π/6 radians) where we understand that rotation using the transfor-
mation matrix is always done about the origin of the image. Table 7.1 indicates
that we must form the affine transformation matrix, as shown in Equation (7.5)
since cos(−π/6) = .866 and sin(−π/6) = −1/2: x′

y′

1

 =

 .866 −0.5 0
0.5 .866 0
0 0 1

 ·
 x
y
1

 . (7.5)

Under rotation, the pixel at location (10, 20) must be relocated to another
location in the destination. When the pixel at location (10, 20) is transformed



i
i

i
i

i
i

i
i

7.1. Affine Transformations 177

under the matrix of Equation (7.5) the pixel is relocated to position (x′, y′) in the
destination which is given by Equation (7.6). x′

y′

1

 =

 .866 −0.5 0
0.5 .866 0
0 0 1

 =

 −1.34
22.32

1

 . (7.6)

This example presents two important issues that arise when performing ge-
ometric transformations. The first issue relates to the dimensionality of the des-
tination with respect to the source. The source sample at location (10, 20), for
example, ended up at location (−1.34, 22.32) in the destination. Negative indices
are not allowed in Java and hence care must be taken to shift the destination co-
ordinates back into valid indices in the destination. The second issue relates to
the details of how mapping is done since the destination coordinates are not in-
tegers but real values. Since real-valued locations are not allowed in Java, care
must also be taken to appropriately interpret the location mappings. These two
issues are discussed in the following subsections.

7.1.1 Destination Dimensionality
Figure 7.2 illustrates the sizing and positioning issues that arise when rotating an
image. While rotation is used to motivate these issues, these are issues that must
be addressed for all affine transformations. The source image is rotated about
the origin such that some pixels are mapped outside of the bounds of the source
image as illustrated by the middle image. Implementations must decide whether
to size the destination image in such a way as to truncate the result or allow the
destination to contain the entire rotated image.

In order to view the entire rotated image both the width and height of the
destination image must be increased beyond that of the source. In addition, each

(a) Source image. (b) Rotation. (c) Expanded view of rotated image.

Figure 7.2. Destination dimensionality under rotation.



i
i

i
i

i
i

i
i

178 7. Geometric Operations

of the pixels must be translated onto the resized destination so that all coordi-
nates are non-negative and integer valued. The rightmost image shows that the
size of the destination is larger than the source and that pixels have been shifted.
Note, for example, that source pixel (0, 0) is mapped to some coordinate (x′, 0)
where x′ is a positive value.

The dimensions of the destination image can be determined by taking the
four points defining the bounds of the source image, transforming them via the
transformation matrix, and then finding the bounds of the result. Destination
pixels can then be translated by the location of the upper-left coordinate of the
bounding rectangle of the destination.

7.1.2 Mapping
If we assume that the destination image is adequately dimensioned, the issue of
how integer-valued source coordinates are mapped onto integer-valued destina-
tion coordinates must also be addressed. One technique is known as forward
mapping. Forward mapping takes each pixel of the source image and copies it
to a location in the destination by rounding the destination coordinates so that
they are integer values.

Forward mapping yields generally poor results since certain pixels of the des-
tination image may remain unfilled as illustrated in Figure 7.3. In this example,
a source image is rotated by 45◦ using a forward mapping strategy where the des-
tination is sufficiently sized and the rotated image appropriately translated onto
the destination.

Figure 7.3. Rotation by forward mapping.



i
i

i
i

i
i

i
i

7.1. Affine Transformations 179

Perhaps the simplest way of understanding the problem introduced by for-
ward mapping is to consider the scaling transformation. When increasing the
scale or size of an image the destination image is larger than the source. If every
source sample is copied over to the destination it is apparent that not all pixels
of the destination will be filled. For this reason, forward mapping is rarely used
for geometric transformations.

Backward mapping solves the gap problem caused by forward mapping. When
using backward mapping an empty destination image is created and each loca-
tion in the destination is mapped backwards onto the source. After identifying the
source location that corresponds to the destination a sample value is obtained via
interpolation.

Backward mapping is generally straightforward when using affine transfor-
mations. Assume that the 3 × 1 homogeneous coordinate (x, y, 1) is trans-
formed by a homogeneous transformation matrix A to obtain (x′, y′, 1). Letting
v = [x, y, 1]T and v′ = [x′, y′, 1]T we can write v′ = Av. Since matrix A and
vector v are known when doing forward mapping, this formulation allows quick
computation of v′. When backward mapping we scan over the destination loca-
tions and therefore wish to compute vector v givenA and v′. In order to solve for
v′, the affine transformation matrix must be inverted and the equation must be
solved for v. The solution is given in Equation (7.7), where the inverse of matrix
A is denoted as A−1:

v′ = Av,

A−1v′ = A−1Av,

A−1v′ = v. (7.7)

When performing backward mapping then, Equation (7.7) implies that we
construct an affine transformation matrix that corresponds to the desired map-
ping and that this matrix is then inverted. Every pixel of the destination is
scanned and the corresponding source location is computed by multiplying the
inverted matrix by the destination location. This source sample is then copied
from the source to the destination. Although most affine transformations are
invertible, there are affine transformations1 that are not, and hence, while back-
ward mapping can usually be employed, it cannot be used for all possible affine
transformations.

7.1.3 Interpolation
Even when using backward mapping, however, a destination pixel may map to
a non-integer location in the source. Assume, for example, that we wish to de-
termine the value of the destination sample I ′(x′, y′) using backward mapping.

1An affine transformation is invertible if it has a nonzero determinant.



i
i

i
i

i
i

i
i

180 7. Geometric Operations

Figure 7.4. Reverse mapping.

Location (x′, y′) is transformed by the inverse affine transformation matrix to
obtain the corresponding source location (x, y). Since the source location (x, y)
will not generally lie on integer coordinates the problem is to determine the inten-
sity value at that location. Figure 7.4 gives a pictorial illustration of this problem.
In this figure, the image samples lie at the grid intersections and since the desti-
nation sample originates from between samples in the source, it is unclear as to
which, if any, of the surroundings samples should be used to determine the value
of the destination sample.

This problem is solved by using interpolation. Interpolation refers to the
creation of new samples from existing image samples. In other words, interpo-
lation seeks to increase the resolution of an image by adding virtual samples at
all points within the image boundary. Recall that a sample represents the inten-
sity of light at a single point in space and that the sample is displayed in such
a way as to spread the point out across some spatial area. Using interpolation
it is possible to define a new sample at any point in space and hence the use of
real-valued coordinates poses no difficulty since we can infer an image sample at
all locations.

The simplest interpolation technique is nearest neighbor interpolation. As-
sume that a destination location (x′, y′) maps backward to source location (x, y).
The source pixel nearest location (x, y) is located at (round(x), round(y)) and
the source pixel at that image is then carried over as the value of the destination.
In other words, I ′(x′, y′) = I(round(x), round(y)). Nearest neighbor interpola-
tion is computationally efficient but of generally poor quality, producing images
with jagged edges and high graininess.

Bilinear interpolation assumes that the continuous image is a linear func-
tion of spatial location. Linear, or first order, interpolation combines the four
points surrounding location (x, y) according to Equation (7.8), where (x, y) is
the backward mapped coordinate that is surrounded by the four known samples



i
i

i
i

i
i

i
i

7.1. Affine Transformations 181

at coordinates (j, k), (j, k+ 1), (j+ 1, k) and (j+ 1, k+ 1). Variable b represents
the proximity of (x, y) to the lower horizontal edge and variable a represents the
proximity of (x, y) to the vertical edge. Both variables a and b are weighting
values:

j = bxc,
k = byc,
a = x− j, (7.8)

b = y − k,

I ′(x′, y′) = [1− b, b] ·
[
I(j, k) I(j + 1, k)
I(j, k + 1) I(j + 1, k + 1)

]
·
[

1− a
a

]
.

Bilinear interpolation is a weighted average where pixels closer to the back-
ward mapped coordinate are weighted proportionally heavier than those pixels
further away. Bilinear interpolation acts like something of a rigid mechanical
system where rods vertically connect the four samples surrounding the backward
mapped coordinate, as shown in Figure 7.5. A third rod is connected horizon-
tally which is allowed to slide vertically up and down the fixture. In addition, a
ball is attached to this horizontal rod and is allowed to slide freely back and forth
across the central rod. The height of the ball determines the interpolated sample
value wherever the ball is located. In this way it should be clear that all points
within the rectangular area bounded by the four corner posts have implicit, or
interpolated, sample values.

Higher-order interpolations may yield improvements over bilinear interpo-
lation. Bicubic interpolation, for example, estimates values by computing a
weighted sum of the 16 samples closest to the backward mapped coordinate.
While bicubic interpolation generally produces better results than bilinear in-
terpolation, it is obviously slower in terms of computation. For most practical

Figure 7.5. Bilinear interpolation.



i
i

i
i

i
i

i
i

182 7. Geometric Operations

Figure 7.6. Interpolation example.

purposes bilinear interpolation is sufficiently accurate and efficient. Figure 7.6
compares the effects of nearest neighbor and bilinear interpolation when rotat-
ing an image. In this example an image is rotated by 45◦ clockwise using both
nearest neighbor and bilinear interpolation. The detail shown in the upper right
uses nearest neighbor interpolation; the detail at the lower right uses bilinear.

7.1.4 Resampling

Interpolation is closely related to image scaling, also known as resampling, which
changes the dimensions of an image by either increasing or decreasing the width
and/or height of an image. Figure 7.7 shows a schematic of this process. In this
figure an image is either in the continuous domain, where light intensity is de-
fined at every point in some projection or in the discrete domain, where intensity
is defined only at a discretely sampled set of points. When an image is acquired,
an image is taken from the continuous into the discrete domain at which time
the dimensions of the image are fixed. The first step of resampling, known as
reconstruction, is to take an image from the discrete domain into the continuous
domain where it can be resampled at any desired resolution. When an image is
reconstructed, it is taken from the discrete into the continuous domain by using
interpolation to approximate the sample values at every location in space. The
reconstructed image can then be resampled to any desired resolution through the
typical process of sampling and quantization.



i
i

i
i

i
i

i
i

7.1. Affine Transformations 183

Figure 7.7. Resampling.

7.1.5 Implementation of Geometric Operations

The standard Java distribution provides an AffineTransform class for repre-
senting homogeneous affine transformation matrices. AffineTransform con-
tains several convenient methods for creating homogeneous matrices of which a
partial listing is given in Figure 7.8.

The default constructor produces an identity that which maps all locations
to themselves. The second constructor of Figure 7.8 accepts a six-element array
of coefficients representing the six configurable weights in the transformation
matrix. This constructor gives clients the freedom to set the weights in any way
they choose. The four static factory methods give clients convenient ways of
constructing matrices that perform one of the four basic transforms without hav-
ing to compute, on their own, the matrix coefficients. In order to construct a
rotation matrix, for example, a client may use the getRotateInstance method

AffineTransform

public AffineTransform()

public AffineTransform(double[] matrix)

public static AffineTranform getRotateInstance(double theta)

public static AffineTranform getScaleInstance(double sx, double sy)

public static AffineTranform getShearInstance(double shx, double shy)

public static AffineTranform getTranslateInstance(double dx, double dy)

public Point2D transform(Point2D src, Point2D dest)

public void concatenate(AffineTransform xfrm)

public void preConcatenate(AffineTransform xfrm)

Figure 7.8. AffineTransform methods (partial listing).



i
i

i
i

i
i

i
i

184 7. Geometric Operations

and provide the desired rotation angle (in radians). The six coefficients will be
automatically computed and the corresponding transformation matrix will be
constructed and returned.

The Point2D class is defined in the java.awt.geom package and represents,
as the name implies, a two-dimensional point. The transform method accepts
a Point2D object and maps it in accord with the transformation matrix to obtain
an output coordinate. If the destination point is non-null then the X and Y coor-
dinates of the destination are properly set and the destination point is returned.
If the destination point is null, a new Point2D object is constructed with the
appropriate coordinate values and that object is returned.

The AffineTransform class contains a createInverse method that creates
and returns the inverse AffineTransform of the caller. This method throws an
exception if the matrix is not invertible. As mentioned earlier, the transformation
matrix must be invertible in order to perform a geometric operation that uses
backward mapping.

The concatenate and preConcatenate perform matrix multiplication. Let
A be the calling AffineTransform object and B the AffineTransform that
is passed as the single required parameter. The concatenate method modifies
A so that A becomes AB while preconcatenation modifies A such that A be-
comes BA.

The AffineTransformOp is a BufferedImageOp implementation that ap-
plies an affine transformation to a source image. The AffineTransformOp con-
tains an AffineTransform, which is used to map source to destination coordi-
nates. An abbreviated UML class diagram of the AffineTransformOp is given
in Figure 7.9.

Clients must construct an AffineTransform which is passed as a parameter
to the constructor. The transformation matrix must be invertible since backwards
mapping will be used to map destination locations into the source. Clients must
also specify an interpolation technique by providing an integer valued constant
that is either TYPE NEAREST NEIGHBOR, TYPE BILINEAR, or TYPE BICUBIC. List-
ing 7.1 shows how to rotate an image clockwise 45◦ using these two classes.

The AffineTransformOp is implemented in such a way as to extend the
bounds of the destination in only the positive x and y directions while all pix-
els mapping to negative coordinates are ignored. The AffineTransformOp must

� implements BufferedImageOp�
AffineTransformOp

public AffineTransformOp(AffineTransform xfrm, int interpolationType)

public AffineTransform getTransform()

public int getInterpolationType()

Figure 7.9. AffineTransformOp methods (partial listing).



i
i

i
i

i
i

i
i

7.1. Affine Transformations 185

1 BufferedImage s r c = ImageIO . read ( new F i l e (” f i l ename . png ” ) ) ;
2 Aff ineTrans form xfrm = Aff ineTrans form . g e t R o t a t e I n s t a n c e (−Math . PI / 4 . 0 ) ;
3 AffineTransformOp op =
4 new AffineTransformOp ( xfrm , AffineTransformOp . TYPE BICUBIC ) ;
5 BufferedImage d e s t = op . f i l t e r ( s r c , n u l l ) ;

Listing 7.1. Rotation with AffineTransformOp.

therefore be used with caution since it is possible to rotate all pixels onto negative
coordinate values and hence to produce an empty destination. If, for example, an
image is rotated by 180◦, all pixels except the origin fall outside of the bounds of
the source. In this case the AffineTransformOp actually gives rise to an excep-
tion since it computes the width and height of the destination to be zero.

Listing 7.2 shows how to rotate an image such that the entire image is always
displayed in the destination regardless of whether pixels are mapped into nega-
tive coordinates. In this example, line 3 constructs an AffineTransformation
that rotates the source by −45◦ about the origin. Since portions of the im-
age will be rotated into quadrants with negative coordinates, lines 5–8 com-
pute offsets to shift the image back onto the positive quadrant. Line 6 ob-
tains the bounds of the source image as a Rectangle object, which is then
rotated using the AffineTransform. The bounds of the rotated rectangle are
then obtained as another Rectangle object. This rectangle is positioned at
coordinate (destBounds.getX(), destBounds.getY()), the amount by which the
rotated image must be translated. A translation matrix is constructed and
pre-concatenated with the rotation matrix to obtain an AffineTransform that
both rotates and centers a source image onto the destination.

1 BufferedImage s r c = ImageIO . read (new F i l e ( "filename.png" ) ) ;
2

3 Aff ineTrans form xfrm = Aff ineTrans form . g e t R o t a t e I n s t a n c e (−Math . PI / 4 . 0 ) ;
4

5 Rectangle2D destBounds =
6 xfrm . crea teTrans formedShape ( s r c . g e t R a s t e r ( ) . getBounds ( ) ) . getBounds2D ( ) ;
7 Aff ineTrans form t r a n s l a t e =
8 Aff ineTrans form . g e t T r a n s l a t e I n s t a n c e (−destBounds . getX ( ) ,
9 −destBounds . getY ( ) ) ;

10 xfrm . preConcatenate ( t r a n s l a t e ) ;
11

12 AffineTransformOp op = new AffineTransformOp ( xfrm , n u l l ) ;
13 BufferedImage d e s t = op . f i l t e r ( s r c , n u l l ) ;

Listing 7.2. Rotation with AffineTransformOp.



i
i

i
i

i
i

i
i

186 7. Geometric Operations

1 BufferedImage s r c = ImageIO . read ( new F i l e (” f i l ename . png ” ) ) ;
2 Aff ineTrans form xfrm = Aff ineTrans form . g e t S c a l e I n s t a n c e ( 1 . 5 , 2 . 3 ) ;
3 AffineTransformOp op =
4 new AffineTransformOp ( xfrm , AffineTransformOp . TYPE BICUBIC ) ;
5 BufferedImage d e s t = op . f i l t e r ( s r c , n u l l ) ;

Listing 7.3. Scaling with AffineTransformOp.

When using Java’s AffineTransformOp, reconstruction is accomplished
through either nearest neighbor, bilinear or bicubic interpolation. Listing 7.3
shows how to apply non uniform scaling transformation of 1.5 horizontally and
2.3 vertically. Listing 7.3 is identical to that of 7.1 except for line 2 where an
affine transform that scales an image is generated.

7.2 Custom Implementation
Implementation of a flexible image processing library requires principled object-
oriented design techniques where core methods are abstracted and class cou-
pling is minimized. Since interpolation is central to geometric transforms, an
Interpolant class is defined that captures the central notion of interpolation
and decouples interpolation from the transformation process. The Interpolant
of Listing 7.4 is an interface containing a single method named interpolate.
This method takes a real-valued Point2D and produces the sample value at that
location in the source image. In addition, an ImagePadder object must be sup-
plied so that the source image is extended across all space in order to allow
interpolation at all spatial coordinates. Interpolation works on a single band and
hence the band is also given as the final argument.

Implementations of this interface are free to define the interpolate method
using a nearest neighbor, bilinear, bicubic technique, or any technique of their

1 p u b l i c i n t e r f a c e I n t e r p o l a n t {
2 p u b l i c i n t i n t e r p o l a t e ( Buf feredImage s rc ,
3 ImagePadder padder ,
4 Point2D point ,
5 i n t band ) ;
6 }

Listing 7.4. Interpolant.



i
i

i
i

i
i

i
i

7.2. Custom Implementation 187

1 c l a s s N e a r e s t N e i g h b o r I n t e r p o l a n t implements I n t e r p o l a n t {
2 p u b l i c i n t i n t e r p o l a t e ( Buf feredImage s rc ,
3 ImagePadder padder ,
4 Point2D point ,
5 i n t band ) {
6 i n t x=( i n t ) Math . round ( p o i n t . getX ( ) ) ;
7 i n t y=( i n t ) Math . round ( p o i n t . getY ( ) ) ;
8

9 r e t u r n padder . getSample ( s rc , x , y , band ) ;
10 }
11 }

Listing 7.5. NearestNeighborInterpolant.

choosing. Listing 7.5 gives an implementation of the simplest interpolation
scheme: the nearest neighbor interpolation. The NearestNeighborInterpolant
finds the nearest integer coordinate via the round function and returns the corre-
sponding source sample value provided by the image sampler.

Since geometric transformations key on a mapping between source and des-
tination, the responsibility for mapping is abstracted into its own class. List-
ing 7.6 describes the InverseMapper class that decouples the task of mapping
from other classes.

The most important method of the InverseMapper is the overloaded inverse
Transform. This method accepts a coordinate in the destination image and maps

1 p u b l i c a b s t r a c t c l a s s InverseMapper {
2 p u b l i c Point2D inver seTrans fo rm ( i n t dstX , i n t dstY , Point2D s r c P t ) {
3 r e t u r n i nve r seTrans fo rm (new Point2D . Double ( dstX , dstY ) , s r c P t ) ;
4 }
5

6 p u b l i c ImagePadder ge tDe f au l tPadd er ( ) {
7 r e t u r n ZeroPadder . g e t I n s t a n c e ( ) ;
8 }
9

10 p u b l i c void i n i t i a l i z e M a p p i n g ( Buf feredImage s r c ) { }
11

12 p u b l i c Rectang le ge tDes t ina t ionBounds ( Buf feredImage s r c ) {
13 r e t u r n s r c . g e t R a s t e r ( ) . getBounds ( ) ;
14 }
15

16 p u b l i c a b s t r a c t Point2D inver seTrans fo rm ( Point2D des tP t , Point2D s r c P t ) ;
17 }

Listing 7.6. InverseMapper.



i
i

i
i

i
i

i
i

188 7. Geometric Operations

that coordinate back onto the source image. The destination coordinate is given
either as a pair of integers or as a Point2D while the corresponding source co-
ordinate is given as a Point2D. If the srcPt parameter is non-null, that object is
filled in by the inverseTransform method and returned. If the srcPt param-
eter is null then the inverseTransform method creates a new Point2D object,
which is returned as the result.

Some mappers may need to know something about the source image that
is being transformed and hence the initialize mapping method is given. This
method should always be called once prior to asking the mapper to transform
coordinates. The mapper can then refer to the source image for any informa-
tion that it requires. Mappers may also compute the preferred bounds of the
destination given a source image. The bounding rectangle is computed by the
getDestination method, which defaults to the same size as the source. Spe-
cific subclasses are expected to override this method if the destination bounds
are to be different than the source.

Affine transformations can be easily incorporated into this framework by
writing a subclass of InverseMapper that uses an AffineTransform object to
perform the inverse transformation. Listing 7.7 gives a complete implementation
of InverseMapper that relies on an AffineTransform object for completion of
the inverseTransform method.

Any geometric transformation can then be implemented in terms of inter-
polants and mappers, as shown in Listing 7.8. The GeometricTransformOp

1 p u b l i c c l a s s AffineMapper extends InverseMapper {
2 p r i v a t e Aff ineTrans form inverseXfrm , forwardXfrm ;
3

4 p u b l i c AffineMapper ( Af f ineTrans form xfrm )
5 throws Noninver t ib l eTrans fo rmExcep t ion {
6 forwardXfrm = xfrm ;
7 inverseXfrm = xfrm . c r e a t e I n v e r s e ( ) ;
8 }
9

10 p u b l i c Point2D inver seTrans fo rm ( Point2D d s t P o i n t , Point2D s r c P t ) {
11 r e t u r n inverseXfrm . t ra ns fo rm ( ds t P o i n t , s r c P t ) ;
12 }
13

14 p u b l i c Rectang le ge tDes t ina t ionBounds ( Buf feredImage s r c ) {
15 r e t u r n forwardXfrm . crea teTrans formedShape (
16 s r c . g e t R a s t e r ( ) . getBounds ( ) ) . getBounds ( ) ;
17 }
18 }

Listing 7.7. AffineTransformMapper.



i
i

i
i

i
i

i
i

7.2. Custom Implementation 189

is a BufferedImageOp that performs backward mapping through the inverse
Transform method of a client supplied InverseMapper and interpolation
through the interpolate method of a client supplied Interoplant. This de-
sign is exceptionally flexible since it is not dependent upon either a particular
interpolation technique or a particular geometric transform.

Note that this class overrides the createCompatibleDestImagemethod such
that the destination dimensions are determined by the bounds of the transformed

1 p u b l i c c l a s s GeometricTransformOp extends NullOp {
2 p r o t e c t e d I n t e r p o l a n t i n t e r p o l a n t ;
3 p r o t e c t e d InverseMapper mapper ;
4 p r o t e c t e d ImagePadder hand le r ;
5

6 p u b l i c GeometricTransformOp ( InverseMapper mapper , I n t e r p o l a n t i n t e r p o l a n t ) {
7 t h i s ( mapper , i n t e r p o l a n t , mapper . ge tDe f au l tPadd er ( ) ) ;
8 }
9

10 p u b l i c GeometricTransformOp ( InverseMapper mapper ,
11 I n t e r p o l a n t i n t e r p o l a n t ,
12 ImagePadder hand le r ) {
13 t h i s . i n t e r p o l a n t = i n t e r p o l a n t ;
14 t h i s . mapper = mapper ;
15 t h i s . hand le r = hand le r ;
16 }
17

18 p u b l i c BufferedImage createCompat ib leDest Image ( Buf feredImage s rc ,
19 ColorModel destCM ) {
20 Rectang le bounds = mapper . ge tDes t ina t ionBounds ( s r c ) ;
21

22 r e t u r n new BufferedImage ( destCM ,
23 destCM . c r e a t e C o m p a t i b l e W r i t a b l e R a s t e r ( ( i n t ) ( bounds . getWidth ( ) ) ,
24 ( i n t ) ( bounds . ge tHe igh t ( ) ) ) ,
25 destCM . i s A l p h a P r e m u l t i p l i e d ( ) ,
26 n u l l ) ;
27 }
28

29 @Override
30 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
31 i f ( d e s t == n u l l ) {
32 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
33 }
34

35 Rectang le bounds = mapper . ge tDes t ina t ionBounds ( s r c ) ;
36 mapper . i n i t i a l i z e M a p p i n g ( s r c ) ;
37

38 Point2D d s t P t = new Point2D . Double ( ) ;
39 Point2D s r c P t = new Point2D . Double ( ) ;
40 f o r ( Locat ion pt : new Ras te rScanner ( des t , f a l s e ) ) {
41 d s t P t . s e t L o c a t i o n ( p t . c o l + bounds . x , p t . row + bounds . y ) ;
42 mapper . inve r seTrans fo rm ( ds tP t , s r c P t ) ;



i
i

i
i

i
i

i
i

190 7. Geometric Operations

43 f o r ( i n t b = 0 ; b < s r c . g e t R a s t e r ( ) . getNumBands ( ) ; b++) {
44 i n t sample = i n t e r p o l a n t . i n t e r p o l a t e ( s rc , handler , s r c P t , b ) ;
45 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col ,
46 pt . row ,
47 b ,
48 sample ) ;
49 }
50 }
51 r e t u r n d e s t ;
52 }
53 }

Listing 7.8. GeometricTransformOp.

source rather than the dimensions of the source itself. The mapper is responsible
for determining the destination bounds as can be seen in line 35. When filtering
any source the mapper is initialized by the call of line 36 to the initialization
method. Every sample of the destination image rather than the source is then
scanned as seen in line 41, and an interpolant is used to find the source sample
corresponding to each destination location. Note also that the image padder is
not used directly in this code but that it is handed to the interpolant for its use in
line 44.

Using this framework, clients are responsible for constructing an interpolant
and a mapper and applying the transform through the GeometricTransformOp
class. A code fragment is shown in Listing 7.9, where nearest neighbor interpo-
lation is used with a rotation mapper to perform the desired filtering operation.

Our custom design is captured in the UML diagram of Figure 7.10, where
three classes collaborate to perform geometric transformations. In this diagram,
we indicate the likelihood that clients will design Interpolants such as the
NearestNeighbor, Bilinear and Bicubicmethod in addition to others. Clients
are also able to extend the InverseMapper so that effects like twirling, rippling,
or any other mapping of their choice is supported. These nonlinear transforma-
tions are described in the following section.

1 BufferedImage s r c = ImageIO . read (new F i l e ( f i leName ) ) ;
2 I n t e r p o l a n t i n t e r p o l a n t = new N e a r e s t N e i g h b o r I n t e r p o l a n t ( ) ;
3 InverseMapper mapper =
4 new AffineTransformMapper ( Af f ineTrans form . g e t R o t a t e I n s t a n c e ( Math . PI / 4 ) ) ;
5 BufferedImageOp op = new GeometricTransformOp ( mapper , i n t e r p o l a n t ) ;
6 BufferedImage d e s t = op . f i l t e r ( s r c , n u l l ) ;

Listing 7.9. Applying a geometric transform.



i
i

i
i

i
i

i
i

7.3. Nonlinear Transformations 191

<<interface>>

Interpolant

BilinearInterpolant BicubicInterpolantComponentColorModelNearestNeighborInterpolant

GeometricTransfromOp

<<interface>>

BackwardMapper

RippleMapper TwistMapperComponentColorModelAffineTransformMapper

Figure 7.10. UML class diagram of the GeometricTransformOp.

7.3 Nonlinear Transformations
While linear transformations can be expressed as a 3 × 3 affine transformation
matrix, nonlinear transformations are arbitrarily complex user-defined functions.
Figure 7.11 gives a visual example of a nonlinear warp. In this example the

(a) Source image. (b) Twirled.

Figure 7.11. Nonlinear transformation.



i
i

i
i

i
i

i
i

192 7. Geometric Operations

image is twisted or twirled about some point of reference by an arbitrary amount.
This spatial warping is indicated by the superimposed grids on both the source
and destination images of Figure 7.11, where the reference point is given as the
center of the image.

The inverse transformation functions used to generate the twirled destina-
tion of this example are nonlinear and given by Equation (7.9), where x and
y are given as offsets from a reference point defined as (centerX, centerY).
The strength parameters give control over the amount of the vortex, where
greater strength values indicate greater distortion and smaller strength values

1 p u b l i c c l a s s TwirlMapper extends InverseMapper {
2 p r i v a t e double xc , yc , minDim , s t r e n g t h ;
3 p r i v a t e i n t centerX , centerY ;
4

5 p u b l i c TwirlMapper ( double xc , double yc , double s t r e n g t h ) {
6 t h i s . xc = xc ;
7 t h i s . yc = yc ;
8 t h i s . s t r e n g t h = s t r e n g t h ;
9 }

10

11 p u b l i c void i n i t i a l i z e M a p p i n g ( Buf feredImage s r c ) {
12 centerX = ( i n t ) ( xc ∗ s r c . getWidth ( ) ) ;
13 centerY = ( i n t ) ( yc ∗ s r c . ge tHe igh t ( ) ) ;
14 minDim = Math . min ( s r c . getWidth ( ) , s r c . ge tHe igh t ( ) ) ;
15 }
16

17 p u b l i c Point2D inver seTrans fo rm ( Point2D ds tP t , Point2D s r c P t ) {
18 i f ( s r c P t == n u l l ) {
19 s r c P t = new Point2D . Double ( ) ;
20 }
21 double dx = d s t P t . getX ( ) − centerX ;
22 double dy = d s t P t . getY ( ) − centerY ;
23 double r = Math . s q r t ( dx∗dx + dy∗dy ) ;
24 double t h e t a = Math . atan2 ( dy , dx ) ;
25

26 double srcX = r ∗ Math . cos ( t h e t a+s t r e n g t h ∗ ( r−minDim)/minDim ) + centerX ;
27 double srcY = r ∗ Math . s i n ( t h e t a+s t r e n g t h ∗ ( r−minDim)/minDim ) + centerY ;
28

29 s r c P t . s e t L o c a t i o n ( srcX , srcY ) ;
30 r e t u r n s r c P t ;
31 }
32 }

Listing 7.10. TwirlMapper.



i
i

i
i

i
i

i
i

7.3. Nonlinear Transformations 193

(a) Warped. (b) Rippled. (c) Diffused.

Figure 7.12. Nonlinear geometric transformations.

produce less distortion:

Tx(x, y) = r · cos(θ + strength · (r −minDim)/minDim) + centerX,
Ty(x, y) = r · sin(θ + strength · (r −minDim)/minDim) + centerY. (7.9)

This nonlinear mapping can be integrated into our custom geometric opera-
tion framework simply be subclassing the inverse mapper. Consider, for exam-
ple, Listing 7.10 , which is a complete implementation of a InverseMapper that
achieves the effects shown in Figure 7.11. When constructing a TwirlMapper
object, clients are able to specify the amount of distortion by specifying the
strength value. In addition, the distortions are made with respect to a reference
point, which is given as the first two constructor parameters xc and yc specify-
ing, in this listing, the relative location of the reference point. In other words,
parameters xc and yc are fractions of the width and height of the source, respec-
tively, such that to specify the center of any source image the parameters should
both be set to 0.5.

Other effects can be relatively easily implemented and are left as exercises.
Figure 7.12 gives an example of nonlinear geometric transformations. The image
of part (a) is warped such that space closer to the center is expanded while space
closer to the periphery is compressed. The image of part (b) is rippled both
vertically and horizontally while the image of (c) is diffused. Under diffusion, a
point is randomly shifted by an arbitrary amount from it’s original location.

Pixel Jelly fully supports the geometric transforms described in this section.
In addition, effects such as a fisheye lens and a kaleidoscope effect are also
included. Figure 7.13 shows a screenshot of the geometric operations dialog
window.



i
i

i
i

i
i

i
i

194 7. Geometric Operations

Figure 7.13. Geometric Ops screenshot.

7.4 Exercises
1. Give the homogeneous transformation matrix representing the sequence

of transformations given by (1) translation by (−50, 50) followed by (2)
rotation around the origin by 45◦ followed by (3) a horizontal shear with a
shear factor of 1.25.

2. Transform the point (25, 30) using the homogeneous transformation ma-
trix below:  1.59 0.18 −70.7

0.71 0.71 0.0
0.0 0.0 1.0

 .
3. Design and implement a class named ForwardGeometricOp that performs

forward mapping. The class should use a mapper in a way that is similar
to the custom GeometricOp technique mentioned in the text. The mapper
for this class should map source coordinates into integer-valued destina-
tion coordinates. No interpolation is required in this operation since each
sample of the source is simply copied to an appropriate location in the
destination.

4. Design and implement a class named BilinearInterpolant that imple-
ments the Interpolant interface of Listing 7.4. Your implementation
should, of course, perform bilinear interpolation.



i
i

i
i

i
i

i
i

7.4. Exercises 195

5. Design and implement a class named DecimationOp that extends NullOp.
Decimation is a technique for reducing the size of an image by simply
deleting every ith row and every jth column where i and j are controlling
parameters. When clients construct a DecimationOp they will specify the
values of i and j. Execute your filter on a variety of image types and
discuss why this technique is either superior or inferior to the resampling
technique described in this text.

6. Design and implement a class DiffuseMapper that extends the Inverse
Mapper class of Listing 7.6. The DiffuseMapper should produce images
similar to that shown in Figure 7.12 (c). The mapping between destination
and source is given by

x = x′ + S · rand(),
y = y′ + S · rand().

where S is a parameter giving the strength of the diffusion and rand() is
a function returning a uniformly distributed random value in the interval
[−1, 1].

7.? Design and implement a class RippleMapper that implements the
InverseMapper interface of Listing 7.6. The RippleMapper produces im-
ages that are rippled in both the horizontal and vertical dimension about a
reference point (xc, yc) with strengths Sx and Sy. Letting dx = x′ − xc,
dy = y′ − yc, r =

√
dx2 + dy2, θ = tan−1(dy, dx), and D = min(width,

height); then the twisting transformation is given by

x = r · cos(θ + Sx · (dy −D)/D) + xc,
y = r · sin(θ + Sy · (dx−D)/D) + yc.

Artwork
Figure 7.1. Portrait of Victorine Meurent by Édouard Manet (1832–1883). See page
253 for a brief biographical sketch of the artist. Although Victorine Meurent was
an able artist, she is best remembered as a model for Édouard Manet and ap-
pears in his two masterworks, The Luncheon on the Grass and Olympia. She began
modeling at the age of sixteen and was inducted into the Société des Artistes
Français in 1903.

Figure 7.2. Portrait of Victorine Meurent by Édouard Manet (1832–1883). See page
253 for a brief biographical sketch of the artist and the previous entry for a brief
discussion of Victorine Meurent.



i
i

i
i

i
i

i
i

196 7. Geometric Operations

Figure 7.3. The Birth of Venus by Allessandro di Mariano di Vanni Filipepi
(1445–1510). Alessandro Filipepi was an Italian painter during the Early Re-
naissance period and is more commonly known as Sandro Botticelli. Figures 7.3
and 7.6 depict a detail of his most famous work showing the goddess Venus
emerging from the sea as a full grown adult figure.

Figure 7.6. The Birth of Venus by Allessandro di Mariano di Vanni Filipepi
(1445–1510). See previous entry for a brief biographical sketch of the artist.

Figure 7.11. Girl with Golden Hat by Pierre-August Renoir (1841–1919). See page
119 for a brief biographical sketch of the artist.

Figure 7.12. Girl with Golden Hat by Pierre-August Renoir (1841–1919). See page
119 for a brief biographical sketch of the artist.



i
i

i
i

i
i

i
i

�

Image Printing
and Display 8

Digital images are meant to be seen and therefore displayed on some visual
medium. A digital image may be displayed on a computer monitor or television
screen, printed in a newspaper or produced on a large variety of output devices
each of varying capabilities. Processing is usually required to accommodate the
properties of the output device so that the displayed image appears identical to
its corresponding source image. This processing generally attempts to mimic
the color depth, color model, and spatial resolution of the source image where
the output device may have a reduced color depth, have a lower resolution, or
doesn’t support the same color model.

An output device will generally be characterized by pixel shape, spatial res-
olution, and color depth. A typical computer monitor, for example, will use
square pixels with a spatial resolution of 72 pixels per inch and a color depth of
32 bpp. A black-and-white laser printer, by contrast, may use circular pixels with
a resolution of 1200 pixels per inch and a color depth of 1 bpp. Whenever a digi-
tal image is rendered for display, the characteristics and limitations of the output
device must be considered in order to generate an image of sufficient fidelity.

8.1 Halftoning
The central problem when printing relates to the color depth of the output de-
vice. Many printers support only a 1 bpp color depth since they only use black
ink placed on white paper. This naturally raises the question of how a grayscale
image can be produced on a binary output device. In the case of a binary out-
put, halftoning seeks to answer the question of which output pixels in the out-
put should be black and which white in order to most accurately reproduce
a grayscale source. The central question then becomes how to reproduce a
grayscale image on an output device that can only print with black ink. In
more formal terms, the question becomes that of reducing the color depth from

197



i
i

i
i

i
i

i
i

198 8. Image Printing and Display

(a) Halftoned gradient. (b) Halftoned image with inset.

Figure 8.1. Traditional halftoning.

an 8 bpp grayscale source image to a 1 bpp destination while maintaining an
acceptable visual appearance.

In traditional, analog halftoning, a grayscale image is converted into a binary
image composed of a pattern of dots. The dots are arranged in a grid and are
themselves of various sizes. Figure 8.1 shows how black dots of various sizes
printed on a white background can give the visual illusion of all shades of gray
when viewed from an appropriate distance. The 8-bit grayscale gradient of (a)
is halftoned to a 1-bit approximation. While appearing to be a grayscale image,
the image of part (b) is a 1 bpp halftone as depicted by the highlighted inset.
Halftoning in this example gives a 1-bit output device the illusion of being an 8-
bit device.1

Traditional halftoning is a continuous domain or analog process that is per-
formed by projecting an image through an optical screen onto film. The surface
of the optical screen is etched with lines in such a way as to cause dots to appear
on the film in correspondence with the source intensity. Larger black dots appear
in regions of dark intensity and smaller black dots in regions of bright intensity.
The spatial resolution of halftone systems is given as lines per inch (LPI), which
measures the density of the etched lines on the optical screen. Newsprint, for
example, is typically printed at 85 LPI while glossy magazines are printed using
300 LPI halftone screens.

1It should be noted that since this text is printed with black ink on white background all images
included herein have been halftoned. Even those images that appear grayscale in the text are, of
course, binary.



i
i

i
i

i
i

i
i

8.2. Thresholding 199

Figure 8.2. Dithering example.

Digital halftoning, also known as dithering, is any binary process that re-
duces the color depth of a source while maintaining the sources spatial resolu-
tion. In image processing, a binary process is any process that outputs one of two
colors for every pixel. Digital halftoning differs from traditional halftoning since
the digital halftoning process is discrete and the spatial resolution of the source
image and the output device are uniform. Traditional halftoning takes place in
the continuous domain and the spatial resolution of the output device is flexible
since dot sizes are allowed to vary continuously. The output device normally
has a color depth of 1 bpp; hence the task is to convert a grayscale image into a
binary image of the same dimensions.

The human visual system performs spatial integration (averaging) of colors
near the point of focus and hence the central idea of dithering is to ensure that
the local average of all output samples is identical to its corresponding source
sample. Dithering increases the apparent color depth of an output device by
carefully intermingling colors from some limited palette in such a way that when
local regions are averaged they produce the desired colors. Color dithering is
discussed later in this chapter. Figure 8.2 illustrates how various shades of gray
can be generated by interweaving only the colors black and white, as shown in
the leftmost image. Figure 8.2 also shows how shades of green can be generated
by interweaving only cyan and yellow.

8.2 Thresholding
Thresholding is a point processing technique that is also one of the simplest
dithering techniques. For a given source sample Sinput and threshold value τ ,
the corresponding output sample Soutput is given in Equation (8.1). The output
is either black or white, depending upon whether or not the input sample is below



i
i

i
i

i
i

i
i

200 8. Image Printing and Display

(a) Grayscale source. (b) τ = 128. (c) τ = 196.

Figure 8.3. Threshold selection.

or above the threshold:

Soutput =
{

black Sinput < τ,
white Sinput ≥ τ.

(8.1)

Thresholding rarely produces pleasing results and is solely dependent on
proper selection of the threshold value. The threshold is commonly set to the
center of the source image’s dynamic range, which for an 8-bit image equates to
128. While this threshold value is appropriate as a generic solution it does not
produce good results in many cases. Figure 8.3 illustrates the effect of choosing
an incorrect threshold. In this example, an overexposed source image is thresh-
olded with a cutoff of 128 to obtain the binary image of (b). Since the source
image was overexposed, nearly all of the grayscale values in the source exceed
128 and hence nearly all of the resulting binary output samples are converted to
white. Choosing a threshold of 196 produces much better results as can be seen
in Figure 8.3(c).

Adaptive thresholding, also known as dynamic thresholding, is used to de-
termine an appropriate threshold for a particular image. Adaptive thresholding
is typically based on a statistical analysis of an image’s histogram, and seeks to
determine an optimal split between clusters of samples in the data distribution.
The simplest adaptive thresholding technique is to use either the average or me-
dian value of all source samples as the threshold. Computing both the average
and mean sample values requires one pass through the image data and hence
incurs a small amount of overhead.

A more sophisticated alternative is to use is an iterative technique uncov-
ered by Ridler and Calvard [Ridler and Calvard 78]. This algorithm locates a
threshold that is midway between the means of the black and white samples in
the histogram. Listing 8.1 gives a pseudocode description of the algorithm that is



i
i

i
i

i
i

i
i

8.2. Thresholding 201

1 a l go r i t hm f i n d T h r e s h o l d ( Image s r c ) {
2 T0 = 0
3 T1 = 128
4 while ( T0 != T1 )
5 T0 = T1
6 M0 = the average va lue of a l l samples < T0
7 M1 = the average va lue of a l l samples >= T0
8 T1 = (M0+M1)/2
9 r e t u r n T0

10 }

Listing 8.1. Adaptive threshold selection.

straightforward to implement but is computationally expensive since it converges
to a solution by making multiple passes through the image.

Regardless of the technique used to compute a threshold value, adaptive
thresholding can be either global or local. Global adaptive thresholding uses
a single, fixed threshold value that is applied to every sample in the source while
local adaptive thresholding uses a separate threshold value for each sample in
the source image. Local thresholding examines the samples in a region centered
on an input sample and computes a threshold value that is used only for that
particular sample.

Local adaptive thresholding can be described as a sequence of other well-
known processes. Let I be a source image that is to be locally thresholded and
let M be the result of median filtering I. Image M represents the threshold val-
ues for each sample of I such that every sample I(x, y, b) that exceeds M(x, y, b)
should be white. Image M is then subtracted from I, which results in an image
having positive samples wherever I(x, y, b) > M(x, y, b) and zero-valued sam-
ples elsewhere (assuming that clamping is used when subtracting). This image
can then be globally thresholded using a fixed threshold value of 1.

Local adaptive thresholding is useful as a preprocessing step in certain com-
puter vision applications that attempt to identify objects in an image with vary-
ing illumination. Figure 8.4 shows an 8 bit grayscale source image that has been
globally thresholded using an adaptively determined threshold value in part (b)
and one where the threshold is adaptively determined based on the local region,
as shown in (c).

As mentioned earlier in this section, the goal of halftoning is to produce an
output where the average light intensity of every local region in the output image
is approximately equal to the corresponding average in the same region of the
source. Although thresholding achieves such an equivalence on a global scale it
rarely achieves this effect on smaller local scale. Consider again the images of
Figure 8.4. The grayscale source has an average value of 88 while the binarized



i
i

i
i

i
i

i
i

202 8. Image Printing and Display

(a) Source image. (b) Global. (c) Local.

Figure 8.4. Thresholding.

image of (c) has an average value of 65. This is a reasonable approximation of
grayscale averages over the entire image. Consider, however, the local region
of the upper-right shoulder where the binary image has an average grayscale
value of 255 while the corresponding image has a grayscale average of approxi-
mately 180, depending upon precise location. In other words, while prominent
features of an image survive the thresholding process, much of the detail is oblit-
erated.

8.3 Patterning
Dithering techniques are a significant improvement over thresholding since they
generate images that maintain approximately equal intensities at the local level
and not only at the global level. Patterning is a halftone dithering technique that
generates a binary image from a grayscale or color source by increasing the res-
olution of the output in order to compensate for the decreased color depth. Pat-
terning works by using a group of pixels in the display device to represent a single
pixel from the source image.

Consider using a 3 × 3 binary region to represent a single grayscale value.
There are 512 possible patterns or arrangements of the nine binary pixels, but
fewer possible average intensity values. With nine binary pixels, a 3 × 3 region is
able to promulgate the illusion of only ten shades of gray. When all pixels are
black, the average value of the nine pixels is 0/9. When any one pixel is white
and all others are black, the average value is 1/9. This logic is easily extended
to show that in normalized grayscale color space a 3× 3 binary image is able to
simulate ten shades of gray having normalized values of 1

9{0, 1, 2, 3, 4, 5, 6, 7, 9}.
A binary font is a set patterns such that all possible grayscale values are repre-
sented. Figure 8.5 shows an example of a 3× 3 binary font.



i
i

i
i

i
i

i
i

8.3. Patterning 203

Figure 8.5. Clustered dot patterning example.

Certain font patterns should be avoided since they will cause artificial lines
or repeated patterns in the destination. Diagonal, horizontal, or vertical lines
within a single pattern should generally be avoided. The font of Figure 8.6 is
known as an clustered pattern since as intensity increases each new pattern is
obtained by flipping one black dot to white. In other words, each pattern is a
superset of the previous pattern in the sequence. Any halftoning technique is
subject to distortion by using a device that slightly smears or blurs individual
pixels when printed. The clustered dot technique minimizes the effect of such
smearing since the blurry black pixels tends to overlap other blurry black pixels.

Figure 8.6. A 3× 3 binary font.



i
i

i
i

i
i

i
i

204 8. Image Printing and Display

Of course the destination image will be larger in size than the source image
by an amount that is proportional to the color depth of the destination. As
the example of Figure 8.6 indicates, an output image with 10 grayscale levels
requires a threefold increase in dimension. To generate an image with 256 levels
of intensity requires a large font size where the minimum size of such a font is
left as an exercise for the reader. Since large font sizes are required to obtain
good halftones, patterning is rarely used in practice. Figure 8.5 shows a source
image that uses the clustered dot pattern to produce the binary image on the
right. Notice that the destination image is three times the width and height of
the source and that artificial contours are introduced as an artifact of patterning.

8.4 Random Dithering
Random dithering, as its name implies, chooses the threshold value at random
from a uniform distribution of values in the dynamic range of the source. Al-
though it may not be intuitively apparent, this technique does maintain both the
global intensity value and local intensity values over reasonably small neighbor-
hoods. Consider a grayscale image having an average grayscale intensity of 100.
On average, the randomly selected threshold will fall below the pixel value ap-
proximately 100 out of every 255 samples, thus generating a white output, while
about 155/255 percent of the thresholds will be above the pixel value and hence
will likely generate a black output, thus maintaining the proper average intensity
value at any dimensional scale.

Digital random thresholding is similar to a high quality printmaking tech-
nique known as mezzotinting, a process that is known to have been used since
1642. In mezzotinting, an artist roughens the surface of a soft metal printing
plate with thousands of small randomly located depressions or dots. The density
of the dots within a local region determines the tonality of the print. When the
plate is covered with ink and pressed against canvas or paper, those regions with
a high dot density produce areas of less intensity than those areas with few or no
dots.

8.4.1 Implementation

While simple to implement, this technique generally generally fails to produce
acceptable visual results. Listing 8.2 shows an implementation of random dither-
ing. The Random class is used to generate a sequence of random thresholds in the
range 0 to 256 which are applied to each sample of the source. Note that the
brightness band of the source image is extracted by a filter on line 28 prior to
thresholding. This effectively converts color images into grayscale images prior
to thresholding while leaving grayscale images intact.



i
i

i
i

i
i

i
i

8.5. Dithering Matrices 205

1 p u b l i c c l a s s RandomDitheringOp extends NullOp {
2 p r i v a t e Random randomNumbers ;
3

4 p u b l i c RandomDitheringOp ( i n t seed ) {
5 randomNumbers = new Random( seed ) ;
6 }
7

8 p u b l i c RandomDitheringOp ( ) {
9 randomNumbers = new Random ( ) ;

10 }
11

12 @Override
13 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
14 i f ( d e s t != n u l l && d e s t . getType ( ) != BufferedImage .TYPE BYTE BINARY) {
15 throw new I l l ega lArgumentExcep t ion ( "destination must be binary" ) ;
16 }
17

18 i f ( d e s t == n u l l ) {
19 d e s t = new BufferedImage ( s r c . getWidth ( ) ,
20 s r c . ge tHe igh t ( ) ,
21 BufferedImage .TYPE BYTE BINARY ) ;
22 }
23

24 i f ( s r c . getType ( ) == BufferedImage .TYPE BYTE BINARY) {
25 r e t u r n new NullOp ( ) . f i l t e r ( s r c , d e s t ) ;
26 }
27

28 s r c = new BrightnessBandExtrac tOp ( ) . f i l t e r ( s r c , n u l l ) ;
29 f o r ( Locat ion pt : new Ras te rScanner ( s rc , f a l s e ) ) {
30 i n t t h r e s h o l d = randomNumbers . n e x t I n t ( 2 5 7 ) ;
31 i n t b r i g h t n e s s = s r c . g e t R a s t e r ( ) . getSample ( p t . col , p t . row , 0 ) ;
32 i n t output = 255;
33 i f ( b r i g h t n e s s < t h r e s h o l d ) {
34 output = 0 ;
35 }
36 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , 0 , output ) ;
37 }
38 r e t u r n d e s t ;
39 }
40 }

Listing 8.2. RandomDitherOp.

8.5 Dithering Matrices
A dither matrix is a rectangular pattern of threshold values that seeks to pro-
duce optimal output for a local region of the source. When dithering a W ×H
source image with a N×N dither matrix, the dithering matrix is generally much



i
i

i
i

i
i

i
i

206 8. Image Printing and Display

0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

6 7 8 9
5 0 1 10
4 3 2 11
15 14 13 12

56 72 88 104
40 8 24 167
72 56 40 183

247 231 215 199

(a) Ordered dot. (b) Clustered dot. (c) Rescaled clustered dot.

Figure 8.7. Dither matrices.

smaller than the source and is therefore repetitively tiled across and down the
source in order to generate threshold values for every source sample. Dither ma-
trices correspond to pattern fonts since the thresholds generally correspond to
the likelihood of a black pixel occurring in any one of the fonts. For the font of
Figure 8.6 the center threshold would have a value of 0 since it is black only once
of the ten patterns while the bottom right pixel has a threshold of 15 since it is
the most probable black pixel within the font.

Dither matrices are generally square. Figure 8.7 shows two 4× 4 dither ma-
trices. For each matrix the thresholds cover the interval [0,15] and represent 16
different grayscale values. In order to generate actual threshold values for a par-
ticular source image, the matrix must be rescaled to the dynamic range of the
source. Given an N × N dither matrix Dm we can rescale the matrix for 8 bpp
images to generate the threshold matrix as

round
(

255
2 ·N2

(2 ·Dm + 1)
)
.

8.5.1 Implementation
The DitherMatrixOp class is given in Listing 8.3. Clients construct a dithering
matrix operator by passing in a non-normalized dither matrix. Two publicly
predefined matrices are defined as ORDERED 3x3 and CLUSTERED 3x3.

1 p u b l i c c l a s s DitherMatrixOp extends NullOp {
2 p r i v a t e i n t [ ] [ ] t h r e s h o l d s ;
3

4 p u b l i c s t a t i c f i n a l i n t [ ] [ ] ORDERED 3x3 = {{1 , 7 , 4} ,
5 {5 , 8 , 3} ,
6 {6 , 2 , 9}} ;
7 p u b l i c s t a t i c f i n a l i n t [ ] [ ] CLUSTERED 3x3 = {{8 , 3 , 4 ,} ,
8 {6 , 1 , 2} ,
9 {7 , 5 , 9}} ;



i
i

i
i

i
i

i
i

8.6. Error Diffusion Dithering 207

10

11 p u b l i c DitherMatrixOp ( i n t [ ] [ ] matr ix ) {
12 t h r e s h o l d s = s c a l e ( matr ix ) ;
13 }
14

15 p r i v a t e i n t [ ] [ ] s c a l e ( i n t [ ] [ ] d i t h e r M a t r i x ) {
16 i n t s i z e = d i t h e r M a t r i x . l e n g t h ;
17 i n t [ ] [ ] r e s u l t = new i n t [ s i z e ] [ s i z e ] ;
18 double f a c t o r = 1 .0 / ( 2 . 0 ∗ s i z e ∗ s i z e ) ;
19 f o r ( i n t x = 0 ; x < s i z e ; x++) {
20 f o r ( i n t y = 0 ; y < s i z e ; y++) {
21 r e s u l t [ x ] [ y ] =
22 I m a g i n g U t i l i t i e s . clamp ( 2 5 5 . 0∗ ( 2∗ d i t h e r M a t r i x [ x ] [ y ]+1)∗ f a c t o r , 0 , 2 5 5 ) ;
23 }
24 }
25 r e t u r n r e s u l t ;
26 }
27

28 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
29 i f ( d e s t == n u l l ) {
30 d e s t = new BufferedImage ( s r c . getWidth ( ) ,
31 s r c . ge tHe igh t ( ) ,
32 BufferedImage .TYPE BYTE BINARY ) ;
33 }
34 i n t s i z e = t h r e s h o l d s . l eng th , t h r e s h o l d , output ;
35

36 f o r ( Locat ion p : new Ras te rScanner ( s rc , f a l s e ) ) {
37 t h r e s h o l d = t h r e s h o l d s [ p . c o l % s i z e ] [ p . row % s i z e ] ;
38 output = 0 ;
39 i f ( s r c . g e t R a s t e r ( ) . getSample ( p . col , p . row , 0 ) >= t h r e s h o l d ) {
40 output = 1 ;
41 }
42 d e s t . g e t R a s t e r ( ) . se tSample ( p . col , p . row , 0 , output ) ;
43 }
44 r e t u r n d e s t ;
45 }
46 }

Listing 8.3. DitherMatrixOp.

8.6 Error Diffusion Dithering
Error diffusion is a type of halftoning that keeps track of the error generated
when mapping a source sample onto the output device and compensating for
that error when mapping future pixels. Consider an 8 bit source sample valued
at 200. Using a threshold value of 128 this sample maps to white (255) on the
output device. The rounding error in this example is 200 − 255 = −55. In
other words, the output at that point is too bright by 55 units, and hence 55
units worth of intensity must somehow be removed from nearby locations of



i
i

i
i

i
i

i
i

208 8. Image Printing and Display

the destination image. Subsequent mappings will then account for this over-
brightness by making adjustments such that generating a white sample is less
likely by an amount directly proportional to the accumulated rounding error.
Error diffusion dithering therefore maintains the grayscale tonality at the local
level in addition to ensuring that the tonality of the output image is similar to the
source at the global level.

8.6.1 Floyd-Steinberg Dithering

Floyd-Steinberg error diffusion is based on a raster scan of a source image that
proceeds in top-to-bottom, left-to-right fashion. Each input sample is thresh-
olded using a fixed global threshold value and a rounding or quantization error
for that sample is determined. The rounding error is then split into four pieces
and each of these pieces is ’pushed’ into, or diffused into, nearby samples. Fig-
ure 8.8 illustrates the diffusion process where the rounding error e of a sample
is split into four segments using the proportions { 7

16 ,
3
16 ,

5
16 ,

1
16}, which together

constitute the diffusion matrix. Nearby samples are then adjusted by adding one
of the error components to the sample value in that cell. The sample to the east
is increased by 7e

16 , the sample to the southwest is increased by 3e
16 , the sample

directly to the south is increased by 5e
16 , and the sample to the south-east is in-

creased by e
16 .

A positive rounding error indicates that the output image is too dark and that
it should therefore be more likely that subsequent thresholding operations will
generate a white output. This is exactly what occurs since the four neighboring
sample values are increased and hence more likely to exceed the threshold value.
Similar logic applies with a negative rounding error. In this case, the output
image is too bright and subsequent thresholding should more likely be made to
output a black pixel. Since neighboring pixels in this case are reduced in mag-
nitude, those samples are more likely to fall below the threshold value and thus
generate a black output. The Floyd-Steinberg error diffusion process is described
algorithmically in Listing 8.4.

Figure 8.8. Floyd-Steinberg error diffusion.



i
i

i
i

i
i

i
i

8.6. Error Diffusion Dithering 209

1 a l go r i t hm f l o y d S t e i n b e r g ( Image s r c ) {
2 Image temp = copy of s r c
3 f o r every sample S a t l o c a t i o n x , y
4 i f ( S < 128) then d e s t ( x , y , b ) = b l a c k
5 e l s e d e s t ( x , y , b ) = white
6

7 roundingError = S − d e s t ( x , y , b )
8 tmp ( x+1 , y , b ) = tmp ( x+1 , y , b ) + roundingError ∗7/16;
9 tmp ( x−1,y+1 ,b ) = tmp ( x−1,y+1 ,b ) + roundingError ∗3/16;

10 tmp ( x , y+1 ,b ) = tmp ( x , y+1 ,b ) + roundingError ∗5/16;
11 tmp ( x+1 ,y+1 ,b ) = tmp ( x+1 ,y+1 ,b ) + roundingError ∗1/16;
12 }
13 }

Listing 8.4. Floyd-Steinberg algorithm.

Variants of the Floyd-Steinberg diffusion matrix have since been proposed.
Each of these variations seeks to improve either the aesthetic quality of the output
or improve the processing speed of the filter or both. The Jarvis, Judice, and
Ninke filter seeks to improve the quality by distributing the error across a larger
neighborhood. The Stucki filter was later proposed as an improvement to the
Jarvis-Judice-Ninke filter. The Sierra filter is interesting since it is both faster,
in its most compact form, and typically produces more pleasing results than the
Floyd-Steinberg filter. The diffusion matrices for each of these variants is shown
in Figure 8.9, where the black square symbol, �, corresponds to the currently
scanned pixel and the amount of error distributed to the various neighbors is
given by the matrix weights.

Figure 8.10 gives a comparison among a portion of the dithering algorithms
described in this text. The image of part (a) shows the results of Floyd-Steinberg,
the Jarvis-Judice-Ninke approach is shown in (b) and Sierra dithering is shown
in (c).

1
48

0 0 � 7 5
3 5 7 5 3
1 3 5 3 1

1
42

0 0 � 8 4
2 4 8 4 2
1 2 4 2 1

1
32

0 0 � 5 3
2 4 5 4 2
0 2 3 2 0

(a) Jarvis-Judice-Ninke. (b) Stucki. (c) Sierra.

Figure 8.9. Diffusion Matrices.



i
i

i
i

i
i

i
i

210 8. Image Printing and Display

(a) Floyd-Steinberg. (b) Jarvis-Judice-Ninke. (c) Sierra.

Figure 8.10. Dithering example.

8.6.2 Implementation

Error diffusion dithering can be generalized as a thresholding operation followed
by an error distribution step. Since the error distribution is dependent on the dif-
fusion matrix, we choose to implement a generalized ErrorDiffusionOp class
that performs the dithering while concrete subclasses simply specify the appropri-
ate diffusion matrix. Listing 8.5 gives the implementation. Clients can construct
an ErrorDiffusionOp by providing the diffusion matrix where the width of the
matrix must be odd and the center element of the first row will always corre-
spond to the scanned sample. The destination image for this operation is forced
to be of binary type, although we will see later on in this chapter that diffusion
can be used with color images also.

Note that within the filter method, if the source image is already binary then
a copy of the source is returned by line 46. If the source image is not already

1 p u b l i c c l a s s ErrorDi f fus ionBinaryOp extends NullOp {
2 p r i v a t e f l o a t [ ] [ ] d i f f u s i o n M a t r i x ;
3 p r i v a t e i n t dmWidth , dmHeight ;
4 p r i v a t e ImagePadder sampler = BlackFramePadder . g e t I n s t a n c e ( ) ;
5

6 p u b l i c ErrorDi f fus ionBinaryOp ( f l o a t [ ] [ ] matr ix ) {
7 d i f f u s i o n M a t r i x = matr ix ;
8 dmWidth = d i f f u s i o n M a t r i x [ 0 ] . l e n g t h ;
9 dmHeight = d i f f u s i o n M a t r i x . l e n g t h ;

10 }
11

12 p r o t e c t e d void d i f f u s e E r r o r ( Buf feredImage tmp ,
13 i n t col ,
14 i n t row ,
15 f l o a t e r r o r ) {



i
i

i
i

i
i

i
i

8.6. Error Diffusion Dithering 211

16

17 f o r ( i n t dmRow = 0 ; dmRow < dmHeight ; dmRow++) {
18 f o r ( i n t dmCol = 0 ; dmCol < dmWidth ; dmCol++) {
19 f l o a t weightedError = d i f f u s i o n M a t r i x [dmRow] [ dmCol ] ∗ e r r o r ;
20 i f ( we igh tedError != 0) {
21 f l o a t sampleWithError = sampler . getSample ( tmp ,
22 c o l+dmCol−dmWidth/2 ,
23 row+dmRow,0)+ weigh tedError ;
24 I m a g i n g U t i l i t i e s . s a f e l y S e t S a m p l e ( tmp ,
25 c o l+dmCol−dmWidth/2 ,
26 row+dmRow,
27 0 ,
28 sampleWithError ) ;
29 }
30 }
31 }
32 }
33

34 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
35 i f ( d e s t != n u l l && d e s t . getType ( ) != BufferedImage .TYPE BYTE BINARY) {
36 throw new I l l ega lArgumentExcep t ion ( "destination must be binary" ) ;
37 }
38

39 i f ( d e s t == n u l l ) {
40 d e s t = new BufferedImage ( s r c . getWidth ( ) ,
41 s r c . ge tHe igh t ( ) ,
42 BufferedImage .TYPE BYTE BINARY ) ;
43 }
44

45 i f ( s r c . getType ( ) == BufferedImage .TYPE BYTE BINARY) {
46 r e t u r n new NullOp ( ) . f i l t e r ( s r c , d e s t ) ;
47 }
48

49 s r c = new BrightnessBandExtrac tOp ( ) . f i l t e r ( s r c , n u l l ) ;
50 s r c = new ConvertToFloatOp ( ) . f i l t e r ( s r c , n u l l ) ;
51 f o r ( Locat ion pt : new Ras te rScanner ( s rc , f a l s e ) ) {
52 f l o a t sample = s r c . g e t R a s t e r ( ) . ge tSampleFloa t ( p t . col , p t . row , 0 ) ;
53 i n t output = sample < 128 ? 0 : 255 ;
54 f l o a t e r r o r = sample − output ;
55

56 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , 0 , output ) ;
57 d i f f u s e E r r o r ( s r c , p t . col , p t . row , e r r o r ) ;
58 }
59 r e t u r n d e s t ;
60 }
61 }

Listing 8.5. ErrorDiffusionBinaryOp.



i
i

i
i

i
i

i
i

212 8. Image Printing and Display

1 p u b l i c c l a s s FloydSte inbergDi ther ingOp extends ErrorDi f fus ionBinaryOp {
2 p u b l i c s t a t i c f l o a t [ ] [ ] ge tMat r ix ( ) {
3 r e t u r n new f l o a t [ ] [ ] { { 0 f , 0 f , 7 f /16 f } ,
4 {3 f /16 f , 5 f /16 f , 1 f /16 f }} ;
5 }
6

7 p u b l i c FloydSte inbergDi ther ingOp ( ) {
8 super ( ge tMat r ix ( ) ) ;
9 }

10 }

Listing 8.6. FloydSteinbergDitheringOp.

binary then the brightness band of the source image is extracted and the raster
converted to floating point type by line 50. This image serves as a temporary data
structure, that can be modified, as is implicitly done in line 57, without altering
the source image itself. The diffusion method of line 15 iterates over all diffusion
matrix coefficients and updates the corresponding sample by the weighted error.
Note that the safelySetSample method of line 28 allows the indices of a sample
to be off of the image, in which case the method has no effect.

We can now easily implement a specific dithering technique by authoring a
concrete subclass that constructs the appropriate diffusion matrix. Listing 8.6
gives a complete class that performs Floyd-Steinberg dithering.

8.7 Color Dithering
Previous sections have presented the notion of halftoning grayscale images to
binary images, but the problem of dithering can be extended to color, where the
idea is to reduce the color depth of a true color image to match that of the output
device. A color printer, for example, may use a palette of four colors (cyan,
magenta, yellow, and black) or a thin-client web browser may use the web-safe
palette consisting of only 216 colors to display an image.

Figure 8.11 gives an example of color dithering. The true color 24-bit source
image has a total of 206,236 unique colors. The image of part (c) has been color
dithered using a palette of 16 colors that were carefully chosen to maximize the
quality of the dithered image. The source image was dithered using a 4-color
palette to obtain the surprisingly good result shown in (e). The detailed subimage
of parts (b), (d), and (f) show how the flower in the vase at the left-hand side of
the table setting is affected by color dithering.



i
i

i
i

i
i

i
i

8.7. Color Dithering 213

(a) A 206,236 color source. (b) Detail.

(c) A 4 bpp source. (d) Detail.

(e) A 2 bpp source. (f) Detail.

Figure 8.11. Color dithering.



i
i

i
i

i
i

i
i

214 8. Image Printing and Display

1 a l go r i t hm c o l o r D i t h e r ( Image s rc , Color [ ] p a l e t t e ) {
2 f o r every p i x e l a t l o c a t i o n ( x , y ) in s r c
3 index = index of p a l e t t e c o l o r c l o s e s t to s r c ( x , y )
4 d e s t ( x , y ) = p a l e t t e [ index ]
5 e r r o r = s r c ( x , y ) − d e s t ( x , y )
6 d i f f u s e the e r r o r to nearby p i x e l s on a band−by−band b a s i s
7 end
8 r e t u r n d e s t
9 end

Listing 8.7. Color dithering.

Consider a source image I and a palette P that contains n colors. For ev-
ery pixel I(x, y) of the source, the output pixel I ′(x, y) must be an element of
the palette. We can extend the notion of error-diffusion dithering to color im-
ages as described in Listing 8.7. For every pixel of the source image we choose
the nearest color in the palette and output that color. The error between the
palette color and source is then distributed across every band of unprocessed
pixels.

This algorithm measures the distance between two colors by either the L1 or
L2 metrics described in Section 3.2.6. For each source pixel I(x, y) the palette
color of the smallest distance from I(x, y) is chosen as the output and the error
is computed and distributed on each band. A palette containing only the two
colors black and white will produce a binary image in the manner described
earlier in this chapter. A palette containing the colors cyan, magenta, yellow
and black will produce an output suitable for printing on a four color device.
When developing graphics for use on the Internet, an artist might choose the
web-safe palette, a standard palette that is supported by the vase majority of web
browsers.

Our presentation has thus far focused on a scenario where a color image is
to be displayed on some limited resource output device where the capabilities
of the output device define the palette. Certain image compression techniques,
however, work by dithering a source image using a palette that is dynamically
created and optimized for the source image. GIF compression, for example,
takes a 32 bpp source image and dithers it according to an arbitrary palette to
produce an 8-bit indexed image.

Since the fidelity of the compressed image depends on the palette, it is rea-
sonable to choose a palette that will produce the highest quality output. In GIF
compression the problem is first to find the palette that ensures the highest fi-
delity after dithering. This problem is discussed in more detail in Section 10.6.



i
i

i
i

i
i

i
i

8.8. Exercises 215

8.8 Exercises
1. Use the Pixel Jelly application to generate various 3× 3 fonts that are used

to binarize a test image with some large low frequency regions. One of
your fonts should include a horizontal row of black pixels, another should
include a vertical column of black pixels, and another should have a diag-
onal line. Submit a report that includes the test image, each pattern used,
and the results of patterning; comment on the results of binarization using
these various patterns.

2. Use the Pixel Jelly application to dither a full-color source image using
a palette of exactly six colors that you believe will produce the best re-
sults. Have the application choose a palette of size six that is used to
dither the same source. Submit a report that includes the test image, a
graphic of the palettes used, and the results of dithering. Comment on the
results.

3. Write two complete subclasses of the ErrorDiffusionBinaryOp that use
the Sierra matrix and the Jarvis-Judice-Ninke matrix for diffusion.

4. Write a complete subclass of the ErrorDiffusionBinaryOp that uses the
Sierra-2-4A filter shown below. This filter is exceptionally small, and hence
efficient. Compare the results produced by this filter with the Floyd-
Steinberg and Stucki filters on a variety of image types.

1
4

� 2
1 1

5. When using patterning to convert a grayscale image to binary, a 3× 3 font
is required to achieve the appearance of ten grayscale levels in the output.
What size font is required to achieve the illusion of 256 levels?

6. Here is an interesting way of creating an image that can be displayed using
a text editor! Write a class that uses patterning to generate a text file such
that each character of the text file corresponds to a single pixel of the source
image. You might consider using a space character for white pixels and an
ampersand for black pixels. Your class should take a BufferedImage and
produce a text file. For further work consider writing a class that reads a
text file and creates a BufferedImage. To view the “image” simply open
the text file with any text editor. You may need to turn off wrapping and
reduce the font size to produce an acceptable result.



i
i

i
i

i
i

i
i

216 8. Image Printing and Display

Artwork
Figure 8.1. “Auguste Rodin” by Gaspar-Félix Tournachon (1820–1910). See
page 119 for a brief biographical sketch of the artist. Auguste Rodin was a
French sculptor whose work emphasized physical realism over the traditional
stylized forms and themes. Rodin was born in Paris to a working-class family
and was largely self taught; taking an interest in clay sculpture at an early age.
Although controversy surrounded him throughout his career, he was, at the end
of his life, recognized as the preeminent French sculptor of his day. His best
known works include The Thinker and The Walking Man.

Figures 8.3, 8.4, 8.5, and 8.10. “Auguste Rodin” by Gaspar-Félix Tournachon
(1820–1910). See above.

Figure 8.11. Still Life with Hyacinth by August Macke (1887–1914). August
Macke was a German painter at the turn of the 20th century. Macke was a mem-
ber of the Blue Riders, a group of Expressionist artists. Macke was acquainted
with artists such as Franz Marc, Wassily Kandinsky, Robert Delaunay, and Paul
Klee, whose work profoundly influenced his own style. Macke died as a solider
during the early months of World War 1.



i
i

i
i

i
i

i
i

�

Frequency
Domain 9

9.1 Overview
Recall that a digital image is a discrete approximation to a continuous function.
The digital image is acquired by sampling and quantizing some continuous im-
age and has so far been represented as a tabular arrangement of samples. This
representation lies within the spatial domain, but other representations are pos-
sible and, in certain situations, advantageous.

An alternative to representing image data spatially is to use a frequency-based
approach where an image is decomposed into components that describe the fre-
quencies present in the image. Just as a musical chord can be described as the
sum of distinct pure tones, a digital image can be described as the sum of dis-
tinct patterns of varying frequencies. When an image is described in terms of its
frequencies, the image is said to be represented in the frequency domain.

This chapter describes two common ways of representing image data in the
frequency domain. The first technique is via the discrete cosine transform (DCT),
which is closely related to the second technique, the discrete Fourier transform
(DFT). These two techniques are based on Fourier theory, which (in informal
terms) states that any function can be expressed as the sum of a set of weighted
sinusoids, which are known as basis functions. Since a pure sinusoid is fully
characterized by its frequency (or wavelength), amplitude and offset (or phase),
the task of representing an image in the frequency domain is to identify an appro-
priate set of wavelengths that could occur in the image and for each wavelength
determine its corresponding amplitude. The DCT and DFT are techniques for
taking a digital image that is represented in the spatial domain and representing
that image in the frequency domain.

9.2 Image Frequency
Section 3.3 informally described image frequencies as the amount by which sam-
ples change over some spatial distance. Variations in light intensity over short

217



i
i

i
i

i
i

i
i

218 9. Frequency Domain

Phase

Wavelength

A
m

pl
itu

de

distance

S
a
m

p
le

 V
a
lu

e

Figure 9.1. The properties of a sinusoid.

distances correspond to high frequencies while variations in light intensity over
long distances correspond to low frequencies. Larger variations correspond to
larger amplitude while smaller variations correspond to smaller amplitude. Im-
age frequencies can be more formally described as complex sinusoidal patterns
that occur within an image.

A sinusoidal function is shown in Figure 9.1, where the horizontal axis is a
measure of spatial distance and the vertical axis corresponds to the luminance
level at a point some distance from the leftmost point. The amplitude of the sinu-
soid corresponds to the maximum strength of the wave, the wavelength measures
how quickly the light varies across distance, and the phase is simply an offset
from the point of reference.

Equation (9.1) gives a useful mathematical definition of a real continuous
sinusoidal function f . This function will serve as a basic building block in our
understanding of the more formal definitions of image frequencies that occur
later in this chapter. Equation (9.1) gives f as a function of spatial distance x
that ranges over the interval 0 to N . The amplitude of the sinusoid is A, the
phase is given by the real number φ and the frequency is given by real-valued
u. In terms of image processing processing, function f can be understood as
a continuous tone row profile of some scene that is projected onto a sensor of
width N :

f(x) = A · sin(
2πux
N

+ φ). (9.1)

Variable u of Equation (9.1) controls the frequency of the sinusoid such that
when u = 1 there is exactly one sinusoidal cycle as x ranges from 0 to n, when
u = 2 there are two cycles, and so on. Variable u as described here is given
in units of cycles per image, where the width of the image serves as the measure
of unity length. Wavelength is inversely related to the frequency so that for a
given u, the wavelength of the sinusoid is given as 1/u where image width as



i
i

i
i

i
i

i
i

9.2. Image Frequency 219

(a) u = 2, φ = 0, a = 1. (b) u = 2, φ = 0, a = .5. (c) u = 2, φ = 0, a = 0.

(d) u = 2, φ = 0, a = 1. (e) u = 2, φ = π/4, a = 1. (f) u = 2, φ = π/2, a = 1.

(g) u = 2, φ = 0, a = 1. (h) u = 3, φ = 0, a = 1. (i) u = 4, φ = 0, a = 1.

Figure 9.2. The effect of amplitude, phase, and frequency on sinusoidal images.

a unit measure. The offset, given in radians, serves to spatially shift the signal
either left or right such that when the offset is zero the sinusoid is a sin wave and
when the offset is π/2 the sinusoid is a cosine wave. The amplitude controls the
strength or height of the sinusoid and is a dimensionless scalar.

Equation (9.1) is imaged in Figure 9.2 with varying values of frequency, am-
plitude, and phase. Note that while equation (9.1) is a one-dimensional function,
the images in this figure are artificially extended into two dimensions for illus-
tration only. The sinusoid has been scaled such that middle-gray corresponds
to f(x) = 0, black corresponds to the case f(x) = −A, and white to the case
f(x) = A.

In the top row of Figure 9.2 there are two cycles and hence u = 2; the phase
is set to zero while the amplitude decreases from 1 in the first column to .5 in the
middle and 0 in the third. Note that when the amplitude is set to zero the sinusoid
becomes a scalar constant, exhibiting no change over distance. In the middle row
the frequency and amplitude are fixed while the sinusoid is shifted by 0 radians in
the first column, by π/2 radians in the middle, and π/2 in the third. The bottom
row illustrates the effect of the frequency setting on the sinusoidal function while
holding the phase and amplitude constant. The frequency setting ranges from
two in the first column (note that there are two complete cycles) to three in the
middle and four in the final column.



i
i

i
i

i
i

i
i

220 9. Frequency Domain

Consider sampling the continuous sinusoidal function of Equation (9.1) by
taking N uniformly spaced samples such that the center of each sample is lo-
cated at multiples of 1

2 along the spatial dimension. This sampling is given in
Equation (9.2), where x is now an integer in [0, N − 1] and corresponds with a
column index in the row profile. Parameter u is a nonnegative scalar that con-
trols the frequency of the sinusoid in the continuous domain:

f(x) = A · sin
(

2πu
N

(x+ 1/2) + φ

)
x ∈ [0, N − 1]. (9.2)

One of the fundamental effects of sampling is to place an upper limit on the
frequencies that can be completely captured by sampled data. The Shannon-
Nyquist sampling theorem establishes the limit by showing that the continuous
sinusoid can be perfectly reconstructed if sinusoidal frequency is less than 1

2 the
sampling rate. Or stated another way, the sampling rate must be more than twice
that of the sampled sinusoid. In digital image processing, the sampling rate is
determined by the size of the image such that the highest frequency component
of any N ×N image is limited by N/2.

Figure 9.3 illustrates the reason for the Nyquist limit. A continuous sinu-
soid having u = 1 and N = 8 is uniformly sampled to generate the 8-element
sequence shown in part (a). The samples are labeled such that x is in [0, 7] and
gives the value of the sinusoid, as denoted by the dots. Part (b) shows the results
of sampling a higher frequency signal where u = 7 and N = 8. Note that the
sampling rate of part (b) falls below the Shannon-Nyquist criteria, which implies
that the sampling rate is insufficient to capture the relatively high frequency of
the source signal. The inadequate sampling rate leads to a phenomena known
as aliasing, which occurs when two separate signals become identical, or become
aliases for each other, when sampled. Aliasing is illustrated in part (c) where the
sinusoids of both (a) and (b) produce the same set of sampled data.

Equation (9.2) corresponds to a one-dimensional sampled sinusoid that has
u cycles over a period of N samples where u is a nonnegative real value that is
bounded by the Nyquist limit. A digital image is a two-dimensional structure
that may have frequency components that vary not only horizontally but also

0 1 2 3

4 5 6 7

- 1.0

- 0.5

0.0

0.5

1.0

0 1 2 3

4 5 6 7

- 1.0

- 0.5

0.0

0.5

1.0

0 1 2 3

4 5 6 7

- 1.0

- 0.5

0.0

0.5

1.0

(a) N > 2u. (b) N < 2u. (c) Sampled signal.

Figure 9.3. Nyquist limit.



i
i

i
i

i
i

i
i

9.2. Image Frequency 221

Spatial Domain
(Tabulated Samples)

Frequency Domain
(DCT Coefficients)

Forward DCT Transform

Inverse DCT Transform

Figure 9.4. Invertibility.

vertically; hence Equation (9.2) must be extended in some fashion to accom-
modate both horizontal and vertical frequencies. Note that the horizontal and
vertical frequencies are independent such that an image may have high frequency
horizontal components and only low frequency vertical components.

In general terms we now claim that any N × N image can be represented
as the weighted sum of sinusoidal images, or basis functions, corresponding to
combinations of parameters u and v where u and v have been quantized to some
discrete set of values. This claim is the central insight into the frequency domain
representations presented in this text and it is essential to understanding the sec-
tions that follow. Given a set of basis functions, an image can be taken into the
frequency domain by determining the weight of each basis functions.

While both the DCT and DFT are operations that convert spatial images into
the frequency domain, each of these operations is invertible such that a spatial
domain image can be reconstructed from its frequency domain representation.
Figure 9.4 illustrates the concept of invertibility. In this figure, we see that an
image in the spatial domain can be transformed into the frequency domain via
the DCT. An image in the frequency domain can also be transformed into the
spatial domain via the inverse DCT. It is important to note that there is precisely
the same amount of information in each domain but the information is packaged
in very different ways. In a theoretical sense, both the forward and inverse trans-
forms fully preserve the information content and hence there is no information
loss when converting between the spatial and frequency domains. When imple-
menting these transforms computationally, however, information can be lost due
to the finite precision of the computing system. Also note that while Figure 9.4
shows only the DCT, the DFT is also invertible.

Throughout this chapter we denote images given in the spatial domain by
lower case symbols, and their corresponding frequency domain representations
are given as cursive upper case symbols. Spatial image f , for example, is denoted
in the frequency domain byF . In addition it is sometimes convenient to describe
the DCT and DFT as operators that take a spatial domain image as input and
produce a frequency domain representation. Throughout this text we use the
non-standard notation of an overlined calligraphic symbol to denote an operator
that transforms an image from one domain into another. For example, ~F is the



i
i

i
i

i
i

i
i

222 9. Frequency Domain

Notation Meaning
f spatial domain image
F frequency domain image
~F Fourier operator

f(x, y) a spatial sample
F(u, v) a Fourier coefficient

Table 9.1. Notational conventions.

DFT operator that operates on spatial image f to produce the frequency domain
representation F or, in other words, ~F(f) = F .

Throughout this text we have also followed convention by denoting the col-
umn of a spatial image as x and the row of a spatial image as y. When accessing
elements of a frequency domain image we denote the column by u and the row
by v. Hence f(x, y) represents the sample at location (x, y) in a spatial im-
age while F(u, v) represents the amplitude of the sinusoid characterized by the
parameters u and v. Table 9.1 gives a concise summary of the notation used
throughout this chapter.

9.3 Discrete Cosine Transform
The discrete cosine transform (DCT) expresses an image as the sum of weighted
cosines known as cosine basis functions. The wavelengths of these basis func-
tions are determined by the dimensions of the source image while the amplitudes
of the basis functions are determined by the samples themselves.

9.3.1 One-Dimensional DCT

In the one-dimensional case the DCT converts a sequence of N samples into a
sequence of N DCT coefficients representing the amplitudes of the cosine basis
functions. Letting f(x) be a sequence of N samples the DCT coefficients are
given by C(u) where x, u ∈ [0, N − 1]. The N values f(0), f(1), ..., f(N − 1)
are transformed into the N values C(0), C(1), ..., C(N − 1) according to Equa-
tion (9.3):

C(u) = α(u)
N−1∑
x=0

f(x) cos
(

(2x+ 1)uπ
2N

)
, (9.3)

α(k) =


√

1
N if k = 0,√
2
N otherwise.

(9.4)



i
i

i
i

i
i

i
i

9.3. Discrete Cosine Transform 223

Notice that in Equation (9.3) each DCT coefficient is dependent on every
source sample. Thus, if a single source sample is changed every DCT coefficient
is altered. In other words, the information of a single spatial sample is distributed
across all of the DCT coefficients. Parameter u determines the frequencies of the
N cosine basis functions where larger values indicate higher frequency compo-
nents and lower values correspond to lower frequency components. Parameter
x serves to connect a source sample with a particular point on a basis function
or, in more technically precise language, we say that f is projected onto the basis
functions through x.

The lowest frequency component occurs whenever u = 0, signifying a wave
of zero frequency (or infinite wavelength). Equation (9.3) then becomes

C(0) =

√
1
N

N−1∑
x

f(x). (9.5)

Coefficient C(0) is therefore a scaled average of all sample values and is
commonly known as the DC coefficient while all others are known as the AC
coefficients. These designations are derived from the field of signal processing
where the DCT transform is used to analyze direct-current (DC) and alternating-
current (AC) flow in electronic circuitry.

Consider a digital grayscale image with eight columns where a single row
of the image contains the samples 20, 12, 18, 56, 83, 110, 104, 114. When
the information from this single row is transformed into the frequency domain
using the DCT technique, we obtain eight values that roughly correspond to the
amplitudes of the eight harmonics given by the DCT formula. Since there are
eight samples we know thatN = 8 and u ranges from 0 to 7. In order to compute
C(0), for example, we apply Equation (9.3):

C(0) =
√

1
8

7∑
x=0

f(x) cos
(

(2x+ 1) · 0π
2 · 8

)

=
√

1
8

7∑
x=0

f(x) cos (0)

=
√

1
8 · {f(0) + f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7)}

= .35 · {20 + 12 + 18 + 56 + 83 + 110 + 104 + 115}
= 183.14. (9.6)

Since parameter u extends over the interval [0, 7] we must repeatedly apply
Equation (9.3) for all values of u. Table 9.2 gives both the spatial representa-
tion and the corresponding DCT coefficients of the example row profile. Note
that the DCT coefficients have a much larger range than the spatial samples and



i
i

i
i

i
i

i
i

224 9. Frequency Domain

f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)
20 12 18 56 83 110 104 114

C(0) C(1) C(2) C(3) C(4) C(5) C(6) C(7)
183.1 -113.0 -4.2 22.1 10.6 -1.5 4.8 -8.7

Table 9.2. Numeric example of the DCT.

that some of the coefficients are negative. In addition, note that the first two
coefficients are significantly larger in magnitude that the remaining six.

Implementation. Given a one-dimensional row profile of N samples, the DCT
coefficients can be computed by direct encoding of Equation (9.3). Listing 9.1
gives a straightforward implementation for computing the DCT coefficients as
an array of floats given a one-dimensional array of floats as input. The com-
putational performance of the forwardDCT method is on the order of O(N2),
assuming that the input array is of length N since the inner for loop executes N
times for every one of the N iterations of the outer loop.

1 p u b l i c s t a t i c f l o a t [ ] forwardDCT ( f l o a t [ ] da ta ) {
2 f i n a l f l o a t alpha0 = ( f l o a t ) Math . s q r t ( 1 . 0 / data . l e n g t h ) ;
3 f i n a l f l o a t alphaN = ( f l o a t ) Math . s q r t ( 2 . 0 / data . l e n g t h ) ;
4 f l o a t [ ] r e s u l t = new f l o a t [ da ta . l e n g t h ] ;
5

6 f o r ( i n t u=0; u<r e s u l t . l e n g t h ; u++){
7 f o r ( i n t x=0; x<data . l e n g t h ; x++) {
8 r e s u l t [ u ] +=
9 data [ x ]∗ ( f l o a t ) Math . cos ( ( 2∗ x+1)∗u∗Math . PI /(2∗ data . l e n g t h ) ) ;

10 }
11 r e s u l t [ u ] = r e s u l t [ u ] ∗ ( u == 0 ? alpha0 : alphaN ) ;
12 }
13 r e t u r n r e s u l t ;
14 }

Listing 9.1. One-dimensional DCT method.

9.3.2 Two-Dimensional DCT
Since digital images are two-dimensional data structures, the one-dimensional
DCT must be extended to two dimensions in order to process digital images.
Equation (9.7) gives the two-dimensional DCT transform for an N × N image
where function α is the same as in Equation (9.3). Note that every DCT coef-
ficient C(u, v) is dependent upon every sample of spatial image f . This implies



i
i

i
i

i
i

i
i

9.3. Discrete Cosine Transform 225

that if a single sample in f is changed then every DCT coefficient is altered:

C(u, v) = α(u)α(v)
N−1∑
x=0

N−1∑
y=0

f(x, y) cos
(

(2x+ 1)uπ
2N

)
cos
(

(2y + 1)vπ
2N

)
.

(9.7)

Also note that the cosine terms are dependent only on parameters u and v
where we assume thatN is a constant in this context. Each (u, v) pair then estab-
lishes a basis, or kernel, and the corresponding DCT coefficient is a measure of
how dominant that basis is in the spatial image. Since there areN2 combinations
of u and v there are N2 bases or kernels that contribute to the spatial image un-
der analysis. Again, the central notion of the DCT transform is that any spatial
image can be constructed by scaling and summing these N2 base images.

Figure 9.5 illustrates the DCT basis functions and corresponding kernels for
a 4 × 4 image. The cosine basis functions are plotted in (a) and are positioned
within the table at (u, v). Note that the functions in row zero, and column zero
are identical except for rotation since one is aligned horizontally with the source
image and the other is aligned vertically with the source image. The kernels
given in (b) are sampled and quantized images of the basis functions where black
corresponds to negative 1, mid-gray corresponds to zero and white corresponds
to positive 1.

One important property of the DCT is that it is separable. Separability here
means that the DCT coefficients of the row and column profiles are indepen-
dent, or separable, and that the 2D coefficients can be computed by a two-pass

3

2

1

0 1 2 3 0 1 2 3

0

1

2

3

(a) The cosine basis functions. (b) Sampled and quantized basis functions.

Figure 9.5. DCT basis functions.



i
i

i
i

i
i

i
i

226 9. Frequency Domain

application of the one-dimensional DCT transform. The DCT is also invertible
and hence a spatial domain image can be exactly recovered from the DCT coef-
ficients. The inverse discrete cosine transform for both the one-dimensional and
two-dimensional cases are given as

f(x) =
N−1∑
u=0

α(u)C(u) cos
(

(2x+ 1)uπ
2N

)
, (9.8)

f(x, y) =
N−1∑
u=0

N−1∑
v

α(u)α(v)C(u, v) cos
(

(2x+ 1)uπ
2N

)
× cos

(
(2y + 1)vπ

2N

)
. (9.9)

The discrete cosine transform is said to provide a high degree of energy com-
paction. Much like a garbage compactor takes a container of trash and com-
presses it into a much smaller volume by eliminating empty space, the DCT
transform takes the spatial domain samples and compresses the information into
a more compact form. The central idea in energy compaction is more specifically
that the lower frequency DCT coefficients tend to be relatively large while the
higher frequency coefficients tend to be relatively small. In other words, most of
the information of the spatial image is compacted into the lower frequency terms
of the DCT. In the two dimensional case this implies that those coefficients in
the upper-left will typically be orders of magnitude larger than the coefficients in
the lower and right regions.

Certain compression techniques leverage the energy compaction property of
the DCT by converting an image into its DCT coefficients and then discarding

(a) Source image. (b) Recovered with 1%. (c) Recovered with 5%.

Figure 9.6. Use of DCT coefficients for compression.



i
i

i
i

i
i

i
i

9.3. Discrete Cosine Transform 227

the relatively insignificant higher frequency coefficients. JPEG compression is
based on the DCT and is discussed further in Chapter 10. Figure 9.6 illustrates
the energy compaction property of the DCT. In this figure a source image (a)
is converted into DCT coefficients. The image is then converted back into the
spatial domain using only 1% of the DCT coefficients (b) and 5% of the DCT
coefficients (c). The degree of perceptual information that is retained when dis-
carding 95% of the DCT coefficients is rather astonishing. When discarding
information in the DCT domain, the high-frequency components are eliminated
since they contain less perceptually relevant information than the low-frequency
components. This results in an image that is blurred and also creates artificial
ringing along edges as can clearly be seen in (b).

Implementation. Given anN×N image, the DCT coefficients can be computed
in time proportional to O(N4) using a straightforward brute-force implementa-
tion of Equation (9.7). The separability property of the DCT, however, allows
the computation to be easily implemented in terms of the one-dimensional trans-
form and also results in a runtime proportional to O(N3). Listing 9.2 gives a

1 p u b l i c s t a t i c f l o a t [ ] [ ] forwardDCT ( f l o a t [ ] [ ] da ta ) {
2 f l o a t [ ] [ ] r e s u l t = new f l o a t [ da ta . l e n g t h ] [ data . l e n g t h ] ;
3

4 // 1D DCT of every row
5 f o r ( i n t u=0; u<r e s u l t . l e n g t h ; u++) {
6 r e s u l t [ u ] = forwardDCT ( data [ u ] ) ;
7 }
8

9 // 1D DCT of every column of i n t e r m e d i a t e data
10 f l o a t [ ] column = new f l o a t [ da ta . l e n g t h ] ;
11 f o r ( i n t v =0; v<r e s u l t . l e n g t h ; v++) {
12 f o r ( i n t row=0; row<data . l e n g t h ; row++){
13 column [ row ] = r e s u l t [ row ] [ v ] ;
14 }
15

16 f l o a t [ ] temp = fowardDCT ( column ) ;
17 f o r ( i n t row=0; row<data . l e n g t h ; row++){
18 r e s u l t [ row ] [ v ] = temp [ row ] ;
19 }
20 }
21

22 r e t u r n r e s u l t ;
23 }

Listing 9.2. Brute force 1D DCT.



i
i

i
i

i
i

i
i

228 9. Frequency Domain

complete implementation of the two-dimensional forward DCT. This method
first applies the one-dimensional DCT to every row of the input samples and
then takes the intermediate result and applies the one dimensional DCT to every
column. While this listing assumes that the input data is square in dimension it
can be easily altered to accurately compute the DCT coefficients for data of any
width and height.

Note that the cosine term is dependent only on variables u and x, each of
which is constrained to the interval [0, N − 1]. Significant computational effort
can be saved by pre-computing these N2 cosine terms and reusing them when
performing the row and column transformations.

9.4 Discrete Fourier Transform
The discrete Fourier transform (DFT) expresses an image as the sum of weighted
sinusoids known as the sinusoidal basis functions. As with the DCT, the wave-
lengths of these basis functions are determined by the dimensions of the source
image while the amplitudes of the basis functions are determined by the sam-
ples themselves. The DFT is a generalization of the DCT and differs from the
DCT in that the basis functions themselves lie in the complex plane and generate
complex coefficients rather than the real-valued coefficients of the DCT.

In the one-dimensional case the DFT converts a sequence of N samples into
a sequence of N DFT complex coefficients where the magnitude of the complex
coefficient represents the amplitudes of the corresponding basis functions. Let-
ting f(x) be a sequence of N samples, the DFT coefficients are given by F(u)
where x, u ∈ [0, N − 1]. The N values f(0), f(1), ..., f(N − 1) are transformed
into the N coefficients F(0),F(1), ...,F(N − 1) according to

F(u) =
1
N

N−1∑
x=0

f(x)
[
cos
(

2πux
N

)
− j sin

(
2πux
N

)]
, (9.10)

where the symbol j is used to denote the imaginary unit and satisfies j2 = 1.
Again notice that in equation (9.10) each DFT coefficient is dependent on

every source sample. Thus, if a single source sample is changed every DFT
coefficient is altered. In other words, the information of a single spatial sample
is distributed across all of the DFT coefficients. The variable u determines the
frequency of the N basis functions where larger values indicate higher frequency
components and lower values correspond to lower frequency components. The
variable x serves to connect a source sample with a particular point on a basis
function or, in more technically precise language, we say that f is projected onto
the basis functions.



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 229

Equation (9.10) is often written in more compact form by applying Euler’s
formula,1 which states that for any real number x,

cos(x)− j sin(x) = e−jx, (9.11)

where e is defined to be the base of the natural logarithm, a real-valued number
approximately equal to 2.71828. Equation (9.10) can thus be rewritten as

F(u) =
1
N

N−1∑
x=0

f(x)e−j2πux/N . (9.12)

Since the DFT is an invertible transform, the original sequence of coefficients
can be exactly recovered from the DFT coefficients. The one-dimensional inverse
transform has nearly the same form as the forward transform and is given as

f(x) =
1
N

N−1∑
u=0

F(u)ej2πux/N , (9.13)

where only the sign of the exponent differs from the forward transform. While
the information contained by the N samples of f is identical to the information
given by the N DFT coefficients of F the information is simply represented in
different forms. Additionally, while information may be lost when using com-
puting machinery to convert between the spatial and frequency domains, this
loss is an artifact of machine precision and not intrinsic to the mathematical
formulation itself. This one dimensional transform can be extended into two
dimensions. The two-dimensional forward and inverse DFT transforms of an
N ×N digital image are given by

F(u, v) =
1
N

N−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux+vy)/N , (9.14)

f(x, y) =
1
N

N−1∑
u=0

N−1∑
v=0

F(u, v)ej2π(ux+vy)/N . (9.15)

9.4.1 Image Spectra

Each DFT coefficient F(u, v) is a complex value lying in the complex plane and
hence when converting a two-dimensional raster of samples into DFT coeffi-
cients we end up with a two dimensional array of complex values. A complex

1Euler’s formula is named after Leonhard Euler, who discovered this relationship in the mid
1700s.



i
i

i
i

i
i

i
i

230 9. Frequency Domain

value can be expressed in either polar or Cartesian coordinates. When expressed
in Cartesian coordinates the DFT coefficients have the form

F(u, v) = R(u, v) + jI(u, v),

whereR(u, v) is the real and I(u, v) is the imaginary part of the complex number.
The DFT coefficients are, however, more commonly and usefully given in polar
coordinates and have the form

F(u, v) = |F (u, v)|ejφ(u,v),

where |F(u, v)| is known as the magnitude and φ(u, v) is known as the phase.
The magnitude of a complex number is simply a measure of how far the point
lies from the origin in the complex plane while the phase is an angular measure
indicating in which direction the point lies in the complex plane. The phase thus
falls in the range [−π,+π] and is cyclic since −π is equivalent to +π in angular
terms. The magnitude and phase can be obtained from the real and imaginary
parts of a complex number such that

|F(u, v)| =
√
R2(u, v) + I2(u, v),

φ(u, v) = tan−1

[
I(u, v)
R(u, v)

]
.

The complex DFT coefficients can then be split into a raster of magnitudes
and a raster of phases. These rasters can be rendered as images as illustrated
in Figure 9.7. In this figure a source image has been transformed into DFT
coefficients and then split into its corresponding magnitudes and phases, which
have been rendered as the grayscale images shown in (b) and (c).

(a) Source image f . (b) Amplitude spectrum, |F|. (c) Phase spectrum, φ.

Figure 9.7. DFT Spectrum.



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 231

It should be noted that since the dynamic range of the magnitude values is so
large, it is common to log compress the magnitudes prior to rendering. The scale
of image (b) is therefore logarithmic where bright samples indicate a relatively
large magnitude and dark areas indicate a correspondingly small magnitude. The
phase data is more difficult to interpret since the data is cyclic and there appears
to be no discernible pattern. Although we may be tempted to believe that the
phase data is therefore of little importance this is not correct. The phase data
contains vital information regarding the spatial location of the sinusoidal basis
functions.

In addition, the images of Figure 9.7 have been shifted so that the DC element
is centered, which implies that low frequency elements are situated nearer to the
center while the frequency increases with distance from the center of the im-
age. While this arrangement differs from what is presented in Equations (9.14),
where the DC term located at location (0, 0), it is the conventional method for
visualizing the amplitude and phase spectra and all spectral images throughout
this text adopt this convention.

The magnitudes are commonly known as the spectrum of an image but this
is a rather loose definition. More precisely we say that the magnitudes consti-
tute the amplitude spectrum and the phases constitute the phase spectrum. The
power spectrum is another common term that is defined as the square of the
amplitude spectrum. The power spectrum P (u, v) is given by

P (u, v) = |F(u, v)|2 = R2(u, v) + I2(u, v).

(a) Reconstructed from phase information only. (b) Reconstruction from amplitude information only.

Figure 9.8. Comparison of the contribution of the amplitude and phase spectrum.



i
i

i
i

i
i

i
i

232 9. Frequency Domain

Figure 9.9. Illustration of DFT properties.

Both the magnitude and phase spectra contain vital information regarding
the source image. Consider Figure 9.8, where the source image has been re-
constructed from the DFT coefficients after destroying the amplitude spectrum
while keeping the phase spectrum intact (a), or after destroying the phase spec-
trum while keeping the amplitude spectrum intact (b). The amplitude spectrum
was destroyed by setting each magnitude to unity while the phase spectra was
destroyed by setting each phase to zero.

While it is difficult to gain much insight from a visual examination of the am-
plitude spectrum, there are some points to consider. A strong edge in the source
image will generate a strong edge in the spectrum as well, although rotated 90◦

from the source. Strong elliptical edges in the source image will also carry over
as strong elliptical edges in the spectrum. Figure 9.9 shows four source images
and their corresponding spectra. Note that the letter H generates strong vertical
and horizontal edges in the spectrum since the letter H itself has strong verti-
cal and horizontal edges. Also note that the letter Q generates elliptical edges in
the spectrum since the letter Q is itself of circular shape.

The magnitude spectrum contains information about the shape of objects in
the source while the phase spectrum encodes the number of objects and where
they are located in the source. Consider, for example, a source image that has
many randomly placed copies of the letter Q. The magnitude spectrum would
be the same as if there were a single letter Q somewhere in the source while the
phase spectrum would be changed to indicate where the letters actually show
up in the source. It is also important to note that the center of the magnitude
plot corresponds to the average (or DC) component while the sinusoidal basis
functions increase in frequency with increasing distance from the center.



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 233

9.4.2 Properties of the DFT
The DFT of an image possesses important properties that can be exploited when
performing image processing tasks. In this section we consider the way in which
the DFT of an image will change if we alter the source image in specific ways.

Translation, Rotation, and Distributivity. Translation of the source image will
cause the phase spectrum to change but will leave the magnitude spectrum un-
changed. This can be understood at an intuitive level by recognizing that the
phase spectrum contains information about the location of objects in the source
while the magnitude spectrum contains information about the object’s shape.
Under translation the location of an object is altered while the shape is un-
changed and hence the magnitude spectrum is unchanged but the spectra is lin-
early shifted.

Rotation of a source image f by an angle θ results in a rotation of the spectra
by an amount θ. Since the sinusoidal basis functions are used to reconstruct
the shapes in the source image, they must be rotated in order to reconstruct the
rotated shape.

The Fourier transform and its inverse are distributed over addition but not
multiplication. This means that if two source images are summed in the spatial
domain the corresponding spectrum is the sum of the individual source spectra.
This property is given mathematically as

~F(f + g) = ~F(f) + ~F(g),

where recall that the notation ~F is used to denote an operator that accepts a
spatial domain image f and converts it into the frequency domain using the
discrete Fourier transform.

(a) Source image. (b) Translation. (c) Rotation. (d) Linearity.

Figure 9.10. Properties of the DFT under translation, rotation, and linear combination.



i
i

i
i

i
i

i
i

234 9. Frequency Domain

Figure 9.10 illustrates these properties. In this figure the magnitude spectra
corresponding to four source images are shown. Image (a) is the reference image.
This reference image has been translated in (b) and rotated in (c). The original
reference and the rotated reference are then added together to obtain the image
of (d). Note that the amplitude spectra of (a) and (b) are identical while the am-
plitude spectrum of (c) is obtained by rotating the spectrum of (a). The amplitude
spectrum of (d) is obtained by adding the amplitude spectra of (b) and (c).

Periodicity. The Fourier transform views a spatial source image as an infinitely
tiled image covering all space in a fashion identical to the circular indexing de-
scribed in 6.2.1. This follows from the idea that the sinusoidal basis functions are
themselves periodic and hence everywhere defined. For a M ×N source image
we can state this periodicity property very concisely as

F(u, v) = F(u+M,v) = F(u, v +N) = F(u+M,v +N), (9.16)

While this property of the DFT may initially seem to be of little consequence,
it carries important implications. One of the most significant is that since the
source image wraps around itself, the source image will appear to have edges
where no edges actually exist. If, for example, the left side of an image is bright
and the right side is dark, there will be a false edge created when the image is
tiled since the brightness of the left side is placed adjacent to the darkness of the
right side. These artificial edges will then be reflected in the amplitude spectrum
and give a false characterization of the power spectrum of the source image.

(a) Tiled source. (b) Amplitude spectrum of the source.

Figure 9.11. Periodicity effects of the DFT.



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 235

Figure 9.11 illustrates how the DFT can present a false view of the spectrum
due to the fact that the source image is tiled. In this example, a source image is
implicitly assumed to be tiled over all space which causes false edges to appear
at the left-right seams as well as at the top-bottom seams in the tiling. These false
edges are reflected in the strong vertical and horizontal lines in the amplitude
spectrum.

9.4.3 Windowing
Windowing is a technique to minimize the artificial distortions that are injected
into the spectrum of an image due to tiling discontinuities. Windowing is an
image processing filter that is applied prior to conversion into the Fourier domain
and an inverse windowing filter must be applied when recovery of the source
image is desired from the DFT coefficients.

Since the spectrum is distorted by discontinuities at the edge of an image
when the image is tiled, windowing forces the edge samples to be nearly identical
across seams. This is accomplished by multiplying each sample of the source im-
age by a scaling factor that is unity near the center of an image and falls smoothly
to zero near the borders. As a result, all border pixels are nearly black and ar-
tificial discontinuities are largely eliminated. The inverse windowing procedure
is to simply divide each sample by the same scaling factors hence restoring the
original values except for those few samples that have been truncated to zero by
the windowing process.

Numerous windowing functions are in common use; we will define four of
the more common windowing functions here. The Bartlett windowing function
is the simplest, representing a linear decay from unity at the center of the source
image to zero at the edges of an image. The Bartlett windowing function is
given as

w(r) =
{

1− r
rmax

r ≤ rmax,

0 r > rmax,
(9.17)

where r is the Euclidean distance from the center of the image and rmax is the
minimum of the height and width of the source image. The Hanning window
is smoother than the Bartlett and hence has superior mathematical properties.
All of the windowing functions are zero-valued for r > rmax but differ in their
manner of decay as they move toward zero. The Hanning window, for r ≤ rmax

is given as

w(r) =
1
2
− 1

2
cos
[
π(1− r

rmax
)
]
. (9.18)

The Blackman window is more complex and somewhat narrower than the Han-
ning window and is defined as

w(r) = .42− 1
2

cos
[
π

(
1− r

rmax

)]
+ .08 cos

[
2π
(

1− r

rmax

)]
. (9.19)



i
i

i
i

i
i

i
i

236 9. Frequency Domain

(a) Bartlett Window. (b) Hanning Window.

(c) Blackman Window. (c) Hamming Window.

Figure 9.12. Normalized windowing functions covering a 1× 1 region.

While the Hamming window is smooth, it does not decay to zero at the edges
and is given as

w(r) = 0.53836 + 0.46164 cos
(
π

r

rmax

)
. (9.20)

These four window functions are plotted in Figure 9.12. In these plots, the
values of x and y are normalized over the interval [−1/2, 1/2] and, of course, the
values of the windowing function range from 0 to 1.

Figure 9.13 illustrates the effect of windowing on the spectrum. In this exam-
ple, a source image is windowed such that the edges of the image are all nearly
black so that while the source image is implicitly assumed to be tiled over all
space, there are no edges present at the seams. Windowing the source prior to
taking the DFT coefficients strongly dampens any edge effect as can be seen in
the magnitude spectrum, especially when compared to the magnitude spectrum
of Figure 9.11.



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 237

(a) Tiled source. (b) Amplitude spectrum of the source.

Figure 9.13. The effect of windowing on the spectrum.

9.4.4 Frequency Domain Filtering
We have previously shown that images can be filtered in the spatial domain by
directly examining and changing sample values. Of course image filtering can
be accomplished in the frequency domain by directly examining and altering
the DFT coefficients as well. Frequency domain filtering often has advantages
over spatial domain filtering in terms of both computational efficiency and util-
ity. Frequency domain filtering can be generalized as the multiplication of the
spectrum F of an image by a transfer function H. In other words

G(u, v) = F(u, v) · H(u, v), (9.21)

where F is the DFT of a source image f , H is the transfer function (or filtering
function), and G is the DFT that results from application of the filter. All of
these entities, F , H, and G are complex-valued, and hence the multiplication of
F with H is the multiplication of complex values which may change both the
magnitude and phase of the source DFT. In practice, however, most frequency
domain filters are zero-phase-shift filters that simply means that they leave the
phase spectrum unaltered while modifying the amplitude spectrum.

Convolution, as we have seen, is one of the most powerful filtering techniques
in image processing and can be used to either blur or sharpen an image. The
convolution theorem states that convolution can be performed in the frequency
domain by straightforward multiplication of two image transform. Given spatial



i
i

i
i

i
i

i
i

238 9. Frequency Domain

image f and kernel h and having corresponding DFTs of F andH, the convolu-
tion theorem states that

f ⊗ h⇔ F · H. (9.22)

In other words, convolution in the spatial domain is equivalent to point-by-point
multiplication of the DFT coefficients.

This is an important theorem with strong implications for implementing an
image convolution filter. Recall that given an M×M kernel and a N×N image,
the computational effort is on the order of a whopping O(M2N2). The convo-
lution theorem states that this operation can be accomplished in the frequency
domain in time proportional to O(N2) since there are only N2 complex multi-
plications to perform. To achieve this level of performance we must go through a
number of processes that will take an image into the frequency domain, directly
modify the magnitude spectrum, and then take the image back into the spatial
domain. In other words, to convolve a spatial domain image f with kernel h we
must perform the following four steps:

1. Compute the DFT coefficients of f to obtain F .

2. Compute the DFT coefficients of h to obtain H.

3. Compute the product of these two transforms to obtain F · H.

4. Compute the inverse DFT of the product to obtain ~F−1(F · H).

At first glance this four-step process seems to require more computational effort
than a straightforward brute-force spatial domain convolution. As we will see,
however, if the DFT can be computed efficiently enough, this process yields
far superior runtime performance than the spatial domain implementation. It
should also be noted that the frequency domain kernelH can often be generated
directly in the Fourier domain without resorting to the DFT to convert its spatial
domain representation into the frequency domain.

Low pass filtering. Low pass filtering attenuates high frequency components of
an image while leaving low frequency components intact. Low pass filtering
can be very easily and naturally accomplished in the frequency domain since the
frequency components are explicitly isolated in the spectrum. Recall that the
DFT coefficients correspond to frequency components of the source and that
the frequency increases with increasing distance from the center of the shifted
spectrum. Low pass filtering is then accomplished by zeroing the amplitude
of the high frequency DFT coefficients. Determining which DFT coefficients
should be zeroed amounts to determining how far the coefficient is from the
center of the shifted spectrum. Typically, a threshold radius is chosen such that
all DFT coefficients outside of this threshold radius have their magnitude set to
zero while all DFT coefficients falling inside of the threshold are unchanged. If



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 239

the cutoff radius is large then fewer DFT coefficients are erased and hence less
blurring occurs. Of course, if the cutoff radius is small then a high proportion of
the DFT coefficients are erased and the blurring effect is more pronounced.

We then seek a transfer function that will correspond to this low pass filtering
technique. The ideal low pass filter represents perhaps the simplest of these low
pass filters. The ideal low pass transfer function is given as

H(u, v) =
{

1
√
u2 + v2 ≤ rc,

0 otherwise,
(9.23)

where rc is known as the cutoff frequency, which determines the strength of the
filter.

This is illustrated in Figure 9.14. A source image has been converted into
the frequency domain after which the DFT coefficients have undergone point-
by-point multiplication with an ideal filter. The result is that high frequency
portions of the magnitude spectrum have been truncated. The spatial-domain
image that is recovered after truncating the DFT coefficients is shown as the
blurry image of (b).

The term ideal as it is used of an ideal low pass filter should not be taken to
mean that this filter is optimal or the most desirable for low pass filtering. An
ideal low pass filter is ideal or perfect in the sense that it has an exact cutoff above
which all terms are exactly zero and below which all terms are set to unity. An
ideal low pass filter, far from being desirable for image processing, is rarely used

(a) Filtered magnitude spectrum. (b) Reconstructed spatial domain image.

Figure 9.14. Ideal low-pass filtering in the frequency domain.



i
i

i
i

i
i

i
i

240 9. Frequency Domain

(a)H(u, v). (b) h(x, y).

Figure 9.15. Ideal low-pass filter in (a) the frequency domain and (b) the spatial domain.

in practice due to a very undesirable side effect known as ringing as can be seen
in Figure 9.14. The blurred image that results from convolution with an ideal
low pass filter is also distorted by an obvious rippling at object edges.

The source of blurring can be seen by considering the transfer function in
both the frequency and spatial domains. In the Fourier domain the ideal low
pass filter can be visualized as a cylindrical surface as illustrated in part (a) of
Figure 9.15. This function can be transformed, via the inverse DFT, into the
spatial domain to obtain the function shown in part (b). The spatial domain rep-
resentation of the transfer function is known as the sinc function and is given
as sinc(r) = sin(r)/r where r is distance from the origin. In order to convolve
an image with the ideal transfer function in the spatial domain, the sinc func-
tion must be sampled, and quantized to obtain a kernel. As is evident from the
figure, the kernel will have large values near the center and concentric circles of
alternating negative and positive values near the extremities of the kernel. The
positive coefficients at the center provide the desired blurring effect while the
concentric circles near the periphery generate a rippling effect when passed over
image edges.

While the ideal low pass filter is simple to implement, it is undesirable due to
ringing at the edges. Since the ringing is caused by the sharp discontinuity at the
cylinder edge, more practical transfer functions have been discovered that retain
the general shape of the ideal low pass filter but are everywhere continuous and
hence significantly reduce ringing at the boundaries. One of the most popular
low pass filters is the Butterworth filter, which is a continuous function falling
gradually to zero near the cutoff frequency. The Butterworth transfer function is
given as

H(u, v) =
1

1 + [r(u, v)/rc]2n
, (9.24)

where once again rc is the cutoff frequency and r(u, v) is the Euclidean dis-
tance between the origin of the shifted spectrum and the point (u, v) in frequency



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 241

(a) First order, n = 1. (b) Second order, n = 2.

(c) Third order, n = 3. (d) Fourth order, n = 4.

Figure 9.16. Butterworth filters.

space, that is, r(u, v) =
√
u2 + v2. The Butterworth transfer function is parame-

terized on n, which occurs in the exponent and defines the order the filter. This
transfer function hence represents a family of related transfer functions where
lower order Butterworth filters are smoother and fall more gradually to zero at
the cylinder boundary while higher-order Butterworth filters have sharper edges,
falling quickly to zero at the cylinder boundaries.

Figure 9.16 shows Butterworth filters of orders 1 through 4 as they appear in
the frequency domain over a normalized interval in u and v of [−1/2, 1/2]. Note
that the cutoff radius is not the point at which the functions decay to zero, as
was the case with the ideal low pass filter, but it is the point at which the transfer
function drops to 1/2. It is interesting to note that as the value of n approaches
infinity, the Butterworth filter approaches the ideal low pass filter.

Figure 9.17 highlights the contrast between the ringing of the ideal low pass
filter and the use of a Butterworth low pass filter. An ideal low pass filter having
a cutoff located at a normalized 15% is compared to a fifth order Butterworth
filter having the same cutoff frequency. While some small ringing artifacts are
discernible in (b) the ringing has clearly been reduced from that of the ideal low
pass filter in (a). In each image the primary objective of the filter, blurring, is
comparable.



i
i

i
i

i
i

i
i

242 9. Frequency Domain

(a) (b)

Figure 9.17. (a) Low pass filtering in the frequency domain using an ideal filter and (b) 5th order
Butterworth filter. The cutoff radius was set at 15% in each example.

Other well-known frequency domain low pass filters include the Chebyshev
and the Gaussian transfer functions. The Gaussian low pass filter has the very
interesting property of having the same form in both the Fourier and spatial
domains. In other words, the DFT of a Gaussian function is itself a Gaussian
function. A Gaussian low pass filter introduces no ringing when applied either
in the spatial or frequency domains. The Gaussian transfer function is given as

H(u, v) = e−
1
2 [r(u,v)/rc]

2
. (9.25)

High pass filtering. High pass filtering attenuates low frequency components of
an image while leaving high frequency components intact. High pass filtering,
like low pass filtering, can be very naturally accomplished by direct manipula-
tion of the DFT coefficients. The technique for performing high pass filtering
is identical; however, the transfer functions are simply inverses to the low pass
functions. The ideal high pass function is given by

H(u, v) =
{

0
√
u2 + v2 ≤ rc,

1 otherwise.
(9.26)

The ideal high pass suffers from the same ringing artifact as the ideal low
pass filter and hence other smoother filters are generally used. The Butterworth



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 243

high pass filter is given by

H(u, v) =
1

1 + [rc/r(u, v)]2n
, (9.27)

and the Gaussian high pass filter by

H(u, v) = 1− e− 1
2 [r(u,v)/rc]

2
. (9.28)

Band filters. Low pass filtering is useful for reducing noise but may produce an
image that is overly blurry. High pass filtering is useful for sharpening edges but
also accentuates image noise. Band filtering seeks to retain the benefits of these
techniques while reducing their undesirable properties. Band filtering isolates
the mid-range frequencies from both the low-range and high-range frequencies.
A band stop (or notch) filter attenuates mid-level frequencies while leaving the
high and low frequencies unaltered. A band pass filter is the inverse of a band
stop; leaving the mid-level frequencies unaltered while attenuating the low and
high frequencies in the image. A band of frequencies may be conveniently spec-
ified by giving the center frequency and the width of the band. The band width
determines the range of frequencies that are included in the band.

A band stop filter is essentially a combination of a low and high pass filter,
which implies that ideal, Butterworth, and Gaussian band stop filters can be
defined. Figure 9.18 illustrates the Butterworth band filters given as

H(u, v) =
1

1 + [Ω · r(u, v)/(r(u, v)2 − r2c )]2n
, (9.29)

(a) Butterworth band pass. (b) Butterworth band stop.

Figure 9.18. Normalized Butterworth second-order band filters having a center frequency
of .4 and a band width of .3.



i
i

i
i

i
i

i
i

244 9. Frequency Domain

where Ω is the width of the band and rc is the center of the band. The corre-
sponding Butterworth band pass filter is given as

H(u, v) = 1− 1
1 + [Ω · r(u, v)/(r(u, v)2 − r2c )]2n

. (9.30)

Periodic noise removal. Direct frequency domain filtering can be used to iden-
tify and eliminate periodic noise from a digital image. Periodic noise can pene-
trate a digital image if the acquisition system is in close proximity to electrome-
chanical machinery, electric motors, power lines, and the like. Periodic noise
manifests as sharp localized spikes in the spectrum, and hence specialized filters
or interactive systems can be used to identify and eliminate this type of noise.
Figure 9.19 shows how periodic noise can be identified and eliminated. A source
image has been corrupted by some electromechanical noise source, as shown
in (a). The corresponding spectrum shows a number of intense spikes that can
be easily identified and truncated via direct manipulation of the spectrum. After
this filtering process, the recovered image is shown in (c).

(a) Noisy source. (b) Spectrum. (c) Recovered image.

Figure 9.19. Periodic noise removal.

9.4.5 Implementation

Since working in the frequency domain requires manipulation of complex quan-
tities, a Complex class is developed (see Listing 9.3). The class supports opera-
tions such as addition, subtraction, multiplication, and division. The class also
enables clients to view the phase and magnitude of the quantity without any
change in the underlying representation. This class is also immutable since there
are no mutator methods; once a Complex object is created its internal state is



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 245

1 p u b l i c c l a s s Complex {
2 p r o t e c t e d f l o a t imaginary , r e a l ;
3

4 p u b l i c Complex ( ) {
5 imaginary = r e a l = 0 f ;
6 }
7

8 p u b l i c Complex ( f l o a t re , f l o a t im ) {
9 imaginary = im ;

10 r e a l = r e ;
11 }
12

13 p u b l i c Complex p l u s ( Complex c ) {
14 r e t u r n new Complex ( c . ge tRea l ( ) + ge tRea l ( ) ,
15 c . ge t Imagnia ry ( ) + ge t Imag inary ( ) ) ;
16 }
17

18 p u b l i c f l o a t getMagnitude ( ) {
19 r e t u r n ( f l o a t ) Math . s q r t ( ge tRea l ( ) ∗ ge tRea l ( ) +
20 getImagnary ( ) ∗ ge t Imag inary ( ) ) ;
21 }
22

23 p u b l i c f l o a t getPhase ( ) {
24 r e t u r n ( f l o a t ) Math . atan2 ( ge t Imag inary ( ) , ge tRea l ( ) ) ;
25 }
26

27 // o t h e r methods not shown
28 }

Listing 9.3. Complex.

unchangeable. While this design decision creates a slight degradation in perfor-
mance, we choose this approach to increase reliability, specifically the likelihood
of developing correct code.

Since the DFT algorithm requires complex-valued samples, we must author
methods to convert a BufferedImage into a set of Complex values. We will
also need a corresponding algorithm to convert the set of Complex values into
a BufferedImage for visualization. Listing 9.4 implements a method that con-
verts an image into a two-dimensional array of Complex objects. These complex
values are still represented in the spatial domain but can be taken into the fre-
quency domain via application of the forward DFT and manipulated directly in
the frequency domain.

Given the Complex class we can now author a method to perform both the
forward and inverse discrete Fourier transform. Listing 9.5 is a complete method
that accepts a two dimensional array of complex values (i.e., an image) and ap-
plies the DFT. The type of DFT performed is indicated by the enumerated type



i
i

i
i

i
i

i
i

246 9. Frequency Domain

1 p r i v a t e Complex [ ] [ ] imageToComplex ( Buf feredImage image ) {
2 i f ( image == n u l l ) r e t u r n n u l l ;
3 w r i t a b l e R a s t e r i n p u t = image . g e t R a s t e r ( ) ;
4 Complex [ ] [ ] da ta = new Complex [ image . ge tHe igh t ( ) ] [ image . getWidth ( ) ] ;
5 f o r ( i n t y =0; y < image . ge tHe igh t ( ) ; y++) {
6 f o r ( i n t x =0; x < image . getWidth ( ) ; x++) {
7 data [ y ] [ x ] = new Complex ( image . g e t R a s t e r ( ) . getSample ( x , y , 0 ) , 0 ) ;
8 }
9 }

10 r e t u r n data ;
11 }

Listing 9.4. Converting a BufferedImage to Complex values.

DFT TYPE, which will either be DFT TYPE.FORWARD or DFT TYPE.INVERSE. A
two-dimensional array of Complex type is passed in and a new array of com-
plexes is created and returned.

1 p u b l i c enum DFT TYPE {FORWARD, INVERSE} ;
2 p u b l i c Complex [ ] [ ] d i s c r e t e F o u r i e r T r a n s f o r m ( Complex [ ] [ ] source ,
3 DFT TYPE type ) {
4 i n t width = source [ 0 ] . l e n g t h ;
5 i n t h e i g h t = source . l e n g t h ;
6 i n t f a c t o r = type == DFT TYPE.FORWARD ? −1 : 1 ;
7 Complex [ ] [ ] r e s u l t = new Complex [ h e i g h t ] [ width ] ;
8 f o r ( i n t u=0; u<width ; u++){
9 f o r ( i n t v =0; v<h e i g h t ; v++){

10 Complex c o e f f i c i e n t = new Complex ( ) ;
11 f o r ( i n t x=0; x<width ; x++){
12 f o r ( i n t y =0; y<h e i g h t ; y++) {
13 Complex b a s i s =
14 Complex . e ( 1 , f a c t o r ∗2∗Math . PI ∗ ( u∗x/ width + v∗y/ h e i g h t ) ) ;
15 c o e f f i c i e n t = c o e f f i c i e n t . p l u s ( source [ y ] [ x ] . t imes ( b a s i s ) ) ;
16 }
17 }
18 r e s u l t [ v ] [ u ] = c o e f f i c i e n t ;
19 }
20 }
21 r e t u r n r e s u l t ;
22 }

Listing 9.5. Brute force DFT.



i
i

i
i

i
i

i
i

9.4. Discrete Fourier Transform 247

The naive implementation of Figure 9.5 has very poor runtime performance
due to the fact that computation of every DFT coefficient requires a multiplica-
tive accumulation over every spatial domain sample. More specifically, for an
N × N image this implementation has a runtime complexity of O(N4), which
is so poor that this implementation becomes unusable for even moderately sized
images.

This performance can be easily improved by noting that the two-dimensional
DFT can be computed by performing a one-dimensional DFT on each row of
the source followed by application of the one-dimensional DFT on each col-
umn. In other words, the two-dimensional DFT is separable and since the one-
dimensional DFT implementation has complexity O(N2) the use of separability
results in a runtime of O(N3) for a N ×N source.

Fast Fourier transform. One of the most important algorithms ever developed,
the fast Fourier transform (FFT), yields an especially efficient implementation
of the DFT by clever elimination of redundant computations. The FFT is used
in a plethora of domains to solve problems in spectral analysis, audio signal pro-
cessing, computational chemistry, error correcting codes, and of course image
processing. The FFT is so important that it is often implemented in hardware
designed specifically for the task.

While various FFT techniques have been discovered, the term FFT typically
refers to the Cooley-Tukey algorithm. This technique was discovered and re-
discovered by a variety of mathematicians but was popularized by J. W. Cooley
and J. W. Tukey in their 1965 publication entitled An Algorithm for the Machine
Calculation of Complex Fourier Series [Cooley and Tukey 65].

A typical divide and conquer strategy forms the basic premise of the FFT. For
the one-dimensional case, an input of length N is divided into two subsections
of equal length. The first section contains all of the even-indexed samples of
the input while the second section contains all of the odd-indexed samples. The
FFT of each of the components is then computed and the results are combined
by multiplying the terms by complex roots of unity. Since the input must be
divided into two equally sized subsections at every step, the algorithm is limited
to handling those inputs where N is a power of 2. Variants on the Cooley-Tukey
algorithm have been developed that are able to compute the DFT of a sequence
of any length. Implementations that require the input to be a power of 2 are
known as radix-2.

The FFT can be formally defined in very concise form. Letting f(x) be a
sequence of N samples we denote the sequence of all even-indexed values of
f(x) as e(x) and the sequence of all odd-indexed values of f(x) as o(x). In other
words e(x) = (f(0), f(2), . . . , f(N − 2)) and o(x) = (f(1), f(3), . . . , f(N − 1)).
We then denote the FFT of e(x) and o(x) as E(u) and O(u), respectively. The
Fourier coefficients of f(x) are then given by Equation 9.31, where M = N/2



i
i

i
i

i
i

i
i

248 9. Frequency Domain

and of course u ∈ [0, N − 1]:

F(u) =


E(u) + e−

j2πu
N O(u) if u < M,

E(u−M)− e−
j2π(u−M)

N O(u−M) if u ≥M.

(9.31)

Since the FFT as previously described is naturally recursive it is important
to establish a point at which recursion terminates. The recursive base case oc-
curs when the input cannot be divided in half. When N = 1 the input cannot
be further divided, in which case F(0) = f(0). In other words, since the first
Fourier coefficient is the average of all input samples and since there is a single
input sample, the average of all the input samples is that sample.

1 p u b l i c s t a t i c void f f t ( boolean forward , Complex [ ] data ) {
2 i f ( da ta . l e n g t h == 1) {
3 r e t u r n ;
4 }
5 i n t m = data . l e n g t h /2 ;
6 double term = −2∗Math . PI / data . l e n g t h ;
7

8 Complex [ ] even = new Complex [m] ;
9 Complex [ ] odd = new Complex [m] ;

10 f o r ( i n t i =0; i < m; i ++) {
11 even [ i ] = data [ i ∗2 ] ;
12 odd [ i ] = data [ i ∗2+1] ;
13 }
14

15 f f t ( forward , even ) ;
16 f f t ( forward , odd ) ;
17

18 f o r ( i n t k =0; k<n ; k++) {
19 Complex tmp = Complex . e ( term ∗k ) ;
20 i f ( ! forward ) tmp = tmp . c o n j u g a t e ( ) ;
21

22 data [ k ] = tmp . t imes ( odd [ k ] ) . p l u s ( even [ k ] ) ;
23 data [ k+m] = even [ k ] . minus ( tmp . t imes ( odd [ k ] ) ) ;
24 }
25

26 i f ( ! forward ) {
27 f o r ( i n t i =0; i<data . l e n g t h ; i ++){
28 data [ i ] = data [ i ] . m u l t i p l y ( . 5 f ) ;
29 }
30 }
31 }

Listing 9.6. FFT.



i
i

i
i

i
i

i
i

9.5. Wavelets 249

Figure 9.20. FFT complexity.

The forward and inverse FFT transforms are almost identical except for scal-
ing and substitution of the complex conjugate of the exponential term of Equa-
tion (9.31). Implementations typically use a single method that performs either
the forward or inverse FFT depending on a global flag setting as is shown in the
method of Listing 9.6. This method requires that the length of the input array be
a power of two where the forward flag indicates whether the forward or inverse
transform is applied.

Although this implementation is not optimized, it has a runtime performance
of O(N logN) providing a significant performance improvement over the brute
force technique. Figure 9.20 shows the relative difference in runtime complex-
ity between the naive DFT implementation and the FFT. The size of a N × N
image is given by the horizontal axis while an approximation to the number of
arithmetic operations required for computation is given by the vertical axis. It is
important to note that both the vertical and horizontal axes are log compressed.
For a 4× 4 image the difference between the DFT and FFT is on the order of 10
times while the difference for a 512× 512 image is on the order of 10,000 times.

9.5 Wavelets
Similar to the Fourier series, wavelets are a class of functions that decompose
a signal into a set of basis functions and that have properties superior to the
the DFT for some applications. In wavelet transformations, the basis functions
are all scaled and translated copies of a waveform known as the mother wavelet.
While a rigorous overview of wavelet theory is beyond the scope of this text, we



i
i

i
i

i
i

i
i

250 9. Frequency Domain

will here present a very brief overview of wavelets as used in image processing
applications.

The discrete wavelet transform (DWT) is used to convert a finite-length dis-
crete sequence into a sequence of wavelet coefficients using a mother wavelet to
define the basis functions. The DWT is a recursive process where at each stage
of the transform the input is scaled and a set of average (or low frequency) coef-
ficients and detail (or high frequency) coefficients is generated. Each subsequent
stage operates only on the low frequency terms; thus generating a pyramid of
increasingly coarse approximations of original sequence in addition to the high
frequency content that can be used to reconstruct the original.

Consider a digital grayscale image with eight columns where a single row of
the image contains the samples (15, 9, 13, 15, 11, 9, 7, 9). We first scale the input
by a factor of two by averaging adjacent samples. The low frequency component
is then given as ((15+9)/2, (13+15)/2, (11+9)/2, (7+9)/2) or (12, 14, 10, 8).
The high frequency coefficients allow us to reconstruct the original signal from
the low frequency component. Since the average value of the two samples lies
at the midpoint between them, it is sufficient to record the difference between
the average value and one of the samples. In this case, the detail coefficients are
given as (15−12, 13−14, 11−10, 7−8) or (3,−1, 1,−1). This process is repeated
for the low frequency component until no more subdivisions can be made such
that the DWT coefficients are finally given as (11, 2,−1, 1, 3,−1, 1,−1). Note
that the first DWT coefficient is the coarsest approximation to the entire original
sequence, the average of all values. Figure 9.21 shows how this process generates
a sequence of increasingly coarse versions of the original sample.

The left-hand segments at each level correspond to the low pass coefficients
while the right-hand segments correspond to the detail coefficients. Wavelets
provide excellent support for multi-resolution analysis since the coefficients con-
tain easily reconstructed scalings at various resolutions of the original image. If
computational speed is desired then the analysis can be performed on one of the
coarser scalings while more accurate analysis can take place at the finer grained
reconstructions. For each level in the transform, the elements of the preceding

Figure 9.21. Haar wavelet example.



i
i

i
i

i
i

i
i

9.6. Exercises 251

(a) Source image. (b) Haar coefficients.

Figure 9.22. Haar wavelet coefficients.

level can be reconstructed by properly summing the detail coefficients with the
average coefficients. The example given in the preceding paragraphs is based on
the Haar wavelet, which is the simplest of the mother wavelets. The most com-
monly used wavelets in image processing are related to the Daubechies, Coiflet,
and the Mexican hat wavelet families.

The two-dimensional wavelet transform is separable and hence can be easily
performed by repeated application of the one dimensional DWT in the same way
as described for the DFT. Figure 9.22 gives an illustration of the Haar wavelet
coefficients computed only to the second level. Note that the scaled original is
to the upper left quadrant while the high frequency details span the remaining
three quadrants. The details for horizontal change are given in the upper right
quadrant, the details for vertical change given in the lower left quadrant, and
the details governing the derivative of these occurs in the lower right quadrant.
A brief discussion of the DWT as it is used in image compression is found in
Chapter 10.

9.6 Exercises
1. Give the DCT coefficients for the four sample sequence (18, 36, 20, 12).

2. Give the DFT coefficients for the four sample sequence (18, 36, 20, 12).



i
i

i
i

i
i

i
i

252 9. Frequency Domain

3. Design and implement an abstract class named WindowingOp that per-
forms windowing as described in Section 9.4.3. Design subclasses that are
able to perform the windowing filter using either the Bartlett, Hanning,
Blackman, or Hamming technique.

4. Use Pixel Jelly to generate a 256 × 256 checkerboard pattern where the
checkerboard tiles are of size 32× 32. Use the DFT dialog to apply a low
pass filter and record the images that result as the cutoff is increased from
0 to 20 in step sizes of 2. Discuss the results. Repeat this process with an
image made of ovals rather than checkered tiles.

5. Use Pixel Jelly to load a binary image of some power-of-two dimension.
Generate an image of the DFT magnitude as the image is (a) rotated by
45◦, (b) scaled down by 50%, and (c) translated to the edge of the image.
Discuss the results and show how they are related to the properties of the
DFT.

6. Use Pixel Jelly to load an image and produce a 3× 3 tiled copy of this im-
age. Compare and contrast the non-windowed DFT magnitude spectrum
with the windowed DFT magnitude spectrum.

7. Consider the sequence given by (83, 75, 109, 45, 39, 42, 55, 82). Give the
Haar wavelet DWT coefficients.

8. Consider using the Haar wavelet to generate the DWT coefficients given
by (62,−38, 5,−1, 3, 1,−1,−10). Reconstruct the original sequence.

Artwork
Figure 9.6. The Portrait of Carolina Zucchi by Francesco Hayez (1791–1882).
Francesco Hayez was an Italian painter and one of the leading 19th century
Romanticists. Hayez is most known for his portraiture and large-scale historical
paintings. Hayez was the youngest of five sons and came from a relatively poor
family. He displayed talent and interest in art at a young age so his uncle secured
him an internship working under an art restorer. He later trained under Fran-
cisco Magiotto and was admitted to the New Academy of Fine Arts in 1806.
Hayez did not sign or date his work and he often painted the same scene with
little or no variation several times. Verifying the authenticity and time line of his
career is thus made more difficult as a consequence.

Figure 9.7. Suprematism by Kazimir Malevich (1878–1935). Kazimir Malevich
was a Russian painter who pioneered geometric abstract art and was the origi-
nator of the Suprematist movement, which focused on fundamental geometric



i
i

i
i

i
i

i
i

9.6. Exercises 253

forms. His paintings include a black circle on white canvas in addition to a black
square on white canvas. Malevich felt that the simplicity of these forms were
symbolic of a new beginning that involved a sort of mystic transcendence over
the normal sensory experiences of life. Figure 9.7 shows his 1916 work, which
goes by the title of the movement he began. It seemed appropriate to use his
work to illustrate the spectral properties of shape.

Figure 9.8. Suprematism by Kazimir Malevich (1878–1935). See the entry for
Figure 9.7.

Figure 9.11. Daniel Chodowiecki on the Jannowitzbrucke by Adolph Friedrich Erd-
mann von Menzel (1815–1905). Adoph Menzel was a German artist noted for
drawings, etchings, and paintings. His first commercial success came in 1883
when a collection of pen and ink drawings was published. Over the three-year
period of 1839–1842 he produced some 400 illustrations for a book entitled The
History of Frederick the Great by Franz Kugler. The detail of Figure 9.11 is a por-
trait of the Polish-German illustrator Daniel Chodoweiecki standing on a Berlin
bridge.

Figure 9.13. Daniel Chodowiecki on the Jannowitzbrucke by Adolph Friedrich Erd-
mann von Menzel (1815–1905). See the previous entry for a brief biographical
sketch of the artist.

Figures 9.14 and 9.17. Suprematism by Kazimir Malevich (1878–1935). See the
entry for Figure 9.7.

Figure 9.19. Still Life with Salmon by Édouard Manet (1832–1883). Édouard
Manet was a French painter who produced some of the most popular works
of the 19th century. Manet was born into a wealthy family and later, after twice
failing the entrance exam for the French Navy, was allowed to pursue an educa-
tion in the arts. Manet studied under Thomas Couture and developed his skill
by painting copies of the old masters in the Louvre. His work propelled the tran-
sition from Realism to Impressionism, fueled in large part by controversy that
surrounded The Luncheon on the Grass and Olympia. Both of these works appear
to feature prostitutes, which were common in his time but seen as inappropriate
subjects for public display. See Figure 9.19 on page 244.

Figure 9.22. The Kiss by Gustav Klimt (1862–1918). Klimt was born in Baum-
garten near Vienna. His early training was at the Vienna School of Arts and
Crafts where his work was disciplined and academic. He later helped to found
the Vienna Secession, which was a group of artists dedicated to promoting the
work of the young and unconventional, regardless of style. Although Klimt was



i
i

i
i

i
i

i
i

254 9. Frequency Domain

well known and prosperous during his lifetime, his work was also highly contro-
versial due to its sexually charged themes. Although the image of Figure 9.22
is perhaps his best known work, the work entitled Adele Bloch-Bauer I sold for
US$135 million in 2006, making it one of the most expensive works of art in the
world.



i
i

i
i

i
i

i
i

�

Image
Compression 10

10.1 Overview
The primary goal of image compression is to minimize the memory footprint
of image data so that storage and transmission times are minimized. Producing
compact image data is essential in many image processing systems since stor-
age capacity can be limited, as is the case with digital cameras, or costly, as is
the case when creating large warehouses of image data. Transmission of image
data is also a central concern in many image processing systems. Recent stud-
ies of web use, for example, have estimated that images and video account for
approximately 85% of all Internet traffic. Reducing the memory footprint of im-
age data will correspondingly reduce Internet bandwidth consumption. More
importantly, however, since most web documents contain image data it is vital
that the image data be transferred over the network within a reasonable time
frame. Reducing the memory footprint has the significant advantage of speeding
delivery of web content to the end user.

Image compression works by identifying and eliminating redundant, or du-
plicated, data from a source image. There are three main sources of redundancy
in image compression. The first is known as interpixel redundancy, which recog-
nizes that pixels that are in close proximity within an image are generally related
to each other. A compression technique that reduces memory by recognizing
some relationship between pixels based on their proximity is an attempt to elim-
inate interpixel redundancy. Run length encoding, constant area coding, and
JPEG encoding seek to eliminate this source of unnecessary data.

The second source of redundancy is known as psycho-visual redundancy.
Since the human visual system does not perceive all visible information with
equal sensitivity we understand that some visual information is less important
than others. Image compression systems will simply eliminate information that
is deemed to be unimportant in terms of human perception. Note that since
reducing psycho-visual redundancy results in information loss, the process is not

255



i
i

i
i

i
i

i
i

256 10. Image Compression

Figure 10.1. General model of (a) an image encoder and (b) an image decoder.

reversible and hence the compressed image suffers a loss of quality. The lossy
constant area coding technique described later in this section is an example of
reducing psycho-visual redundancy.

And finally, coding redundancy refers to the way in which bits are used to
represent the image information. If image samples are stored in such a way that
more bits are required than necessary, then there is redundancy in the encoding
scheme. Although coding redundancy will not be directly addressed in this text
it should be noted that general purpose compression techniques such as huffman
or arithmetic encoding are effective at reducing coding redundancy.

A software module that compresses image data is an image encoder while a
software module that decompresses image data is an image decoder. An image
encoder generally consists of three primary components, each of which seeks to
address one of the three source of redundancy. Figure 10.1 shows a block dia-
gram of the main components of an image encoder. The mapper transforms an
image into a form, or representation, such that interpixel redundancy is either
eliminated or reduced. Some compression techniques convert spatial domain
information into the frequency domain, for example, and this transformation is
considered to be part of the mapper. The quantizer changes the information pro-
duced by the mapper into a discrete set of values and may even truncate data
such that some information is lost in the process. The quantizer typically elimi-
nates or reduces psycho-visual redundancy. Symbol encoding is then performed
on the resulting data stream in order to reduce coding redundancy. An image de-
coder will then decode the symbol data stream and perform an inverse mapping
operation to obtain the resulting image.

A wide variety of image compression techniques are in common use where
PNG, JPEG, and GIF are among the most popular. The effectiveness of an im-
age processing method can be assessed by determining (1) the computational
complexity of the encoding phase, (2) the computational complexity of the de-
coding phase, (3) the compression ratio, and (4) the visual quality of the result.

This text will not consider the computational complexity of either the encod-
ing or decoding process other than to note that efficient encoding of image data
is not generally of concern but that efficient decoding is often crucial. Consider,
for example, a web-based streaming video service. The web server may take a
long time to compress a video stream in order to produce highly compact video



i
i

i
i

i
i

i
i

10.1. Overview 257

data that can be streamed to clients on low bandwidth connections. But note
that while compression can be performed at slow speeds, the client must be able
to decode the compressed data stream in real time so as to render and view the
resulting video.

Compression ratio serves as the primary measure of a compression tech-
nique’s effectiveness. Compression ratio is a measure of the number of bits that
can be eliminated from an uncompressed representation of a source image. Let
N1 be the total number of bits required to store an uncompressed (raw) source
image and let N2 be the total number of bits required to store the compressed
data. The compression ratio Cr is then defined as the ratio of N1 to N2, as
shown in Equation (10.1). Larger compression ratios indicate more effective
compression while a compression ratio lower than unity indicates that the com-
pressed image consumes more memory than the raw representation:

Cr =
N1

N2
. (10.1)

The compression ratio is sometimes referred to as the relative compression
ratio since it compares the memory footprint of one representation to another.
Throughout this text, the raw format will serve as the baseline against which
the relative compression ratios will be compared. The raw format is assumed
to be any format that uses 8 bits per sample, in the case of color and grayscale
images, or 1 bit in the case of binary images. The compression ratio is commonly
simplified by using the notation N1:N2. If an image in raw format consumes 5
Megabytes of memory while in compressed form it consumes 1 Megabyte, the
relative compression ratio can be given as 5:1, which should be read as 5 to 1.

The savings ratio is related to the compression ratio and is a measure of the
amount of redundancy between two representations. The savings ratio is defined
in Equation (10.2). The savings ratio is a percentage of how much data in the
original image was eliminated to obtain the compressed image. If, for example,
a 5 Megabyte image is compressed into a 1 Megabyte image, the savings ratio
is defined as (5-1)/5 or 4/5 or 80%. This ratio indicates that 80% of the un-
compressed data has been eliminated in the compressed encoding. This is not to
imply that the compressed image is of inferior quality (although it may be) but
simply that 80% of the original images data was in some sense redundant and
could therefore be eliminated. Higher ratios indicate more effective compres-
sion while negative ratios are possible and indicate that the compressed image
exceeds the memory footprint of the original.

Sr =
(N1 −N2)

N1
. (10.2)

Root mean squared (RMS) error is a generally accepted way of measuring
the quality of a compressed image as compared with the uncompressed original.



i
i

i
i

i
i

i
i

258 10. Image Compression

RMS error is a measure of the difference between two same-sized images and is
not related to the memory footprint of an image. Assume that a W ×H image I
having B bands is compressed into image I ′. The root mean square error, erms,
is then given in Equation (10.3):

erms =

√√√√√√
W−1∑
x=0

H−1∑
y=0

B−1∑
b=0

(I ′(x, y)b − I(x, y)b )2

W ·H ·B
. (10.3)

The RMS error is a measure of the average sample error between two im-
ages. This can be seen by recognizing that the total number of samples in the
image, W · H · B, occurs in the denominator and that the numerator sums the
squares of the errors between every pair of corresponding samples in the two
images. Since RMS is a measure of error, small RMS measures indicate high-
fidelity compression techniques while techniques that produce high RMS values
are of lower fidelity. If, for example, every sample of the compressed image is

(a) RAW
1,028,054 bytes.

(b) JPEG (low quality)
5,710 bytes
Cr = 99.4%

erms = 20.4.

(c) PNG
708,538 bytes
Cr = 31.1%

erms = 0.0.

Figure 10.2. Compression and bandwidth.



i
i

i
i

i
i

i
i

10.2. Run Length Coding 259

identical to the corresponding sample of the original, the RMS error is 0. Any
compression technique that can be characterized by a high compression ratio
and a low expected RMS value is to be preferred, all else being equal.

An image compression technique can be broadly classified as either lossy or
lossless. A lossless technique is one which always produces a compressed image
with an erms of 0 relative to the source. A lossy technique, however, generates
a compressed image that is not identical to the source. Lossy techniques are
typically able to achieve greater compression ratios by sacrificing the quality of
the result. Figure 10.2 gives an illustration of the typical tradeoffs between com-
pression ratio and fidelity. In this example a 24-bit per pixel 513 × 668 image
consumes 24 · 513 · 668 = 1, 028, 054 bytes without any compression. JPEG
compression reduces the memory footprint to 6,923 bytes but significantly re-
duces the image quality while PNG compression reduces the memory footprint
to 708,538 bytes without any reduction in quality. The JPEG technique achieved
a compression ratio of 99.4% while the PNG approach delivered a 33.1% com-
pression ratio. It should be noted that JPEG can be controlled so as to provide
much higher quality results but with a corresponding loss of compression.

10.2 Run Length Coding
Run length encoding is a lossless encoding scheme in which a sequence of same-
colored pixels is stored as a single value rather than recording each pixel individ-
ually. Consider, for example, a binary image in which each pixel is represented
by a single bit that is either 0 (black) or 1 (white). One row of the image may
contain the 32-pixel sequence

11111111110001111111111111111111

This row contains three runs: 10 white pixels followed by 3 black followed by 19
white. This information can be completely encoded by the three byte sequence
{10, 3, 19} by assuming that the data begins with white runs. The original
representation consumes 32 bits of memory while the run length-encoded repre-
sentation consumes 24 bits of memory if we assume that 8-bit bytes are used for
each run. This results in a compression ratio of 4:3 and a savings ratio of

Sr =
(N1 −N2)

N1
=

(32− 24)
32

=
8
32

= 25%.

Figure 10.3 illustrates how run length encoding can represent binary image
data. In the illustration, one row of an image of the character R is encoded.
The row contains a total of 88 bits (11 bytes) and five runs. This information is
losslessly encoded with the 5-byte sequence {20, 7, 22, 18, 21}, which consumes



i
i

i
i

i
i

i
i

260 10. Image Compression

R
20 7 22 18 21

Figure 10.3. Run length encoding.

a total of 40 bits and results in a compression ratio of 11:5 and a savings ratio of
Sr ' 54%.

Listing 10.1 gives an algorithm for run length encoding binary images where
the encoder assumes that the first run encoded on each row is composed of white
pixels. This is a reasonable assumption since most monochrome images are of
black foreground objects on white background and the first run will almost al-
ways be comprised of white pixels. If the first pixel on any row is black, the length
of the first white run is zero. Run length encoding is most effective for images
where long runs of identical pixels are common. Most types of monochrome
images (e.g., line drawings and scanned text), or palette-based iconic images are
amenable to run length encoding while continuous tone images can not generally
be effectively compressed with this technique since long runs of equal samples
are rare.

Implementation of a run length encoder for binary images brings up an im-
portant technical detail that must be addressed. If run lengths are encoded with
8-bit bytes the question of how to represent runs that exceed 255 in length must
be answered since bytes can only range in value between 0 and 255. A straight-
forward solution is to encode a single run length as a multi-byte sequence. A

1 runlengthEncode ( Image source , OutputStream OS)
2 writeTheHeader ( source )
3 f o r every row R of the source image
4 boolean i sWhite = t r u e ;
5 while t h e r e a re more runs on row R
6 L = l e n g t h of next run
7 w r i t e L to OS
8 i sWhi te = ! i sWhite ;

Listing 10.1. Run length encoding algorithm.



i
i

i
i

i
i

i
i

10.2. Run Length Coding 261

single run of 783 pixels, for example, could be encoded as the 4-byte sequence
{255, 255, 255, 18}, where the byte value 255 signifies that this run is 255 pixels
longer and the run is not over yet and any byte b other than 255 signifies that
this run is B pixels longer and the run is now over. Given this interpretation, the
encoded run length {255, 255, 255, 18} can be decoded as 255 + 255 + 255 +
18 = 783 pixels in length. Under this encoding scheme a run of length 255 is
encoded as the two byte sequence {255, 0}.

While the algorithm of Listing 10.1 shows how to run length encode a binary
image, consider the problem of encoding a grayscale or color image. For an 8-bit
grayscale image there are more than two possible sample values and hence a run
must somehow be encoded as a two-element pair where the first element is the
value of the run and the second is the length of the run. When encoding a row
profile containing the samples {100, 100, 103, 104, 110, 110, 110}, for example,
the run length representation would be {(100,2), (103,1), (104,1), (110,3)}. Since
storage is required for the value of the run in addition to the length of the run, the
effectiveness of run length encoding is reduced. This example also highlights an-
other problem with run length encoding of grayscale images since it is extremely
unlikely that a grayscale image contains runs of any significant length.

Consider, however, another approach to run length encoding a grayscale im-
age. Since run length encoding a binary image is generally effective we can view
a grayscale image as a collection of binary images that can be encoded using the
technique of Listing 10.1. Just as a single 24 bpp image can be split into three
8-bit grayscale images, an 8-bit grayscale sample can be split into eight 1-bit or
binary bands. All grayscale and color images can be decomposed into a set of
binary images by viewing each sample as eight individual bits that form eight
separate bands. Figure 10.4 illustrates how a 4-bit grayscale image can be de-
composed into four separate monochrome images by bit plane slicing. A 3 × 2
4-bit grayscale image is shown in part (b) where the samples are displayed in bi-
nary notation. The least significant bit of each sample forms the 0th bit plane P0

while the most significant bit of each sample forms the 3rd bit plane P3, which
are shown as the four binary images of parts (b) through (e). In this illustration,
a 1 bit is rendered as a white pixel while a 0 bit is rendered as black.

Note that the 7th bit plane of an 8-bit grayscale image is equivalent to the
result of thresholding with a cutoff value of 127 since the 7th bit is 1, or white, for
those samples exceeding 127 and is 0, or black, for those samples with a value

(a) Source image. (b) P0 (c) P1 (d) P2 (e) P3

Figure 10.4. The bit planes of a 4 bpp source image.



i
i

i
i

i
i

i
i

262 10. Image Compression

(a) Source image. (b) Bit plane 0.

(c) Bit plane 2. (d) Bit plane 4.

(e) Bit plane 6. (f) Bit plane 7.

Figure 10.5. Bit planes as binary images.



i
i

i
i

i
i

i
i

10.2. Run Length Coding 263

(a) Source image. (b) Bit plane 0.

(c) Bit plane 2. (d) Bit plane 4.

(e) Bit plane 6. (f) Bit plane 7.

Figure 10.6. Gray coded bit planes.



i
i

i
i

i
i

i
i

264 10. Image Compression

below 128. In terms of content, the 7th bit plane of an 8 bit grayscale image
consists of the most significant bits of each sample and hence more accurately
represents the structure of the grayscale image than the other planes. Since the
least significant bit plane consists of the least significant bits of each sample,
the resulting bit planes contain relatively little information and are sometimes
considered to be completely irrelevant or noise. Figure 10.5 shows a number of
bit planes constructed from a grayscale image Note that in this figure, the more
significant planes contain more structural information than the less significant
bit planes.

Understanding that a grayscale or color image can be decomposed into a
sequence of binary images allow us to modify the algorithm of Listing 10.1 by
using bitplane slicing. We repeatedly encode the individual bit planes of an im-
age using the binary image encoder where we understand that the compression
ratio of the least significant planes will likely be much lower than the compres-
sion ratio of the most significant planes.

Run length encoding is most effective for images having long runs. Consider
a grayscale image having adjacent samples of 127 and 128. In binary form these
two samples are 01111111 and 10000000. While the two samples are a single in-
tensity level in difference, all eight bits of the two samples are different and hence
any run on any plane will be broken at the junction of these two samples. Gray
coding is an alternate binary representation that can be useful for extending runs
across bit planes. The reflected binary code, also known as gray code after the
discoverer Frank Gray, is a binary numeral system where two successive values
differ in only one bit. A grayscale image can be decomposed into 8 bit planes us-
ing a gray coding scheme in order to increase the length of runs across all of the
bit planes. Figure 10.6 shows how a grayscale image can be decomposed into bit
planes using the reflected binary encoding. Note that the structure of the images
is more coherent at every plane than the corresponding planes of Figure 10.5.

10.2.1 Implementation

Image compression requires a great deal of attention to low level data types and
careful attention to robust design techniques. In this textbook we will develop a
general framework that will support image compression by first describing two
classes: one class for compressing and encoding an image into an output stream,
and another for decoding an image from an input stream. Our framework will
closely mirror the standard Java framework.

Listing 10.2 gives a listing of the ImageEncoder and ImageDecoder abstract
classes. The ImageEncoder supports image compression through the abstract
encode method that takes an image as input and encodes it into the specified
data output object. The DataOutput class is an interface that is typically imple-
mented as an output stream. An OutputStream represents any object to which



i
i

i
i

i
i

i
i

10.2. Run Length Coding 265

1 p u b l i c a b s t r a c t c l a s s ImageEncoder {
2 p u b l i c void wri teHeader ( Buf feredImage source , DataOutput output )
3 throws IOException {
4 output . writeUTF ( getMagicWord ( ) ) ;
5 output . w r i t e S h o r t ( ( shor t ) source . getWidth ( ) ) ;
6 output . w r i t e S h o r t ( ( shor t ) source . ge tHe igh t ( ) ) ;
7 output . w r i t e I n t ( source . getType ( ) ) ;
8 }
9

10 p u b l i c void encode ( Buf feredImage source , F i l e f ) throws IOException {
11 Fi leOutputSt ream f o u t = new Fi leOutputSt ream ( f ) ;
12 encode ( source , f o u t ) ;
13 f o u t . c l o s e ( ) ;
14 }
15

16 p u b l i c a b s t r a c t S t r i n g getMagicWord ( ) ;
17 p u b l i c a b s t r a c t void encode ( Buf feredImage image , OutputStream os )
18 throws IOException ;
19 }
20

21 p u b l i c a b s t r a c t c l a s s ImageDecoder {
22 p u b l i c boolean canDecode ( F i l e f i l e ) {
23 t r y {
24 DataInputStream f i n = new DataInputStream (new F i l e I n p u t S t r e a m ( f i l e ) ) ;
25 S t r i n g mw = f i n . readUTF ( ) ;
26 f i n . c l o s e ( ) ;
27 r e t u r n (mw != n u l l && mw. e q u a l s ( getMagicWord ( ) ) ) ;
28 } catch ( Except ion e ) {
29 r e t u r n f a l s e ;
30 }
31 }
32

33 p u b l i c BufferedImage decode ( F i l e f ) throws IOException {
34 F i l e I n p u t S t r e a m f i n = new F i l e I n p u t S t r e a m ( f ) ;
35 BufferedImage r e s u l t = decode ( f i n ) ;
36 f i n . c l o s e ( ) ;
37 r e t u r n r e s u l t ;
38 }
39

40 p u b l i c a b s t r a c t S t r i n g getMagicWord ( ) ;
41 p u b l i c a b s t r a c t BufferedImage decode ( InputStream i s ) throws IOException ;
42 }

Listing 10.2. ImageEncoder and Decoder.



i
i

i
i

i
i

i
i

266 10. Image Compression

data can be written, generally one byte at a time. While an output stream is
often associated with a file, it may be associated with a network connection or
any other device to which data can be written. The ImageDecoder provides
the inverse service through the abstract decode method whereby data is read
from an input stream which is then used to construct an image. Both the en-
code and decode methods are overloaded such that clients may encode or de-
code directly to files. In both cases, the method simply attaches a stream to the
specified file and the calls the coding method to perform the actual encoding or
decoding.

Most image file formats begin with a magic number or, more descriptively,
a magic word. The magic number is a sequence of bytes that identifies the
file format and hence how the file should be decoded. In our implementa-
tion, the magic word is simply text such that each encoder and decoder can
be uniquely identified. The writeHeader method of line 2 writes informa-
tion necessary for recovering an encoded image. The magic word followed
by the width, height, and the type of image is written into the stream. The
type of image is the value returned by the getType method of the buffered im-
age class. The encode method will initially call the writeHeader method and
then generate the appropriate encoding. An ImageDecoder can open a file and
quickly see if it can be decoded by checking the magic word stored in the file
header. This is accomplished via the canDecode method on line 22. The decode
method reads necessary header information and then begins decoding the image
data.

Observant readers will note that the header method accepts a DataOutput
object rather than an output stream. A DataOutput object is able to write byte-
oriented data in a manner similar to output streams but is also able to write
other types of objects, such as all of the primitive data types and Strings. Since
the header consists of ints, shorts, and Strings, the DataOutput object is useful
there. A DataOutputStream is a DataOutput implementation.

To implement a run length encoder we must write concrete subclasses of both
the encoder and decoder. Listing 10.3 gives a complete implementation of a run
length encoder. The encode method accepts an output stream and transforms it
a DataOutputStream so that primitive data can be written to it rather than just
individual bytes. The header consists of the magic word “RLE” to indicate that
this image has been run length encoded. This header information is necessary
for the decoder so that it knows how to decode the stream and the type of image
that it should return.

Each row of each bitplane is then encoded using a run length encoding tech-
nique. The central method is the getRun method, which computes the length of
the next run on the given bitplane of the specified band.

The length of the run is then written to the output stream via the writeRun
method, which writes as many bytes as necessary in order to encode the
run.



i
i

i
i

i
i

i
i

10.2. Run Length Coding 267

1 c l a s s RunLengthEncoder implements ImageEncoder {
2 p r i v a t e void writeRun ( i n t l eng th , DataOutputStream os ) throws IOException {
3 while ( l e n g t h >= 255) {
4 os . w r i t e ( 2 5 5 ) ;
5 l e n g t h −= 255;
6 }
7 os . w r i t e ( l e n g t h ) ;
8 }
9

10 p u b l i c S t r i n g getMagicWord ( ) {
11 r e t u r n "RLE" ;
12 }
13

14 p r i v a t e boolean g e t B i t ( i n t sample , i n t b i t ) {
15 r e t u r n ( sample & (0 x1 << b i t ) ) != 0 ;
16 }
17

18 p r i v a t e i n t getRun ( Buf feredImage source , i n t column , i n t row ,
19 i n t band , i n t b i t , boolean i sWhite ) {
20 i n t r e s u l t = 0 ;
21 while ( column < source . getWidth ( ) &&
22 g e t B i t ( source . g e t R a s t e r ( ) . getSample ( column , row , band ) , b i t )== isWhite ) {
23 column++;
24 r e s u l t ++;
25 }
26 r e t u r n r e s u l t ;
27 }
28

29 p u b l i c void encode ( Buf feredImage source , OutputStream out )
30 throws IOException {
31 DataOutputStream output = new DataOutputStream ( out ) ;
32

33 wri teHeader ( source , output ) ;
34 f o r ( i n t band =0; band<source . getSampleModel ( ) . getNumBands ( ) ; band++) {
35 f o r ( i n t b i t =0; b i t <source . getSampleModel ( ) . ge tSampleS ize ( band ) ; b i t ++) {
36 f o r ( i n t y =0; y<source . ge tHe igh t ( ) ; y++) {
37 boolean i sWhi te = t r u e ;
38 i n t pixe l sEncoded = 0 ;
39 while ( p ixe l sEncoded < source . getWidth ( ) ) {
40 i n t l e n g t h = getRun ( source , pixelsEncoded , y , band , b i t , i sWhite ) ;
41 i sWhite = ! i sWhite ;
42 writeRun ( leng th , output ) ;
43 pixe l sEncoded += l e n g t h ;
44 }
45 }
46 }
47 }
48 }
49 }

Listing 10.3. RunLengthEncoder.



i
i

i
i

i
i

i
i

268 10. Image Compression

10.3 Hierarchical Coding
In run length encoding each datum represents a one-dimensional run of pixels.
Constant area coding (CAC) is a two-dimensional extension of this idea where
entire rectangular regions of pixels are stored as a single unit. While run-length
encoding is a lossless compression technique, constant area coding can be either
lossy or lossless depending upon the specific implementation.

Consider encoding a W ×H binary image using a CAC technique. If the en-
tire image is white we simply output white and are done with the encoding. If the
entire image is black we output black and are also done encoding. If, however,
the image is neither all white nor all black the image is divided into four equally
sized regions by splitting the image in half both vertically and horizontally and
each of these four regions is then recursively encoded following the same proce-
dure. The process recurses only for non-homogeneous regions and will always
terminate since at some point the region will be no larger than a single pixel
which will be either all white or all black.

The division of an image region into four equal-sized subregions is often rep-
resented through a region quadtree. A region quadtree is a data structure that
partitions two-dimensional rectangular regions into subregions as described in
the preceding paragraph. Each node of a quadtree contains either zero or four
children and represents a rectangular region of two dimensional space. Any
node having no children is a leaf (or terminal) node while any node having four
children is an internal node. Leaf nodes represent rectangular regions that are
completely filled by a single color while internal nodes represent regions con-
taining variously colored quadrants as described by their four children.

Figure 10.7 provides an illustration of quadtrees. AW×H rectangular region
R is divided into four quadrants, each of which is a leaf in this example. While
the image itself may have large dimension the corresponding quadtree has ex-
actly five nodes and is able to completely encode the entire image in only a few
bytes. The quadtree representation of R is visualized in part (b) of Figure 10.7,
where leaves are drawn as rectangles filled with the leaves colors while internal
nodes are drawn as ovals.

Q1 Q0

Q2 Q3

R

Q1Q0 Q2 Q3

R

(a) Region R partitioned into quadrants. (b) Quadtree representation of R.

Figure 10.7. An illustration showing the quadtree representation of an image region.



i
i

i
i

i
i

i
i

10.3. Hierarchical Coding 269

(a) 8× 8 binary image. (b) Corresponding quadtree.

Figure 10.8. Example of CAC.

Figure 10.8 provides a concrete example of how an 8×8 monochrome image
can be represented by a region quadtree. Since the 8×8 image is neither all black
nor all white it must be subdivided into four 4 × 4 quadrants that become the
children of the root node. Since quadrants Q0 and Q3 are all white, we tag those
regions as white and they are not subdivided further. Regions Q1 and Q2 are not
all white and hence they are further subdivided as seen in Figure 10.8(b). Each
level of the tree corresponds to a region that is half the width and height of its
upper level. Since the image is 8 × 8, the top node represents the entire 8 × 8
region while the four second level nodes each represent a 4× 4 region, the eight
third level nodes each represents a 2×2 region and the twelve lowest-level nodes
each represent a 1× 1 region of the image.

Having constructed the quadtree, the quadtree must be serialized, or written
to an output stream bit by bit. A quadtree can be serialized by traversing the tree
in pre-order fashion and writing a single bit for every node visited. For every
visited node we write a 0 bit if the region represented by the node contains at
least one black pixel and a 1 bit otherwise. Although it is possible to construct
binary images where the quadtree representation consumes more memory than
the RAW format, most binary images can be effectively compressed using CAC
encoding. Line drawings, scanned text, and palette-based iconic images are par-
ticularly well suited for this scheme.

When the quadtree of Figure 10.8 is serialized in this fashion, it results in the
bit sequence 0100110011010010010001111. Since the original image is binary
each pixel is a single bit and hence the entire image consumes 64 bits of memory
in raw form. The serialized quadtree consumes 25 bits of memory, which results
in a compression ratio of 61% as given by

Cr =
(64− 25)

64
= 61%.



i
i

i
i

i
i

i
i

270 10. Image Compression

10.3.1 Implementation

When implementing a CAC encoder an image is first converted into its quadtree
representation after which the tree is then serialized. In general, the serialized
quadtree will be more compact than the raw image data if the image contains
sufficient regions of identically valued pixels. CAC encoding of binary images
is not only effective but is also easily implemented. Our implementation will
implicitly construct the quadtree through a sequence of recursive function calls
and hence there is no need for an explicit tree data type. Each function call
represents a single tree node and the series of calls effectively traverses, in a pre-
order fashion, the quadtree representation.

Consider the low-level details of encoding a binary image. The source code
of Listing 10.4 gives a nearly complete implementation of CAC encoding for
binary source images. Each call to the write method corresponds to visiting a
node in the quadtree covering the region that has (x, y) as its upper-left coordi-
nate and is w pixels wide and h pixels tall. If either the width or height of the
region is zero or less then the region contains no pixels and there is nothing to
encode as is the case on line 4. If the region is all white, as indicated on line 6, a
1 bit is written. Otherwise the region has at least one black pixel so a 0 bit is writ-
ten and the region is subdivided into four quadrants and each quadrant is then
encoded by recursively calling the write method, as shown by the condition of
line 8.

The MemoryCacheImageOutputStream is a standard but nonetheless special-
ized Java class in the javax.imageio package. Objects of this class are created

1 p r i v a t e void w r i t e ( Buf feredImage source ,
2 MemoryCacheImageOutputStream os ,
3 i n t x , i n t y , i n t w, i n t h ) throws IOException {
4 i f (w <= 0 | | h <= 0) r e t u r n ;
5

6 i f ( i sA l lWhi t e ( source , x , y ,w, h ) ) {
7 os . w r i t e B i t ( 1 ) ;
8 } e l s e {
9 os . w r i t e B i t ( 0 ) ;

10 w r i t e ( source , os , x + w/2 , y , w−w/2 , h / 2 ) ; // quadrant 0
11 w r i t e ( source , os , x , y , w/2 , h / 2 ) ; // quadrant 1
12 w r i t e ( source , os , x , y + h/2 , w/2 , h − h / 2 ) ; // quadrant 2
13 w r i t e ( source , os , x + w/2 , y + h/2 , w−w/2 , h−h / 2 ) ; // quadrant 3
14 }
15 }

Listing 10.4. CAC implementation.



i
i

i
i

i
i

i
i

10.3. Hierarchical Coding 271

1 p u b l i c c l a s s BinaryCACEncoder ex tends ImageEncoder {
2 p u b l i c S t r i n g getMagicWord ( ) {
3 r e t u r n ”BCA” ;
4 }
5

6 p u b l i c void encode ( Buf feredImage source , OutputStream os )
7 throws IOException {
8 MemoryCacheImageOutputStream output =
9 new MemoryCacheImageOutputStream ( os ) ;

10 wri teHeader ( source , output ) ;
11 w r i t e ( source , output , 0 , 0 , source . getWidth ( ) , source . ge tHe igh t ( ) ) ;
12 output . c l o s e ( ) ;
13 }
14

15 p r i v a t e void w r i t e ( . . . ) { . . . }
16 p r i v a t e boolean i sAl lWhi t e ( . . . ) { . . . }
17 }

Listing 10.5. BinaryCACEncoder.

by attaching them to some output device to which data is written. The main
virtue of a memory cached output stream is its ability to write individual bits in
addition to bytes. The name of the class derives from the fact that the output is
buffered up in internal memory (or cached in memory) prior to being flushed to
the attached output stream.

To complete our implementation we must write a concrete subclass of
ImageEncoder such as outlined in Listing 10.5. The magic word is chosen as
“BCA” for binary constant area encoding. The encoding method creates a mem-
ory cached output stream, an implementation of the DataOutput interface, by
attaching it to the client-supplied output stream, writing the header informa-
tion to the stream, and then calling the write method specifying that the en-
tire image region should be written. The region is defined by the location of
the upper left pixel (0, 0) where the width and height are given as the image
dimensions.

10.3.2 Encoding Grayscale and Color Images
CAC encoding of grayscale and color images poses more difficulties than the
encoding of binary images. Continuous tone images are not likely to contain
large regions of precisely identical colors and hence will generally subdivide to
regions of one pixel in size. In addition, rather than having only two possible



i
i

i
i

i
i

i
i

272 10. Image Compression

colors there are 256 possible tones for a grayscale image and hence we must
store, for each leaf node in the quadtree, an entire byte designating the color of
that node rather than the single bit required for binary images.

The algorithm of Listing 10.4 for encoding binary images can, however, be
effectively extended to encode grayscale and color images in two different fash-
ions. The first is to view grayscale images as a collection of bit planes and to
encode each bit plane using the monochrome technique described above. While
this results in a lossless encoding scheme, it is generally the case that the com-
pression ratio will be low since little, if any, compression will occur in the less
significant bit-planes and thus negate any compression obtained in the more sig-
nificant bit planes.

The second technique for CAC encoding grayscale and color images is a
lossy technique. Since continuous tone images are not likely to contain large
homogeneous regions of identically valued samples, CAC compression can be
made effective by encoding regions of similar samples as if they were identical. In
such a scheme, each leaf node of the quadtree contains the average value of the
samples over the region. Such an approximation is reasonable if the samples in
the region are largely similar. At each stage of lossy CAC compression a region
must either be divided into quadrants or left intact and encoded as a whole. If the
samples in a region are sufficiently similar we can approximate the entire region
as a homogeneous whole by recording the average sample value of all samples
in the region.

Rather than dividing a region into quadrants if there is any one pixel that is
different than the others, we only divide a region into quadrants if the pixels are
not sufficiently similar. Similarity can be measured by the standard deviation
such that a larger standard deviation indicates a larger difference in the samples
and a smaller standard deviation indicates a smaller difference in the samples.
The standard deviation is related to the erms error given in Equation (10.3),
where the mean or average value of the samples in the region serves as the base-
line. Equation (10.4) shows how to compute the standard deviation, denoted as
σ, for all samples in a W ×H subregion of a grayscale image where the average
value of all samples in the subregion is denoted as µ̄W,H .

σ =

√√√√√√
W−1∑
x=0

H−1∑
y=0

(I(x, y)− µ̄W,H )2

W ·H
. (10.4)

Lossy CAC encoding will first compute the standard deviation of the sam-
ples in a region and divide the region if the standard deviation is larger than some
threshold setting. The larger the threshold, the more the image is compressed but



i
i

i
i

i
i

i
i

10.3. Hierarchical Coding 273

10 9 11 10
10 9 15 9
72 72 12 9
83 78 83 11

10 10 11 11
10 10 11 11
76 76 12 9
76 76 83 11

0 1 0 1
0 1 -4 2
4 4 0 0
-7 -2 0 0

(a) Source image. (b) Encoded. (c) Difference.

Figure 10.9. Numeric example of grayscale CAC encoding.

at the cost of lower fidelity. Higher threshold settings signify that regions are al-
lowed to contain greater error, which generally results in low fidelity but with
greater compression ratios. Lower threshold settings indicate that regions are
not allowed to contain much difference and this results in lower compression
ratios but higher fidelity. A threshold setting of zero results in a lossless com-
pression strategy since no deviation from the average value is allowed and hence
all the samples in the region must be identical. When using a threshold of zero,
however, the compression ratio will typically be negative and thus of no practical
use.

Figure 10.9 provides a numeric illustration. A continuous tone grayscale im-
age is shown in (a) and encoded with a standard deviation threshold of 5.0. The
standard deviation of the 4×4 image is computed as σ = 31.3, which exceeds the
threshold of 5.0 and so the image is subdivided into four quadrants. The stan-
dard deviation of the four quadrants is then computed as σQ0 = 2.3, σQ1 = 0.5,
σQ2 = 4.6, and σQ3 = 31.34. Since the first three quadrants have acceptable
deviations, they are not further subdivided and are represented by their aver-
ages. The fourth quadrant, however, has an unacceptably large standard devia-
tion and is hence subdivided into four 1×1 quadrants. In order to determine the
fidelity of the compressed image we take the difference between the two images,
as shown in Figure 10.9(c) from which the erms error is then easily computed
as .649.

Figure 10.10 provides a visual example of this compression strategy. A con-
tinuous tone grayscale image is compressed with a threshold setting of 20 to
obtain the image of (b). This threshold setting indicates that, on average, no
sample of the compressed image will be more than 20 grayscale values different
than the corresponding sample of the source image. A threshold of 10 is used to
obtain the compressed image of (c) while (d) superimposes grids over regions of
constant tone. The image of Figure 10.10 part (d) highlights the fact that CAC
encoding dynamically allocates bandwidth (memory) to those areas of the image
that contain high frequency information and less bandwidth to those areas of the
image that do not posses a great deal of visual content.



i
i

i
i

i
i

i
i

274 10. Image Compression

(a) Source image. (b) Threshold of 20.

(c) Threshold of 10. (d) Threshold of 10 with solid
areas outlined.

Figure 10.10. The effect of threshold on CAC compression.



i
i

i
i

i
i

i
i

10.4. Predictive Coding 275

10.4 Predictive Coding

10.4.1 Lossless Predictive Coding

Predictive coding reduces interpixel redundancy by recognizing that neighbor-
ing pixels are usually similar and that it is possible to predict with good accuracy
what value a pixel will be if we know the preceding pixel values. Predictive
encoding thus only encodes the difference between a sample’s expected (or pre-
dicted) value and its actual value. Predictive coding schemes can be modeled, as
shown in Figure 10.11, where a stream of samples is fed into the encoder. The
predictor is responsible for predicting the next sample in the stream and is able to
make good predictions since it has access to the previous samples in the encoding
stream. The prediction may be real valued and hence rounding is used to gen-
erate an integer-valued prediction, which is subtracted from the actual sample
value and the difference is then encoded by the symbol encoder.

An image decoder reads in the stream of differences, which are symbolically
decoded and added to the predictions made by the predictor. The predictor has
access to the stream of decoded samples in the same manner as the encoder
predictor. Note that the predictor block of both the encoder and decoder must
be identical for this scheme to work.

Consider a predictive encoding scheme for grayscale images. Given a stream
of samples obtained through some scan of the image data, the predicted value

(a) Encoding block.

(b) Decoding block.

Figure 10.11. Block diagram of (a) predictive encoding and (b) predictive decoding.



i
i

i
i

i
i

i
i

276 10. Image Compression

of the kth sample is denoted as S′k while the actual value of the kth sample is
designated as Sk. The predictor block embedded in the encoding module must be
able to compute Sk solely from the previous k−1 actual sample values (i.e., from
the sequence S0, S1, . . . , Sk−1) since predictions must be based on an analysis of
actual sample values. While it may be imagined that the predictor contained in
the encoder block is able to predict Sk by analysis of the entire sample stream,
this is not allowed since the encoding predictor and decoding predictor must be
identical and the corresponding predictor of the decoding block will only have
access to already decoded samples.

One of the simplest predictor schemes is to use the most recent actual sample
value Sk as the value of the next predicted sample S′k+1. Given a stream of N
samples S0, S1, . . . , SN−1 we define S′k = Sk−1. When using this predictor, the
first predicted value must be pulled out of thin air since there is no actual sample
value preceding the first. A reasonable approach is to define S0 as the center of
the dynamic range, or 128 in the case of 8-bit samples.

Figure 10.12 provides an example of encoding a sample stream. The top row
of the table contains the actual sample stream that is fed into the encoder. The
predicted values (middle row) are forwarded from the most recent actual sample
and the difference between actual and predicted is recorded to the output stream
(bottom row). The sample stream will generally correspond to a raster scan of the
image although alternate scanning schemes are possible. When the first sample,
S0 = 53, is fed into the predictive encoder block, the predicted value, S′0 = 128,
is subtracted from the actual value and this difference, e = −75, is encoded in
the output stream. When the next sample, S1 = 58, is fed into the encoder, the
predicted value, S′1 = S0 = 53 and the corresponding difference e = 58−53 = 5
is given to the symbol encoder.

It is not immediately apparent that the output stream will have a positive
compression ratio since the range of difference values is [-255, 255], which re-
quires 9-bits per datum; an apparent expansion of an 8 bit-per-sample raw encod-
ing of a grayscale image. The key benefit in predictive encoding is an alteration
of the way data is distributed within the dynamic range. In a typical grayscale im-
age, the grayscale values are nearly evenly distributed across the dynamic range.
The effect of predictive encoding is to alter the distribution such that the sample

K
0 1 2 3 4 5 6 7 8 9

S 53 58 45 63 71 70 72 68 55 . . .

S′ 128 53 58 45 63 71 70 72 68 . . .

e -75 5 -13 18 8 -1 2 -4 -13 . . .

Figure 10.12. Predictive encoding example.



i
i

i
i

i
i

i
i

10.4. Predictive Coding 277

(a) RAW histogram. (b) Differences histogram.

Figure 10.13. Distribution of predictively encoded data.

values are highly clustered around zero. Figure 10.13 illustrates how the dis-
tribution of grayscale samples, shown in the histogram of (a) is altered to the
zero-centered distribution of differences shown in (b). The predictor module will
generally produce data that is tightly distributed about zero and falls off dramat-
ically with distance from zero.

A specialized symbol encoding scheme can then be devised that is tuned for
the expected distribution of data. One such scheme is to encode the data into a
combination of 4-bit and 8-bit words. Since there are 16 patterns in a 4-bit word,
we can represent any difference in the range [−7,−6, . . . , 5, 6] while leaving two
extra patterns to designate whether the difference is negative or positive and then
encode the magnitude of the difference as an 8-bit word. This coding scheme is
given in Table 10.1.

When a difference of −5 is encoded, Table 10.1 outputs the 4-bit pattern for
the decimal value 2 or 0010. When a difference of 128 is encoded we output the
4-bit pattern 1111, or decimal 15, followed by the 8-bit pattern of 10000000.
While any difference outside of the [−7,−6, . . . , 5, 6] range will consume 12
bits of memory, the overwhelming majority of differences will fall within the

Difference Value Coding Scheme
−7 . . . 6 encode a 4-bit representation of the difference using 0 - 13

−255 . . .− 8 encode the 4-bit value 14 followed by the 8-bit difference
7 . . . 255 encode the 4-bit value 15 followed by the 8-bit difference

Table 10.1. Table for encoding difference values.



i
i

i
i

i
i

i
i

278 10. Image Compression

near-zero range and hence consume only 4 bits of memory with the net effect of
reducing the bits per sample.

10.4.2 Delta Modulation
Lossy predictive coding schemes reduce memory consumption by encoding the
approximate differences between predicted and actual sample values. In the sim-
plest such scheme, known as delta modulation, the error between a predicted
and actual sample value is approximated as either +δ or −δ where δ is a global
parameter established prior to compressing an image. While the predictor model
of Figure 10.11 must be slightly modified in order to incorporate the notion of
difference approximation, the process of delta modulation coding is easily de-
scribed.

Consider an image with a sample stream of {53, 58, 45, 63, 71, 70, 72, 68,
55, . . .}. Delta modulation will seed the encoder by passing the initial sample
value, 53, directly to the output stream. Having recorded the 0th actual sample
value, the predicted value of the (k+1)st sample, S′k+1, is given as S′k+e′k where
e′k is the approximate error between S′k and Sk. The approximate error e′k is
defined as

e′k =

 0 if k ≤ 0,
+δ if Sk+1 > S′k and k > 0,
−δ otherwise.

Figure 10.14 illustrates how an encoder would use delta modulation to rep-
resent the entire data stream of this example. The parameter δ is a global entity
that can be recorded in the header of the output stream along with the initial
sample value. Since the approximate differences are defined as either positive
or negative δ, the only item that needs to be recorded in the output stream is
the sign of the difference approximation. A single bit will suffice to distinguish
between the symbols +δ and −δ with the net effect of reducing the bandwidth to
one bit per sample.

The overall effect of this technique on the output is dependent on the value
of δ. The value of δ determines the maximum amount that adjacent samples
are allowed to change and, in fact, must change. Smaller delta values will there-
fore not be able to represent strong edges since samples vary quickly at edge

0 1 2 3 4 5 6 7 8 9
S 53 58 45 63 71 70 72 68 55 . . .

S′ - 53 61.5 53 61.5 70 61.5 70 61.5 . . .

e′ 0 +δ −δ +δ +δ −δ +δ −δ −δ . . .

Figure 10.14. Delta modulation example.



i
i

i
i

i
i

i
i

10.4. Predictive Coding 279

(a) δ = 3.5. (b) δ = 10.5.

Figure 10.15. Graphs of delta modulation.

boundaries. Smaller delta values will, however, more accurately capture the fine
details in a source image. Larger delta values will allow the compressed image
to adequately represent strong edges, but will not allow the compressed image to
adequately represent homogenous regions since the output will oscillate above
and below the actual values of the region.

Figure 10.15 shows graphical representations of a sample stream that is en-
coded using delta modulation and two different delta values. The step-wise com-
ponent in each graph represents the encoded sample stream while the smooth
component represents a continuous tone grayscale edge going from near-black
to mid-level gray and back to near-black. With the relatively low delta value
of 3.5 in (a), the encoded representation can closely track the initial flat region
of the input but is unable to track edges as the center of the graph shows. In part
(b), however, the relatively high delta value of 10.5 allows the encoded data to
more closely track the edge but sacrifices fidelity in the initial flat region of the
input.

As described earlier, the initial sample value may be written in the header
of the encoded stream. Far better results are obtained, however, by writing the
first grayscale value of each row to the encoded stream. This allows the de-
coded image a greater coverage of grayscale values but does slightly reduce the
compression ratio. Figure 10.16 shows a grayscale image that has been delta
modulated using δ = 6.5 in (b), δ = 20 in (c), and δ = 75 in (d). Note the
blurring effect due to the relatively low delta setting in (b) while part (d) has
sharper edges but appears grainy due to the large oscillations between adjacent
samples.



i
i

i
i

i
i

i
i

280 10. Image Compression

(a) Grayscale source image. (b) Compressed with δ = 6.5.

(c) Compressed with δ = 20. (d) Compressed with δ = 75.

Figure 10.16. Delta modulation example.

10.5 JPEG Case Study
JPEG compression is a sophisticated standard developed by the Joint Photo-
graphic Experts Group, a standards-making body comprised of industrial and
academic partners. The JPEG standard describes a family of compression tech-
niques that can be both lossless and lossy, although one particular implemen-
tation, JPEG/JFIF, is the most well-known realization of the standard and is a
lossy technique. The JPEG standard was designed for use on photographic or
natural scenes rather than synthetic graphic or iconic images. JPEG compres-
sion is the default format for most commercial digital cameras and is supported
by most commercial photo editing software suites.



i
i

i
i

i
i

i
i

10.5. JPEG Case Study 281

Figure 10.17. JPEG encoder.

JPEG compression applies a variety of techniques to maximize the compres-
sion ratio. Figure 10.17 gives a simplified block diagram of a JPEG encoder
following the JFIF implementation where data elements are represented by col-
ored rectangular boxes and processes are denoted by rounded boxes. The source
image is first converted into the YCbCr color space after which the Cb and Cr
bands are optionally subsampled. Each of the YCbCr bands is then tiled into
8 × 8 blocks such that if the source image dimensions are not multiples of eight
then the image is padded with black borders and those borders ignored when de-
coded. Each 8×8 block is then converted into the frequency domain through the
DCT transformation, which produces 64 DCT coefficients. The 64 DCT coeffi-
cients are then quantized by dividing each of the coefficients by values contained
in a quantization table. Subsampling and quantization are the only portions of
the JPEG/JFIF pipeline that are lossy and the degree of loss is relative to the
quantization table itself.

Recall that the DCT transform tends to compact information into the upper-
left values of the two-dimensional coefficients and hence the bottom-right coeffi-
cients are typically much smaller than those of the upper-right. In practice, most
of the bottom-right coefficients are quantized to zero so that a zigzag scan of the
AC coefficients of the 8×8 tile of quantized DCT coefficients typically produces
long runs of zero values, which can be effectively run length encoded. The DC
values of successive 8 × 8 blocks are typically similar and hence they are en-
coded using the predictive encoding scheme described in Section 10.4. Finally,
the entire encoded stream is compressed further using huffman compression to
mitigate any coding redundancy that remains.

The JPEG/JFIF standard works in the Y CbCr colorspace so that an RGB
image is first converted prior to entering the encoding pipeline. The JPEG/
JFIF implementation also allows for less bandwidth to be allocated by the color



i
i

i
i

i
i

i
i

282 10. Image Compression

Figure 10.18. JPEG example where compression quality varies from 0 on the far left to 1 on the far right.

channels and hence the Cb and Cr channels are normally downsampled by a
factor of two since human perception is not as sensitive to changes in color as
it is to changes in light intensity. Most JPEG compressors allow the user to set
the quality level. The level is generally a single value in the range [0, 1] where
0 is expected to produce large compression ratios at the cost of quality while a
setting of 1 gives low compression but high quality. Since quantization is the
only part of the process that is lossy, the quality parameter directly controls the
values in the quantization table. If all of the values in the quantization table are
set to 1, there is no loss of information during quantization and the resulting
JPEG compressed image will be relatively large but be a perfect representation
of the source. Figure 10.18 shows the effects of JPEG compression. The image
of this figure is a composition of JPEG compressed images as the quality setting
is varied from 0, on the far left, to 1 on the far right.

The JPEG standard was updated by the standards committee in the year 2000
and is appropriately named JPEG 2000. The JPEG 2000 standard is based on
a wavelet decomposition rather than a discrete cosine decomposition of source
image. JPEG 2000 provides slightly better fidelity than the JPEG standard at



i
i

i
i

i
i

i
i

10.5. JPEG Case Study 283

(a) Source image. (b) DCT compression.

(c) Haar wavelet. (d) Biorthogonal wavelet.

Figure 10.19. Wavelet artifacts.

low compression ratios but much better fidelity at high compression ratios. The
2000 standard is based on wavelets and does not subdivide the source into tiles.
Progressive transmission is therefore naturally supported since coarse scalings of
the original image are contained in the first bytes of the compressed data stream



i
i

i
i

i
i

i
i

284 10. Image Compression

while the detailed coefficients follow. This allows decoders to dynamically gen-
erate increasingly more detailed results as the data becomes available.

The wavelet-based technique is nearly identical to the DCT technique in
terms of the overarching idea. As described in Chapter 9, the DWT converts
a sequence into low and high frequency coefficients. The high frequency coeffi-
cients can be truncated to obtain increasingly large compression ratios as more
coefficients are dropped. Figure 10.19 shows a visual comparison between the
JPEG and JPEG 2000 standard as a source image is compressed using various
wavelets. In each case the compression ratio is approximately 96:1. The source
image of part (a) is compressed using the DCT-based JPEG standard to obtain
the image of part (b). The JPEG 2000 technique is then employed using a Haar
basis in part (c) and a biorthogonal basis in part (d).

10.6 GIF Case Study
The graphics interchange format (GIF) uses an 8-bit indexed encoding scheme to
represent image data and also supports animation by embedding several images
in one file. CompuServe introduced the GIF format in 1987 and it quickly be-
came popular because it used a form of data compression, LZW compression,
which was more efficient than the run length encoding in common use at the
time. GIF was one of the first two image formats commonly used on web-
sites while JPEG support was introduced later with the release of the Mosaic
browser.

GIF is generally a lossy compression technique that reduces the number of
colors in an image to a palette of no more than 256 unique entries through some
type of color dithering or thresholding technique as described in Section 8.7.
After reducing a 24-bit image to 8 bits or less, the resulting data stream is com-
pressed using LZW compression. For source images that have no more than 256
unique colors, GIF is a lossless compression scheme. GIF is therefore best used
for iconic or synthetic images that have only a few total colors.

Encoding a GIF image simply requires that a palette of colors be given, which
is then used in conjunction with some type of error diffusion technique such as
Floyd-Steinberg. Some ad hoc standard palettes are often used, of which perhaps
the most popular is commonly referred to as the “web-safe” color palette. This
color scheme was developed at a time when most commercial displays were only
able to support 256 colors. In the web-safe palette each of the red, green, and
blue bands supports six shades of intensity for a total of 6 · 6 · 6 = 216 total
colors. The palette doesn’t support 256 colors since many computing platforms
reserved a handful of colors for custom use. The colors of this palette were
chosen primarily since the popular web browsers of the time supported them.



i
i

i
i

i
i

i
i

10.6. GIF Case Study 285

The fidelity of a GIF-encoded image can be significantly improved, however,
by using a palette that is carefully selected and optimized for the image that is
being encoded. This presents an interesting preprocessing step in GIF encoding
which is to compute the palette that will maximize the fidelity of the encoded
image. In other words, given a source image I we must generate a list of no more
than 256 distinct colors such that when I is dithered with those colors, it will
produce the most visually pleasing result.

The median cut algorithm is a method for color quantization that works by
finding clusters of similar colors and representing all colors in the cluster by a
single color. The algorithm is straightforward to describe and is given in List-
ing 10.6. The inputs are an image and a value N that represents the desired size
of the resulting palette. The algorithm works by viewing each color of the im-
age as a point in the three-dimensional RGB color space. The central idea is to
construct N boxes of approximately equal dimension each of which contains ap-
proximately the same number of colors, or source pixels. Associated with each
box is a color that is given as the center of the box itself.

1 P a l e t t e a lg o r i th m ( Image SRC, i n t N) {
2 l e t B be a s e t o f boxes c o n t a i n i n g p o i n t s in RGB space
3 l e t BB be the s m a l l e s t box c o n t a i n i n g a l l c o l o r s in SRC
4 i n s e r t BB i n t o B
5 while the number of boxes in B i s l e s s than N
6 l e t L be the l a r g e s t l e n g t h of any s i d e of any box BC
7 cu t BC i n t o two boxes along i t s l a r g e s t s i d e
8 such t h a t h a l f o f the con ta ined p o i n t s f a l l i n t o each new box .
9 s h r i n k the two new boxes so t h a t they are j u s t l a r g e enough

10 to c o n t a i n t h e i r p o i n t s
11 r e t u r n the c o l o r s co r r e spond ing to the boxes o f B

Listing 10.6. Median cut algorithm.

The method initially finds the bounding box of all colors in the source im-
age. The box is then divided by cutting the longest side at the location of the
median color in that dimension. Once the box has been split in half, each of the
halves is then shrunk if necessary so that they are as small as possible while still
containing all colors, or points, within their respective interiors. This process
is repeated by finding the longest side of any box and dividing that box as de-
scribed until there are exactly N boxes. The colors corresponding to these boxes
then comprise the palette. Figure 10.20 illustrates the effects of dithering a source
image (a) using a limited palette of four colors (b) and a larger eight-color palette
in (c).



i
i

i
i

i
i

i
i

286 10. Image Compression

(a) Source image. (b) Four color dithering. (c) Eight color dithering.

Figure 10.20. Example of GIF dithering.

10.7 Digital Data Embedding

Steganography is a flourishing area of study within computer science and covers
a broad range of specialties. In addition, the increasing use of digital images and
image processing techniques makes the study of digital image processing an im-
portant subdiscipline of computer science. These two fields are brought together
in a specialized application of steganography whereby secret messages are im-
perceptibly embedded in digital images. Steganography can be defined as “the
art of concealing the existence of information within seemingly innocuous carri-
ers.” Steganography, in essence, camouflages a message to hide its existence and
make it seem invisible thus concealing altogether the fact that a message is be-
ing sent. An encrypted message may draw suspicion while an invisible message
will not.

The study of steganography has become increasingly important since the
events of September 11, 2001. Shortly after the attacks on the World Trade
Center towers in New York City, it was reported that Osama Bin Laden and
his allies had communicated, in part, through the use of secret messages embed-
ded in publicly distributed pornographic images. Researchers quickly sought to
develop methods of detecting whether images contained hidden messages and
how to decode them if they were present. While this provided the impetus
for a sensationalist involvement in the study of steganography, more legitimate
and profitable uses of steganographic techniques involve watermarks and digital



i
i

i
i

i
i

i
i

10.7. Digital Data Embedding 287

copyright management. Digital watermarking is a technique for embedding in-
formation transparently into digital media. The embedded information is often
a digital signature that uniquely identifies a copyright owner. Identifying infor-
mation must be difficult to detect without possession of some key data, and it
must uniquely identify the legitimate copyright owner, and must be difficult to
erase or alter even if detected.

This section provides the technical background necessary for understanding
basic steganographic techniques. The technique described here is the well-known
least significant bit (LSB) approach. More sophisticated methods involve spread-
spectrum encodings where a message is embedded across a frequency-based rep-
resentation of a digital image. These spectrum-based approaches are beyond the
scope of this text and will not be covered here.

10.7.1 Digital Image Representation
A brief review of binary representation will be instructive when interpreting bit-
level pixel data in the context of data embedding. An 8-bit binary number has
the general form

a7 + a6 + . . .+ a1 + a0,

where each an represents a single binary digit. In a digital image it is clear that
a7 is the most significant bit and indicates whether the pixel value is greater than
127 or not. A common means of converting a grayscale image to a binary image,
for example, is to extract the a7 bitplane. By contrast, a0 embodies relatively little
information and, in the context of a digital image, can generally be understood as
a noise channel. The more significant bits of each pixel embody greater structural
information than the least significant bits.

10.7.2 LSB Embedding
The human eye has a simultaneous resolution far below 8-bits which implies that
much of the information contained in a digital image is imperceptible to a human
observer and that small modifications to a source image will not be perceived.
Steganography, in the simplest case, capitalizes on this overabundance of infor-
mation by replacing the noise channels (i.e., the least significant bit channels)
with data of the user’s choosing.

Figure 10.21 gives an overview of one type of steganographic process flow. In
this illustration an 8-bit source image, hereafter referred to as a cover, is viewed
as eight separate channels. Data is directly copied from the cover image into the
output image, also known as the stego image. As the data is copied, however,
certain of the channels are blocked and replaced by the secret message. The
secret message replaces the least significant channels (in this case the three least
significant channels) of the source in order to produce the stego image. The



i
i

i
i

i
i

i
i

288 10. Image Compression

Figure 10.21. Embedding of a secret message into the three least significant channels of a
cover image.

stego image will generally be visually indistinguishable from the cover image but
is nonetheless different than the cover since the injected message has distorted
the three least significant bit planes.

The degree to which the resulting stego image visually resembles the cover
is dependent upon the number of channels that are used to encode the secret
message. In practice, the fidelity of the stego image quickly degrades if more than
three channels are used as secret message carriers. Also, while the content of the
secret message itself affects the visual quality of the result, the effect is relatively
less important than the number of channels used to inject the message. While
beyond the scope of this article it is worth noting that adaptive techniques exist
that allocate carrier channels on a per-pixel basis through evaluation of image
texture or morphological structure. In other words, more bits are overwritten in
pixels that may be greatly altered without perception and fewer bits are written
in pixels where small alterations are more readily noticed.

Consider a 2 row by 8 column image with pixel values, as shown in Ta-
ble 10.2. The image can be visualized as generally light-gray towards the left
descending towards dark-gray towards the right of the image. The image is given
in decimal notation in (a) and in binary notation in (b).

The secret message “HI” is then embedded into the cover. The message,
when represented as ASCII text corresponds to the two-byte sequence of numeri-
cal values {72, 73} or represented in 8-bit binary notation, {01001000, 01001001}.
The secret message is actually viewed as a sequence of 16 individual bits that are
injected into the noise channel(s) of the cover image. Since the cover image con-



i
i

i
i

i
i

i
i

10.7. Digital Data Embedding 289

209 200 188 192 138 131 99 50
198 155 140 187 154 130 122 100

(a) Decimal notation

11010001 11001000 10111100 11000000 10001010 10000011 01100011 00110010
11000110 10011011 10001100 10111011 10011010 10000010 01111010 01100100

(b) Binary notation.

Table 10.2. A 2 row by 8 column grayscale cover image.

tains 16 total samples the single least significant bit of each pixel is designated
as a carrier of the secret message. In other words, the cover image dedicates a
single channel towards carrying the secret message.

Table 10.3 gives the result of the embedding where the secret message has
been distributed over the least significant bits of the cover. Note that many of the
cover pixel values have not been altered at all in the process. Only eight of the
cover samples have been modified by the embedding process and in those cases
the samples have been modified by a single, imperceptible grayscale level.

While in this case the secret message was textual, any type of serializable data
can be embedded into a digital image using this technique. A practical stegano-
graphic tool would include header information prior to the secret message itself
all of which has been encrypted and compressed in a preprocessing phase.

11010000 11001001 10111100 11000000 10001011 10000010 01100010 00110010
11000110 10011011 10001100 10111010 10011011 10000010 01111010 01100101

Table 10.3. Stego image with embedded ASCII ”HI.”

10.7.3 Implementation
Fundamental to digital data embedding are the abilities to encode a secret mes-
sage into a cover and to extract a secret message from a stego image. The
Steganographer interface shown in Figure 10.22 captures these responsibilities
in the embed and extract methods. The embed method accepts a BufferedImage
which serves as the cover and an Object serving as the secret message. The
method creates a stego image, embedding the secret message into the cover and
returning the result as an BufferedImage while leaving the cover image intact.
The extract method serves as an inverse to the embed method, returning an
Object that has been extracted from a stego BufferedImage. This interface
serves as a generic and extensible solution since there is no functional depen-
dency upon the way in which the embedding takes place. These methods simply



i
i

i
i

i
i

i
i

290 10. Image Compression

� interface�
Steganographer

+embed(cover:BufferedImage, msg:Object):BufferedImage
+extract(stego:BufferedImage):Object

Figure 10.22. UML class diagram of the Steganographer interface.

serve as hooks for customized steganographic algorithms that are provided by
concrete Steganographer implementations.

In order to simplify implementation a restriction not defined at the Stegan
ographer level is imposed by the embed method. In particular, the message must
be a BufferedImage rather than, in the most general sense, a serializable object.
While the more general implementation is obviously preferable, it is not feasible
in the context of an undergraduate computer science course. The embed method
is allowed to throw an exception if the type of message specified is incompatible
with this requirement.

Implementation of the Steganographer can be difficult in light of the prim-
itive bit-level nature of the write and read operations. Implementation is greatly
simplified, however, by clever design and the creation of an appropriate set of
supporting classes. Towards this end two important classes, BufferedImage
InputStream and BufferedImageOutputStream, are designed to isolate the
low-level complexities and to supply a convenient interface to the necessary bit-
wise operations.

Figure 10.23 gives a UML class diagram of the BufferedImageOutput
Stream. The BufferedImageOutputStream class provides a convenient way for
clients to write data into a BufferedImage object via calls to the write method.
The BufferedImage object that receives the data serves as a kind of memory
output device rather than a file. When a client writes a sequence of bytes to
the BufferedImageOutputStream, the data is written bit by bit into the sam-
ples of the destination in a raster-scan fashion starting from the least significant
bit and moving onto the more significant bits whenever the need arises. The
BufferedImageInputStream supplies the inverse operation, which reads data
bit-by-bit from a BufferedImage, packages the data into bytes, and supplies the
data to clients on demand.

BufferedImageOutputStream
+BufferedImageOutputStream(destination:BufferedImage)
-writeBit(int bit):void throws IOException
+write(int byte):void throws IOException

Figure 10.23. UML class diagram of the BufferedImageOutputStream.



i
i

i
i

i
i

i
i

10.7. Digital Data Embedding 291

Implementation of these two classes involves keeping track of where the next
bit should be read from or written to and providing methods to read or write
data on a bit-by-bit basis in the raster of a BufferedImage. Listing 10.7 gives a
complete listing of an implementation of the output stream class. It is important
to note that this class is a direct subclass of OutputStream and serves to override
the write method by writing data into the destination image. The writeBit
method serves as the fundamental method on which the write method is con-
structed. Although the writeBit method takes an integer as input, it treats only
the least significant bit as meaningful. The LSB of the input integer is written
to the destination image at the location given by indices x, y, plane, and band.
After writing an individual bit these four indices are then updated to indicate the
next bit location at which to write. If a writeBit method is called but the indices
are invalid due to overflow then an IOException is thrown. This can only occur
if a client writes more data into a destination image than the destination has ca-
pacity to store. The write method accepts an integer where the least significant
byte is written to the output stream. In this implementation, the write method
calls the writeBit method once for each of the eight bits that must be written.
The BufferedImageInputStream class is not specified here but provides func-
tionality inversely analogous to that of the BufferedImageOutputStream.

1 p u b l i c c l a s s BufferedImageOutputStream extends OutputStream {
2 p r i v a t e BufferedImage d e s t i n a t i o n ;
3 p r i v a t e i n t x , y , plane , band , numberOfBands ;
4 p r i v a t e W r i t a b l e R a s t e r r a s t e r ;
5

6 p u b l i c BufferedImageOutputStream ( Buf feredImage d e s t ) {
7 d e s t i n a t i o n = d e s t ;
8 x = y = plane = band = 0 ;
9 r a s t e r =d e s t i n a t i o n . g e t R a s t e r ( ) ;

10 numberOfBands= r a s t e r . getSampleModel ( ) . getNumBands ( ) ;
11 }
12

13 p u b l i c void w r i t e ( i n t b ) throws IOException {
14 f o r ( i n t i =0; i <8; i ++){
15 w r i t e B i t ( ( b >> i ) & 1 ) ;
16 }
17 }
18

19 p r i v a t e i n t setOn ( i n t va lue ) {
20 r e t u r n va lue | (0 x01 << plane ) ;
21 }
22

23 p r i v a t e i n t s e t O f f ( i n t va lue ) {
24 r e t u r n va lue & ( ˜ ( 0 x01 << plane ) ) ;
25 }
26

27 p r i v a t e i n t s e t B i t ( i n t des t ina t ionSample , i n t b i t ) {



i
i

i
i

i
i

i
i

292 10. Image Compression

28 r e t u r n b i t ==0? s e t O f f ( d e s t i n a t i o n S a m p l e ) : setOn ( d e s t i n a t i o n S a m p l e ) ;
29 }
30

31 p r i v a t e void advance Ind ice s ( ) {
32 x++;
33 i f ( x==d e s t i n a t i o n . getWidth ( ) ) {
34 x=0;
35 y++;
36 i f ( y==d e s t i n a t i o n . ge tHe igh t ( ) ) {
37 y =0;
38 band++;
39 i f ( band==numberOfBands ) {
40 band =0;
41 plane ++;
42 }
43 }
44 }
45 }
46

47 p r i v a t e void w r i t e B i t ( i n t b ) throws IOException {
48 i f ( b i t P l a n e > 7) throw new IOException ( "capacity exceeded" ) ;
49 b = b & 1 ;
50 t r y {
51 i n t sampleToChange = r a s t e r . getSample ( x , y , band ) ;
52 r a s t e r . se tSample ( x , y , band , s e t B i t ( sampleToChange , b ) ) ;
53 advance Ind ice s ( ) ;
54 } catch ( Except ion e ) {
55 throw new IOException ( "error writing bit." ) ;
56 }
57 }
58 }

Listing 10.7. Complete implementation of the BufferedImageOutputStream.

Once the input and output stream classes have been authored an implemen-
tation of the Steganographer interface is straightforward. We author a class
named LSBSteganographer that performs data embedding in the LSB manner
previously described by spreading the secret message across the least significant
bits of the cover.

One of the key insights of this design is that the ImageIO.write method can
be used to output an image to any output stream. Since the BufferedImage
OutputStream is itself an output stream we can use the ImageIO method as an
exceptionally convenient way of writing data into a destination image. Since the
difficult work of storing an image is provided by the ImageIO class, the embed
method of the LSBSteganographer is trivial to write and is completely imple-
mented by the several lines of code given in Listing 10.8. This implementation
will throw an IOException if the carrying capacity of the cover is not sufficient
for embedding of the secret message.



i
i

i
i

i
i

i
i

10.8. Exercises 293

1 p u b l i c c l a s s LSBSteganographer {
2 p u b l i c BufferedImage embed ( Buf feredImage cover , Objec t msg )
3 throws IOException {
4 BufferedImage r e s u l t = cover . c lone ( ) ;
5 i f ( msg i n s t a n c e o f BufferedImage ) {
6 BufferedImage s e c r e t = ( Buf feredImage ) msg ;
7 OutputStream output = new BufferedImageOutputStream ( r e s u l t ) ;
8 ImageIO . w r i t e ( s e c r e t , "PNG" , output ) ;
9 }

10 r e t u r n r e s u l t ;
11 }
12

13 }

Listing 10.8. Implementation of the LSBSteganographer embed method.

It is important to note that the LSB embedding technique is effective only
when using lossless file formats such as PNG. If the stego image is compressed
using the JPEG/JFIF or GIF file formats, the secret message will be lost. This
gives rise to an interesting variant of LSB encoding when using JPEG compres-
sion. It is possible to apply the LSB technique directly to the quantized DCT co-
efficients rather than the spatial domain samples. Since the quantized
DCT coefficients are losslessly encoded, the secret message will not be mangled
as it passes through the remainder of the JPEG encoding pipeline as depicted in
Figure 10.17. In addition, the higher frequency coefficients can be altered with
less visible effect than the low frequency coefficients and although the compres-
sion ratio of the resulting image will not be as high as if the message had not
been injected into the source, the secret message is fully recoverable.

10.8 Exercises
1. Pixel Jelly supports a variety of image file formats as described in this text.

Use Pixel Jelly to save full color, grayscale, and binary images using run
length encoding. Analyze the results in terms of the degree of compression
with respect to the RAW format.

2. Pixel Jelly supports a variety of image file formats as described in this text.
Use Pixel Jelly to save full color, grayscale, and binary images using JPEG
encoding varying the quality setting from 0 to 1 in .1 increments. Analyze
the results in terms of compression achieved and determine the erms as a
measure of the fidelity of the compressed image.



i
i

i
i

i
i

i
i

294 10. Image Compression

3. Pixel Jelly supports a variety of image file formats as described in this text.
Use Pixel Jelly to save full color and grayscale images using lossy CAC
encoding while varying the standard deviation from 0 to 20 in four unit
increments. Analyze the results in terms of compression achieved and fi-
delity of the compressed image.

4. Write a program to run length encode/decode a BufferedImage. You
should use the technique described in this chapter to support binary,
grayscale, and true-color images. You should run your compression rou-
tine on a broad sampling of test images and record the compression ratios
obtained where the compression ratios are defined with respect to the raw
memory consumption.

5. Write a program that uses lossless hierarchical compression to encode/de-
code a BufferedImage. The program should only support binary images.
You should execute your program on a suite of test images and record the
compression ratios achieved.

6. Write a program that encodes/decodes a BufferedImage using lossy hier-
archical compression. You should execute your program on a suite of test
images and record both the compression ratio achieved and the rms error
as a function of the quality threshold setting.



i
i

i
i

i
i

i
i

10.8. Exercises 295

7. Write a program that encodes/decodes a BufferedImage using delta mod-
ulation such that the delta value can be set by the user. You should execute
your program on a suite of test images and record both the compression
ratio achieved and the overall rms error as a function of the delta value.

8. Given the encoding scheme of Table 10.1, determine what percentage of
the errors must be within the range [−7, 6] in order to achieve a positive
compression ratio for predictive encoding. What is the maximum com-
pression ratio that can be achieved using this technique and what is the
lowest ratio that will be achieved? Provide robust proofs for your results.

Artwork
Figure 10.2. Symphony in White no. 1 (The White Girl) by James Abbott McNeill
Whistler (1834–1903). James Whistler was an American painter whose work
aroused significant controversy and whose work is believed to have paved the
way for later art abstraction. Whistler was born in Lowell, Massachusetts, but
moved to St. Petersburg, Russia as a youth. It is noteworthy that the “The White
Girl” of Figure 10.2 was the subject of controversy not due to its objective nature
but because of the subject. Gustave Courbet completed a pornographic work
entitled L’Origine du monde in 1866 and the model he used for that graphic image
is believed to have been Joanna Hiffernan, who is also the model for Whistler’s
“White Girl.”

Figures 10.5 and 10.6. “Orson Welles” by Carl Van Vechten (1880–1964). See
page 120 for a brief biographical sketch of the artist. The Welles portrait is avail-
able from the Library of Congress Prints and Photographs Division under the
digital ID cph 3c19765.

Figure 10.10. Power House Mechanic Working on Steam Pump by Lewis Hine (1874–
1940). See page 50 for a brief biography of the artist. The mechanic of Fig-
ure 10.10 is certainly the most iconic of Hine’s work. This image is available
from the National Archives and Records Administration, Records of the Work
Projects Administration under ID 69-RH-4L-2.

Figure 10.16. In Glacier National Park by Ansel Easton Adams (1902–1984). Ansel
Adams was an American photographer of the American West. His black-and-
white photographs of natural settings, especially those of Yosemite National
Park and the Grand Tetons, propelled his popularity. He was an active envi-
ronmentalist and also something of a social activist. During the Japanese intern-
ment following the attack on Pearl Harbor, Adams put together a photo essay,
subsequently exhibited in the Museum of Modern Art, that promoted the plight



i
i

i
i

i
i

i
i

296 10. Image Compression

of Japanese Americans. The image shown in Figure 10.16 was commissioned
by the National Park Service and is available from the National Archives using
ID 79-AAE-23.

Figure 10.18. Still Life by Willem Claeszon Heda (1594–1680). Willem Heda was
a Dutch artist devoted exclusively to still life painting. His style was precise
and his compositions showed considerable attention to detail. He focused on
extravagant place settings of oysters, salmon (as shown in Figure 10.18), lemon,
bread, and champagne. It is unfortunate but pedagogically necessary that the
image shown here is shown in such distorted form.

Figure 10.19. The Kiss by Gustav Klimt (1862–1918). See page 253 for a brief
description of the artist and this work.

Figure 10.20. Saint Catherine of Alexandria by Raphael Sanzio (1483–1520).
Raphael Sanzio was an Italian painter and architect during the High Renais-
sance. Sanzio, da Vinci, and Michelangelo, constituted the three great masters
of that period. Sanzio was exceptionally prolific and left behind a large body of
work despite his death at the early age of 37. Sanzio traveled a great deal dur-
ing his career, working in various regions of Northern Italy and Florence. He
was extremely influential in his time but his influence yielded to the immense
popularity of Michelangelo.



i
i

i
i

i
i

i
i

�

Morphological
Image Processing 11

The term morphology can be used in linguistics to refer to the study of the struc-
ture and form of words, in biology to the study of the form or shape of an or-
ganism, in astronomy to the shape of astronomical object or in geography to the
study of the shape and structure of land masses and rivers. In the context of
image processing, mathematical morphology treats image components as geo-
metrical shapes. Mathematical morphology is concerned with how to identify,
represent and process the shapes of objects within a scene. Morphology relies
on several branches of mathematics such as discrete geometry, topology, and dif-
ferential equations and has produced sophisticated and efficient algorithms for
such tasks as handwriting analysis, biomedical imaging, and others. The ma-
terial presented in this chapter begins to move away from the domain of image
processing and into the more abstract domain of computer vision.

Recall that computer vision seeks to understand the semantic content of an
image while image processing seeks to improve the quality of an image with re-
spect to some problem-specific objective. In this context, image processing tech-
niques are used to preprocess an image for higher level analysis. Segmentation is
a process that identifies the objects within an image and classification describes
the content of an image.

Figure 11.1 provides an example. The binary image in this figure has been ac-
quired, binarized, and preprocessed through image processing techniques. Seg-
mentation tells us that there are two clearly delineated shapes in the image which
we have labeled as A and B. Shapes within an image are often referred to infor-
mally as blobs or, more formally, as components. Classification then tells us that
component A is a square centered near the top while B is an elongated rectan-
gular shape near the center.

The fundamental goals of morphological processing are those of preprocess-
ing, segmenting, and classifying images and image components. In more specific
terms, we seek to identify the components within an image, to find the bound-
ary of a shape, to grow or shrink shapes, to separate or join shapes, to represent

297



i
i

i
i

i
i

i
i

298 11. Morphological Image Processing

A

B

Figure 11.1. Image components.

shapes in some compact form, and to describe the essential properties of a shape.
In this chapter we will emphasize these morphological techniques from a com-
putational perspective rather than the set-theoretic approach of mathematical
morphology. We will also introduce the morphological operations by limiting
our attention to binary images and only briefly discuss how these techniques can
be generalized for grayscale and color images near the end of the chapter.

11.1 Components
A component is a set of pixels where membership in the set is determined by both
the color and the location of the pixel. A binary image contains only two colors,
which are here classified as the foreground and the background. Any pixel that
is a foreground pixel is a member of some component while no background pixel
is part of a component. Throughout this text we assume that the foreground is
black while the background is white. We also note that foreground pixels that
are spatially connected belong to the same component while foreground pixels
that are not spatially connected are not part of the same component. This spatial
connectedness is known as connectivity.

Consider two adjacent pixels within a binary image. A pixel p at location
(x, y) has neighboring pixels to the north, south, east, and west that are given
by locations (x, y − 1), (x, y + 1), (x+ 1, y), and (x− 1, y), respectively. These
neighbors form a set of four pixels known as the 4-neighbors of p, that we denote as
N4(p). A pixel p also has four neighbors that adjoin to the northwest, northeast,
southwest and southeast. These neighbors constitute a set of four pixels which
we denote as Nd(p) where the subscript d stands for the diagonal neighbors of
p. The set of all eight of these neighbors is denoted as N8(p) and is referred to
was the 8-neighbors of p. The 8-neighbor set is the union of the 4-neighbor and
diagonal neighbor sets: N8(p) = N4(p) ∪ Nd(p). Figure 11.2 illustrates each of
these sets.



i
i

i
i

i
i

i
i

11.1. Components 299

p p p

(a) N4(p). (b) Nd(p). (c) N8(p).

Figure 11.2. Neighbors.

A pixel p is said to be 4-adjacent to another pixel q if q is one of the 4-
neighbors of p. In other words, p is 4-adjacent to q if q ∈ N4(p). Similarly,
a pixel p is said to be 8-adjacent to pixel q if q is one of the 8-neighbors of p.
A pixel p is said to be 4-connected to pixel q if p is 4-adjacent to q and both p and
q are the same color. Of course, p is 8-connected to q if p is 8-adjacent to q and
they are the same color. Since we are now concerned with only binary images,
pixel p is connected to pixel q only when both p and q are foreground pixels.

Pixels p and q are also said to be connected if there is a path of connected
pixels extending from p to q. A path is a sequence of pixels p1, p2, . . ., pn−1, pn
such that each pixel in the sequence is connected to the preceding (except for the
first pixel since there is no preceding pixel) and succeeding pixel (except for the
last pixel since there is no succeeding pixel) in the sequence. Connectedness, as
used in the definition of path, refers to either 4-connectedness or 8-connectedness
but not to both within the same path. We can then say that p is 4-connected to
q if there exists a 4-connected path between p and q. We can also say that p is
8-connected to q if there exists an 8-connected path between p and q. We then
formally define a 4-connected component containing a pixel p as the set of all pixels
that are 4-connected to p. An 8-connected component containing pixel p is then
naturally defined as the set of all pixels that are 8-connected to p.

Figure 11.3 illustrates how connectedness is used to identify components
within a binary image. Given the binary source image of part (a) we seek to
identify the components or shapes in the image. Some observers might identify

(a) Binary source. (b) 4-connected. (c) 8-connected.

Figure 11.3. Connected components.



i
i

i
i

i
i

i
i

300 11. Morphological Image Processing

four shapes and others only two. Both observers are correct depending upon
whether components are defined using 4-connectivity or 8-connectivity. The im-
age of part (b) identifies the four 4-connected components and labels them with
unique colors. The image or part (b) identifies and labels the two 8-connected
components in the image.

11.2 Component Labeling
One of the fundamental goals of morphological image processing is to automat-
ically identify each component in an image. This task is known as component
labeling. A label is any symbol that uniquely identifies a component and while
integer labels are typically used, we will also use colors as labels in order to for-
mulate the problem as an image processing filter. The problem of component
labeling is presented as an image filter such that given a binary source image I
we seek to generate a true color destination image such that each component of
I is uniquely colored, or labeled. The central idea is shown in Figure 11.4, where
the binary source image of part (a) is labeled in part (b). In this example, there
are five separate components, each of which is uniquely labeled with a color.
The largest component is labeled with red, the nose with blue, the lip consists
of two separate components that are labeled with dark and light green and the
small blob under the subject’s right eye is labeled with gray. In each case, every
pixel of the component is colored, or labeled, with the same color.

We begin by presenting a solution for a related problem known as flood fill-
ing. We describe flood filling as given a foreground pixel p contained by some compo-
nent in a binary source image, color all pixels of that component with a color C.

(a) Source image. (b) Labeled components.

Figure 11.4. Connected component labeling.



i
i

i
i

i
i

i
i

11.2. Component Labeling 301

1 a l go r i t hm f l o o d F i l l ( Image SRC, Image DEST, i n t X, i n t Y, c o l o r C) {
2 i f SRC(X,Y) i s BACKGROUND r e t u r n
3 i f DEST(X,Y) i s NOT BACKGROUND r e t u r n
4

5 s e t the DEST sample a t (X,Y) to C
6 f l o o d F i l l (SRC, DEST, x−1, y , C)
7 f l o o d F i l l (SRC, DEST, x+1 , y , C)
8 f l o o d F i l l (SRC, DEST, x , y−1, C)
9 f l o o d F i l l (SRC, DEST, x , y+1 , C)

10 }

Listing 11.1. Flood filling algorithm.

Flood filling can be concisely described with recursion, as shown in the al-
gorithm of Listing 11.1. The floodFill method accepts a binary source image
and a color destination image where every pixel is assumed to be initialized to
the background color. The coordinates of pixel p are given by variables X and Y
while the label, or color, is given as C, which is any color other than the back-
ground color of the source. The method finds every pixel belonging to the same
4-connected component as p and assigns it the color C in the destination.

Consider the logic underlying the flood fill algorithm. If location (X,Y )
denotes a background pixel of the source image, then this pixel is not part of any
component and nothing should be done to the corresponding destination pixel.
Also, if location (X,Y ) denotes a pixel that has already been colored in the
destination then no action should be taken. These two cases constitute the base
cases of the recursive algorithm and are reflected in lines 2 and 3. In all other
cases, however, we should color the corresponding pixel of the destination with
color C and proceed to flood-fill each of the 4-adjacent neighbors, in the case
of 4-connected labeling, or the 8-adjacent neighbors, in the case of 8-connected
labeling.

An algorithm for component labeling can then be described in terms of flood
filling, as shown in Listing 11.2. This algorithm scans the source image and
performs a flood fill on every foreground pixel that has not already been filled.
Each label is a unique color excluding the background color.

The algorithm of Listing 11.2 unfortunately suffers from two important lim-
itations. The first is a limitation on the efficiency or speed of execution. Since
each pixel of the source may be probed multiple times the algorithm is expected
to be approximately linear in the size of the image but with a possibly large con-
stant multiplier. The second is a limitation on the reliability of the algorithm.
Since some image components will contain millions of pixels, the recursive im-
plementation is likely to overflow the execution stack of the processing system
as it traverses deep paths through the component being labeled.



i
i

i
i

i
i

i
i

302 11. Morphological Image Processing

1 Image componentLabel ( Image SRC) {
2 Image DEST = new c o l o r image
3

4 f o r every l o c a t i o n (X,Y) in SRC
5 i f SRC(X,Y) i s a foreground p i x e l and DEST(X,Y) i s a background p i x e l
6 LABEL = new unique random c o l o r t h a t i s not the background
7 f l o o d F i l l (SRC, DEST, X, Y, LABEL)
8

9 r e t u r n DEST
10 }

Listing 11.2. Connected component labeling algorithm

The union-find algorithm addresses both of these limitations by using a clever
data structure that provides efficient support for the operations necessary when
labeling components. The disjoint-set data structure is a structure that represents
a collection of non-overlapping sets. In component labeling, the disjoint-set data
structure stores a collection of components where each foreground pixel is a
member of one of the components and no foreground pixel is a member of more
than one component. The main virtue of a disjoint-set data structure is the sup-
port that it provides for the find and union operations. Find identifies the set that
contains a particular element while union, as the name implies, merges two sets
into a single set. In our presentation, the disjoint-set is represented as a forest
of trees such that each node corresponds to a pixel, each tree represents a set of
pixels, and the label of each tree is given by the root node. The find operation is
implemented by finding the root node of a given pixel and the union operation
corresponds to attaching the root node of one of the trees as the child of the other
root.

The find and union operations are sufficient for implementing an efficient
component labeling algorithm. A disjoint-set data structure is created and ini-
tialized by placing each foreground pixel into its own set. After this initial step,
the source image is raster scanned and sets are unioned as necessary in order
to form a collection of connected components. Consider the binary image of
Figure 11.5, where the background color is white and the foreground color is
black. There is then a single 8-connected component that should be identified at
the conclusion of the component labeling algorithm. We will first describe the
component labeling technique with abstract illustrations after which we will give
a concrete implementation of this procedure in Java.

We first identify each pixel of Figure 11.5 according to its linearized index
using a row-major layout scheme. There are then seven foreground pixels and
each of them forms the root of a tree of size 1. The forest thus contains seven



i
i

i
i

i
i

i
i

11.2. Component Labeling 303

Figure 11.5. Binary image for union-find example.

trees, or sets, having the labels 2, 4, 7, 8, 11, 13, and 14. We then perform a raster
scan of the source image and for each foreground pixel p we examine all other
pixels q ∈ N8(p) that have already been scanned. Excluding consideration of
boundaries, there are exactly four 8-connected neighbors of p that have already
been scanned: the pixels located to the northwest, north, northeast, and west of
p. For every one of these pixels that is foreground pixel we find the set containing
p and merge it with the set containing q since the pixels are 8-connected.

Figure 11.6 illustrates this process. Step A of this diagram shows the initial
configuration of the forest such that there are seven disjoint sets where each set
is a tree of size 1. The first foreground pixel that is connected to a pixel already
scanned is pixel 7, which is merged with the set containing 2 to form the forest
shown in step B. In each step of Figure 11.6 a red node denotes the label of a set,
a green node denotes the pixel p that is being scanned, and a blue node denotes
a set member that is not a label. The next foreground pixel that is connected to
an already scanned pixel is 8 which is merged with 4 to obtain the forest shown

Figure 11.6. An example of the Union-find procedure.



i
i

i
i

i
i

i
i

304 11. Morphological Image Processing

in step C. This process continues until the two sets given as 2 and 4 in step F
are both merged together by pixel 14, as shown in steps F and G. Note that
when pixel 14 is scanned our illustration shows set 14 merged with set 4 (the set
containing 13) to form the forest of step F. Pixel 14, however, is also connected
to pixel 11 and so the final step is to merge set 4 (the set continuing 14) with set
2 (the set continuing 11) to form the forest of step G. Since at the conclusion of
this algorithm the forest contains a single tree this indicates that there is a single
8-connected component having the label 2.

A disjoint-set can then be implemented as an integer array P such that pixels
are denoted by their linearized index i and P [i] is the parent node of pixel i. If
P [i] = −1 then pixel i is background pixel. If P [i] = i then pixel i is the root
node of some tree. Of course, if P [i] 6= i then pixel i is a child node of P [i]. For
any background pixel i, the set containing that pixel can be found by following
a path of parent references until reaching an index j where P [j] = j.

Consider Listing 11.3, which gives a complete implementation of the find
and union operations within a class named ConnectedCompents. The find
method accepts an integer index denoting a pixel and searches for the root node
by recursively moving upward along the path given by the values in the parent
array. Note that the find operation is linearly dependent on the length of the path
from a pixel to the root. Since the find method visits each node as it climbs the
path we can modify the tree by attaching each node along the path directly to the

1 p u b l i c c l a s s ConnectedComponents {
2 p r i v a t e i n t [ ] p a r e n t ;
3

4 p r i v a t e i n t f i n d ( i n t index ) {
5 i f ( p a r e n t [ index ] == −1 | | p a r e n t [ index ] == index ) {
6 r e t u r n p a r e n t [ index ] ;
7 } e l s e {
8 p a r e n t [ index ] = f i n d ( p a r e n t [ index ] ) ;
9 r e t u r n p a r e n t [ index ] ;

10 }
11 }
12

13 p r i v a t e void union ( i n t p1 , i n t p2 ) {
14 i n t roo t1 = f i n d ( p1 ) ;
15 i n t roo t2 = f i n d ( p2 ) ;
16 p a r e n t [ roo t2 ] = roo t1 ;
17 }
18

19 // o t h e r methods not shown
20 }

Listing 11.3. Find and union methods.



i
i

i
i

i
i

i
i

11.2. Component Labeling 305

root. This modification is known as path compression since the tree is flattened
as it is traversed. Path compression is implemented in line 8 of Listing 11.3 and
is vital to efficient operation of the disjoint-set structure.

The union method is also given in Listing 11.3. This operations first finds
the label of the set containing pixel p1 after which it finds the label of the set
containing pixel p2. The set containing pixel p2 is attached as a child to the root
node of the set containing p1 thus merging the two sets into one. The method is
extremely efficient assuming that finds are efficiently encoded.

Figure 11.7 illustrates how this data structure is used to label the compo-
nents in the image of Figure 11.5. Each step of the process is labeled from A
to G in correspondence with the steps illustrated in the abstract illustrations of
Figure 11.6. Figure 11.7 shows the contents of the parent array at the conclusion
of each step and note that the parent array is how the forest of Figure 11.6 is
encoded in our implementation.

In step A the parent array has been initialized such that for every background
pixel parent[i] = -1 and that for every foreground pixel parent[i] = i. Just
as before, the first pixel that must be unioned with another is pixel 7, which is
merged with 2, as shown in step B. Pixel 8 is unioned with 2 in step C and the
process continues exactly as described in Figure 11.6 until all pixels have been
scanned and merged when necessary. The parent array shown in step F–G is
the final configuration of component labeling where note that for any pixel i the
label of that pixel is given by find(i).

In summary, the union-find algorithm in conjunction with the disjoint-set
data structure provides near linear-time support for component labeling. Also,
since the algorithm works on a raster-scan basis, the algorithm can be modified
to label images whose resolution is so large that they cannot be made memory
resident.

Figure 11.7. Union-find procedure with arrays.



i
i

i
i

i
i

i
i

306 11. Morphological Image Processing

11.3 Dilation and Erosion
Dilation and erosion are two fundamental image processing operations with re-
spect to morphological processing. Dilation and erosion are low level operations
upon which many more sophisticated operations rely. Dilation, as the name im-
plies, causes a component to grow larger while erosion shrinks or thins a compo-
nent. Figure 11.8 shows an example of these two operations. The binary source
image of part (a) is dilated to obtain the result of (b) while part (c) shows the
result of erosion.

The specific effect of each of these operations is controlled by a structuring
element in much the same way that a kernel controls the specific effect of con-
volution. A structuring element is itself a binary image that is used to carve out
the edges of a component, in the case of erosion, or to expand the edges of a
component, as in dilation. Figure 11.9 shows a structuring element in part (a).
The illustration here uses a non-binary representation for the structuring element
but only for the sake of visual clarity. The structuring element in this example
should be understood as a 3 × 3 binary image. The source image of (b) is then
eroded with the structuring element to obtain the result shown in part (c).

When either dilating or eroding an image, the center of the structuring ele-
ment is positioned above every source pixel in a raster scan of the source image.
The output produced by the structuring element for the pixel over which it is
positioned is then determined as either black or white. For erosion, the center
pixel is black only when every black pixel of the structuring element is positioned
over a black element of the source while for dilation the output is black if at least
one black pixel of the structuring element is positioned over a black pixel of the
source.

Figure 11.10 illustrates a number of cases involving the overlap of the struc-
turing element with the source image. In part (a), the structuring element does

(a) Source image. (b) Dilated. (c) Eroded.

Figure 11.8. Dilation and erosion.



i
i

i
i

i
i

i
i

11.3. Dilation and Erosion 307

(a) Structuring element. (b) Source image. (c) Eroded.

Figure 11.9. Structuring element and erosion.

not overlap the source image at all and hence the output for both erosion and
dilation is white. In part (b) the structuring element partially overlaps the source
image and hence the output for erosion is white and for dilation is black. In part
(c), the structuring element completely overlaps with the source image and hence
the output for both erosion and dilation is black.

Consider how a wood router can be used to trim the edges of a piece of
woodwork. The craftsman selects a routing bit of the correct size and shape and
then sweeps the router along the boundaries of the wooden piece in order to thin,
or erode, the wood. Erosion can be understood in this way where the structuring
element corresponds to the routing bit and the process of sweeping along the
edges of the wooden piece corresponds to the erosion operation itself. The most
common structuring elements are either square or circular in shape where the
circular elements tend to produce smoother edges than others as would naturally
be expected.

Dilation and erosion are generally used as a preprocessing phase in shape
analysis. Consider a binary image that has numerous 4-connected components.
Erosion may increase the number of components by splitting a component into

(a) No overlap. (b) Partial overlap. (c) Complete overlap.

Figure 11.10. Cases of overlap with the structuring element.



i
i

i
i

i
i

i
i

308 11. Morphological Image Processing

two or more separate shapes. Figure 11.9 illustrates precisely this effect where
the source image of (a) contains a single 4-connected component prior to erosion
but contains two 4-connected components after erosion. Dilation may, of course,
have just the reverse effect of joining two source components into a single shape.

11.3.1 Implementation
Erosion and dilation can be implemented via use of the Mask class introduced
for use in rank filtering. A mask is simply a binary image, implemented as a
boolean-valued matrix that can also be scanned. Listing 11.4 is a complete im-
plementation where the filter method simply iterates over every source sample
and erodes that element by centering the structuring element over the pixel and
scanning the neighborhood. Erosion of a single source sample is done via the
erode method.

1 p u b l i c c l a s s ErosionOp extends NullOp {
2 p r i v a t e Mask s t r u c t u r i n g E l e m e n t ;
3 p r i v a t e ImagePadder sampler = new ColorFramePadder ( Color . whi te ) ;
4

5 p u b l i c ErosionOp ( ) {
6 t h i s ( MaskFactory . ge tCi rc leMask ( 7 ) . i n v e r t ( ) ;
7 }
8

9 p u b l i c ErosionOp ( Mask element ) {
10 se tE lement ( e lement ) ;
11 }
12

13 p u b l i c Mask getElement ( ) {
14 r e t u r n s t r u c t u r i n g E l e m e n t ;
15 }
16

17 p u b l i c void se tE lement ( Mask element ) {
18 s t r u c t u r i n g E l e m e n t = element ;
19 }
20

21 p r i v a t e void erode ( Buf feredImage s rc , Buf feredImage des t , Locat ion pt ) {
22 i n t r e s u l t = 0 ;
23 f o r ( Locat ion kpt : new Ras te rScanner ( s t r u c t u r i n g E l e m e n t . getBounds ( ) ) ) {
24 i n t element = s t r u c t u r i n g E l e m e n t . getSample ( kpt . col , kpt . row ) ;
25 i n t sample = sampler . getSample ( s rc , p t . c o l + kpt . col , p t . row + kpt . row , 0 ) ;
26 i f ( sample != 0 && element == 0) {
27 r e s u l t = 255;
28 break ;
29 }
30 }



i
i

i
i

i
i

i
i

11.4. Opening and Closing 309

31 d e s t . g e t R a s t e r ( ) . se tSample ( p t . col , p t . row , 0 , r e s u l t ) ;
32 }
33

34 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
35 i f ( s r c . getType ( ) != BufferedImage .TYPE BYTE BINARY)
36 throw new I l l ega lArgumentExcep t ion ( "Source must be a binary image" ) ;
37

38 i f ( d e s t == n u l l ) {
39 d e s t = createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
40 }
41

42 f o r ( Locat ion pt : new Ras te rScanner ( s rc , f a l s e ) ) {
43 erode ( s rc , des t , p t ) ;
44 }
45 r e t u r n d e s t ;
46 }
47 }

Listing 11.4. ErosionOp.

11.4 Opening and Closing
Opening and closing are morphological processes based on dilation and erosion.
Opening is used to separate a single component within a source image at narrow
pathways between portions of the component. Closing has the opposite effect of
joining two separate shapes that are in sufficiently close proximity. Opening and
closing tend to otherwise leave the thickness of components unchanged, which
makes these operations significantly different than either dilation or erosion.

(a) Source image. (b) Opened. (c) Closed.

Figure 11.11. Example of opening and closing.



i
i

i
i

i
i

i
i

310 11. Morphological Image Processing

The effects of opening and closing are illustrated in Figure 11.11. The source
image of part (a) is opened in part (b) and closed in part (c) using a circular
structuring element of appropriate size. Notice in part (b) that the subject’s right
eyebrow has divided into two separate components and that the separation be-
tween the two lip components has increased. Notice in part (c) that the subject’s
nose has joined together with the two lip components to form a single shape.
In general terms, however, note that neither opening nor closing has resulted in
a significant enlarging or shrinking of the source component boundaries except
along narrow paths in the source.

Opening an image A by a structuring element B is simply the erosion of A
with B followed by the dilation of A with B. Closing is the dilation of A with B
followed by the erosion of A with B.

11.5 Component Representation
While erosion and dilation affect the components within an image they are not
applied to components as such but to binary images. Other operations are, how-
ever, specific to an individual component rather than a binary image. Operations
such as translating a component, smoothing a component, determining the area
or perimeter of a shape, or even comparing two shapes are common in image
processing and computer vision. The component labeling processing described
earlier in this chapter represents a component as a tree and a set of components
as a forest of trees. Although this representation provides excellent support for
component labeling it is an inadequate representation for the operations now
in view and hence we seek compact representations to efficiently support vari-
ous component processing algorithms. This section describes the most common
techniques for representing a component.

11.5.1 Mask

The most natural representation of a shape is a two-dimensional array M where
M [x][y] == 1 if location (x, y) is an element of the component and M [x][y] ==
0 otherwise. In addition, the dimensions of M correspond to the bounding box
of the component and the location of the component requires an additional two
integer values for the (x, y) coordinate of the upper-left sample. Since each el-
ement of the array is either 0 or 1 the array M is implemented as an array of
bits and hence this representation is often referred to as a bitmap. The term “bit-
mask” or simply “mask” is also often used since the mask flags those pixels of a
source image that belong to the component.



i
i

i
i

i
i

i
i

11.5. Component Representation 311

11.5.2 Run Length Encoding
A component may also be represented through run length encoding. Under run
length encoding a component is given by a list of runs where each run represents
a sequence of foreground pixels that occur in the same row. Each run is given by
three integers that represent the starting location of the run (x, y) in addition to
the length of the run. An alternative is to represent a run by three numbers that
give the starting location (x, y) and the ending column rather than the length of
the run. Consider an array of listsR such thatR[i] is a list of runs that occur only
in the ith row of the component. Each run could then be given as a pair of values
that indicate the first and last columns of the run since the row information is
shared by all elements in the list.

11.5.3 Chain Codes
Orienteering is an ancient sport where markers are placed at various locations
spread across a large region of countryside. Hikers, or orienteers, must then
travel from marker to marker by using only a magnetic compass as a guide and
eventually returning to the staring point. Chain coding is an alternative tech-
nique for representing a component, which is directly related to orienteering.
A chain code defines the contour of a component as each boundary pixel is
traversed by following directions aligned with the points of a compass. Chain
coding was discovered by Herbert Freeman and is often referred to as Freeman
coding. Chain coding gives an attractively compact lossless representation that
provides excellent support for many component processing operations. Under
chain coding a component is defined by the location of a foreground pixel laying
on the boundary of the component. We will refer to this pixel as the starting
point Ps. A list of directions is also given that shows how to traverse each of the
boundary pixels of the component beginning and ending with Ps.

(a) 4-connected chain code. (b) 8-connected chain code.

Figure 11.12. Chain code directions.



i
i

i
i

i
i

i
i

312 11. Morphological Image Processing

(a) 8-connected chain code. (b) 4-connected chain code.

Figure 11.13. Chain code examples.

Under 4-connectedness, there are only four possible directions that can be
traversed from a boundary pixel p. Those four locations are conventionally given
as values 0 through 3, which correspond to east, south, west and north, as shown
in Figure 11.12. Under 8-connectedness, there are only eight possible directions
that can be traversed and these are also shown in Figure 11.12.

Figure 11.13 gives an example of how chain coding could be used to represent
a component. In both (a) and (b) the starting point Ps is given as (0, 0). The 4-
connected chain code representation is then given by {0101002121223333}while
the 8-connected code is given by {011033446666}. Observant readers may ques-
tion how chain codes can be used to represent a component having interior holes
since the outer contour is the same whether or not the interior hole exists. While
beyond the scope of this text, interior holes are typically represented by chain
codes that traverse the interior boundary in a counterclockwise direction while
exterior contours are traced in a clockwise movement.

The chain code of Figure 11.13 uses an absolute chain code, which is so
named since each direction is defined with respect to a global reference point.
A differential chain code is a variant on the absolute change code and stores the
change in direction rather than the storing the change in position of each pixel
traversed. Differential chain codes essentially describe how much an orienteer
should spin prior to moving forward into the next pixel on the boundary. If we
define the 8-connected absolute chain code as the sequence c = {c0, c1, . . . , cN},
the 8-connected differential chain is given by cd = {d0, d1, . . . , dn} where

di =
{

(ci+1 − ci) mod 8 for 0 ≤ i ≤ N − 1,
(c0 − cN−1) mod 8 for i = N − 1. (11.1)

The differential encoding of the component shown in Figure 11.13 is then
given by {107301020002} from starting point (0, 0). Each entry in the chain gives



i
i

i
i

i
i

i
i

11.6. Component Features 313

a multiplier of 45◦ increments of clockwise rotation from the previous direction
prior to moving into the next pixel.

One interesting property of differential chain codes is that they are invariant
under rotations of 90◦. An absolute chain code that is rotated by 90◦ for example,
will produce a vastly different chain code for the rotated component. Rotation
of a differential chain code by 90◦ however, will produce the same chain code
assuming that the initial direction of travel is also explicitly rotated. Chain codes
are not invariant to all rotations since the component boundary will change as
a result of resampling. Chain codes are also sensitive to scale since scaling a
component will lengthen or shorten the component boundary.

11.6 Component Features
While we have thus far defined a component as a set of connected foreground
pixels, it is unlikely that a person in conversation would describe the shapes of
an image by listing each of the points in each shape. The more natural approach
would be to identify the shape and describe its general location and orientation
in the image. You might note, for example, the tall and thin rectangle at the
upper-left of the image or the flattened oval at the lower-left of the image. When
describing shapes in this manner a large amount of information can be conveyed
by a small set of properties that characterize the shape.

Component classification seeks to identify a small set of features that con-
vey essential information about a component in a concise fashion. This set of
characteristic properties is known as a feature vector where the term feature is
used to denote a property that can be derived from the set of connected pixels
that comprise a component. Since the feature vector will contain relatively few
values it provides a computationally effective characterization of a component
shape. This section describes those features that are commonly used as part of a
feature vector.

11.6.1 Geometric Features
The area of a component is given by the number of pixels in the component.
If the component is represented as a set of locations, the area is given by the
cardinality of the set.

The perimeter of a component is defined as the length of the outer contour.
The perimeter is easily derived from the chain code representation by adding the
length of each step in the chain. Each of the cardinal directions in a chain code
incurs a movement of length 1 while each of the diagonal directions incurs a
movement of length

√
2. Equation (11.2) gives a more formal definition where

the component is represented by the absolute chain code c = {c0, c1, . . . , cN}.



i
i

i
i

i
i

i
i

314 11. Morphological Image Processing

Empirical studies show that Equation (11.2) tends to overestimate the perimeter
of the non-discretized component and so a scaling factor of .95 is often applied
to produce a more accurate measure of perimeter:

Perimeter =
∑N−1
i=0 length(ci).

length(ci) =
{

1 for ci = 0, 2, 4, 6,√
2 for ci = 1, 3, 5, 7.

(11.2)

Note that the area and perimeter of a component are generally invariant to
translation and rotation1 but are obviously sensitive to changes of scale. A larger
component will, for example, have a larger perimeter and area than an identically
shaped but smaller component. We will now describe two interesting geometric
properties that are invariant to translation, rotation, and scale.

Compactness is defined as the relationship between the area of a compo-
nent to the perimeter. Since we are concerned with developing a scale invariant
feature we note that the perimeter of a component increases linearly with an
increase of scale while the area increases quadratically. For this reason, the com-
pactness is given as the ratio of the area to the square of the perimeter, as shown
in Equation (11.3):

Compactness =
Area

Perimeter2
. (11.3)

Compactness is closely related to the circularity of a shape. The compactness
of a perfect circle of any scale is given by 1

4π and hence when compactness is
normalized by this factor we obtain a measure of how similar the component is
to a circle. The circularity of a component has a maximum value of 1, which
is only achieved by a perfect circle while the minimum circularity approaches
zero. A component having low circularity will typically have long thin tendrils
that spread across a fairly large region of space:

Circularity = 4π
Area

Perimeter2
. (11.4)

11.6.2 Statistical Features

In set theory, the domain or set of all integers is denoted as Z and hence we say
that a coordinate is an element of Z2 or in other words, a coordinate is an ordered
pair of integers. A component can then be defined as the set of coordinates of the
pixels that comprise the component. In this presentation we use a characteristic
function to define the set of coordinates. The characteristic function accepts a

1Rotation may introduce relatively small discretization errors.



i
i

i
i

i
i

i
i

11.6. Component Features 315

coordinate and returns 1 if the coordinate is an element of the component and
returns a 0 otherwise. Equation (11.5) defines the characteristic function:

f(x, y) =
{

1 if (x, y) is an element of the component,
0 otherwise.

(11.5)

Statistical moments are used in many image processing applications ranging
from optical character recognition to medical image analysis. These moments
describe the point distribution with respect to the horizontal and vertical image
axes and provide rich information about the size, shape, and location of the
component. In general form, the moments are relative to the image origin and
are said to be of some order. The general or ordinary moments of a component
are then given by Equation (11.6), where p represents the horizontal order of
moment µ and q represents the vertical order. Also note that the summation is
over all ordered pairs of integers. The equations that follow drop this explicit
notation but maintain the range (x, y) ∈ Z2 implicitly:

mpq =
∑

(x,y)∈Z2

xpyqf(x, y). (11.6)

The area of a component is given by the moment of order zero, m00, which
is also known as the 0th moment. The area of a component is simply the number
of pixels that comprise the component as given by Equation (11.7):

m00 =
∑
(x,y)

x0y0f(x, y) =
∑
(x,y)

f(x, y). (11.7)

The centroid, or center of mass, of a component represents the location of
the component and is known as the 1st moment. Consider taking a strong, thin,
and rigid sheet of metal and trimming it into the shape of some component.
The centroid of the component represents the point at which the cutout would
be perfectly balanced if it were to be placed atop a sharp pencil point. Note,
however, that the centroid of a component may not be contained within the
component boundaries as may occur if the component has holes or is not convex.
The centroid is given by (x, y) where x is the average x coordinate of all points on
the component and y is the average y coordinate of all points on the component.
The centroid is defined in Equation (11.8):

m10 = x =

∑
(x,y) xf(x, y)

m00
, m01 = y =

∑
(x,y) yf(x, y)

m00
. (11.8)

While the ordinary moments are dependent on both the location and size of
the component the normalized central moments are not dependent upon either
the location or the scale of the component. To compute the position indepen-
dent, or translation invariant, moments we translate the component to the origin



i
i

i
i

i
i

i
i

316 11. Morphological Image Processing

and then apply Equation (11.6). Translating a component by (−x,−y) moves the
component to the origin, which gives the central movements of Equation (11.9),
where µpq represents the central moment of order (p, q):

µpq =
∑
(x,y)

(x− x)p(y − y)qf(x, y). (11.9)

The central moments are also dependent on the size of the component since
each movement is a function of the location of each coordinate in the compo-
nent. In order to normalize for the scale of a component we must introduce a
scaling factor into Equation (11.10). Scaling a component by a uniform factor
of s in size will scale the central moments by a factor of s(p+q+2). This leads
to Equation (11.10), which gives the scale invariant normalized moments of a
component:

µpq = µpq

(
1
µpq

)(p+q+2)/2

for p+ q ≥ 2. (11.10)

The orientation of a component is given by the axis that passes through the
centroid and is aligned with the longest portion of the component. In much
the same way that the centroid of a component can be understood using the
metaphor of a thin metal cutout, the orientation can be understood using an
analogy drawn from physics. Consider taking the thin cutout and twirling it
around some axis lying in the X-Y plane of the component and passing through
the centroid. The orientation is the axis that minimizes the inertial momentum
that results from spinning the metal sheet in this manner. Consider twirling a
baton around an axis passing from one end to the other. The resulting inertial
energy is smaller than if the same baton were twirled about an axis perpendic-
ular to that central axis. The orientation can be computed from the moments,
as shown in Equation (11.11); note that the resulting angle lies in the range
[−pi/2, pi/2] and is only valid when µ20 6= µ02:

Θ =
1
2

tan−1

(
2µ11

µ20 − µ02

)
. (11.11)

The eccentricity of a component is given by the ratio of its longest axis to
its shortest axis. Eccentricity is a measure of the elongatedness or thinness of
a component. Consider the smallest rectangle that encloses all points in the
component and that is aligned with the components orientation. The ratio of
the longest side to the smallest side gives the eccentricity. Equation (11.12) gives
a definition of eccentricity that is easily computable from the moments and that
is closely related to the maximum aspect ratio of the smallest bounding box of a
component.

Eccentricity =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

µ20 + µ02 −
√

(µ20 − µ02)2 + 4µ2
11

. (11.12)



i
i

i
i

i
i

i
i

11.7. Image Segmentation 317

(a) Source image. (b) Labeled.

(c) Component features. (d) Component features.

Figure 11.14. Component labeling and statistical features.

The binary source image of Figure 11.14 part (a) shows the signature of the
well-known Japanese artist Katsushika Hokusai. The image is labeled in part
(b) and the centroid of each component is also indicated by the black dot. Two
of the components are highlighted in parts (c) and (d) where the orientation of
each component is given by the line extending outward from the centroid and the
eccentricity is indicated by the aspect ratio of the oval overlay. The circularity of
the component shown in part (c) is .077, which indicates that the component
is very unlike a circle. The compactness of the component shown in part (d)
is .898, which conveys that the component is circle-like.

11.7 Image Segmentation
Image segmentation refers to partitioning of a digital image into multiple regions
where each region is a component. While a binary image is already segmented,
a grayscale or color image is not since there is no well-defined background or
foreground color. This section gives a very brief overview of the problem of
segmenting color and grayscale images.



i
i

i
i

i
i

i
i

318 11. Morphological Image Processing

Consider the definition of connectedness given in Section 11.1, where two
pixels p and q are said to be 4-connected if they are 4-adjacent and the same
color. While this notion of component is sufficient for binary images since there
are only two color classes, background and foreground, it is not adequate for
grayscale or color images. For any grayscale or color image the pixels that com-
prise a single object will likely be similar in color to some degree but certainly
not identical in color.

Figure 11.15. Segmentation of color image.



i
i

i
i

i
i

i
i

11.8. Exercises 319

In order to illustrate the idea that components of a grayscale or color image
are not identically colored, consider the image of Figure 11.15. In the most gen-
eral sense, the image is composed of a background component, the dark region
behind the subject, and a foreground component, the subject of the portrait it-
self. In a more specific sense, the subject is composed of a staff, hat, and figure.
The subject of the portrait can be further decomposed into a face, torso and right
arm as shown in the figure. It is clear that the individual pixels that comprise the
hat, for example, are not precisely the same color and hence a more flexible def-
inition of connectedness is required for properly segmenting grayscale and color
images.

Segmentation of a color image can be naively implemented by a slight modi-
fication of the definition of connectedness. We might relax the requirement that
two adjacent pixels be identical in color to require only that two adjacent pixels
be similar in color. Similarity can be specified, for example by placing a limit
on the L2 distance between two colors such that colors C1 and C2 are similar
if the L2 distance between them is less than or equal to some threshold. We
might define the hat of Figure 11.15 as the set of pixels that are 4-connected to a
user-selected pixel p that has been arbitrarily selected as a representative sample
within the hat.

Image segmentation is an active area of research within the image processing
community and many different approaches have been developed. Among the
most popular are clustering methods such as K-means or region growing meth-
ods in addition to newer techniques based on neural networks. These approaches
are beyond the scope of this text and are not discussed further.

11.8 Exercises
1. Segment the following binary image using N4, Nd, and N8 connectedness.

Each component of a segmentation should be given as a list of pixel coor-
dinates that belong to the component.



i
i

i
i

i
i

i
i

320 11. Morphological Image Processing

2. Using theN4 segmentation of 1, give the centroid, perimeter, compactness,
and circularity of the two largest components.

3. Using theN8 segmentation of 1, give the centroid, perimeter, compactness,
and circularity of the two largest components.

4. Draw the results of both eroding and dilating the image of problem 1 with
a 3× 3 square mask.

5. Draw the results of both eroding and dilating the image of problem 1 with
a 3× 3 plus-shaped mask.

6. Give the chain code representation for each component in the N4 and N8

segmentation of problem 1.

7. Locate an image of handwritten text and load this image into Pixel Jelly.
Use any part of the application to generate a segmentation of the image so
that each letter is a connected component. Note that it may not be possible
to accomplish this task completely since some letters will be so connected
to others as to be impossible to automatically separate.

Artwork
Figure 11.4, 11.8, and 11.11. Mona Lisa by Leonardo da Vinci (1452–1519). See page
170 for a brief biography of the artist. Da Vinci’s Mona Lisa, from which the im-
age of Figure 11.4 and others is derived, is unquestionably the most famous and
most copied portrait painting of all time. Mona Lisa (also known as La Gioconda)
is a 16th-century portrait, which at the time of this writing was owned by the
French government and hangs in the Musée du Louvre in Paris, France, with
the title Portrait of Lisa Gherardini, Wife of Francesco del Giocondo.

Figure 11.15. Portrait of a Halberdier by Jacopo Pontormo (1494–1557). Pontormo
was an Italian painter specializing in portraiture following the mannerist school.
Pontormo was apparently orphaned at a young age but had the great fortune
to apprentice under the likes of Leonardo da Vinci, Mariotto Albertinelli, and
other great artists of his time. Much of his art focused on religious themes as
illustrated by The Deposition from the Cross, considered to be one of his best works,
where brilliantly colored figures are composed in a complex and ethereal form.
While the illustration of Figure 11.15 is not representative of his style as a whole,
it is notable as being one of the most expensive paintings in history. The Portrait of
a Halberdier was purchased in 1989 by the Getty Museum for the sum of US$35.2
million.



i
i

i
i

i
i

i
i

�

Advanced
Programming 12

12.1 Overview
This section presents issues that are more related to implementation issues of
image processing than to the concepts behind image processing itself. In this
chapter we briefly describe how concurrency can be used to provide significant
speedups, and also give an introduction to the JAI library, a standard extension
to Java that supports the development of high performance image processing
applications.

12.2 Concurrency
The execution speed of many of the image filters presented throughout this text
can be significantly improved through the use of concurrency. Concurrency, or
parallelization, occurs when more than one process within a computing system
is executing at the same time. While concurrency is possible on simple single-
cpu, single-core computing platforms, significant software speedup can only be
realized on computing systems that have multiple processors or multiple cores
on a single processor.

Java provides elegant support for concurrency through both language-level
features and a well designed set of classes. We will first describe basic techniques
for generating concurrent threads of execution in Java and then demonstrate how
concurrency can be used to increase the performance of a certain class of image
processing operations.

A Java process is a heavyweight object that controls a complete set of system-
level resources including its own memory space. A process can be understood as
a single Java program. A thread executes within the context of some process and
shares the resources and memory space of that process. The creation and control
of Threads is the primary mechanism for supporting concurrency in Java. The

321



i
i

i
i

i
i

i
i

322 12. Advanced Programming

Thread

+void run()

+void join()

+void start()

Figure 12.1. Thread methods (partial listing).

Thread class contains methods for creating and controlling a thread of execution
where the most important methods for our purposes are shown in the UML class
diagram of Figure 12.1.

When a Thread is created, it does not begin execution but is simply prepared
for execution. The Thread constructor simply initializes the data structures nec-
essary to establish an execution environment without actually allocating the sys-
tem resources necessary for a process to execute. Not until the start method
is invoked is the execution environment fully initialized by allocating system re-
sources after which the run method is executed within the environment. The
run method is the code that the thread executes in parallel with other active
threads. The default run method is empty and hence this class is designed to be
subclassed where the run method is overridden in some desired fashion. If we
assume that t is a Thread then t.start() returns immediately to the caller but
initiates the execution of t.run(), which may itself not be completed until a
much later time.

The join method allows one thread to wait for the completion of another.
If we assume that t is a Thread then t.join() causes the currently executing
thread to stop and wait for t to complete. When t has finished execution then
the currently executing thread awakens and continues execution.

In image processing it is common to implement concurrent operations by
splitting an image into rectangular tiles that are processed simultaneously by
various threads of execution. As a first step towards the design of a flexible and
general framework for concurrent image processing operations we will design
a thread that iterates over some subset of the tiles of an image and applies a
BufferedImageOp to each of the tiles it is assigned.

We first develop the class that is responsible for tiling an image and pro-
ducing the tiles in sequence. The ImageTiler class shown in Listing 12.1 is a
complete listing of a thread-safe iterator producing a sequence of tiles covering
some source image.

The constructor accepts a BufferedImage and the size of a single tile as
given by the width and height parameters. Tiles are generated as Rectangles
in this implementation where the tiles are made available in raster-scan order
through the next method. The next method returns a null value in the event
that no more tiles are available in the scan otherwise the next tile in the scan is
produced.



i
i

i
i

i
i

i
i

12.2. Concurrency 323

1 p u b l i c c l a s s ImageTi le r implements I t e r a t o r <Rectangle> {
2 p r i v a t e i n t t i l eWid th , t i l e H e i g h t , t i l esPerRow , t i l eRows ;
3 p r i v a t e i n t c u r r e n t T i l e ;
4

5 p u b l i c ImageTi l e r ( Buf feredImage s rc , i n t w, i n t h ) {
6 t i l e W i d t h = w;
7 t i l e H e i g h t = h ;
8 i n t srcWidth = s r c . getWidth ( ) ;
9 i n t s r c H e i g h t = s r c . ge tHe igh t ( ) ;

10 c u r r e n t T i l e = −1;
11 t i l e sPerRow = ( i n t ) Math . c e i l ( srcWidth / ( double ) t i l e W i d t h ) ;
12 t i l eRows = ( i n t ) Math . c e i l ( s r c H e i g h t / ( double ) t i l e H e i g h t ) ;
13 }
14

15 p u b l i c synchronized boolean hasNext ( ) {
16 r e t u r n c u r r e n t T i l e < t i l e sPerRow ∗ t i l eRows − 1 ;
17 }
18

19 p u b l i c synchronized Rectang le next ( ) {
20 Rectang le r e s u l t = n u l l ;
21 i f ( hasNext ( ) ) {
22 c u r r e n t T i l e ++;
23 r e s u l t = new Rectang le ( getX ( ) , getY ( ) , t i l eWid th , t i l e H e i g h t ) ;
24 }
25 r e t u r n r e s u l t ;
26 }
27

28 p r i v a t e i n t getX ( ) {
29 r e t u r n ( c u r r e n t T i l e % t i l e sPerRow ) ∗ t i l e W i d t h ;
30 }
31

32 p r i v a t e i n t getY ( ) {
33 r e t u r n ( c u r r e n t T i l e / t i l e sPerRow ) ∗ t i l e H e i g h t ;
34 }
35

36 p u b l i c synchronized void remove ( ) {
37 throw new RuntimeException ( ) ;
38 }
39 }

Listing 12.1. ImageTiler.

The key feature of the ImageTiler is that of thread safety. Each of the public
methods is synchronized, which ensures that if multiple threads attempt to si-
multaneously access one of these methods on the same ImageTiler object, only
one thread at a time is granted permission to proceed. This control is necessary
to ensure that the internal state of the ImageTiler is not mangled by allowing
multiple threads to step through the body of the next method in an unpredictable



i
i

i
i

i
i

i
i

324 12. Advanced Programming

order. A synchronized method can be viewed as an atomic action, an entire se-
ries of instructions that effectively occurs as a single instruction.

Listing 12.2 defines a specialized thread that uses an ImageTiler to ob-
tain tiles from a source image. When a OpThread is created the constructor
requires a non-null BufferedImageOp, source and destination images, and an
ImageTiler. When the thread is executed, the run method is invoked such that
the tiles generated by the ImageTiler are used to create sub-images of both the
source and destination. These sub-images are then processed in the conventional
manner through use of the BufferedImageOp filter method.

1 p u b l i c c l a s s OpThread extends Thread {
2 p r i v a t e BufferedImage s rc , d e s t ;
3 p r i v a t e BufferedImageOp op ;
4 p r i v a t e ImageTi le r scanner ;
5

6 p u b l i c OpThread ( BufferedImageOp op ,
7 BufferedImage s rc ,
8 ImageTi l e r scanner ,
9 BufferedImage d e s t ) {

10 t h i s . op = op ;
11 t h i s . s r c = s r c ;
12 t h i s . s canner = scanner ;
13 t h i s . d e s t = d e s t ;
14 }
15

16 p u b l i c void run ( ) {
17 Rectang le srcBounds = s r c . g e t R a s t e r ( ) . getBounds ( ) ;
18 Rectang le t i l e = n u l l ;
19 while ( ( t i l e = scanner . next ( ) ) != n u l l ){
20 t i l e = t i l e . i n t e r s e c t i o n ( srcBounds ) ;
21 BufferedImage s r c T i l e =
22 s r c . getSubimage ( t i l e . x , t i l e . y , t i l e . width , t i l e . h e i g h t ) ;
23 BufferedImage d e s t T i l e =
24 d e s t . getSubimage ( t i l e . x , t i l e . y , t i l e . width , t i l e . h e i g h t ) ;
25 op . f i l t e r ( s r c T i l e , d e s t T i l e ) ;
26 }
27 }
28 }

Listing 12.2. OpThread.

Proper understanding of the getSubimage method is crucial. While the
getSubimage method creates a new BufferedImage representing a portion of
some parent image, the Raster of the sub-image and the Raster of the parent
image are the same. This implies that changing any sample of the sub-image
also changes the corresponding sample of the parent image. Hence, each of the



i
i

i
i

i
i

i
i

12.2. Concurrency 325

sub-images generated in the run method corresponds to portions of either the
source or destination images.

We now take one further step by writing code that creates multiple OpThreads
and sets them up to iterate over the same source using the same tiler to pour

1 p u b l i c c l a s s ConcurrentOp extends NullOp {
2 p r i v a t e BufferedImageOp op ;
3 p r i v a t e i n t threadCount , t i l eWid th , t i l e H e i g h t ;
4

5 p u b l i c ConcurrentOp ( BufferedImageOp op ,
6 i n t t i l eWid th ,
7 i n t t i l e H e i g h t ,
8 i n t threadCount ) {
9 t h i s . op = op ;

10 t h i s . threadCount = threadCount ;
11 t h i s . t i l e W i d t h = t i l e W i d t h ;
12 t h i s . t i l e H e i g h t = t i l e H e i g h t ;
13 }
14

15 p u b l i c ConcurrentOp ( BufferedImageOp op , i n t t i l eWid , i n t t i l e H t ) {
16 t h i s ( op , t i l eWid , t i l e H t , Runtime . getRuntime ( ) . a v a i l a b l e P r o c e s s o r s ( ) ) ;
17 }
18

19 @Override
20 p u b l i c BufferedImage f i l t e r ( Buf feredImage s rc , Buf feredImage d e s t ) {
21 i f ( d e s t == n u l l ) {
22 d e s t = op . createCompat ib leDest Image ( s rc , s r c . getColorModel ( ) ) ;
23 }
24

25 ImageTi l e r scanner = new ImageTi l e r ( s r c , t i l eWid th , t i l e H e i g h t ) ;
26 Thread [ ] t h r e a d s = new Thread [ threadCount ] ;
27 f o r ( i n t i =0; i<threadCount ; i ++){
28 t h r e a d s [ i ] = new OpThread ( op , s r c , scanner , d e s t ) ;
29 t h r e a d s [ i ] . s t a r t ( ) ;
30 }
31

32 f o r ( Thread t : t h r e a d s ) {
33 t r y {
34 t . j o i n ( ) ;
35 } catch ( I n t e r r u p t e d E x c e p t i o n ex ) {
36 }
37 }
38

39 r e t u r n d e s t ;
40 }
41 }

Listing 12.3. ConcurrentOp.



i
i

i
i

i
i

i
i

326 12. Advanced Programming

output into the same destination image. In addition, this code is embodied using
the conventional BufferedImageOp paradigm. The complete class is shown in
Listing 12.3.

A ConcurrentOp is essentially a thin wrapper that takes any non-concurrent
BufferedImageOp and automatically parallelizes the filter method. As shown
in listing 12.3, the constructor accepts a non-concurrent operation, the desired
tile sizes, and the desired number of threads to use when filtering. The second
constructor, shown on line 15, assumes that the number of desired threads is
equivalent to the number of processors available on the system. The number
of available processors can be found dynamically in Java through the use of the
Runtime class as illustrated in line 16.

The filter method begins in normal fashion by constructing a destina-
tion image if one is not provided. The code continues by constructing a sin-
gle ImageTiler that will provide tiles of the source upon request. An array of
threads is then constructed and initialized in line 28 such that each OpThread
object uses the same BufferedImageOp to filter the same source image using the
same ImageTiler to produce the same destination image. After construction,
each thread is then started as shown on line 29 of Listing 12.3.

In a sense, the filter method is complete at that point. Each of the created
threads will execute until no more tiles of the source image remain at which time
the destination image will contain the correct result. Since, however, the filter
method requires that the destination image must be returned, the filter method
must wait until all threads have completed prior to returning the destination im-
age. This is done by joining each of the created threads, that is, by waiting for
each of the threads to complete, as shown on line 34.

The code in Listing 12.3 assumes that the supplied BufferedImageOp can
be safely parallelized over tiles of an image. The assumption is that there is no
intrinsic reliance on the order in which pixels are processed or on the location
of the image pixels or the overall dimensionality of the source or destination
image. While most of the image processing operations presented in this text are
parallelizable in this way, some filters rely on the order of pixel scanning or on
image geometry and hence produce faulty results when parallelized using this
technique.

Figure 12.2 gives an illustration of the improper use of the ConcurrentOp
class. The source image of part (a) is filtered with a KaleidoscopeOp in the
standard non-concurrent method as shown part (b). When this filter is applied
in the concurrent fashion developed in the ConcurrentOp class the result is ob-
viously incorrect, as shown in part (c). It is important to note that while cer-
tain operations may not be parallelizable using the technique described in this
text, it is likely that specialized code can be developed to parallelize most im-
age filters. We have here described a technique that is relatively flexible and
which can be properly applied to a reasonably large set of image processing
filters.



i
i

i
i

i
i

i
i

12.3. JAI 327

(a) Source image. (b) Standard application. (c) Concurrent application.

Figure 12.2. Improper use of concurrency.

12.3 JAI
Java provides support for the development of media-rich applications through
the Java Media suite. The Java Media suite is a collection of related software
packages that provide support for various multimedia components. The Java 2D
package supports two-dimensional graphics and basic image processing features.
The Java 3D package provides support for the creation of three-dimensional
graphics while the Java Media Framework supports components that control
time-based data such as audio and video. The Java Advanced Imaging (JAI)
package is part of the Java Media suite and provides support for sophisticated
image processing development through an extremely flexible and optimized set
of classes. While JAI is not part of the standard Java distribution, it is a freely
available standard extension and is as good or better than many commercially
available C and C++ image processing libraries.

The JAI provides a much richer set of features than the standard Java 2D
classes described throughout the earlier portions of this text. Among the most
noteworthy features are full support for floating point rasters, a larger range of
image decoders and encoders, a larger range of color models, multiple-source
filters, deferred execution, and support for distributed and remote imaging.

When image processing filters are executed within the JAI framework the re-
sulting code can run in either accelerated or Java mode. The JAI package, when
it is installed on a particular platform, may include a set of libraries written in C
and is highly optimized for the platform on which the library is installed. These



i
i

i
i

i
i

i
i

328 12. Advanced Programming

libraries take advantage of hardware acceleration for many of the built-in pro-
cessing functions and therefore provide significant speedup for image processing
applications. Whenever a JAI filter is executed, the JAI package first determines
whether these optimized native libraries have been installed. If the libraries are
available, the filter is run in accelerated (or native) mode, meaning that the code
in those libraries is utilized to perform the filter. If the libraries are not available,
the filter will execute properly but in non-accelerated or Java mode.

While the JAI library provides elegant support for the development of high
performance image processing, it is correspondingly complex in its design and
hence largely beyond the scope of this text. Nonetheless, we will outline in this
section the way in which JAI applications are modeled and implemented.

In the JAI suite, an image processing filter is viewed as a chain of individ-
ual operations. This chain is modeled as a directed acyclic graph (DAG) where
each node corresponds to an operation and each arrow relates the flow of data
between operations. While each node in the graph is an operation, it is interest-
ing to note that each node is also the image that results from applying the operation.
Consider Figure 12.3, which illustrates how a typical JAI filter is constructed. In
this example the node labeled as “Image 1” represents an operation that loads
an image from a file. The operation itself is given in the dashed box within the
node and the node itself represents the image that results from the operation.
This image is then fed into the node labeled “Image 2” as the source image. The
Image 2 node represents a minimum rank filter using a 3 × 3 square mask and
the generated image is then fed into the node labeled Image 3 as one of the two
sources to that node. The Image 3 node represents the addition of the first two
images.

The central classes of the JAI library are RenderedOp, ParameterBlockJAI,
and JAI. The RenderedOp class represents a node in a chain of operations. As
the name implies, a RenderedOp is an image processing operation that has been
executed to produce a rendered image. A RenderedOp maintains the name of
the operation it represents, a ParamaterBlock that serves as a collection of pa-
rameters controlling the operation and a vector of source images on which the

Figure 12.3. Typical JAI filter representation.



i
i

i
i

i
i

i
i

12.3. JAI 329

operation should be performed. The JAI class is a convenience class following
the factory pattern whose purpose is to simplify the construction of JAI chains
through a set of static create methods.

Listing 12.4 shows a code fragment that constructs the JAI chain illustrated
in Figure 12.3. Each call to JAI.create produces a RenderedOp object repre-
senting an operation where the operation is identified by the name used in the
parameter block constructor and is controlled by the values within the parameter
block. A ParameterBlock is a sequential list of the parameters required by an
operation. Each of the individual parameters within the block are named and
hence the parameters can be defined by the setParameter method, which takes
the name of a parameter followed by its actual value.

Consider the FileLoad operation on line 3. There is a single parameter that
controls this operation and that parameter has the name filename. This parame-
ter is established by the setParameter method of line 4. ParameterBlocks are
designed to generalize the construction of image filters. While some image pro-
cessing operations don’t require any parameter, (inversion, for example) image
processing operations in general do require controlling parameters. In Java 2D, a
BufferedImageOp class represents an image filter where the controlling param-
eters are provided to the constructor. This requires construction of specialized
BufferedImageOp subclasses with specialized constructors for each. In JAI, this
process is unified through the use of ParameterBlocks such that all image pro-
cessing operations have a set of parameters that are stored within the block and
accessed within the code body where filtering is actually performed. The edges

1 RenderedOp op0 , op1 , op2 ;
2

3 ParameterBlockJAI parameter s0 = new ParameterBlockJAI ( "FileLoad" ) ;
4 parameter s0 . s e t P a r a m e t e r ( "filename" ,"d:/Flower3.jpg" ) ;
5 op0=JAI . c r e a t e ( "FileLoad" , parameters0 , n u l l ) ;
6

7 ParameterBlockJAI parameter s1= new ParameterBlockJAI ( "MinFilter" ) ;
8 parameter s1 . s e t P a r a m e t e r ( "maskShape" , M i n F i l t e r D e s c r i p t o r .MIN MASK SQUARE) ;
9 parameter s1 . s e t P a r a m e t e r ( "maskSize" , 3 ) ;

10 parameter s1 . addSource ( op0 ) ;
11 op1=JAI . c r e a t e ( "MinFilter" , parameters1 , n u l l ) ;
12

13 ParameterBlockJAI parameter s2= new ParameterBlockJAI ( "Add" ) ;
14 parameter s2 . addSource ( op0 ) ;
15 parameter s2 . addSource ( op1 ) ;
16 op2=JAI . c r e a t e ( "Add" , parameters2 , n u l l ) ;

Listing 12.4. Creating a JAI chain.



i
i

i
i

i
i

i
i

330 12. Advanced Programming

of the graph are established through the addSource methods. Note that the min
filter operation has a single source that is given as op0 while the add filter has two
sources that are specified in lines 14 and 15.

Artwork
Figure 12.2. Mariya Magdalena by Anthony Frederick Augustus Sandys (1829–
1904). Frederick Sandys was a British painter, illustrator, and caricaturist. His
largest body of work is found in the illustrations he penned for periodicals such
as Good Words and Once a Week among others. While he was not a prolific painter
he was a gifted painter who focused on mythic and Biblical themes. The illustra-
tion of Figure 12.2 is the artists depiction of Mary of Magdala, or Mary Magda-
lene. Mary Magdalene is described in the Biblical texts as a woman from whom
Jesus himself cast out seven demons (Luke 8:2). She subsequently became a de-
voted disciple of Jesus who witnessed his crucifixion (Mark 15:40) and was the
first to see him after his resurrection (Mark 16:9). She has unfortunately been
misidentified as the prostitute who washed the feet of Jesus as recorded in Luke
7:36–50. Artists renditions tend to adopt this erroneous view of her identity and
thus present her with long flowing red hair or holding a jar of perfume, as Sandys
does in Figure 12.2.



i
i

i
i

i
i

i
i

�

Floating Point
Rasters A

When constructing a BufferedImage a client must choose the color model and
transfer type for the underyling data. While Java provides full support for inte-
ger types it unfortunately provides little support for the floating point types. A
BufferedImage that uses a floating point data buffer will not be properly ren-
dered when displayed within a Swing component for example. Nonetheless,
programmers are able to construct images that use floating point buffers and
process them with operations of their own construction.

The ConvolutionOp presented in this text is an example of how to construct
a floating point data buffer. Whenever an image is convolved with some kernel,
the result is always a floating point image which requires further post-processing
in order to properly display. The ConvolutionOp overrides the create
CompatibleDestImage method to construct the required destination type. This
method is shown in Listing A.1.

1 p u b l i c BufferedImage createCompat ib leDest Image ( Buf feredImage s rc ,
2 ColorModel model ) {
3 i n t t o t a l S i z e = s r c . getWidth ( ) ∗ s r c . ge tHe igh t ( ) ;
4 i n t [ ] o f f s e t s ;
5

6 i f ( s r c . g e t R a s t e r ( ) . getNumBands ( ) == 3) {
7 o f f s e t s = new i n t [ ]{0 , t o t a l S i z e , t o t a l S i z e ∗2} ;
8 } e l s e {
9 o f f s e t s = new i n t [ ]{ 0} ;

10 }
11

12 SampleModel sampleModel =
13 new ComponentSampleModel ( DataBuf fe r .TYPE FLOAT,
14 s r c . getWidth ( ) ,
15 s r c . ge tHe igh t ( ) ,
16 1 ,
17 s r c . getWidth ( ) ,
18 o f f s e t s ) ;

331



i
i

i
i

i
i

i
i

332 A. Floating Point Rasters

19

20 i n t numSamples = s r c . getWidth ( ) ∗
21 s r c . ge tHe igh t ( ) ∗
22 s r c . g e t R a s t e r ( ) . getNumBands ( ) ;
23 DataBuf fe r d a t a B u f f e r = new D a t a B u f f e r F l o a t ( numSamples ) ;
24 W r i t a b l e R a s t e r wr = R as te r . c r e a t e W r i t a b l e R a s t e r ( sampleModel ,
25 d a t a B u f f e r ,
26 n u l l ) ;
27 ColorModel colorModel =
28 new ComponentColorModel ( model . ge tColorSpace ( ) ,
29 f a l s e ,
30 true ,
31 Transparency .OPAQUE,
32 DataBuf fe r .TYPE FLOAT ) ;
33

34 r e t u r n new BufferedImage ( colorModel , wr , true , n u l l ) ;
35 }

Listing A.1. Creating a floating point image.

Construction of the SampleModel on line 12 requires that the type of the data
buffer be given, in this case a TYPE FLOAT along with the dimensions and offsets.
In this example, the offsets indicate the indices within the buffer that correspond
to the bands of the buffer.



i
i

i
i

i
i

i
i

�

Scanners B
The basic for loop was augmented in Java 1.5 to support convenient iteration
over collections. We will denote this newer type of for loop as a for-each loop
within this discussion.

Consider writing a loop to iterate over the elements of a collection and pro-
cessing the elements as they are visited. Assume that a collection of some type
has been constructed to which data has been inserted. In this case, Listing B.1
shows how the old-style for loop would be used to iterate over the collection.

1 f o r ( I t e r a t o r <TYPE> i t e r = c o l l e c t i o n O b j e c t . i t e r a t o r ( ) ; i t e r . hasNext ( ) ; ) {
2 TYPE var = i t e r . next ( ) ;
3 // p r o c e s s var
4 }

Listing B.1. Old style for loop.

The old style for loop explicitly makes use of an Iterator object that se-
quentially visits the elements in the collection through successive calls to next.
While this code pattern is very common and powerful it is made more conve-
nient by the for-each loop shown in Listing B.2.

1 f o r (TYPE var : c o l l e c t i o n O b j e c t ) {
2 // p r o c e s s var
3 }

Listing B.2. For-each loop.

333



i
i

i
i

i
i

i
i

334 B. Scanners

In the for-each loop there is no reference to an iterator since the iterator
is implicitly constructed and used to navigate through the collection. In more
technical terms, the only requirement on the collection object is that it must
implement the Iterable interface which is shown in Listing B.3.

1 p u b l i c i n t e r f a c e I t e r a b l e <T> {
2 p u b l i c I t e r a t o r <T> i t e r a t o r ( ) ;
3 }

Listing B.3. Iterable.

The Iterable interface is a contract that all implementing classes will pro-
vide an iterator through the iterator method. Of course this is necessary since
the for-each loop will take the collection object, request an iterator via the
iterator method, and then navigate through the elements using the iterator
itself. Knowing this we can now implements image scanners.

First we develop the ImageScanner, as shown in Listing B.4. Note that an
image scanner is an abstract class that is also an iterator, producing ColRowBand
objects and that it also implements the Iterable interface. Concrete subclasses
must provide concrete implementations of the next and hasNext methods.

1 a b s t r a c t p u b l i c c l a s s ImageScanner
2 implements I t e r a b l e <ColRowBand>, I t e r a t o r <ColRowBand> {
3 p r o t e c t e d s t a t i c UnsupportedOperat ionExcept ion e x c e p t i o n =
4 new UnsupportedOperat ionExcept ion ( ) ;
5 p r o t e c t e d ColRowBand c u r r e n t ;
6 p r o t e c t e d i n t numBands ;
7 p r o t e c t e d Rectang le r e g i o n ;
8

9 p u b l i c ImageScanner ( Rec tang le reg ion , i n t numBands ) {
10 t h i s . r e g i o n = r e g i o n ;
11 t h i s . numBands = numBands ;
12 c u r r e n t = new ColRowBand ( 0 , 0 , 0 ) ;
13 }
14

15 p u b l i c ImageScanner ( Rec tang le r e g i o n ) {
16 t h i s ( reg ion , 1 ) ;
17 }
18

19 p u b l i c boolean hasMoreElements ( ) {
20 r e t u r n hasNext ( ) ;
21 }
22

23 p u b l i c ColRowBand nextElement ( ) throws NoSuchElementException {
24 r e t u r n next ( ) ;
25 }



i
i

i
i

i
i

i
i

335

26

27 p u b l i c void remove ( ) {
28 throw e x c e p t i o n ;
29 }
30

31 p u b l i c I t e r a t o r <ColRowBand> i t e r a t o r ( ) {
32 r e t u r n t h i s ;
33 }
34 }

Listing B.4. ImageScanner.

Listing B.5 gives the complete source code for the RasterScanner. The cen-
tral task of this object is to manage indices that correspond to a raster scan of
an image. This class implicitly assumes that the data is rasterized in row-major
format such that a single integer value suffices for keeping track of the column,
the row, and even the band of the image being scanned. The next method is the
most important for our purposes as it increments a counter and then partitions
the counter into corresponding column, row, and band index.

1 p u b l i c c l a s s Ras te rScanner extends ImageScanner {
2 p r o t e c t e d i n t index ;
3 p r o t e c t e d i n t maxIndex ;
4

5 p u b l i c Ras te rScanner ( Buf feredImage image ,
6 Rectang le reg ion ,
7 boolean i sBanded ) {
8 super ( reg ion , isBanded ? image . g e t R a s t e r ( ) . getNumBands ( ) : 1 ) ;
9 maxIndex = r e g i o n . width ∗ r e g i o n . h e i g h t ∗ numBands ;

10 index = −1;
11 c u r r e n t . c o l = getCol ( ) ;
12 c u r r e n t . row = getRow ( ) ;
13 c u r r e n t . band = getBand ( ) ;
14 }
15

16 p u b l i c Ras te rScanner ( Buf feredImage image , boolean i sBanded ) {
17 t h i s ( image ,
18 new Rectang le ( 0 , 0 , image . getWidth ( ) , image . ge tHe igh t ( ) ) ,
19 i sBanded ) ;
20 }
21

22 p u b l i c i n t ge tCol ( ) {
23 r e t u r n ( index / numBands ) % r e g i o n . width ;
24 }
25

26 p u b l i c i n t getRow ( ) {
27 r e t u r n index / ( numBands ∗ r e g i o n . width ) ;
28 }
29



i
i

i
i

i
i

i
i

336 B. Scanners

30 p u b l i c i n t getBand ( ) {
31 r e t u r n index % numBands ;
32 }
33

34 p u b l i c ColRowBand next ( ) {
35 i f ( ! hasMoreElements ( ) ) {
36 throw new NoSuchElementException ( ) ;
37 }
38

39 index = index + 1 ;
40 c u r r e n t . row = getRow ( ) ;
41 c u r r e n t . c o l = getCol ( ) ;
42 c u r r e n t . band = getBand ( ) ;
43 r e t u r n c u r r e n t ;
44 }
45

46 p u b l i c boolean hasNext ( ) {
47 r e t u r n index < maxIndex − 1 ;
48 }
49 }

Listing B.5. RasterScanner.



i
i

i
i

i
i

i
i

�

References

[Ataman et al. 80] E. Ataman, V. Aatre, and K. Wong. “A Fast Method for Real-Time
Median Filtering.” Acoustics, Speech and Signal Processing, IEEE Transactions on 28:4
(1980), 415–421.

[Cooley and Tukey 65] James W. Cooley and John W. Tukey. “An Algorithm for the
Machine Calculation of Complex Fourier Series.” Mathematics of Computation 19:90
(1965), 297–301.

[Gonzalez and Woods 92] Rafael C. Gonzalez and Richard E. Woods. Digital Image Pro-
cessing, Third edition. Reading, MA: Addison-Wesley, 1992.

[Huang et al. 79] T. Huang, G. Yang, and G. Tang. “A Fast Two-Dimensional Median
Filtering Algorithm.” Acoustics, Speech and Signal Processing, IEEE Transactions on 27:1
(1979), 13–18.

[Kandel et al. 00] E. R. Kandel, J. H. Schwartz, and T. M. Jessel. Principles of Neural
Science, Fourth edition. New York: McGraw-Hill, 2000.

[Oyster 99] C. W. Oyster. The Human Eye: Structure and Function. Sunderland, MA:
Sinauer Associates, 1999.

[Ridler and Calvard 78] T. W. Ridler and S. Calvard. “Picture Thresholding Using an
Iterative Selection Method.” IEEE Transactions on Systems, Man and Cybernetics 8:8
(1978), 630–632.

[Roorda et al. 01] A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams. “Package
Arrangement of the Three Cone Classes in Primate Retina.” Vision Research 41:10–
11 (2001), 1291–1306.

337



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

�

Index

3CCD, 47
4-connected component, 299
8-connected component, 299

AbstractDigitalImage (imaging),
52

AC coefficient, 223
acceleration, 327
adaptive thresholding, 200
AddBinaryOp (pixeljelly.ops), 112
affine transform, 174

reflection, 175
rotation, 175
scaling, 175
shearing, 175
translation, 175

AffineTransform (java.awt.geom),
183

AffineTransformMapper

(imaging.ops), 188
AffineTransformOp

(java.awt.image), 184
aliasing, 220
alpha blending, 115
ArrayDigitalImage (imaging), 52
aspect ratio, 42

backward mapping, 179
band, 38
band pass filter, 243
band stop filter, 243
basis functions, 217
Bayer filter, 47
bicubic interpolation, 181
bilinear interpolation, 180

binary image, 37
BinaryCACEncoder (pixeljelly.io), 271
BinaryImageOp (pixeljelly.ops), 111
bit shifting, 58
blending mode

alpha blending, 115
darken only, 116
diffusion, 116
hard light, 116
lighten only, 116
screen, 116

blurring, 139
BufferedImage (java.awt.image), 62, 63
BufferedImageOp (java.awt.image), 67
BufferedImageOutputStream (pixeljelly.io),

290
Butterworth filter, 240

camera
aperture, 16
f-number, 16
f-stop, 16
optical zoom, 15

CBIR, 106
CCD, 44
chain code, 311

absolute, 312
differential, 312

channel, 38
Chebyshev filter, 242
circular indexing, 128
clamping, 84
classification, 297, 313
closing, 309
CMOS, 44

339



i
i

i
i

i
i

i
i

340 Index

coding redundancy, 256
color

additive color model, 25
CMY color model, 28
CMYK color model, 29
color depth, 39
color model, 25
color separation, 29
color space, 25
gamut, 25
HSB color model, 30
L1 metric, 33
L2 metric, 33
RGB color model, 26
similarity, 33
subtractive color model, 26
YCbCr color model, 32
YIQ color model, 32
YUV color model, 33

Color (java.awt), 35
color image, 37
ColorModel, 62
ColorModel (java.awt.image), 65
ColorUtilities, 36
Complex (pixeljelly.utilities),

244
complex number, 229

magnitude, 230
phase, 230

component, 298
area, 313
centroid, 315
circularity, 314
compactness, 314
eccentricity, 316
moments, 315
orientation, 316
perimeter, 313

component labeling, 300
compression ratio, 257
computer graphics, 2
computer vision, 2
concurrency, 321
ConcurrentOp (imaging.ops), 326
cone, see photoreceptor
connected path, 299

connectivity, 298
constant area coding, 268
contrast, 83
convolution, 124

edge problem, 127
convolution theorem, 237
ConvolutionOp (pixeljelly.ops), 137
ConvolveOp (java.awt.image), 134
cover image, 287
cross correlation, 166
CRT, 48
cumulative distribution function, 100
currying, 111

DC coefficient, 223
decoder, 256
delta modulation, 278
demosaicing, 47
DICOM, 6
digital image processing, 2
DigitalImage (imaging), 51
dilation, 306
discrete cosine transform, 217, 222
discrete Fourier transform, 217, 228

distributivity, 233
periodicity, 234
rotation, 233
translation, 233

disjoint-set, 302
dither matrix, 205
dithering, 202

color, 212
error diffusion, 207
Floyd-Steinberg, 208
Jarvix-Judice-Ninke, 209
Sierra dithering, 209
Stucki, 209

DitherMatrixOp (pixeljelly.ops), 206
dynamic thresholding, 200

edge, 144
edge detection, 144
edge enhancement, 155
edge map, 152

encoder, 256
energy compaction, 226
erosion, 306



i
i

i
i

i
i

i
i

Index 341

error diffusion, 207
ErrorDiffusionOp

(pixeljelly.ops), 210
exposure, 82
extended padding, 128
eye

cornea, 18
fovea, 18
iris, 18
optic nerve, 19
perimetric angle, 18
pupil, 18
retina, 18
rods and cones, 18
visual axis, 18

FalseColorOp (pixeljelly.ops), 98
fast Fourier transform, 247
feature, 313
feature vector, 313
FFT, 247
flood filling, 300
Floyd-Steinberg dithering, 208
FloydSteinbergDitheringOp

(pixeljelly.ops), 212
forward mapping, 178
frequency, 42

gamma correction, 92
GammaOp (pixeljelly.ops), 95
Gaussian filter, 242
geometric operations, 173
GeometricTransformOp

(imaging.ops), 188
GIF, 284
gradient, 145
grayscale image, 37

halftoning, 198
analog, 198
digital, 198

high dynamic range imaging, 21
high pass filter, 242
histogram, 99

color, 106
Histogram (pixeljelly.features),

104

histogram equalization, 99
homogeneous coordinate, 174
homogeneous transformation matrix, 174

ideal filter, 239
image

acquisition, 43
continuous tone, 44
frequency, 42
quanitization, 44
resolution, 42
sampling, 44

image arithmetic, 107
image blending, 107
image compression, 255
image frequency, 217
ImageComponent (pixeljelly.gui), 76
ImageDecoder (pixeljelly.io), 266
ImageEncoder (pixeljelly.io), 264
ImageIO (javax.imageio), 66
ImagePadder (pixeljelly.utilities), 129
ImageTiler (imaging.scanners), 322
immediate mode, 62
indexed image, 60
interpixel redundancy, 255
Interpolant (imaging.utilities), 186
interpolation, 180
InverseMapper (imaging.utilities), 187
invertibility, 221
InvertOp (pixeljelly.ops), 73

Jarvis-Judice-Ninke dithering, 209
Java Advanced Imaging (JAI), 327
Java Media suite, 327
JPEG, 280

kernel, 124
Kernel (java.awt.image), 134
Kernel2D (pixeljelly.utilities), 135
key element, 124

least significant bit embedding, 287
lens, 15

focal length, 15
magnification factor, 15
thin lens equation, 15



i
i

i
i

i
i

i
i

342 Index

light, 13
amplitude, 13
frequency, 13
wavelength, 13

LinearArrayDigitalImage

(imaging), 57
Location (pixeljelly.scanners),

71
logical operators, 113
lookup tables, 90
LookupOp (java.awt.image), 91
lossless encoding, 259
lossy encoding, 259
low pass filtering, 238
LSBSteganographer

(pixeljelly.utilities),
292

magic number, 266
magnitude of gradient, 151
MagnitudeOfGradientOp

(pixeljelly.ops), 152
Mask (pixeljelly.utilities), 159
median filter, 157
mezzotint, 204
morphology, 297

nearest neighbor interpolation, 180
NearestNeighborInterpolant

(imaging.utilities), 187
nonlinear geometric transformations,

191
normalized cross correlation, 167
NullOp (pixeljelly.ops), 71

opening, 309
OpThread (imaging.ops), 324
OrBinaryOp (pixeljelly.ops), 115

packed pixel, 57
PackedPixelImage (imaging), 60
packing, 58
patterning, 202
periodic noise, 244
photoreceptor

cone, 18
rod, 18

pixel, 38
pixel resolution, 42
PluggableImageOp (pixeljelly.ops), 76
predictive coding, 275
Prewitt operator, 149
process, 321
pseudo coloring, 95
psycho-visual redundancy, 255

quadtree, 268
quantization, 44

random dithering, 204
RandomDitherOp (pixeljelly.ops), 204
range filter, 165
rank filering, 157
RankOp (pixeljelly.ops), 162
raster, 53
raster scan, 56
RasterScanner (pixeljelly.scanners),

71
raw format, 257
reconstruction, 182
reconstruction filter, 48
reflection, 175
reflective indexing, 128
ReflectivePadder

(pixeljelly.utilities), 130
regional processing, 81, 123
registration, 173
relative compression ratio, 257
resampling, 182
rescale, 82

bias, 82
gain, 82

RescaleOp (java.awt.image), 90
Roberts cross operators, 150
rod, see photoreceptor
root mean squared error, 257
rotation, 175
run length encoding, 259
RunLengthEncoder (pixeljelly.io), 266

salt and pepper noise, 157
sample, 38
sampling, 44
savings ratio, 257



i
i

i
i

i
i

i
i

Index 343

scaling, 175
scanning, 69
segmentation, 297, 317
separability, 133
SeperableKernel

(pixeljelly.utilities),
137

sharpening, 155
shearing, 175
Sierra dithering, 209
SimpleConvolveOp

(pixeljelly.ops), 126
single source, 67
sinusoid, 218
smoothing, 139
Sobel operator, 150
spectrum, 231

phase, 231
power, 231

Steganographer

(pixeljelly.utilities),
289

steganography, 286
stego image, 287
Stucki dithering, 209
System.arraycopy (java), 54

template matching, 166
thread, 321
Thread (java), 322
thresholding, 199
TiledPadder

(pixeljelly.utilities),
130

translation, 175

transparency, 115
TwirlMapper (imaging.utilities), 193

uniform filter, 139
union-find, 302
unpacking, 58

vision
brightness adaptation, 20
glare limit, 20
instantaneous range, 20
photopic, 18
scotopic, 18
scotopic threshold, 20
simultaneous contrast, 22

wavelet, 249
Coiflet, 251
Daubechies, 251
Haar, 251
Mexican hat, 251

weighted blur filter
conical, 141
Gaussian, 141
pyramid, 140

windowing, 235
Bartlett, 235
Blackman, 235
Hamming, 236
Hanning, 235

WritableRaster (java.awt.image), 62, 65

zero padding, 128
ZeroPadder (pixeljelly.utilities), 129,

131




	Front Cover
	Contents
	1. Introduction
	2. Optics and Human Vision
	3. Digital Images
	4. Digital Images in Java
	5. Point Processing Techniques
	6. Regional Processing Techniques
	7. Geometric Operations
	8. Image Printing and Display
	9. Frequency Domain
	10. Image Compression
	11. Morphological Image Processing
	12. Advanced Programming
	Backmatter

